WorldWideScience

Sample records for chemistry tank characterization

  1. Tank 241-A-104 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-A-104. This Tank Characterization Plan will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in addition to reporting the current contents and status of the tank as projected from historical information

  2. Tank 241-C-105 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-105

  3. Tank 241-BY-106 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-106

  4. Tank 241-AX-104 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-AX-104

  5. Tank 241-AX-102 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-AX-102

  6. Tank 241-C-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-101

  7. Tank 241-AP-107 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-AP-107

  8. Identification of Non-Pertechnetate Species In Hanford Tank Waste, Their Synthesis, Characterization, And Fundamental Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth R. Ashely; Norman Schroeder; Jose A. Olivares; Brian Scott

    2004-12-10

    This proposal had three major goals: (1) develop capillary electrophoresis mass spectrometry as a characterization technique, (2) separate a non-pertechnetate fraction from a waste sample and identify the non-pertechnetate species in it by CEMS, and (3) synthesize and characterize bulk quantities of the identified non-pertechnetate species and study their ligand substitution and redox chemistry.

  9. Identification of Non-Pertechnetate Species In Hanford Tank Waste, Their Synthesis, Characterization, And Fundamental Chemistry

    International Nuclear Information System (INIS)

    Ashely, Kenneth R.; Schroeder, Norman; Olivares, Jose A.; Scott, Brian

    2004-01-01

    This proposal had three major goals: (1) develop capillary electrophoresis mass spectrometry as a characterization technique, (2) separate a non-pertechnetate fraction from a waste sample and identify the non-pertechnetate species in it by CEMS, and (3) synthesize and characterize bulk quantities of the identified non-pertechnetate species and study their ligand substitution and redox chemistry

  10. Tank characterization reference guide

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J.; Simpson, B.C.

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research

  11. Tank 241-U-203: Tank Characterization Plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1995-01-01

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities

  12. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  13. Tank 241-BY-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQO's identify information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for Tank BY-111 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given

  14. Tank 241-AW-101 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists

  15. Tank 241-C-103 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank

  16. Tank 241-U-111 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-111

  17. Tank 241-T-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111

  18. Tank 241-U-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-103

  19. Tank 241-TX-118 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-118

  20. Tank 241-BX-104 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-BX-104

  1. Tank 241-TY-101 Tank Characterization Plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TY-101

  2. Tank 241-T-107 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-107

  3. Tank 241-TX-105 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105

  4. Tank 241-C-103 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-103

  5. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  6. Tank 241-AZ-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters

  7. Tank 241-AZ-102 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters

  8. Tank 241-B-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for Tank 241-B-103 (B-103) sampling activities. Tank B-103 was placed on the Organic Watch List in January 1991 due to review of TRAC data that predicts a TOC content of 3.3 dry weight percent. The tank was classified as an assumed leaker of approximately 30,280 liters (8,000 gallons) in 1978 and declared inactive. Tank B-103 is passively ventilated with interim stabilization and intrusion prevention measures completed in 1985

  9. Tank 241-C-107 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for the Tank 241-C-107 (C-107) sampling activities. Currently tank C-107 is categorized as a sound, low-heat load tank with partial isolation completed in December 1982. The tank is awaiting stabilization. Tank C-107 is expected to contain three primary layers of waste. The bottom layer should contain a mixture of the following wastes: ion exchange, concentrated phosphate waste from N-Reactor, Hanford Lab Operations, strontium semi-works, Battelle Northwest, 1C, TBP waste, cladding waste, and the hot semi-works. The middle layer should contain strontium recovery supernate. The upper layer should consist of non-complexed waste

  10. Tank 4 Characterization, Settling, And Washing Studies

    International Nuclear Information System (INIS)

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-01-01

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na 2 SO 4 · Na 2 CO 3 ). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form

  11. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  12. DOUBLE SHELL TANK INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    International Nuclear Information System (INIS)

    WASHENFELDER DJ

    2008-01-01

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  13. Tank 241-AP-104 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-11-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Double-Shell Tank (DST) 241-AP-104

  14. Tank characterization report for Single-Shell Tank B-111

    International Nuclear Information System (INIS)

    Remund, K.M.; Tingey, J.M.; Heasler, P.G.; Toth, J.J.; Ryan, F.M.; Hartley, S.A.; Simpson, D.B.; Simpson, B.C.

    1994-09-01

    Tank 241-B-111 (hereafter referred to as B-111) is a 2,006,300 liter (530,000 gallon) single-shell waste tank located in the 200 East B tank farm at Hanford. Two cores were taken from this tank in 1991 and analysis of the cores was conducted by Battelle's 325-A Laboratory in 1993. Characterization of the waste in this tank is being done to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05. Tank B-111 was constructed in 1943 and put into service in 1945; it is the second tank in a cascade system with Tanks B-110 and B-112. During its process history, B-111 received mostly second-decontamination-cycle waste and fission products waste via the cascade from Tank B-110. This tank was retired from service in 1976, and in 1978 the tank was assumed to have leaked 30,300 liters (8,000 gallons). The tank was interim stabilized and interim isolated in 1985. The tank presently contains approximately 893,400 liters (236,000 gallons) of sludge-like waste and approximately 3,800 liters (1,000 gallons) of supernate. Historically, there are no unreviewed safety issues associated with this tank and none were revealed after reviewing the data from the latest core sampling event in 1991. An extensive set of analytical measurements was performed on the core composites. The major constituents (> 0.5 wt%) measured in the waste are water, sodium, nitrate, phosphate, nitrite, bismuth, iron, sulfate and silicon, ordered from largest concentration to the smallest. The concentrations and inventories of these and other constituents are given. Since Tanks B-110 and B-111 have similar process histories, their sampling results were compared. The results of the chemical analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics 'D' waste codes; and against state waste codes

  15. Tank characterization report for single-shell Tank B-201

    International Nuclear Information System (INIS)

    Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

    1994-09-01

    The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank

  16. Tank 241-BY-103 Tank Characterization Plan. Revision 1

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-103

  17. Waste tank characterization sampling limits

    International Nuclear Information System (INIS)

    Tusler, L.A.

    1994-01-01

    This document is a result of the Plant Implementation Team Investigation into delayed reporting of the exotherm in Tank 241-T-111 waste samples. The corrective actions identified are to have immediate notification of appropriate Tank Farm Operations Shift Management if analyses with potential safety impact exceed established levels. A procedure, WHC-IP-0842 Section 12.18, ''TWRS Approved Sampling and Data Analysis by Designated Laboratories'' (WHC 1994), has been established to require all tank waste sampling (including core, auger and supernate) and tank vapor samples be performed using this document. This document establishes levels for specified analysis that require notification of the appropriate shift manager. The following categories provide numerical values for analysis that may indicate that a tank is either outside the operating specification or should be evaluated for inclusion on a Watch List. The information given is intended to translate an operating limit such as heat load, expressed in Btu/hour, to an analysis related limit, in this case cesium-137 and strontium-90 concentrations. By using the values provided as safety flags, the analytical laboratory personnel can notify a shift manager that a tank is in potential violation of an operating limit or that a tank should be considered for inclusion on a Watch List. The shift manager can then take appropriate interim measures until a final determination is made by engineering personnel

  18. Characterization of Hanford tank wastes containing ferrocyanides

    International Nuclear Information System (INIS)

    Tingey, J.M.; Matheson, J.D.; McKinley, S.G.; Jones, T.E.; Pool, K.H.

    1993-02-01

    Currently, 17 storage tanks on the Hanford site that are believed to contain > 1,000 gram moles (465 lbs) of ferrocyanide compounds have been identified. Seven other tanks are classified as ferrocyanide containing waste tanks, but contain less than 1,000 gram moles of ferrocyanide compounds. These seven tanks are still included as Hanford Watch List Tanks. These tanks have been declared an unreviewed safety question (USQ) because of potential thermal reactivity hazards associated with the ferrocyanide compounds and nitrate and nitrite. Hanford tanks with waste containing > 1,000 gram moles of ferrocyanide have been sampled. Extensive chemical, radiothermical, and physical characterization have been performed on these waste samples. The reactivity of these wastes were also studied using Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis. Actual tank waste samples were retrieved from tank 241-C-112 using a specially designed and equipped core-sampling truck. Only a small portion of the data obtained from this characterization effort will be reported in this paper. This report will deal primarily with the cyanide and carbon analyses, thermal analyses, and limited physical property measurements

  19. Phase Chemistry of Tank Sludge Residual Components

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Nagy, Kathryn L.

    2000-01-01

    About four or five distinct reprocessing technologies were used at various times in Hanford's history. After removing U and Pu (or later 137Cs and 90Sr), the strongly acidic HLW was ''neutralized'' to high pH (>13) and stored in steel-lined tanks. High pH was necessary to prevent tank corrosion. While each technology produced chemically distinct waste, all wastes were similar in that they were high pH, concentrated, aqueous solutions. Dominant dissolved metals were Fe and/or Al, usually followed by Ni, Mn, or Cr. In an effort to reduce waste volume, many of the wastes were placed in evaporators or allowed to ''self-boil'' from the heat produced by their own radioactive decay. Consequently, today's HLW has been aging at temperatures ranging from 20 to 160 C. Previous studies of synthetic HLW sludge analogues have varied in their exact synthesis procedures and recipes, although each involved ''neutralization'' of acidic nitrate salt solutions by concentrated NaOH. Some recipes included small amounts of Si, SO4 2-, CO3 2-, and other minor chemical components in the Hanford sludges. The work being conducted at the University of Colorado differs from previous studies and from parallel current investigations at Sandia National Laboratories in the simplicity of the synthetic sludge we are investigating. We are emphasizing the dominant role of Fe and Al, and secondarily, the effects of Ni and Si on the aging kinetics of the solid phases in the sludge

  20. Analyses and characterization of double shell tank

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-04

    Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams.

  1. Analyses and characterization of double shell tank

    International Nuclear Information System (INIS)

    1994-01-01

    Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams

  2. Vapor characterization of Tank 241-C-103

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Story, M.S.

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program

  3. Vapor characterization of Tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

  4. Building 310 retention tanks characterization report

    International Nuclear Information System (INIS)

    Sholeen, C.M.; Geraghty, D.C.

    1996-12-01

    The Health Physics Section of ANL performed a characterization of the Building 310 Service Floor Retention Tank Facility during the months of July and August, 1996. The characterization included measurements for radioactivity, air sampling for airborne particles and sampling to determine the presence and quantity of hazardous materials requiring remediation. Copies of previous lead and asbestos sampling information was obtained from ESH-IH. The facility consists of ten retention tanks located in rooms, A-062A, A-050A, A-038A, A-026A, and an entry room A-068A which contained miscellaneous pumps and other scrap material. Significant contamination was found in each room except room A-068A which had two contaminated spots on the floor and a discarded contaminated pump. Room A-062A: This room had the highest radiation background. Therefore, beta readings reflected the background readings. The floor, west wall, and the exterior of tank No. 1 had areas of alpha contamination. The piping leading from the tank had elevated gamma readings. There were low levels of smearable contamination on the west wall-Room A-050A: Alpha and Beta contamination is wide spread on the floor, west wall and the lower portion of the north wall. An area near the electrical box on the west wall had alpha and beta loose contamination. The exterior of tank No. 4 also had contaminated areas. The grate in front of tank No. 4 was contaminated. The piping leading from tanks No. 2, 3, and 4 had elevated gamma readings. There were low levels of smearable contamination on tank No. 4 and on the tar paper that is glued to the floor

  5. Tank 241-U-106 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-U-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  6. Phase chemistry and radionuclide retention from simulated tank sludges

    International Nuclear Information System (INIS)

    KRUMHANSL, JAMES L.; LIU, J.; ARTHUR, SARA E.; HUTCHERSON, SHEILA K.; QIAN, MORRIS; ANDERSON, HOWARD L.

    2000-01-01

    Decommissioning high level nuclear waste tanks will leave small amounts of residual sludge clinging to the walls and floor of the structures. The permissible amount of material left in the tanks depends on the radionuclide release characteristics of the sludge. At present, no systematic process exists for assessing how much of the remaining inventory will migrate, and which radioisotopes will remain relatively fixed. Working with actual sludges is both dangerous and prohibitively expensive. Consequently, methods were developed for preparing sludge simulants and doping them with nonradioactive surrogates for several radionuclides and RCRA metals of concern in actual sludges. The phase chemistry of these mixes was found to be a reasonable match for the main phases in actual sludges. Preliminary surrogate release characteristics for these sludges were assessed by lowering the ionic strength and pH of the sludges in the manner that would occur if normal groundwater gained access to a decommissioned tank. Most of the Se, Cs and Tc in the sludges will be released into the first pulse of groundwater passing through the sludge. A significant fraction of the other surrogates will be retained indefinitely by the sludges. This prolonged sequestration results from a combination coprecipitated and sorbed into or onto relatively insoluble phases such as apatite, hydrous oxides of Fe, Al, Bi and rare earth oxides and phosphates. The coprecipitated fraction cannot be released until the host phase dissolves or recrystallizes. The sorbed fraction can be released by ion exchange processes as the pore fluid chemistry changes. However, these releases can be predicted based on a knowledge of the fluid composition and the surface chemistry of the solids. In this regard, the behavior of the hydrous iron oxide component of most sludges will probably play a dominant role for many cationic radionuclides while the hydrous aluminum oxides may be more important in governing anion releases

  7. Tank characterization report for double-shell tank 241-AP-102

    International Nuclear Information System (INIS)

    LAMBERT, S.L.

    1999-01-01

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues

  8. Uncertainty and sampling issues in tank characterization

    International Nuclear Information System (INIS)

    Liebetrau, A.M.; Pulsipher, B.A.; Kashporenko, D.M.

    1997-06-01

    A defensible characterization strategy must recognize that uncertainties are inherent in any measurement or estimate of interest and must employ statistical methods for quantifying and managing those uncertainties. Estimates of risk and therefore key decisions must incorporate knowledge about uncertainty. This report focuses statistical methods that should be employed to ensure confident decision making and appropriate management of uncertainty. Sampling is a major source of uncertainty that deserves special consideration in the tank characterization strategy. The question of whether sampling will ever provide the reliable information needed to resolve safety issues is explored. The issue of sample representativeness must be resolved before sample information is reliable. Representativeness is a relative term but can be defined in terms of bias and precision. Currently, precision can be quantified and managed through an effective sampling and statistical analysis program. Quantifying bias is more difficult and is not being addressed under the current sampling strategies. Bias could be bounded by (1) employing new sampling methods that can obtain samples from other areas in the tanks, (2) putting in new risers on some worst case tanks and comparing the results from existing risers with new risers, or (3) sampling tanks through risers under which no disturbance or activity has previously occurred. With some bound on bias and estimates of precision, various sampling strategies could be determined and shown to be either cost-effective or infeasible

  9. Tank characterization report for single-shell tank 241-U-110. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  10. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report

  11. Tank farm waste characterization Technology Program Plan

    International Nuclear Information System (INIS)

    Hohl, T.M.; Schull, K.E.; Bensky, M.S.; Sasaki, L.M.

    1989-03-01

    This document presents technological and analytical methods development activities required to characterize, process, and dispose of Hanford Site wastes stored in underground waste tanks in accordance with state and federal environmental regulations. The document also lists the need date, current (fiscal year 1989) funding, and estimate of future funding for each task. Also identified are the impact(s) if an activity is not completed. The document integrates these needs to minimize duplication of effort between the various programs involved

  12. Tank characterization data report: Tank 241-C-112

    International Nuclear Information System (INIS)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable

  13. Tank characterization data report: Tank 241-C-112

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  14. Tank waste remediation system characterization project quality policies. Revision 1

    International Nuclear Information System (INIS)

    Trimble, D.J.

    1995-01-01

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System

  15. Tank 241-C-111 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-111. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  16. Tank 241-BY-110 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-BY-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to the tank farm workers due to fugitive emissions from the tank

  17. Tank 241-C-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  18. Tank 241-C-102 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-102. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  19. Tank 241-TY-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-TY-101. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  20. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-04-01

    This report investigates the nature of the waste in tank U-110 using historical and current information. When characterizing tank waste, several important properties are considered. First, the physical characteristics of the waste are presented, including waste appearance, density, and size of waste particles. The existence of any exotherms in the tank that may present a safety concern is investigated. Finally, the radiological and chemical composition of the tank are presented

  1. Tank 241-BX-104 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-BX-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  2. Tank 241-SX-106 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-SX-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  3. Tank 241-T-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-T-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  4. Tank 241-B-103 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-B-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  5. Tank characterization report for double-shell Tank 241-AP-107

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    The purpose of this tank characterization report is to describe and characterize the waste in Double-Shell Tank 241-AP-107 based on information gathered from various sources. This report summarizes the available information regarding the waste in Tank 241-AP-107, and arranges it in a useful format for making management and technical decisions concerning this particular waste tank. In addition, conclusion and recommendations based on safety and further characterization needs are given. Specific objectives reached by the sampling and characterization of the waste in Tank 241-AP-107 are: Contribute toward the fulfillment of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05 concerning the characterization of Hanford Site high-level radioactive waste tanks; Complete safety screening of the contents of Tank 241-AP-107 to meet the characterization requirements of the Defense Nuclear Facilities Safety board (DNFSB) Recommendation 93-5; and Provide tank waste characterization to the Tank Waste Remediation System (TWRS) Program Elements in accordance with the TWRS Tank Waste Analysis Plan

  6. Tank 241-BY-110 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-BY-110

  7. Tank characterization report for single shell tank 241-SX-108

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, R.F., Westinghouse Hanford

    1996-07-11

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SX-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  8. Tank 241-S-107 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-S-107

  9. Tank 241-AN-102 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-AN-102

  10. Tank 241-U-111 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-U-111

  11. Tank 241-B-106 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-B-106

  12. Tank 241-SY-103 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-SY-103

  13. Waste Tank Safety Screening Module: An aspect of Hanford Site tank waste characterization

    International Nuclear Information System (INIS)

    Hill, J.G.; Wood, T.W.; Babad, H.; Redus, K.S.

    1994-01-01

    Forty-five (45) of the 149 Hanford single-shell tanks have been designated as Watch-List tanks for one or more high-priority safety issues, which include significant concentrations of organic materials, ferrocyanide salts, potential generation of flammable gases, high heat generation, criticality, and noxious vapor generation. While limited waste characterization data have been acquired on these wastes under the original Tri-Party Agreement, to date all of the tank-by-tank assessments involved in these safety issue designations have been based on historical data rather than waste on data. In response to guidance from the Defense Nuclear Facilities Safety Board (DNFSB finding 93-05) and related direction from the US Department of Energy (DOE), Westinghouse Hanford Company, assisted by Pacific Northwest Laboratory, designed a measurements-based screening program to screen all single-shell tanks for all of these issues. This program, designated the Tank Safety Screening Module (TSSM), consists of a regime of core, supernatant, and auger samples and associated analytical measurements intended to make first-order discriminations of the safety status on a tank-by-tank basis. The TSSM combines limited tank sampling and analysis with monitoring and tank history to provide an enhanced measurement-based categorization of the tanks relative to the safety issues. This program will be implemented beginning in fiscal year (FY) 1994 and supplemented by more detailed characterization studies designed to support safety issue resolution

  14. Tank characterization report for double-shell tank 241-AN-102

    International Nuclear Information System (INIS)

    Jo, J.

    1996-01-01

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists

  15. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  16. Preliminary tank characterization report for single-shell tank 241-TX-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-101. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  17. Preliminary tank characterization report for single-shell tank 241-TY-102: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TY-102. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  18. Preliminary tank characterization report for single-shell tank 241-TX-113: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-113. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  19. Tank characterization report for single-shell tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

  20. Tank characterization report for single-shell tank 241-C-109

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices

  1. Tank characterization report for double-shell Tank 241-AW-105

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W.; Stephens, R.H.; Simpson, B.C.

    1994-01-01

    In May 1990, double-shell Tank 241-AW-105 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. This report summarizes the available information regarding the waste in Tank 241-AW-105, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  2. Analysis and characterization of double shell tank 241-AP-108

    International Nuclear Information System (INIS)

    Miller, G.L.

    1994-01-01

    This document is the first part of a three-part report describing the analysis and characterization of double shell tank 241-AP-108 which is located at the Hanford Reservation.This document is the analytical laboratory data package entitled 'Analysis and Characterization of Double Shell Tank 241-AP-108' which contains a case sampling history, the sampling protocols, the analytical procedures, sampling and analysis quality assurance and quality control measures, and chemical analysis results for samples obtained from the tank

  3. Tank 241-Z-361 process and characterization history

    International Nuclear Information System (INIS)

    Jones, S.A.

    1997-01-01

    This document is a summary of the history of Tank 241-Z-361 through December 1997. Documents reviewed include engineering files, laboratory notebooks from characterization efforts, waste facility process procedures, supporting documents and interviews of people's recollections of 20 plus years ago. Records of transfers into the tank, past characterization efforts, and speculation will be used to estimate the current condition of Tank 241-Z-361 and its contents

  4. Tank characterization report for single-shell Tank 241-B-110

    International Nuclear Information System (INIS)

    Amato, L.C.; De Lorenzo, D.S.; DiCenso, A.T.; Rutherford, J.H.; Stephens, R.H.; Heasler, P.G.; Brown, T.M.; Simpson, B.C.

    1994-08-01

    Single-shell Tank 241-B-110 is an underground storage tank containing radioactive waste. The tank was sampled at various times between August and November of 1989 and later in April of 1990. The analytical data gathered from these sampling efforts were used to generate this Tank Characterization Report. Tank 241-B-110, located in the 200 East Area B Tank Farm, was constructed in 1943 and 1944, and went into service in 1945 by receiving second cycle decontamination waste from the B and T Plants. During the service life of the tank, other wastes were added including B Plant flush waste, B Plant fission product waste, B Plant ion exchange waste, PUREX Plant coating waste, and waste from Tank 241-B-105. The tank currently contains 246,000 gallons of non-complexed waste, existing primarily as sludge. Approximately 22,000 gallons of drainable interstitial liquid and 1,000 gallons of supernate remain. The solid phase of the waste is heterogeneous, for the top layer and subsequent layers have significantly different chemical compositions and are visually distinct. A complete analysis of the top layer has not been done, and auger sampling of the top layer is recommended to fully characterize the waste in Tank 241-B-110. The tank is not classified as a Watch List tank; however, it is a Confirmed Leaker, having lost nearly 10,000 gallons of waste. The waste in Tank 241-B-110 is primarily precipitated salts, some of which are composed of radioactive isotopes. The most prevalent analytes include water, bismuth, iron, nitrate, nitrite, phosphate, silicon, sodium, and sulfate. The major radionuclide constituents are 137 Cs and 90 Sr

  5. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    Double-Shell Tank 241-AP-105 is a radioactive waste tank most recently sampled in March of 1993. Sampling and characterization of the waste in Tank 241-AP-105 contributes toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order (Ecology, EPA, and DOE, 1993). Characterization is also needed tot evaluate the waste's fitness for safe processing through an evaporator as part of an overall waste volume reduction program. Tank 241-AP-105, located in the 200 East Area AP Tank Farm, was constructed and went into service in 1986 as a dilute waste receiver tank; Tank 241AP-1 05 was considered as a candidate tank for the Grout Treatment Facility. With the cancellation of the Grout Program, the final disposal of the waste in will be as high- and low-level glass fractions. The tank has an operational capacity of 1,140,000 gallons, and currently contains 821,000 gallons of double-shell slurry feed. The waste is heterogeneous, although distinct layers do not exist. Waste has been removed periodically for processing and concentration through the 242-A Evaporator. The tank is not classified as a Watch List tank and is considered to be sound. There are no Unreviewed Safety Questions associated with Tank 241-AP-105 at this time. The waste in Tank 241-AP-105 exists as an aqueous solution of metallic salts and radionuclides, with limited amounts of organic complexants. The most prevalent soluble analytes include aluminum, potassium, sodium, hydroxide, carbonate, nitrate, and nitrite. The calculated pH is greater than the Resource Conservation and Recovery Act established limit of 12.5 for corrosivity. In addition, cadmium, chromium, and lead concentrations were found at levels greater than their regulatory thresholds. The major radionuclide constituent is 137 Cs, while the few organic complexants present include glycolate and oxalate. Approximately 60% of the waste by weight is water

  6. Preliminary characterization of abandoned septic tank systems. Volume 1

    International Nuclear Information System (INIS)

    1995-12-01

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site

  7. Tank Characterization report for single-shell tank 241-SX-103

    International Nuclear Information System (INIS)

    WILMARTH, S.R.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-103 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for fiscal year 1999'' (Adams et al. 1998)

  8. Tank characterization report for single-shell tank 241-U-103

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI, L.M.

    1999-02-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

  9. Tank characterization report for double-shell tank 241-AP-101. Revision 1

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes m support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AP-101. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AP-101 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 provides the best-basis inventory estimate, and Section 4.0 makes recommendations about safety status and additional sampling needs. The appendixes contain supporting data and information. This report supported the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05. The characterization information in this report originated from sample analyses and known historical sources. Appendix A provides historical information for tank 241-AP-101 including surveillance, information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a model based upon process knowledge. Appendix B summarizes recent sampling events and historical sampling information. Tank 241-AP-101 was grab sampled in November 1995, when the tank contained 2,790 kL (737 kgal) of waste. An addition1034al 1,438 kL (380 kgal) of waste was received from tank 241-AW-106 in transfers on March 1996 and January 1997. This waste was the product of the 242-A Evaporator Campaign 95-1. Characterization information for the additional 1,438 kL (380 kgal) was obtained using grab sampling data from tank 241-AW-106 and a slurry sample from the evaporator. Appendix C reports on the statistical analysis and numerical manipulation of data used in

  10. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    International Nuclear Information System (INIS)

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or open-quotes REDOXclose quotes process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as open-quotes assumed leakersclose quotes and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report

  11. Tank characterization report for single-shell tank 241-T-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In August 1992, Single-Shell Tank 241-T-104 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code (Ecology, 1991). This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. The purpose of this report is to describe and characterize the waste in Single-Shall Tank 241-T-104 (hereafter, Tank 241-T-104) based on information given from various sources. This report summarizes the available information regarding the waste in Tank 241-T-104, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  12. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In July and August 1992, Single-Shell Tank 241-S-104 was sampled as part of the overall characterization effort directed by the Hanford Federal Facility Agreement and Consent Order. Sampling was also performed to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also presents expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background historical and surveillance tank information. Finally, this report makes recommendations and conclusions regarding operational safety. The purpose of this report is to describe the characteristics the waste in Single-Shell Tank 241-S-104 (hereafter, Tank 241-S-104) based on information obtained from a variety of sources. This report summarizes the available information regarding the chemical and physical properties of the waste in Tank 241-S-104, and using the historical information to place the analytical data in context, arranges this information in a format useful for making management and technical decisions concerning waste tank safety and disposal issues. In addition, conclusions and recommendations are presented based on safety issues and further characterization needs

  13. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    International Nuclear Information System (INIS)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm

  14. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    Energy Technology Data Exchange (ETDEWEB)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  15. Tank characterization report for single-shell tank 241-B-104

    International Nuclear Information System (INIS)

    Field, J.G.

    1996-01-01

    This document summarizes information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-104. Sampling and analyses meet safety screening and historical data quality objectives. This report supports the requirements of Tri-party Agreement Milestone M-44-09. his characterization report summoned the available information on the historical uses and the current status of single-shell tank 241-B-104, and presents the analytical results of the June 1995 sampling and analysis effort. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1994). Tank 241-B-104 is a single-shell underground waste storage tank located in the 200 East Area B Tank Farm on the Hanford Site. It is the first tank in a three-tank cascade series. The tank went into service in August 1946 with a transfer of second-cycle decontamination waste generated from the bismuth phosphate process. The tank continued to receive this waste type until the third quarter of 1950, when it began receiving first-cycle decontamination waste also produced during the bismuth phosphate process. Following this, the tank received evaporator bottoms sludge from the 242-B Evaporator and waste generated from the flushing of transfer lines. A description and the status of tank 241-B-104 are sum in Table ES-1 and Figure ES-1. The tank has an operating capacity of 2,010 kL (530 kgal), and presently contains 1,400 kL (371 kgal) of waste. The total amount is composed of 4 kL (1 kgal) of supernatant, 260 kL (69 kgal) of saltcake, and 1,140 kL (301 kgal) of sludge (Hanlon 1995). Current surveillance data and observations appear to support these results

  16. Tank 241-Z-361 process and characterization history

    International Nuclear Information System (INIS)

    Jones, S.A.

    1998-01-01

    An Unreviewed Safety Question (Wagoner, 1997) was declared based on lack of adequate authorization basis for Tank 241-Z-361 in the 200W Area at Hanford. This document is a summary of the history of Tank 241-Z-361 through December 1997. Documents reviewed include engineering files, laboratory notebooks from characterization efforts, waste facility process procedures, supporting documents and interviews of people's recollections of over twenty years ago. Records of transfers into the tank, past characterization efforts, and speculation were used to estimate the current condition of Tank 241-Z-361 and its contents. Information about the overall waste system as related to the settling tank was included to help in understanding the numbering system and process relationships. The Plutonium Finishing Plant was built in 1948 and began processing plutonium in mid-1949. The Incinerator (232-Z) operated from December 1961 until May 1973. The Plutonium Reclamation Facility (PRF, 236-Z) began operation in May 1964. The Waste Treatment Facility (242-Z) operated from August 1964 until August 1976. Waste from some processes went through transfer lines to 241-Z sump tanks. High salt and organic waste under normal operation were sent to Z-9 or Z-18 cribs. Water from the retention basin may have also passed through this tank. The transfer lines to 241-Z were numbered D-4 to D-6. The 241-Z sump tanks were numbered D-4 through D-8. The D-4, 5, and 8 drains went to the D-6 sump tank. When D-6 tank was full it was transferred to D-7 tank. Prior to transfer to cribs, the D-7 tank contents was sampled. If the plutonium content was analyzed to be more than 10 g per batch, the material was (generally) reprocessed. Below the discard limit, caustic was added and the material was sent to the cribs via the 241-Z-361 settling tank where solids settled out and the liquid overflowed by gravity to the cribs. Waste liquids that passed through the 241-Z-361 settling tank flowed from PFP to ground in

  17. Tank waste chemistry: A new understanding of waste aging

    International Nuclear Information System (INIS)

    Babad, H.; Camaioni, D.M.; Lilga, M.A.; Samuels, W.D.; Strachan, D.M.

    1993-02-01

    There is concern about the risk of uncontrolled exothermic reactions(s) in Hanford Site waste tanks containing NO 3 minus /NO 2 minus based salts and/or metal hydroxide sludges in combination with organics or ferrocyanides. However, gradual oxidation of the waste in the tanks to less reactive species appears to have reduced the risk. In addition, wastes sampled to date contain sufficiently large quantities of water so that propagation reactions are highly unlikely. This report details an investigation into the risk of an uncontrolled exothermic reaction in Hanford Site high-activity water tanks

  18. Tank characterization report for double-shell tank 241-AW-105

    International Nuclear Information System (INIS)

    Sasaki, L.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses

  19. Tank characterization report for single-shell tank 241-T-105

    Energy Technology Data Exchange (ETDEWEB)

    Field, J.G.

    1998-06-18

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ``issue characterization deliverables consistent with the waste information requirements documents developed for 1998``.

  20. Tank characterization report for single-shell tank 241-U-112

    International Nuclear Information System (INIS)

    Field, J.G.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-112. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-112 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendixes contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to issue characterization deliverables consistent with the Waste Information Requirements Document developed for 1998

  1. Tank characterization report for single-shell tank 241-T-112

    International Nuclear Information System (INIS)

    McCain, D.J.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-112. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-112 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ''issue characterization deliverables consistent with the Waste Information Requirements Documents developed for 1998.''

  2. Tank characterization report for single-shell tank 241-T-105

    International Nuclear Information System (INIS)

    Field, J.G.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ''issue characterization deliverables consistent with the waste information requirements documents developed for 1998''

  3. Tank characterization report for single-shell tank 241-TX-104

    International Nuclear Information System (INIS)

    FIELD, J.G.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-TX-104. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-TX-104 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for FY 1999'' (Adams et al. 1998)

  4. Preliminary tank characterization report for single-shell tank 241-TX-103: Best-basis inventory

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task. The best-basis inventory is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes (Kupfer et al. 1997) describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  5. Preliminary tank characterization report for single-shell tank 241-TX-111: Best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task. The best-basis inventory is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes (Kupfer et al. 1997) describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  6. Characterization and process technology capabilities for Hanford tank waste disposal

    International Nuclear Information System (INIS)

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory's (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory's extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory's radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations

  7. Tank characterization report for double-shell tank 241-AN-105

    International Nuclear Information System (INIS)

    Jo, J.

    1997-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AN-105. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-AN-105 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10

  8. Tank characterization report for single-shell tank 241-C-104

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1997-05-21

    A major function of the Tank Waste Remediation System is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-C-104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  9. Tank characterization report for single-shell tank 241-S-111

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10

  10. Tank characterization report for single-shell tank 241-S-111

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  11. Data quality objectives lessons learned for tank waste characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.; Banning, D.L.

    1996-01-01

    The tank waste characterization process is an integral part of the overall effort to control the hazards associated with radioactive wastes stored in underground tanks at the Hanford Reservation. The programs involved in the characterization of the waste are employing the Data Quality Objective (DQO) process in all information and data collection activities. The DQO process is used by the programs to address an issue or problem rather than a specific sampling event. Practical limits (e.g., limited number and location of sampling points) do not always allow for precise characterization of a tank or the full implementation of the DQO process. Because of the flexibility of the DQO process, it can be used as a planning tool for sampling and analysis of the underground waste storage tanks. The iterative nature of the DQO process allows it to be used as additional information is obtained or open-quotes lessons are learnedclose quotes concerning an issue or problem requiring sampling and analysis of tank waste. In addition, the application of the DQO process forces alternative actions to be considered when precise characterization of a tank or the fall implementation of the DQO process is not practical

  12. Data quality objectives lessons learned for tank waste characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.

    1996-01-01

    The tank waste characterization process is an integral part of the overall effort to control the hazards associated with radioactive wastes stored in underground tanks at the Hanford Reservation. The programs involved in the characterization of the wastes are employing Data Quality Objective (DQO) process in all information and data collection activities. The DQO process is used by the programs to address an issue or problem rather than a specific sampling event. Practical limits do not always allow for precise characterization of a tank or the implementation of the DQO process. Because of the flexibility of the DQO process, it can be used as a tool for sampling and analysis of the underground waste storage tanks. The iterative nature of the DQO process allows it to be used as additional information is claimed or lessons are learned concerning an issue or problem requiring sampling and analysis of tank waste. In addition, the application of DQO process forces alternative actions to be considered when precise characterization of a tank or the full implementation of the DQO process is not practical

  13. Tank characterization report for single-shell tank 241-C-110. Revision 1

    International Nuclear Information System (INIS)

    Benar, C.J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and 1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E

  14. Process chemistry for the pretreatment of Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Swanson, J.L.; Barker, S.A.

    1992-08-01

    Current guidelines for disposing radioactive wastes stored in underground tanks at the US Department of Energy's Hanford Site call for the vitrification of high-level waste in borosilicate glass and disposal of the glass canisters in a deep geologic repository. Low-level waste is to be cast in grout and disposed of on site in shallow burial vaults. Because of the high cost of vitrification and geologic disposal, methods are currently being developed to minimize the volume of high-level waste requiring disposal. Two approaches are being considered for pretreating radioactive tank sludges: (1) leaching of selected components from the sludge and (2) acid dissolution of the sludge followed by separation of key radionuclides. The leaching approach offers the advantage of simplicity, but the acid dissolution/radionuclide extraction approach has the potential to produce the least number of glass canisters. Four critical components (Cr, P, S, and Al) were leached from an actual Hanford tank waste-Plutonium Finishing Plant sludge. The Al, P, and S were removed from the sludge by digestion of the sludge with 0.1 M NaOH at 100 degrees C. The Cr was leached by treating the sludge with alkaline KMnO 4 at 100 degrees C. Removing these four components from the sludge will dramatically lower the number of glass canisters required to dispose of this waste. The transuranic extraction (TRUEX) solvent extraction process has been demonstrated at a bench scale using an actual Hanford tank waste. The process, which involves extraction of the transuranic elements with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), separated 99.9% of the transuranic elements from the bulk components of the waste. Several problems associated with the TRUEX processing of this waste have been addressed and solved

  15. Application of value of information of tank waste characterization: A new paradigm for defining tank waste characterization requirements

    International Nuclear Information System (INIS)

    Fassbender, L.L.; Brewster, M.E.; Brothers, A.J.

    1996-11-01

    This report presents the rationale for adopting a recommended characterization strategy that uses a risk-based decision-making framework for managing the Tank Waste Characterization program at Hanford. The risk-management/value-of-information (VOI) strategy that is illustrated explicitly links each information-gathering activity to its cost and provides a mechanism to ensure that characterization funds are spent where they can produce the largest reduction in risk. The approach was developed by tailoring well-known decision analysis techniques to specific tank waste characterization applications. This report illustrates how VOI calculations are performed and demonstrates that the VOI approach can definitely be used for real Tank Waste Remediation System (TWRS) characterization problems

  16. Application of value of information of tank waste characterization: A new paradigm for defining tank waste characterization requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, L.L.; Brewster, M.E.; Brothers, A.J. [and others

    1996-11-01

    This report presents the rationale for adopting a recommended characterization strategy that uses a risk-based decision-making framework for managing the Tank Waste Characterization program at Hanford. The risk-management/value-of-information (VOI) strategy that is illustrated explicitly links each information-gathering activity to its cost and provides a mechanism to ensure that characterization funds are spent where they can produce the largest reduction in risk. The approach was developed by tailoring well-known decision analysis techniques to specific tank waste characterization applications. This report illustrates how VOI calculations are performed and demonstrates that the VOI approach can definitely be used for real Tank Waste Remediation System (TWRS) characterization problems.

  17. Analysis Of The Tank 6F Final Characterization Samples-2012

    International Nuclear Information System (INIS)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2012-01-01

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  18. Analysis of the Tank 6F Final Characterization Samples-2012

    International Nuclear Information System (INIS)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2013-01-01

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm- 243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  19. ANALYSIS OF THE TANK 6F FINAL CHARACTERIZATION SAMPLES-2012

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.; Shine, G.

    2012-06-28

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  20. Analysis of the Tank 6F Final Characterization Samples-2012

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2013-01-31

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm- 243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  1. Analysis Of The Tank 6F Final Characterization Samples-2012

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  2. ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-08-03

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  3. Analysis Of The Tank 5F Final Characterization Samples-2011

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  4. Preliminary tank characterization report for single-shell tank 241-TX-110: Best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-110 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  5. Preliminary tank characterization report for single-shell tank 241-BX-102: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BX-102 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  6. Prelimainary tank characterization report for single-shell tank 241-TY-103 : Best-Basis inventory

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241'-TY-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  7. Preliminary tank characterization report for single-shell tank 241-U-103: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Stout, R.E.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-U-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  8. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    Jo, J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-S-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with 241-S- 104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-05

  9. Preliminary tank characterization report for single-shell tank 241-BY-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  10. Preliminary tank characterization report for single-shell tank 241-SX-112: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-SX-112 was performed, and a best-basis, inventory was established. This work follows the methodology that was established by the standard inventory task

  11. Preliminary tank characterization report for single-shell tank 241-TX-116: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-116 was performed, and a bost-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  12. Tank characterization report for single-shell tank 241-U-106

    International Nuclear Information System (INIS)

    Brown, T.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10

  13. Tank characterization report for single-shell tank 241-U-106

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.

    1997-04-15

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10.

  14. Preliminary tank characterization report for single-shell tank 241-TY-101: best-basis inventory

    International Nuclear Information System (INIS)

    Lambert, S.L.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  15. Preliminary tank characterization report for single-shell tank 241-SX-107: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Jones, T.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-SX-107 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  16. Preliminary tank characterization report for single-shell tank 241-BX-111: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  17. Tank characterization report for single-shell tank 241-T-102

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1997-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-T-102. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-T-102 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. The most recent core sampling of tank 241-T-102 (March 1993) predated the existence of data quality objectives (DQOs). An assessment of the technical issues from the currently applicable DQOs was made using data from the 1993 push mode core sampling event, a July 1994 grab sampling event, and a May 1996 vapor flammability measurement. Historical information for tank 241-T-102, provided in Appendix A, includes surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. Appendix B contains further sampling and analysis data from the March 1993 push mode core sampling event and data from the grab sampling event in August 1994 and May 1996 vapor flammability measurement. Of the two push mode cores taken in March of 1993, cores 55

  18. Tank characterization report for single-shell tank 241-T-102

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1997-06-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-T-102. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-T-102 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. The most recent core sampling of tank 241-T-102 (March 1993) predated the existence of data quality objectives (DQOs). An assessment of the technical issues from the currently applicable DQOs was made using data from the 1993 push mode core sampling event, a July 1994 grab sampling event, and a May 1996 vapor flammability measurement. Historical information for tank 241-T-102, provided in Appendix A, includes surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. Appendix B contains further sampling and analysis data from the March 1993 push mode core sampling event and data from the grab sampling event in August 1994 and May 1996 vapor flammability measurement. Of the two push mode cores taken in March of 1993, cores 55

  19. Tank Vapor Characterization Project: Vapor space characterization of waste Tank A-101, Results from samples collected on June 8, 1995

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; McVeety, B.D.; Evans, J.C.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-A-101 (Tank A-101) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed in Table 1. Detailed descriptions of the analytical results appear in the text

  20. Tank Vapor Characterization Project: Annual status report for FY 1996

    International Nuclear Information System (INIS)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA trademark and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks

  1. CHARACTERIZATION AND ACTUAL WASTE TEST WITH TANK 5F SAMPLES

    International Nuclear Information System (INIS)

    Fletcher, D.

    2007-01-01

    The initial phase of bulk waste removal operations was recently completed in Tank 5F. Video inspection of the tank indicates several mounds of sludge still remain in the tank. Additionally, a mound of white solids was observed under Riser 5. In support of chemical cleaning and heel removal programs, samples of the sludge and the mound of white solids were obtained from the tank for characterization and testing. A core sample of the sludge and Super Snapper sample of the white solids were characterized. A supernate dip sample from Tank 7F was also characterized. A portion of the sludge was used in two tank cleaning tests using oxalic acid at 50 C and 75 C. The filtered oxalic acid from the tank cleaning tests was subsequently neutralized by addition to a simulated Tank 7F supernate. Solids and liquid samples from the tank cleaning test and neutralization test were characterized. A separate report documents the results of the gas generation from the tank cleaning test using oxalic acid and Tank 5F sludge. The characterization results for the Tank 5F sludge sample (FTF-05-06-55) appear quite good with respect to the tight precision of the sample replicates, good results for the glass standards, and minimal contamination found in the blanks and glass standards. The aqua regia and sodium peroxide fusion data also show good agreement between the two dissolution methods. Iron dominates the sludge composition with other major contributors being uranium, manganese, nickel, sodium, aluminum, and silicon. The low sodium value for the sludge reflects the absence of supernate present in the sample due to the core sampler employed for obtaining the sample. The XRD and CSEM results for the Super Snapper salt sample (i.e., white solids) from Tank 5F (FTF-05-07-1) indicate the material contains hydrated sodium carbonate and bicarbonate salts along with some aluminum hydroxide. These compounds likely precipitated from the supernate in the tank. A solubility test showed the material

  2. Solid Phase Characterization of Tank 241-C-105 Grab Samples

    International Nuclear Information System (INIS)

    Ely, T. M.; LaMothe, M. E.; Lachut, J. S.

    2016-01-01

    The solid phase characterization (SPC) of three grab samples from single-shell Tank 241-C-105 (C-105) that were received at the laboratory the week of October 26, 2015, has been completed. The three samples were received and broken down in the 11A hot cells.

  3. Tank Characterization Report for Double-Shell Tank (DST) 241-AN-107

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    This report interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  4. Tank Characterization Report for Single-Shell Tank 241-C-104

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    Interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  5. Preliminary tank characterization report for single-shell tank 241-B-105: best-basis inventory

    International Nuclear Information System (INIS)

    Higley, B.A.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the at sign various waste management activities. As part of this effort, an evaluation of available information for singlb-shell tank 241-B-105 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  6. Preliminary tank characterization report for single-shell tank 241-SX-111: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort,.an evaluation of available information for single-shell tank 241-SX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  7. Characterization of the MVST waste tanks located at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

  8. Characterization of the BVEST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-01-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks W-21, W-22, and W-23. The isotopic data presented in this report supports the position that fissile isotopes of uranium and plutonium were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the BVEST sludge was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the BVEST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  9. Characterization of the MVST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ''denatured'' as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP

  10. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    International Nuclear Information System (INIS)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  11. CHARACTERIZATION OF TANK 18F WALL AND SCALE SAMPLES

    International Nuclear Information System (INIS)

    Hay, Michael; Click, Damon; Diprete, C.; Diprete, David

    2010-01-01

    Samples from the wall of Tank 18F were obtained to determine the associated source term using a special wall sampling device. Two wall samples and a scale sample were obtained and characterized at the Savannah River National Laboratory (SRNL). All the analyses of the Tank 18F wall and scale samples met the targeted detection limits. The upper wall samples show ∼2X to 6X higher concentrations for U, Pu, and Np on an activity per surface area basis than the lower wall samples. On an activity per mass basis, the upper and lower wall samples show similar compositions for U and Pu. The Np activity is still ∼2.5X higher in the upper wall sample on a per mass basis. The scale sample contains 2-3X higher concentrations of U, Pu, and Sr-90 than the wall samples on an activity per mass basis. The plutonium isotopics differ for all three wall samples (upper, lower, and scale samples). The Pu-238 appears to increase as a proportion of total plutonium as you move up the tank wall from the lowest sample (scale sample) to the upper wall sample. The elemental composition of the scale sample appears similar to other F-Area PUREX sludge compositions. The composition of the scale sample is markedly different than the material on the floor of Tank 18F. However, the scale sample shows elevated Mg and Ca concentrations relative to typical PUREX sludge as do the floor samples.

  12. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  13. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE-SHELL TANKS

    International Nuclear Information System (INIS)

    Brown, M.H.

    2008-01-01

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program

  14. Fundamental chemistry, characterization, and separation of technetium complexes in Hanford waste. 1998 annual progress report

    International Nuclear Information System (INIS)

    Ashley, K.R.; Blanchard, D.L. Jr.; Schroeder, N.C.

    1998-01-01

    'The ultimate goal of this proposal is to separate technetium from Hanford tank waste. The recent work has shown that a large portion of the technetium is not pertechnetate (TcO 4 - ) and is not easily oxidized. This has serious repercussions for technetium partitioning schemes because they are designed to separate this chemical form. Rational attempts to oxidize these species to TcO 4 - for processing or to separate the non-pertechnetate species themselves would be facilitated by knowing the identity of these complexes and understanding their fundamental chemistry. Tank characterization work has not yet identified any of the non-pertechnetate species. However, based on the types of ligands available and the redox conditions in the tank, a reasonable speculation can be made about the types of species that may be present. Thus, this proposal will synthesize and characterize the relevant model complexes of Tc(III), Tc(IV), and Tc(V) that may have formed under tank waste conditions. Once synthesized, these complexes will be used as standards for developing and characterizing the non-pertechnetate species in actual waste using instrumental techniques such as capillary electrophoresis electrospray mass spectrometry (CE-MS), x-ray absorbance spectroscopy (EXAFS and XANES), and multi-nuclear NMR (including 99 Tc NMR). The authors study the redox chemistry of the technetium complexes so that more efficient and selective oxidative methods can be used to bring these species to TcO 4 - for processing purposes. They will also study their ligand substitution chemistry which could be used to develop separation methods for non-pertechnetate species. Understanding the fundamental chemistry of these technetium complexes will enable technetium to be efficiently removed from the Hanford tank waste and help DOE to fulfill its remediation mission. This report summarizes the first 8 months of a 3-year project.'

  15. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9

  16. Tank characterization project (TWRS) process engineering data management plan

    International Nuclear Information System (INIS)

    Adams, M.R.

    1997-01-01

    The Tank Characterization Data Management (TCDM) system provides customers and users with data and information of known and acceptable quality when they are needed, in the form they are needed, and at a reasonable cost. The TCDM mission will be accomplished by the following: (1) maintaining and managing tank characterization data and information based on business needs and objectives including transfer of ownership to future contractors; (2) capturing data where it originates and entering it only once to control data consistency, electronic data and information management shall be emphasized to the extent practicable; (3) establishing data quality standards, and managing and certifying databases and data sources against these standards to maintain the proper level of data and information quality consistent with the importance of the data and information, data obtained at high cost with significant implications to decision making regarding tank safety and/or disposal will be maintained and managed at the highest necessary levels of quality; (4) establishing and enforcing data management standards for the Tank Characterization Database (TCD) and supporting data sources including providing mechanisms for discovering and correcting data errors before they propagate; (5) emphasizing electronic data sharing with all authorized users, customers, contractors, and stakeholders to the extent practicable; (6) safeguarding data and information from unauthorized alteration or destruction; (7) providing standards for electronic information deliverables to subcontractors and vendors to achieve uniformity in electronic data management; and (8) investing in new technology (hardware and/or software) as prudent and necessary to accomplish the mission in an efficient and effective manner

  17. Tank 241-TX-105 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-TX-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-TX-105 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  18. Tank 241-C-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-C-108 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  19. Tank 241-BY-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issuesclose quotes. Tank 241-BY-107 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolutionclose quotes

  20. Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-107 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  1. Tank 241-BY-111 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-111 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-111 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  2. Tank 241-C-108 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in Program Plan for the Resolution of Tank Vapor Issues (Osborne and Huckaby 1994). Tank 241-C-108 was vapor sampled in accordance with Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994)

  3. Tank 241-TX-118 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-TX-118 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-TX-118 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  4. Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ''Program Plan for the Resolution of Tank Vapor Issues'' (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ''Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994)

  5. Tank 241-BY-112 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-112 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  6. Tank 241-C-104 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-C-104 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  7. Tank 241-BY-103 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-103 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-103 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  8. Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-106 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  9. Tank 241-U-107 vapor sampling and analysis tank characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-31

    Tank 241-U-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-U-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  10. Tank Characterization Database (TCD) Data Dictionary: Version 4.0

    International Nuclear Information System (INIS)

    1996-04-01

    This document is the data dictionary for the tank characterization database (TCD) system and contains information on the data model and SYBASE reg-sign database structure. The first two parts of this document are subject areas based on the two different areas of the (TCD) database: sample analysis and waste inventory. Within each subject area is an alphabetical list of all the database tables contained in the subject area. Within each table defintiion is a brief description of the table and alist of field names and attributes. The third part, Field Descriptions, lists all field names in the data base alphabetically

  11. Chemistry of proposed calcination/dissolution processing of Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-01-01

    Plans exist to separate radioactive waste stored in underground tanks at the US Department of Energy's Hanford Site in south central Washington State into low-level and high-level fractions, and to immobilize the separate fractions in high-integrity vitrified forms for long-term disposal. Calcination with water dissolution has been proposed as a possible treatment for achieving low/high-level separation. Chemistry development activities conducted since 1992 with simulated and genuine tank waste show that calcination/dissolution destroys organic carbon and converts nitrate and nitrite to hydroxide and benign offgases. The process also dissolves significant quantities of bulk chemicals (aluminum, chromium, and phosphate), allowing their redistribution from the high-level to the low-level fraction. Present studies of the chemistry of calcination/dissolution processing of genuine wastes, conducted in the period October 1993 to September 1994, show the importance of sodium fluoride phosphate double salt in controlling phosphate dissolution. Peptization of waste solids is of concern if extensive washing occurs. Strongly oxidizing conditions imposed by calcination reactions were found to convert transition metals to soluble anions in the order chromate > manganate > > ferrate. In analogy with manganese behavior, plutonium dissolution, presumably by oxidation to more soluble anionic species, also occurs by calcination/dissolution. Methods to remove plutonium from the product low-level solution stream must be developed

  12. Phase chemistry of tank sludge residual components. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brady, P.V.; Krumhansl, J.L.; Liu, J.; Nagy, K.L.

    1998-01-01

    'The proposed research will provide a scientific basis for predicting the long-term fate of radionuclides remaining with the sludge in decommissioned waste tanks. Nuclear activities in the United States and elsewhere produce substantial volumes of highly radioactive semi-liquid slurries that traditionally are stored in large underground tanks while final waste disposal strategies are established. Although most of this waste will eventually be reprocessed a contaminated structure will remain which must either be removed or decommissioned in place. To accrue the substantial savings associated with in-place disposal will require a performance assessment which, in turn, means predicting the leach behavior of the radionuclides associated with the residual sludges. The phase chemistry of these materials is poorly known so a credible source term cannot presently be formulated. Further, handling of actual radioactive sludges is exceedingly cumbersome and expensive. This proposal is directed at: (1) developing synthetic nonradioactive sludges that match wastes produced by the various fuel processing steps, (2) monitoring the changes in phase chemistry of these sludges as they age, and (3) relating the mobility of trace amounts of radionuclides (or surrogates) in the sludge to the phase changes in the aging wastes. This report summarizes work carried out during the first year of a three year project. A prerequisite to performing a meaningful study was to learn in considerable detail about the chemistry of waste streams produced by fuel reprocessing. At Hanford this is not a simple task since over the last five decades four different reprocessing schemes were used: the early BiPO 4 separation for just Pu, the U recovery activity to further treat wastes left by the BiPO 4 activities, the REDOX process and most recently, the PUREX processes. Savannah River fuel reprocessing started later and only PUREX wastes were generated. It is the working premise of this proposal that most

  13. Waste Tank Vapor Characterization Project: Annual status report for FY 1995

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Fruchter, J.S.; Huckaby, J.L.; Birn, M.B.; McVeety, B.D.; Evans, J.C. Jr.; Pool, K.H.; Silvers, K.L.; Goheen, S.C.

    1995-11-01

    This report compiles information collected during the Fiscal Year 1995 pertaining to the waste tank vapor characterization project. Information covers the following topics: project management; organic sampling and analysis; inorganic sampling and analysis; waste tank vapor data reports; and the waste tanks vapor database

  14. Characterization and decant of Tank 42H sludge sample ESP-200

    International Nuclear Information System (INIS)

    Hay, M.S.

    2000-01-01

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H

  15. Characterization and decant of Tank 42H sludge sample ESP-200

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.S.

    2000-04-25

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H.

  16. Tank 241-C-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories

  17. Tank characterization report for single-shell tank 241-BY-112

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-112. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated a Ferrocyanide Watch List tank.)

  18. Headspace vapor characterization of Hanford Waste Tank 241-S-112: Results from samples collected on July 11, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Clauss, T.W.; Pool, K.H.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage Tank 241-S-112 (Tank S-112) at the Hanford. Pacific Northwest National Laboratory (PNNL) is contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5044. Samples were collected by WHC on July 11, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  19. Headspace vapor characterization of Hanford Waste Tank SX-102: Results from samples collected on July 19, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Evans, J.C.; Clauss, T.W.; Pool, K.H.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-102 (Tank SX-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed under the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5046. Samples were collected by WHC on July 19, 1995, using the vapor sampling system (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  20. Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Thomas, B.L.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  1. Headspace vapor characterization of Hanford Waste Tank 241-TX-111: Results from samples collected on October 12, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-TX-111 (Tank TX-111) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5069. Samples were collected by WHC on October 12, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  2. Headspace vapor characterization of Hanford Waste Tank AX-103: Results from samples collected on June 21, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Clauss, T.W.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-103 (Tank AX-103) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5029. Samples were collected by WHC on June 21, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  3. Headspace vapor characterization of Hanford Waste Tank AX-101: Results from samples collected on June 15, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-101 (Tank AX-101) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) under the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5028. Samples were collected by WHC on June 15, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  4. Headspace vapor characterization of Hanford Waste Tank 241-SX-109: Results from samples collected on August 1, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-109 (Tank SX-109) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5048. Samples were collected by WHC on August 1, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  5. Headspace vapor characterization of Hanford Waste Tank 241-SX-104: Results from samples collected on July 25, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-104 (Tank SX-104) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5049. Samples were collected by WHC on July 25, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  6. Headspace vapor characterization of Hanford Waste Tank 241-SX-105: Results from samples collected on July 26, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-105 (Tank SX-105) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5047. Samples were collected by WHC on July 26, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  7. Second law characterization of stratified thermal storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Fraidenraich, N [Departamento de Energia Nuclear-UFPE (Brazil)

    2000-07-01

    It is well known that fluid stratification in thermal storage tanks improves the overall performance of solar thermal systems, when compared with systems operating with uniform fluid temperature. From the point of view of the first law of thermodynamics, no difference exists between storage tanks with the same mass and average temperature, even if they have different stratified thermal structures. Nevertheless, the useful thermal energy that can be obtained from them might differ significantly. In this work, we derive an expression able to characterize the stratified configuration of thermal fluid. Using results obtained by thermodynamics of irreversible processes, the procedure adopted consists in calculating the maximum work available from the tank's thermal layer is able to develop. We arrive, then, at a dimensionless expression, the stratification parameter (SP), which depends on the mass fraction and absolute temperature of each thermal layer as well as the thermal fluid average temperature. Numerical examples for different types of tank stratification are given and it is verified that the expression obtained is sensitive to small differences in the reservoir thermal configuration. For example a thermal storage with temperatures equal to 74 Celsius degrees, 64 Celsius degrees and 54 Celsius degrees, with its mass equally distributed along the tank yields, for the parameter SP, a figure equal to 0.000294. On the other hand a storage tank with the same average temperature but with different layer's temperatures 76 Celsius degrees, 64 and 52 Celsius degrees, also with uniform mass distribution, yields for SP a value equal to quantitative evaluation of the stratification structure of thermal reservoirs. [Spanish] Es bien conocido que la estratificacion fluida en tanques de almacenamiento termico mejora el rendimiento total de los sistemas termicos solares en comparacion con sistemas que operan con temperatura uniforme del fluido. Desde el punto de vista

  8. Characterization of Settler Tank and KW Container Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Carolyn A.; Luna, Maria; Schmidt, Andrew J.

    2009-05-12

    The Sludge Treatment Project (STP), managed by CH2M Hill Plateau Remediation Company (CHPRC) has specified base formulations for non-radioactive sludge simulants for use in the development and testing of equipment for sludge sampling, retrieval, transport, and processing. In general, the simulant formulations are based on the average or design-basis physical and chemical properties obtained by characterizing sludge samples. The simulants include surrogates for uranium metal, uranium oxides (agglomerates and fine particulate), and the predominant chemical phases (iron and aluminum hydroxides, sand). Specific surrogate components were selected to match the nominal particle-size distribution and particle-density data obtained from sludge sample analysis. Under contract to CHPRC, Pacific Northwest National Laboratory (PNNL) has performed physical and rheological characterization of simulants, and the results are reported here. Two base simulant types (dry) were prepared by STP staff at the Maintenance and Storage Facility and received by PNNL on February 12, 2009: Settler Tank Simulant and KW Container Sludge Simulant. The objectives of this simulant characterization effort were to provide baseline characterization data on simulants being used by STP for process development and equipment testing and provide a high-level comparison of the simulant characteristics to the targets used to formulate the simulants.

  9. Tank characterization report for single-shell tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1996-01-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents

  10. Tank characterization report for single-shell tank 241-A-101

    International Nuclear Information System (INIS)

    Field, J.M.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-A-101. This tank has been listed on the Hydrogen Watch List. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10

  11. Tank 241-BY-108 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  12. Tank 241-BY-105 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories

  13. Tank 241-BY-110 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  14. Modeling needs assessment for Hanford Tank Farm Operations. Vadose Zone Characterization Project at the Hanford Tank Farms

    International Nuclear Information System (INIS)

    1996-04-01

    This report presents the results of a modeling-needs assessment conducted for Tank Farm Operations at the Hanford Site. The goal of this project is to integrate geophysical logging and subsurface transport modeling into a broader decision-based framework that will be made available to guide Tank Farm Operations in implementing future modeling studies. In support of this goal, previous subsurface transport modeling studies were reviewed, and stakeholder surveys and interviews were completed (1) to identify regulatory, stakeholder, and Native American concerns and the impacts of these concerns on Tank Farm Operations, (2) to identify technical constraints that impact site characterization and modeling efforts, and (3) to assess how subsurface transport modeling can best be used to support regulatory, stakeholder, Native American, and Tank Farm Operations needs. This report is organized into six sections. Following an introduction, Section 2.0 discusses background issues that relate to Tank Farm Operations. Section 3.0 summarizes the technical approach used to appraise the status of modeling and supporting characterization. Section 4.0 presents a detailed description of how the technical approach was implemented. Section 5.0 identifies findings and observations that relate to implementation of numerical modeling, and Section 6.0 presents recommendations for future activities

  15. Status report: Pretreatment chemistry evaluation FY1997 -- Wash and leach factors for the single-shell tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Colton, N.G.

    1997-08-01

    The wash factors will be used to partition the single-shell tank (SST) inventory into soluble and insoluble portions. The leach factors will be used to estimate the further removal of bulk analytes, such as chromium, aluminum, and phosphate, as well as minor components. Wash and leach factors are given here for 18 analytes, elements expected to drive the volume of material disposed of as high-level waste (HLW). These factors are determined by a weighting methodology developed earlier by this task. Tank-specific analyte inventory values depicted in Tank Waste Data Summary Worksheets, are calculated from concentrations obtained from characterization reports; the waste density; and the tank waste volume. The experimentally determined percentage of analytes removed by washing and leaching in a particular tank waste are translated into a mass (metric tons) in Experimental Washing and Leaching Data Summary Worksheets.

  16. Status report: Pretreatment chemistry evaluation FY1997 - Wash and leach factors for the single-shell tank waste inventory

    International Nuclear Information System (INIS)

    Colton, N.G.

    1997-08-01

    The wash factors will be used to partition the single-shell tank (SST) inventory into soluble and insoluble portions. The leach factors will be used to estimate the further removal of bulk analytes, such as chromium, aluminum, and phosphate, as well as minor components. Wash and leach factors are given here for 18 analytes, elements expected to drive the volume of material disposed of as high-level waste (HLW). These factors are determined by a weighting methodology developed earlier by this task. Tank-specific analyte inventory values depicted in Tank Waste Data Summary Worksheets, are calculated from concentrations obtained from characterization reports; the waste density; and the tank waste volume. The experimentally determined percentage of analytes removed by washing and leaching in a particular tank waste are translated into a mass (metric tons) in Experimental Washing and Leaching Data Summary Worksheets

  17. Tank characterization report for single-shell tank 241-B-107

    International Nuclear Information System (INIS)

    Conner, J.M.

    1998-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-107. This report supports the requirements of the Tri-Party Agreement Milestone M-44-ISB

  18. Tank characterization report for single-shell tank 241-C-204

    International Nuclear Information System (INIS)

    Conner, J.M.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-C-204. This report supports the requirements of Tri Party Agreement Milestone M 44 09

  19. Tank characterization report for single-shell tank 241-B-101

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-B-101. This report supports the requirements of Tri-Party Agreement Milestone M-44-09

  20. Tank characterization report for single-shell tank 241-BX-111

    International Nuclear Information System (INIS)

    Anantatmula, R.P.

    1998-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste, stored in Tank 241-BX-111. This report supports the requirements of the Tri-Party Agreement Milestone M-44-ISB

  1. Tank characterization report for single-shell tank 241-T-108

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09

  2. Tank characterization report for single-shell tank 241-T-106

    International Nuclear Information System (INIS)

    Jo, J.

    1996-03-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-106. This report supports the requirements of Tri-Party Agreement Milestone M-44-09

  3. Tank characterization report for double-shell tank 241-SY-103

    International Nuclear Information System (INIS)

    Conner, J.M.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SY-103. This report supports the requirements of Tri-Party Agreement Milestone M-44 09

  4. Single Shell Tank Waste Characterization Project for Tank B-110, Core 9 - data package and PNL validation summary report

    International Nuclear Information System (INIS)

    Pool, K.N.; Jones, T.E.; McKinley, S.G.; Tingey, J.M.; Longaker, T.M.; Gibson, J.A.

    1990-01-01

    This Data Package contains results obtained by Pacific Northwest Laboratory (PNL) staff in the characterization and analyses of Core 9 segments taken from the Single-Shell Tank (SST) 110B. The characterization and analysis of Core 9 segments are outlined in the Waste Characterization Plan for Hanford Site Single-Shell Tanks and in the Pacific Northwest Laboratory (PNL) Single-Shell Tank Waste Characterization Support FY 89/90 Statement of Work (SOW), Rev. 1 dated March, 1990. Specific analyses for each sub-sample taken from a segment are delineated in Test Instructions prepared by the PNL Single-Shell Tank Waste Characterization Project Management Office (SST Project) in accordance with procedures contained in the SST Waste Characterization Procedure Compendium (PNL-MA-599). Analytical procedures used in the characterization activities are also included in PNL-MA-599. Core 9 included five segments although segment 1 did not have sufficient material for characterization. The five samplers were received from Westinghouse Hanford Company (WHC) on 11/21-22/89. Each segment was contained in a sampler and was enclosed in a shipping cask. The shipping cask was butted up to the 325-A hot cell and the sampler moved into the hot cell. The material in the sampler (i.e., the segment) was extruded from the sampler, limited physical characteristics assessed, and photographed. At this point samples were taken for particle size and volatile organic analyses. Each segment was then homogenized. Sub-samples were taken for required analyses as delineated in the appropriate Test Instruction. Table 1 includes sample numbers assigned to Core 9 segment materials being transferred from 325-A Hot Cell. Sample numbers 90-0298, 90-0299, 90-0302, and 90-0303 were included in Table 1 although no analyses were requested for these samples. Table 2 lists Core 9 sub-sample numbers per sample preparation method

  5. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford waste tank 241-S-101: Results from samples collected on 06/06/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-101. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained. Analyte concentrations were based on analytical results and sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed

  6. Tank 241-C-103 organic vapor and liquid characterization and supporting activities, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1993-01-01

    The action proposed is to sample the vapor space and liquid waste and perform other supporting activities in Tank 241-C-103 located in the 241-C Tank Farm on the Hanford Site. Operations at Tank 241-C-103 are curtailed because of an unreviewed safety question (USQ) concerning flammability issues of the organic waste in the tank. This USQ must be resolved before normal operation and surveillance of the tank can resume. In addition to the USQ, Tank 241-C-103 is thought to be involved in several cases of exposure of individuals to noxious vapors. This safety issue requires the use of supplied air for workers in the vicinity of the tank. Because of the USQ, the US Department of Energy proposes to characterize the waste in the vapor space and the organic and aqueous layers, to determine the volume of the organic layer. This action is needed to: (1) assess potential risks to workers, the public, and the environment from continued routine tank operations and (2) provide information on the waste material in the tank to facilitate a comprehensive safety analysis of this USQ. The information would be used to determine if a flammable condition within the tank is credible. This information would be used to prevent or mitigate an accident during continued waste storage and future waste characterization. Alternatives to the proposed activities have been considered in this analysis

  7. Characterization of Samples from Old Solvent Tanks S1 through S22

    Energy Technology Data Exchange (ETDEWEB)

    Leyba, J.D.

    1999-03-25

    The Old Radioactive Waste Burial Ground (ORWBG, 643-E) contains 22 old solvent tanks (S1 - S22) which were used to receive and store spent PUREX solvent from F- and H-Canyons. The tanks are cylindrical, carbon-steel, single-wall vessels buried at varying depths. A detailed description of the tanks and their history can be found in Reference 1. A Sampling and Analysis Plan for the characterization of the material contained in the old solvent tanks was developed by the Analytical Development Section (ADS) in October of 19972. The Sampling and Analysis Plan identified several potential disposal facilities for the organic and aqueous phases present in the old solvent tanks which included the Solvent Storage Tank Facility (SSTF), the Mixed Waste Storage Facilities (MWSF), Transuranic (TRU) Pad, and/or the Consolidated Incineration Facility (CIF). In addition, the 241-F/H Tank Farms, TRU Pads, and/or the MWSF were identified as potential disposal facilities for the sludge phases present in the tanks. The purpose of this sampling and characterization was to obtain sufficient data on the material present in the old solvent tanks so that a viable path forward could be established for the closure of the tanks. Therefore, the parameters chosen for the characterization of the various materials present in the tanks were based upon the Waste Acceptance Criteria (WAC) of the SSTF3, TRU Pads4, MWSF5, CIF6, and/or 241-F/H Tank Farms7. Several of the WAC's have been revised, canceled, or replaced by new procedures since October of 1997 and hence where required, the results of this characterization program were compared against the latest revision of the appropriate WAC.

  8. 111-B Metal Examination Facility Concrete Tanks Characterization Plan

    International Nuclear Information System (INIS)

    Encke, D.B.

    1997-08-01

    The 111-B Metal Examination Facility was a single-story, wood frame 'L'-shaped building built on a concrete floor slab. The facility served as a fuel failure inspection facility. Irradiated fuel pieces were stored and examined in two below grade concrete storage tanks filled with water. The tanks have been filled with grout to stabilize the contamination they contained, and overall dimensions are 5 ft 9 in. (1.5 m 22.8 cm ) wide, 9 ft 1 in. (2.7 m 2.54 cm ) deep, and 10 ft 8 in. (3.0 m 20.32 cm) long, and are estimated to weigh 39 tons. The tanks were used to store and examine failed fuel rods, using water as a radiation shield. The tanks were lined with stainless steel; however, drawings show the liner has been removed from at least one tank (south tank) and was partially filled with grout. The south tank was used to contain the Sample Storage Facility, a multi-level metal storage rack for failed nuclear fuel rods (shown in drawings H-1-2889 and -2890). Both tanks were completely grouted sometime before decontamination and demolition (D ampersand D) of the above ground facility in 1984. The 111-B Metal Examination Facility contained two concrete tanks located below floor level for storage and examination of failed fuel. The tanks were filled with concrete as part of decommissioning the facility prior to 1983 (see Appendix A for description of previous work). Funding for removal and disposal of the tanks ran out before they could be properly disposed

  9. Characterization of selected waste tanks from the active LLLW system

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Griest, W.H.

    1996-08-01

    From September 1989 through January of 1990, there was a major effort to sample and analyze the Active Liquid-Low Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The purpose of this report is to summarize additional analytical data collected from some of the active waste tanks from November 1993 through February 1996. The analytical data for this report was collected for several unrelated projects which had different data requirements. The overall analyte list was similar for these projects and the level of quality assurance was the same for all work reported. the new data includes isotopic ratios for uranium and plutonium and an evaluation of the denature ratios to address criticality concerns. Also, radionuclides not previously measured in these waste tanks, including 99Tc and 237Np, are provided in this report

  10. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    International Nuclear Information System (INIS)

    Reboul, S.; Hay, Michael; Zeigler, Kristine; Stone, Michael

    2009-01-01

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of ∼7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low (∼20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the

  11. Tank characterization report for Single-Shell Tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1994-09-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of ∼3.07 m (120.7 ± 2 in. from sidewall bottom or ∼132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19 degrees C (66 degrees F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992

  12. Literature review of the potential impact of glycolic acid on the technetium chemistry of srs tank waste

    International Nuclear Information System (INIS)

    Nash, Charles A.; McCabe, Daniel J.

    2017-01-01

    This document presents a literature study of the impact of glycolate on technetium chemistry in the Savannah River Site (SRS) waste system and specifically Saltstone. A predominant portion of the Tc at SRS will be sent to the Saltstone Facility where it will be immobilized. The Tc in the tank waste is in the highly soluble chemical form of pertechnetate ion (TcO 4 - ) which is reduced by blast furnace slag (BFS) in Saltstone, rendering it highly insoluble and resistant to leaching.

  13. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank U-203, Results from samples collected on August 8, 1995

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-203 (Tank U-203) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed. Detailed descriptions of the analytical results appear in the text

  14. Tank Vapor Characterization Project. Headspace vapor characterization of Hanford Waste Tank AX-102: Results from samples collected on June 27, 1995

    International Nuclear Information System (INIS)

    Clauss, T.W.; Pool, K.H.; Evans, J.C.; McVeety, B.D.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-AX-102 (Tank AX-102) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. Detailed descriptions of the analytical results appear in the text

  15. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-S-107: Results from samples collected on 06/18/96

    International Nuclear Information System (INIS)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-107 (Tank S-107) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National. Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  16. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank U-204, Results from samples collected on August 8, 1995

    International Nuclear Information System (INIS)

    Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-204 (Tank U-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed. Detailed descriptions of the analytical results appear in the text

  17. Tank characterization report for double-shell tank 241-AW-102

    Energy Technology Data Exchange (ETDEWEB)

    Bell, K.E.

    1997-05-29

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AW-102. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05.

  18. Tank Characterization Report for Single-Shell Tank 241-U-103

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-U-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B

  19. Tank characterization report for single-shell tank 241-B-108

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-108. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05

  20. Tank characterization report for double-shell tank 241-SY-103

    International Nuclear Information System (INIS)

    Hansen, D.R.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-SY-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-09

  1. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    Hu, T.A.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AP-105. This report supports the requirements of the Tri-Party Agreement Milestone M 44-05

  2. Tank characterization report for double-shell tank 241-AW-102

    International Nuclear Information System (INIS)

    Bell, K.E.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AW-102. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05

  3. Tank characterization report for single-shell tank 241-BY-109

    International Nuclear Information System (INIS)

    Jo, J.

    1998-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-109. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B

  4. Tank characterization report for single-shell tank 241-b-110

    International Nuclear Information System (INIS)

    Field, J.G.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-110. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05

  5. Characterization of Direct Push Vadose Zone Sediments from the 241-U Single-Shell Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-20

    The overall goals of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid, via collection of geochemical information and data, the future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas (WMAs). For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at WMA U are found in Crumpler (2003). To meet these goals, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses of vadose zone sediment collected within the U Single-Shell Tank Farm. Specifically, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from ten direct push characterization holes emplaced to investigate vadose zone contamination associated with potential leaks within the 241-U Single-Shell Tank Farm. Specific tanks targeted during this characterization campaign included tanks 241-U-104/241-U-105, 241-U-110, and 241-U-112. Additionally, this report compiles data from direct push samples collected north of tank 241-U-201, as well as sediment collected from the background borehole (C3393). After evaluating all the characterization and analytical data, there is no question that the vadose zone in the vicinity of tanks 241-U-104 and 241-U-105 has been contaminated by tank-related waste. This observation is not new, as gamma logging of drywells in the area has identified uranium contamination at the

  6. Characterizing Normal Groundwater Chemistry in Hawaii

    Science.gov (United States)

    Tachera, D.; Lautze, N. C.; Thomas, D. M.; Whittier, R. B.; Frazer, L. N.

    2017-12-01

    Hawaii is dependent on groundwater resources, yet how water moves through the subsurface is not well understood in many locations across the state. As marine air moves across the islands water evaporates from the ocean, along with trace amounts of sea-salt ions, and interacts with the anthropogenic and volcanic aerosols (e.g. sulfuric acid, ammonium sulfate, HCl), creating a slightly more acidic rain. When this rain falls, it has a chemical signature distinctive of past processes. As this precipitation infiltrates through soil it may pick up another distinctive chemical signature associated with land use and degree of soil development, and as it flows through the underlying geology, its chemistry is influenced by the host rock. We are currently conducting an investigation of groundwater chemistry in selected aquifer areas of Hawaii, having diverse land use, land cover, and soil development conditions, in an effort to investigate and document what may be considered a "normal" water chemistry for an area. Through this effort, we believe we better assess anomalies due to contamination events, hydrothermal alteration, and other processes; and we can use this information to better understand groundwater flow direction. The project has compiled a large amount of precipitation, soil, and groundwater chemistry data in the three focus areas distributed across in the State of Hawaii. Statistical analyses of these data sets will be performed in an effort to determine what is "normal" and what is anomalous chemistry for a given area. Where possible, results will be used to trace groundwater flow paths. Methods and preliminary results will be presented.

  7. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Winkel, B.V.

    1995-01-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in 2 mix and a 4.5 kip/in 2 mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in 2 . In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F

  8. Results Of Physicochemical Characterization And Caustic Dissolution Tests On Tank 241-C-108 Heel Solids

    International Nuclear Information System (INIS)

    Callaway, W.S.; Huber, H.J.

    2010-01-01

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 241-AN-106 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 91.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-106 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements, Administrative Control (AC) 5.16, 'Corrosion Mitigation Controls.' (The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-151-00007, Operating Specifications for the Double-Shell Storage Tanks.) Problem evaluation request WRPS-PER-2009-0218 was submitted February 9, 2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.

  9. RESULTS OF PHYSICOCHEMICAL CHARACTERIZATION AND CAUSTIC DISSOLUTION TESTS ON TANK 241-C-108 HEEL SOLIDS

    Energy Technology Data Exchange (ETDEWEB)

    CALLAWAY WS; HUBER HJ

    2010-07-01

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 241-AN-106 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 91.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-106 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements, Administrative Control (AC) 5.16, 'Corrosion Mitigation Controls.' (The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-151-00007, Operating Specifications for the Double-Shell Storage Tanks.) Problem evaluation request WRPS-PER-2009-0218 was submitted February 9, 2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.

  10. CHARACTERIZATION AND SETTLING TESTS WITH TANK 51H SLURRY SAMPLES HTF-076-081

    International Nuclear Information System (INIS)

    HAY, MICHAEL

    2006-01-01

    Sludge Batch 4 (SB4) is the next sludge batch being prepared for feed to the Defense Waste Processing Facility (DWPF). SB4 includes sludge from Tanks 5F, 6F, and 11H and heels from Tanks 7F and 51H. In preparation of SB4, sludge was transferred from Tank 11H to Tank 51H. The sludge currently in Tank 51H has been found to settle at slower rates than previous sludge batches. The slow sludge settling in Tank 51H impacts the ability to wash SB4 to the desired final weight percent insoluble solids and sodium endpoint. This could impact the ability to have SB4 ready on time to support DWPF and result in increased recycle back to the Tank Farm, reduced waste loading at DWPF, and lengthened cycle time in the DWPF Chemical Processing Cell (CPC) Sludge Receipt and Adjustment Tank (SRAT). The Savannah River National Laboratory (SRNL) was requested to characterize and investigate the slower settling rate with six slurry dip samples of Tank 51H sludge. The filtered supernate and the total dried solids of the sludge were analyzed and summaries of the results published in the references listed below. The sludge composition was found to be consistent with H-Area high aluminum sludge. Difficulties were encountered with dissolving all of the material in the dried sludge solids. An analysis of the undissolved material from the digestions found the main constituent was Boehmite (AlO(OH)). This report provides all of the compositional data and an analysis of the data with recommended values to use for the composition of the Tank 51H composite sample. Tables 3-2 through 3-4 provide the composition of the Tank 51H composite sample. Settling tests conducted with the Tank 51H sludge showed a much slower settling rate than with the sludge in Sludge Batch 3 (SB3). A mixture of Tank 51H and sludge from SB3 was prepared to mimic the projected final composition of Sludge Batch 4 (SB4). The mixture showed minimal improvement in the settling rate versus Tank 51H sludge alone. An attempt to

  11. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  12. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    International Nuclear Information System (INIS)

    Kyle, K.R.; Mayes, E.L.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID)

  13. Bayesian methods for the combination of core sampling data with historical models for tank characterization

    International Nuclear Information System (INIS)

    York, J.C.; Remund, K.M.; Chen, G.; Simpson, B.C.; Brown, T.M.

    1995-07-01

    A wide variety of information is available on the contents of the nuclear waste tanks at the Hanford site. This report describes an attempt to combine several sources of information using a Bayesian statistical approach. This methodology allows the combination of multiple disparate information sources. After each source of information is summarized in terms of a probability distribution function (pdf), Bayes' theorem is applied to combine them. This approach has been applied to characterizing tanks B-110, B-111, and B-201. These tanks were chosen for their simple waste matrices: B-110 and B-111 contain mostly 2C waste, and B-201 contains mostly 224 waste. Additionally,, the results of this analysis axe used to make predictions for tank T-111 (which contains both 2C and 224 waste). These predictions are compared to the estimates based on core samples from tank T-111

  14. Waste tank inspection and characterization with automated UT and robotics

    International Nuclear Information System (INIS)

    McIntosh, J.B.

    1994-01-01

    Equipment and Materials Technology (E ampersand MT of the Westinghouse Savannah river Company) has developed a robotic system to deliver an ultrasonic transducer to the wall of underground storage tanks (USTs). The system is designed to meet the physical and environmental constraints of the USTs and will provide the ability to visually survey the wall, clean the surface and ultrasonically map the wall thickness

  15. Fiscal Year 2001 Tank Characterization Technical Sampling Basis and Waste Information Requirements Document

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    The Fiscal Year 2001 Tank Characterization Technical Sampling Basis and Waste Information Requirements Document (TSB-WIRD) has the following purposes: (1) To identify and integrate sampling and analysis needs for fiscal year (FY) 2001 and beyond. (2) To describe the overall drivers that require characterization information and to document their source. (3) To describe the process for identifying, prioritizing, and weighting issues that require characterization information to resolve. (4) To define the method for determining sampling priorities and to present the sampling priorities on a tank-by-tank basis. (5) To define how the characterization program is going to satisfy the drivers, close issues, and report progress. (6)To describe deliverables and acceptance criteria for characterization deliverables

  16. Phase chemistry and radionuclide retention of high level radioactive waste tank sludges

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Brady, Patrick V.; Zhang, Pengchu; Arthur, Sara E.; Hutcherson, Sheila K.; Liu, J.; Qian, M.; Anderson, Howard L.

    2000-01-01

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate groundwaters with radionuclides and RCRA metals. Experimentation on such sludges is both dangerous and prohibitively expensive so there is a great advantage to developing artificial sludges. The US DOE Environmental Management Science Program (EMSP) has funded a program to investigate the feasibility of developing such materials. The following text reports on the success of this program, and suggests that much of the radioisotope inventory left in a tank will not move out into the surrounding environment. Ultimately, such studies may play a significant role in developing safe and cost effective tank closure strategies

  17. Pretreatment chemistry evaluation: Wash and leach factors for the single-shell tank waste inventory. Status report

    International Nuclear Information System (INIS)

    Colton, N.G.

    1996-09-01

    This report discusses a methodology developed to depict overall wash and leach factors for the Hanford single-shell tank (SST) inventory. The factors derived from this methodology, which is based on available partitioning data, are applicable to a composite SST inventory rather than only an assumed insoluble portion. The purpose of considering the entire inventory is to provide a more representative picture of the partitioning behavior of the analytes during envisioned waste retrieval and processing activities. The work described in this report was conducted by the Pretreatment Chemistry Evaluation task of the Tank Waste Remediation System (TWRS). The leach factors will be used to estimate the further removal of analytes, such as sodium, aluminum, phosphate, and other minor components. Wash and leach factors are given for elements expected to drive the volume of material disposed of as high-level waste (HLW)

  18. Nuclear waste inventory characterization for mixer pumps and long length equipment removed from Hanford waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1998-01-01

    The removal and disposition of contaminated equipment from Hanford high-level nuclear waste tanks presents many challenges. One of which is the characterization of radioactive contaminants on components after removal. A defensible assessment of the radionuclide inventory of the components is required for disposal packaging and classification. As examples of this process, this paper discusses two projects: the withdrawal of thermocouple instrument tubes from Tank 101-AZ, and preparation for eventual replacement of the hydrogen mitigation mixer pump in Tank 101-SY. Emphasis is on the shielding analysis that supported the design of radiation detection systems and the interpolation of data recorded during the equipment retrieval operations

  19. Tank characterization report for single-shell tanks 241-T-201, 241-T-202, 241-T-203, and 241-T-204

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, in addition to other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for the single-shell tank series consisting of 241-T-201, -T-202, -T-203, and -T-204. The objectives of this report are: (1) to use characterization data in response to technical issues associated with T-200 series tank waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. Appendix A contains historical information for 241-T-201 to T-204, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge-based computer program. Appendix B summarizes sampling events, sample data obtained before 1989, and the most current sampling results. Appendix C reports the statistical analysis and numerical manipulation of data used in issue resolution. Appendix D contains the evaluation to establish the best-basis for the inventory estimate and the statistical analysis performed for this evaluation. Appendix E is a bibliography that resulted from an in-depth literature search of all known information sources applicable to tanks 241-T-201, -T-202, -T-203, and -T-204. The reports listed in Appendix E are available in the Tank Characterization and Safety Resource Center

  20. TANK 40 FINAL SB4 CHEMICAL CHARACTERIZATION RESULTS

    International Nuclear Information System (INIS)

    Best, J.

    2008-01-01

    A sample of Sludge Batch 4 (SB4) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). This sample was also analyzed for elemental and chemical composition including noble metals. These analyses along with the WAPS analyses will help define the composition of the sludge currently in Tank 40 which is currently being fed to DWPF and will become part of Sludge Batch 5 (SB5). At SRNL the 3-L Tank 40 SB4 sample was transferred from the shipping container into a 4-L vessel and solids allowed to settle overnight. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 280 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO 3 /HCl in sealed Teflon(reg s ign) vessels and four in Na 2 O 2 using Zr crucibles. Due to the use of Zr crucibles and Na in the peroxide fusions, Na and Zr cannot be determined from this preparation. Three glass standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted and submitted to Analytical Development (AD) for inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma-mass spectrometry (ICP-MS) analysis, and cold vapor atomic absorption (CV-AA) analysis. Equivalent dilutions of the peroxide fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB4 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES and ICP-MS. Weighted dilutions of slurry were submitted for ion chromatography (IC), total inorganic carbon/total organic carbon (TIC/TOC), and total base analyses. A sample of Tank 40 SB4 decant was collected by carefully removing the supernate phase

  1. Chemical characterization of SRP waste tank sludges and supernates

    International Nuclear Information System (INIS)

    Gray, L.W.; Donnan, M.Y.; Okamoto, B.Y.

    1979-08-01

    Most high-level liquid wastes at the Savannah River Plant (SRP) are byproducts from plutonium and enriched uranium recovery processes. The high-level liquid wastes generated by these separations processes are stored in large, underground, carbon-steel tanks. The liquid wastes consist of: supernate (an aqueous solution containing sodium, nitrate, nitrite, hydroxyl, and aluminate ions), sludge (a gelatinous material containing insoluble components of the waste, such as ferric and aluminum hydroxides, and mercuric and manganese oxides), and salt cake (crystals, such as sodium nitrate, formed by evaporation of water from supernate). Analyses of SRP wastes by laser-Raman spectrometry, atomic absorption spectrometry, spark-source mass spectrometry, neutron activation analysis, colorimetry, ion chromatography, and various other wet-chemical and radiochemical methods are discussed. These analyses are useful in studies of waste tank corrosion and of forms for long-term waste storage

  2. Literature review of the potential impact of glycolic acid on the technetium chemistry of srs tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-09

    This document presents a literature study of the impact of glycolate on technetium chemistry in the Savannah River Site (SRS) waste system and specifically Saltstone. A predominant portion of the Tc at SRS will be sent to the Saltstone Facility where it will be immobilized. The Tc in the tank waste is in the highly soluble chemical form of pertechnetate ion (TcO4 -) which is reduced by blast furnace slag (BFS) in Saltstone, rendering it highly insoluble and resistant to leaching.

  3. Results of the Characterization and Dissolution Tests of Samples from Tank 16H

    International Nuclear Information System (INIS)

    Hay, M.S.

    1999-01-01

    Samples from Tank 16H annulus and one sample from the tank interior were characterized to provide a source term for use in fate and transport modeling. Four of the annulus samples appeared to be similar based on visual examination and were combined to form a composite. One of the annulus samples appeared to be different from the other four based on visual examination and was analyzed separately. The analytical results of the tank interior sample indicate the sample is composed predominantly of iron containing compounds. Both of the annulus samples are composed mainly of sodium salts, however, the composite sample contained significantly more sludge/sand material of low solubilitity. The characterization of the tank 16H annulus and tank interior samples was hampered by the high dose rate and the nature of the samples. The difficulties resulted in large uncertainties in the analytical data. The large uncertainties coupled with the number of important species below detection limits indicate the need for reanalysis of the Tank 16H samples as funding becomes available. Recommendations on potential remedies for these difficulties are provided. In general, none of the reagents appeared to be effective in dissolving the composite sample even after two contacts at elevated temperature. In contrast to the composite sample, all of the reagents dissolved a large percentage of the HTF-087 solids after two contacts at ambient temperature

  4. Radiological characterization of liquid effluent hold up tank for generating data base for future decommissioning

    International Nuclear Information System (INIS)

    Sapkal, Jyotsna A.; Singh, Pratap; Verma, Amit; Yadav, R.K.B.; Thakare, S.V.

    2018-01-01

    Operations at Radiological laboratory facilities are involved in fabrication of high activity radioactive sources like 60 Co, 192 1r and 137 Cs, handling of long lived radionuclides like 137 Cs/ 90 Sr, radiochemical processing and production of short-lived radioisotopes for medical diagnosis and treatment of patients. Typical liquid waste management feature at any Radiological Laboratory facility primarily consists of effluent tanks which store the liquid effluent wastes generated during radiochemical processing and fabrication of reactor produced radioisotopes. The liquid waste generated from various laboratories are collected to low level sump tanks from where it is transferred to hold up tanks. The liquid waste is transferred to centralized effluent treatment plant, analysis and characterization of the same is carried out. This paper explains the characterization study of samples drawn from the liquid effluent tank which would be helpful for planning for decontamination as well as for decommissioning and in management of radioactive wastes. In this study the crud deposited at the bottom of tank was collected for gamma spectrometry analysis. Radiation field was measured, at the bottom of the tank for correlating the activity present and the radiation field

  5. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  6. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    International Nuclear Information System (INIS)

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J.V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-01-01

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing

  7. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-TY-102: Results from samples collected on 04/12/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-TY-102 (Tank TY-102) at the Hanford Site in Washington State. The results described in this report were obtained to'characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes, and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  8. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-B-105: Results from samples collected on 07/30/96

    International Nuclear Information System (INIS)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-B-105 (Tank B-105) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  9. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-S-103: Results from samples collected on 06/12/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-103 (Tank S-103) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  10. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-C-204: Results from samples collected on 07/02/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Evans, J.C.; Pool, K.H.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-204 (Tank C-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  11. Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures

    Science.gov (United States)

    Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.

    2016-01-01

    Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.

  12. Annual Report, Fall 2016: Identifying Cost Effective Tank Waste Characterization Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiPrete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-12

    This report documents the activities that were performed during the second year of a project undertaken to improve the cost effectiveness and timeliness of SRNL’s tank closure characterization practices. The activities performed during the first year of the project were previously reported in SRNL-STI-2015-00144. The scope of the second year activities was divided into the following three primary tasks: 1) develop a technical basis and strategy for improving the cost effectiveness and schedule of SRNL’s tank closure characterization program; 2) initiate the design and assembly of a new waste removal system for improving the throughput and reducing the personnel dose associated with extraction chromatography radiochemical separations; and 3) develop and perform feasibility testing of three alternative radiochemical separation protocols holding promise for improving high resource demand/time consuming tank closure sample analysis methods.

  13. Headspace gas and vapor characterization summary for the 43 vapor program suspect tanks

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    During the time period between February 1994 and September 1995, Westinghouse Hanford Company (WHC) sampled the waste tank headspace of 43 single-shell tanks for a variety of gaseous and/or volatile and semi-volatile compounds. This report summarizes the results of analyses of those sampling activities with respect to both the Priority 1 Safety Issues and relative to the detection in the headspace of significant concentrations of target analytes relating to worker breathing space consideration as recommended by the Pacific Northwest Laboratory (PNL) Toxicology Review Panel. The information contained in the data tables was abstracted from the vapor sampling and analysis tank characterization reports. Selected results are tabulated and summarized. Sampling equipment and methods, as well as sample analyses, are briefly described. Vapor sampling of passively ventilated single-shell tanks (tanks C-105, C-106, and SX-106 were sampled and are actively ventilated) has served to highlight or confirm tank headspace conditions associated with both priority 1 safety issues and supports source term analysis associated with protecting worker health and safety from noxious vapors

  14. Tank vapor characterization project. Headspace vapor characterization of Hanford waste Tank SX-101: Results from samples collected on 07/21/95

    International Nuclear Information System (INIS)

    Evans, J.C.; Clauss, T.W.; McVeety, B.D.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1996-05-01

    Results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. They include air concentrations of inorganic and organic analytes and grouped compounds from samples. The vapor concentrations are based either on whole-volume samples or on sorbent traps exposed to sample flow. No immediate notifications were needed because analytical results indicated no specific analytes exceeded notification levels. Summary of results: NH3, 3.8 ppmv; NO2, 0.10 ppmv; NO, 0.13 ppm; H2O, 11.8 mg/L; CO2, 338 ppmv; CO, 3 ; methanol, 0.060 ppmv; acetone, 0.033 ppmv; trichlorofluoromethane, 0.023 ppmv; and acetone, 0.034 ppmv

  15. Characterization of the tank 51 alternate reductant sludge batch 9 slurry sample (HTF-51-15-130)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    Tank 51 slurry sample HTF-51-15-130 was collected following sludge washing at the Tank Farm. The sample was received at SRNL and then characterized in preparation for qualification of the alternate reductant Sludge Batch 9 (SB9) flowsheet. In this characterization, densities, solids distribution, elemental constituents, anionic constituents, carbon content, and select radioisotopes were quantified.

  16. Tank waste remediation system characterization project quality policies

    International Nuclear Information System (INIS)

    Board, D.C.

    1997-01-01

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised of eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer's quality requirements known as the 'RULE', 10 CFR 830.120, Quality Assurance

  17. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD

  18. Headspace vapor characterization of Hanford Waste Tank 241-U-112: Results from samples collected on 7/09/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-112 at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company

  19. Successful field application of novel, non-silicone antifoam chemistries for high foaming heavy oil storage tanks in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Wylde, J.J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Clariant Oil Services, Montreal, PQ (Canada)

    2008-10-15

    Heavy oil operators in northern Alberta have experienced production problems associated with foam formation in crude oil storage tanks. The foam could enter the transportation trucks and create separation problems in the process systems. Any antifoam used in the system could not contain silicone based polymers since these compounds affected the catalysts used in upgrading the crude oil and in the manufacture of asphalt. As such, there was a need to change the performance of the antifoam product. A phosphate ester and a salted amine were the previous incumbent antifoam products that did not perform well. Several chemistries were tested, including phosphate based products; ethoxylated and propoxylated esters; polyethylene glycol esters and oleates; alcohols, fatty alcohols and ethoxylated; and propoxylated alcohols. All products had to be freeze protected to -40 degrees C, which influenced the efficacy of antifoam chemicals. This paper described how laboratory testing has evolved to field wide implementation of a combined defoamer/antifoam chemistry. The laboratory tests revealed that foam induced in heavy, aged crude was very challenging and required the addition of heptane to create the foam. A potential follow-up may be to induce the foam without the addition of heptane by using a Seltzer cylinder in a semi-quantitative manner to rank performance of products against one another. The final selection of antifoam will depend on supply chain cost since the performance of the 2 blend products was essentially the same. 12 refs., 7 figs.

  20. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  1. Headspace vapor characterization of Hanford waste tank 241-U-108: Results from samples collected on 8/29/95

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Pool, K.H.; Olsten, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1996-05-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-108 (Tank U-108) at the Hanford Site in Washington State. The results described in the report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC

  2. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    International Nuclear Information System (INIS)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs

  3. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

  4. English Metafunction Analysis in Chemistry Text: Characterization of Scientific Text

    Directory of Open Access Journals (Sweden)

    Ahmad Amin Dalimunte, M.Hum

    2013-09-01

    Full Text Available The objectives of this research are to identify what Metafunctions are applied in chemistry text and how they characterize a scientific text. It was conducted by applying content analysis. The data for this research was a twelve-paragraph chemistry text. The data were collected by applying a documentary technique. The document was read and analyzed to find out the Metafunction. The data were analyzed by some procedures: identifying the types of process, counting up the number of the processes, categorizing and counting up the cohesion devices, classifying the types of modulation and determining modality value, finally counting up the number of sentences and clauses, then scoring the grammatical intricacy index. The findings of the research show that Material process (71of 100 is mostly used, circumstance of spatial location (26 of 56 is more dominant than the others. Modality (5 is less used in order to avoid from subjectivity. Impersonality is implied through less use of reference either pronouns (7 or demonstrative (7, conjunctions (60 are applied to develop ideas, and the total number of the clauses are found much more dominant (109 than the total number of the sentences (40 which results high grammatical intricacy index. The Metafunction found indicate that the chemistry text has fulfilled the characteristics of scientific or academic text which truly reflects it as a natural science.

  5. Surface Geophysical Exploration Of SX Tank Farm At The Hanford Site Results Of Background Characterization With Magnetics And Electromagnetics

    International Nuclear Information System (INIS)

    Myers, D.A.; Rucker, D.; Levit, M.; Cubbage, B.; Henderson, C.

    2009-01-01

    This report presents the results of the background characterization of the cribs and trenches surrounding the SX tank farm prepared by HydroGEOPHYSICS Inc, Columbia Energy and Environmental Services Inc and Washington River Protection Solutions.

  6. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  7. Characterization Of Actinides In Simulated Alkaline Tank Waste Sludges And Leachates

    International Nuclear Information System (INIS)

    Nash, Kenneth L.

    2008-01-01

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  8. Characterization of the corrosion behavior of the carbon steel liner in Hanford Site single-shell tanks

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Schwenk, E.B.; Danielson, M.J.

    1994-06-01

    Six safety initiatives have been identified for accelerating the resolution of waste tank safety issues and closure of unreviewed safety questions. Safety Initiative 5 is to reduce safety and environmental risk from tank leaks. Item d of Safety Initiative 5 is to complete corrosion studies of single-shell tanks to determine failure mechanisms and corrosion control options to minimize further degradation by June 1994. This report has been prepared to fulfill Safety Initiative 5, Item d. The corrosion mechanisms that apply to Hanford Site single-shell tanks are stress corrosion cracking, pitting/crevice corrosion, uniform corrosion, hydrogen embrittlement, and microbiologically influenced corrosion. The corrosion data relevant to the single-shell tanks dates back three decades, when results were obtained from in-situ corrosion coupons in a few single-shell tanks. Since that time there have been intertank transfers, evaporation, and chemical alterations of the waste. These activities have changed the character and the present composition of the waste is not well characterized. All conclusions and recommendations are made in the absence of relevant laboratory experimental data and tank inspection data. The report attempts to identify the failure mechanisms by a literature survey of carbon steel data in environments similar to the single-shell tank wastes, and by a review of the work performed at the Savannah River Site where similar wastes are stored in similar carbon steel tanks. Based on these surveys, and in the absence of data specific to Hanford single-shell tanks, it may be concluded that the single-shell tanks identified as leakers failed primarily by stress corrosion cracking due to the presence of high nitrate/low hydroxide wastes and residual stresses. In addition, some failures may be attributed to pitting under crevices in low hydroxide locations

  9. Results of 1995 characterization of Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This technical memorandum (TM) documents the 1995 characterization of eight underground radioactive waste tanks at Oak Ridge National Laboratory (ORNL). These tanks belong to the Gunite and Associated Tanks (GAAT) operable unit, and the characterization is part of the ongoing GAAT remedial investigation/feasibility study (RI/FS) process. This TM reports both field observations and analytical results; analytical results are also available from the Oak Ridge Environmental Information System (OREIS) data base under the project name GAAT (PROJ-NAME = GAAT). This characterization effort (Phase II) was a follow-up to the {open_quotes}Phase I{close_quotes} sampling campaign reported in Results of Fall 1994 Sampling of Gunite and Associated Tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER/Sub/87-99053/74, June 1995. The information contained here should be used in conjunction with that in the previous TM. The sampling plan is documented in ORNL Inactive Waste Tanks Sampling and Analysis Plan, ORNL/RAP/LTR-88/24, dated April 1988, as amended by Addendum 1, Revision 2: ORNL Inactive Tanks Sampling and Analysis Plan, DOE/OR/02-1354&D2, dated February 1995. Field team instructions are found in ORNL RI/FS Project Field Work Guides 01-WG-20, Field Work Guide for Sampling of Gunite and Associated Tanks, and 01-WG-21, Field Work Guide for Tank Characterization System Operations at ORNL. The field effort was conducted under the programmatic and procedural umbrella of the ORNL RI/FS Program, and the analysis was in accordance with ORNL Chemical and Analytical Sciences Division (CASD) procedures. The characterization campaign is intended to provide data for criticality safety, engineering design, and waste management as they apply to the GAAT treatability study and remediation. The Department of Energy (DOE) Carlsbad office was interested in results of this sampling campaign and provided funding for certain additional sample collection and analysis.

  10. Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-04-01

    The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ( 233 U and 235 U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ( 239 Pu and 241 Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  11. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were 137 Cs, 60 Co, 154 Eu, 241 Am, 244 Cm, 90 Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO 3 - , CO 3 2- , OH - , and O 2- . The organic carbon content was 3.0 ± 1.0%. The pH was 13

  12. Characterization and leaching study of sludge from Melton Valley Storage Tank W-25

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Anderson, K.K.

    1997-08-01

    One of the greatest challenges facing the Department of Energy (DOE) is the remediation of the 100 million gallons of high-level and low-level radioactive waste in the underground storage tanks at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. Bench-scale batch tests have been conducted with sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation processes for use in a comprehensive sludge-processing flow sheet for concentrating the radionuclides and reducing the volumes of storage tanks wastes for final disposal. This report discusses the hot cell apparatus, the characterization of the sludge, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge. Approximately 5 L of sludge/supernate from MVST W-25 was retrieved and transferred to a stainless steel tank for mixing and storage in a hot cell. Samples were centrifuged to separate the sludge liquid and the sludge solids. Air-dried samples of sludge were analyzed to determine the concentrations of radionuclides, other metals, and anions. Based upon the air-dried weight, about 41% of the centrifuged, wet sludge solids was water. The major alpha-, gamma-, and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm, {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and the anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup {minus}}, CO{sub 3}{sup 2{minus}}, OH{sup {minus}}, and O{sub 2{minus}}. The organic carbon content was 3.0 {+-} 1.0%. The pH was 13.

  13. Solid Phase Characterization of Tank 241-AY-102 Annulus Space Particulate

    International Nuclear Information System (INIS)

    Cooke, G. A.

    2013-01-01

    The Special Analytical Studies Group at the 222-S Laboratory (222-S) examined the particulate recovered from a series of samples from the annular space of tank 241-AY-102 (AY-102) using solid phase characterization (SPC) methods. These include scanning electron microscopy (SEM) using the ASPEX(R)1 scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R)2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R)3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information

  14. Solid Phase Characterization of Tank 241-AY-102 Annulus Space Particulate

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, G. A.

    2013-01-30

    The Special Analytical Studies Group at the 222-S Laboratory (222-S) examined the particulate recovered from a series of samples from the annular space of tank 241-AY-102 (AY-102) using solid phase characterization (SPC) methods. These include scanning electron microscopy (SEM) using the ASPEX®1 scanning electron microscope, X-ray diffraction (XRD) using the Rigaku®2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon®3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information.

  15. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  16. Characterization of the potential impact of retention tank emptying on wastewater primary treatment: a new element for CSO management.

    Science.gov (United States)

    Maruejouls, T; Lessard, P; Wipliez, B; Pelletier, G; Vanrolleghem, P A

    2011-01-01

    Theoretical studies have shown that discharges from retention tanks could have a negative impact on the WWTP's (Wastewater Treatment Plant) effluent. Characterization of such discharges is necessary to better understand these impacts. This study aims at: (1) characterizing water quality during emptying of a tank; and (2) characterizing the temporal variation of settling velocities of the waters released to the WWTP. Two full-scale sampling campaigns (18 rain events) have been realized in Quebec City and laboratory analyses have shown a wide variability of total suspended solids (TSS) and Chemical Oxygen Demand (COD) concentrations in the water released from the tank. Suspended solids seem to settle quickly because they are only found in large amounts during the first 15 min of pumping to the WWTP. These solids are hypothesized to come from the pumping in which solids remained after a previous event. When these solids are evacuated, low TSS containing waters are pumped from the retention tank. A second concentration peak occurs at the end of the emptying period when the tank is cleaned with wash water. Finally, settling velocity studies allowed characterizing combined sewer wastewaters by separating three main fractions of pollutants which correspond to the beginning, middle and end of emptying. In most cases, it is noticed that particle settling velocities increase as the pollutant load increases.

  17. Headspace vapor characterization of Hanford waste tank 241-B-107: Results from samples collected on 7/23/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-B-107 (Tank B-107) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwestern National Laboratory (PNNL). A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in the same table. Detailed descriptions of the analytical results appear in the appendices

  18. Headspace vapor characterization of Hanford waste tank 241-S-106: Results from samples collected on 06/13/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-106 (Tank S-106) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in the same table. Detailed descriptions of the analytical results appear in the appendices

  19. Headspace vapor characterization of Hanford waste Tank 241-C-201: Results from samples collected on 06/19/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-201 (Tank C-201) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary, of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. Detailed descriptions of the analytical results appear in the appendices

  20. Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) underground storage tanks (Uses) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. A total of 55 FFA Category D inactive LLLW tanks are discussed in this manual. Of the 39 tanks at ORNL that have been accepted into the Environmental Restoration (ER) Program, all have been sampled for preliminary characterization, except for 5 tanks that were found to be empty plus I that was found not to exist. The remaining 16 tanks are in the Waste Management (WM) Program. Twelve were sampled for preliminary characterization, and four were found empty. Each sampled tank was scored on a scale of I to 5 on the basis of three criteria: (1) leak characteristics, (2) location, and (3) toxicological characteristics of residual sludges and liquids. Each criterion was assigned a weighing factor based on perceived importance. The criterion score multiplied by the weighting factor equaled the tank's total score for that criterion. The three weighted criterion scores for each tank were then summed for a total score for that tank. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending rank order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation. Of the 54 tanks sampled in the risk characterization, 23 tanks scored 16 or higher, 11 scored between 10 and 15, 5 scored between 4 and 9, and 15 scored 3 or less

  1. Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-07-01

    This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) underground storage tanks (USTs) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. A total of 55 FFA Category D inactive LLLW tanks are discussed in this manual. Of the 39 tanks at ORNL that have been accepted into the Environmental Restoration (ER) Pregrain, all have been sampled for preliminary characterization, except for 5 tanks that were found to be empty plus 1 that was found not to exist. The remaining 16 tanks are in the Waste Management (WM) Program. Twelve were sampled for preliminary characterization, and four were found empty. Each sampled tank was scored on a scale of I to 5 on the basis of three criteria: (1) leak characteristics, (2) location, and (3) toxicological characteristics of residual sludges and liquids. Each criterion was assigned a weighing factor based on perceived importance. The criterion score multiplied by the weighting factor equaled the tank's total score for that criterion. The three weighted criterion scores for each tank were then summed for a total score for that tank. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending rank order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation. Of the 54 tanks sampled in the risk characterization, 23 tanks scored 16 or higher, 11 scored between 10 and 15, 5 scored between 4 and 9, and 15 scored 3 or less

  2. Final characterization and safety screen report of double shell tank 241-AP-104 for 242-A evaporator, campaign 96-1

    International Nuclear Information System (INIS)

    Miller, G.L.

    1996-01-01

    This data package satisfies the requirement for a format IV, final report. It is a follow-up to the 45-day safety screen report for tank AP-104. Evaporator candidate feed from tank 241-AP-104 (hereafter referred to as AP-104) was characterized for physical, inorganic, organic and radiochemical parameters by the Westinghouse Hanford Company, 222-S Laboratory, and by the Battelle Pacific Northwest National Laboratory (PNNL), Analytical Chemistry Laboratory (ACL) as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Laboratory analyses at ACL Laboratory was performed according to the TSAP. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance Plan, References 5 and 6. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation. SAMPLING The TSAP, section 2, provided sampling information for waste samples collected from tank AP-104. The bottle-on-a-string method was used to collect liquid grab samples from the tank. Each glass sample bottle was amber, precleaned, and contained approximately 100 milliliters. Each bottle was closed with a teflon seal cap (or teflon septum for volatile organic analysis samples). Field blank samples were prepared by placing deionized water into sampling bottles, lowering the unclosed bottles into the riser for a period of time, retrieving them from the riser, and then closing the bottles with the same types of caps used for the tank samples. None of the samples were preserved by acidification. Upon receipt, the sample bottles destined for organic analyses were placed in a refrigerator. No attempt was made during sampling to assure the complete

  3. Tank vapor characterization project - Tank 241-U-112 headspace gas and vapor characterization: Results for homogeneity samples collected on December 6, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sklarew, D.S.; Pool, K.H.; Evans, J.C.; Hayes, J.C. [and others

    1997-09-01

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-U-112 (Tank U-112) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constitutents. Two risers (Riser 3 and Riser 6) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan.

  4. Characterization of underground storage tank sludge using fourier transform infrared photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Luo, S.; Bajic, S.J.; Jones, R.W.

    1994-01-01

    Analysis of underground storage tank (UST) contents is critical for the determination of proper disposal protocols and storage procedures of nuclear waste materials. Tank volume reduction processes during the 1940's and 50's have produced a waste form that compositionally varies widely and has a consistency that ranges from paste like sludge to saltcake. The heterogeneity and chemical reactivity of the waste form makes analysis difficult by most conventional methods which require extensive sample preparation. In this paper, a method is presented to characterize nuclear waste from UST's at the Westinghouse Hanford Site in Washington State, using Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS). FTIR-PAS measurements on milligram amounts of surrogate sludge samples have been used to accurately identify phosphate, sulfate, nitrite, nitrate and ferrocyanide components. A simple sample preparation method was followed to provide a reproducible homogeneous sample for quantitative analysis. The sample preparation method involved freeze drying the sludge sample prior to analysis to prevent the migration of soluble species. Conventional drying (e.g., air or, oven) leads to the formation of crystals near the surface where evaporation occurs. Sample preparation as well as the analytical utility of this method will be discussed

  5. Standard Electronic Format Specification for Tank Characterization Data Loader Version 3.0

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    1999-01-01

    The purpose of this document is to describe the standard electronic format for data files that will be sent for entry into the Tank Characterization Database (TCD). There are 2 different file types needed for each data load: Analytical Results; Sample Descriptions. The first record of each file must be a header record. The content of the first 5 fields is ignored. They were used previously to satisfy historic requirements that are no longer applicable. The sixth field of the header record must contain the Standard Electronic Format (SEF) version ID (SEF3.0). The remaining records will be formatted as specified below. Fields within a record will be separated using the ''|'' symbol. The ''|'' symbol must not appear anywhere in the file except when used as a delimiter

  6. Captive sea turtle rearing inventory, feeding, and water chemistry in sea turtle rearing tanks at NOAA Galveston 1995-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains daily records of sea turtle inventories by species feeding rates type of food fed sick sea turtles sea turtles that have died log of tanks...

  7. Poster - 17: Characterization and correction of radiation induced background in scanning water tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Elsayed [The Ottawa Hospital Cancer Centre (Canada)

    2016-08-15

    Purpose: To characterize and correct for radiation-induced background (RIB) observed in the signals from a class of scanning water tanks. Methods: A method was developed to isolate the RIB through detector measurements in the background-free linac console area. Variation of the RIB against a large number of parameters was characterized, and its impact on basic clinical data for photon and electron beams was quantified. Different methods to minimize and/or correct for the RIB were proposed and evaluated. Results: The RIB is due to the presence of the electrometer and connection box in a low background radiation field (by design). The absolute RIB current with a biased detector is up to 2 pA, independent of the detector size, which is 0.6% and 1.5% of the central axis reference signal for a standard and a mini scanning chamber, respectively. The RIB monotonically increases with field size, is three times smaller for detectors that do not require a bias (e.g., diodes), is up to 80% larger for positive (versus negative) polarity, decreases with increasing photon energy, exhibits a single curve versus dose rate at the electrometer location, and is negligible for electron beams. Data after the proposed field-size correction method agree with point measurements from an independent system to within a few tenth of a percent for output factor, head scatter, depth dose at depth, and out-of-field profile dose. Manufacturer recommendations for electrometer placement are insufficient and sometimes incorrect. Conclusions: RIB in scanning water tanks can have a non-negligible effect on dosimetric data.

  8. CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION WITH A 3 LITER TANK 51H SAMPLE

    International Nuclear Information System (INIS)

    Hay, M; John Pareizs, J; Cj Bannochie, C; Michael Stone, M; Damon Click, D; Daniel McCabe, D

    2008-01-01

    A 3-liter sludge slurry sample was sent to SRNL for demonstration of a low temperature aluminum dissolution process. The sludge was characterized before and after the aluminum dissolution. Post aluminum dissolution sludge settling and the stability of the decanted supernate were also observed. The characterization of the as-received 3-liter sample of Tank 51H sludge slurry shows a typical high aluminum HM sludge. The XRD analysis of the dried solids indicates Boehmite is the predominant crystalline form of aluminum in the sludge solids. However, amorphous phases of aluminum present in the sludge would not be identified using this analytical technique. The low temperature (55 C) aluminum dissolution process was effective at dissolving aluminum from the sludge. Over the three week test, ∼42% of the aluminum was dissolved out of the sludge solids. The process appears to be selective for aluminum with no other metals dissolving to any appreciable extent. At the termination of the three week test, the aluminum concentration in the supernate had not leveled off indicating more aluminum could be dissolved from the sludge with longer contact times or higher temperatures. The slow aluminum dissolution rate in the test may indicate the dissolution of the Boehmite form of aluminum however; insufficient kinetic data exists to confirm this hypothesis. The aluminum dissolution process appears to have minimal impact on the settling rate of the post aluminum dissolution sludge. However, limited settling data were generated during the test to quantify the effects. The sludge settling was complete after approximately twelve days. The supernate decanted from the settled sludge after aluminum dissolution appears stable and did not precipitate aluminum over the course of several months. A mixture of the decanted supernate with Tank 11 simulated supernate was also stable with respect to precipitation

  9. Improvements to the Characterization of Organic Nitrogen Chemistry

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  10. Tank vapor characterization project - headspace vapor characterization of Hanford Waste Tank 241-C-107: Second comparison study results from samples collected on 3/26/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H 2 O) and ammonia (NH 3 ), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA trademark canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC

  11. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Pool, K.H.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H 2 O) and ammonia (NH 3 ), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA trademark canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC

  12. Waste Characterization Data Manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge National Laboratory (ORNL) Federal Facility Agreement (FFA), Section IX.G.1. Section IX.G.1 of the FFA requires waste characterizations be conducted and provided to EPA and TDEC for all LLLW tanks that are removed from service. These waste characterizations shall include the results of sampling and analysis of the tank contents, including wastes, liquids, and sludges. This manual was first issued as ORNL/ER-80 in June 1992. The waste characterization data were extracted from ORNL reports that described tank sampling and analysis conducted in 1988 for 32 out-of-service tanks. This revision of the manual contains waste characterization data for 54 tanks, including the 32 tanks from the 1988 sampling campaign (Sects. 2.1 through 2.32) and the 22 additional tanks from a subsequent sampling campaign in 1992 and 1993 (Sects. 2.33 through 2.54). Data are presented from analyses of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls (PCBs), pesticides, radiochemical compounds, and inorganic compounds. As additional data resulting from analyses of out-of-service tank samples become available, they will be added to this manual

  13. NanoChemistry Group at DTU uses NanoSight's NTA System for Nanoparticle Characterization

    DEFF Research Database (Denmark)

    2011-01-01

    (Nanowerk News) NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  14. Characterization of Tank 51 Sludge Slurry Samples (HTF-51-17-67, -68, -69, -74, -75, and -76) in Support of Sludge Batch 10 Processing

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-09

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The six Tank 51 sludge samples were sampled and delivered to SRNL in August of 2017. These six Tank 51 sludge samples, after undergoing physical characterizations which included rheology, weight percent total solid, dissolved solids and density measurements, were combined into one composite Tank 51 sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids.

  15. Characterization of in vivo chemistry of cations in the heart

    International Nuclear Information System (INIS)

    Mousa, S.A.; Williams, S.J.; Sands, H.

    1987-01-01

    A variety of laboratory procedures can be used to define the chemistry and pharmacokinetics of myocardial cationic imaging agents. These methods are utilized to define the in vivo chemistry of cationic heart agents, in order to understand the kinetics and mechanisms of: tissue and cellular transport, subcellular distribution, and intracellular localization. Transport across cell membranes can be active, passive or facilitated. Studies performed in erythrocytes, heart cells, slices and isolated perfused hearts using methods for separation of metabolites have shown a high degree of myocardial specificity for [99mTc]hexakis alkyl isonitrile by an uptake mechanism different from 201 Tl. These studies demonstrate the importance of in vivo chemistry and pharmacokinetics in the development of new radiopharmaceuticals. 31 references

  16. Headspace vapor characterization of Hanford waste tank 241-U-109: Results from samples collected on 8/10/95

    International Nuclear Information System (INIS)

    Evans, J.C.; Thomas, B.L.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1996-05-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-109 (Tank U-109) At the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. This tank is on the Hydrogen Waste List. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases and total non-methane hydrocarbons is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples is also listed in the table. Detailed descriptions of the analytical results appear in the text

  17. Characterization of Tank 16H Annulus Samples Part II: Leaching Results

    International Nuclear Information System (INIS)

    Hay, M.; Reboul, S.

    2012-01-01

    The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO 2 ) and sodium aluminum nitrate silicate hydrate (Na 8 (Al 6 Si 6 O 24 )(NO 3 ) 2 .4H 2 O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitrate (NaNO 3 ), sodium nitrite (NaNO 2 ), gibbsite (Al(OH) 3 ), hydrated sodium bicarbonate (Na 3 H(CO 3 ) 2 .2H 2 O), and muscovite (KAl 2 (AlSi 3 O 10 )(OH) 2 ). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the 99 Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic acid was somewhat more effective in dissolving radionuclides than the water leach. In

  18. Characterization of Samples from the Effluent Treatment Facility Evaporator Waste Concentrate Tank

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1998-01-01

    During October 1997, the ETF Evaporator Waste Concentrate Tank No. 2 was discovered to contain a significant accumulation of solid deposits. SRTC performed destructive and nondestructive examination of solid samples from the tank. The results of these tests indicate that the solids contain mixtures of sodium oxalate (65 percent), the sulfide enclathrated sodium aluminosilicate (30 percent), and iron oxide (5 percent)

  19. Characterization of Samples from the Effluent Treatment Facility Evaporator Waste Concentrate Tank

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, W.R. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-01-31

    During October 1997, the ETF Evaporator Waste Concentrate Tank No. 2 was discovered to contain a significant accumulation of solid deposits. SRTC performed destructive and nondestructive examination of solid samples from the tank. The results of these tests indicate that the solids contain mixtures of sodium oxalate (65 percent), the sulfide enclathrated sodium aluminosilicate (30 percent), and iron oxide (5 percent).

  20. Identification, characterization and description of Arcobacter faecis sp. nov., isolated from a human waste septic tank.

    Science.gov (United States)

    Whiteduck-Léveillée, Kerri; Whiteduck-Léveillée, Jenni; Cloutier, Michel; Tambong, James T; Xu, Renlin; Topp, Edward; Arts, Michael T; Chao, Jerry; Adam, Zaky; Lévesque, C André; Lapen, David R; Villemur, Richard; Khan, Izhar U H

    2016-03-01

    A study on the taxonomic classification of Arcobacter species was performed on the cultures isolated from various fecal sources where an Arcobacter strain AF1078(T) from human waste septic tank near Ottawa, Ontario, Canada was characterized using a polyphasic approach. Genetic investigations including 16S rRNA, atpA, cpn60, gyrA, gyrB and rpoB gene sequences of strain AF1078(T) are unique in comparison with other arcobacters. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is most closely related to Arcobacter lanthieri and Arcobacter cibarius. Analyses of atpA, cpn60, gyrA, gyrB and rpoB gene sequences suggested that strain AF1078(T) formed a phylogenetic lineage independent of other species in the genus. Whole-genome sequence, DNA-DNA hybridization, fatty acid profile and phenotypic analysis further supported the conclusion that strain AF1078(T) represents a novel Arcobacter species, for which the name Arcobacter faecis sp. nov. is proposed, with type strain AF1078(T) (=LMG 28519(T); CCUG 66484(T)). Crown Copyright © 2015. Published by Elsevier GmbH. All rights reserved.

  1. Sampling methodology and characterization of resins, stored in large tanks; Metodologia de muestreo y caracterizacion de resinas almacenadas en tanques de grandes dimensiones

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Gandal, R.; Rodriguez Gomez, M. A.; Sanchez Fernandez, L.; Fenoy Cruz, A.; Sanchez Fernandez, R.

    2013-07-01

    Ion exchange resins, which are have been stored in various tanks of installation, have been generated during the operation of the Nuclear Power Plant of Kozloduy (Bulgaria). Before putting them in containers, the resins should be characterized physically, chemically and radiologically to ensure they comply with the relevant criteria. The particularity of this project is that the resins are stored in large tanks. (Author)

  2. Solid Phase Characterization Of Heel Samples From Tank 241-C-110

    International Nuclear Information System (INIS)

    Page, J.S.; Cooke, G.A.; Pestovich, J.A.; Huber, H.J.

    2011-01-01

    During sluicing operations of tank 241-C-110, a significant amount of solids were unable to be retrieved. These solids (often referred to as the tank 'heel') were sampled in 2010 and chemically and mineralogically analyzed in the 222-S Laboratory. Additionally, dissolution tests were performed to identify the amount of undissolvable material after using multiple water contacts. This report covers the solid phase characterization of six samples from these tests using scanning electron microscopy, polarized light microscopy, and X-ray diffraction. The chemical analyses, particle size distribution analysis, and dissolution test results are reported separately. Two of the samples were from composites created from as-received material - Composite A and Composite B. The main phase in these samples was sodium-fluoride-phosphate hydrate (natrophosphate) - in the X-ray diffraction spectra, this phase was the only phase identifiable. Polarized light microscopy showed the presence of minor amounts of gibbsite and other phases. These phases were identified by scanning electron microscopy - energy dispersive X-ray spectroscopy as sodium aluminosilicates, sodium diuranate, and sodium strontium phosphate hydrate (nastrophite) crystals. The natrophosphate crystals in the scanning electron microscopy analysis showed a variety of erosive and dissolution features from perfectly shaped octahedral to well-rounded appearance. Two samples were from water-washed Composites A and B, with no change in mineralogy compared to the as-received samples. This is not surprising, since the water wash had only a short period of water contact with the material as opposed to the water dissolution tests. The last two samples were residual solids from the water dissolution tests. These tests included multiple additions of water at 15 C and 45 C. The samples were sieved to separate a coarser fraction of > 710 μm and a finer fraction of < 710 μm. These two fractions were analyzed separately. The coarser

  3. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.N.

    2000-01-04

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system.

  4. Oxidative mineralization and characterization of polyvinyl alcohol for compatibility with tank farm processing chemistry

    International Nuclear Information System (INIS)

    Oji, L.N.

    2000-01-01

    Polyvinyl alcohol (PVA) material has been evaluated for use as a cost-effective substitute for conventional cellulose-based disposal materials (decontamination mops and wipes), plastic bags, and disposable personal protection clothing, that are currently used at Savannah River Site. This study also provides process design criteria for ultraviolet/ultrasonic/hydrogen peroxide PVA reactor system

  5. Characterization of the C1 and C2 waste tanks located in the BVEST system at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.

    1998-02-01

    There was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks C-1 and C-2. The isotopic data presented in this report supports the position that fissile isotopes of uranium ( 233 U and 235 U) and plutonium ( 239 Pu and 241 Pu) were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the sludge in tanks C1 and C2 was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. Additional characteristics of the C1 and C2 sludge inventory relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  6. Application of intrinsic germanium spectral gamma-ray logging for characterization of high-level nuclear waste tank leaks

    International Nuclear Information System (INIS)

    Brodeur, J.R.; Kiesler, J.P.; Kos, S.E.; Koizumi, C.J.; Nicaise, W.F.; Price, R.K.

    1993-11-01

    Spectral gamma-ray logging with a high-resolution, intrinsic germanium logging system was completed in boreholes surrounding two high-level nuclear waste tanks at the US Department of Energy's Hanford Site. The purpose was to characterize the concentrations of man-made radionuclides in the unsaturated zone sediments and identify any new leaks from the tanks. An intrinsic germanium detection system was used for this work because it was important to positively identify the specific radionuclides and to precisely assay those radionuclides. The spectral gamma log data were processed and displayed as log plots for each individual borehole and as three-dimensional plots of 137 Cs radionuclide concentrations. These data were reviewed to identify the sources of the contamination. The investigation did not uncover a new or active leak from either of the tanks. Most of the contamination found could be related to known pipeline leaks, to surface contamination from aboveground liquid spills, or to leaks from other tanks. The current spectral gamma ray data now provide a new baseline from which to compare future log data and identify any changes in the radioelement concentration

  7. Headspace vapor characterization of Hanford waste Tank 241-BX-110: Results from samples collected on 04/30/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-BX-110 (Tank BX-110) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in the table. Detailed descriptions of the analytical results appear in the appendices

  8. Integrated modeling and characterization of local crack chemistry

    International Nuclear Information System (INIS)

    Savchik, J.A.; Burke, M.S.

    1995-01-01

    The MULTEQ computer program has become an industry wide tool which can be used to calculate the chemical composition in a flow occluded region as the solution within concentrates due to a local boiling process. These results can be used to assess corrosion concerns in plant equipment such as steam generators. Corrosion modeling attempts to quantify corrosion assessments by accounting for the mass transport processes involved in the corrosion mechanism. MULTEQ has played an ever increasing role in defining the local chemistry for such corrosion models. This paper will outline how the integration of corrosion modeling with the analysis of corrosion films and deposits can lead to the development of a useful modeling tool, wherein MULTEQ is interactively linked to a diffusion and migration transport process. This would provide a capability to make detailed inferences of the local crack chemistry based on the analyses of the local corrosion films and deposits inside a crack and thus provide guidance for chemical fixes to avoid cracking. This methodology is demonstrated for a simple example of a cracked tube. This application points out the utility of coupling MULTEQ with a mass transport process and the feasibility of an option in a future version of MULTEQ that would permit relating film and deposit analyses to the local chemical environment. This would increase the amount of information obtained from removed tube analyses and laboratory testing that can contribute to an overall program for mitigating tubing and crevice corrosion

  9. Integrated modeling and characterization of local crack chemistry

    International Nuclear Information System (INIS)

    Savchik, J.A.; Burke, M.S.

    1996-01-01

    The MULTEQ computer program has become an industry wide tool which can be used to calculate the chemical composition in a flow occluded region as the solution within concentrates due to a local boiling process. These results can be used to assess corrosion concerns in plant equipment such as steam generators. Corrosion modeling attempts to quantify corrosion assessments by accounting for the mass transport processes involved in the corrosion mechanism. MULTEQ has played an ever increasing role in defining the local chemistry for such corrosion models. This paper will outline how the integration of corrosion modeling with the analysis of corrosion films and deposits can lead to the development of a useful modeling tool, wherein MULTEQ is interactively linked to a diffusion and migration transport process. This would provide a capability to make detailed inferences of the local crack chemistry based on the analyses of the local corrosion films and deposits inside a crack and thus provide guidance for chemical fixes to avoid cracking. This methodology is demonstrated for a simple example of a cracked tube. This application points out the utility of coupling MULTEQ with a mass transport process and the feasibility of an option in a future version of MULTEQ that would permit relating film and deposit analyses to the local chemical environment. This would increase the amount of information obtained from removed tube analyses and laboratory testing that can contribute to an overall program for mitigating tubing and crevice corrosion

  10. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    Energy Technology Data Exchange (ETDEWEB)

    HILL, J.S.

    2000-04-20

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOm-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 milliredyear total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial start-up in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200

  11. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    Energy Technology Data Exchange (ETDEWEB)

    HILL, J.S.

    2000-03-08

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection--Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOE/TU-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(axl), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the

  12. Notice of Construction for Tank Waste Remediation System Vadose Zone Characterization

    International Nuclear Information System (INIS)

    HILL, J.S.

    2000-01-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection--Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. The original NOC was submitted in May of 1999 as DOE/TU-99-34. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(axl), and it is requested that approval of this application will also constitute EPA acceptance of this initial start-up notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with vadose zone characterization within the Single-Shell Tank Farms located in the 200-East and 200-West Areas of the Hanford Site. Vadose zone

  13. Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, William S.

    2013-09-26

    Eight samples of heel solids from tank 241-C-109 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, one-half to two-thirds of the solids were off-white to tan solids that, visually, were fairly evenly graded in size from coarse silt (30-60 μm) to medium pebbles (8-16 mm). The remaining solids were mostly strongly cemented aggregates ranging from coarse pebbles (16-32 mm) to fine cobbles (6-15 cm) in size. Solid phase characterization and chemical analysis indicated that the air-dry heel solids contained ≈58 wt% gibbsite [Al(OH){sub 3}] and ≈37 wt% natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}·19H{sub 2}O]. The strongly cemented aggregates were mostly fine-grained gibbsite cemented with additional gibbsite. Dissolution testing was performed on two test samples. One set of tests was performed on large pieces of aggregate solids removed from the heel solids samples. The other set of dissolution tests was performed on a composite sample prepared from well-drained, air-dry heel solids that were crushed to pass a 1/4-in. sieve. The bulk density of the composite sample was 2.04 g/mL. The dissolution tests included water dissolution followed by caustic dissolution testing. In each step of the three-step water dissolution tests, a volume of water approximately equal to 3 times the initial volume of the test solids was added. In each step, the test samples were gently but thoroughly mixed for approximately 2 days at an average ambient temperature of 25 °C. The caustic dissolution tests began with the addition of sufficient 49.6 wt% NaOH to the water dissolution residues to provide ≈3.1 moles of OH for each mole of Al estimated to have been present in the starting composite sample and ≈2.6 moles of OH for each mole of Al potentially present in the starting aggregate sample. Metathesis of gibbsite to sodium aluminate was then allowed to proceed over 10 days of gentle mixing of the

  14. Characterization of Solids in Residual Wastes from Single-Shell Tanks at the Hanford Site, Washington, USA - 9277

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; Schaef, Herbert T.; Arey, Bruce W.; Heald, Steve M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Solid-phase characterization methods have been used in an ongoing study of residual wastes (i.e., waste remaining after final retrieval operations) from the underground single-shell storage tanks 241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112 at the U.S. Department of Energy's Hanford Site in Washington State. The results of studies completed to date show significant variability in the compositions of those residual wastes and the compositions, morphologies, and crystallinities of the individual phases that make up these wastes. These differences undoubtedly result from the various waste types stored and transferred in and out each tank and the sluicing and retrieval operations used for waste retrieval. Our studies indicate that these residual wastes are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases. Depending on the specific tank, various solids (e.g., gibbsite; boehmite; dawsonite; cancrinite; Fe oxides such as hematite, goethite, and maghemite; rhodochrosite; lindbergite; whewellite; nitratine; and numerous amorphous or poorly crystalline phases) have been identified by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy in residual wastes studied to date. Our studies also show that contact of residual wastes with Ca(OH)2- and CaCO3-saturated aqueous solutions, which were used as surrogates for the compositions of pore-fluid leachants derived from young and aged cements respectively, may alter the compositions of solid phases present in the contacted wastes. Fe oxides/hydroxides have been identified in all residual wastes studied to date. They occur in these wastes as discrete particles, particles intergrown within a matrix of other phases, and surface coatings on other particles or particle aggregates. These Fe oxides/hydroxides typically contain trace concentrations of other transition metals, such Cr, Mn

  15. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1976-01-01

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF 4 --H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF 2 --ThF 4 for Fe and analysis of LiF--BeF--ThF 4 for Te

  16. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    International Nuclear Information System (INIS)

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D.

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex trademark-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples

  17. Preliminary characterization of abandoned septic tank systems. Volume 2: Appendix D

    International Nuclear Information System (INIS)

    1995-12-01

    In an effort to support remedial investigations of abandoned septic tanks by US DOE, this report contains the results of chemical analyses of the contents of these abandoned tanks. Analytical data are presented for the following: volatile/TCLP volatile organics; semivolatile/TCLP semivolatile organics; PCB organics; total petroleum hydrocarbons; and total metals. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. The 20 sites investigated are located on the Nevada Test Site

  18. Results of Characterization and Retrieval Testing on Tank 241-C-110 Heel Solids

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, William S.

    2013-09-30

    Nine samples of heel solids from tank 241-C-110 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, the sample solids were primarily white to light-brown with minor dark-colored inclusions. The maximum dimension of the majority of the solids was <2 mm; however, numerous pieces of aggregate, microcrystalline, and crystalline solids with maximum dimensions ranging from 5-70 mm were observed. In general, the larger pieces of aggregate solids were strongly cemented. Natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}°19H{sub 2}O] was the dominant solid phase identified in the heel solids. Results of chemical analyses suggested that 85-87 wt% of the heel solids were the fluoridephosphate double salt. The average bulk density measured for the heel solids was 1.689 g/mL; the reference density of natrophosphate is 1.71 g/mL. Dissolution tests on composite samples indicate that 94 to 97 wt% of the tank 241-C-110 heel solids can be retrieved by dissolution in water. Dissolution and recovery of the soluble components in 1 kg (0.59 L) of the heel solids required the addition of ≈9.5 kg (9.5 L) of water at 15 °C and ≈4.4 kg (4.45 L) of water at 45 °C. Calculations performed using the Environmental Simulation Program indicate that dissolution of the ≈0.86 kg of natrophosphate in each kilogram of the tank 241-C-110 heel solids would require ≈9.45 kg of water at 15 °C and ≈4.25 kg of water at 45 °C. The slightly larger quantities of water determined to be required to retrieve the soluble components in 1 kg of the heel solids are consistent with that required for the dissolution of solids composed mainly of natrophosphate with a major portion of the balance consisting of highly soluble sodium salts. At least 98% of the structural water, soluble phosphate, sodium, fluoride, nitrate, carbonate, nitrite, sulfate, oxalate, and chloride in the test composites was dissolved and recovered in the

  19. Characterization of the first core sample of neutralized current acid waste from double-shell tank 101-AZ

    International Nuclear Information System (INIS)

    Peterson, M.E.; Scheele, R.D.; Tingey, J.M.

    1989-09-01

    In FY 1989, Westinghouse Hanford Company (WHC) successfully obtained four core samples (totaling seven segments) of neutralized current acid waste (NCAW) from double-shell tanks (DSTs) 101-AZ and 102-AZ. A segment was a 19-in.-long and 1-in.-diameter cylindrical sample of waste. A core sample consisted of enough 19-in.-long segments to obtain the waste of interest. Three core samples were obtained from DST 101-AZ and one core sample from DST 102-AZ. Two DST 101-AZ core samples consisted of two segments per core, and the third core sample consisted of only one segment. The third core consisted of the solids from the bottom of the tank and was used to determine the relative abrasiveness of this NCAW. The DST 102-AZ core sample consisted of two segments. The core samples were transported to the Pacific Northwest Laboratory (PNL), where the waste was extruded from its sampler and extensively characterized. A characterization plan was followed that simulated the processing of the NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical and radiochemical properties were measured throughout the process steps. The characterization of the first core sample from DST 101-AZ was completed, and the results are provided in this report. The results for the other core characterizations will be reported in future reports. 3 refs., 13 figs., 10 tabs

  20. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulk waste removal campaign).

  1. Solid-phase characterization in flammable-gas-tank sludges by electron microscopy

    International Nuclear Information System (INIS)

    Liu, J.; Pederson, L.R.; Qang, L.Q.

    1995-09-01

    The crystallinity, morphology, chemical composition, and crystalline phases of several Tank 241-SY-101 (hereinafter referred to as SY-101) and Tank 241-SY-103 (hereinafter referred to as SY-103) solid samples were studied by transmission electron microscopy (TEM), electron energy dispersive spectroscopy (EDS), and electron diffraction. The main focus is on the identification of aluminum hydroxide thought to be present in these tank samples. Aluminum hydroxide was found in SY-103, but not in SY-101. This difference can be explained by the different OH/Al ratios found in the two tank samples: a high OH/Al ratio in SY-101 favors the formation of sodium aluminate, but a low OH/Al ratio in SY-103 favors aluminum hydroxide. These results were confirmed by a magnetic resonance study on SY-101 and SY-103 simulant. The transition from aluminum hydroxide to sodium aluminate occurs at an OH/Al molar ratio of 3.6. It is believed that the study of Al(OH) 3 was not affected by sample preparation because all Al(OH) 3 is in the solid form according to the NMR experiments. There is no Al(OH) 3 in the liquid. It is, therefore, most likely that the observation of Al(OH) 3 is representative of the real sludge sample, and is not affected by drying. Similar conclusions also apply to other insoluble phases such as iron and chromium

  2. Characterization of Non-pertechnetate Species Relevant to the Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Andersen, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Du, Yingge [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Engelhard, Mark H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lukens, Wayne W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shutthanandan, Vaithiyalingam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-27

    Among radioactive constituents present in the tank waste stored at the U.S. DOE Hanford Site, technetium-99 (Tc), which is generated from the fission of 235U and 239Pu in high yields, presents a unique challenge in that it has a long half-life ( = 292 keV; T1/2 = 2.11105 y) and exists predominately in soluble forms in the liquid supernatant and salt cake fractions of the waste. In the strongly alkaline environments prevalent in most of the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, attempts to remove Tc from the Hanford tank waste using ion-exchange processes specific to TcO4- only met with limited success, particularly when processing tank waste samples containing elevated concentrations of organic complexants. This suggests that a significant fraction of the soluble Tc can be present as low-valent Tc (oxidation state < +7) (non-pertechnetate). The chemical identities of these non-pertechnetate species are poorly understood. Previous analysis of the SY-101 and SY-103 tank waste samples provided strong evidence that non-pertechnetate can be comprised of [fac-Tc(CO)3]+ complexes containing Tc in oxidation state +1 (Lukens et al. 2004). During the last three years, our team has expanded this work and demonstrated that high-ionic-strength solutions typifying tank waste supernatants promote oxidative stability of the [fac-Tc(CO)3]+ species (Rapko et al. 2013a; 2013b; Levitskaia et al. 2014; Chatterjee et al. 2015). Obtained results also suggest possible stabilization of Tc(VI) and potentially Tc(IV) oxidation states in the high-ionic-strength alkaline matrices particularly in the presence of organic chelators, so that Tc(IV, VI) can serve as important redox intermediates facilitating the reduction of Tc(VII) to Tc(I). Designing strategies for effective Tc management, including separation and immobilization

  3. Final characterization and safety screen report of double shell tank 241-AP-105 for evaporator campaign 97-1

    International Nuclear Information System (INIS)

    Miller, G.L.

    1997-01-01

    Evaporator candidate feed from tank 241-AP-105 (hereafter referred to as AP-105) was characterized for physical, inorganic, organic and radiochemical parameters by the 222-S Laboratory as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4, and Engineering Change Notice, number 635332, Reference 5. This data package satisfies the requirement for a format IV, final report as described in Reference 1. This data package is also a follow-up to the 45-Day safety screen results for tank AP-105, Reference 8, which was issued on November 5, 1996, and is attached as Section II to this report. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance P1an, References 6 and 7. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation

  4. Demonstration of the Defense Waste Processing Facility vitrification process for Tank 42 radioactive sludge -- Glass preparation and characterization

    International Nuclear Information System (INIS)

    Bibler, N.E.; Fellinger, T.L.; Marshall, K.M.; Crawford, C.L.; Cozzi, A.D.; Edwards, T.B.

    1999-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is currently processing and immobilizing the radioactive high level waste sludge at SRS into a durable borosilicate glass for final geological disposal. The DWPF has recently finished processing the first radioactive sludge batch, and is ready for the second batch of radioactive sludge. The second batch is primarily sludge from Tank 42. Before processing this batch in the DWPF, the DWPF process flowsheet has to be demonstrated with a sample of Tank 42 sludge to ensure that an acceptable melter feed and glass can be made. This demonstration was recently completed in the Shielded Cells Facility at SRS. An earlier paper in these proceedings described the sludge composition and processes necessary for producing an acceptable melter fee. This paper describes the preparation and characterization of the glass from that demonstration. Results substantiate that Tank 42 sludge after mixing with the proper amount of glass forming frit (Frit 200) can be processed to make an acceptable glass

  5. Detection and Characterization of Chemicals Present in Tank Waste - Final Report - 09/15/1998 - 09/14/2001

    International Nuclear Information System (INIS)

    Datskos, Panos G.; Sepaniak, Michael J.

    2001-01-01

    DOE has a strong commitment to the efficient and safe remediation of waste (high level radioactive waste, mixed waste, and hazardous waste) present in underground waste storage tanks. Safety issues arise from the presence of organic chemicals and oxidizers and concerns are raised about the flammability, explosivity, and the possible corrosion of storage tanks due to presence of nitrates and nitrites. Knowledge of the physical parameters and chemical and radioactive composition of waste is necessary for effective and safe tank remediation. New and improved characterization and monitoring of waste present in storage tanks is necessary. The overall goal of this project has been to develop and demonstrate novel multi-parameter micro-electro-mechanical system (MEMS) sensors based on Si and SiNx microcantilever (MC) structures that are robust and can be used to simultaneously detect the presence of target chemicals (analytes) in a mixture, radiation emitted from radioactive materials, an d the heat generated by the absorption of photons of specific wavelength by the target analytes. The mechanisms by which adsorption, photophysical, photothermal processes cause stress in MC surfaces are better understood. Methods of applying a wide variety of chemically selective coatings have been developed specifically for miniaturized MC surfaces, and the response characteristic of the cantilever were shown to be altered dramatically and predictably through incorporation of these phases on the surfaces. By addressing sensitivity and liquid matrix issues, the spectroscopic approach promises to provide an essential element of specificity for integrated sensors. We discovered early in these studies that fundamental limitations exist regarding the degree to which adsorption of analytes on smooth surfaces cause stress and this significantly limits chemi-mechanical response. To circumvent this limitation a concerted effort was made to devise and test ways to nanostructure cantilever

  6. Characterization of tank 51 sludge samples (HTF-51-17-44/ HTF-51-17-48) in support of sludge batch 10 processing

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-17

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The two Tank 51 sludge samples were sampled and delivered to SRNL in May of 2017. These two tank 51 sludge samples were combined into one composite sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids and aluminum hydroxides (gibbsite and boehmite) by x-ray diffraction.

  7. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te 2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF 4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na 3 CrF 6 and Na 5 Cr 3 F 14 , were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li 2 BeF 4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe 2+ and Cr 3+ and the determination of the U 3+ /U 4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF 4 --NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF 4 --NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  8. PHYSICAL CHEMISTRY CHARACTERIZATION OF PRINTED CIRCUIT BOARD OF MOBILE PHONES

    Directory of Open Access Journals (Sweden)

    Hellington Bastos da Silva de Sant’ana

    2015-07-01

    Full Text Available Nowadays, electronics industry is the leading sector in developing new technologies. These new technologies lead to cheaper products increasing the consumption. The lifetime of such products is relatively short and soon it becomes waste, known as electronic waste. Cell phone is a common electronic waste. This waste represents an interesting raw material, because it contains large amount of base metals, considerable amount of valuable metals and also those dangerous. In this work, the electronic waste was submitted to mechanical processing: initially the devices were separated into two categories, as year of release (2002 and disassembled manually. The printed circuit boards were milled below 1 mm and then submitted to density and magnetic separation processes. The fractions obtained during the mechanical processing were characterized by chemical analysis. Using mechanical processing it was possible to obtain metal fractions of 80 wt%. A leaching test was carried out to determine if a waste needs to be managed as a hazardous; so that, cell phone waste must be considered in the category of hazardous residue because the lead concentration was above the limit established by Brazilian Standards

  9. Characterization Results for the January 2017 H-Tank Farm 2H Evaporator Overhead Sample

    Energy Technology Data Exchange (ETDEWEB)

    Truong, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nicholson, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-04-11

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on January 19, 2017. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits.

  10. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm - 13235

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R. [Washington River Protection Solutions, P.O. Box 850, Richland, WA, 99352 (United States)

    2013-07-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit. (authors)

  11. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm-13235

    International Nuclear Information System (INIS)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit

  12. Waste tank vapor project: Vapor space characterization of waste tank 241-BY-104: Results from samples collected on June 24, 1994

    International Nuclear Information System (INIS)

    Clauss, T.W.; Ligotke, M.W.; McVeety, B.D.; Pool, K.H.; Lucke, R.B.; Fruchter, J.S.; Goheen, S.C.

    1994-11-01

    This report describes results of the analyses of tank-headspace samples taken from Hanford waste Tank 241-BY-104 (referred to as Tank BY-104) on June 24, 1994. The Pacific Northwest Laboratory (PNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze inorganic and organic samples collected from the tank headspace. The sample job was designated S4019 and was performed by WHC on June 24, 1994 using the vapor sampling system (VSS). The results of the analyses are expected to be used in the determination of safety and toxicological issues related to the tank-headspace gas as described in the WHC report entitled Data Quality Objectives for Generic In-Tank Health and Safety Vapor Issue Resolution, WHC-SD-WM-DQO-002, Rev. 0. Sampling devices, including 16 sorbent trains (for inorganic analyses), and 5 SUMMA trademark canisters (for organic analyses), were supplied to the WHC sampling staff on June 20, 1994. Samples were taken (by WHC) on June 24. The samples were returned from the field on June 27. The inorganic samples delivered to PNL on chain-of-custody (COC) 006893 included 16 sorbent trains as described in Tables 2.2, 2.3, and 2.4. Additional inorganic blank spikes were obtained from related sample jobs. SUMMA trademark samples delivered to PNL on COC 006896 included one ambient air sample, one ambient-air sample through the sampling system, and three tank-headspace SUMMA trademark canister samples. The samples were inspected upon delivery to the 326/23B laboratory and logged into PNL laboratory record book 55408. Custody of the sorbent trains was transferred to PNL personnel performing the inorganic analysis and stored at refrigerated (≤10 degrees C) temperature until the time of analysis. Access to the 326/23B laboratory is limited to PNL personnel working on the waste-tank safety program

  13. Preliminary recommendations on the design of the characterization program for the Hanford Site single-shell tanks: A system analysis

    International Nuclear Information System (INIS)

    Buck, J.W.; Peffers, M.S.; Hwang, S.T.

    1991-11-01

    The work described in this volume was conducted by Pacific Northwest Laboratory to provide preliminary recommendations on data quality objectives (DQOs) to support the Waste Characterization Plan (WCP) and closure decisions for the Hanford Site single-shell tanks (SSTs). The WCP describes the first of a two-phase characterization program that will obtain information to assess and implement disposal options for SSTs. This work was performed for the Westinghouse Hanford Company (WHC), the current operating contractor on the Hanford Site. The preliminary DQOs contained in this volume deal with the analysis of SST wastes in support of the WCP and final closure decisions. These DQOs include information on significant contributors and detection limit goals (DLGs) for SST analytes based on public health risk

  14. Tank farm nuclear criticality review

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1996-01-01

    The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site

  15. Tank 40 final sludge batch 9 chemical and fissile radionuclide characterization results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kubilius, W. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-26

    A sample of Sludge Batch (SB) 9 was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS)i. The SB9 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is fed to the Defense Waste Processing Facility (DWPF) as SB9. At the Savannah River National Laboratory (SRNL), the 3-L Tank 40 SB9 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 547 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO3/HCl (aqua regiaii) in sealed Teflon® vessels and four with NaOH/Na2O2 (alkali or peroxide fusioniii) using Zr crucibles. Three Analytical Reference Glass – 1iv (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma – mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB9 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic

  16. Risk characterization data manual for Category D inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    This manual reports the results of a risk characterization of Category D inactive liquid low-level radioactive waste (LLLW) at the Oak Ridge National Laboratory (ORNL). The risk characterization is required by the Federal Facility Agreement between the Department of Energy-Oak Ridge Operations Office, the Environmental Protection Agency-Region IV, and the Tennessee Department of Environment and Conservation. The intent of the risk characterization is to determine relative priorities for assessment and remediation. When the scores for all tanks had been weighted and summed, the tanks were ranked in descending order on the basis of their total scores. The highest possible score for a tank is 30. The descending order represents the recommended priorities for evaluation: the higher the score, the higher the priority for evaluation

  17. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds

  18. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  19. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  20. Summary review of the chemical characterization of liquid and sludge contained in the Old Hydrofracture tanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Francis, C.W.; Herbes, S.E.

    1997-02-01

    This report presents analytical data developed from samples collected from the five inactive tanks located at the Old Hydrofracture Facility (OHF) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The samples were collected during December 1995 and January 1996. The purpose of the sampling and analysis project was (1) to determine whether the tank contents meet ORNL waste acceptance criteria, as specified in the Oak Ridge National Laboratory, Liquid Waste Treatment Systems, Waste Evaluation Criteria; (2) to determine various physical properties of the tank contents that would affect the design of a sludge mobilization system; and (3) to gather information to support a baseline risk assessment. The report focuses on the analytical results used to evaluate the tank contents with regard to nuclear criticality safety requirements and to regulatory waste characterization

  1. Waste Tank Vapor Program: Vapor space characterization of Waste Tank 241-T-107. Results from samples collected on January 18, 1995

    International Nuclear Information System (INIS)

    Pool, K.H.; Lucke, R.B.; McVeety, B.D.

    1995-06-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-T-107 (referred to as Tank T-107). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, I was observed above the 5-ppbv reporting cutoff. Six organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The estimated concentration of all 7 organic analytes observed in the tank headspace are listed in Table I and account for approximately 100% of the total organic components in Tank T-107. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected in the tank-headspace samples

  2. Tank waste treatment science task quarterly report, April 1995--June 1995

    International Nuclear Information System (INIS)

    LaFemina, J.P.

    1995-07-01

    This report describes the work performed by the Pacific Northwest Laboratory (PNL) during the third quarter of FY 1995 under the Tank Waste Treatment Science Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project. Work was performed in the following areas: (1) analytical methods development, (2) sludge dissolution modeling, (3) sludge characterization studies, (4) sludge component speciation, (5) pretreatment chemistry evaluation, and (6) colloidal studies for solid-liquid separations

  3. A pilot study on water pollution and characterization of multidrug-resistant superbugs from Byramangala tank, Ramanagara district, Karnataka, India.

    Science.gov (United States)

    Skariyachan, Sinosh; Lokesh, Priyanka; Rao, Reshma; Kumar, Arushi Umesh; Vasist, Kiran S; Narayanappa, Rajeswari

    2013-07-01

    Urbanization and industrialization has increased the strength and qualities of municipal sewage in Bangalore, India. The disposal of sewage into natural water bodies became a serious issue. Byramangala reservoir is one such habitat enormously polluted in South India. The water samples were collected from four hotspots of Byramangala tank in 3 months. The biochemical oxygen demand (BOD) and bacterial counts were determined. The fecal coliforms were identified by morphological, physiological, and biochemical studies. The antibiotics sensitivity profiling of isolated bacteria were further carried out. We have noticed that a high content of BOD in the tank in all the 3 months. The total and fecal counts were found to be varied from 1.6 × 10(6) to 8.2 × 10(6) colony forming unit/ml and >5,500/100 ml, respectively. The variations in BOD and total count were found to be statistically significant at p > 0.05. Many pathogenic bacteria were characterized and most of them were found to be multidrug resistant. Salmonella showed resistance to cefoperazone, cefotaxime, cefixime, moxifloxacin, piperacillin/tazobactam, co-trimoxazole, levofloxacin, trimethoprim, and ceftazidime. Escherichia coli showed resistance to chloramphenicol, trimethoprim, co-trimoxazole, rifampicin, and nitrofurantoin while Enterobacter showed resistant to ampicillin, cefepime, ceftazidime, cefoperazone, and cefotaxime. Klebsiella and Shigella exhibited multiple drug resistance to conventional antibiotics. Staphylococcus showed resistance to vancomycin, methicillin, oxacillin, and tetracycline. Furthermore, Salmonella and Klebsiella are on the verge of acquiring resistance to even the strongest carbapenems-imipenem and entrapenem. Present study revealed that Byramanagala tank has become a cesspool of multidrug-resistant "superbugs" and will be major health concern in South Bangalore, India.

  4. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course

    Science.gov (United States)

    Amaris, Zoe N.; Freitas, Daniel N.; Mac, Karen; Gerner, Kyle T.; Nameth, Catherine; Wheeler, Korin E.

    2017-01-01

    A series of laboratory experiments were developed to introduce first-year chemistry students to nanoscience through a green chemistry approach. Students made and characterized the stability of silver nanoparticles using two different methods: UV-visible spectroscopy and dynamic light scattering. They then assessed the ecotoxicity of silver…

  5. Chemically Functionalized Arrays Comprising Micro and Nano-Etro-Mechanizal Systems for Reliable and Selective Characterization of Tank Waste

    International Nuclear Information System (INIS)

    Sepaniak, Michael J.

    2008-01-01

    Innovative technology of sensory and selective chemical monitoring of hazardous wastes present in storage tanks are of continued importance to the environment. This multifaceted research program exploits the unique characteristics of micro and nano-fabricated cantilever-based, micro-electro-mechanical systems (MEMES) and nano-electro-mechanical systems (NEMS) in chemical sensing. Significant progress was made in tasks that were listed in the work plan for DOE EMSP project 'Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste'. These tasks are listed below in modified form followed by the report on progress. (1) Deposit chemically selective phases on model MEMS devices with nanostructured surface layers to identify optimal technological approaches. (2) Monitor mechanical (deflection) and optical (SERS) responses of the created MEMS to organic and inorganic species in aqueous environments. (3) Explore and compare different approaches to immobilization of selective phases on the thermal detectors. (4) Demonstrate improvements in selectivity and sensitivity to model pollutants due to implemented technologies of nanostructuring and multi-mode read-out. (5) Demonstrate detection of different analytes on a single hybrid MEMS (6) Implement the use of differential pairs of cantilever sensors (coated and reference) with the associated detector electronics which is expected to have an enhanced sensitivity with a low-noise low-drift response. (7) Development of methods to create differential arrays and test effectiveness at creating distinctive differential responses.

  6. Synthesis and Characterization of Tc(I) Carbonyl Nitrosyl Species Relevant to the Hanford Tank Waste: FY 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Thibaut J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Nathalie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-24

    Among long-lived radioactive constituents in the Hanford tank waste, Tc presents a unique challenge in that it exists predominantly in the liquid phase, generally in the anionic form of pertechnetate, TcO4-, which is highly volatile at low-activity waste (LAW) vitrification melter temperatures and mobile in the Hanford site’s subsurface environment. The complex behavior of Tc under storage, treatment, and immobilization conditions significantly affects its management options, which to-date remain uncertain. In strongly alkaline environments, Tc exists as pertechnetate, TcO4- (oxidation state +7), and in the reduced forms (oxidation state < +7) collectively known as non-pertechnetate species. Pertechnetate is a well-characterized, anionic Tc species that can be removed from LAW by anion exchange or solvent extraction methods. There is no definitive information on the origin of the non-pertechnetate Tc species, nor is there a comprehensive description of their composition and behavior. It has been recently proposed that the non-pertechnetate species can comprise Tc(I) metal center and carbonyl or mixed carbonyl nitrosyl ligands stabilizing low-valent Tc. Recent work by our group has significantly expanded this previous work, generating a series of Tc(I) carbonyl compounds and demonstrating that they can be generated from reduction of TcO4- in the simulated Hanford tank waste in presence of CO at elevated temperature (Levitskaia et al. 2014). These results are consistent with the previous proposal that [Tc(CO)3]+ species can be present in the Hanford tank waste and suggest that the low Tc(I) oxidation state is stabilized by the π-accepting ability of the CO ligands. The continuation work has been initiated to develop model Tc carbonyl nitrosyl compounds and investigate their potential presence in the Hanford tank wastes. This report summarizes our to-date results.

  7. Characterization by fluorescence of dissolved organic matter in rural drinking water storage tanks in Morocco.

    Science.gov (United States)

    Aziz, Faissal; Ouazzani, Naaila; Mandi, Laila; Assaad, Aziz; Pontvianne, Steve; Poirot, Hélène; Pons, Marie-Noëlle

    2018-04-01

    Water storage tanks, fed directly from the river through opened channels, are particular systems used for water supply in rural areas in Morocco. The stored water is used as drinking water by the surrounding population without any treatment. UV-visible spectroscopy and fluorescence spectroscopy (excitation-emission matrices and synchronous fluorescence) have been tested as rapid methods to assess the quality of the water stored in the reservoirs as well as along the river feeding them. Synchronous fluorescence spectra (SFS50), collected with a difference of 50 nm between excitation and emission wavelengths, revealed a high tryptophan-like fluorescence, indicative of a pollution induced by untreated domestic and/or farm wastewater. The best correlations were obtained between the total SFS50 fluorescence and dissolved organic carbon (DOC) and biological oxygen demand, showing that the contribution of humic-like fluorescent substances cannot be neglected to rapidly assess reservoir water quality in terms of DOC by fluorescence spectroscopy.

  8. Waste Tank Vapor Project: Vapor characterization of Tank 241-C-103: Report for SUMMA trademark canister samples received 11/29/93 (sample jobs 4 and 5)

    International Nuclear Information System (INIS)

    Clauss, T.R.; Lucke, R.B.; McVeety, B.; Allwine, K.J.; Fruchter, J.S.

    1994-09-01

    The purpose of Sample Jobs 4 and 5 was to determine whether the organic nitrites observed on the outside of tank 241-C-103 originated in the tank or from degradation products of the high-efficiency particulate air (HEPA) filter. The plan was to take samples from either side of the HE-PA filter. The relative level of organic nitrites would help determine whether they were produced in the filter or the tank. Pacific Northwest Laboratory was responsible for analyzing the SUMMA trademark canisters collected in support of this study. The laboratory was to analyze the SUMMA trademark Canister samples according to letters of instruction and report all semivolatile and volatile organic constituents detected in the tank headspace. Pacific Northwest Laboratory was also to submit a letter report to the Program Manager of all qualitative and quantitative analytical data, and estimate concentrations of any aliphatic nitrites identified. This was one of the first sampling activities for this program, and a number of errors were made both in the field and in the laboratory. Because of these errors, the samples and results were of questionable value. Therefore, Westinghouse program management asked that the analysis of the samples for this report not be completed. This report describes the few results that were generated before we were asked to stop work on this activity. In addition to analyzing SUMMA trademark canisters, PNL operates a site portable weather station near tank 241-C-103. Pacific Northwest Laboratory was required to collect atmospheric data starting 11/15/93, but the weather station was already collecting data during the time of both these two sample jobs (11/12/93 and 11/16/93). Therefore, a summary of the atmospheric data is also presented in this report

  9. Control and Characterization of Titanium Dioxide Morphology: Applications in Surface Organometallic Chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2014-05-01

    Surface Organometallic Chemistry leads to the combination of the high activity and specificity of homogeneous catalysts with the recoverability and practicality of heterogeneous catalysts. Most metal complexes used in this chemistry are grafted on metal oxide supports such as amorphous silica (SiO2) and γ-alumina (Al2O3). In this thesis, we sought to enable the use of titania (TiO2) as a new support for single-site well-defined grafting of metal complexes. This was achieved by synthesizing a special type of anatase-TiO2, bearing a high density of identical hydroxyl groups, through hydrothermal synthesis then post-treatment under high vacuum followed by oxygen flow, and characterized by several analytical techniques including X-ray diffraction, transmission electron microscopy, infrared spectroscopy and nuclear magnetic resonance. Finally, as a proof of concept, the grafting of vanadium oxychloride (VOCl3) was successfully attempted.

  10. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  11. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  12. Tank 241-B-103 headspace gas and vapor characterization results for samples collected in February 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  13. Tank 241-BX-104 headspace gas and vapor characterization results for samples collected in December 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  14. Tank 241-U-203 headspace gas and vapor characterization results for samples collected in August 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  15. Tank 241-C-106 headspace gas and vapor characterization results for samples collected in February 1994

    International Nuclear Information System (INIS)

    Hackaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  16. Tank 241-S-111 headspace gas and vapor characterization results for samples collected in March 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  17. Tank 241-U-103 headspace gas and vapor characterization results for samples collected in February 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  18. Tank 241-SX-106 headspace gas and vapor characterization results for samples collected in March 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  19. Tank 241-TX-105 headspace gas and vapor characterization results for samples collected in December 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  20. Tank 241-C-102 headspace gas and vapor characterization results for samples collected in August 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  1. Tank 241-BY-112 headspace gas and vapor characterization results for samples collected in November 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  2. Tank 241-T-111 headspace gas and vapor characterization results for samples collected in January 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  3. Tank 241-SX-103 headspace gas and vapor characterization results for samples collected in March 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  4. Tank 241-TY-104 headspace gas and vapor characterization results for samples collected in April 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  5. Tank 241-C-110 headspace gas and vapor characterization results for samples collected in August 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  6. Tank 241-C-101 headspace gas and vapor characterization results for samples collected in September 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  7. Tank 241-C-107 headspace gas and vapor characterization results for samples collected in September 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  8. Tank 241-C-104 headspace gas and vapor characterization results for samples collected in March 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  9. Development of a Chemistry-Based, Predictive Method for Determining the Amount of Non-Pertechnetate Technetium in the Hanford Tanks: FY 2012 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Bryan, Samuel A.; Bryant, Janet L.; Chatterjee, Sayandev; Edwards, Matthew K.; Houchin, Joy Y.; Janik, Tadeusz J.; Levitskaia, Tatiana G.; Peterson, James M.; Peterson, Reid A.; Sinkov, Sergey I.; Smith, Frances N.; Wittman, Richard S.

    2013-01-30

    This report describes investigations directed toward understanding the extent of the presence of highly alkaline soluble, non-pertechnetate technetium (n-Tc) in the Hanford Tank supernatants. The goals of this report are to: a) present a review of the available literature relevant to the speciation of technetium in the Hanford tank supernatants, b) attempt to establish a chemically logical correlation between available Hanford tank measurements and the presence of supernatant soluble n-Tc, c) use existing measurement data to estimate the amount of n-Tc in the Hanford tank supernatants, and d) report on any likely, process-friendly methods to eventually sequester soluble n-Tc from Hanford tank supernatants.

  10. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  11. Statistical characterization report for Single-Shell Tank 241-T-104

    International Nuclear Information System (INIS)

    Cromar, R.D.; Wilmarth, S.R.; Jensen, L.

    1994-01-01

    This report contains the results of the statistical analysis of data from two core samples obtained from single-shell tank 241-T-104 (T-104). Section 2.0 contains a description of the core samples and the chemical analyses performed on the core samples. Section 3.0 contains mean concentration estimates and associated 95% confidence intervals (CIs) on the mean for each of the analytes found in the core composite samples. Section 4.0 contains estimates of the spatial variability (variability between cores) and estimates of the analytical variability from the core composite data. Two types of analytical variability were estimated from the core composite data: (1) sample composite variability (variability between composite samples within the same core) and (2) analytical measurement variability (variability between the primary and duplicate analyses within each core composite sample). Estimates of the analytical measurement variability were used as the reference value to test the significance of the spatial and sample composite variability. Spatial variability was significantly different from zero for 32 out of 80 analytes. The sample composite variance was significantly different from zero for 18 out of the 80 analytes

  12. Statistical characterization report for single-shell tank 241-T-111

    International Nuclear Information System (INIS)

    Cromar, R.D.; Wilmarth, S.R.

    1994-01-01

    This report contains the results of the statistical analysis of data from two core samples obtained from single-shell tank 241-T-111 (T-111). Section 2.0 contains a description of the core samples and the chemical analyses performed on the core samples. Section 3.0 contains mean concentration estimates and associated 95% confidence intervals (CIs) on the mean for each of the analytes found in the core samples from T-111. Section 4.0 contains estimates of the spatial variability (variability between cores) and estimates of the analytical variability from the core composite data. Two types of analytical variability were estimated from the core composite data: (1) sample composite variability (variability between composite samples within the same core) and (2) analytical measurement variability (variability between the primary and duplicate analyses within each core composite sample). Estimates of the analytical measurement variability were used as the reference value to test the significance of the spatial and sample composite variability. Spatial variability was significantly different from zero for 39 out of 85 analytes. The sample composite variance was significantly different from zero for (a different) 39 out of the 85 analytes

  13. Waste Tank Vapor Program: Vapor space characterization of waste tank 241-T-111. Results from samples collected on January 20, 1995

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-10-01

    This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-T-111. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text

  14. Waste Tank Vapor Program: Vapor space characterization of waste tank 241; C-102: Results from samples collected on August 23, 1994

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-C-102. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text

  15. Vapor space characterization of waste tank 241-U-111: Results from samples collected on February 28, 1995. Waste Tank Vapor Program

    International Nuclear Information System (INIS)

    Clauss, T.W.; Pool, K.H.; McVeety, B.D.; Bredt, O.P.; Goheen, S.C.; Ligotke, M.W.; Lucke, R.B.; Klinger, G.S.; Fruchter, J.S.

    1995-07-01

    This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-U-111. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text

  16. Vapor space characterization of waste Tank 241-U-106: Results from samples collected on March 7, 1995. Waste Tank Vapor Program

    International Nuclear Information System (INIS)

    Klinger, G.S.; Lucke, R.B.; McVeety, B.D.

    1995-07-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-106 (referred to as Tank U-106). The results described here were obtained to support safety and toxicological evaluations. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O) Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. The NH 3 concentration was 16% greater than that determined from an ISS sample obtained in August 1994; the H 2 O concentration was about 10% less. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 5 were observed in two or more canisters above the 5-ppbv reporting cutoff. Eleven organic tentatively identified compounds (TICS) were observed in two or more canisters above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations account for approximately 90% of the total organic components in Tank U-106. Three permanent gases, nitrous oxide (N 2 O), hydrogen (H 2 ) and carbon dioxide (COD were also detected

  17. Decontamination flange film characterization for a boiling water reactor under hydrogen water chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Garbauskas, M.F.; Bozeman, J.

    1996-01-01

    Stainless steel artifacts removed from a boiling water reactor class 4 plant that operated under hydrogen water chemistry and experienced a difficult decontamination were submitted for oxide film characterization. The results reported for the corrosion film composition and structure are consistent with existing theoretical concepts for stainless steel corrosion, spinel structure site preferences (octahedral or tetrahedral) for transition metal ions, and potential-pH diagrams. The observed zinc effects on film stability and lower cobalt incorporation are also consistent with these theoretical concepts

  18. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  19. Vendors search for viscosity sensors for in situ tank waste characterization

    International Nuclear Information System (INIS)

    Nguyen, Q.H.

    1994-01-01

    This report documents the search results in identifying manufacturers who can develop viscosity sensors for in situ to waste characterization. Six companies were found that have in-process viscometers

  20. SURFACE GEOPHYSICAL EXPLORATION OF TX AND TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    International Nuclear Information System (INIS)

    MYERS DA; RUCKER D; LEBITT M; CUBBAGE B; HENDERSON

    2008-01-01

    This report documents the results of preliminary surface geophysical exploration activities performed between September and October 2007 at the waste management areas surrounding the TX and TY tank farms. The TX-TY tank farms are located in the 200 West Area of the US Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to acquire background characterization information using magnetic gradiometry (Mag) and electromagnetic induction (EM) methods to understand the spatial distribution of buried metallic objects that could potentially interfere with the results of a subsequently completed high resolution resistivity survey

  1. Statistical characterization report for Single-Shell Tank 241-T-107

    International Nuclear Information System (INIS)

    Cromar, R.D.; Wilmarth, S.R.; Jensen, L.

    1994-01-01

    This report contains the results of the statistical analysis of data from three core samples obtained from single-shell tank 241-T-107 (T-107). Four specific topics are addressed. They are summarized below. Section 3.0 contains mean concentration estimates of analytes found in T-107. The estimates of open-quotes errorclose quotes associated with the concentration estimates are given as 95% confidence intervals (CI) on the mean. The results given are based on three types of samples: core composite samples, core segment samples, and drainable liquid samples. Section 4.0 contains estimates of the spatial variability (variability between cores and between segments) and the analytical variability (variability between the primary and the duplicate analysis). Statistical tests were performed to test the hypothesis that the between cores and the between segments spatial variability is zero. The results of the tests are as follows. Based on the core composite data, the between cores variance is significantly different from zero for 35 out of 74 analytes; i.e., for 53% of the analytes there is no statistically significant difference between the concentration means for two cores. Based on core segment data, the between segments variance is significantly different from zero for 22 out of 24 analytes and the between cores variance is significantly different from zero for 4 out of 24 analytes; i.e., for 8% of the analytes there is no statistically significant difference between segment means and for 83% of the analytes there is no difference between the means from the three cores. Section 5.0 contains the results of the application of multiple comparison methods to the core composite data, the core segment data, and the drainable liquid data. Section 6.0 contains the results of a statistical test conducted to determine the 222-S Analytical Laboratory's ability to homogenize solid core segments

  2. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Gee, Glendon W.; Ward, Anderson L.; Ritter, Jason C.; Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-01-01

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001)

  3. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc

  4. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  5. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  6. PEGylation of carbon nanotubes via mussel inspired chemistry: Preparation, characterization and biocompatibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyong; Zeng, Guangjian; Tian, Jianwen; Wan, Qing; Huang, Qiang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke; Zhang, Qingsong [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Liu, Meiying; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2015-10-01

    Graphical abstract: Water dispersible and biocompatible PEGylated carbon nanotubes were prepared via a novel mussel inspired strategy for the first time. - Highlights: • Surface modification of CNTs via bioinspired chemistry. • CNTs with high water dispersibility and excellent biocompatibility. • PEGytion of CNTs via Michael addition reaction. • Preparation of aminated PEG molecules via chain transfer polymerization. - Abstract: A novel strategy for surface modification of multi-walled carbon nanotubes (MWCNT) was developed via combination of mussel inspired chemistry and Michael addition reaction. In this procedure, pristine MWCNT were first coated with polydopamine (PDA) through self polymerization of dopamine. The PDA functionalized CNT (CNT-PDA) were further functionalized with amino-terminated polymers (polyPEGMA), which were synthesized via free radical polymerization using cysteamine hydrochloride as the chain transfer agent and poly(ethylene glycol) monomethyl ether methacylate as the monomer. The successful modification of CNT was ascertained by a series of characterization techniques including transmission electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis and X-ray photoelectron spectrometry. The polymer modified CNT showed enhanced dispersibility in aqueous and organic solution. Cytotoxicity evaluation of polymers modified CNT showed that these modified CNT are biocompatible with cells. Finally, due to the universal adhesive of PDA and chain transfer free radical polymerization, this strategy developed in this work can also be extended for surface modification of many other nanomaterials with different functional polymers.

  7. Characterization of a stirred tank electrochemical cell for water disinfection processes

    International Nuclear Information System (INIS)

    Polcaro, A.M.; Vacca, A.; Mascia, M.; Palmas, S.; Pompei, R.; Laconi, S.

    2007-01-01

    Laboratory experiments were performed to characterize the behaviour of an electrochemical cell equipped with boron-doped diamond anodes and to verify its effectiveness in water disinfection. The hydrodynamic regime was determined when the cell worked either in batch or in continuous mode. Galvanostatic electrolyses of aqueous 1 mM Na 2 SO 4 solutions were performed to investigate on the oxidant production in different experimental conditions. The same solutions contaminated by E. coli, enterococci and coliforms were used as test media to verify the effectiveness of the system in the disinfection process. Experimental results indicated that the major inactivation mechanism of bacteria in the electrochemical cell is a disinfection by electrochemically generated oxidants, however a cooperative effect of superficial reaction has to be taken into account. The great capability of BDD anode to produce reactive oxygen species (ROS) and other oxidizing species during the electrolysis allows to establish a chlorine-free disinfection process

  8. Comparison between different models for rheological characterization of sludge from settling tank

    Directory of Open Access Journals (Sweden)

    Malczewska Beata

    2017-09-01

    Full Text Available The municipal sludge characterized non-Newtonian behaviour, therefore the viscosity of the sewage sludge is not a constant value. The laboratory investigation was made using coaxial cylinder with rotating torque and gravimetric concentration of the investigated sludge ranged from 4.40% to 2.09%. This paper presents the investigation on the effect of concentration of rheological sludge behaviour. The three different rheological models: Bingham (plastic model, Ostwald-de Waele (power-law, Hershel-Bulkley’s were calculated by fitting the experimental data of shear stress as a function of shear rate to these models. In this study, the 3-parameter Herschel- Bulkley’s model fits the experimental data best.

  9. Testing IH Instrumentation: Analysis of 1996-1998 Tank Ventilation Data in Terms of Characterizing a Transient Release

    International Nuclear Information System (INIS)

    Droppo, James G.

    2004-01-01

    An analysis is conducted of the 1996-1998 Hanford tank ventilation studies of average ventilation rates to help define characteristics of shorter term releases. This effort is being conducted as part of the design of tests of Industrial Hygiene's (IH) instrumentation ability to detect transient airborne plumes from tanks using current deployment strategies for tank operations. This analysis has improved our understanding of the variability of hourly average tank ventilation processes. However, the analysis was unable to discern the relative importance of emissions due to continuous releases and short-duration bursts of material. The key findings are as follows: (1) The ventilation of relatively well-sealed, passively ventilated tanks appears to be driven by a combination of pressure, buoyancy, and wind influences. The results of a best-fit analysis conducted with a single data set provide information on the hourly emission variability that IH instrumentation will need to detect. (2) Tank ventilation rates and tank emission rates are not the same. The studies found that the measured infiltration rates for a single tank are often a complex function of air exchanges between tanks and air exchanges with outdoor air. This situation greatly limits the usefulness of the ventilation data in defining vapor emission rates. (3) There is no evidence in the data to discern if the routine tank vapor releases occur over a short time (i.e., a puff) or over an extended time (i.e., continuous releases). Based on this analysis of the tank ventilation studies, it is also noted that (1) the hourly averaged emission peaks from the relatively well-sealed passively-vented tanks (such as U-103) are not a simple function of one meteorological parameter--but the peaks often are the result of the coincidence of temporal maximums in pressure, temperature, and wind influences and (2) a mechanistic combination modeling approach and/or field studies may be necessary to understand the short

  10. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  11. Vapor space characterization of waste tank 241-C-101: Results from samples collected on 9/1/94

    International Nuclear Information System (INIS)

    Lucke, R.B.; Clauss, T.W.; Ligotke, M.W.

    1995-11-01

    This report describes results of the analyses of tank-headspace samples taken from the Hanford waste Tank 241-C-101 (referred to as Tank C-101) and the ambient air collected - 30 ft upwind near the tank and through the VSS near the tank. Pacific Northwest Laboratory (PNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and to analyze inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The sample job was designated S4056, and samples were collected by WHC on September 1, 1994, using the vapor sampling system (VSS). The samples were inspected upon delivery to the 326/23B laboratory and logged into PNL record book 55408 before implementation of PNL Technical Procedure PNL-TVP-07. Custody of the sorbent traps was transferred to PNL personnel performing the inorganic analysis and stored at refrigerated (≤ 10 degrees C) temperature until the time of analysis. The canisters were stored in the 326/23B laboratory at ambient (25 degrees C) temperature until the time of the analysis. Access to the 326/23B laboratory is limited to PNL personnel working on the waste-tank safety program. Analyses described in this report were performed at PNL in the 300 area of the Hanford Reservation. Analytical methods that were used are described in the text. In summary, sorbent traps for inorganic analyses containing sample materials were either weighed (for water analysis) or desorbed with the appropriate aqueous solutions (for NH 3 , NO 2 , and NO analyses). The aqueous extracts were analyzed either by selective electrode or by ion chromatography (IC). Organic analyses were performed using cryogenic preconcentration followed by gas chromatography/mass spectrometry (GC/MS)

  12. Vapor space characterization of waste Tank 241-TX-118 (in situ): Results from samples collected on 9/7/94

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Fruchter, J.S.; Goheen, S.C.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-TX-118 (referred to as Tank TX-118). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), hydrogen cyanide (CHN), and water (H 2 O). Sampling for sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 13 analytes. Hexane, normally included in the additional analytes, was removed because a calibration standard was not available during analysis of Tank TX-118 SUMMA trademark canisters. Of these, 12 were observed above the 5-ppbv reporting cutoff. Fourteen tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 86% of the total organic components in Tank TX-118. Permanent gas analysis was not conducted on the tank-headspace samples. Tank TX-118 is on both the Ferrocyanide and Organic Watch List

  13. Tank design

    International Nuclear Information System (INIS)

    Earle, F.A.

    1992-01-01

    This paper reports that aboveground tanks can be designed with innovative changes to complement the environment. Tanks can be constructed to eliminate the vapor and odor emanating from their contents. Aboveground tanks are sometimes considered eyesores, and in some areas the landscaping has to be improved before they are tolerated. A more universal concern, however, is the vapor or odor that emanates from the tanks as a result of the materials being sorted. The assertive posture some segments of the public now take may eventually force legislatures to classify certain vapors as hazardous pollutants or simply health risks. In any case, responsibility will be leveled at the corporation and subsequent remedy could increase cost beyond preventive measures. The new approach to design and construction of aboveground tanks will forestall any panic which might be induced or perceived by environmentalists. Recently, actions by local authorities and complaining residents were sufficient to cause a corporation to curtail odorous emissions through a change in tank design. The tank design change eliminated the odor from fuel oil vapor thus removing the threat to the environment that the residents perceived. The design includes reinforcement to the tank structure and the addition of an adsorption section. This section allows the tanks to function without any limitation and their contents do not foul the environment. The vapor and odor control was completed successfully on 6,000,000 gallon capacity tanks

  14. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2006-10-18

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants

  15. Prevalence, characterization, and antimicrobial resistance of Yersinia species and Yersinia enterocolitica isolated from raw milk in farm bulk tanks.

    Science.gov (United States)

    Jamali, Hossein; Paydar, Mohammadjavad; Radmehr, Behrad; Ismail, Salmah

    2015-02-01

    The aims of this study were to investigate the prevalence and to characterize and determine the antibiotic resistance of Yersinia spp. isolates from raw milk. From September 2008 to August 2010, 446 raw milk samples were obtained from farm bulk milk tanks in Varamin, Iran. Yersinia spp. were detected in 29 (6.5%) samples, out of which 23 (79.3%), 5 (17.2%), and 1 (3.4%) were isolated from cow, sheep, and goat raw milk, respectively. The most common species isolated was Yersinia enterocolitica (65.5%), followed by Yersinia frederiksenii (31%), and Yersinia kristensenii (3.4%). Of the 19 Y. enterocolitica isolates, 14 (73.7%) were grouped into bioserotype 1A/O:9, 4 (21.1%) belonged to bioserotype 1B:O8, 1 (5.3%) belonged to bioserotype 4/O:3, and 1 isolate (biotype 1A) was not typable. All the isolates of biotypes 1B and 4harbored both the ystA and ail genes. However, all the isolates of biotype 1A were only positive for the ystB gene. The tested Yersinia spp. showed the highest percentages of resistance to tetracycline (48.3%), followed by ciprofloxacin and cephalothin (each 17.2%), ampicillin (13.8%), streptomycin (6.9%), and amoxicillin and nalidixic acid (each 3.4%). All of the tested isolates demonstrated significant sensitivity to gentamicin and chloramphenicol. Recovery of potentially pathogenic Y. enterocolitica from raw milk indicates high risks of yersiniosis associated with consumption of raw milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement. Part 1; Materials Characterization and Analysis

    Science.gov (United States)

    Weiser, Erik S.; SaintClair, Terry L.; Nemeth, Michael P.

    2004-01-01

    The use of foam insulation on the External Tank (ET) was necessitated by the potentially hazardous build up of ice on the vehicle prior to and during launch. This use of foam was initiated on the Saturn V rocket, which, like the Space Shuttle, used cryogenic fuel. Two major types of foam have been used on the ET. The first type is NCFI 24-124, an acreage material that is automatically sprayed on in a controlled environment. It replaced CPR 488 in 1998 and has been used since that time. The other major foams, BX-250 or BX-265, are handsprayed foams that are used to close out regions where the various sections of the ET are attached. The objectives of the present report are to study the chemistries of the various foam materials and to determine how physical and mechanical anomalies might occur during the spray and curing process. To accomplish these objectives, the report is organized as follows. First, the chemistries of the raw materials will be discussed. This will be followed by a discussion of how chemistry relates to void formation. Finally, a TGA-MS will be used to help understand the various foams and how they degrade with the evolution of chemical by-products.

  17. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE: RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    International Nuclear Information System (INIS)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-01-01

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity(trademark) surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects

  18. SURFACE GEOPHYSICAL EXPLORATION OF B, BX, and BY TANK FARMS AT THE HANFORD SITE: RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    International Nuclear Information System (INIS)

    MYERS DA

    2007-01-01

    This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around the site with large metallic subsurface debris or metallic infrastructure

  19. Characterizing Martian Soils: Correlating Orbital Observations with Chemistry and Mineralogy from Landed Missions

    Science.gov (United States)

    Bishop, J. L.

    2010-12-01

    Great advances have been achieved recently in our understanding of the surface of Mars at global scales from orbital missions and at local scales from landed missions. This presentation seeks to provide links between the chemistry and mineralogy observed by landed missions with remote detections of minerals from orbit. Spectral data from CRISM, OMEGA and TES characterize a mostly basaltic planet with some outcrops of hematite, clays, sulfates and carbonates at the surface. Recent alteration of these rocks to form soils has likely been dominated by physical processes; however, martian soils probably also contain relicts of early alteration involving aqueous processes. Clays, hydroxides, sulfates, carbonates and perchlorates are examples of surface components that may have formed early in the planet’s history in the presence of liquid water. Some of these minerals have not been detected in the soil, but all have likely contributed to the current soil composition. The grain size, shape, chemistry, mineralogy, and magnetic properties of Martian soils are similar to altered volcanic ash found at many analog sites on Earth. Reflectance and emission spectra of some of these analog soils are consistent with the basic soil spectral properties observed from orbit. The cemented soil units observed by rovers may have formed through interaction of the soil grains with salts, clays, and hydroxides. Lab experiments have shown that cementing of analog grains darkens the VN reflectance, which could explain the low reflectance of Martian soils compared to analog sites. Reflectance spectra of an analog soil mixture containing altered ash and sulfate are shown in Figure 1. A pellet was made by adding water and allowing the sample to dry in air. Finally, the pellet was crushed and ground again to properties might be.

  20. Rapid Characterization of Molecular Chemistry, Nutrient Make-Up and Microlocation of Internal Seed Tissue

    International Nuclear Information System (INIS)

    Yu, P.; Block, H.; Niu, Z.; Doiron, K.

    2007-01-01

    Wheat differs from corn in biodegradation kinetics and fermentation characteristics. Wheat exhibits a relatively high rate (23% h 01 ) and extent (78% DM) of biodegradation, which can lead to metabolic problems such as acidosis and bloat in ruminants. The objective of this study was to rapidly characterize the molecular chemistry of the internal structure of wheat (cv. AC Barrie) and reveal both its structural chemical make-up and nutrient component matrix by analyzing the intensity and spatial distribution of molecular functional groups within the intact seed using advanced synchrotron-powered Fourier transform infrared (FTIR) microspectroscopy. The experiment was performed at the U2B station of the National Synchrotron Light Source at Brookhaven National Laboratory, New York, USA. The wheat tissue was imaged systematically from the pericarp, seed coat, aleurone layer and endosperm under the peaks at ∼1732 (carbonyl C(double b ond)O ester), 1515 (aromatic compound of lignin), 1650 (amide I), 1025 (non-structural CHO), 1550 (amide II), 1246 (cellulosic material), 1160, 1150, 1080, 930, 860 (all CHO), 3350 (OH and NH stretching), 2928 (CH 2 stretching band) and 2885 cm -1 (CH 3 stretching band). Hierarchical cluster analysis and principal component analysis were applied to analyze the molecular FTIR spectra obtained from the different inherent structures within the intact wheat tissues. The results showed that, with synchrotron-powered FTIR microspectroscopy, images of the molecular chemistry of wheat could be generated at an ultra-spatial resolution. The features of aromatic lignin, structural and non-structural carbohydrates, as well as nutrient make-up and interactions in the seeds, could be revealed. Both principal component analysis and hierarchical cluster analysis methods are conclusive in showing that they can discriminate and classify the different inherent structures within the seed tissue. The wheat exhibited distinguishable differences in the

  1. Captive sea turtle rearing inventory, feeding, and water chemistry in sea turtle rearing tanks at NOAA Galveston 1995 to 2015 (NCEI Accession 0156869)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains Excel and CSV spreadsheets monitoring captive Sea Turtle rearing program. Daily feeding logs as well as water chemistry were recorded.

  2. Performance evaluation of a thermal desorption/gas chromatographic/mass spectrometric method for the characterization of waste tank headspace samples

    International Nuclear Information System (INIS)

    Ma, C.Y.; Skeen, J.T.; Dindal, A.B.; Bayne, C.K.; Jenkins, R.A.

    1997-01-01

    A thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) method was validated for the determination of volatile organic compounds collected on carbonaceous triple sorbent traps and applied to characterize samples of headspace gases collected from underground nuclear waste storage tanks at the U.S. Department of Energy's Hanford site, in Richland, WA. Method validation used vapor-phase standards generated from 25 target analytes, including alkanes, alkyl alcohols, alkyl ketones, alkylated aromatics, and alkyl nitriles. The target analytes represent a group of compounds identified in one of the most problematic tanks. TD/GC/MS was carried out with modified injectors. Performance was characterized based on desorption efficiency, reproducibility, stability, and linearity of the calibration, method detection limits, preanalytical holding time, and quality control limits for surrogate standard recoveries. Desorption efficiencies were all greater than 82%, and the majority of the analytes (23 out of 25) had reproducibility values less than 24% near the method detection levels. The method was applied to the analysis of a total of 305 samples collected from the headspaces of 48 underground waste storge tanks. Quality control procedures were implemented to monitor sampling and TD/GC/MS method. 33 refs., 2 figs., 4 tabs

  3. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement - Part III: Material Property Characterization, Analysis, and Test Methods

    Science.gov (United States)

    Gates, Thomas S.; Johnson, Theodore F.; Whitley, Karen S.

    2005-01-01

    The objective of this report is to contribute to the independent assessment of the Space Shuttle External Tank Foam Material. This report specifically addresses material modeling, characterization testing, data reduction methods, and data pedigree. A brief description of the External Tank foam materials, locations, and standard failure modes is provided to develop suitable background information. A review of mechanics based analysis methods from the open literature is used to provide an assessment of the state-of-the-art in material modeling of closed cell foams. Further, this report assesses the existing material property database and investigates sources of material property variability. The report presents identified deficiencies in testing methods and procedures, recommendations for additional testing as required, identification of near-term improvements that should be pursued, and long-term capabilities or enhancements that should be developed.

  4. Survey Report For The Characterization Of The Five Tanks Located Near The Old Salvage Yard At The Y-12 National Security Complex, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rollow, Kathy

    2012-01-01

    This summary report presents analytical results, radiological survey data, and other data/information for disposition planning of the five tanks located west of the Old Salvage Yard (OSY) at the Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. Field personnel from Oak Ridge Associated Universities (ORAU) and URS-CH2M Oak Ridge LLC completed data collection in May 2012 per the project-specific plan (PSP) (ORAU 2012). Deviations from the PSP are addressed in the body of this report. Characterization activities included three data collection modes: visual inspection, radiological survey, and volumetric sampling/analysis. This report includes the final validated dataset and updates associated with the Tank 2 residues originally thought to be a biological bloom (e.g., slime mold) but ultimately identified as iron sulfate crystals

  5. Vapor space characterization of Waste Tank 241-TY-104: Results from samples collected on 4/27/95

    International Nuclear Information System (INIS)

    Klinger, G.S.; Olsen, K.B.; Clauss, T.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-104 (referred to as Tank TY-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 8 were observed above the 5-ppbv reporting cutoff. Five tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 94% of the total organic components in Tank TY-104. Nitrous oxide (N 2 O) was the only permanent gas detected in the tank-headspace samples. Tank TY-104 is on the Ferrocyanide Watch List

  6. Vapor space characterization of Waste Tank 241-U-105: Results from samples collected on 2/24/95

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-105 (referred to as Tank U-105). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, six were observed above the 5-ppbv reporting cutoff. Three tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. All nine of the organic analytes identified are listed in Table 1 and account for 100% of the total organic components in Tank U-105. Nitrous oxide (N 2 O) was the only permanent gas detected in the tank-headspace sample. Tank U-105 is on the Hydrogen Watch List

  7. Vapor space characterization of Waste Tank 241-U-107: Results from samples collected on 2/17/95

    International Nuclear Information System (INIS)

    McVeety, B.D.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-107 (referred to as Tank U-107). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 10 were observed above the 5-ppbv reporting cutoff. Sixteen organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 88% of the total organic components in Tank U-107. Nitrous oxide (N 2 O) was the only permanent gas detected in the tank-headspace samples. Tank U-107 is on the Organic and the Hydrogen Watch Lists

  8. Vapor space characterization of waste Tank 241-SX-103: Results from samples collected on 3/23/95

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Clauss, T.W.; Pool, K.H.; McVeety, B.D.; Klinger, G.S.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-11-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage tank 241-SX-103 (referred to as Tank SX-103). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water vapor (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, two were observed above the 5-ppbv reporting cutoff. Two tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The four organic analytes identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank SX-103. Carbon dioxide (CO 2 ) was the only permanent gas detected in the tank-headspace samples. Tank SX-103 is on the Hydrogen Watch List

  9. Vapor space characterization of Waste Tank 241-U-106 (in situ): Results from samples collected on 8/25/94

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Lucke, R.B.; Pool, K.H.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-U-106 (referred to as Tank U-106). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not performed. In addition, the authors looked for the 39 TO-14 compounds plus an additional 14 target analytes. Of these, six were observed above the 5-ppbv reporting cutoff. Ten organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv in two or more of the three samples collected and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 89% of the total organic components in Tank U-106. Methyl isocyanate, a compound of possible concern in Tank U-106, was not detected. Tank U-106 is on the Organic Watch List

  10. Vapor space characterization of waste tank 241-BY-105 (in situ): Results from samples collected on May 9, 1994

    International Nuclear Information System (INIS)

    McVeety, B.D.; Pool, K.H.; Ligotke, M.W.; Clauss, T.W.; Lucke, R.B.; Sharma, A.K.; McCulloch, M.; Fruchter, J.S.; Goheen, S.C.

    1995-05-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the tank headspace of the Hanford waste storage Tank 241-BY-105 (referred to as Tank BY-105). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds NH 3 , NO 2 , NO, HCN, and H 2 O. Sampling for sulfur oxides was not requested. Results of the inorganic samples were affected by sampling errors that led to an undefined uncertainty in sample volume. Consequently, tank-headspace concentrations are estimated only. Thirty-nine tentatively identified organic analytes were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and their quantitation is beyond the scope of this study. In addition, we looked for the 41 standard TO-14 analytes. Of these, only a few were observed above the 2-ppbv detection limit. The 16 organic analytes with the highest estimated concentrations are listed. These 16 analytes account for approximately 68% of the total or organic components in Tank BY-105

  11. Development of an inventory/archive program for the retention, management, and disposition of tank characterization samples at the 222-S laboratory

    International Nuclear Information System (INIS)

    Seidel, C.M.

    1998-01-01

    The Hanford Tank Waste Remediation Systems (TWRS) Characterization Program is responsible for coordinating the sampling and analysis of the 177 large underground storage tanks at the Hanford site. The 222-S laboratory has been the primary laboratory for chemical analysis of this highly-radioactive material and has been accumulating these samples for many years. As part of the Fiscal Year 1998 laboratory work scope, the 222-S laboratory has performed a formal physical inventory of all tank characterization samples which are currently being stored. In addition, an updated inventory/archive program has been designed. This program defines sample storage, retention, consolidation, maintenance, and disposition activities which will ensure that the sample integrity is preserved to the greatest practical extent. In addition, the new program provides for continued availability of waste material in a form which will be useful for future bench-scale studies. Finally, when the samples have exceeded their useful lifetime, the program provides for sample disposition from,the laboratory in a controlled, safe and environmentally compliant manner. The 222-S laboratory maintains custody over samples of tank waste material which have been shipped to the laboratory for chemical analysis. The storage of these samples currently requires an entire hotcell, fully dedicated to sample archive storage, and is rapidly encroaching on additional hotcell space. As additional samples are received, they are beginning to limit the 222-S laboratory hotcell utility for other activities such as sample extrusion and subsampling. The 222-S laboratory tracks the number of sample containers and the mass of each sample through an internal database which has recently been verified and updated via a physical inventory

  12. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    International Nuclear Information System (INIS)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-01-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  13. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-09-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  14. Characterization of an IceTop tank for the IceCube surface extension IceVeto

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Julian; Auffenberg, Jan; Hansmann, Bengt; Rongen, Martin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceTop is an air-shower detector located at the South Pole on the surface above the IceCube detector. It consists of 81 detector stations with two Cherenkov tanks each. The tanks are filled with clear ice and instrumented with two photomultipliers. IceTop detects cosmic-ray induced air-showers above an energy threshold of ∝300 TeV. Muons and neutrinos from these air-showers are the main background for astrophysical neutrino searches with IceCube. The usage of IceTop to veto air-showers largely reduces this background in the field of view. To enlarge the field of view an extension of the surface detector, IceVeto, is planned. Therefore, we investigate the properties of an original IceTop tank as a laboratory reference for the development of new detection module designs. First results of these measurements are presented.

  15. Technical performance characterization of fourier transform profilometry for quantitative waste volume determination under Hanford waste tank conditions - 16281

    International Nuclear Information System (INIS)

    Monts, David L.; Jang, Ping-Rey; Long, Zhiling; Norton, Olin P.; Gresham, Lawrence L.; Su, Yi; Lindner, Jeffrey S.

    2009-01-01

    The Hanford Site in western Washington state is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the chemical makeup of the residue. The Institute for Clean Energy Technology (ICET) at Mississippi State University is currently developing an quantitative in-tank inspection system based on Fourier Transform Profilometry, FTP. FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. We report the results of a technical feasibility study to document the accuracy and precision of quantitative volume determination using the Fourier transform profilometry technique under simulated Hanford waste tank conditions. We have initiated a technical feasibility assessment of the Fourier transform profilometry (FTP) technique for determining the volume of residual waste in Hanford radioactive waste tanks; preliminary results to date are presented in this paper. We find that we achieve FTP volume determinations with relatively small errors under conditions corresponding to the most challenging within a Hanford waste tank-viewing non-descript targets at a distance of 16.1 m (53 ft) and an angle of 62 deg.. We have determined that we can minimize measurement uncertainty by maximizing the camera-to-projector distance d, using an optical zoom of at least 5x, and ensuring that FTP images are only recorded after instrumental warm

  16. Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near Tank B-110 in the B-BX-BY Waste Management Area

    International Nuclear Information System (INIS)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Mccain, Richard G.; Lindenmeier, Clark W.; Orr, Robert D.; Legore, Virginia L.; Clayton, Ray E.; Lindberg, Michael J.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2002-01-01

    This report presents vadose sediment characterization data that improves understanding of the nature and extent of past releases in the B tank farm. A vertical borehole, located approximately 15 ft (5 m) from the northeast edge of single-shell tank 241-B-110 was drilled to a total depth of 264.4 ft bgs, the groundwater table was encountered at 255.8 ft bgs. During drilling, a total of 3 two-ft long, 4-inch diameter split-spoon core samples were collected between 10 and 254 ft bgs-an average of every 7.5 ft. Grab samples were collected between these core sample intervals to yield near continuous samples to a depth of 78.3 m (257 ft). Geologic logging occurred after each core segment was emptied into an open plastic container, followed by photographing and sub-sampling for physical and chemical characterization. In addition, 54 out of a total of 120 composite grab samples were opened, sub-sampled, logged, and photographed. Immediately following the geologic examination, the core an d selected grab samples were sub-sampled for moisture content, gamma-emission radiocounting, tritium and strontium-90 determinations, total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants) and one-to-one sediment to water extracts (which provide soil pH, electrical conductivity, cation, and anion data and water soluble contaminant data). Later, additional aliquots of selected sleeves or grab samples were removed to measure particle size distribution and mineralogy and to squeeze porewater. Major conclusions follow. Vadose zone contamination levels were lower than generally anticipated prior to the initiation of the field investigation. Strong evidence of extensive vadose zone lateral migration in WMA BBXBY exists. There are indications that such lateral migration may have extended into WMA B-BX-BY from adjacent past practice discharge sites. Ponding of runoff from natural precipitation in the

  17. An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm-13210

    International Nuclear Information System (INIS)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-01-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and

  18. An Initial Evaluation of Characterization and Closure Options for Underground Pipelines within a Hanford Site Single-Shell Tank Farm - 13210

    Energy Technology Data Exchange (ETDEWEB)

    Badden, Janet W.; Connelly, Michael P. [Washington River Protection Services, P.O. Box 850, Richland, Washington, 99352 (United States); Seeley, Paul N. [Cenibark International, Inc., 104318 Nicole Drive, Kennewick, Washington, 99338-7596 (United States); Hendrickson, Michelle L. [Washington State Department of Ecology, 3100 Port of Benton Blvd, Richland, Washington, 99354 (United States)

    2013-07-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies

  19. Tc Chemistry in HLW: Role of Organic Complexants

    International Nuclear Information System (INIS)

    Hess, Nancy S.; Conradsen, Steven D.

    2003-01-01

    Tc complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remove Tc from high-level nuclear waste prior to waste immobilization can be developed and so that long-term consequences of Tc remaining in residual waste after sludge removal can be evaluated. Only limited data on the stability of Tc-organic complexes exists and even less thermodynamic data on which to develop predictive models of Tc chemical behavior is available. To meet these challenges we are conducting a research program to study to develop thermodynamic data on Tc-organic complexation over a wide range of chemical conditions. We will attempt to characterize Tc-speciation in actual tank waste using state-of-the-art analytical organic chemistry, separations, and speciation techniques to validate our model. On the basis of such studies we will develop credible model of Tc chemistry in HLW that will allow prediction of Tc speciation in tank waste and Tc behavior during waste pretreatment processing and in waste tank residuals

  20. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    International Nuclear Information System (INIS)

    Haller, C.S.; Dove, T.H.

    1994-01-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement

  1. Decay tank

    International Nuclear Information System (INIS)

    Matsumura, Seiichi; Tagishi, Akinori; Sakata, Yuji; Kontani, Koji; Sudo, Yukio; Kaminaga, Masanori; Kameyama, Iwao; Ando, Koei; Ishiki, Masahiko.

    1990-01-01

    The present invention concerns an decay tank for decaying a radioactivity concentration of a fluid containing radioactive material. The inside of an decay tank body is partitioned by partitioning plates to form a flow channel. A porous plate is attached at the portion above the end of the partitioning plate, that is, a portion where the flow is just turned. A part of the porous plate has a slit-like opening on the side close to the partitioning plate, that is, the inner side of the flow at the turning portion thereof. Accordingly, the primary coolants passed through the pool type nuclear reactor and flown into the decay tank are flow caused to uniformly over the entire part of the tank without causing swirling. Since a distribution in a staying time is thus decreased, the effect of decaying 16 N as radioactive nuclides in the primary coolants is increased even in a limited volume of the tank. (I.N.)

  2. Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements.

    Directory of Open Access Journals (Sweden)

    Herman A van Wietmarschen

    Full Text Available OBJECTIVE: The aim is to characterize subgroups or phenotypes of rheumatoid arthritis (RA patients using a systems biology approach. The discovery of subtypes of rheumatoid arthritis patients is an essential research area for the improvement of response to therapy and the development of personalized medicine strategies. METHODS: In this study, 39 RA patients are phenotyped using clinical chemistry measurements, urine and plasma metabolomics analysis and symptom profiles. In addition, a Chinese medicine expert classified each RA patient as a Cold or Heat type according to Chinese medicine theory. Multivariate data analysis techniques are employed to detect and validate biochemical and symptom relationships with the classification. RESULTS: The questionnaire items 'Red joints', 'Swollen joints', 'Warm joints' suggest differences in the level of inflammation between the groups although c-reactive protein (CRP and rheumatoid factor (RHF levels were equal. Multivariate analysis of the urine metabolomics data revealed that the levels of 11 acylcarnitines were lower in the Cold RA than in the Heat RA patients, suggesting differences in muscle breakdown. Additionally, higher dehydroepiandrosterone sulfate (DHEAS levels in Heat patients compared to Cold patients were found suggesting that the Cold RA group has a more suppressed hypothalamic-pituitary-adrenal (HPA axis function. CONCLUSION: Significant and relevant biochemical differences are found between Cold and Heat RA patients. Differences in immune function, HPA axis involvement and muscle breakdown point towards opportunities to tailor disease management strategies to each of the subgroups RA patient.

  3. Physical chemistry characterization of soils of the Storage Center of Radioactive Wastes

    International Nuclear Information System (INIS)

    Hernandez T, U. O.; Fernandez R, E.; Monroy G, F.; Anguiano A, J.

    2011-11-01

    Any type of waste should be confined so that it does not causes damage to the human health neither the environment and for the storage of the radioactive wastes these actions are the main priority. In the Storage Center of Radioactive Wastes the radioactive wastes generated in Mexico by non energy applications are storage of temporary way. The present study is focused in determining the physical chemistry properties of the lands of the Storage Center of Radioactive Wastes like they are: real density, ph, conductivity percentage of organic matter and percentage of humidity. With what is sought to make a characterization to verify the reaction capacity of the soils in case of a possible flight of radioactive material. The results show that there are different density variations, ph and conductivity in all the soil samples; the ph and conductivity vary with regard to the contact time between the soil and their saturation point in water, for the case of the density due to the characteristics of the same soil; for what is not possible to establish a general profile, but is necessary to know the properties of each soil type more amply. Contrary case is the content of organic matter and humidity since both are in minor proportions. (Author)

  4. Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy.

    Science.gov (United States)

    Khirich, Gennady; Holliday, Michael J; Lin, Jasper C; Nandy, Aditya

    2018-03-01

    One-dimensional heteronuclear relaxation dispersion NMR spectroscopy at 13 C natural abundance successfully characterized the dynamics of the hydrogen-deuterium exchange reaction occurring at the N ε position in l-arginine by monitoring C δ in varying amounts of D 2 O. A small equilibrium isotope effect was observed and quantified, corresponding to ΔG = -0.14 kcal mol -1 . A bimolecular rate constant of k D = 5.1 × 10 9 s -1 M -1 was determined from the pH*-dependence of k ex (where pH* is the direct electrode reading of pH in 10% D 2 O and k ex is the nuclear spin exchange rate constant), consistent with diffusion-controlled kinetics. The measurement of ΔG serves to bridge the millisecond time scale lifetimes of the detectable positively charged arginine species with the nanosecond time scale lifetime of the nonobservable low-populated neutral arginine intermediate species, thus allowing for characterization of the equilibrium lifetimes of the various arginine species in solution as a function of fractional solvent deuterium content. Despite the system being in fast exchange on the chemical shift time scale, the magnitude of the secondary isotope shift due to the exchange reaction at N ε was accurately measured to be 0.12 ppm directly from curve-fitting D 2 O-dependent dispersion data collected at a single static field strength. These results indicate that relaxation dispersion NMR spectroscopy is a robust and general method for studying base-catalyzed hydrogen-deuterium exchange chemistry at equilibrium.

  5. Vapor space characterization of Waste Tank 241-S-111: Results from samples collected on 3/21/95

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-S-111 (referred to as Tank S-111). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, seven were observed above the 5-ppbv reporting cutoff. Five tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 98% of the total organic components in Tank S-111. Two permanent gases, hydrogen (H 2 ) and nitrous oxide (N 2 O), were also detected. Tank S-111 is on the Hydrogen Watch List

  6. Vapor space characterization of waste Tank 241-U-103: Results from samples collected on 2/15/95

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Clauss, T.W.; McVeety, B.D.; Klinger, G.S.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-11-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-103 (referred to as Tank U-103). The results described her were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water vapor (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 11 were observed above the 5-ppbv reporting cutoff. Eleven tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 90% of the total organic components in Tank U-103. Two permanent gases, hydrogen (H 2 ) and nitrous oxide (N 2 O), were also detected. Tank U-103 is on the Hydrogen Watch List

  7. Vapor space characterization of waste Tank 241-SX-106: Results from samples collected on 3/24/95

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Litgotke, M.W.

    1995-11-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-SX-106 (referred to as Tank SX-106). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 4 were observed above the 5-ppbv reporting cutoff. Three tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 7 organic analytes identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank SX-106. Carbon dioxide (CO 2 ) was the only permanent gas detected. Tank SX-106 is on the Ferrocyanide Watch List

  8. Vapor space characterization of Waste Tank 241-TY-104 (in situ): Results from samples collected on 8/5/94

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Lucke, R.B.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-TY-104 (referred to as Tank TY-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not performed. In addition, the authors looked for the 39 TO-14 compounds plus an additional 14 analytes. Of these, eight were observed above the 5-ppbv reporting cutoff. Twenty-four organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 86% of the total organic components in Tank TY-104. Tank TY-104 is on the Ferrocyanide Watch List

  9. Vapor space characterization of waste Tank 241-TY-101: Results from samples collected on 4/6/95

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-11-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-101 (referred to as Tank TY-101). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water vapor (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Off these, 5 were observed above the 5-ppbv reporting cutoff. One tentatively identified compound (TIC) was observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The six organic analyses identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank TY-101. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected. Tank TY-101 is on the Ferrocyanide Watch List

  10. Vapor space characterization of waste Tank 241-BY-108: Results from samples collected on 10/27/94

    International Nuclear Information System (INIS)

    McVeety, B.D.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-BY-108 (referred to as Tank BY-108). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water vapor (H 2 O). Trends in NH 3 and H 2 O samples indicated a possible sampling problem. Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, the authors looked for the 40 TO-14 compounds plus an additional 15 analytes. Of these, 17 were observed above the 5-ppbv reporting cutoff. Also, eighty-one organic tentatively identified compounds (TICs) were observed above the reporting cutoff (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The nine organic analytes with the highest estimated concentrations are listed in Summary Table 1 and account for approximately 48% of the total organic components in the headspace of Tank BY-108. Three permanent gases, hydrogen (H 2 ), carbon dioxide (CO 2 ), and nitrous oxide (N 2 O) were also detected. Tank BY-108 is on the Ferrocyanide Watch List

  11. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  12. Using Cluster Analysis to Characterize Meaningful Learning in a First-Year University Chemistry Laboratory Course

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective learning in the university chemistry laboratory. The MLLI was administered at the beginning and the end of the first semester to first-year university chemistry students to measure their expectations and experiences for learning in…

  13. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.

    2016-01-01

    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  14. Harmony of computational quantum chemistry and experimental chemistry: Comprehensive DFT studies, microsynthesis, and characterization of mustard gas polysulfide analogues

    Science.gov (United States)

    Saeidian, Hamid; Faraz, Sajjad Mousavi; Mirjafary, Zohreh; Babri, Mehran

    2018-05-01

    After microsynthesis, structures of mustard gas polysulfide analogues were characterized using electron impact (EI) mass spectrometry. General EI fragmentation pathways for such compounds are proposed. The structure of sulfur mustard (HD) and its two other polysulfide analogues have been examined through B3LYP/6-311++G(2d, 2p) calculations. Geometrical analysis of HD shows that the calculated bond distances are satisfactorily comparable with experimental results. Calculated NMR chemical shifts for HD also were compared with experimental data, indicating good agreement both for 1H and 13C atoms. The vibrational frequencies of HD and polysulfide analogues have been precisely assigned. At the end, based on visual inspection of lowest unoccupied molecular orbitals and the relative difference in the total energies of their episulfonium ions, relative reactivity of HD and its polysulfide analogues were investigated.

  15. Baseline groundwater chemistry characterization in an area of future Marcellus shale gas development

    Science.gov (United States)

    Eisenhauer, P.; Zegre, N.; Edwards, P. J.; Strager, M.

    2012-12-01

    The recent increase in development of the Marcellus shale formation for natural gas in the mid-Atlantic can be attributed to advances in unconventional extraction methods, namely hydraulic fracturing, a process that uses water to pressurize and fracture relatively impermeable shale layers to release natural gas. In West Virginia, the Department of Energy estimates 95 to 105 trillion cubic feet (TCF) of expected ultimately recovery (EUR) of natural gas for this formation. With increased development of the Marcellus shale formation comes concerns for the potential of contamination to groundwater resources that serve as primary potable water sources for many rural communities. However, the impacts of this practice on water resources are poorly understood because of the lack of controlled pre versus post-drilling experiments attributed to the rapid development of this resource. To address the knowledge gaps of the potential impacts of Marcellus shale development on groundwater resources, a pre versus post-drilling study has been initiated by the USFS Fernow Experimental Forest in the Monongahela National Forest. Drilling is expected to start at three locations within the next year. Pre-drilling water samples were collected and analyzed from two groundwater wells, a shallow spring, a nearby lake, and river to characterize background water chemistry and identify potential end-members. Geochemical analysis includes major ions, methane, δ13C-CH4, δ2H-CH4, 226Radium, and δ13C-DIC. In addition, a GIS-based conceptual ground water flow model was developed to identify possible interactions between shallow groundwater and natural gas wells given gas well construction failure. This model is used to guide management decisions regarding groundwater resources in an area of increasing shale gas development.

  16. Tank 12H residuals sample analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shine, E. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Diprete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  17. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  18. Vapor space characterization of waste tank 241-C-106: Results from samples collected on February 15, 1994

    International Nuclear Information System (INIS)

    McVeety, B.D.; Clauss, T.W.; Young, J.S.; Ligotke, M.W.; Goheen, S.C.; Lucke, R.B.; Pool, K.H.; McCulloch, M.; Fruchter, J.S.

    1995-06-01

    This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-C-106. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text

  19. Characterization of the March 2017 tank 10 surface sample (combination of HTF-10-17-30 AND HTF-10-17-31) and variable depth sample (combination of HTF-10-17-32 and HTF-10-17-33)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-19

    Two surface samples (HTF-10-17-30 and HTF-10-17-31) and two variable depth samples (HTF-10-17-32 and HTF-10-17-33) were collected from SRS Tank 10 during March 2017 and submitted to SRNL for characterization. At SRNL, the two surface samples were combined in one container, the two variable depth samples (VDSs) were combined in another container, and then the two composite samples were each characterized by a series of physical, ionic, radiological, and elemental analysis methods. The surface sample composite was characterized primarily for Tank Farm corrosion control purposes, while the VDS composite was characterized primarily for Tank Closure Cesium Removal (TCCR) purposes.

  20. Vapor space characterization of waste tank 241-BY-109 (in situ): Results from samples collected on 9/22/94

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Ligotke, M.W.

    1995-06-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-BY-109 (referred to as Tank BY-109). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Summary Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. Organic compounds were also quantitatively determined. Twenty-three organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, we looked for the 40 standard TO-14 analytes. We observed 38. Of these, only a few were observed above the 2-ppbv calibrated instrument detection limit. The ten organic analytes with the highest estimated concentrations are listed in Summary Table 1. The ten analytes account for approximately 84% of the total organic components in Tank BY-109

  1. Tank 241-U-104 headspace gas and vapor characterization results from samples collected on July 16, 1996

    International Nuclear Information System (INIS)

    Pool, K.H.; Evans, J.C.; Hayes, J.C.; Mitroshkov, A.V.; Edwards, J.A.; Julya, J.L.; Thornton, B.M.; Fruchter, J.S.; Silvers, K.L.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-U-104 (Tank U-104) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan. None of the flammable constituents were present at concentrations above the analytical instrument detection limits. Total headspace flammability was estimated to be <0.108% of the lower flammability limit. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in a table. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0

  2. Vapor space characterization of waste tank 241-TY-103: Results from samples collected on 4/11/95

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Clauss, T.W.; Pool, K.H.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-103 (referred to as Tank TY-103). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 16 were observed above the 5-ppbv reporting cutoff. Sixteen tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 95% of the total organic components in Tank TY-103. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected

  3. Characterization of an acidification and equalization tank (AET operating as a primary treatment of swine liquid effluent

    Directory of Open Access Journals (Sweden)

    Fabrício Motteran

    2013-06-01

    Full Text Available This work evaluated the potential of the acidification equalization tank (AET used as a primary treatment unit, treating the hog farming wastewater. The treatment system consisted of a degritter with a triangular-notch weir, for measuring the flow, a static sieve, and an acidification and equalization tank (AET, an anaerobic baffled reactor (ABR, an upflow anaerobic sludge blanket (UASB reactor, a settling tank, a greenhouse for fertirrigation and two infiltration ponds. The AET had a net capacity of 8,000 liters, internally covered with asphalt blanket, worked based on surface loading rates application. The unit operated continuously, with its flow varying from 0.1 to 10 L s-1. To determine the efficiency, the following parameters were measured: pH; COD; BOD; volatile and fixed solids; settleable solids; total, intermediate and partial alkalinity and total acidity. The COD removal varied from 5 to 20%. The average pH was 7.3 and the total, intermediate and partial alkalinity in the effluent, were 1919, 846, 1197 mg L-1, respectively. The total acidity in the effluent was 34 mg L-1. The influent and effluent total BOD and oil & grease concentrations were 3436 and 3443 mg L-1, and 415 and 668 mg L-1, respectively. It was found that the AET worked properly concerning the acidification, equalization and sedimentation processes, confirming low cost of implementation and easy operation, when compared to other traditional decanters.

  4. Vapor space characterization of waste tank 241-TX-118: Results from samples collected on 12/16/94

    International Nuclear Information System (INIS)

    Lucke, R.B.; Ligotke, M.W.; McVeety, B.D.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TX-118 (referred to as Tank TX-118). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 3 were observed above the 5-ppbv reporting cutoff. Twenty three organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 84% of the total organic components in Tank TX-118. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected

  5. Vapor space characterization of waste tank 241-S-102: Results from samples collected on 3/14/95

    International Nuclear Information System (INIS)

    Pool, K.H.; McVeety, B.D.; Clauss, T.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-S-102 (referred to as Tank S-102). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 11 were observed above the 5-ppbv reporting cutoff. Eleven tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 95% of the total organic components in Tank S-102. Two permanent gases, hydrogen (H 2 ) and nitrous oxide (N 2 O), were also detected

  6. Vapor space characterization of waste Tank 241-C-109 (in situ): Results from samples collected on 6/23/94

    International Nuclear Information System (INIS)

    Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; Lucke, R.B.; McVeety, B.D.; Sharma, A.K.; McCulloch, M.; Fruchter, J.S.; Goheen, S.C.

    1995-10-01

    This report describes organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-C-109 (referred to as Tank C-109). The results described here were obtained to support safety and toxicological evaluations. Organic compounds were quantitatively determined. Thirteen organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, the authors looked for the 40 standard TO-14 analytes. Of these, only one was observed above the 2-ppbv calibrated instrumental detection limit. However, it is believed, even though the values for dichlorodifluoromethane and trichlorofluoromethane are below the instrumental detection limit, they are accurate at these low concentrations. The six analytes account for approximately 100% of the total organic components in Tank C-109. These six organic analytes with the highest estimated concentrations are listed in Summary Table 1. Detailed descriptions of the results appear in the text

  7. Vapor space characterization of waste tank 241-BX-104: Results from samples collected on 12/30/94

    International Nuclear Information System (INIS)

    Pool, K.H.; Ligotke, M.W.; McVeety, B.D.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-BX-104 (referred to as Tank BX-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained. for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SOx) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 13 were observed above the 5-ppbv reporting cutoff. Sixty-six organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes, with the highest estimated concentrations are listed in Table 1 and account for approximately 70% of the total organic components in Tank BX-104. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected

  8. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ (CMAS Presentation)

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  9. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  10. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  11. The NanoChemistry group at the Technical University of Denmark (DTU) uses NanoSight’s NTA system for nanoparticle characterization

    DEFF Research Database (Denmark)

    2011-01-01

    Salisbury, UK, 7th December 2011: NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  12. The NanoChemistry group at the Technical University of Denmark (DTU) uses NanoSight’s NTA system for nanoparticle characterization

    DEFF Research Database (Denmark)

    2011-01-01

    NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  13. Analysis of a weld of an hydrogen tank under pressure: contribution of the nano-indentation for the characterization

    International Nuclear Information System (INIS)

    Russo, C.; Delobelle, P.; Perreux, D.; Russo, C.; Munier, E.; Decamps, B.

    2007-01-01

    This work deals with the size of an hydrogen spherical tank under pressure, composed of two half shell in aluminium alloy AZ5G machined in a forged bar and welded by electrons beam by a circumference. In this work, it is shown what the nano-indentation test can bring here. The influence of the tempering heat treatment after welding, the grains diameter and the loss in alloy elements (Zn and Mg) on the local mechanical properties of the weld bead has been revealed. In the same way, a hardening of the alloy due to the hydrogen penetration and leading to an increase of the dislocations density is observed. (O.M.)

  14. Supporting document for the historical tank content estimate for S tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  15. Supporting document for the historical tank content estimate for A Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  16. Supporting document for the historical tank content estimate for S tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  17. Supporting document for the historical tank content estimate for A Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  18. Supporting document for the historical tank content estimate for B Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  19. Vapor space characterization of waste Tank 241-BY-107: Results from in situ sample collected on 3/25/94

    International Nuclear Information System (INIS)

    Sharma, A.K.; Lucke, R.B.; Clauss, T.W.; McVeety, B.D.; Fruchter, J.S.; Goheen, S.C.

    1995-06-01

    This report describes organic results from vapors of the Hanford single-shell waste storage Tank 241-BY-107 (referred to as Tank BY-107). Samples for selected inorganic compounds were obtained but not anlayzed (Section 2.0). Quantitative results were obtained for several organic analytes, but quantities of analytes not listed in US Environmental Protection Agency (EPA) compendium Method TO-14 were estimated. Approximately 80 tentatively identified organic analytes were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and their quantitative determination is beyond the scope of this study. The SUMMATM canister samples were also analyzed for the 41 organic compounds listed in EPA compendium Method TO-14. Of these, only a few were observed above the 2-ppbv detection limits. These are summarized in Table 3.1. Estimated quantities were determined of tentatively identified compounds (TICs). A summary of these results shows quantities of all TICs above the concentration of ca. 10 ppbv. This consists of more than 80 organic analytes. The 12 organic analytes with the highest estimated concentrations are shown

  20. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  1. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  2. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    International Nuclear Information System (INIS)

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-01-01

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  3. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-21

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  4. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  5. Technetium Chemistry in HLW

    International Nuclear Information System (INIS)

    Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Xia Yuanxian

    2005-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  6. Characterization of Phase Chemistry and Partitioning in a Family of High-Strength Nickel-Based Superalloys

    Science.gov (United States)

    Lapington, M. T.; Crudden, D. J.; Reed, R. C.; Moody, M. P.; Bagot, P. A. J.

    2018-06-01

    A family of novel polycrystalline Ni-based superalloys with varying Ti:Nb ratios has been created using computational alloy design techniques, and subsequently characterized using atom probe tomography and electron microscopy. Phase chemistry, elemental partitioning, and γ' character have been analyzed and compared with thermodynamic predictions created using Thermo-Calc. Phase compositions and γ' volume fraction were found to compare favorably with the thermodynamically predicted values, while predicted partitioning behavior for Ti, Nb, Cr, and Co tended to overestimate γ' preference over the γ matrix, often with opposing trends vs Nb concentration.

  7. Supporting document for the historical tank content estimate for AN-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  8. Supporting document for the historical tank content estimate for AY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  9. Supporting document for the historical tank content estimate for AW-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  10. Supporting document for the historical tank content estimate for the S-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  11. Supporting document for the historical tank content estimate for AP-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  12. Supporting document for the historical tank content estimate for the SX-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  13. Supporting document for the historical tank content estimate for BY-Tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  14. Supporting document for the SW Quadrant Historical Tank Content Estimate for U-Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area

  15. Supporting Document for the SW Quadrant Historical Tank Content Estimate for SX-Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area

  16. Supporting document for the historical tank content estimate for BY-Tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Newell, R.L.; Funk, J.W.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  17. Supporting document for the historical tank content estimate for AP-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W.

    1997-01-01

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas

  18. Supporting document for the historical tank content estimate for BX-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  19. Supporting document for the historical tank content estimate for A-Tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Newell, R.L.; Funk, J.W.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  20. Supporting document for the historical tank content estimate for AW-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W.

    1997-01-01

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas

  1. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  2. A risk-based focused decision-management approach for justifying characterization of Hanford tank waste. June 1996, Revision 1; April 1997, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; Gephart, R.E.; Hunter, V.L.; Janata, J.; Morgan, L.G.

    1997-12-31

    This report describes a disciplined, risk-based decision-making approach for determining characterization needs and resolving safety issues during the storage and remediation of radioactive waste stored in Hanford tanks. The strategy recommended uses interactive problem evaluation and decision analysis methods commonly used in industry to solve problems under conditions of uncertainty (i.e., lack of perfect knowledge). It acknowledges that problem resolution comes through both the application of high-quality science and human decisions based upon preferences and sometimes hard-to-compare choices. It recognizes that to firmly resolve a safety problem, the controlling waste characteristics and chemical phenomena must be measurable or estimated to an acceptable level of confidence tailored to the decision being made.

  3. A risk-based focused decision-management approach for justifying characterization of Hanford tank waste. June 1996, Revision 1; April 1997, Revision 2

    International Nuclear Information System (INIS)

    Colson, S.D.; Gephart, R.E.; Hunter, V.L.; Janata, J.; Morgan, L.G.

    1997-01-01

    This report describes a disciplined, risk-based decision-making approach for determining characterization needs and resolving safety issues during the storage and remediation of radioactive waste stored in Hanford tanks. The strategy recommended uses interactive problem evaluation and decision analysis methods commonly used in industry to solve problems under conditions of uncertainty (i.e., lack of perfect knowledge). It acknowledges that problem resolution comes through both the application of high-quality science and human decisions based upon preferences and sometimes hard-to-compare choices. It recognizes that to firmly resolve a safety problem, the controlling waste characteristics and chemical phenomena must be measurable or estimated to an acceptable level of confidence tailored to the decision being made

  4. Opportunities for Laboratory Opacity Chemistry Studies to Facilitate Characterization of Young Giant Planets and Brown Dwarfs

    Science.gov (United States)

    Marley, Mark; Freedman, Richard S.

    2015-01-01

    The thermal emission spectra of young giant planets is shaped by the opacity of atoms and molecules residing in their atmospheres. While great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity and chemistry of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the shape of the Y and K spectral bands. Since young giant planets are bright in these bands it is important to understand the influences on the spectral shape. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. Since Na and K condense at temperatures near 500 to 600 K, the chemistry of the condensation process must be well understood as well, particularly any disequilibrium chemical pathways. Comparisons of the current generation of sophisticated atmospheric models and available data, however, reveal important shortcomings in the models. We will review the current state of observations and theory of young giant planets and will discuss these and other specific examples where improved laboratory measurements for alkali compounds have the potential of substantially improving our understanding of these atmospheres.

  5. Tank 241-TY-103 headspace gas and vapor characterization results for samples collected in August 1994 and April 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  6. Tank 241-TX-118 headspace gas and vapor characterization results for samples collected in September 1994 and December 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  7. Tank 241-C-108 headspace gas and vapor characterization results for samples collected in July 1993 and August 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  8. Tank 241-BY-107 headspace gas and vapor characterization results for samples collected in March 1994 and October 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  9. Tank 241-BY-104 headspace gas and vapor characterization results for samples collected in April 1994 and June 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  10. Tank 241-BY-106 headspace gas and vapor characterization results for samples collected in May 1994 and July 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  11. Tank 241-C-112 headspace gas and vapor characterization results for samples collected in June 1994 and August 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  12. Tank 241-BY-103 headspace gas and vapor characterization results for samples collected in May 1994 and November 1994

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  13. Tank 241-C-109 headspace gas and vapor characterization results for samples collected in August 1994. Revision 2

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  14. Tank 241-C-111 headspace gas and vapor characterization results for samples collected in August 1993 and September 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  15. Tank 241-BY-108 headspace gas and vapor characterization results for samples collected in March 1994 and October 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  16. Tank 241-BY-110 Headspace Gas and Vapor Characterization Results for Samples Collected in November 1994. Revision 2

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  17. Tank 241-C-105 headspace gas and vapor characterization results for samples collected in February 1994. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  18. Tank 241-BY-111 headspace gas and vapor characterization results for samples collected in May 1994 and November 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  19. Tank 241-TY-101 headspace gas and vapor characterization results for samples collected in August 1994 and April 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  20. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.