WorldWideScience

Sample records for chemistry experiment fourier

  1. A General Chemistry Experiment Incorporating Synthesis and Structural Determination

    Science.gov (United States)

    van Ryswyk, Hal

    1997-07-01

    An experiment for the general chemistry laboratory is described wherein gas chromatography-mass spectroscopy (GC-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) are used to characterize the products of a series of microscale reactions on vanillin. A single sophisticated instrument can be incorporated into the laboratory given sufficient attention to the use of sampling accessories and software macros. Synthetic experiments coupled with modern instrumental techniques can be used in the general chemistry laboratory to illustrate the concepts of synthesis, structure, bonding, and spectroscopy.

  2. Organic chemistry experiment

    International Nuclear Information System (INIS)

    Mun, Seok Sik

    2005-02-01

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  3. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    Science.gov (United States)

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  4. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  5. Multivariate Calibration and Model Integrity for Wood Chemistry Using Fourier Transform Infrared Spectroscopy

    OpenAIRE

    Zhou, Chengfeng; Jiang, Wei; Cheng, Qingzheng; Via, Brian K.

    2015-01-01

    This research addressed a rapid method to monitor hardwood chemical composition by applying Fourier transform infrared (FT-IR) spectroscopy, with particular interest in model performance for interpretation and prediction. Partial least squares (PLS) and principal components regression (PCR) were chosen as the primary models for comparison. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set to collect the original data. PLS was found to provide bet...

  6. Fourier transform infrared spectrometery: an undergraduate experiment

    International Nuclear Information System (INIS)

    Lerner, L

    2016-01-01

    Simple apparatus is developed, providing undergraduate students with a solid understanding of Fourier transform (FT) infrared (IR) spectroscopy in a hands on experiment. Apart from its application to measuring the mid-IR spectra of organic molecules, the experiment introduces several techniques with wide applicability in physics, including interferometry, the FT, digital data analysis, and control theory. (paper)

  7. The application and improvement of Fourier transform spectrometer experiment

    Science.gov (United States)

    Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning

    2017-08-01

    According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.

  8. Multivariate Calibration and Model Integrity for Wood Chemistry Using Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chengfeng Zhou

    2015-01-01

    Full Text Available This research addressed a rapid method to monitor hardwood chemical composition by applying Fourier transform infrared (FT-IR spectroscopy, with particular interest in model performance for interpretation and prediction. Partial least squares (PLS and principal components regression (PCR were chosen as the primary models for comparison. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set to collect the original data. PLS was found to provide better predictive capability while PCR exhibited a more precise estimate of loading peaks and suggests that PCR is better for model interpretation of key underlying functional groups. Specifically, when PCR was utilized, an error in peak loading of ±15 cm−1 from the true mean was quantified. Application of the first derivative appeared to assist in improving both PCR and PLS loading precision. Research results identified the wavenumbers important in the prediction of extractives, lignin, cellulose, and hemicellulose and further demonstrated the utility in FT-IR for rapid monitoring of wood chemistry.

  9. Observations of peroxyacetyl nitrate (PAN) in the upper troposphere by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS)

    Science.gov (United States)

    Tereszchuk, K. A.; Moore, D. P.; Harrison, J. J.; Boone, C. D.; Park, M.; Remedios, J. J.; Randel, W. J.; Bernath, P. F.

    2013-01-01

    Peroxyacetyl nitrate (CH3CO·O2NO2, abbreviated as PAN) is a trace molecular species present in the troposphere and lower stratosphere due primarily to pollution from fuel combustion and the pyrogenic outflows from biomass burning. In the lower troposphere, PAN has a relatively short life-time and is principally destroyed within a few hours through thermolysis, but it can act as a reservoir and carrier of NOx in the colder temperatures of the upper troposphere where UV photolysis becomes the dominant loss mechanism. Pyroconvective updrafts from large biomass burning events can inject PAN into the upper troposphere and lower stratosphere (UTLS), providing a means for the long-range transport of NOx. Given the extended lifetimes at these higher altitudes, PAN is readily detectable via satellite remote sensing. A new PAN data product is now available for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) Version 3.0 data set. We report measurements of PAN in Boreal biomass burning plumes recorded during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign. The retrieval method employed and errors analysis are described in full detail. The retrieved volume mixing ratio (VMR) profiles are compared to coincident measurements made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on the European Space Agency (ESA) ENVIronmental SATellite (ENVISAT). Three ACE-FTS occultations containing measurements of Boreal biomass burning outflows, recorded during BORTAS, were identified as having coincident measurements with MIPAS. In each case, the MIPAS measurements demonstrated good agreement with the ACE-FTS VMR profiles for PAN. The ACE-FTS PAN data set is used to obtain zonal mean distributions of seasonal averages from ~5 to 20 km. A strong seasonality is clearly observed for PAN concentrations in the global UTLS. Since the

  10. Analytical chemistry experiment

    International Nuclear Information System (INIS)

    Park, Seung Jo; Paeng, Seong Gwan; Jang, Cheol Hyeon

    1992-08-01

    This book deals with analytical chemistry experiment with eight chapters. It explains general matters that require attention on experiment, handling of medicine with keep and class, the method for handling and glass devices, general control during experiment on heating, cooling, filtering, distillation and extraction and evaporation and dry, glass craft on purpose of the craft, how to cut glass tube and how to bend glass tube, volumetric analysis on neutralization titration and precipitation titration, gravimetric analysis on solubility product, filter and washing and microorganism experiment with necessary tool, sterilization disinfection incubation and appendixes.

  11. Some studies on Fourier analysis in students experiment

    OpenAIRE

    大崎, 正雄

    2016-01-01

    Here we give some troubles in teaching and their solutions occured during the Software Science Experiment course, which is opened for the 4th semester in the Department of Software Science. One of the subjects of this experiment course is Fourier analysis using MyPC. Some students are not familiar with calculating the integration of sinusoidal function, and also some need support for drawing graphs with MS Excel. Typical mistakes and their settlements are given.

  12. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    Science.gov (United States)

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  13. Beyond Fourier

    Science.gov (United States)

    Hoch, Jeffrey C.

    2017-10-01

    Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development.

  14. Beyond Fourier.

    Science.gov (United States)

    Hoch, Jeffrey C

    2017-10-01

    Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  16. Fourier Transform Mass Spectrometry.

    Science.gov (United States)

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  17. Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram

    Science.gov (United States)

    Hanley, Quentin S.

    2012-01-01

    Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…

  18. Promoting Chemistry Learning through Undergraduate Work Experience in the Chemistry Lab: A Practical Approach

    Science.gov (United States)

    Yu, Hong-Bin

    2015-01-01

    Hiring undergraduate lab assistants in chemistry departments is common in college. However, few studies have focused on promoting undergraduate chemistry learning and thinking skills through this work experience in chemistry teaching laboratories. This article discusses the strategy we implemented in the lab assistant program. The…

  19. Water chemistry experiences with VVERs at Kudankulam

    International Nuclear Information System (INIS)

    Rout, D.; Upadhyaya, T.C.; Ravindranath; Selvinayagam, P.; Sundar, R.S.

    2015-01-01

    Kudankulam Nuclear Power Project - 1 and 2 (Kudankulam NPP - 1 and 2) are pressurised water cooled VVERs of 1000 MWe each. Kudankulam NPP Unit - 1 is presently on its first cycle of operation and Kudankulam NPP Unit - 2 is on the advanced stage of commissioning with the successful completion of hot run related Functional tests. Water Chemistry aspects during various phases of commissioning of Kudankulam NPP Unit - 1 such as Hot Run, Boric acid flushing, initial fuel Loading (IFL), First approach to Criticality (FAC) are discussed. The main objectives of the use of controlled primary water chemistry programme during the hot functional tests are reviewed. The importance of the relevant water chemistry parameters were ensured to have the quality of the passive layer formed on the primary coolant system surfaces. The operational experiences during the 1 st cycle of operation of primary water chemistry, radioactivity transport and build-up are presented. The operational experience of some VVER units in the field of the primary water chemistry, radioactivity transport and build-up are presented as a comparison to VVER at Kudankulam NPP. The effects of the initial passivated layer formed on metal surfaces during hot run, activated corrosion products levels in the primary coolant under controlled water chemistry regime and the contamination/radiation situation are discussed. This report also includes the water chemistry related issues of secondary water systems. (author)

  20. Validation of HNO3, ClONO2, and N2O5 from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS

    Directory of Open Access Journals (Sweden)

    P. Raspollini

    2008-07-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS. This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS, aircraft measurements (ASUR, and single balloon-flights (SPIRALE, FIRS-2. Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv ±20% from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which

  1. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  2. Observations of peroxyacetyl nitrate (PAN) in the upper troposphere by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS)

    Science.gov (United States)

    Tereszchuk, K. A.; Moore, D. P.; Harrison, J. J.; Boone, C. D.; Park, M.; Remedios, J. J.; Randel, W. J.; Bernath, P. F.

    2013-06-01

    Peroxyacetyl nitrate (CH3CO·O2NO2, abbreviated as PAN) is a trace molecular species present in the troposphere and lower stratosphere due primarily to pollution from fuel combustion and the pyrogenic outflows from biomass burning. In the lower troposphere, PAN has a relatively short lifetime and is principally destroyed within a few hours through thermolysis, but it can act as a reservoir and carrier of NOx in the colder temperatures of the upper troposphere, where UV photolysis becomes the dominant loss mechanism. Pyroconvective updrafts from large biomass burning events can inject PAN into the upper troposphere and lower stratosphere (UTLS), providing a means for the long-range transport of NOx. Given the extended lifetimes at these higher altitudes, PAN is readily detectable via satellite remote sensing. A new PAN data product is now available for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) version 3.0 data set. We report observations of PAN in boreal biomass burning plumes recorded during the BORTAS (quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) campaign (12 July to 3 August 2011). The retrieval method employed by incorporating laboratory-recorded absorption cross sections into version 3.0 of the ACE-FTS forward model and retrieval software is described in full detail. The estimated detection limit for ACE-FTS PAN is 5 pptv, and the total systematic error contribution to the ACE-FTS PAN retrieval is ~ 16%. The retrieved volume mixing ratio (VMR) profiles are compared to coincident measurements made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on the European Space Agency (ESA) Environmental Satellite (ENVISAT). The MIPAS measurements demonstrated good agreement with the ACE-FTS VMR profiles for PAN, where the measured VMR values are well within the associated measurement errors for both instruments and comparative

  3. Chemistry under Your Skin? Experiments with Tattoo Inks for Secondary School Chemistry Students

    Science.gov (United States)

    Stuckey, Marc; Eilks, Ingo

    2015-01-01

    This paper discusses a set of easy, hands-on experiments that inquire into and differentiate among tattoo inks of varying quality. A classroom scenario is described for integrating these experiments into secondary school chemistry classes. Initial experiences from the classroom are also presented.

  4. An overview of KANUPP operating experience in chemistry

    International Nuclear Information System (INIS)

    Hashmi, T.

    2010-01-01

    KANUPP is a small CANDU® type PHWR (137MWe), commissioned in 1972 and now operating after life extension (PLEX) since 2004. This paper contains an overview of the plant operating experience in chemistry control over the past year including life extension period. Emphasis is on: Success story; Practices; Future improvements in chemistry programs. Considerable efforts are underway to maintain plant equipment and systems to mitigate the effect of plant ageing. The improvements that have been made at the station are as under: Heat transport system (HTS) chemistry, its effects on construction material; Feed water chemistry on secondary side (considering the condenser leaks). Strict chemistry control is being exercised for the heat transport system (HTS) for its better chemistry control. For short term, the changes are limited to pH adjustments of HTS. This change decreases the rate of thinning of outlet feeders as noted in some CANDUs® due to flow accelerated corrosion (FAC). Water Treatment Plant has been refurbished to get very low total dissolved solids (TDS) de-mineralized water for secondary side systems of the plant. Experience of steam generators flushing before startup, sludge pile analyses mapping, verification of pH from different sampling points of SGs, are the short term mitigating actions to address sludge pile problem in steam generators (SGs). The R and D on HTS and SGs is multifaceted and is aimed at achieving optimum chemistry control. Study is being conducted for improving chemistry control for the material, equipment and systems of the plant. (author)

  5. Experience of water chemistry and radiation levels in Swedish BWRs

    International Nuclear Information System (INIS)

    Ivars, R.; Elkert, J.

    1981-01-01

    From the BWR operational experience in Sweden it has been found that the occupational radiation exposures have been comparatively low in an international comparison. One main reason for the favourable conditions is the good water chemistry performance. This paper deals at first with the design considerations of water chemistry and materials selection. Next, the experience of water chemistry and radiation levels are provided. Finally, some methods to further reduce the radiation sources are discussed. (author)

  6. Contextualized Chemistry Education: The American experience

    Science.gov (United States)

    Schwartz, A. Truman

    2006-07-01

    This paper is a survey of context-based chemistry education in the United States. It begins with a very brief overview of twentieth-century chemistry texts and teaching methods, followed by a short description of a pioneering secondary school text. The major emphasis is on post-secondary instruction and the central case study is provided by Chemistry in Context, a university text intended for students who are not specializing in science. The paper is more concerned with strategies for curriculum reform than with educational research, and the emphasis is more pragmatic than theoretical. A chronological sequence is used to trace the creation of Chemistry in Context. This developmental account is overlaid with the curricular representations of Goodlad and Van den Akker. The Ideal Curriculum was the goal, but the Formal Curriculum was created and revised as a consequence of iteration involving perceptions of the users, the implementation of the curriculum, the experience of students and teachers, and formal and informal assessment of what was attained. The paper also includes descriptions of other, more recent, context-based college chemistry curricula. It concludes with a list of problems and unanswered questions relating to this pedagogical approach.

  7. Synthesis of Ethyl Nalidixate: A Medicinal Chemistry Experiment

    Science.gov (United States)

    Leslie, Ray; Leeb, Elaine; Smith, Robert B.

    2012-01-01

    A series of laboratory experiments that complement a medicinal chemistry lecture course in drug design and development have been developed. The synthesis of ethyl nalidixate covers three separate experimental procedures, all of which can be completed in three, standard three-hour lab classes and incorporate aspects of green chemistry such as…

  8. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  9. Fourier transform infrared emission spectra of atomic rubidium: g- and h-states

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Ferus, Martin; Kubelík, Petr; Chernov, Vladislav E.; Zanozina, Ekaterina M.

    2012-01-01

    Roč. 45, č. 17 (2012), s. 175002 ISSN 0953-4075 R&D Projects: GA AV ČR IAAX00100903 Institutional support: RVO:61388955 Keywords : Fourier transform infrared emission spectra * atomic rubidium * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.031, year: 2012

  10. Direct fourier method reconstruction based on unequally spaced fast fourier transform

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Zhao Ming; Liu Li

    2003-01-01

    First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)

  11. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  12. Experience of Ko-Ri Unit 1 water chemistry

    International Nuclear Information System (INIS)

    Tae Il Lee

    1983-01-01

    The main focus is placed on operational experience in secondary system water chemistry (especially the steam generator) of the Ko-Ri nuclear power plant Unit 1, Republic of Korea, but primary side chemistry is also discussed. The major concern of secondary water chemistry in a PWR is that the condition of the steam generator be well maintained. Full flow deep bed condensate polishers have recently been installed and operation started in July 1982. Boric acid treatment of the steam generator was stopped and only the all volatile treatment method was used thereafter. A review of steam generator integrity, the chemistry control programme, secondary water quality, etc. is considered to be of great value regarding the operation of Unit 1 and future units now under startup testing or construction in the Republic of Korea. (author)

  13. Primary water chemistry of VVERs-operating experience

    International Nuclear Information System (INIS)

    Kysela, Jan; Zmitko, Milan; Petrecky, Igor

    1998-01-01

    VVER units are operated in mixed boron-potassium-ammonia water chemistry. Several modifications of the water chemistry, differing in boron-potassium co-ordination and in the way how hydrogen concentration is produced and maintain in the coolant, is used. From the operational experience point of view VVER units do not show any significant problems connected with the primary coolant chemistry. The latest results indicate that dose rate levels are slowly returning to the former ones. An improvement of the radiation situation observed last two years is supported by the surface activity measurements. However, the final conclusion on the radiation situation can be made only after evaluation of the several following cycles. Further investigation is also needed to clarify a possible effect of modified water chemistry and shut-down chemistry on radioactivity build-up and dose rate level at Dukovany units. Structure materials composition has a significant effect on radiation situation in the units. It concerns mainly of cobalt content in SG material. There is no clear evidence of possible effect of the SG shut-down regimes on the radiation situation in the units even if the dose rate and surface activity data show wide spread for the individual reactor loops. (S.Y.)

  14. Speeding-up exchange-mediated saturation transfer experiments by Fourier transform

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Marta G.; Reddy, Jithender G.; Griesinger, Christian; Lee, Donghan, E-mail: dole@nmr.mpibpc.mpg.de [Max-Planck Institute for Biophysical chemistry, Department of NMR-based Structural Biology (Germany)

    2015-11-15

    Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R{sub 1}ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states.

  15. Speeding-up exchange-mediated saturation transfer experiments by Fourier transform

    International Nuclear Information System (INIS)

    Carneiro, Marta G.; Reddy, Jithender G.; Griesinger, Christian; Lee, Donghan

    2015-01-01

    Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R 1 ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states

  16. Operational experience in water chemistry of PHWRs

    International Nuclear Information System (INIS)

    Krishna Rao, K.S.

    2000-01-01

    The chemistry related problems encountered in the moderator, primary heat transport systems, chemical control in the steam generators and the experience gained in the decontamination campaigns carried out in the primary heat transport systems of Indian PHWRs are highlighted in this paper. (author)

  17. Tutorial on Fourier space coverage for scattering experiments, with application to SAR

    Science.gov (United States)

    Deming, Ross W.

    2010-04-01

    The Fourier Diffraction Theorem relates the data measured during electromagnetic, optical, or acoustic scattering experiments to the spatial Fourier transform of the object under test. The theorem is well-known, but since it is based on integral equations and complicated mathematical expansions, the typical derivation may be difficult for the non-specialist. In this paper, the theorem is derived and presented using simple geometry, plus undergraduatelevel physics and mathematics. For practitioners of synthetic aperture radar (SAR) imaging, the theorem is important to understand because it leads to a simple geometric and graphical understanding of image resolution and sampling requirements, and how they are affected by radar system parameters and experimental geometry. Also, the theorem can be used as a starting point for imaging algorithms and motion compensation methods. Several examples are given in this paper for realistic scenarios.

  18. Hot functional test chemistry - long term experience

    International Nuclear Information System (INIS)

    Vonkova, K.; Kysela, J.; Marcinsky, M.; Martykan, M.

    2010-01-01

    Primary circuit materials undergo general corrosion in high temperature, deoxygenated, neutral or mildly alkaline solutions to form thin oxide films. These oxide layers (films) serve as protective film and mitigate the further corrosion of primary materials. Inner chromium-rich oxide layer has low cation diffusion coefficients and thus control iron and nickel transport from the metal surface to the outer layer and their dissolution into the coolant. Much less corrosion products are generated by the compact, integral and stable oxide (passivation) layer. For the latest Czech and Slovak stations commissioned (Temelin and Mochovce) a modified Hot Functional Test (HFT) chemistry was developed in the NRI Rez. Chromium rich surface layer formatted due to modified HTF chemistry ensures lower corrosion rates and radiation field formation and thus also mitigates crud formation during operation. This procedure was also designed to prepare the commissioned unit for the further proper water chemistry practise. Mochovce 1 (SK) was the first station commissioned using these recommendations in 1998. Mochovce 2 (1999) and Temelin 1 and 2 (CZ - 2000 and 2002) were subsequently commissioned using these guidelines too. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. Samples from Mochovce indicated that duplex oxide layers up to 20 μm thick were produced, which were mainly magnetite substituted with nickel and chromium (e.g. 60-65% Fe, 18-28% Cr, 9-12% Ni, <1% Mn and 1-2% Si on a stainless steel primary circuit sample). Long term operation experience from both nuclear power plants are discussed in this paper. Radiation field, occupational radiation exposure and corrosion layers evolution during the first c. ten years of operation are

  19. The Integration of Green Chemistry Experiments with Sustainable Development Concepts in Pre-Service Teachers' Curriculum: Experiences from Malaysia

    Science.gov (United States)

    Karpudewan, Mageswary; Ismail, Zurida Hg; Mohamed, Norita

    2009-01-01

    Purpose: The purpose of this paper is to introduce green chemistry experiments as laboratory-based pedagogy and to evaluate effectiveness of green chemistry experiments in delivering sustainable development concepts (SDCs) and traditional environmental concepts (TECs). Design/methodology/approach: Repeated measure design was employed to evaluate…

  20. Recent results from the MIT in-core experiments on coolant chemistry

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.E.; Cabello, E.C.; Bernard, J.A.

    1993-01-01

    This paper reports results from an ongoing series of in-core experiments that have been conducted at the 5-MW(thermal) MIT Research Reactor (MITR-II) for optimizing coolant chemistries in light water reactors. Four experiments are in progress, including a pressurized coolant chemistry loop (PCCL), a boiling coolant chemistry loop (BCCL), a facility for the study of irradiation-assisted stress-corrosion cracking, and one for the evaluation of in situ sensors for the monitoring of crack propagation in metal (SENSOR). The first two have now been fully operational for several years. The latter two are scheduled to begin regular operation later this year

  1. Time-of-flight Fourier spectrometry of UCN

    International Nuclear Information System (INIS)

    Kulin, G.V.; Frank, A.I.; Goryunov, S.V.; Kustov, D.V.; Geltenbort, P.; Jentshel, M.; Strepetov, A.N.; Bushuev, V.A.

    2014-01-01

    The results of preliminary experiments on TOF Fourier UCN spectrometry are presented. The description of the new Fourier spectrometer that may be used for the measurement of the UCN spectra arising from diffraction by a moving grating is given. The results of preliminary experiments and Monte Carlo calculations give reason to hope for the success of the planned experiment.

  2. Chemistry in water reactors: operating experience and new developments. 2 volumes

    International Nuclear Information System (INIS)

    1994-01-01

    These proceedings of the International conference on chemistry in water reactors (Operating experience and new developments), Volume 1, are divided into 8 sessions bearing on: (session 1) Primary coolant activity, corrosion products (5 conferences), (session 2) Dose reduction (4 conferences), (session 3) New developments (4 conferences), poster session: Primary coolant chemistry (16 posters), (session 4) Decontamination (5 conferences), poster session (2 posters), (session 5) BWR-Operating experience (3 conferences), (session 6) BWR-Modelling of operating experience (4 conferences), (session 7) BWR-Basic studies (4 conferences), (session 8) BWR-New technologies (3 conferences)

  3. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives

    Science.gov (United States)

    Silverman, Julian R.

    2016-01-01

    As nonrenewable resources deplete and educators seek relevant interdisciplinary content for organic chemistry instruction, biobased laboratory experiments present themselves as potential alternatives to petroleum-based transformations, which offer themselves as sustainable variations on important themes. Following the principles of green chemistry…

  4. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  5. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    Science.gov (United States)

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  6. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    Science.gov (United States)

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  7. Ionic liquids and green chemistry : a lab experiment

    NARCIS (Netherlands)

    Stark, A.; Ott-Reinhardt, D.; Kralisch, D.; Kreisel, G.; Ondruschka, B.

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few

  8. Biodiesel from Seeds: An Experiment for Organic Chemistry

    Science.gov (United States)

    Goldstein, Steven W.

    2014-01-01

    Plants can store the chemical energy required by their developing offspring in the form of triglycerides. These lipids can be isolated from seeds and then converted into biodiesel through a transesterification reaction. This second-year undergraduate organic chemistry laboratory experiment exemplifies the conversion of an agricultural energy…

  9. Digital Fourier analysis fundamentals

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations.  These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...

  10. Phase Equilibrium, Chemical Equilibrium, and a Test of the Third Law: Experiments for Physical Chemistry.

    Science.gov (United States)

    Dannhauser, Walter

    1980-01-01

    Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)

  11. Synthesis of Bisphenol Z: An Organic Chemistry Experiment

    Science.gov (United States)

    Gregor, Richard W.

    2012-01-01

    A student achievable synthesis of bisphenol Z, 4,4'-(cyclohexane-1,1-diyl)diphenol, from the acid-catalyzed reaction of phenol with cyclohexanone is presented. The experiment exemplifies all the usual pedagogy for the standard topic of electrophilic aromatic substitution present in the undergraduate organic chemistry curriculum, while providing…

  12. Water chemistry experience of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Ishigure, Kenkichi; Abe, Kenji; Nakajima, Nobuo; Nagao, Hiroyuki; Uchida, Shunsuke.

    1989-01-01

    Japanese LWRs have experienced several troubles caused by corrosions of structural materials in the past ca. 20 years of their operational history, among which are increase in the occupational radiation exposures, intergranular stress corrosion cracking (IGSCC) of stainless steel piping in BWR, and steam generator corrosion problems in PWR. These problems arised partly from the improper operation of water chemistry control of reactor coolant systems. Consequently, it has been realized that water chemistry control is one of the most important factors to attain high availability and reliability of LWR, and extensive researches and developments have been conducted in Japan to achieve the optimum water chemistry control, which include the basic laboratory experiments, analyses of plant operational data, loop tests in operating plants and computer code developments. As a result of the continuing efforts, the Japanese LWR plants have currently attained a very high performance in their operation with high availability and low occupational radiation exposures. A brief review is given here on the R and D of water chemistry in Japan. (author)

  13. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  14. Formation and Dimerization of NO2 A General Chemistry Experiment

    Science.gov (United States)

    Hennis, April D.; Highberger, C. Scott; Schreiner, Serge

    1997-11-01

    We have developed a general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment can be carried out in about 45 minutes with students working in groups of two. The experiment readily provides students with data that can be manipulated with a common spreadsheet.

  15. Laboratory experiments in the study of the chemistry of the outer planets

    Science.gov (United States)

    Scattergood, Thomas W.

    1987-01-01

    It is shown that much information about planetary chemistry and physics can be gained through laboratory work. The types of experiments relevant to planetary research concern fundamental properties, spectral/optical properties, 'Miller-Urey' syntheses, and detailed syntheses. Specific examples of studies of the chemistry in the atmosphere of Titan are described with attention given to gas phase chemistry in the troposphere and the composition of model Titan aerosols. A list of work that still needs to be done is provided.

  16. Fourier-muunnoksesta

    OpenAIRE

    NIEMELÄ, EERO

    2008-01-01

    Tutkielman aiheena on Fourier-muunnoksen esittely. Tarkoituksena on erityisesti johdatella lukija Fourier-sarjan ja -muunnoksen käsitteisiin. Fourier-muunnosten teoria kuuluu yleisempään Fourier-analyysin aihepiiriin. Fourier-analyysin keskiössä on tulos, jonka mukaan tietyt ehdot täyttävää funktiota voidaan approksimoida mielivaltaisen tarkasti niin sanotun Fourier-sarjan avulla. Osoitamme, että 2\\pi-jaksollisen funktion Lebesgue-neliöintegroituvuus takaa suppenevan Fourier-sarjakehitelm...

  17. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  18. Development, Implementation, and Assessment of General Chemistry Lab Experiments Performed in the Virtual World of Second Life

    Science.gov (United States)

    Winkelmann, Kurt; Keeney-Kennicutt, Wendy; Fowler, Debra; Macik, Maria

    2017-01-01

    Virtual worlds are a potential medium for teaching college-level chemistry laboratory courses. To determine the feasibility of conducting chemistry experiments in such an environment, undergraduate students performed two experiments in the immersive virtual world of Second Life (SL) as part of their regular General Chemistry 2 laboratory course.…

  19. App. 1. Fourier series and Fourier transform

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Definitions, formulas and practical properties in quantum mechanics are presented: Fourier series (development of periodic function, Bessel-Parseval equality); Fourier transform (Parseval-Plancherel formula, Fourier transform in three-dimensional space) [fr

  20. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

    Science.gov (United States)

    Debnath, Lokenath

    2012-01-01

    This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

  1. NMR pulse experiments data aquisition and Fast Fourier Transform assembler program for Mera-400 minicomputer

    International Nuclear Information System (INIS)

    Stachurowa, M.; Jasinski, A.

    1981-01-01

    An assembler program of NMR pulse experiments data acquisition digital signal filtering and Fast Fourier Transform (FFT) for the Mera-400 minicomputer interfaced to the pulsed NMR spectrometer is described. A phase correction subroutine of the program allows the phase correction to be made after the experiment. The program is run under the SOM-3 operating system. The program occupies 2.25 k 16 bit words of the computer memory, 3 k words are reserved for data. FFT computation time is 2.5 sec. for 1 k data points. (Author)

  2. Experience on KKNPP VVER 1000 MWe water chemistry

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Pillai, Suresh Kumar

    2015-01-01

    Kudankulam Nuclear Power Project consists of pressurized water reactor (VVER) 2 x 1000 MWe constructed in collaboration with Russian Federation at Kudankulam in Tirunelveli District, Tamilnadu. Unit - 1 attained criticality on July 13 th 2013 and the unit was synchronized to grid on 22 nd October 2013. This paper highlights experience gained on water chemistry regime for primary and secondary circuit. (author)

  3. Measuring Heterogeneous Reaction Rates with ATR-FTIR Spectroscopy to Evaluate Chemical Fates in an Atmospheric Environment: A Physical Chemistry and Environmental Chemistry Laboratory Experiment

    Science.gov (United States)

    Roberts, Jason E.; Zeng, Guang; Maron, Marta K.; Mach, Mindy; Dwebi, Iman; Liu, Yong

    2016-01-01

    This paper reports an undergraduate laboratory experiment to measure heterogeneous liquid/gas reaction kinetics (ozone-oleic acid and ozone-phenothrin) using a flow reactor coupled to an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. The experiment is specially designed for an upper-level undergraduate Physical…

  4. Making Sense of Olive Oil: Simple Experiments to Connect Sensory Observations with the Underlying Chemistry

    Science.gov (United States)

    Blatchly, Richard A.; Delen, Zeynep; O'Hara, Patricia B.

    2014-01-01

    In the last decade, our understanding of the chemistry of olive oil has dramatically improved. Here, the essential chemistry of olive oil and its important minor constituents is described and related to the typical sensory categories used to rate and experience oils: color, aroma, bitterness, and pungency. We also describe experiments to explore…

  5. The U.S. experience in promoting sustainable chemistry.

    Science.gov (United States)

    Tickner, Joel A; Geiser, Ken; Coffin, Melissa

    2005-01-01

    Recent developments in European chemicals policy, including the Registration, Evaluation and Authorization of Chemicals (REACH) proposal, provide a unique opportunity to examine the U.S. experience in promoting sustainable chemistry as well as the strengths and weaknesses of existing policies. Indeed, the problems of industrial chemicals and limitations in current regulatory approaches to address chemical risks are strikingly similar on both sides of the Atlantic. We provide an overview of the U.S. regulatory system for chemicals management and its relationship to efforts promoting sustainable chemistry. We examine federal and state initiatives and examine lessons learned from this system that can be applied to developing more integrated, sustainable approaches to chemicals management. There is truly no one U.S. chemicals policy, but rather a series of different un-integrated policies at the federal, regional, state and local levels. While centerpiece U.S. Chemicals Policy, the Toxic Substances Control Act of 1976, has resulted in the development of a comprehensive, efficient rapid screening process for new chemicals, agency action to manage existing chemicals has been very limited. The agency, however, has engaged in a number of successful, though highly underfunded, voluntary data collection, pollution prevention, and sustainable design programs that have been important motivators for sustainable chemistry. Policy innovation in the establishment of numerous state level initiatives on persistent and bioaccumulative toxics, chemical restrictions and toxics use reduction have resulted in pressure on the federal government to augment its efforts. It is clear that data collection on chemical risks and phase-outs of the most egregious chemicals alone will not achieve the goals of sustainable chemistry. These alone will also not internalize the cultural and institutional changes needed to ensure that design and implementation of safer chemicals, processes, and products

  6. Content adaptive illumination for Fourier ptychography.

    Science.gov (United States)

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Zheng, Guoan; Chen, Feng; Dai, Qionghai

    2014-12-01

    Fourier ptychography (FP) is a recently reported technique, for large field-of-view and high-resolution imaging. Specifically, FP captures a set of low-resolution images, under angularly varying illuminations, and stitches them together in the Fourier domain. One of FP's main disadvantages is its long capturing process, due to the requisite large number of incident illumination angles. In this Letter, utilizing the sparsity of natural images in the Fourier domain, we propose a highly efficient method, termed adaptive Fourier ptychography (AFP), which applies content adaptive illumination for FP, to capture the most informative parts of the scene's spatial spectrum. We validate the effectiveness and efficiency of the reported framework, with both simulated and real experiments. Results show that the proposed AFP could shorten the acquisition time of conventional FP, by around 30%-60%.

  7. VVER operational experience - effect of preconditioning and primary water chemistry on radioactivity build-up

    International Nuclear Information System (INIS)

    Zmitko, M.; Kysela, J.; Dudjakova, K.; Martykan, M.; Janesik, J.; Hanus, V.; Marcinsky, P.

    2004-01-01

    The primary coolant technology approaches currently used in VVER units are reviewed and compared with those used in PWR units. Standard and modified water chemistries differing in boron-potassium control are discussed. Preparation of the VVER Primary Water Chemistry Guidelines in the Czech Republic is noted. Operational experience of some VVER units, operated in the Czech Republic and Slovakia, in the field of the primary water chemistry, and radioactivity transport and build-up are presented. In Mochovce and Temelin units, a surface preconditioning (passivation) procedure has been applied during hot functional tests. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. The first operational experience obtained in the course of beginning of these units operation is presented mainly with respect to the corrosion products coolant and surface activities. Effect of the initial passivation performed during hot functional tests and the primary water chemistry on corrosion products radioactivity level and radiation situation is discussed. (author)

  8. ENVIRONMENTAL ANALYSIS BY AB INITIO QUANTUM MECHANICAL COMPUTATION AND GAS CHROMATOGRAPHY/FOURIER TRANSFORM INFRARED SPECTROMETRY.

    Science.gov (United States)

    Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...

  9. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  10. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    Science.gov (United States)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  11. Thai Undergraduate Chemistry Practical Learning Experiences Using the Jigsaw IV Method

    Science.gov (United States)

    Jansoon, Ninna; Somsook, Ekasith; Coll, Richard K.

    2008-01-01

    The research reported in this study consisted of an investigation of student learning experiences in Thai chemistry laboratories using the Jigsaw IV method. A hands-on experiment based on the Jigsaw IV method using a real life example based on green tea beverage was designed to improve student affective variables for studying topics related to…

  12. Fourier series

    CERN Document Server

    Tolstov, Georgi P

    1962-01-01

    Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie

  13. Irradiation capability of Japanese materials test reactor for water chemistry experiments

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Hata, Kuniki; Chimi, Yasuhiro; Nishiyama, Yutaka; Nakamura, Takehiko

    2012-09-01

    Appropriate understanding of water chemistry in the core of LWRs is essential as chemical species generated due to water radiolysis by neutron and gamma-ray irradiation govern corrosive environment of structural materials in the core and its periphery, causing material degradation such as stress corrosion cracking. Theoretical model calculation such as water radiolysis calculation gives comprehensive understanding of water chemistry at irradiation field where we cannot directly monitor. For enhancement of the technology, accuracy verification of theoretical models under wide range of irradiation conditions, i.e. dose rate, temperature etc., with well quantified in-pile measurement data is essential. Japan Atomic Energy Agency (JAEA) has decided to launch water chemistry experiments for obtaining data that applicable to model verification as well as model benchmarking, by using an in-pile loop which will be installed in the Japan Materials Testing Reactor (JMTR). In order to clarify the irradiation capability of the JMTR for water chemistry experiments, preliminary investigations by water radiolysis / ECP model calculations were performed. One of the important irradiation conditions for the experiments, i.e. dose rate by neutron and gamma-ray, can be controlled by selecting irradiation position in the core. In this preliminary study, several representative irradiation positions that cover from highest to low absorption dose rate were chosen and absorption dose rate at the irradiation positions were evaluated by MCNP calculations. As a result of the calculations, it became clear that the JMTR could provide the irradiation conditions close to the BWR. The calculated absorption dose rate at each irradiation position was provided to water radiolysis calculations. The radiolysis calculations were performed under various conditions by changing absorption dose rate, water chemistry of feeding water etc. parametrically. Qualitatively, the concentration of H 2 O 2 , O 2 and

  14. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    Science.gov (United States)

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  15. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  16. Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE

    Directory of Open Access Journals (Sweden)

    E. Dupuy

    2009-01-01

    Full Text Available This paper presents extensive {bias determination} analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45–60 km, the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about +20% on average. For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within ±10% (average values within ±6% between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (~35–55 km, systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to −10%, the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30% in the 45–55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements.

  17. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  18. Microscale Experiments in Chemistry-The Need of the New Millennium

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Microscale Experiments in Chemistry – The Need of the New Millennium-Newer Ways of Teaching Laboratory Courses with New Apparatus. Shriniwas L Kelkar Dilip D Dhavale. Series Article Volume 5 Issue 10 October 2000 pp 24-31 ...

  19. A Framework for Understanding Student Nurses' Experience of Chemistry as Part of a Health Science Course

    Science.gov (United States)

    Boddey, Kerrie; de Berg, Kevin

    2018-01-01

    Twenty-seven first-year nursing students, divided across six focus groups formed on the basis of their past chemistry experience, were interviewed about their chemistry experience as a component of a Health Science unit. Information related to learning and academic performance was able to be established from student conversations resulting in…

  20. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    Science.gov (United States)

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  1. Mars aqueous chemistry experiment

    Science.gov (United States)

    Clark, Benton C.; Mason, Larry W.

    1994-06-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  2. Mars aqueous chemistry experiment

    Science.gov (United States)

    Clark, Benton C.; Mason, Larry W.

    1994-01-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  3. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    International Nuclear Information System (INIS)

    Smellie, John A.T.; Waber, H. Niklaus; Frape, Shaun K.

    2003-06-01

    The Matrix Fluid Chemistry Experiment set out to determine the composition and evolution of matrix pore fluids/waters in low permeable rock located at repository depths in the Aespoe Hard Rock Laboratory (HRL). Matrix pore fluids/waters can be highly saline in composition and, if accessible, may influence the near-field groundwater chemistry of a repository system. Characterising pore fluids/waters involved in-situ borehole sampling and analysis integrated with laboratory studies and experiments on rock matrix drill core material. Relating the rate of in-situ pore water accumulation during sampling to the measured rock porosity indicated a hydraulic conductivity of 10 -14 -10 -13 m/s for the rock matrix. This was in accordance with earlier estimated predictions. The sampled matrix pore water, brackish in type, mostly represents older palaeo- groundwater mixtures preserved in the rock matrix and dating back to at least the last glaciation. A component of matrix pore 'fluid' is also present. One borehole section suggests a younger groundwater component which has accessed the rock matrix during the experiment. There is little evidence that the salinity of the matrix pore waters has been influenced significantly by fluid inclusion populations hosted by quartz. Crush/leach, cation exchange, pore water diffusion and pore water displacement laboratory experiments were carried out to compare extracted/calculated matrix pore fluids/waters with in-situ sampling. Of these the pore water diffusion experiments appear to be the most promising approach and a recommended site characterisation protocol has been formulated. The main conclusions from the Matrix Fluid Chemistry Experiment are: Groundwater movement within the bedrock hosting the experimental site has been enhanced by increased hydraulic gradients generated by the presence of the tunnel, and to a much lesser extent by the borehole itself. Over experimental timescales ∼4 years) solute transport through the rock matrix

  4. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John A.T. [Conterra AB, Luleaa (Sweden); Waber, H. Niklaus [Univ. of Bern (Switzerland). Inst. of Geology; Frape, Shaun K. [Univ. of Waterloo (Canada). Dept. of Earth Sciences

    2003-06-01

    The Matrix Fluid Chemistry Experiment set out to determine the composition and evolution of matrix pore fluids/waters in low permeable rock located at repository depths in the Aespoe Hard Rock Laboratory (HRL). Matrix pore fluids/waters can be highly saline in composition and, if accessible, may influence the near-field groundwater chemistry of a repository system. Characterising pore fluids/waters involved in-situ borehole sampling and analysis integrated with laboratory studies and experiments on rock matrix drill core material. Relating the rate of in-situ pore water accumulation during sampling to the measured rock porosity indicated a hydraulic conductivity of 10{sup -14}-10{sup -13} m/s for the rock matrix. This was in accordance with earlier estimated predictions. The sampled matrix pore water, brackish in type, mostly represents older palaeo- groundwater mixtures preserved in the rock matrix and dating back to at least the last glaciation. A component of matrix pore 'fluid' is also present. One borehole section suggests a younger groundwater component which has accessed the rock matrix during the experiment. There is little evidence that the salinity of the matrix pore waters has been influenced significantly by fluid inclusion populations hosted by quartz. Crush/leach, cation exchange, pore water diffusion and pore water displacement laboratory experiments were carried out to compare extracted/calculated matrix pore fluids/waters with in-situ sampling. Of these the pore water diffusion experiments appear to be the most promising approach and a recommended site characterisation protocol has been formulated. The main conclusions from the Matrix Fluid Chemistry Experiment are: Groundwater movement within the bedrock hosting the experimental site has been enhanced by increased hydraulic gradients generated by the presence of the tunnel, and to a much lesser extent by the borehole itself. Over experimental timescales {approx}4 years) solute transport

  5. A Model of Titan-like Chemistry to Connect Experiments and Cassini Observations

    Science.gov (United States)

    Raymond, Alexander W.; Sciamma-O’Brien, Ella; Salama, Farid; Mazur, Eric

    2018-02-01

    A numerical model is presented for interpreting the chemical pathways that lead to the experimental mass spectra acquired in the Titan Haze Simulation (THS) laboratory experiments and for comparing the electron density and temperature of the THS plasma to observations made at Titan by the Cassini spacecraft. The THS plasma is a pulsed glow-discharge experiment designed to simulate the reaction of N2/CH4-dominated gas in Titan's upper atmosphere. The transient, one-dimensional model of THS chemistry tracks the evolution of more than 120 species in the direction of the plasma flow. As the minor species C2H2 and C2H4 are added to the N2/CH4-based mixture, the model correctly predicts the emergence of reaction products with up to five carbon atoms in relative abundances that agree well with measured mass spectra. Chemical growth in Titan's upper atmosphere transpires through ion–neutral and neutral–neutral chemistry, and the main reactions involving a series of known atmospheric species are retrieved from the calculation. The model indicates that the electron density and chemistry are steady during more than 99% of the 300 μs long discharge pulse. The model also suggests that the THS ionization fraction and electron temperature are comparable to those measured in Titan's upper atmosphere. These findings reaffirm that the THS plasma is a controlled analog environment for studying the first and intermediate steps of chemistry in Titan's upper atmosphere.

  6. PWR water chemistry controls: a perspective on industry initiatives and trends relative to operating experience and the EPRI PWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Choi, S.; Haas, C.; Pender, M.; Perkins, D.

    2010-01-01

    An effective PWR water chemistry control program must address the following goals: Minimize materials degradation (e.g., PWSCC, corrosion of fuel, corrosion damage of steam generator (SG) tubes); Maintain fuel integrity and good performance; Minimize corrosion product transport (e.g., transport and deposition on the fuel, transport into the SGs where it can foul tube surfaces and create crevice environments for the concentration of corrosive impurities); Minimize dose rates. Water chemistry control must be optimized to provide overall improvement considering the sometimes variant constraints of the goals listed above. New technologies are developed for continued mitigation of materials degradation, continued fuel integrity and good performance, continued reduction of corrosion product transport, and continued minimization of plant dose rates. The EPRI chemistry program, in coordination with other EPRI programs, strives to improve these areas through application of chemistry initiatives, focusing on these goals. This paper highlights the major initiatives and issues with respect to PWR primary and secondary system chemistry and outlines the recent, on-going, and proposed work to effectively address them. These initiatives are presented in light of recent operating experience, as derived from EPRI's PWR chemistry monitoring and assessment program, and EPRI's water chemistry guidelines. (author)

  7. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    Science.gov (United States)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  8. Fourier phase in Fourier-domain optical coherence tomography

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  9. Fourier phase in Fourier-domain optical coherence tomography.

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  10. Approximating the Analytic Fourier Transform with the Discrete Fourier Transform

    OpenAIRE

    Axelrod, Jeremy

    2015-01-01

    The Fourier transform is approximated over a finite domain using a Riemann sum. This Riemann sum is then expressed in terms of the discrete Fourier transform, which allows the sum to be computed with a fast Fourier transform algorithm more rapidly than via a direct matrix multiplication. Advantages and limitations of using this method to approximate the Fourier transform are discussed, and prototypical MATLAB codes implementing the method are presented.

  11. Azeotropic Preparation of a "C"-Phenyl "N"-Aryl Imine: An Introductory Undergraduate Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Silverberg, Lee J.; Coyle, David J.; Cannon, Kevin C.; Mathers, Robert T.; Richards, Jeffrey A.; Tierney, John

    2016-01-01

    Imines are important in biological chemistry and as intermediates in organic synthesis. An experiment for introductory undergraduate organic chemistry is presented in which benzaldehyde was condensed with "p"-methoxyaniline in toluene to give 4-methoxy-"N"-(phenylmethylene)benzenamine. Water was removed by azeotropic…

  12. Fourier-Hermite communications; where Fourier meets Hermite

    NARCIS (Netherlands)

    Korevaar, C.W.; Kokkeler, Andre B.J.; de Boer, Pieter-Tjerk; Smit, Gerardus Johannes Maria

    A new signal set, based on the Fourier and Hermite signal bases, is introduced. It combines properties of the Fourier basis signals with the perfect time-frequency localization of the Hermite functions. The signal set is characterized by both a high spectral efficiency and good time-frequency

  13. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    Science.gov (United States)

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  14. Analysis of a Natural Yellow Dye: An Experiment for Analytical Organic Chemistry

    NARCIS (Netherlands)

    Villela, A.; Derksen, G.C.H.; Beek, van T.A.

    2014-01-01

    This experiment exposes second-year undergraduate students taking a course in analytical organic chemistry to high-performance liquid chromatography (HPLC) and quantitative analysis using the internal standard method. This is accomplished using the real-world application of natural dyes for

  15. Color and surface chemistry changes of extracted wood flour after heating at 120 °C

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark

    2013-01-01

    To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....

  16. Fourier transform NMR

    International Nuclear Information System (INIS)

    Hallenga, K.

    1991-01-01

    This paper discusses the concept of Fourier transformation one of the many precious legacies of the French mathematician Jean Baptiste Joseph Fourier, essential for understanding the link between continuous-wave (CW) and Fourier transform (FT) NMR. Although in modern FT NMR the methods used to obtain a frequency spectrum from the time-domain signal may vary greatly, from the efficient Cooley-Tukey algorithm to very elaborate iterative least-square methods based other maximum entropy method or on linear prediction, the principles for Fourier transformation are unchanged and give invaluable insight into the interconnection of many pairs of physical entities called Fourier pairs

  17. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    Science.gov (United States)

    Bernath, P. F.; Boone, C.; Walker, K.; McLeod, S.; Nassar, R.

    2003-12-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar radiation at

  18. Operational experience, evolution and developments in water chemistry in Indian Nuclear Power Plants - an overview

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    2000-01-01

    Lessons learnt from the experiences at nuclear power plants have enriched the understanding of corrosion behaviour in water systems. The need for proper water chemistry control not only during operation but also during fabrication and preoperational tests is clearly seen. It should not be construed that maintenance of proper water chemistry is a panacea for all corrosion and other associated problems. Unless adequate care is taken in selection of material and sound design and fabrication practices are followed, no regime of water chemistry can help in eliminating failure due to corrosion

  19. Fostering Pre-service Teachers' Self-Determined Environmental Motivation Through Green Chemistry Experiments

    Science.gov (United States)

    Karpudewan, Mageswary; Ismail, Zurida; Roth, Wolff-Michael

    2012-10-01

    The global environmental crisis intensifies particularly in developing nations. Environmental educators have begun to understand that changing the environmental impact requires not only changes in pro-environmental knowledge and attitudes but also in associated, self-determined motivation. This study was designed to test the hypothesis that a green chemistry curriculum changes Malaysian pre-service teachers' environmental motivation. Two comparable groups of pre-service teachers participated in this study. The students in the experimental group ( N = 140) did green chemistry experiments whereas the control group ( N = 123) did equivalent experiments in a traditional manner. Posttest results indicate that there is significant difference between both the groups for intrinsic motivation, integration, identification, and introjections scales and no differences for external regulation and amotivation scales. The qualitative analysis of interview data suggests that the changes are predominantly due to the personal satisfaction that participants derived from engaging in pro-environmental behavior.

  20. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    Science.gov (United States)

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  1. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    Science.gov (United States)

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  2. A Cost-Effective Two-Part Experiment for Teaching Introductory Organic Chemistry Techniques

    Science.gov (United States)

    Sadek, Christopher M.; Brown, Brenna A.; Wan, Hayley

    2011-01-01

    This two-part laboratory experiment is designed to be a cost-effective method for teaching basic organic laboratory techniques (recrystallization, thin-layer chromatography, column chromatography, vacuum filtration, and melting point determination) to large classes of introductory organic chemistry students. Students are exposed to different…

  3. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Even, Julia

    2011-01-01

    Topic of this thesis is the development of experiments behind the gas-filled separator TASCA (TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements. In the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition. Possibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements. The second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream. Furthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide - helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All

  4. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  5. Applied Fourier analysis from signal processing to medical imaging

    CERN Document Server

    Olson, Tim

    2017-01-01

    The first of its kind, this focused textbook serves as a self-contained resource for teaching from scratch the fundamental mathematics of Fourier analysis and illustrating some of its most current, interesting applications, including medical imaging and radar processing. Developed by the author from extensive classroom teaching experience, it provides a breadth of theory that allows students to appreciate the utility of the subject, but at as accessible a depth as possible. With myriad applications included, this book can be adapted to a one or two semester course in Fourier Analysis or serve as the basis for independent study. Applied Fourier Analysis assumes no prior knowledge of analysis from its readers, and begins by making the transition from linear algebra to functional analysis. It goes on to cover basic Fourier series and Fourier transforms before delving into applications in sampling and interpolation theory, digital communications, radar processing, medical i maging, and heat and wave equations. Fo...

  6. Enhancing the Chemistry Curriculum, Teaching and Research Capabilities by the Implementation of Fourier Transform NMR Spectroscopy

    National Research Council Canada - National Science Library

    Yamaguchi, Kenneth

    2002-01-01

    .... Since the installation and training period, the NMR has been used for a number of courses (Analytical Chemistry, Advanced Inorganic Chemistry, Instrumental Analysis, Student Independent Projects and Undergraduate Research Projects...

  7. Validation of the Atmospheric Chemistry Experiment (ACE version 2.2 temperature using ground-based and space-borne measurements

    Directory of Open Access Journals (Sweden)

    R. J. Sica

    2008-01-01

    Full Text Available An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS. The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.

  8. Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2008-10-01

    Full Text Available Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE, using an infrared Fourier Transform Spectrometer (ACE-FTS and (for NO2 an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation. In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY, stellar occultation measurements (GOMOS, limb measurements (MIPAS, OSIRIS, nadir measurements (SCIAMACHY, balloon-borne measurements (SPIRALE, SAOZ and ground-based measurements (UV-VIS, FTIR. Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS and SAGE II (for ACE-FTS (sunrise and MAESTRO and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.

  9. Discovering Factors that Influence the Decision to Pursue a Chemistry-Related Career: A Comparative Analysis of the Experiences of Non Scientist Adults and Chemistry Teachers in Greece

    Science.gov (United States)

    Salta, Katerina; Gekos, Michael; Petsimeri, Irene; Koulougliotis, Dionysios

    2012-01-01

    This study aims at identifying factors that influence students' choice not to pursue a chemistry-related career by analyzing the experiences of secondary education chemistry teachers in Greece and of Greek adults who have not pursued studies related to science. Data collection was done with the method of individual structured interviews. The…

  10. The Impact of Nursing Students' Prior Chemistry Experience on Academic Performance and Perception of Relevance in a Health Science Course

    Science.gov (United States)

    Boddey, Kerrie; de Berg, Kevin

    2015-01-01

    Nursing students have typically found the study of chemistry to be one of their major challenges in a nursing course. This mixed method study was designed to explore how prior experiences in chemistry might impact chemistry achievement during a health science unit. Nursing students (N = 101) studying chemistry as part of a health science unit were…

  11. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course

    Science.gov (United States)

    Amaris, Zoe N.; Freitas, Daniel N.; Mac, Karen; Gerner, Kyle T.; Nameth, Catherine; Wheeler, Korin E.

    2017-01-01

    A series of laboratory experiments were developed to introduce first-year chemistry students to nanoscience through a green chemistry approach. Students made and characterized the stability of silver nanoparticles using two different methods: UV-visible spectroscopy and dynamic light scattering. They then assessed the ecotoxicity of silver…

  12. On Fourier re-expansions

    OpenAIRE

    Liflyand, E.

    2012-01-01

    We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.

  13. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  14. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  15. Principles of Fourier analysis

    CERN Document Server

    Howell, Kenneth B

    2001-01-01

    Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author''s development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based ...

  16. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  17. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  18. Some applications of Fourier's great discovery for beginners

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2012-01-01

    Nearly two centuries ago, Fourier discovered that any periodic function of period T can be presented as a sum of sine waveforms of frequencies equal to an integer times the fundamental frequency ω = 2π/T (Fourier's series). It is impossible to overestimate the importance of Fourier's discovery, and all physics or engineering students should be familiar with this subject. A suitable device for demonstrating spectra of electrical signals is a digital storage oscilloscope. Spectra of various waveforms and of AM and FM signals are demonstrated, as well as AM signals from a broadcasting station. Changes in the signals filtered by frequency-selective circuits are seen by comparing the spectra of the input and output voltages. All the experiments are suitable for undergraduate laboratories and usable as classroom demonstrations. (paper)

  19. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  20. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  1. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  2. Approximate modal analysis using Fourier decomposition

    International Nuclear Information System (INIS)

    Kozar, Ivica; Jericevic, Zeljko; Pecak, Tatjana

    2010-01-01

    The paper presents a novel numerical approach for approximate solution of eigenvalue problem and investigates its suitability for modal analysis of structures with special attention on plate structures. The approach is based on Fourier transformation of the matrix equation into frequency domain and subsequent removal of potentially less significant frequencies. The procedure results in a much reduced problem that is used in eigenvalue calculation. After calculation eigenvectors are expanded and transformed back into time domain. The principles are presented in Jericevic [1]. Fourier transform can be formulated in a way that some parts of the matrix that should not be approximated are not transformed but are fully preserved. In this paper we present formulation that preserves central or edge parts of the matrix and compare it with the formulation that performs transform on the whole matrix. Numerical experiments on transformed structural dynamic matrices describe quality of the approximations obtained in modal analysis of structures. On the basis of the numerical experiments, from the three approaches to matrix reduction one is recommended.

  3. Introducing Ethics to Chemistry Students in a "Research Experiences for Undergraduates" (REU) Program

    Science.gov (United States)

    Hanson, Mark J.

    2015-01-01

    A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and…

  4. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  5. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Zhong, Weiping [Department of Electronic and Information Engineering, Shunde Polytechnic, Shunde 528300 (China); Petrović, Milan S. [Institute of Physics, P.O. Box 68, 11001 Belgrade (Serbia); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fourier transforms are the beams themselves.

  6. Assessment of Antioxidant Capacities in Foods: A Research Experience for General Chemistry Students

    Science.gov (United States)

    Hoch, Matthew A.; Russell, Cianan B.; Steffen, Debora M.; Weaver, Gabriela C.; Burgess, John R.

    2009-01-01

    With the booming interest in health food and nutrition, investigations of the antioxidant capacities of various foods have come to the forefront of food science. This general chemistry laboratory curriculum provides students with an opportunity to design and implement their own experiments relating to antioxidants in food. The curriculum is six…

  7. Computing exact Fourier series coefficients of IC rectilinear polygons from low-resolution fast Fourier coefficients

    Science.gov (United States)

    Scheibler, Robin; Hurley, Paul

    2012-03-01

    We present a novel, accurate and fast algorithm to obtain Fourier series coefficients from an IC layer whose description consists of rectilinear polygons on a plane, and how to implement it using off-the-shelf hardware components. Based on properties of Fourier calculus, we derive a relationship between the Discrete Fourier Transforms of the sampled mask transmission function and its continuous Fourier series coefficients. The relationship leads to a straightforward algorithm for computing the continuous Fourier series coefficients where one samples the mask transmission function, compute its discrete Fourier transform and applies a frequency-dependent multiplicative factor. The algorithm is guaranteed to yield the exact continuous Fourier series coefficients for any sampling representing the mask function exactly. Computationally, this leads to significant saving by allowing to choose the maximal such pixel size and reducing the fast Fourier transform size by as much, without compromising accuracy. In addition, the continuous Fourier series is free from aliasing and follows closely the physical model of Fourier optics. We show that in some cases this can make a significant difference, especially in modern very low pitch technology nodes.

  8. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2018-06-01

    Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment. The THS experiment, developed at NASA Ames’ COSmIC facility is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma.Gas phase: The residence time of the jet-accelerated gas in the active plasma region is less than 4 µs, which results in a truncated chemistry enabling us to control how far in the chain of reactions the chemistry is processing. By adding heavier molecules in the initial gas mixture, it is then possible to study the first and intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways, as demonstrated by mass spectrometry and comparison to Cassini CAPS data [1]. A new model was recently developed to simulate the plasma chemistry in the THS. Calculated mass spectra produced by this model are in good agreement with the experimental THS mass spectra, confirming that the short residence time in the plasma cavity limits the growth of larger species [2].Solid phase: Scanning electron microscopy and infrared spectroscopy have been used to investigate the effect of the initial gas mixture on the morphology of the THS Titan aerosol analogs as well as on the level and nature of the nitrogen incorporation into these aerosols. A comparison to Cassini VIMS observational data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols [3]. In addition, a new optical constant facility has been developed at NASA Ames that allows us to determine the complex refractive indices of THS Titan aerosol analogs from NIR to FIR (0.76-222 cm-1). The facility and preliminary results

  9. Pulse shaping using the optical Fourier transform technique - for ultra-high-speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment.......This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment....

  10. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure

    OpenAIRE

    Michael Arthur Cuiffo; Jeffrey Snyder; Alicia M. Elliott; Nicholas Romero; Sandhiya Kannan; Gary P. Halada

    2017-01-01

    Polylactic acid (PLA) is an organic polymer commonly used in fused deposition (FDM) printing and biomedical scaffolding that is biocompatible and immunologically inert. However, variations in source material quality and chemistry make it necessary to characterize the filament and determine potential changes in chemistry occurring as a result of the FDM process. We used several spectroscopic techniques, including laser confocal microscopy, Fourier transform infrared (FTIR) spectroscopy and pho...

  11. PWR Secondary Water Chemistry Control Status: A Summary of Industry Initiatives, Experience and Trends Relative to the EPRI PWR Secondary Water Chemistry Guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, Keith; Choi, Samuel

    2012-09-01

    The latest revision of the EPRI Pressurized Water Reactor (PWR) Secondary Water Chemistry Guidelines was issued in February 2009. The Guidelines continue to focus on minimizing stress corrosion cracking (SCC) of steam generator tubes, as well as minimizing degradation of other major components / subsystems of the secondary system. The Guidelines provide a technically-based framework for a plant-specific and effective PWR secondary water chemistry program. With the issuance of Revision 7 of the Guidelines in 2009, many plants have implemented changes that allow greater flexibility on startup. For example, the previous Guidelines (Revision 6) contained a possible low power hold at 5% power and a possible mid power hold at approximately 30% power based on chemistry constraints. Revision 7 has established a range over which a plant-specific value can be chosen for the possible low power hold (between 5% and 15%) and mid power hold (between 30% and 50%). This has provided plants the ability to establish significant plant evolutions prior to reaching the possible power hold; such as establishing seal steam to the condenser, placing feed pumps in service, or initiating forward flow of heater drains. The application of this flexibility in the industry will be explored. This paper also highlights the major initiatives and industry trends with respect to PWR secondary chemistry; and outlines the recent work to effectively address them. These will be presented in light of recent operating experience, as derived from EPRI's PWR Chemistry Monitoring and Assessment (CMA) program (which contains more than 400 cycles of operating chemistry data). (authors)

  12. Fractional finite Fourier transform.

    Science.gov (United States)

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  13. Fourier series, Fourier transform and their applications to mathematical physics

    CERN Document Server

    Serov, Valery

    2017-01-01

    This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences.  Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing.  The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations.  The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory o...

  14. Nitration of Phenols Using Cu(NO[subscript 3])[subscript 2]: Green Chemistry Laboratory Experiment

    Science.gov (United States)

    Yadav, Urvashi; Mande, Hemant; Ghalsasi, Prasanna

    2012-01-01

    An easy-to-complete, microwave-assisted, green chemistry, electrophilic nitration method for phenol using Cu(NO[subscript 3])[subscript 2] in acetic acid is discussed. With this experiment, students clearly understand the mechanism underlying the nitration reaction in one laboratory session. (Contains 4 schemes.)

  15. Linking the microscopic view of chemistry to real-life experiences: Intertextuality in a high-school science classroom

    Science.gov (United States)

    Wu, Hsin-Kai

    2003-11-01

    Chemistry learning involves establishing conceptual relationships among macroscopic, microscopic, and symbolic representations. Employing the notion of intertextuality to conceptualize these relationships, this study investigates how class members interactionally construct meanings of chemical representations by connecting them to real-life experiences and how the teachers' content knowledge shapes their ways to coconstruct intertextual links with students. Multiple sources of data were collected over 7 weeks with a participation of 25 eleventh graders, an experienced teacher, and a student teacher. An examination of classroom discourse shows that the intertextual links between the microscopic view of chemistry and students' real-life experiences could be initiated by students and instigated by the teachers. The teachers applied several discursive strategies to scaffold students building meaningful links based on their prior knowledge and experiences. Additionally, the experienced teacher with stronger content knowledge tended to present links in both dialogic and monologic discourses. Yet, the relatively limited content knowledge did not necessarily constrain the student teacher's interactions with students. The findings of this study provide a backdrop for further research to explore how chemistry is learned and taught in a class through the social constructivist lens.

  16. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  17. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  18. Research and Teaching: Computational Methods in General Chemistry--Perceptions of Programming, Prior Experience, and Student Outcomes

    Science.gov (United States)

    Wheeler, Lindsay B.; Chiu, Jennie L.; Grisham, Charles M.

    2016-01-01

    This article explores how integrating computational tools into a general chemistry laboratory course can influence student perceptions of programming and investigates relationships among student perceptions, prior experience, and student outcomes.

  19. Partial Fourier techniques in single-shot cross-term spatiotemporal encoded MRI.

    Science.gov (United States)

    Zhang, Zhiyong; Frydman, Lucio

    2018-03-01

    Cross-term spatiotemporal encoding (xSPEN) is a single-shot approach with exceptional immunity to field heterogeneities, the images of which faithfully deliver 2D spatial distributions without requiring a priori information or using postacquisition corrections. xSPEN, however, suffers from signal-to-noise ratio penalties due to its non-Fourier nature and due to diffusion losses-especially when seeking high resolution. This study explores partial Fourier transform approaches that, acting along either the readout or the spatiotemporally encoded dimensions, reduce these penalties. xSPEN uses an orthogonal (e.g., z) gradient to read, in direct space, the low-bandwidth (e.g., y) dimension. This substantially changes the nature of partial Fourier acquisitions vis-à-vis conventional imaging counterparts. A suitable theoretical analysis is derived to implement these procedures, along either the spatiotemporally or readout axes. Partial Fourier single-shot xSPEN images were recorded on preclinical and human scanners. Owing to their reduction in the experiments' acquisition times, this approach provided substantial sensitivity gains vis-à-vis previous implementations for a given targeted in-plane resolution. The physical origins of these gains are explained. Partial Fourier approaches, particularly when implemented along the low-bandwidth spatiotemporal dimension, provide several-fold sensitivity advantages at minimal costs to the execution and processing of the single-shot experiments. Magn Reson Med 79:1506-1514, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Solventless and One-Pot Synthesis of Cu(II) Phthalocyanine Complex: A Green Chemistry Experiment

    Science.gov (United States)

    Sharma, R. K.; Sharma, Chetna; Sidhwani, Indu Tucker

    2011-01-01

    With the growing awareness of green chemistry, it is increasingly important for students to understand this concept in the context of laboratory experiments. Although microwave-assisted organic synthesis has become a common and invaluable technique in recent years, there have been few procedures published for microwave-assisted inorganic synthesis…

  1. The Evaluation of Students' Written Reflection on the Learning of General Chemistry Lab Experiment

    Science.gov (United States)

    Han, Ng Sook; Li, Ho Ket; Sin, Lee Choy; Sin, Keng Pei

    2014-01-01

    Reflective writing is often used to increase understanding and analytical ability. The lack of empirical evidence on the effect of reflective writing interventions on the learning of general chemistry lab experiment supports the examination of this concept. The central goal of this exploratory study was to evaluate the students' written…

  2. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  3. Sign me up! Determining motivation for high school chemistry students enrolling in a second year chemistry course

    Science.gov (United States)

    Camarena, Nilda N.

    A sample of 108 Pre-AP Chemistry students in Texas participated in a study to determine motivational factors for enrolling in AP Chemistry and University Chemistry. The factors measured were academic attitude, perceptions of chemistry, confidence level in chemistry, and expectations/experiences in the chemistry class. Students completed two questionnaires, one at the beginning of the year and one at the end. Four high school campuses from two school districts in Texas participated. Two campuses were traditional high schools and two were smaller magnet schools. The results from this study are able to confirm that there are definite correlations between academic attitudes, perceptions, confidence level, and experiences and a student's plans to enroll in AP and University Chemistry. The type of school as well as the student's gender seemed to have an influence on a student's plan to enroll in a second year of chemistry.

  4. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  5. Aqueous Solution Chemistry of Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Clark, David L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  6. Microscale Experiments in Chemistry - The Need of the New ...

    Indian Academy of Sciences (India)

    Chemistry at University of Pune. ... future, chemists would use the 'Liliput' scale for performing laboratory ... students of M.Sc. organic chemistry in this department for the first time. Without .... condenser and heated with a free flame. Fuming ...

  7. Fourier transforms principles and applications

    CERN Document Server

    Hansen, Eric W

    2014-01-01

    Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods.  Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.

  8. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    Energy Technology Data Exchange (ETDEWEB)

    Even, Julia

    2011-12-13

    Topic of this thesis is the development of experiments behind the gas-filled separator TASCA (TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements. In the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition. Possibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements. The second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream. Furthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide - helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All

  9. Understanding the Impact of a General Chemistry Course on Students' Transition to Organic Chemistry

    Science.gov (United States)

    Collins-Webb, Alexandra; Jeffery, Kathleen A.; Sweeder, Ryan D.

    2016-01-01

    The move from general chemistry to organic chemistry can be a challenge for students as it often involves a transition from quantitatively-oriented to mechanistically-oriented thinking. This study found that the design of the general chemistry course can change the student experience of this transition as assessed by a reflective survey. The…

  10. On the Fourier integral theorem

    NARCIS (Netherlands)

    Koekoek, J.

    1987-01-01

    Introduction. In traditional proofs of convergence of Fourier series and of the Fourier integraI theorem basic tools are the theory of Dirichlet integraIs and the Riemann-Lebesgue lemma. Recently CHERNOFF [I) and REoIlEFFER (2) gave new proofs of convergenceof Fourier series which make no use of the

  11. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    Science.gov (United States)

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Operating experience with steam generator water chemistry in Japanese PWR plants

    International Nuclear Information System (INIS)

    Onimura, K.; Hattori, T.

    1991-01-01

    Since the first PWR plant in Japan started its commercial operation in 1970, seventeen plants are operating as of the end of 1990. First three units initially applied phosphate treatment as secondary water chemistry control and then changed to all volatile treatment (AVT) due to phosphate induced wastage of steam generator tubing. The other fourteen units operate exclusively under AVT. In Japan, several corrosion phenomena of steam generator tubing, resulted from secondary water chemistry, have been experienced, but occurrence of those phenomena has decreased by means of improvement on impurity management, boric acid treatment and high hydrazine operation. Recently secondary water chemistry in Japanese plants are well maintained in every stage of operation. This paper introduces brief summary of the present status of steam generators and secondary water chemistry in Japan and ongoing activities of investigation for future improvement of reliability of steam generator. History and present status of secondary water chemistry in Japanese PWRs were introduced. In order to get improved water chemistry, the integrity of secondary system equipments is essential and the improvement in water chemistry has been achieved with the improvement in equipments and their usage. As a result of those efforts, present status of secondary water is excellent. However, further development for crevice chemistry monitoring technique and an advanced water chemistry data management system is desired for the purpose of future improvement of reliability of steam generator

  13. Metasurface Enabled Wide-Angle Fourier Lens.

    Science.gov (United States)

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Case-Based Scenario with Interdisciplinary Guided-Inquiry in Chemistry and Biology: Experiences of First Year Forensic Science Students

    Science.gov (United States)

    Cresswell, Sarah L.; Loughlin, Wendy A.

    2017-01-01

    In this paper, insight into forensic science students' experiences of a case-based scenario with an interdisciplinary guided-inquiry experience in chemistry and biology is presented. Evaluation of student experiences and interest showed that the students were engaged with all aspects of the case-based scenario, including the curriculum theory…

  15. Linking the Lab Experience with Everyday Life: An Analytical Chemistry Experiment for Agronomy Students

    Science.gov (United States)

    Gimenez, Sônia Maria N.; Yabe, Maria Josefa S.; Kondo, Neide K.; Mouriño, Rodrigo O.; Moura, Graziela Cristina R.

    2000-02-01

    Agronomy students generally lack interest in chemistry. The objective of this work was to modify the analytical chemistry curriculum to increase student interest. Samples of soils and plants prepared by students were introduced. Soil was treated with molasses residue, organic matter (chicken manure and humus obtained from goat excrement), and lime. The response of plants to the different soil treatments increased student interest in chemical analyses. Evaluation of several chemical and physicochemical parameters of samples demonstrated in a clear way the application of the theoretical and practical concepts of chemistry.

  16. Fourier transformation for engineering and natural science

    International Nuclear Information System (INIS)

    Klingen, B.

    2001-01-01

    The following topics are covered: functions, Dirac delta function, Fourier operators, Fourier integrals, Fourier transformation and periodic functions, discrete Fourier transformations and discrete filters, applications. (WL)

  17. Fourier analysis an introduction

    CERN Document Server

    Stein, Elias M

    2003-01-01

    This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions.The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as th

  18. Reform in a General Chemistry Laboratory: How Do Students Experience Change in the Instructional Approach?

    Science.gov (United States)

    Chopra, I.; O'Connor, J.; Pancho, R.; Chrzanowski, M.; Sandi-Urena, S.

    2017-01-01

    This qualitative study investigated the experience of a cohort of students exposed consecutively to two substantially different environments in their General Chemistry Laboratory programme. To this end, the first semester in a traditional expository programme was followed by a semester in a cooperative, problem-based, multi-week format. The focus…

  19. Development and Use of Online Prelaboratory Activities in Organic Chemistry to Improve Students' Laboratory Experience

    Science.gov (United States)

    Chaytor, Jennifer L.; Al Mughalaq, Mohammad; Butler, Hailee

    2017-01-01

    Online prelaboratory videos and quizzes were prepared for all experiments in CHEM 231, Organic Chemistry I Laboratory. It was anticipated that watching the videos would help students be better prepared for the laboratory, decrease their anxiety surrounding the laboratory, and increase their understanding of the theories and concepts presented.…

  20. Fourier-Malliavin volatility estimation theory and practice

    CERN Document Server

    Mancino, Maria Elvira; Sanfelici, Simona

    2017-01-01

    This volume is a user-friendly presentation of the main theoretical properties of the Fourier-Malliavin volatility estimation, allowing the readers to experience the potential of the approach and its application in various financial settings. Readers are given examples and instruments to implement this methodology in various financial settings and applications of real-life data. A detailed bibliographic reference is included to permit an in-depth study. .

  1. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Science.gov (United States)

    Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.

  2. Jean Baptiste Joseph Fourier

    Science.gov (United States)

    Sterken, C.

    2003-03-01

    This paper gives a short account of some key elements in the life of Jean Baptiste Joseph Fourier (1768-1830), specifically his relation to Napoleon Bonaparte. The mathematical approach to Fourier series and the original scepticism by French mathematicians are briefly illustrated.

  3. Fourier Transform Mass Spectrometry

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  4. SU-E-QI-08: Fourier Properties of Cone Beam CT Projection

    International Nuclear Information System (INIS)

    Bai, T; Yan, H; Jia, X; Jiang, Steve B.; Mou, X

    2014-01-01

    Purpose: To explore the Fourier properties of cone beam CT (CBCT) projections and apply the property to directly estimate noise level of CBCT projections without any prior information. Methods: By utilizing the property of Bessel function, we derivate the Fourier properties of the CBCT projections for an arbitrary point object. It is found that there exists a double-wedge shaped region in the Fourier space where the intensity is approximately zero. We further derivate the Fourier properties of independent noise added to CBCT projections. The expectation of the square of the module in any point of the Fourier space is constant and the value approximately equals to noise energy. We further validate the theory in numerical simulations for both a delta function object and a NCAT phantom with different levels of noise added. Results: Our simulation confirmed the existence of the double-wedge shaped region in Fourier domain for the x-ray projection image. The boundary locations of this region agree well with theoretical predictions. In the experiments of estimating noise level, the mean relative error between the theory estimation and the ground truth values is 2.697%. Conclusion: A novel theory on the Fourier properties of CBCT projections has been discovered. Accurate noise level estimation can be achieved by applying this theory directly to the measured CBCT projections. This work was supported in part by NIH(1R01CA154747-01), NSFC((No. 61172163), Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110011) and China Scholarship Council

  5. The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry

    Science.gov (United States)

    Lazcano, Antonio; Bada, Jeffrey L.

    2003-01-01

    The field of prebiotic chemistry effectively began with a publication in Science 50 years ago by Stanley L. Miller on the spark discharge synthesis of amino acids and other compounds using a mixture of reduced gases that were thought to represent the components of the atmosphere on the primitive Earth. On the anniversary of this landmark publication, we provide here an accounting of the events leading to the publication of the paper. We also discuss the historical aspects that lead up to the landmark Miller experiment.

  6. An analysis of interest in students learning of physical chemistry experiment using Scientific approach

    Directory of Open Access Journals (Sweden)

    Widinda Normalia Arlianty

    2017-08-01

    Full Text Available This study was aimed to analyze interest in student learning of physical chemistry experiment on Chemistry Education students, Islamic University of Indonesia. The research was quantitative. The samples of this research were 2nd-semester student academic year 2015. The data learning interest of students were collected by questionnaire and documentation of seven title experimental. Learning interest consisted of three indicators, concluded feeling good, attention and activity in the learning process. The results of this research showed that score mean of feeling good  indicator was  25,9;  score  mean  of attention indicator 17,8, and score mean of  activity indicator 8,41.  Score Mean  students for the questionnaire interest in student learning  was 51,83 and this data was categorized as “good”.

  7. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  8. Recent experience in water chemistry control at PWR plants

    International Nuclear Information System (INIS)

    Makino, Ichiro

    2000-01-01

    At present, 23 units of PWRs are under operation in all of Japan, among which 11 units are operated by the Kansai Electric Power Co., Inc. (KEP). Plant availability in KEP's PWRs has been improved for the past several years, through their successive stable operation. Recently, a focus is given not only to maintenance of plant integrity, but also to preventive maintenance and water chemistry control. Various measures have been carried out to enhance exposure reduction of the primary water chemistry control in the Japanese PWRs. As a result, environmental dose equivalent rate is decreasing. A secondary system is now under excellent condition because of application of diversified measures for prevention of the SG tube corrosion. At present, the water chemistry control measures which take into account of efficient chemistry control and plant aging deterioration prevention, are being examined to use for both primary and secondary systems in Japanese PWRs, to further enhance their plant integrity and availability. And, some of them are currently being actually applied. (G.K.)

  9. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  10. Generalized Fourier transforms classes

    DEFF Research Database (Denmark)

    Berntsen, Svend; Møller, Steen

    2002-01-01

    The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory...

  11. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    Science.gov (United States)

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  12. Students' Interest and Experiences in Physics and Chemistry Related Themes: Reflections Based on a ROSE-Survey in Finland

    Science.gov (United States)

    Lavonen, Jari; Byman, Reijo; Uitto, Anna; Juuti, Kalle; Meisalo, Veijo

    2008-01-01

    Interest in physics and chemistry topics and out-of-school experiences of Finnish secondary school students (n = 3626, median age 15) were surveyed using the international ROSE questionnaire. Based on explorative factor analysis the scores of six out-of-school experience factors (indicating how often students had done something outside of school)…

  13. HEART ABNORMALITY CLASSIFICATIONS USING FOURIER TRANSFORMS METHOD AND NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Endah Purwanti

    2014-05-01

    Full Text Available Health problems with cardiovascular system disorder are still ranked high globally. One way to detect abnormalities in the cardiovascular system especially in the heart is through the electrocardiogram (ECG reading. However, reading ECG recording needs experience and expertise, software-based neural networks has designed to help identify any abnormalities ofthe heart through electrocardiogram digital image. This image is processed using image processing methods to obtain ordinate chart which representing the heart’s electrical potential. Feature extraction using Fourier transforms which are divided into several numbers of coefficients. As the software input, Fourier transforms coefficient have been normalized. Output of this software is divided into three classes, namely heart with atrial fibrillation, coronary heart disease and normal. Maximum accuracy rate ofthis software is 95.45%, with the distribution of the Fourier transform coefficients 1/8 and number of nodes 5, while minimum accuracy rate of this software at least 68.18% by distribution of the Fourier transform coefficients 1/32 and the number of nodes 32. Overall result accuracy rate of this software has an average of86.05% and standard deviation of7.82.

  14. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  15. An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging.

    Science.gov (United States)

    Li, Guobin; Hennig, Jürgen; Raithel, Esther; Büchert, Martin; Paul, Dominik; Korvink, Jan G; Zaitsev, Maxim

    2015-10-01

    In most half-Fourier imaging methods, explicit phase replacement is used. In combination with parallel imaging, or compressed sensing, half-Fourier reconstruction is usually performed in a separate step. The purpose of this paper is to report that integration of half-Fourier reconstruction into iterative reconstruction minimizes reconstruction errors. The L1-norm phase constraint for half-Fourier imaging proposed in this work is compared with the L2-norm variant of the same algorithm, with several typical half-Fourier reconstruction methods. Half-Fourier imaging with the proposed phase constraint can be seamlessly combined with parallel imaging and compressed sensing to achieve high acceleration factors. In simulations and in in-vivo experiments half-Fourier imaging with the proposed L1-norm phase constraint enables superior performance both reconstruction of image details and with regard to robustness against phase estimation errors. The performance and feasibility of half-Fourier imaging with the proposed L1-norm phase constraint is reported. Its seamless combination with parallel imaging and compressed sensing enables use of greater acceleration in 3D MR imaging.

  16. Tunable fractional-order Fourier transformer

    International Nuclear Information System (INIS)

    Malyutin, A A

    2006-01-01

    A fractional two-dimensional Fourier transformer whose orders are tuned by means of optical quadrupoles is described. It is shown that in the optical scheme considered, the Fourier-transform order a element of [0,1] in one of the mutually orthogonal planes corresponds to the transform order (2-a) in another plane, i.e., to inversion and inverse Fourier transform of the order a. (laser modes and beams)

  17. Improving Critical Thinking "via" Authenticity: The CASPiE Research Experience in a Military Academy Chemistry Course

    Science.gov (United States)

    Chase, A. M.; Clancy, H. A.; Lachance, R. P.; Mathison, B. M.; Chiu, M. M.; Weaver, G. C.

    2017-01-01

    Course-based undergraduate research experiences (CUREs) can introduce many students to authentic research activities in a cost-effective manner. Past studies have shown that students who participated in CUREs report greater interest in chemistry, better data collection and analysis skills, and enhanced scientific reasoning compared to traditional…

  18. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  19. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  20. Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2006-07-01

    The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.

  1. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  2. Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments

    Science.gov (United States)

    Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal

  3. General Correlation Theorem for Trinion Fourier Transform

    OpenAIRE

    Bahri, Mawardi

    2017-01-01

    - The trinion Fourier transform is an extension of the Fourier transform in the trinion numbers setting. In this work we derive the correlation theorem for the trinion Fourier transform by using the relation between trinion convolution and correlation definitions in the trinion Fourier transform domains.

  4. Fourier Series, the DFT and Shape Modelling

    DEFF Research Database (Denmark)

    Skoglund, Karl

    2004-01-01

    This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...

  5. Undergraduate students' goals for chemistry laboratory coursework

    Science.gov (United States)

    DeKorver, Brittland K.

    Chemistry laboratory coursework has the potential to offer many benefits to students, yet few of these learning goals are realized in practice. Therefore, this study seeks to characterize undergraduate students' learning goals for their chemistry laboratory coursework. Data were collected by recording video of students completing laboratory experiments and conducting interviews with the students about their experiences that were analyzed utilizing the frameworks of Human Constructivism and Self-Regulated Learning. A cross-sectional sampling of students allowed comparisons to be made among students with varying levels of chemistry experience and interest in chemistry. The student goals identified by this study were compared to previously described laboratory learning goals of the faculty who instruct these courses in an effort to identify potential avenues to improve laboratory learning.

  6. Fourier techniques in X-ray timing

    NARCIS (Netherlands)

    van der Klis, M.

    1988-01-01

    Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum

  7. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry

    Science.gov (United States)

    Stevens, Jonathan

    2017-07-01

    Continuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.

  8. Studies of gas phase ion/molecule reactions by Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Kleingeld, J.C.

    1984-01-01

    An important field in which Fourier-transform ion cyclotron resonance has useful applications is that of gas phase ion chemistry, the subject of this thesis. First, the general picture of ion-molecule reactions in the gas phase is discussed. Next, some positive ion-molecule reactions are described, whereas the remaining chapters deal with negative ion-molecule reactions. Most of these studies have been performed using the FT-ICR method. Reactions involving H 3 O - and NH 4 - ions are described whereas the other chapters deal with larger organic complexes. (Auth.)

  9. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  10. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  11. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  12. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  13. On a Convergence of Rational Approximations by the Modified Fourier Basis

    Directory of Open Access Journals (Sweden)

    Tigran Bakaryan

    2017-12-01

    Full Text Available We continue investigations of the modified-trigonometric-rational approximations that arise while accelerating the convergence of the modified Fourier expansions by means of rational corrections. Previously, we investigated the pointwise convergence of the rational approximations away from the endpoints and the $L_2$-convergence on the entire interval. Here, we study the convergence at the endpoints and derive the exact constants for the main terms of asymptotic errors. We show that the Fourier-Pade approximations are much more accurate in all frameworks than the modified expansions for sufficiently smooth functions. Moreover, we consider a simplified version of the rational approximations and explore the optimal values of parameters that lead to better accuracy in the framework of the $L_2$-error. Numerical experiments perform comparisons of the rational approximations with the modified Fourier expansions.

  14. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.

  15. The fractional Fourier transform and applications

    Science.gov (United States)

    Bailey, David H.; Swarztrauber, Paul N.

    1991-01-01

    This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.

  16. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    Science.gov (United States)

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 m

  17. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    International Nuclear Information System (INIS)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng; Fung, Russell; Zhu Chun; Miao Jianwei; Mao Yu; Khatonabadi, Maryam; DeMarco, John J.; McNitt-Gray, Michael F.; Osher, Stanley J.

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  18. Fourier Series Optimization Opportunity

    Science.gov (United States)

    Winkel, Brian

    2008-01-01

    This note discusses the introduction of Fourier series as an immediate application of optimization of a function of more than one variable. Specifically, it is shown how the study of Fourier series can be motivated to enrich a multivariable calculus class. This is done through discovery learning and use of technology wherein students build the…

  19. Controlling chemistry parameters in nuclear reactors and power plants, plant chemistry specification requirements and compliance - an overview of TAPS 1 and 2 experiences

    International Nuclear Information System (INIS)

    Ravindranath; Muralidharan, K.; Save, C.B.; Patil, D.P.

    2006-01-01

    Tarapur Atomic Power Station -TAPS 1 and 2 is a twin unit Boiling Water Reactor (BWR) Nuclear Power Plant commissioned in the year 1969. Both units are running with capacity factor of more than 90 % in their 20 th cycle of operation as on today. The 220 MWe units were derated to 160 MWe during 1984 consequent to isolation of Secondary Steam Generators (SSG) in the 10 th cycle of operation due to SSG tube leaks. This paper presents an overview of Plant Chemistry Control measures and experiences during the last 38 years of operation. The overall plant chemistry performance of TAPS 1 and 2 observed is very good; which is evident from the material condition of various systems reflected in QC and I reports, NDT and ISI reports. This is also supported by the fact that both Units are showing excellent performance continuously during recent years. (author)

  20. Drug Synthesis and Analysis on a Dime: A Capstone Medicinal Chemistry Experience for the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Streu, Craig N.; Reif, Randall D.; Neiles, Kelly Y.; Schech, Amanda J.; Mertz, Pamela S.

    2016-01-01

    Integrative, research-based experiences have shown tremendous potential as effective pedagogical approaches. Pharmaceutical development is an exciting field that draws heavily on organic chemistry and biochemistry techniques. A capstone drug synthesis/analysis laboratory is described where biochemistry students synthesize azo-stilbenoid compounds…

  1. Classical Fourier analysis

    CERN Document Server

    Grafakos, Loukas

    2014-01-01

    The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition.  Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...

  2. Application of Calibrated Peer Review (CPR) Writing Assignments to Enhance Experiments with an Environmental Chemistry Focus

    Science.gov (United States)

    Margerum, Lawrence D.; Gulsrud, Maren; Manlapez, Ronald; Rebong, Rachelle; Love, Austin

    2007-01-01

    The browser-based software program, Calibrated Peer Review (CPR) developed by the Molecular Science Project enables instructors to create structured writing assignments in which students learn by writing and reading for content. Though the CPR project covers only one experiment in general chemistry, it might provide lab instructors with a method…

  3. Development of Teaching Materials for a Physical Chemistry Experiment Using the QR Code

    OpenAIRE

    吉村, 忠与志

    2008-01-01

    The development of teaching materials with the QR code was attempted in an educational environment using a mobile telephone. The QR code is not sufficiently utilized in education, and the current study is one of the first in the field. The QR code is encrypted. However, the QR code can be deciphered by mobile telephones, thus enabling the expression of text in a small space.Contents of "Physical Chemistry Experiment" which are available on the Internet are briefly summarized and simplified. T...

  4. Laser ablation of an indium target: time-resolved Fourier-transform infrared spectra of In I in the 700–7700 cm−1 range

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Kubelík, Petr; Ferus, Martin; Chernov, Vladislav E.; Zanozina, Ekaterina M.; Juha, Libor

    2014-01-01

    Roč. 29, č. 12 (2014), s. 2275-2283 ISSN 0267-9477 R&D Projects: GA MŠk LD14115; GA MŠk(CZ) LG13029 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : time-resolved fluorescence * Fourier transform infra reds * Laser-induced breakdown spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.466, year: 2014

  5. Laplace-Fourier-domain dispersion analysis of an average derivative optimal scheme for scalar-wave equation

    Science.gov (United States)

    Chen, Jing-Bo

    2014-06-01

    By using low-frequency components of the damped wavefield, Laplace-Fourier-domain full waveform inversion (FWI) can recover a long-wavelength velocity model from the original undamped seismic data lacking low-frequency information. Laplace-Fourier-domain modelling is an important foundation of Laplace-Fourier-domain FWI. Based on the numerical phase velocity and the numerical attenuation propagation velocity, a method for performing Laplace-Fourier-domain numerical dispersion analysis is developed in this paper. This method is applied to an average-derivative optimal scheme. The results show that within the relative error of 1 per cent, the Laplace-Fourier-domain average-derivative optimal scheme requires seven gridpoints per smallest wavelength and smallest pseudo-wavelength for both equal and unequal directional sampling intervals. In contrast, the classical five-point scheme requires 23 gridpoints per smallest wavelength and smallest pseudo-wavelength to achieve the same accuracy. Numerical experiments demonstrate the theoretical analysis.

  6. Quantitative analysis chemistry

    International Nuclear Information System (INIS)

    Ko, Wansuk; Lee, Choongyoung; Jun, Kwangsik; Hwang, Taeksung

    1995-02-01

    This book is about quantitative analysis chemistry. It is divided into ten chapters, which deal with the basic conception of material with the meaning of analysis chemistry and SI units, chemical equilibrium, basic preparation for quantitative analysis, introduction of volumetric analysis, acid-base titration of outline and experiment examples, chelate titration, oxidation-reduction titration with introduction, titration curve, and diazotization titration, precipitation titration, electrometric titration and quantitative analysis.

  7. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  8. Exploring Diverse Students' Trends in Chemistry Self-Efficacy throughout a Semester of College-Level Preparatory Chemistry

    Science.gov (United States)

    Villafañe, Sachel M.; Garcia, C. Alicia; Lewis, Jennifer E.

    2014-01-01

    Chemistry self-efficacy has been defined as a student's beliefs about his or her own capability to perform a given chemistry task. These chemistry self-efficacy beliefs can be influenced by students' experiences in a course, and eventually, these beliefs could affect students' decisions to continue into STEM related-careers. In this study, we…

  9. Numerical model of the influence function of deformable mirrors based on Bessel Fourier orthogonal functions

    International Nuclear Information System (INIS)

    Li Shun; Zhang Sijiong

    2014-01-01

    A numerical model is presented to simulate the influence function of deformable mirror actuators. The numerical model is formed by Bessel Fourier orthogonal functions, which are constituted of Bessel orthogonal functions and a Fourier basis. A detailed comparison is presented between the new Bessel Fourier model, the Zernike model, the Gaussian influence function and the modified Gaussian influence function. Numerical experiments indicate that the new numerical model is easy to use and more accurate compared with other numerical models. The new numerical model can be used for describing deformable mirror performances and numerical simulations of adaptive optics systems. (research papers)

  10. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  11. Teaching Fourier optics through ray matrices

    International Nuclear Information System (INIS)

    Moreno, I; Sanchez-Lopez, M M; Ferreira, C; Davis, J A; Mateos, F

    2005-01-01

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics

  12. X-ray interferometric Fourier holography

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2016-01-01

    The X-ray interferometric Fourier holography is proposed and theoretically investigated. Fourier The X-ray interferometric Young fringes and object image reconstruction are investigated. It is shown that the interference pattern of two slits formed on the exit surface of the crystal-analyzer (the third plate of the interferometer) is the X-ray interferometric Young fringes. An expression for X-ray interferometric Young fringes period is obtained. The subsequent reconstruction of the slit image as an object is performed by means of Fourier transform of the intensity distribution on the hologram. Three methods of reconstruction of the amplitude transmission complex function of the object are presented: analytical - approximate method, method of iteration and step by step method. As an example the X-ray Fourier interferometric hologram recording and the complex amplitude transmission function reconstruction for a beryllium circular wire are considered

  13. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects

    International Nuclear Information System (INIS)

    Miao, J.; Sayre, D.; Chapman, H.N.

    1998-01-01

    It is suggested that, given the magnitude of Fourier transforms sampled at the Bragg density, the phase problem is underdetermined by a factor of 2 for 1D, 2D, and 3D objects. It is therefore unnecessary to oversample the magnitude of Fourier transforms by 2x in each dimension (i.e., oversampling by 4x for 2D and 8x for 3D) in retrieving the phase of 2D and 3D objects. Our computer phasing experiments accurately retrieved the phase from the magnitude of the Fourier transforms of 2D and 3D complex-valued objects by using positivity constraints on the imaginary part of the objects and loose supports, with the oversampling factor much less than 4 for 2D and 8 for 3D objects. Under the same conditions we also obtained reasonably good reconstructions of 2D and 3D complex-valued objects from the magnitude of their Fourier transforms with added noise and a central stop. copyright 1998 Optical Society of America

  14. Predicting steam generator crevice chemistry

    International Nuclear Information System (INIS)

    Burton, G.; Strati, G.

    2006-01-01

    'Full text:' Corrosion of steam cycle components produces insoluble material, mostly iron oxides, that are transported to the steam generator (SG) via the feedwater and deposited on internal surfaces such as the tubes, tube support plates and the tubesheet. The build up of these corrosion products over time can lead to regions of restricted flow with water chemistry that may be significantly different, and potentially more corrosive to SG tube material, than the bulk steam generator water chemistry. The aim of the present work is to predict SG crevice chemistry using experimentation and modelling as part of AECL's overall strategy for steam generator life management. Hideout-return experiments are performed under CANDU steam generator conditions to assess the accumulation of impurities in hideout, and return from, model crevices. The results are used to validate the ChemSolv model that predicts steam generator crevice impurity concentrations, and high temperature pH, based on process parameters (e.g., heat flux, primary side temperature) and blowdown water chemistry. The model has been incorporated into ChemAND, AECL's system health monitoring software for chemistry monitoring, analysis and diagnostics that has been installed at two domestic and one international CANDU station. ChemAND provides the station chemists with the only method to predict SG crevice chemistry. In one recent application, the software has been used to evaluate the crevice chemistry based on the elevated, but balanced, SG bulk water impurity concentrations present during reactor startup, in order to reduce hold times. The present paper will describe recent hideout-return experiments that are used for the validation of the ChemSolv model, station experience using the software, and improvements to predict the crevice electrochemical potential that will permit station staff to ensure that the SG tubes are in the 'safe operating zone' predicted by Lu (AECL). (author)

  15. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    Science.gov (United States)

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  16. Flash Photolysis Experiment of o-Methyl Red as a Function of pH: A Low-Cost Experiment for the Undergraduate Physical Chemistry Lab

    Science.gov (United States)

    Larsen, Molly C.; Perkins, Russell J.

    2016-01-01

    A low-cost, time-resolved spectroscopy experiment appropriate for third year physical chemistry students is presented. Students excite o-methyl red in basic solutions with a laser pointer and use a modular spectrometer with a CCD array detector to monitor the transient spectra as the higher-energy cis conformer of the molecule converts back to the…

  17. Monitoring of PVD, PECVD and etching plasmas using Fourier components of RF voltage

    International Nuclear Information System (INIS)

    Dvorak, P; Vasina, P; Bursikova, V; Zemlicka, R

    2010-01-01

    Fourier components of discharge voltages were measured in two different reactive plasmas and their response to the creation or destruction of a thin film was studied. In reactive magnetron sputtering the effect of transition from the metallic to the compound mode accompanied by the creation of a compound film on the sputtered target was observed. Further, deposition and etching of a diamond-like carbon film and their effects on amplitudes of Fourier components of the discharge voltage were studied. It was shown that the Fourier components, including higher harmonic frequencies, sensitively react to the presence of a film. Therefore, they can be used as a powerful tool for the monitoring of deposition and etching processes. It was demonstrated that the behaviour of the Fourier components was caused in both experiments by the presence of the film. It was not caused by changes in the chemical composition of the gas phase induced by material etched from the film or decrease in gettering rate. Further, the observed behaviour was not affected by the film conductivity. The behaviour of the Fourier components can be explained by the difference between the coefficients of secondary electron emission of the film and its underlying material.

  18. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Directory of Open Access Journals (Sweden)

    Jonathan C P Reum

    Full Text Available Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall. pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm at all depths and seasons sampled except for the near-surface waters (< 10 m in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1. We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31, was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight

  19. Tracking chemistry self-efficacy and achievement in a preparatory chemistry course

    Science.gov (United States)

    Garcia, Carmen Alicia

    Self-efficacy is a person's own perception about performing a task with a certain level of proficiency (Bandura, 1986). An important affective aspect of learning chemistry is chemistry self-efficacy (CSE). Several researchers have found chemistry self-efficacy to be a fair predictor of achievement in chemistry. This study was done in a college preparatory chemistry class for science majors exploring chemistry self-efficacy and its change as it relates to achievement. A subscale of CAEQ, Chemistry Attitudes and Experiences Questionnaire (developed by Dalgety et al, 2003) as well as student interviews were used to determine student chemistry self-efficacy as it changed during the course. The questionnaire was given to the students five times during the semester: in the first class and the class before each the four tests taken through the semester. Twenty-six students, both men and women, of the four major races/ethnicities were interviewed three times during the semester and events that triggered changes in CSE were followed through the interviews. HLM (hierarchical linear modeling) was used to model the results of the CSE surveys. Among the findings, women who started at significantly lower CSE than men accomplished a significant gain by the end of the semester. Blacks' CSE trends through the semester were found to be significantly different from the rest of the ethnicities.

  20. On fractional Fourier transform moments

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2000-01-01

    Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their

  1. Fourier analysis and stochastic processes

    CERN Document Server

    Brémaud, Pierre

    2014-01-01

    This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...

  2. A simple approach to Fourier aliasing

    International Nuclear Information System (INIS)

    Foadi, James

    2007-01-01

    In the context of discrete Fourier transforms the idea of aliasing as due to approximation errors in the integral defining Fourier coefficients is introduced and explained. This has the positive pedagogical effect of getting to the heart of sampling and the discrete Fourier transform without having to delve into effective, but otherwise long and structured, introductions to the topic, commonly met in advanced, specialized books

  3. Students' Attitudes, Self-Efficacy and Experiences in a Modified Process-Oriented Guided Inquiry Learning Undergraduate Chemistry Classroom

    Science.gov (United States)

    Vishnumolakala, Venkat Rao; Southam, Daniel C.; Treagust, David F.; Mocerino, Mauro; Qureshi, Sheila

    2017-01-01

    This one-semester, mixed methods study underpinning social cognition and theory of planned behaviour investigated the attitudes, self-efficacy, and experiences of 559 first year undergraduate chemistry students from two cohorts in modified process-oriented guided inquiry learning (POGIL) classes. Versions of attitude toward the study of chemistry…

  4. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    Science.gov (United States)

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  5. Modeling and forecasting monthly movement of annual average solar insolation based on the least-squares Fourier-model

    International Nuclear Information System (INIS)

    Yang, Zong-Chang

    2014-01-01

    Highlights: • Introduce a finite Fourier-series model for evaluating monthly movement of annual average solar insolation. • Present a forecast method for predicting its movement based on the extended Fourier-series model in the least-squares. • Shown its movement is well described by a low numbers of harmonics with approximately 6-term Fourier series. • Predict its movement most fitting with less than 6-term Fourier series. - Abstract: Solar insolation is one of the most important measurement parameters in many fields. Modeling and forecasting monthly movement of annual average solar insolation is of increasingly importance in areas of engineering, science and economics. In this study, Fourier-analysis employing finite Fourier-series is proposed for evaluating monthly movement of annual average solar insolation and extended in the least-squares for forecasting. The conventional Fourier analysis, which is the most common analysis method in the frequency domain, cannot be directly applied for prediction. Incorporated with the least-square method, the introduced Fourier-series model is extended to predict its movement. The extended Fourier-series forecasting model obtains its optimums Fourier coefficients in the least-square sense based on its previous monthly movements. The proposed method is applied to experiments and yields satisfying results in the different cities (states). It is indicated that monthly movement of annual average solar insolation is well described by a low numbers of harmonics with approximately 6-term Fourier series. The extended Fourier forecasting model predicts the monthly movement of annual average solar insolation most fitting with less than 6-term Fourier series

  6. Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments

    Science.gov (United States)

    Challener, Roberta; Robbins, Lisa L.; Mcclintock, James B.

    2016-01-01

    Open ocean observations have shown that increasing levels of anthropogenically derived atmospheric CO2 are causing acidification of the world's oceans. Yet little is known about coastal acidification and studies are just beginning to characterise the carbonate chemistry of shallow, nearshore zones where many ecologically and economically important organisms occur. We characterised the carbonate chemistry of seawater within an area dominated by seagrass beds (Saint Joseph Bay, Florida) to determine the extent of variation in pH and pCO2 over monthly and daily timescales. Distinct diel and seasonal fluctuations were observed at daily and monthly timescales respectively, indicating the influence of photosynthetic and respiratory processes on the local carbonate chemistry. Over the course of a year, the range in monthly values of pH (7.36-8.28), aragonite saturation state (0.65-5.63), and calculated pCO2 (195-2537 μatm) were significant. When sampled on a daily basis the range in pH (7.70-8.06), aragonite saturation state (1.86-3.85), and calculated pCO2 (379-1019 μatm) also exhibited significant range and indicated variation between timescales. The results of this study have significant implications for the design of ocean acidification experiments where nearshore species are utilised and indicate that coastal species are experiencing far greater fluctuations in carbonate chemistry than previously thought.

  7. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  8. The derivative-free Fourier shell identity for photoacoustics.

    Science.gov (United States)

    Baddour, Natalie

    2016-01-01

    In X-ray tomography, the Fourier slice theorem provides a relationship between the Fourier components of the object being imaged and the measured projection data. The Fourier slice theorem is the basis for X-ray Fourier-based tomographic inversion techniques. A similar relationship, referred to as the 'Fourier shell identity' has been previously derived for photoacoustic applications. However, this identity relates the pressure wavefield data function and its normal derivative measured on an arbitrary enclosing aperture to the three-dimensional Fourier transform of the enclosed object evaluated on a sphere. Since the normal derivative of pressure is not normally measured, the applicability of the formulation is limited in this form. In this paper, alternative derivations of the Fourier shell identity in 1D, 2D polar and 3D spherical polar coordinates are presented. The presented formulations do not require the normal derivative of pressure, thereby lending the formulas directly adaptable for Fourier based absorber reconstructions.

  9. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    International Nuclear Information System (INIS)

    Stellwag, B.; Aaltonen, P.; Hickling, J.

    1997-01-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ''on-line'' and ''in-situ'' characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. For confirmation, a complete set of sensors

  10. Implementation of quantum and classical discrete fractional Fourier transforms

    Science.gov (United States)

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

    2016-01-01

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089

  11. Implementation of quantum and classical discrete fractional Fourier transforms.

    Science.gov (United States)

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander

    2016-03-23

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

  12. An optical Fourier transform coprocessor with direct phase determination.

    Science.gov (United States)

    Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D

    2017-10-20

    The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.

  13. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  14. Factors Influencing NO2 Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Imen Ghouma

    2018-04-01

    Full Text Available The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FTIR techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2.

  15. Generalized fiber Fourier optics.

    Science.gov (United States)

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  16. Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.

    Science.gov (United States)

    Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun

    2009-05-01

    Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.

  17. Handbook of Fourier analysis & its applications

    CERN Document Server

    Marks, Robert J

    2009-01-01

    Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal process

  18. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Stellwag, B [Siemens AG Unternehmensbereich KWU, Erlangen (Germany); Aaltonen, P [Technical Research Centre of Finland, Espoo (Finland); Hickling, J [CML GmbH, Erlangen (Germany)

    1997-02-01

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ``on-line`` and ``in-situ`` characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. (Abstract Truncated)

  19. Applications of Fourier transforms to generalized functions

    CERN Document Server

    Rahman, M

    2011-01-01

    This book explains how Fourier transforms can be applied to generalized functions. The generalized function is one of the important branches of mathematics and is applicable in many practical fields. Its applications to the theory of distribution and signal processing are especially important. The Fourier transform is a mathematical procedure that can be thought of as transforming a function from its time domain to the frequency domain.The book contains six chapters and three appendices. Chapter 1 deals with preliminary remarks on Fourier series from a general point of view and also contains an introduction to the first generalized function. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. The author has stated and proved 18 formulas dealing with the Fourier transforms of generalized functions, and demonstrated some important problems of practical interest. Chapter 4 deals with the asymptotic esti...

  20. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super-Gaussian sp......This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super...

  1. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  2. Fourier Series

    Indian Academy of Sciences (India)

    The theory of Fourier series deals with periodic functions. By a periodic ..... including Dirichlet, Riemann and Cantor occupied themselves with the problem of ... to converge only on a set which is negligible in a certain sense (Le. of measure ...

  3. Alternating multivariate trigonometric functions and corresponding Fourier transforms

    International Nuclear Information System (INIS)

    Klimyk, A U; Patera, J

    2008-01-01

    We define and study multivariate sine and cosine functions, symmetric with respect to the alternating group A n , which is a subgroup of the permutation (symmetric) group S n . These functions are eigenfunctions of the Laplace operator. They determine Fourier-type transforms. There exist three types of such transforms: expansions into corresponding sine-Fourier and cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms, and multivariate finite sine and cosine transforms. In all these transforms, alternating multivariate sine and cosine functions are used as a kernel

  4. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  5. Fourier transform n. m. r. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D [Varian Ltd., Walton (UK)

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques.

  6. Properties of the distributional finite Fourier transform

    OpenAIRE

    Carmichael, Richard D.

    2016-01-01

    The analytic functions in tubes which obtain the distributional finite Fourier transform as boundary value are shown to have a strong boundedness property and to be recoverable as a Fourier-Laplace transform, a distributional finite Fourier transform, and as a Cauchy integral of a distribution associated with the boundary value.

  7. Generalized Fourier transforms classes

    DEFF Research Database (Denmark)

    Berntsen, Svend; Møller, Steen

    2002-01-01

    The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory foll...... follows that integral transform with kernels which are products of a Bessel and a Hankel function or which is of a certain general hypergeometric type have inverse transforms of the same structure....

  8. Fourier transform digital holographic adaptive optics imaging system

    Science.gov (United States)

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  9. A short textbook of colloid chemistry

    CERN Document Server

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  10. Mapped Fourier Methods for stiff problems in toroidal geometry

    OpenAIRE

    Guillard , Herve

    2014-01-01

    Fourier spectral or pseudo-spectral methods are usually extremely efficient for periodic problems. However this efficiency is lost if the solutions have zones of rapid variations or internal layers. For these cases, a large number of Fourier modes are required and this makes the Fourier method unpractical in many cases. This work investigates the use of mapped Fourier method as a way to circumvent this problem. Mapped Fourier method uses instead of the usual Fourier interpolant the compositio...

  11. Measuring meaningful learning in the undergraduate chemistry laboratory

    Science.gov (United States)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  12. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management

    International Nuclear Information System (INIS)

    Smidt, Ena; Meissl, Katharina

    2007-01-01

    State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically 'stabilized' leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a 'substrate' that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments

  13. Evaluation of the MOCAGE Chemistry Transport Model during the ICARTT/ITOP Experiment

    Science.gov (United States)

    Bousserez, N.; Attie, J. L.; Peuch, V. H.; Michou, M.; Pfister, G.; Edwards, D.; Emmons, L.; Arnold, S.; Heckel, A.; Richter, A.; hide

    2007-01-01

    We evaluate the Meteo-France global chemistry transport 3D model MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle) using the important set of aircraft measurements collected during the ICARRT/ITOP experiment. This experiment took place between US and Europe during summer 2004 (July 15-August 15). Four aircraft were involved in this experiment providing a wealth of chemical data in a large area including the North East of US and western Europe. The model outputs are compared to the following species of which concentration is measured by the aircraft: OH, H2O2, CO, NO, NO2, PAN, HNO3, isoprene, ethane, HCHO and O3. Moreover, to complete this evaluation at larger scale, we used also satellite data such as SCIAMACHY NO2 and MOPITT CO. Interestingly, the comprehensive dataset allowed us to evaluate separately the model representation of emissions, transport and chemical processes. Using a daily emission source of biomass burning, we obtain a very good agreement for CO while the evaluation of NO2 points out incertainties resulting from inaccurate ratio of emission factors of NOx/CO. Moreover, the chemical behavior of O3 is satisfactory as discussed in the paper.

  14. Analytic confidence level calculations using the likelihood ratio and fourier transform

    International Nuclear Information System (INIS)

    Hu Hongbo; Nielsen, J.

    2000-01-01

    The interpretation of new particle search results involves a confidence level calculation on either the discovery hypothesis or the background-only ('null') hypothesis. A typical approach uses toy Monte Carlo experiments to build an expected experiment estimator distribution against which an observed experiment's estimator may be compared. In this note, a new approach is presented which calculates analytically the experiment estimator distribution via a Fourier transform, using the likelihood ratio as an ordering estimator. The analytic approach enjoys an enormous speed advantage over the toy Monte Carlo method, making it possible to quickly and precisely calculate confidence level results

  15. Self-Fourier functions and coherent laser combination

    International Nuclear Information System (INIS)

    Corcoran, C J; Pasch, K A

    2004-01-01

    The Gaussian and Comb functions are generally quoted as being the two basic functions that are their own Fourier transforms. In 1991, Caola presented a recipe for generating functions that are their own Fourier transforms by symmetrizing any transformable function and then adding its own Fourier transform to it. In this letter, we present a new method for generating a set of functions that are exactly their own Fourier transforms, and which have direct application to laser cavity design for a wide variety of applications. The generated set includes the Gaussian and Comb functions as special cases and forms a continuous bridge of functions between them. The new generating method uses the Gaussian and Comb functions as bases and does not rely on the Fourier operator itself. This self-Fourier function promises to be particularly useful in high-power laser design through coherent laser beam combination. Although these results are presented in a single dimension as with a linear array, the results are equally valid in two dimensions. (letter to the editor)

  16. Use of graphics processing units for efficient evaluation of derivatives of exchange integrals by means of Fourier transform of the 1/r operator and its numerical quadrature

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr; Čurík, Roman

    2015-01-01

    Roč. 134, č. 8 (2015), 102 ISSN 1432-881X R&D Projects: GA MŠk LD14088; GA ČR GAP208/11/0452 Institutional support: RVO:61388955 Keywords : Use of graphical processing units * Fourier transform of 1/r * Electron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.806, year: 2015

  17. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  18. (Anti)symmetric multivariate exponential functions and corresponding Fourier transforms

    International Nuclear Information System (INIS)

    Klimyk, A U; Patera, J

    2007-01-01

    We define and study symmetrized and antisymmetrized multivariate exponential functions. They are defined as determinants and antideterminants of matrices whose entries are exponential functions of one variable. These functions are eigenfunctions of the Laplace operator on the corresponding fundamental domains satisfying certain boundary conditions. To symmetric and antisymmetric multivariate exponential functions there correspond Fourier transforms. There are three types of such Fourier transforms: expansions into the corresponding Fourier series, integral Fourier transforms and multivariate finite Fourier transforms. Eigenfunctions of the integral Fourier transforms are found

  19. Utilization of a Microcomputer for the Study of an Iodine Oxidation and Equilibrium Reaction: A Physical Chemistry Experiment.

    Science.gov (United States)

    Julien, L. M.

    1984-01-01

    Describes a physical chemistry experiment which incorporates the use of a microcomputer to enhance understanding of combined kinetic and equilibrium phenomena, to increase experimental capabilities when working with large numbers of students and limited equipment, and for the student to develop a better understanding of experimental design. (JN)

  20. The Convergence Acceleration of Two-Dimensional Fourier Interpolation

    Directory of Open Access Journals (Sweden)

    Anry Nersessian

    2008-07-01

    Full Text Available Hereby, the convergence acceleration of two-dimensional trigonometric interpolation for a smooth functions on a uniform mesh is considered. Together with theoretical estimates some numerical results are presented and discussed that reveal the potential of this method for application in image processing. Experiments show that suggested algorithm allows acceleration of conventional Fourier interpolation even for sparse meshes that can lead to an efficient image compression/decompression algorithms and also to applications in image zooming procedures.

  1. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  2. Chemistry and Heritage

    Science.gov (United States)

    Vittoria Barbarulo, Maria

    2014-05-01

    Chemistry is the central science, as it touches every aspect of the society we live in and it is intertwined with many aspects of our culture; in particular, the strong link between Chemistry and Archaeology and Art History is being explored, offering a penetrating insight into an area of growing interest from an educational point of view. A series of vital and vibrant examples (i.e., ancient bronzes composition, colour changes due to natural pigment decomposition, marble degradation) has been proposed, on one hand, to improve student understanding of the relationship between cultural and scientific issues arising from the examination, the conservation, and the maintenance of cultural Heritage, on the other, to illustrate the role of the underlying Chemistry. In some case studies, a survey of the most relevant atmospheric factors, which are involved in the deterioration mechanisms, has also been presented to the students. First-hand laboratory experiences have been providing an invaluable means of discovering the full and varied world of Chemistry. Furthermore, the promotion of an interdisciplinary investigation of a famous painting or fresco, involving the study of its nature and significance, the definition of its historical context, any related literature, the chemical knowledge of the materials used, may be an excellent occasion to experiment the Content and Language Integrated Learning (CLIL). The aim of this approach is to convey the important message that everyone has the responsibility to care for and preserve Heritage for the benefit of present and future generations.

  3. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  4. Fourier phasing with phase-uncertain mask

    International Nuclear Information System (INIS)

    Fannjiang, Albert; Liao, Wenjing

    2013-01-01

    Fourier phasing is the problem of retrieving Fourier phase information from Fourier intensity data. The standard Fourier phase retrieval (without a mask) is known to have many solutions which cause the standard phasing algorithms to stagnate and produce wrong or inaccurate solutions. In this paper Fourier phase retrieval is carried out with the introduction of a randomly fabricated mask in measurement and reconstruction. Highly probable uniqueness of solution, up to a global phase, was previously proved with exact knowledge of the mask. Here the uniqueness result is extended to the case where only rough information about the mask’s phases is assumed. The exponential probability bound for uniqueness is given in terms of the uncertainty-to-diversity ratio of the unknown mask. New phasing algorithms alternating between the object update and the mask update are systematically tested and demonstrated to have the capability of recovering both the object and the mask (within the object support) simultaneously, consistent with the uniqueness result. Phasing with a phase-uncertain mask is shown to be robust with respect to the correlation in the mask as well as the Gaussian and Poisson noises. (paper)

  5. Sol-Gel Synthesis of a Biotemplated Inorganic Photocatalyst: A Simple Experiment for Introducing Undergraduate Students to Materials Chemistry

    Science.gov (United States)

    Boffa, Vittorio; Yue, Yuanzheng; He, Wen

    2012-01-01

    As part of a laboratory course, undergraduate students were asked to use baker's yeast cells as biotemplate in preparing TiO[subscript 2] powders and to test the photocatalytic activity of the resulting materials. This laboratory experience, selected because of the important environmental implications of soft chemistry and photocatalysis, provides…

  6. Group-invariant finite Fourier transforms

    International Nuclear Information System (INIS)

    Shenefelt, M.H.

    1988-01-01

    The computation of the finite Fourier transform of functions is one of the most used computations in crystallography. Since the Fourier transform involved in 3-dimensional, the size of the computation becomes very large even for relatively few sample points along each edge. In this thesis, there is a family of algorithms that reduce the computation of Fourier transform of functions respecting the symmetries. Some properties of these algorithms are: (1) The algorithms make full use of the group of symmetries of a crystal. (2) The algorithms can be factored and combined according to the prime factorization of the number of points in the sample space. (3) The algorithms are organized into a family using the group structure of the crystallographic groups to make iterative procedures possible

  7. Correlation in the statistical analysis of a reverse Fourier neutron time-of-flight experiment. Pt. 2

    International Nuclear Information System (INIS)

    Tilli, K.J.

    1982-01-01

    The significance of the correlation in the statistical analysis of reverse Fourier neutron time-of-flight observations has been evaluated by applying different methods of estimation to diffraction patterns containing peaks with Gaussian line shapes. Effects of the correlation between adjacent channels of a spectrum arise both from the incorrect weighting of the experiment's independent variables and from the misinterpretation of the number of independent observations in the data. The incorrect weighting bears the greatest effects on the width parameter of a Gaussian profile, and it leads to an increase in the relative weights of the broadest peaks of the diffraction pattern. If the correlation is ignored in the analysis, the estimates obtained for the parameters of a model will not be exactly the same as those evaluated from the minimum variance estimation, in which the correlation is taken into account. However, the differences will not be statistically significant. Nevertheless, the standard deviations will then be underestimated typically by a factor of two, which will have serious consequences on every aspect of the statistical inference. (orig.)

  8. Advantages of Wavelet analysis compared to Fourier analysis for the interpretation of electrochemical noise

    International Nuclear Information System (INIS)

    Espada, L.; Sanjurjo, M.; Urrejola, S.; Bouzada, F.; Rey, G.; Sanchez, A.

    2003-01-01

    Given its simplicity and low cost compared to other types of methodologies, the measurement and interpretation of Electrochemical Noise, is consolidating itself as one of the analysis methods most frequently used for the interpretation of corrosion. As the technique is still evolving, standard treatment methodologies for data retrieved in experiments do not exist yet. To date, statistical analysis and the Fourier analysis are commonly used in order to establish the parameters that may characterize the recording of potential and current electrochemical noise. This study introduces a new methodology based on wavelet analysis and presents its advantages with regards to the Fourier analysis in distinguishes periodical and non-periodical variations in the signal power in time and frequency, as opposed to the Fourier analysis that only considers the frequency. (Author) 15 refs

  9. On the inverse windowed Fourier transform

    OpenAIRE

    Rebollo Neira, Laura; Fernández Rubio, Juan Antonio

    1999-01-01

    The inversion problem concerning the windowed Fourier transform is considered. It is shown that, out of the infinite solutions that the problem admits, the windowed Fourier transform is the "optimal" solution according to a maximum-entropy selection criterion. Peer Reviewed

  10. WebQuest experience: Pre-Service secondary maths and chemistry teachers

    Directory of Open Access Journals (Sweden)

    Erdoğan Halat

    2016-04-01

    Full Text Available The aim of this study was to examine the impact of developing WebQuests on the attention, confidence, relevance and satisfaction, or motivation, of pre-service secondary mathematics and chemistry teachers in the instructional technologies and material design course. There were a total of 67 pre-service teachers, 32 pre-service secondary mathematics teachers and 35 pre-service secondary chemistry teachers involved in this study, which took place over seven weeks. The pre-service teachers in both groups designed their WebQuests suitable for the level of high-school students. The researcher used a questionnaire in the collection of the data to find the motivational level of the participants. It was given to the participants by the researcher before and after the instruction during a single class period. The paired-samples t-test, independent samples t-test and ANCOVA were used in the analysis of the quantitative data. The study showed that designing WebQuests had more effect on the attention, confidence and relevance of the pre-service chemistry teachers than of the pre-service mathematics teachers. However, in general, although developing WebQuests had positive effects on the motivational levels of both pre-service secondary maths and chemistry teachers, there were no statistically significant differences found in relation to the motivational levels of both groups.

  11. Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series

    Science.gov (United States)

    Zhang, Zhihua

    2014-01-01

    Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842

  12. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    Science.gov (United States)

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  13. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  14. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    Science.gov (United States)

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  15. A Note on Fourier and the Greenhouse Effect

    OpenAIRE

    Postma, Joseph E.

    2015-01-01

    Joseph Fourier's discovery of the greenhouse effect is discussed and is compared to the modern conception of the greenhouse effect. It is confirmed that what Fourier discovered is analogous to the modern concept of the greenhouse effect. However, the modern concept of the greenhouse effect is found to be based on a paradoxical analogy to Fourier's greenhouse work and so either Fourier's greenhouse work, the modern conception of the greenhouse effect, or the modern definition of heat is incorr...

  16. Selection of unstable patterns and control of optical turbulence by Fourier plane filtering

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.

    1998-01-01

    We report on selection and stabilization of transverse optical patterns in a feedback mirror experiment. Amplitude filtering in the Fourier plane is used to select otherwise unstable spatial patterns. Optical turbulence observed for nonlinearities far above the pattern formation threshold...

  17. Molecular line parameters for the atmospheric trace molecule spectroscopy experiment

    Science.gov (United States)

    Brown, L. R.; Farmer, C. B.; Toth, R. A.; Rinsland, Curtis P.

    1987-01-01

    During its first mission in 1985 onboard Spacelab 3, the ATMOS (atmospheric trace molecule spectroscopy) instrument, a high speed Fourier transform spectrometer, produced a large number of high resolution infrared solar absorption spectra recorded in the occultation mode. The analysis and interpretation of these data in terms of composition, chemistry, and dynamics of the earth's upper atmosphere required good knowledge of the molecular line parameters for those species giving rise to the absorptions in the atmospheric spectra. This paper describes the spectroscopic line parameter database compiled for the ATMOS experiment and referenced in other papers describing ATMOS results. With over 400,000 entries, the linelist catalogs parameters of 46 minor and trace species in the 1-10,000/cm region.

  18. Three dimensional image reconstruction in the Fourier domain

    International Nuclear Information System (INIS)

    Stearns, C.W.; Chesler, D.A.; Brownell, G.L.

    1987-01-01

    Filtered backprojection reconstruction algorithms are based upon the relationship between the Fourier transform of the imaged object and the Fourier transforms of its projections. A new reconstruction algorithm has been developed which performs the image assembly operation in Fourier space, rather than in image space by backprojection. This represents a significant decrease in the number of operations required to assemble the image. The new Fourier domain algorithm has resolution comparable to the filtered backprojection algorithm, and, after correction by a pointwise multiplication, demonstrates proper recovery throughout image space. Although originally intended for three-dimensional imaging applications, the Fourier domain algorithm can also be developed for two-dimensional imaging applications such as planar positron imaging systems

  19. ETA chemistry experience and assessment on CPP in Korea

    International Nuclear Information System (INIS)

    Park, K.K.; Lee, J.B.; Yoon, S.W.

    2002-01-01

    To reduce FAC of carbon steel in secondary system, water treatment chemistry was converted to ETA at Kori unit 1. Full scale tests to choose the optimum concentration of ETA were conducted and the evaluation after one cycle operation with ETA was also performed. Optimum concentration of ETA in final feed water was determined as 1.8 ppm. At this condition, iron concentration was reduced by 69.8% in final feed water and 69.7% in heater drain compared to ammonia-AVT. The amount of sludge removed from each steam generator was 11.3 kg, which was 88.2% lower than that of ammonia-AVT. With successful results of Kori unit 1, Applications of ETA were extended to other PWRs. Iron transport was found to be reduced significantly. Also, the output of electric power increased by 9 MWe at Young-Kwang unit 1. However, fouling of ion exchange resin in CPP was appeared. ETA appears to have a solvent function in the initial stage of ETA chemistry. Resin was restored when the fouling was removed with hot water and sodium bicarbonates. In particular, the MR type anion resin may be effective in resistance to fouling when ETA-chemistry is used. (authors)

  20. Poster 6: Influence of traces elements in the organic chemistry of upper atmosphere of Titan

    Science.gov (United States)

    Mathe, Christophe; Carrasco, Nathalie; Trainer, Melissa G.; Gautier, Thomas; Gavilan, Lisseth; Dubois, David; Li, Xiang

    2016-06-01

    In the upper atmosphere of Titan, complex chemistry leads to the formation of organic aerosols. Since the work of Khare et al. in 1984, several experiments investigated the formation of Titan aerosols, so called tholins, in the laboratory. It has been suggested that nitrogen-containing compounds may contribute significantly to the aerosols formation process. In this study, we focused on the influence of pyridine, the simplest nitrogenous aromatic hydrocarbon, on the chemistry of Titan's atmosphere and on aerosol formation. To assess the effect of pyridine on aerosol formation chemistry, we used two different experimental setups : a capacitively coupled radio-frequency (electronic impact), and a VUV Deuterium lamp (photochemistry) in a collaboration between LATMOS (Guyancourt) and NASA-GSFC (Greenbelt), respectively. Aerosols produced with both setups were first analyzed using a FTIR-ATR (Fourier Transform Infrared spectroscopy - Attenuated Total Reflection) with a spectral range of 4000-800 cm-1 to characterize their optical properties. Next the samples were analysed using a Bruker Autoflex Speed MALDI mass spectrometer with a m/z range up to 2000 Da in order to infer their composition. Infrared spectroscopy analysis showed that tholins produced with a nitrogen-methane gas mixture (95:5) and nitrogenpyridine gas mixture (99:250ppm) present very similar spectra features. Tholins produced with a mixture of nitrogenmethane-pyridine (99:1:250ppm) do not present aliphatic CH2 or CH3 vibrational signatures. This could indicate a cyclic polymerization by a pyridine skeleton. Mass spectrometry is still in progress to confirm this.

  1. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.

    Science.gov (United States)

    Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar

    2016-01-01

    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy

  2. Fourier techniques and applications

    CERN Document Server

    1985-01-01

    The first systematic methods of Fourier analysis date from the early eighteenth century with the work of Joseph Fourier on the problem of the flow of heat. (A brief history is contained in the first paper.) Given the initial tempera­ ture at all points of a region, the problem was to determine the changes in the temperature distribution over time. Understanding and predicting these changes was important in such areas as the handling of metals and the determination of geological and atmospheric temperatures. Briefly, Fourier noticed that the solution of the heat diffusion problem was simple if the initial temperature dis­ tribution was sinusoidal. He then asserted that any distri­ bution can be decomposed into a sum of sinusoids, these being the harmonics of the original function. This meant that the general solution could now be obtained by summing the solu­ tions of the component sinusoidal problems. This remarkable ability of the series of sinusoids to describe all "reasonable" functions, the sine qua n...

  3. A new twist to fourier transforms

    CERN Document Server

    Meikle, Hamish D

    2004-01-01

    Making use of the inherent helix in the Fourier transform expression, this book illustrates both Fourier transforms and their properties in the round. The author draws on elementary complex algebra to manipulate the transforms, presenting the ideas in such a way as to avoid pages of complicated mathematics. Similarly, abbreviations are not used throughout and the language is kept deliberately clear so that the result is a text that is accessible to a much wider readership.The treatment is extended with the use of sampled data to finite and discrete transforms, the fast Fourier transform, or FFT, being a special case of a discrete transform. The application of Fourier transforms in statistics is illustrated for the first time using the examples operational research and later radar detection. In addition, a whole chapter on tapering or weighting functions is added for reference. The whole is rounded off by a glossary and examples of diagrams in three dimensions made possible by today's mathematics programs

  4. The Contribution of Constructivist Instruction Accompanied by Concept Mapping in Enhancing Pre-Service Chemistry Teachers' Conceptual Understanding of Chemistry in the Laboratory Course

    Science.gov (United States)

    Aydin, Sevgi; Aydemir, Nurdane; Boz, Yezdan; Cetin-Dindar, Ayla; Bektas, Oktay

    2009-01-01

    The present study aimed to evaluate whether a chemistry laboratory course called "Laboratory Experiments in Science Education" based on constructivist instruction accompanied with concept mapping enhanced pre-service chemistry teachers' conceptual understanding. Data were collected from five pre-service chemistry teachers at a university…

  5. Wigner distribution and fractional Fourier transform

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.; Boashash, B.

    2003-01-01

    We have described the relationship between the fractional Fourier transform and the Wigner distribution by using the Radon-Wigner transform, which is a set of projections of the Wigner distribution as well as a set of squared moduli of the fractional Fourier transform. We have introduced the concept

  6. Fourier plane imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  7. U.S. experience with hydrogen water chemistry in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Head, R.A.; Indig, M.E.; Ruiz, C.P.; Simpson, J.L.

    1988-01-01

    Hydrogen water chemistry in boiling water reactors is currently being adopted by many utilities in the U.S., with eleven units having completed preimplementation test programs, four units operating permanently with hydrogen water chemistry, and six other units in the process of installing permanent equipment. Intergranular stress corrosion cracking protection is required for the recirculation piping system and other regions of the BWR systems. The present paper explores progress in predicting and monitoring hydrogen water chemistry response in these areas. Testing has shown that impurities can play an important role in hydrogen water chemistry. Evaluation of their effects are also performed. Both computer modeling and in plant measurements show that each plant will respond uniquely to feedwater hydrogen addition. Thus, each plant has its own unique hydrogen requirement for recirculation system protecion. Furthermore, the modeling, and plant measurements show that different regions of the BWR respond differently to hydrogen injection. Thus, to insure protection of components other than the recirculation systems may require more (or less) hydrogen demand than indicated by the recirculation system measurements. In addition, impurities such as copper can play a significant role in establishing hydrogen demand. (Nogami, K.)

  8. Touring the Tomato: A Suite of Chemistry Laboratory Experiments

    Science.gov (United States)

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E.

    2013-01-01

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical

  9. Replica Fourier Transform: Properties and applications

    International Nuclear Information System (INIS)

    Crisanti, A.; De Dominicis, C.

    2015-01-01

    The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in conjunction of the replica method used to study thermodynamics properties of disordered systems such as spin glasses. Its definition is presented in a systematic and simple form and its use illustrated with some representative examples. In particular we give a detailed discussion of the diagonalization in the Replica Fourier Space of the Hessian matrix of the Gaussian fluctuations about the mean field saddle point of spin glass theory. The general results are finally discussed for a generic spherical spin glass model, where the Hessian can be computed analytically

  10. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    Science.gov (United States)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was

  11. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    Science.gov (United States)

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  12. Chemistry experiences from a containment fire at Ringhals unit 2

    International Nuclear Information System (INIS)

    Arvidsson, Bengt; Svanberg, Pernilla; Bengtsson, Bernt

    2012-09-01

    containment, together with 1000 smear test (cotton pads) for chloride analysis in the chemistry laboratory to evaluate contamination levels and verify the cleaning procedures and results. The main chemistry issues and concerns have been related to surface and water contamination of chloride, bromide, carbon, lead, copper and zinc from corrosion point of view. Lack of specification and guidelines for several of this parameters forced Ringhals to establish some internal guidelines and technical basis for clean up and restart of the plant. The solubility of soot particles was found to be very low and more adhesive to surfaces at high temperature, this caused some concerns and actions to clean up reactor coolant from soot particles before fuel reload and heating. An extensive review of stainless steel Outer Diameter Stress Corrosion Cracking (ODSCC) was performed independently from the fire incident during the outage, indicating a high number of crack indications of 1-3 mm depth, all within acceptance criteria for material thickness and operation. The indications are more likely to be addressed to almost 40 years of operation in marine atmosphere then the fire itself, even if the chloride contamination from fire may have supported some propagation. All found cracks were grinded according to authority requirements and no pipes needed to be replaced. The heating and start-up of Ringhals 2 could be done successfully without any water chemistry deviations due to the fire and the following cycle have been normal. The cleanness of R2 containment surfaces are now highly improved compared to earlier outages or other sea-cooled power plants. However, an extended program has been introduced to follow external surface chloride contamination built up in containment more frequently, together with inspections of ODSCC. The workload from the containment fire has been extreme and the chemistry and corrosion experiences several. This paper gives a summary of the results, challenges, solutions and

  13. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

    Science.gov (United States)

    Mobli, Mehdi; Hoch, Jeffrey C

    2014-11-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. An introduction to Fourier series and integrals

    CERN Document Server

    Seeley, Robert T

    2006-01-01

    This compact guide emphasizes the relationship between physics and mathematics, introducing Fourier series in the way that Fourier himself used them: as solutions of the heat equation in a disk. 1966 edition.

  15. The morphing of geographical features by Fourier transformation.

    Science.gov (United States)

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  16. Fourier Series

    Indian Academy of Sciences (India)

    polynomials are dense in the class of continuous functions! The body of literature dealing with Fourier series has reached epic proportions over the last two centuries. We have only given the readers an outline of the topic in this article. For the full length episode we refer the reader to the monumental treatise of. A Zygmund.

  17. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  18. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    Science.gov (United States)

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  19. Water chemistry experience following an extensive power up-rate in Oskarshamn 3 BWR

    International Nuclear Information System (INIS)

    Wegemar, Boerje; Nilsson, Jimmy; Lejon Johan; Bergfors, Asa; Arnberg, Bo

    2012-09-01

    The Swedish Oskarshamn 3 BWR plant, operated by OKG, was first connected to the grid in 1985. The plant has been power up-rated in two steps; from the original design, 3020 MWth, to 3300 MWth (109%, 1989) and recently to 3900 MWth (129%, 2009). Westinghouse Electric Sweden AB (former ASEA-Atom, OEM of the plant) was rewarded a major contract in the recently implemented up-rating project, the PULS project. The PULS project is quite unique since no operating experience has to date been reported from a similar major power up-rate in a BWR plant. Water chemistry experience from the first period of operation following the implementation of the PULS project is reported and discussed in the paper. Reported chemistry and radiochemistry measurements in feedwater (FW) and reactor water (RW) include corrosion products, activated corrosion products, dissolved oxygen and impurities like chloride, sulfate etc. Furthermore, a comparison of water quality prior to implementation of the PULS project is included. Several process systems have been modified, one of them being the condensate cleanup system (CCU), a Pre-coat filter system. The design criteria for the CCU system include the filter run-lengths, pressure drop before back-washing and requirements on water chemistry quality. The paper describes in some detail the CCU system modifications being implemented in order to fulfil the design criterion. CCU cleanup efficiency, operating temperature and influence of hydrogen peroxide on the CCU resin are all important issues being covered in the paper. As for the latter, it is well known that oxygen and hydrogen peroxide (from radiolysis in the core region) might cause partial deterioration of CCU standard cation resin resulting in increased RW sulfate concentrations. This aspect is covered in the paper as well. The reactor water cleanup system (RWCU) in Oskarshamn 3 consists of deep bed ion exchange filters (mixed bed filter). The purpose of RWCU is to maintain a low level of

  20. Some Applications of Fourier's Great Discovery for Beginners

    Science.gov (United States)

    Kraftmakher, Yaakov

    2012-01-01

    Nearly two centuries ago, Fourier discovered that any periodic function of period T can be presented as a sum of sine waveforms of frequencies equal to an integer times the fundamental frequency [omega] = 2[pi]/T (Fourier's series). It is impossible to overestimate the importance of Fourier's discovery, and all physics or engineering students…

  1. The Effect of Chemistry Laboratory Activities on Students' Chemistry Perception and Laboratory Anxiety Levels

    Science.gov (United States)

    Aydogdu, Cemil

    2017-01-01

    Chemistry lesson should be supported with experiments to understand the lecture effectively. For safety laboratory environment and to prevent laboratory accidents; chemical substances' properties, working principles for chemical substances' usage should be learnt. Aim of the present study was to analyze the effect of experiments which depend on…

  2. Theory and experiment of Fourier-Bessel field calculation and tuning of a pulsed wave annular array

    DEFF Research Database (Denmark)

    Fox, Paul D.; Jiqi, Cheng; Jian-yu, Lu

    2003-01-01

    A one-dimensional (1D) Fourier-Bessel series method for computing and tuning (beamforming) the linear lossless field of flat pulsed wave annular arrays is developed and supported with both numerical simulation and experimental verification. The technique represents a new method for modeling and t...

  3. Recent experience about the influence of primary coolant and shutdown chemistry on cobalt activity at Beznau NPP

    International Nuclear Information System (INIS)

    Mailand, I.; Venz, H.

    2007-01-01

    The Beznau nuclear power plant comprises two identical 380 MWe PWR units, commissioned in 1969 and 1971. The surfaces of the new steam generator tube material, Inconel 690, are the main source of 58 Co. The 60 Co originates predominantly from the Cobalt alloy, Stellite, which is installed in valves and pump bearings because of the very good hardness of this material. By means of optimised shutdown chemistry it is possible to reduce the amount of NiO on the fuel rods, leading to reduced Co-58 peaks in subsequent cycles. The optimised shutdown chemistry during the past few years and especially the strict separation of acid-reducing phase from the acid-oxidising phase as well as the results of studies and the resulting operational experiences are important basics for the actual operation mode of the Beznau NPP. (orig.)

  4. The Quantitative Resolution of a Mixture of Group II Metal Ions by Thermometric Titration with EDTA. An Analytical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; Popham, Ronald E.

    1983-01-01

    Presents an experiment in thermometric titration used in an analytic chemistry-chemical instrumentation course, consisting of two titrations, one a mixture of calcium and magnesium, the other of calcium, magnesium, and barium ions. Provides equipment and solutions list/specifications, graphs, and discussion of results. (JM)

  5. Areva's water chemistry guidebook with chemistry guidelines for next generation plants (AREVA EPRTM reactors)

    International Nuclear Information System (INIS)

    Ryckelynck, N.; Chahma, F.; Caris, N.; Guillermier, P.; Brun, C.; Caron-Charles, M.; Lamanna, L.; Fandrich, J.; Jaeggy, M.; Stellwag, B.

    2012-09-01

    Over the years, AREVA globally has maintained a strong expertise in LWR water chemistry and has been focused on minimizing short-term and long-term detrimental effects of chemistry for startup, operation and shutdown chemistry for all key plant components (material integrity and reliability, promote optimal thermal performances, etc.) and fuel. Also AREVA is focused on minimizing contamination and equipment/plant dose rates. Current Industry Guidelines (EPRI, VGB, etc.) provide utilities with selected chemistry guidance for the current operating fleet. With the next generation of PWR plants (e.g. AREVA's EPR TM reactor), materials of construction and design have been optimized based on industry lessons learned over the last 50+ years. To support the next generation design, AREVA water chemistry experts, have subsequently developed a Chemistry Guidebook with chemistry guidelines based on an analysis of the current international practices, plant operating experience, R and D data and calculation codes now available and/or developed by AREVA. The AREVA LWR chemistry Guidebook can be used to help resolve utility and safety authority questions and addresses regulation requirement questions/issues for next generation plants. The Chemistry Guidebook provides water chemistry guidelines for primary coolant, secondary side circuit and auxiliary systems during startup, normal operation and shutdown conditions. It also includes conditioning and impurity limits, along with monitoring locations and frequency requirements. The Chemistry Guidebook Guidelines will be used as a design reference for AREVA's next generation plants (e.g. EPR TM reactor). (authors)

  6. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Area de Ingenieria en Recursos Energeticos, Iztapalapa (Mexico)

    2014-07-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  7. Non-Fourier Vernotte-Cattaneo numerical model for heat conduction in a BWR fuel rod

    International Nuclear Information System (INIS)

    Espinosa-Martinez, E.G.; Vazquez-Rodriguez, A.; Varela-Ham, J.R.; Espinosa-Paredes, G.

    2014-01-01

    A fuel rod mathematical model based on transient heat conduction as constitutive Non-Fourier law for Light Water Reactors (LWRs) transient analysis is presented. The structure of the fuel pellet is affected due to high temperatures and irradiation, which eventually produce fracture or cracks. In principle the fractures are saturated of gas. Then, the Fourier law of the heat conduction is not strictly applicable to describe these phenomena, where the physical properties such as thermal conductivity, heat capacity and density correspond to a heterogeneous material due to gas, and therefore the thermal diffusion process due to molecular transport in the fuel pellet is affected. From the point of view of nuclear reactor safety analysis, the heat transfer from the fuel to the coolant is crucial and superheating of the wall can cause the cladding failure. In the classical theory of diffusion, the Fourier law of heat conduction is used to describe the relation between the heat flux vector and the temperature gradient assuming that the heat propagation speeds are infinite. The Non-Fourier approach presented in this work eliminates the assumption of an infinite thermal wave speed, therefore time-dependent heat sources were considered in the fuel rod heat transfer model. The numerical experiments in a BWR, show that the Non-Fourier approach is crucial in the pressurization transients such as turbine trip and reactor isolation. (author)

  8. Surface Fourier-transform lens using a metasurface

    International Nuclear Information System (INIS)

    Li, Yun Bo; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun

    2015-01-01

    We propose a surface (or 2D) Fourier-transform lens using a gradient refractive index (GRIN) metasurface in the microwave band, which is composed of sub-wavelength quasi-periodical metallic patches on a grounded dielectric substrate. Such a metasurface supports the transverse magnetic (TM) modes of surface waves. To gradually change the size of textures, we obtain different surface refractive indices, which can be tailored to fit the required refractive-index profile of a surface Fourier-transform lens. According to the theory of spatial Fourier transformation, we make use of the proposed lens to realize surface plane-wave scanning under different feeding locations. The simulation and experimental results jointly confirm the validity of the surface Fourier-transform lens. The proposed method can also be extended to the terahertz frequency. (paper)

  9. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  10. Projective Fourier duality and Weyl quantization

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Saeger, L.A.

    1996-08-01

    The Weyl-Wigner correspondence prescription, which makes large use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for non-commutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. An Abelian and a symmetric projective Kac algebras are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras. (author). 29 refs

  11. ANT International chemistry update and best practices

    International Nuclear Information System (INIS)

    Nordmann, F.; Odar, S.; Venz, H.; Kysela, J.; Ruehle, W.; Riess, R.

    2010-01-01

    There is an increasing number of Nuclear Power Plants (NPP) in various countries. Their chemistry practices are different due to the variety of designs and experiences while in the past the view was more monolithic. This is allowing a very rich experience that is extremely difficult to fully be aware of. ANT International is now collecting and evaluating these data as well as related R and D Information. This allows interested parties to have an easier access to the various sources of information. The chemistry experts associated to ANT International have been gathering a comprehensive detailed view of: The numerous laboratory data gained all over the world during the past decades; The extensive plant operating experiences with various types of chemistry strategies, crosschecked for various types of reactors designs and materials; An experienced international knowledge able to give the comprehensive overview that young engineers now in charge of many other activities are unable to fully cover. This paper gives the core conclusions of the detailed ANT International reports and results that have recently been gathered in the area of chemistry. It particularly covers: The primary water chemistry and its relation with radionuclides, dose rates and fuel behaviour; The secondary water chemistry focusing on its rationale selection depending on materials, design and other constraints; The start up and shutdown chemistry with it large variety of practices hardly understandable even for some experts; and, The maintenance remedies such as decontamination, steam generator cleaning and its alternate options. Various types of Reactor designs (PWR, VVER, BWR, CANDU®) are considered. The different materials, for example the impact of steam generator tubing and its evolution on the secondary water chemistry rationale or on the radioactivity built-up in the primary coolant, are described. The ways to improve the plant operation with a long term reliability as well as the most

  12. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    Science.gov (United States)

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  13. Generalized Fourier slice theorem for cone-beam image reconstruction.

    Science.gov (United States)

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  14. Corrected Fourier series and its application to function approximation

    Directory of Open Access Journals (Sweden)

    Qing-Hua Zhang

    2005-01-01

    Full Text Available Any quasismooth function f(x in a finite interval [0,x0], which has only a finite number of finite discontinuities and has only a finite number of extremes, can be approximated by a uniformly convergent Fourier series and a correction function. The correction function consists of algebraic polynomials and Heaviside step functions and is required by the aperiodicity at the endpoints (i.e., f(0≠f(x0 and the finite discontinuities in between. The uniformly convergent Fourier series and the correction function are collectively referred to as the corrected Fourier series. We prove that in order for the mth derivative of the Fourier series to be uniformly convergent, the order of the polynomial need not exceed (m+1. In other words, including the no-more-than-(m+1 polynomial has eliminated the Gibbs phenomenon of the Fourier series until its mth derivative. The corrected Fourier series is then applied to function approximation; the procedures to determine the coefficients of the corrected Fourier series are illustrated in detail using examples.

  15. Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object.

    Science.gov (United States)

    Malm, Erik B; Monserud, Nils C; Brown, Christopher G; Wachulak, Przemyslaw W; Xu, Huiwen; Balakrishnan, Ganesh; Chao, Weilun; Anderson, Erik; Marconi, Mario C

    2013-04-22

    We demonstrate single and multi-shot Fourier transform holography with the use of a tabletop extreme ultraviolet laser. The reference wave was produced by a Fresnel zone plate with a central opening that allowed the incident beam to illuminate the sample directly. The high reference wave intensity allows for larger objects to be imaged compared to mask-based lensless Fourier transform holography techniques. We obtain a spatial resolution of 169 nm from a single laser pulse and a resolution of 128 nm from an accumulation of 20 laser pulses for an object ~11x11μm(2) in size. This experiment utilized a tabletop extreme ultraviolet laser that produces a highly coherent ~1.2 ns laser pulse at 46.9 nm wavelength.

  16. Optimization of secondary side water chemistry in TQNPC

    International Nuclear Information System (INIS)

    Fang Lan

    2007-01-01

    This article briefly introduces the types of corrosion that may be happened on steam generator heat exchange tubes in Qinshan CANDU6 nuclear power station and chemical effects on corrosion. The water chemistry optimization on minimzing deposition and corrosion of steam generators are introduced. The article summarizes the experiences of plant chemistry control and morpholine operation, providing guidance for optimizing secondary side water chemistry in the future, giving reference on selection of secondary side alkali agent and setting water chemistry specifications for other nuclear power stations. (authors)

  17. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment

    International Nuclear Information System (INIS)

    Cousin, F.

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  18. Fourier transform zero field NMR and NQR

    International Nuclear Information System (INIS)

    Zax, D.B.

    1985-01-01

    In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI

  19. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  20. VGB primary and secondary side water chemistry guidelines for PWR plants

    International Nuclear Information System (INIS)

    Neder, H.; Wolter, D.; Staudt, U.

    2007-01-01

    The recent revision of the VGB Water Chemistry Guidelines was issued in 2005 and published in the second half of 2006. These guidelines are based on the primary and secondary side operating chemistry experience with all Siemens designed pressurized water reactors gained since the beginning of the 1980s. These guidelines cover For the primary side chemistry Modified lithium boron chemistry, Zinc chemistry for dose rate reduction, Enriched boric acid (EBA) chemistry for high duty core design For the secondary side chemistry High all-volatile treatment (AVT) chemistry (high pH operation) Oxygen injection in the secondary side Especially for the secondary side chemistry, compared with the water chemistry guidelines of other organizations worldwide, these Guidelines are less stringent, providing more operational flexibility to the plant operation, and can be applied for all new designs of steam generators with egg-crates or broached hole tube supports and with I 690TT or I 800 tubing materials. This paper gives an overview of the 2006 revision of the VGB Water Chemistry Guidelines for PWR plants and describes the fundamental goals of water chemistry operation strategies. In addition, the reasons for the selected control parameters and action levels, to achieve an adequate plant performance, are presented based on the operating experience. (orig.)

  1. Fourier transforms in radar and signal processing

    CERN Document Server

    Brandwood, David

    2011-01-01

    Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a crit

  2. Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry

    Science.gov (United States)

    Knutson, Cassandra M.; Schneiderman, Deborah K.; Yu, Ming; Javner, Cassidy H.; Distefano, Mark D.; Wissinger, Jane E.

    2017-01-01

    With new K-12 national science standards emerging, there is an increased need for experiments that integrate engineering into the context of society. Here we describe a chemistry experiment that combines science and engineering principles while introducing basic polymer and green chemistry concepts. Using medical sutures as a platform for…

  3. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  4. Fan beam image reconstruction with generalized Fourier slice theorem.

    Science.gov (United States)

    Zhao, Shuangren; Yang, Kang; Yang, Kevin

    2014-01-01

    For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N^3), where N is the number of pixel in one dimension.

  5. Fourier spectral simulations for wake fields in conducting cavities

    International Nuclear Information System (INIS)

    Min, M.; Chin, Y.-H.; Fischer, P.F.; Chae, Y.-Chul; Kim, K.-J.

    2007-01-01

    We investigate Fourier spectral time-domain simulations applied to wake field calculations in two-dimensional cylindrical structures. The scheme involves second-order explicit leap-frogging in time and Fourier spectral approximation in space, which is obtained from simply replacing the spatial differentiation operator of the YEE scheme by the Fourier differentiation operator on nonstaggered grids. This is a first step toward investigating high-order computational techniques with the Fourier spectral method, which is relatively simple to implement.

  6. Validity And Practicality of Experiment Integrated Guided Inquiry-Based Module on Topic of Colloidal Chemistry for Senior High School Learning

    Science.gov (United States)

    Andromeda, A.; Lufri; Festiyed; Ellizar, E.; Iryani, I.; Guspatni, G.; Fitri, L.

    2018-04-01

    This Research & Development study aims to produce a valid and practical experiment integrated guided inquiry based module on topic of colloidal chemistry. 4D instructional design model was selected in this study. Limited trial of the product was conducted at SMAN 7 Padang. Instruments used were validity and practicality questionnaires. Validity and practicality data were analyzed using Kappa moment. Analysis of the data shows that Kappa moment for validity was 0.88 indicating a very high degree of validity. Kappa moments for the practicality from students and teachers were 0.89 and 0.95 respectively indicating high degree of practicality. Analysis on the module filled in by students shows that 91.37% students could correctly answer critical thinking, exercise, prelab, postlab and worksheet questions asked in the module. These findings indicate that the integrated guided inquiry based module on topic of colloidal chemistry was valid and practical for chemistry learning in senior high school.

  7. Present status of water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Berge, Ph.; Fiquet, J.M.

    1991-01-01

    As operational experience increases, solutions to mitigate corrosion problems of existing plants are found. They also, hopefully, can solve the corrosion problems for future reactors when materials and design can be modified. Improvement of chemistry solved numerous early problems in PWRs (denting, pitting) and limitated other phenomena such as erosion-corrosion of steels in the secondary circuit. Chemistry has not been successful for other problems such as primary-side cracking of PWRs and has been moderately efficient for stress corrosion cracking or IGA of tubes at the support plate. Based on the experience, several recommendations for an optimum chemistry can be formulated. (author)

  8. A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system

    International Nuclear Information System (INIS)

    Cai Jia-Xiang; Wang Yu-Shun

    2013-01-01

    We derive a new method for a coupled nonlinear Schrödinger system by using the square of first-order Fourier spectral differentiation matrix D 1 instead of traditional second-order Fourier spectral differentiation matrix D 2 to approximate the second derivative. We prove the proposed method preserves the charge and energy conservation laws exactly. In numerical tests, we display the accuracy of numerical solution and the role of the nonlinear coupling parameter in cases of soliton collisions. Numerical experiments also exhibit the excellent performance of the method in preserving the charge and energy conservation laws. These numerical results verify that the proposed method is both a charge-preserving and an energy-preserving algorithm

  9. Fourier series and orthogonal polynomials

    CERN Document Server

    Jackson, Dunham

    2004-01-01

    This text for undergraduate and graduate students illustrates the fundamental simplicity of the properties of orthogonal functions and their developments in related series. Starting with a definition and explanation of the elements of Fourier series, the text follows with examinations of Legendre polynomials and Bessel functions. Boundary value problems consider Fourier series in conjunction with Laplace's equation in an infinite strip and in a rectangle, with a vibrating string, in three dimensions, in a sphere, and in other circumstances. An overview of Pearson frequency functions is followe

  10. Design performances and chemistry program supporting the FA3 /UKEPRTM activity management: experience and modeling balance

    International Nuclear Information System (INIS)

    Tigeras, Arancha; Clinard, Marie-Helene; Chahma, Farah; Jolivet, Patrick; Bremnes, Oystein; Bachet, Martin

    2012-09-01

    EPR TM reactor accounts with an evolutionary design that provides the appropriate features to ensure the safety implementation of different chemistry and radiochemistry options. ALARP considerations have been taken into account by EDF-AREVA for making decisions relating to the activity management in the primary circuit of Flamanville 3-EPR TM and UK-EPR TM reactors. The water chemistry and radiochemistry concept implemented in FA3-EPR TM and UK-EPR TM reactors is the result of an exhaustive selection process based on the balance between the theoretical developments, the laboratory tests and the NPP experience concerning the diverse areas associated with: - The source term identification and characterization: The understanding of the origin and behavior of fission products/actinides, corrosion products and activation products constitutes the essential support for the selection of suitable parameters and criteria to monitor the system integrity, the tramp-uranium and radiation build-up and the discharges to the environment. - The source term quantification: The balance between the baseline data from PWR forerunner reactors and the assessments performed by modeling constitutes the major demonstration of the source term accuracy. This approach ensures that activity risks are understood and can be managed with the EPR TM design options. - The EPR TM design options evaluation: The sensitivity analysis results show the influence of the fuel management, the material choice and the chemistry conditioning on several domains such as the activity coolant and the fuel/ex-core crud management. EDF-AREVA demonstrates by means of this process that the design, sizing and chemistry conditioning of EPR TM reactor primary circuit are adapted to guarantee the correct activity management. The methodology developed, based on qualitative and quantitative assessments, intends to propose to the Nuclear Industry several alternatives for evaluating and/or improving the compliance with

  11. q-Generalization of the inverse Fourier transform

    International Nuclear Information System (INIS)

    Jauregui, M.; Tsallis, C.

    2011-01-01

    A wide class of physical distributions appears to follow the q-Gaussian form, which plays the role of attractor according to a q-generalized Central Limit Theorem, where a q-generalized Fourier transform plays an important role. We introduce here a method which determines a distribution from the knowledge of its q-Fourier transform and some supplementary information. This procedure involves a recently q-generalized representation of the Dirac delta and the class of functions on which it acts. The present method conveniently extends the inverse of the standard Fourier transform, and is therefore expected to be very useful in the study of many complex systems. - Highlights: → We present a method to invert the q-Fourier transform of a distribution. → We illustrate when Dirac delta can be represented using q-exponentials. → We describe a family of functions for which this new representation works.

  12. Fast Fourier single-pixel imaging via binary illumination.

    Science.gov (United States)

    Zhang, Zibang; Wang, Xueying; Zheng, Guoan; Zhong, Jingang

    2017-09-20

    Fourier single-pixel imaging (FSI) employs Fourier basis patterns for encoding spatial information and is capable of reconstructing high-quality two-dimensional and three-dimensional images. Fourier-domain sparsity in natural scenes allows FSI to recover sharp images from undersampled data. The original FSI demonstration, however, requires grayscale Fourier basis patterns for illumination. This requirement imposes a limitation on the imaging speed as digital micro-mirror devices (DMDs) generate grayscale patterns at a low refreshing rate. In this paper, we report a new strategy to increase the speed of FSI by two orders of magnitude. In this strategy, we binarize the Fourier basis patterns based on upsampling and error diffusion dithering. We demonstrate a 20,000 Hz projection rate using a DMD and capture 256-by-256-pixel dynamic scenes at a speed of 10 frames per second. The reported technique substantially accelerates image acquisition speed of FSI. It may find broad imaging applications at wavebands that are not accessible using conventional two-dimensional image sensors.

  13. Water chemistry guidelines for BWRs

    International Nuclear Information System (INIS)

    Bilanin, W.J.; Jones, R.L.; Welty, C.S.

    1984-01-01

    Guidelines for BWR water chemistry control have been prepared by a committee of experienced utility industry personnel sponsored by the BWR Owners Group on IGSCC Research and coordinated by the Electric Power Research Institute. The guidelines are based on extensive plant operational experience and laboratory research data. The purpose of the guidelines is to provide guidance to the electric utility industry on water chemistry control to help reduce corrosion, especially stress corrosion cracking, in boiling water reactors

  14. Some remarks on applied radiation chemistry

    International Nuclear Information System (INIS)

    Sakurada, I.

    1979-01-01

    Radiation induced polymerization and grafting are two important reactions in the processing. Numerous reports concerning these subjects have appeared in the literature. There are, however, still many problems which have been left unsolved or neglected. Several problems will be taken up in this paper and discussed on experiments carried out in Osaka Laboratory for Radiation Chemistry and Department of Polymer Chemistry of Kyoto University. (author)

  15. Subwavelength Fourier-transform imaging without a lens or a beamsplitter

    International Nuclear Information System (INIS)

    Liu Rui-Feng; Yuan Xin-Xing; Fang Yi-Zhen; Zhang Pei; Zhou Yu; Gao Hong; Li Fu-Li

    2014-01-01

    The fourier-transform patterns of an object are usually observed in the far-field region or obtained in the near-field region with the help of lenses. Here we propose and experimentally demonstrate a scheme of Fourier-transform patterns in the Fresnel diffraction region with thermal light. In this scheme, neither a lens nor a beamsplitter is used, and only one single charge coupled device (CCD) is employed. It means that dividing one beam out of a light source into signal and reference beams is not as necessary as the one done by the use of a beamsplitter in usual ghost interference experiments. Moreover, the coincidence measurement of two point detectors is not necessary and data recorded on a single CCD are sufficient for reconstructing the ghost diffraction patterns. The feature of the scheme promises a great potential application in the fields of X-ray and neutron diffraction imaging processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Computational radiation chemistry: the emergence of a new field

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Kroh, J.

    1991-01-01

    The role of the computer experiment as an information source, which is complementary to the ''real'' experiment in radiation chemistry, is discussed. The discussion is followed by a brief review of some of the simulation techniques, which have been recently applied to the problems of radiation chemistry: ion recombination in spurs and tracks of ionization, electron tunnelling in low-temperature glasses, electron localization in disordered media. (author)

  17. Double Fourier analysis for Emotion Identification in Voiced Speech

    International Nuclear Information System (INIS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P, D.; Quintero, O.L.

    2016-01-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented. (paper)

  18. On the use of plant emitted volatile organic compounds for atmospheric chemistry simulation experiments

    Science.gov (United States)

    Kiendler-Scharr, A.; Hohaus, T.; Yu, Z.; Tillmann, R.; Kuhn, U.; Andres, S.; Kaminski, M.; Wegener, R.; Novelli, A.; Fuchs, H.; Wahner, A.

    2015-12-01

    Biogenic volatile organic compounds (BVOC) contribute to about 90% of the emitted VOC globally with isoprene being one of the most abundant BVOC (Guenther 2002). Intensive efforts in studying and understanding the impact of BVOC on atmospheric chemistry were undertaken in the recent years. However many uncertainties remain, e.g. field studies have shown that in wooded areas measured OH reactivity can often not be explained by measured BVOC and their oxidation products (e.g. Noelscher et al. 2012). This discrepancy may be explained by either a lack of understanding of BVOC sources or insufficient understanding of BVOC oxidation mechanisms. Plants emit a complex VOC mixture containing likely many compounds which have not yet been measured or identified (Goldstein and Galbally 2007). A lack of understanding BVOC sources limits bottom-up estimates of secondary products of BVOC oxidation such as SOA. Similarly, the widespread oversimplification of atmospheric chemistry in simulation experiments, using single compound or simple BVOC mixtures to study atmospheric chemistry processes limit our ability to assess air quality and climate impacts of BVOC. We will present applications of the new extension PLUS (PLant chamber Unit for Simulation) to our atmosphere simulation chamber SAPHIR. PLUS is used to produce representative BVOC mixtures from direct plant emissions. We will report on the performance and characterization of the newly developed chamber. As an exemplary application, trees typical of a Boreal forest environment were used to compare OH reactivity as directly measured by LIF to the OH reactivity calculated from BVOC measured by GC-MS and PTRMS. The comparison was performed for both, primary emissions of trees without any influence of oxidizing agents and using different oxidation schemes. For the monoterpene emitters investigated here, we show that discrepancies between measured and calculated total OH reactivity increase with increasing degree of oxidation

  19. Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Li, Yimin

    2009-11-21

    Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.

  20. Synthesis and Self-Assembly of the "Tennis Ball" Dimer and Subsequent Encapsulation of Methane. An Advanced Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Hof, Fraser; Palmer, Liam C.; Rebek, Julius, Jr.

    2001-11-01

    While important to the biological and materials sciences, noncovalent interactions, self-folding, and self-assembly often receive little discussion in the undergraduate chemistry curriculum. The synthesis and NMR characterization of a molecular "tennis ball" in an advanced undergraduate organic chemistry laboratory is a simple and effective way to introduce the relevance of these concepts. In appropriate solvents, the monomer dimerizes through a seam of eight hydrogen bonds with encapsulation of a guest molecule and symmetry reminiscent of a tennis ball. The entire experiment can be completed in three lab periods, however large-scale synthetic preparation of the starting monomer by a teaching assistant would reduce the laboratory to a single lab period for NMR studies.

  1. Fourier transform and its application to 1D and 2D NMR

    International Nuclear Information System (INIS)

    Canet, D.

    1988-01-01

    In this review article, the following points are developed: Pulsed NMR and Fourier transform; Fourier transform and two-dimensional spectroscopy; Mathematical properties of Fourier transform; Fourier transform of a sine function- one dimensional NMR; Fourier transform of a product of sine functions - two-dimensional NMR; Data manipulations in the time domain; Numerical Fourier transform [fr

  2. THE IMAGE REGISTRATION OF FOURIER-MELLIN BASED ON THE COMBINATION OF PROJECTION AND GRADIENT PREPROCESSING

    Directory of Open Access Journals (Sweden)

    D. Gao

    2017-09-01

    Full Text Available Image registration is one of the most important applications in the field of image processing. The method of Fourier Merlin transform, which has the advantages of high precision and good robustness to change in light and shade, partial blocking, noise influence and so on, is widely used. However, not only this method can’t obtain the unique mutual power pulse function for non-parallel image pairs, even part of image pairs also can’t get the mutual power function pulse. In this paper, an image registration method based on Fourier-Mellin transformation in the view of projection-gradient preprocessing is proposed. According to the projection conformational equation, the method calculates the matrix of image projection transformation to correct the tilt image; then, gradient preprocessing and Fourier-Mellin transformation are performed on the corrected image to obtain the registration parameters. Eventually, the experiment results show that the method makes the image registration of Fourier-Mellin transformation not only applicable to the registration of the parallel image pairs, but also to the registration of non-parallel image pairs. What’s more, the better registration effect can be obtained

  3. Extending Single-Molecule Microscopy Using Optical Fourier Processing

    Science.gov (United States)

    2015-01-01

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules. PMID:24745862

  4. A low-cost experiment to visualise the Fourier series: video analysis of a real plucked coiled spring

    Science.gov (United States)

    de Jesus, V. L. B.; Haubrichs, C.; de Oliveira, A. L.; Sasaki, D. G. G.

    2018-03-01

    In the present work, we develop a low-cost and simple experiment to visualise Fourier’s synthesis using a short, soft, and light plastic coiled spring oscillating in a horizontal plane, and a basic camera (120 fps). It is shown that the spring obeys a linear wave differential equation, as gravitational influence is neglected. A nonlinear criterion is evaluated to determine if magnitudes of the parameters in the initial conditions satisfy the linear wave equation. Our setup promotes some desirable characteristics that make Fourier’s synthesis experiments feasible, visual, and enlightening: (i) it requires few, common, and cheap resources, and the experiment can be carried out even in a high-school laboratory; (ii) since the spring’s tension is small (∼1 N, on average), the frequencies of normal modes are low (close to 2 Hz), and therefore, it is possible to record the oscillations just with the camera and extract a considerable number of position and time data in just one cycle; (iii) when the video is loaded in the Tracker free software, it can be reproduced in slow motion. Since the frequencies involved are low, an interesting and instructive temporal sequence of images of the spring displaying the typical trapezoidal shape appears clearly; (iv) the tools associated with the Tracker software tools can yield the relevant oscillation parameters, such as the damping constant, amplitudes, frequencies, and phases; and (v) it is possible to carry out superposition of a snapshot of the spring in Tracker at any time, and to draw the related Fourier synthesis graphs. The visual match between the shape of the spring and the theoretical graph is remarkable, and can be enhanced by adding the damping term.

  5. Teacher Assessment of Practical Skills in A-Level Chemistry

    Science.gov (United States)

    Wood, R.; Ferguson, Carolyn M.

    1975-01-01

    Discusses a two-year assessment undertaken to evaluate the Nuffield A-Level chemistry course. Secondary teachers selected chemistry experiments for assessment purposes and assessed their students in manipulative skills, observational skills, interpretation skills, creative skills, and attitudes. (MLH)

  6. Clifford Fourier transform on vector fields.

    Science.gov (United States)

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.

  7. Crystallinity Determination of Nylon 66 by Density Measurement and Fourier Transform Infrared (FTIR) Spectroscopy

    Science.gov (United States)

    Vasanthan, N.

    2012-01-01

    Polymer science represents an important area in industrial and research laboratories for chemists and material scientists. However, experiments involving polymers are uncommon in chemistry and material science curricula; therefore, an experiment involving polymers has been developed. This experiment has been used to teach fabrication of polymer…

  8. BWR normal water chemistry guidelines: 1986 revision

    International Nuclear Information System (INIS)

    1988-09-01

    Boiling water reactors (BWRs) have experienced stress corrosion cracking in the reactor cooling system piping resulting in adverse impacts on plant availability and personnel radiation exposure. The BWR Owners Group and EPRI have sponsored a major research and development program to provide remedies for this stress corrosion cracking problem. This work shows that the likelihood of cracking depends on the plant's water chemistry performance (environment) as well as on material condition and stress level. Plant experience and other research demonstrate that water quality also affects fuel performance and radiation field buildup in BWRs. This report,''BWR Normal Water Chemistry Guidelines: 1986 Revision,'' presents suggested generic water chemistry specifications, justifies the proposed water chemistry limits, suggests responses to out-of-specification water chemistry, discusses available chemical analysis methods as well as data management and surveillance schemes, and details the management philosophy required to successfully implement a water chemistry control program. An appendix contains recommendations for water quality of auxiliary systems. 73 refs., 20 figs., 9 tabs

  9. Defined Host–Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer

    Science.gov (United States)

    Ostadhossein, Fatemeh; Misra, Santosh K.; Mukherjee, Prabuddha; Ostadhossein, Alireza; Daza, Enrique; Tiwari, Saumya; Mittal, Shachi; Gryka, Mark C.; Bhargava, Rohit

    2017-01-01

    Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host–guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host–guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host–guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition. PMID:27545321

  10. Introducing Scientific Literature to Honors General Chemistry Students: Teaching Information Literacy and the Nature of Research to First-Year Chemistry Students

    Science.gov (United States)

    Ferrer-Vinent, Ignacio J.; Bruehl, Margaret; Pan, Denise; Jones, Galin L.

    2015-01-01

    This paper describes the methodology and implementation of a case study introducing the scientific literature and creative experiment design to honors general chemistry laboratory students. The purpose of this study is to determine whether first-year chemistry students can develop information literacy skills while they engage with the primary…

  11. Influence of water chemistry on fuel cladding behaviour. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-02-01

    For the purpose of the meeting water chemistry included the actual practice, the water chemistry monitoring and the on-going research. Corrosion included also hydriding, recent observations made in reactors, modelling and the recent research carried out. Fifty seven participants representing twenty countries attended the thirty formal presentations and the subsequent discussions. The thirty papers presented were split into five sessions covering, Reactor experience, Mechanism and Modelling, Oxidation and hydriding, On-line monitoring of water chemistry and the review of existing and advanced water chemistries. Four panel discussions including ''Corrosion mechanism and Modelling'', ''Corrosion and Hydriding'', ''Plant Experience and Loop Experiments'', Water Chemistry, Current Practice and Emerging Solutions'' and ''On-line Monitoring of Water Chemistry and Corrosion'' were organized. The main points of discussion focussed on the optimization of water chemistry, the compatibility of potassium water chemistry with the utilization of Zircaloy 4 or the utilization of zirconium niobium cladding with lithium water chemistry. The effect of the fabrication route and of the cladding composition (Sn content) on the corrosion kinetics, the state of the art and the correlative gaps in cladding corrosion modelling and the recent developments of on-line monitoring of water chemistry together with examination of suitable developments, were also discussed. Refs, figs, tabs

  12. Influence of water chemistry on fuel cladding behaviour. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    For the purpose of the meeting water chemistry included the actual practice, the water chemistry monitoring and the on-going research. Corrosion included also hydriding, recent observations made in reactors, modelling and the recent research carried out. Fifty seven participants representing twenty countries attended the thirty formal presentations and the subsequent discussions. The thirty papers presented were split into five sessions covering, Reactor experience, Mechanism and Modelling, Oxidation and hydriding, On-line monitoring of water chemistry and the review of existing and advanced water chemistries. Four panel discussions including ``Corrosion mechanism and Modelling``, ``Corrosion and Hydriding``, ``Plant Experience and Loop Experiments``, Water Chemistry, Current Practice and Emerging Solutions`` and ``On-line Monitoring of Water Chemistry and Corrosion`` were organized. The main points of discussion focussed on the optimization of water chemistry, the compatibility of potassium water chemistry with the utilization of Zircaloy 4 or the utilization of zirconium niobium cladding with lithium water chemistry. The effect of the fabrication route and of the cladding composition (Sn content) on the corrosion kinetics, the state of the art and the correlative gaps in cladding corrosion modelling and the recent developments of on-line monitoring of water chemistry together with examination of suitable developments, were also discussed. Refs, figs, tabs.

  13. The effect of high school chemistry instruction on students' academic self-concept

    Science.gov (United States)

    Morgan, Peter Wallace

    The purpose of this study was to investigate the effect of extended instruction in high school chemistry on the academic self-concept of students and determine what parts of the learning experience need to be addressed to make the interaction a more positive one. Fifty-seven students from three metropolitan public schools, who were enrolled in college preparatory chemistry classes, were asked to complete a written instrument, before and after extended chemistry instruction, that measures academic self-concept. Twenty-one of the students who took part in the written task volunteered to answer some in-depth interview questions concerning their academic self-concept and its relationship to chemistry instruction. Student responses, instrument scores, and student chemistry grades were analyzed for a variety of chemistry learning--academic self-concept connections and interactions. Results showed that there was a positive interaction for less than half of the students involved in the interview sessions. The results from the written instrument showed similar findings. Comparing chemistry grades and academic self-concept revealed an uncertain connection between the two, especially for students with strong academic self-concepts. Students felt that the laboratory experience was often disconnected from the remainder of chemistry instruction and recommended that the laboratory experience be integrated with classroom work. Students also expressed concerns regarding the volume of algorithmic mathematical calculations associated with college preparatory chemistry instruction. Results of this study suggest that secondary chemistry instruction must become more aware of the affective domain of learning and develop a mindful awareness of its connection to the cognitive domain if chemistry teaching and learning is going to better facilitate the intellectual growth of secondary students.

  14. Nitrogen Chemistry During Burnout in Fuel-Staged Combustion

    DEFF Research Database (Denmark)

    Kristensen, Per Gravers; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    A parametric study involving flow reactor experiments and chemical kinetic modeling is presented for the burnout zone in fuel-staging (reburning). The results provide guidelines for optimizing the reburn process and provide a test basis for verifying kinetic models for nitrogen chemistry at tempe......A parametric study involving flow reactor experiments and chemical kinetic modeling is presented for the burnout zone in fuel-staging (reburning). The results provide guidelines for optimizing the reburn process and provide a test basis for verifying kinetic models for nitrogen chemistry...

  15. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    Science.gov (United States)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  16. The propagation of stochastic pixel noise into magnitude and phase values in the Fourier analysis of digital images

    International Nuclear Information System (INIS)

    Holden, J.E.; Halama, J.R.; Hasegawa, B.H.

    1986-01-01

    The use of Fourier analysis in nuclear medicine gated blood ventriculography provides a useful example of the application of Fourier methods to digital medical imaging. In particular, the nuclear medicine experience demonstrates that there is diagnostic significance not only in the pixel averages of temporal Fourier magnitude and phase computed in various image regions, but also in the distributions of the individual pixel values about those averages. However, a region containing pixels that are perfectly synchronous on average would still yield a finite distribution of calculated Fourier coefficients due to the propagation of stochastic pixel noise into the calculated values. The authors have studied this noise component of both the magnitude and phase distributions using phantom studies and computer simulation. In both approaches, several thousand one-pixel 'ventriculograms' were generated, all identical to each other except for stochastic noise. Fourier magnitudes and phases at several frequencies were calculated and histograms generated. A theoretical prediction of the distributions was developed and shown to fit the experimental results well. The authors' formalism can be used to estimate study count requirements or, for fixed study counts, to assess the stochastic noise contribution in the interpretation of measured phase and magnitude distributions. (author)

  17. Harmonic analysis from Fourier to wavelets

    CERN Document Server

    Pereyra, Maria Cristina

    2012-01-01

    In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introd...

  18. Fourier analysis and boundary value problems

    CERN Document Server

    Gonzalez-Velasco, Enrique A

    1996-01-01

    Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics.A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.Key Features* Topics are covered from a historical perspective with biographical information on key contributors to the field* The text contains more than 500 exercises* Includes practical applicati...

  19. Phosphorus chemistry in everyday living

    National Research Council Canada - National Science Library

    Toy, Arthur D. F

    1976-01-01

    The author has drawn on his 35 years of experience as a research scientist in phosphorus chemistry to produce a book that is not only readable to the non-chemist but sophisticated enough to interest...

  20. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  1. What History Tells Us about the Distinct Nature of Chemistry.

    Science.gov (United States)

    Chang, Hasok

    2017-11-01

    Attention to the history of chemistry can help us recognise the characteristics of chemistry that have helped to maintain it as a separate scientific discipline with a unique identity. Three such features are highlighted in this paper. First, chemistry has maintained a distinct type of theoretical thinking, independent from that of physics even in the era of quantum chemistry. Second, chemical research has always been shaped by its ineliminable practical relevance and usefulness. Third, the lived experience of chemistry, spanning the laboratory, the classroom and everyday life, is distinctive in its multidimensional sensuousness. Furthermore, I argue that the combination of these three features makes chemistry an exemplary science.

  2. Peer Teaching in the Food Chemistry Laboratory: Student-produced Experiments, Peer and Audio Feedback and Integration of Employability

    OpenAIRE

    Dunne, Julie

    2014-01-01

    This paper describes the author’s experience over the last several years of implementing an alternative Food Chemistry laboratory practical for a group of third-year BSc Nutraceuticals students. The initial main objectives were to prepare students for the more independent final-year research project; to incorporate innovative approaches to feedback; and to integrate key employability skills into the curriculum. These were achieved through building the skills required to ultimately allow stude...

  3. Mathematical principles of signal processing Fourier and wavelet analysis

    CERN Document Server

    Brémaud, Pierre

    2002-01-01

    Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicates that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing - sampling, filtering, digital signal proc...

  4. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  5. Quantum arithmetic with the Quantum Fourier Transform

    OpenAIRE

    Ruiz-Perez, Lidia; Garcia-Escartin, Juan Carlos

    2014-01-01

    The Quantum Fourier Transform offers an interesting way to perform arithmetic operations on a quantum computer. We review existing Quantum Fourier Transform adders and multipliers and propose some modifications that extend their capabilities. Among the new circuits, we propose a quantum method to compute the weighted average of a series of inputs in the transform domain.

  6. Reducing Approximation Error in the Fourier Flexible Functional Form

    Directory of Open Access Journals (Sweden)

    Tristan D. Skolrud

    2017-12-01

    Full Text Available The Fourier Flexible form provides a global approximation to an unknown data generating process. In terms of limiting function specification error, this form is preferable to functional forms based on second-order Taylor series expansions. The Fourier Flexible form is a truncated Fourier series expansion appended to a second-order expansion in logarithms. By replacing the logarithmic expansion with a Box-Cox transformation, we show that the Fourier Flexible form can reduce approximation error by 25% on average in the tails of the data distribution. The new functional form allows for nested testing of a larger set of commonly implemented functional forms.

  7. A user-orientated approach to provenance capture and representation for in silico experiments, explored within the atmospheric chemistry community.

    Science.gov (United States)

    Martin, Chris J; Haji, Mohammed H; Jimack, Peter K; Pilling, Michael J; Dew, Peter M

    2009-07-13

    We present a novel user-orientated approach to provenance capture and representation for in silico experiments, contrasted against the more systems-orientated approaches that have been typical within the e-Science domain. In our approach, we seek to capture the scientist's reasoning in the form of annotations as an experiment evolves, while using the scientist's terminology in the representation of process provenance. Our user-orientated approach is applied in a case study within the atmospheric chemistry domain: we consider the design, development and evaluation of an electronic laboratory notebook, a provenance capture and storage tool, for iterative model development.

  8. A New Approach to the General Chemistry Laboratory

    Science.gov (United States)

    Bieron, Joseph F.; McCarthy, Paul J.; Kermis, Thomas W.

    1996-11-01

    Background Canisius College is a medium-sized liberal arts college with a longstanding tradition of maintaining an excellent chemistry program. We realized a few years ago, however, that this tradition was not being sustained by our General Chemistry laboratory course, which had not changed significantly in years. With the help of a grant from the National Science Foundation, our department has been able to design a new laboratory course built around several guiding principles. The design called for experiments to be grouped in units or clusters. Each cluster has a unifying theme or common thread, which gives some coherence to the experiments. The clusters and experiments are listed in the appendix and briefly explained below. Course Design Cluster A's topic is organic and polymer chemistry, and its main objective is to show that chemistry can be enjoyable and relevant to common experiences. Data collection is minimal and hands-on manipulation with observable products is emphasized. Cluster B is a case study of the chemistry of maintaining a swimming pool. The common theme is solution chemistry, and the experiments are designed to promote critical thinking. Cluster C encompasses both oxidation - reduction reactions and electrochemistry, and attempts to show the commonality of these important topics. Cluster D is a series of experiments on methods and techniques of analytical chemistry; in this group the analysis of unknown materials is undertaken. Cluster E is covered last in the second semester, and it stresses important concepts in chemistry at a slightly more advanced level. The emphasis is on the relationship of experiment to theory, and the cluster involves experiments in kinetics, equilibrium, and synthesis. Other guidelines that we considered important in our design were the use of computers (when appropriate), the introduction of microscale chemistry, and the use of instrumentation whenever possible. A separate cluster, labeled Mac, was developed to provide

  9. Chemistry for DUMMIES: how to popularize and introduce chemistry to the general public.

    Science.gov (United States)

    Montangero, Marc

    2012-01-01

    To mark the occasion of the International Year of Chemistry, each week in 2011 I posted a two-minute film demonstrating and explaining a simple and safe experiment to be carried out at home using everyday household products on the site www.chimie.ch/nuls.

  10. Ozone budgets from the Dynamics and Chemistry of Marine Stratocumulus experiment

    Science.gov (United States)

    Kawa, S. R.; Pearson, R., Jr.

    1989-01-01

    Measurements from the Dynamics and Chemistry of marine Stratocumulus experiment have been used to study components of the regional ozone budget. The surface destruction rate is determined by eddy correlation of ozone and vertical velocity measured by a low-flying aircraft. Significant variability is found in the measured surface resistance; it is partially correlated with friction velocity but appears to have other controlling influences as well. The mean resistance is 4190 s/m which is higher (slower destruction) than most previous estimates for seawater. Flux and mean measurements throughout the marine boundary layer are used to estimate the net rate of in situ photochemical production/destruction of ozone. Averaged over the flights, ozone concentration is found to be near steady state, and a net of photochemical destruction of 0.02-0.07 ng/cu m per sec is diagnosed. This is an important confirmation of photochemical model results for the remote marine boundary layer. Ozone vertical distributions above the boundary layer show a strongly layered structure with very sharp gradients. These distributions are possibly related to the stratospheric ozone source.

  11. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  12. Theory meets experiment: Gas-phase chemistry of coinage metals

    Czech Academy of Sciences Publication Activity Database

    Roithová, J.; Schröder, Detlef

    2009-01-01

    Roč. 253, 5/6 (2009), s. 666-677 ISSN 0010-8545 R&D Projects: GA AV ČR KJB400550704; GA ČR GA203/08/1487 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * coinage metals * copper * gold * mass spectrometry Subject RIV: CC - Organic Chemistry Impact factor: 11.225, year: 2009

  13. On-line gas chemistry experiments with trans actinide elements

    International Nuclear Information System (INIS)

    Turler, A.; Gaguller, B.; Jost, D.T.

    1993-01-01

    The latest achievements in the gas phase chemistry studies of elements 104 and 105 and their lighter homologs are reviewed. Experimental techniques employed in the studies are described. Experimental data on chlorides and bromides of the groups 4, 5 elements and elements 104, 105 are compared with their theoretically predicted chemical properties. 45 refs

  14. Screening retinal transplants with Fourier-domain OCT

    Science.gov (United States)

    Rao, Bin

    2009-02-01

    Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.

  15. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  16. Marine Natural Product Chemistry and the Interim: A Novel Approach

    Science.gov (United States)

    Bland, Jeffrey S.; Medcalf, Darrell G.

    1974-01-01

    Describes a course designed to strengthen a student's background in organic chemistry, demonstrate the interfacing of chemistry and biology, expose undergraduates to graduate research, provide familiarity with instrumentation, and provide a novel field experience. (Author/GS)

  17. The nature of science and technology for pre-service chemistry teacher: A case of techno-chemistry experiment "From Stannum Metalicum to conductive glass"

    Science.gov (United States)

    Mudzakir, A.; Widhiyanti, T.; Hernani, Arifin, M.; Lestari, A. N.; Jauhariansyah, S.

    2017-08-01

    The study was conducted to address the problems related to low Indonesian students' scientific literacy as revealed in the PISA (Program for International Student Assessment) since 2000-2015. Science teachers (e.g. chemistry teacher) must recognize the nature of science (NOS) to assist their students in preparing an explanation of a phenomenon scientifically correctly. Teachers also need to understand critically about nature of technology (NOT) and it relationship with science as well as society. To integrate those two kinds of knowledge (NOS and NOT), we can conduct a techno-science activity, which integrate the technology to science course in pre-service teacher education program, so that they can improve their knowledge about nature of science and technology (NOST) and pedagogical content knowledge related to NOST. The purpose of this study was to construct an inquiry based laboratory activity worksheet for making conductive glass so that the pre-service teacher could explain how the structure of the semiconductor Fluor doped Tin Oxide (SnO2.F) affect their performance. This study we conducted, described how to design a pre-service chemistry teacher education course that can improve recognizing view of NOST by using a framework called model of educational reconstruction (MER). The scientific activities in the course were guided inquiry based techno-chemistry experiments involving "From Stannum Metallicum to Conductive Glass". Conductive glasses are interesting subject research for several reason. The application of this technology could be found on solar cell, OLED, and display panel. The doped Tin dioxide has been deposited on glass substrate using the spray pyrolysis technique at 400-550°C substrate temperature, 4-5 times, 20 cm gap between glass and sprayer and 450 angle to form a thin film which will act as electrical contact. The resistivity is about 0.5 - 15Ω. The product resulted on this study was rated by several expert to find if the worksheet could

  18. Fourier analysis in several complex variables

    CERN Document Server

    Ehrenpreis, Leon

    2006-01-01

    Suitable for advanced undergraduates and graduate students, this text develops comparison theorems to establish the fundamentals of Fourier analysis and to illustrate their applications to partial differential equations.The three-part treatment begins by establishing the quotient structure theorem or fundamental principle of Fourier analysis. Topics include the geometric structure of ideals and modules, quantitative estimates, and examples in which the theory can be applied. The second part focuses on applications to partial differential equations and covers the solution of homogeneous and inh

  19. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling

    Science.gov (United States)

    Eibern, Hendrik; Schmidt, Hauke

    1999-08-01

    The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.

  20. Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2013-03-01

    Full Text Available The main objective of this work is the grafting of polycaprolactone diol (PCL on the surface of oxidized nanocelluloses (ONC in order to enhance the compatibility between the hydrophilic cellulose nanofibres and the hydrophobic polymer matrix. This grafting was successfully realized with a new strategy known as click chemistry. In this context, the oxidized nanocelluloses bearing alkyl groups (ONC-PR were prepared by reacting amino groups of propargylamine (PR with carboxyl groups of ONC. In parallel, PCL was converted into azido-polycaprolactone (PCL-N3 in two steps: (i tosylation of polycaprolactone (PCL-OTs and (ii conversion of PCL-OTs into PCL-N3 by nucleophilic displacement using sodium azide. Finally, ONC-PR was reacted with PCL-N3 in heterogeneous conditions through click chemistry in order to prepare polycaprolactone grafted oxidized nanocellulose (ONC-g-PCL, which could be suitable for improving the interfacial adhesion in the composite materials. The grafted samples were characterized by transmission electron microscopy and by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and Carbon-13 nuclear magnetic resonance spectroscopy (13C-NMR spectroscopic techniques.

  1. Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry

    Science.gov (United States)

    Benkaddour, Abdelhaq; Jradi, Khalil; Robert, Sylvain; Daneault, Claude

    2013-01-01

    The main objective of this work is the grafting of polycaprolactone diol (PCL) on the surface of oxidized nanocelluloses (ONC) in order to enhance the compatibility between the hydrophilic cellulose nanofibres and the hydrophobic polymer matrix. This grafting was successfully realized with a new strategy known as click chemistry. In this context, the oxidized nanocelluloses bearing alkyl groups (ONC-PR) were prepared by reacting amino groups of propargylamine (PR) with carboxyl groups of ONC. In parallel, PCL was converted into azido-polycaprolactone (PCL-N3) in two steps: (i) tosylation of polycaprolactone (PCL-OTs) and (ii) conversion of PCL-OTs into PCL-N3 by nucleophilic displacement using sodium azide. Finally, ONC-PR was reacted with PCL-N3 in heterogeneous conditions through click chemistry in order to prepare polycaprolactone grafted oxidized nanocellulose (ONC-g-PCL), which could be suitable for improving the interfacial adhesion in the composite materials. The grafted samples were characterized by transmission electron microscopy and by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Carbon-13 nuclear magnetic resonance spectroscopy (13C-NMR) spectroscopic techniques. PMID:28348327

  2. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  3. Fourier convergence analysis applied to neutron diffusion Eigenvalue problem

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Noh, Jae Man; Joo, Hyung Kook

    2004-01-01

    Fourier error analysis has been a standard technique for the stability and convergence analysis of linear and nonlinear iterative methods. Though the methods can be applied to Eigenvalue problems too, all the Fourier convergence analyses have been performed only for fixed source problems and a Fourier convergence analysis for Eigenvalue problem has never been reported. Lee et al proposed new 2-D/1-D coupling methods and they showed that the new ones are unconditionally stable while one of the two existing ones is unstable at a small mesh size and that the new ones are better than the existing ones in terms of the convergence rate. In this paper the convergence of method A in reference 4 for the diffusion Eigenvalue problem was analyzed by the Fourier analysis. The Fourier convergence analysis presented in this paper is the first one applied to a neutronics eigenvalue problem to the best of our knowledge

  4. Put Some Movie Wow! in Your Chemistry Teaching

    Science.gov (United States)

    Frey, Christopher A.; Mikasen, Marjorie L.; Griep, Mark A.

    2012-01-01

    Movies and movie clips have been used by many instructors to teach chemistry. Entire movies based on true chemical stories are used because they provide students with a common experience after which instructors can launch writing lessons about the chemistry, the scientists, or engineers, or even postscripts to the story presented in the film. In…

  5. EPRI PWR primary water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Fruzzetti, Keith

    2014-01-01

    EPRI periodically updates the PWR Primary Water Chemistry Guidelines as new information becomes available and as required by NEI 97-06 (Steam Generator Program Guidelines) and NEI 03-08 (Guideline for the Management of Materials Issues). The last revision of the PWR water chemistry guidelines identified an optimum primary water chemistry program based on then-current understanding of research and field information. This new revision provides further details with regard to primary water stress corrosion cracking (PWSCC), fuel integrity, and shutdown dose rates. A committee of industry experts, including utility specialists, nuclear steam supply system (NSSS) and fuel vendor representatives, Institute of Nuclear Power Operations (INPO) representatives, consultants, and EPRI staff collaborated in reviewing the available data on primary water chemistry, reactor water coolant system materials issues, fuel integrity and performance issues, and radiation dose rate issues. From the data, the committee updated the water chemistry guidelines that all PWR nuclear plants should adopt. The committee revised guidance with regard to optimization to reflect industry experience gained since the publication of Revision 6. Among the changes, the technical information regarding the impact of zinc injection on PWSCC initiation and dose rate reduction has been updated to reflect the current level of knowledge within the industry. Similarly, industry experience with elevated lithium concentrations with regard to fuel performance and radiation dose rates has been updated to reflect data collected to date. Recognizing that each nuclear plant owner has a unique set of design, operating, and corporate concerns, the guidelines committee has retained a method for plant-specific optimization. Revision 7 of the Pressurized Water Reactor Primary Water Chemistry Guidelines provides guidance for PWR primary systems of all manufacture and design. The guidelines continue to emphasize plant

  6. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    Science.gov (United States)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  7. Fourier duality as a quantization principle

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Saeger, L.A.

    1996-08-01

    The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally groups. Kac algebras - and the duality they incorporate are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest non-trivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no more complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems. (author). 30 refs

  8. Methods of Fourier analysis and approximation theory

    CERN Document Server

    Tikhonov, Sergey

    2016-01-01

    Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.

  9. Fourier path-integral Monte Carlo methods: Partial averaging

    International Nuclear Information System (INIS)

    Doll, J.D.; Coalson, R.D.; Freeman, D.L.

    1985-01-01

    Monte Carlo Fourier path-integral techniques are explored. It is shown that fluctuation renormalization techniques provide an effective means for treating the effects of high-order Fourier contributions. The resulting formalism is rapidly convergent, is computationally convenient, and has potentially useful variational aspects

  10. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  11. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    Science.gov (United States)

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  12. Chemistry of plutonium revealed

    International Nuclear Information System (INIS)

    Connick, R.E.

    1992-01-01

    In 1941 one goal of the Manhattan Project was to unravel the chemistry of the synthetic element plutonium as rapidly as possible. In this paper the work carried out at Berkeley from the spring of 1942 to the summer of 1945 is described briefly. The aqueous chemistry of plutonium is quite remarkable. Important insights were obtained from tracer experiments, but the full complexity was not revealed until macroscopic amounts (milligrams) became available. Because processes for separation from fission products were based on aqueous solutions, such solution chemistry was emphasized, particularly precipitation and oxidation-reduction behavior. The latter turned out to be unusually intricate when it was discovered that two more oxidation states existed in aqueous solution than had previously been suspected. Further, an equilibrium was rapidly established among the four aqueous oxidation states, while at the same time any three were not in equilibrium. These and other observations made while doing a crash study of a previously unknown element are reported

  13. 现代信息技术在无机化学实验中的应用%The Application of Modern Information Technology in Inorganic Chemistry Experiment

    Institute of Scientific and Technical Information of China (English)

    张海蓉

    2012-01-01

    传统的无机化学实验的教学模式已不能适应当代大学生的需要,为充分发挥无机实验教学在化学专业课程教学中的基础作用,培养适应社会需求的"创新型"、"应用型"人才,本文探讨了现代信息技术在无机化学实验教学上的应用,研究了多媒体技术和网络资源在无机化学实验教学中的应用。%The traditional teaching mode of Inorganic Chemistry Experiment can't meet the needs of university students.In order to make full use of the basic function of Inorganic Chemistry Experiment teaching in chemical professional teaching,and train innovative and practical talents,whom the social needs,the application of the modern information technology including multimedia technology and cyber source in teaching of Inorganic Chemistry Experiment were studied.

  14. Medical Mycology and the Chemistry Classroom: Germinating Student Interest in Organic Chemistry

    Science.gov (United States)

    Bliss, Joseph M.; Reid, Christopher W.

    2013-01-01

    Efforts to provide active research context to introductory courses in basic sciences are likely to better engage learners and provide a framework for relevant concepts. A simple teaching and learning experiment was conducted to use concepts in organic chemistry to solve problems in the life sciences. Bryant University is a liberal arts university…

  15. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  16. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  17. An Interactive System For Fourier Analysis Of Artichoke Flower Shape.

    Science.gov (United States)

    Impedovo, Sebastiano; Fanelli, Anna M.; Ligouras, Panagiotis

    1984-06-01

    In this paper we present an interactive system which allows the Fourier analysis of the artichoke flower-head profile. The system consistsof a DEC pdp 11/34 computer with both a a track-following device and a Tektronix 4010/1 graphic and alpha numeric display on-line. Some experiments have been carried out taking into account some different parental types of artichoke flower-head samples. It is shown here that a narrow band of only eight harmonics is sufficient to classify different artichoke flower shapes.

  18. Technology and Bloom's Taxonomy: Tools to Facilitate Higher-Level Learning in Chemistry

    National Research Council Canada - National Science Library

    Morgan, Matthew

    1997-01-01

    This research project ties together chemistry data acquisition technology, introductory chemistry laboratory experiments, and Bloom's Taxonomy of Educational Objectives into a unified learning model...

  19. A case study of the effects of social experiences on the science identity formation of Mexican American females in high school chemistry

    Science.gov (United States)

    Beeton, Renee P.

    Mexican Americans are a rapidly growing ethnic group in the United States. However, they are noticeably absent from physical science fields. Little research has explored the experiences of Mexican American girls in high school chemistry. The theories of identity based on communities of practice and multicultural feminism framed this year-long case study of nine Mexican American girls in a high school chemistry course. This study explored the social encounters and experiences that shaped the participants' identities and how their views of themselves affected their attitudes towards high school chemistry and future science careers. Data collection included a focus group and in-depth interviews with the participants, classroom observations, and teacher interviews. Five main identities influenced the participants' potential to become a scientist: ethnic, gender, science, student, and college. Mexican ethnic identity was the overarching identity; however gender also influenced the participants' other identities. The participants were aware of ethnic gender stereotypes that might hinder them from being successful in science. Also, ethnic factors, such as citizenship and abilities to receive financial aid limited their views of themselves as chemists. Participatory science, student, and school identities were all needed in order for the participants to be potential scientists. Family expectations, authentic relationships with teachers, and personal connections were important factors in the development of these participatory identities.

  20. Operating experience in correcting severe secondary chemistry upsets by controlling makeup water organics (TOC)

    International Nuclear Information System (INIS)

    Flint, W.G.; Mc Intosh, R.J.

    1986-01-01

    In this paper following observations are presented: conductivity and chloride excursions in steam condensate were directly linked to makeup water quality. Data strongly suggests that the breakdown of makeup water organics was responsible for substandard condensate water quality; although the short-term effects of gross organic contamination have been documented, the longer term consequences of continuous exposure by moderate organic levels needs to be addressed; a greater understanding of the organic removal efficiency of the various water purification technologies is essential to controlling TOC contamination; and a much better understanding of makeup plant chemistry and the interrelationship of makeup water contamination and plant chemistry has proven essential to optimizing plant performance and guaranteeing the best possible steam chemistry. The role of the chemistry group as an active participant in operations has been proven at Kewaunee Nuclear Plant

  1. Image reconstruction from pairs of Fourier-transform magnitude

    International Nuclear Information System (INIS)

    Hunt, B.R.; Overman, T.L.; Gough, P.

    1998-01-01

    The retrieval of phase information from only the magnitude of the Fourier transform of a signal remains an important problem for many applications. We present an algorithm for phase retrieval when there exist two related sets of Fourier-transform magnitude data. The data are assumed to come from a single object observed in two different polarizations through a distorting medium, so the phase component of the Fourier transform of the object is corrupted. Phase retrieval is accomplished by minimization of a suitable criterion function, which can take three different forms. copyright 1998 Optical Society of America

  2. An overview of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)

    Science.gov (United States)

    Dulac, François

    2014-05-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr) is a French initiative of the MISTRALS meta-programme (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It federates a great number of national and international cooperative research actions aiming at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The target is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry, in a context of strong regional anthropogenic and climatic pressures. The six ChArMEx work packages include Emissions, Chemical processes and ageing, Transport processes and air quality, Aerosol-radiation-climate interactions, Deposition, and Present and future variability and trends. For several years, efforts have been deployed in several countries to develop (i) a network of relevant stations for atmospheric chemistry at background sites on islands and continental coasts around the basin and (ii) several intensive field campaigns including the operation of surface supersites and various instrumented mobile platforms (large and ultra-light aircraft, sounding and drifting balloons, ZeroCO2 sailboat). This presentation is an attempt to provide an overview of the various experimental, remote sensing and modelling efforts produced and to highlight major findings, by referencing more detailed ChArMEx presentations given in this conference and recently published or submitted papers. During the first phase of the project experimental efforts have been mainly concentrated on the western basin. Plans for the 2nd phase of ChArMEx, more dedicated towards the eastern basin, will also be given. In particular we plan to develop monitoring activities at

  3. Iterative wave-front reconstruction in the Fourier domain.

    Science.gov (United States)

    Bond, Charlotte Z; Correia, Carlos M; Sauvage, Jean-François; Neichel, Benoit; Fusco, Thierry

    2017-05-15

    The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.

  4. The Nuclear and Radiochemistry in Chemistry Education Curriculum Project

    International Nuclear Information System (INIS)

    Robertson, J.D.; Missouri University, Columbia, MO; Kleppinger, E.W.

    2005-01-01

    Given the mismatch between supply of and demand for nuclear scientists, education in nuclear and radiochemistry has become a serious concern. The Nuclear and Radiochemistry in Chemistry Education (NRIChEd) Curriculum Project was undertaken to reintroduce the topics normally covered in a one-semester radiochemistry course into the traditional courses of a four-year chemistry major: general chemistry, organic chemistry, quantitative and instrumental analysis, and physical chemistry. NRIChEd uses a three-pronged approach that incorporates radiochemistry topics when related topics in the basic courses are covered, presents special topics of general interest as a vehicle for teaching nuclear and radiochemistry alongside traditional chemistry, and incorporates the use of non-licensed amounts of radioactive substances in demonstrations and student laboratory experiments. This approach seeks not only to reestablish nuclear science in the chemistry curriculum, but to use it as a tool for elucidating fundamental and applied aspects of chemistry as well. Moreover, because of its relevance in many academic areas, nuclear science enriches the chemistry curriculum by encouraging interdisciplinary thinking and problem solving. (author)

  5. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  6. Determination of the Rotational Barrier for Kinetically Stable Conformational Isomers via NMR and 2D TLC: An Introductory Organic Chemistry Experiment

    Science.gov (United States)

    Rushton, Gregory T.; Burns, William G.; Lavin, Judi M.; Chong, Yong S.; Pellechia, Perry; Shimizu, Ken D.

    2007-01-01

    An experiment to determine the rotational barrier about a C[subscript aryl]-N[subscript imide] single bond that is suitable for first-semester organic chemistry students is presented. The investigation begins with the one-step synthesis of a N,N'-diaryl naphthalene diimide, which exists as two room temperature-stable atropisomers (syn and anti).…

  7. Characterization of ceramic matrix composite degradation using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Henry, Christine; Criner, Amanda Keck; Imel, Megan; King, Derek

    2018-04-01

    Data collected with a handheld Fourier Transform Infrared (FTIR) device is analyzed and considered as a useful method for detecting and quantifying oxidation on the surface of ceramic matrix composite (CMC) materials. Experiments examine silicon carbide (SiC) coupons, looking for changes in chemical composition before and after thermal exposure. Using mathematical, physical and statistical models for FTIR reflectance data, this research seeks to quantify any detected spectral changes as an indicator of surface oxidation on the CMC coupon.

  8. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    Science.gov (United States)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  9. Extraction and Antibacterial Properties of Thyme Leaf Extracts: Authentic Practice of Green Chemistry

    Science.gov (United States)

    Purcell, Sean C.; Pande, Prithvi; Lin, Yingxin; Rivera, Ernesto J.; Paw U, Latisha; Smallwood, Luisa M.; Kerstiens, Geri A.; Armstrong, Laura B.; Robak, MaryAnn T.; Baranger, Anne M.; Douskey, Michelle C.

    2016-01-01

    In this undergraduate analytical chemistry experiment, students quantitatively assess the antibacterial activity of essential oils found in thyme leaves ("Thymus vulgaris") in an authentic, research-like environment. This multi-week experiment aims to instill green chemistry principles as intrinsic to chemical problem solving. Students…

  10. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  11. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  12. Advances in hyperspectral remote sensing I: The visible Fourier transform hyperspectral imager

    Directory of Open Access Journals (Sweden)

    J. Bruce Rafert

    2015-05-01

    Full Text Available We discuss early hyperspectral research and development activities during the 1990s that led to the deployment of aircraft and satellite payloads whose heritage was based on the use of visible, spatially modulated, imaging Fourier transform spectrometers, beginning with early experiments at the Florida Institute of Technology, through successful launch and deployment of the Visible Fourier Transform Hyperspectral Imager on MightySat II.1 on 19 July 2000. In addition to a brief chronological overview, we also discuss several of the most interesting optical engineering challenges that were addressed over this timeframe, present some as-yet un-exploited features of field-widened (slit-less SMIFTS instruments, and present some images from ground-based, aircraft-based and satellite-based instruments that helped provide the impetus for the proliferation and development of entire new families of instruments and countless new applications for hyperspectral imaging.

  13. The relationship between shock response spectrum and fast Fourier transform

    International Nuclear Information System (INIS)

    Zola, Maurizio

    2001-01-01

    In this paper the basic relationship between response spectrum and fast Fourier transform is laid down. Since a long time the response spectrum has been used by structural engineers in the seismic domain and nowadays it is going to be used to define transient motions. This way to define the excitation is more general and more real than the use of classical shape pulses for the reproduction of real environment. Nevertheless the response spectrum of a real excitation represents a loss of some information with respect to the Fourier transform. A useful discussion could arise from these observations. Appendix A gives the relationship between the mathematic Fourier transform and the digital Fourier transform given by computers, while Appendix B gives some examples of response spectra and Fourier transforms of simple functions. (author)

  14. Microscale Experiments in Chemistry - The Need of the New Millenium

    Indian Academy of Sciences (India)

    Chemistry at University of Pune. ... scribes the use of about 0.2 g chemical for every test of the qualitative .... With reduction in amounts and time, the students can now do ... The indicator is set free and the colour of the complex changes.

  15. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  16. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  17. Fourier optical cryptosystem using complex spatial modulation

    International Nuclear Information System (INIS)

    Sarkadi, T; Koppa, P

    2014-01-01

    Our goal is to enhance the security level of a Fourier optical encryption system. Therefore we propose a Mach–Zehnder interferometer based encryption setup. The input data is organized in a binary array, and it is encoded in the two wave fronts propagated in the arms of the interferometer. Both input wave fronts are independently encrypted by Fourier systems, hence the proposed method has two encryption keys. During decryption, the encrypted wave fronts are propagated through the interferometer setup. The interference pattern of the output shows the reconstructed data in cases where the correct decryption Fourier keys are used. We propose a novel input image modulation method with a user defined phase parameter. We show that the security level of the proposed cryptosystem can be enhanced by an optimally chosen phase parameter. (paper)

  18. Accelerated radial Fourier-velocity encoding using compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Han, Dietbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wech, Tobias; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center (CHFC)

    2014-10-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  19. Accelerated radial Fourier-velocity encoding using compressed sensing

    International Nuclear Information System (INIS)

    Hilbert, Fabian; Han, Dietbert

    2014-01-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  20. Accelerated radial Fourier-velocity encoding using compressed sensing.

    Science.gov (United States)

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  1. On the Cooley-Turkey Fast Fourier algorithm for arbitrary factors ...

    African Journals Online (AJOL)

    Atonuje and Okonta in [1] developed the Cooley-Turkey Fast Fourier transform algorithm and its application to the Fourier transform of discretely sampled data points N, expressed in terms of a power y of 2. In this paper, we extend the formalism of [1] Cookey-Turkey Fast Fourier transform algorithm. The method is developed ...

  2. Containment Sodium Chemistry Models in MELCOR.

    Energy Technology Data Exchange (ETDEWEB)

    Louie, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-01

    To meet regulatory needs for sodium fast reactors’ future development, including licensing requirements, Sandia National Laboratories is modernizing MELCOR, a severe accident analysis computer code developed for the U.S. Nuclear Regulatory Commission (NRC). Specifically, Sandia is modernizing MELCOR to include the capability to model sodium reactors. However, Sandia’s modernization effort primarily focuses on the containment response aspects of the sodium reactor accidents. Sandia began modernizing MELCOR in 2013 to allow a sodium coolant, rather than water, for conventional light water reactors. In the past three years, Sandia has been implementing the sodium chemistry containment models in CONTAIN-LMR, a legacy NRC code, into MELCOR. These chemistry models include spray fire, pool fire and atmosphere chemistry models. Only the first two chemistry models have been implemented though it is intended to implement all these models into MELCOR. A new package called “NAC” has been created to manage the sodium chemistry model more efficiently. In 2017 Sandia began validating the implemented models in MELCOR by simulating available experiments. The CONTAIN-LMR sodium models include sodium atmosphere chemistry and sodium-concrete interaction models. This paper presents sodium property models, the implemented models, implementation issues, and a path towards validation against existing experimental data.

  3. The chemistry of plutonium revealed

    International Nuclear Information System (INIS)

    Connick, R.E.

    1990-01-01

    In 1941 one goal of the Manhattan Project was to unravel the chemistry of the synthetic element plutonium as rapidly as possible. Important insights were obtained from tracer experiments, but the full complexity of plutonium chemistry was not revealed until macroscopic amounts (milligrams) became available. Because processes for separation from fission products were aqueous solution based, such solution chemistry was emphasized, particularly precipitation and oxidation-reduction behavior. The latter turned out to be unusually intricate when it was discovered that two more oxidation states existed in aqueous solution than had previously been suspected. Further, it was found that an equilibrium was rapidly established among the four aqueous oxidation states while at the same time any three were not in equilibrium. These and other observations made while doing a crash study of a previously unknown element will be reported

  4. Selecting automation for the clinical chemistry laboratory.

    Science.gov (United States)

    Melanson, Stacy E F; Lindeman, Neal I; Jarolim, Petr

    2007-07-01

    Laboratory automation proposes to improve the quality and efficiency of laboratory operations, and may provide a solution to the quality demands and staff shortages faced by today's clinical laboratories. Several vendors offer automation systems in the United States, with both subtle and obvious differences. Arriving at a decision to automate, and the ensuing evaluation of available products, can be time-consuming and challenging. Although considerable discussion concerning the decision to automate has been published, relatively little attention has been paid to the process of evaluating and selecting automation systems. To outline a process for evaluating and selecting automation systems as a reference for laboratories contemplating laboratory automation. Our Clinical Chemistry Laboratory staff recently evaluated all major laboratory automation systems in the United States, with their respective chemistry and immunochemistry analyzers. Our experience is described and organized according to the selection process, the important considerations in clinical chemistry automation, decisions and implementation, and we give conclusions pertaining to this experience. Including the formation of a committee, workflow analysis, submitting a request for proposal, site visits, and making a final decision, the process of selecting chemistry automation took approximately 14 months. We outline important considerations in automation design, preanalytical processing, analyzer selection, postanalytical storage, and data management. Selecting clinical chemistry laboratory automation is a complex, time-consuming process. Laboratories considering laboratory automation may benefit from the concise overview and narrative and tabular suggestions provided.

  5. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  6. Science Academies' Refresher Course in Chemistry

    Indian Academy of Sciences (India)

    2017-10-25

    Oct 25, 2017 ... Modern College of Arts, Science and Commerce. Ganeshkhind, Pune ... API scores for career advancement. Applications are invited from teachers experience in teaching undergraduate and postgraduate courses in chemistry ...

  7. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment

    Science.gov (United States)

    Sharma, R. K.; Gulati, Shikha; Mehta, Shilpa

    2012-01-01

    Assimilating green chemistry principles in nanotechnology is a developing area of nanoscience research nowadays. Thus, there is a growing demand to develop environmentally friendly and sustainable methods for the synthesis of nanoparticles that utilize nontoxic chemicals, environmentally benign solvents, and renewable materials to avoid their…

  8. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  9. Operational experience with PWR secondary water chemistry: a panel presentation San Onofre Unit 1

    International Nuclear Information System (INIS)

    Britt, R.D.; Millard, R.E.; DiFilippo, M.N.

    1975-01-01

    The three steam generators have been on phosphate chemistry since startup except for one brief period when volatile chemistry was attempted. Initially, coordinated pH-phosphate control was recommended by Westinghouse for the steam generators; however, after one year of operation, Westinghouse recommended changing to congruent control. From startup in 1967 until the end of 1970, the Na/PO 4 molar ratio was generally maintained in the 2.6 to 2.8 range, with a 5 to 10 ppM phosphate residual. A summary of steam generator chemistry from initial startup to the present is presented

  10. The integration of the contents of the subject Physics-Chemistry (I in Biology-Chemistry specialty

    Directory of Open Access Journals (Sweden)

    M. Sc. Luis AZCUY LORENZ

    2017-12-01

    Full Text Available This work is the result of a research task developed in the Natural Sciences Education Department during 2013-2014 academic year, and it emerged from the necessity of solving some insufficiencies in the use of the real potentialities offered by the content of the subject Physics-Chemistry (I, that is part of the curriculum of the Biology-Chemistry career. Its main objective is to offer a set of exercises to contribute to achieve the integration of contents from the subject Physics-chemistry (I in the mentioned career at «Ignacio Agramonte Loynaz» University of Camaguey. The exercises proposed are characterized for being related to the real practice and to other subjects of the career. Their implementation through review lessons, partial tests and final evaluations during the formative experiment made possible a better academic result in the learners overall performance.

  11. Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer.

    Science.gov (United States)

    Ostadhossein, Fatemeh; Misra, Santosh K; Mukherjee, Prabuddha; Ostadhossein, Alireza; Daza, Enrique; Tiwari, Saumya; Mittal, Shachi; Gryka, Mark C; Bhargava, Rohit; Pan, Dipanjan

    2016-08-22

    Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC 50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host-guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Research articles as a didatic tool in undergraduate chemistry teaching

    OpenAIRE

    Massi, Luciana; Santos, Gelson Ribeiro dos; Ferreira, Jerino Queiroz; Queiroz, Salete Linhares

    2009-01-01

    Chemistry teachers increasingly use research articles in their undergraduate courses. This trend arises from current pedagogical emphasis on active learning and scientific process. In this paper, we describe some educational experiences on the use of research articles in chemistry higher education. Additionally, we present our own conclusions on the use of such methodology applied to a scientific communication course offered to undergraduate chemistry students at the University of São Paulo, ...

  13. Peer-teaching in the food chemistry laboratory: student-produced experiments, peer and audio feedback, and integration of employability skills

    OpenAIRE

    Julie Lisa Dunne

    2014-01-01

    This paper describes the author’s experience over the last several years of implementing an alternative Food Chemistry laboratory practical model for a group of third-year BSc Nutraceuticals students. The initial main objectives were to prepare students for the more independent final-year research project; to incorporate innovative approaches to feedback; and to integrate key employability skills into the curriculum. These were achieved through building the skills required to ultimately allow...

  14. Fourier transform IR studies on the interaction of selected chemicals with isolated cuticles

    International Nuclear Information System (INIS)

    Luque, P.; Ramirez, F.J.; Heredia, A.; Bukovac, M.J.

    1994-01-01

    It is known that the plant cuticle represents the first barrier that must be overcome by any chemical reaching the plant surface from the atmosphere before entering the plant. Because of the importance of the cuticle as a barrier to penetration of a wide variety of compounds, its morphology, chemistry, and permeability have been extensively studied. However, only limited information is available on the nature of functional chemical groups present and their interaction and role during the penetration process. The usefulness of in situ Fourier transform infrared spectroscopy studies in identifying functional groups present in isolated cuticles is described and their relationships to the structure of the cuticular membrane are discussed. Applications of infrared spectroscopy on the presence and role of phenolics in the cuticle structure and during the cuticle development, nitrogen oxide binding to isolated cuticles, and the interactions between selected chemical probes during sorption by the cuticle are also described. (orig.)

  15. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    Science.gov (United States)

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain.

  16. A unified Fourier theory for time-of-flight PET data.

    Science.gov (United States)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-21

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are

  17. LWR severe accident simulation: Iodine behaviour in FPT2 experiment and advances on containment iodine chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Girault, N., E-mail: nathalie.girault@irsn.fr [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3 - 13115 St.-Paul-lez-Durance (France); Bosland, L. [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP3 - 13115 St.-Paul-lez-Durance (France); Dickinson, S. [National Nuclear Laboratory, Harwell, Oxon OX11 0QT (United Kingdom); Funke, F. [AREVA NP Gmbh, PO Box 1109, 91001 Erlangen (Germany); Guentay, S. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Herranz, L.E. [Centro des Investigaciones Energeticas, MedioAmbiantales y Tecnologicas, av. Complutense 2, 28040 Madrid (Spain); Powers, D. [Sandia National Laboratories, New Mexico, PO Box 5800, Albuquerque, NM 87185 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Short term gaseous iodine fraction can be produced either in primary circuit or on containment condensing surfaces. Black-Right-Pointing-Pointer Gaseous radiolytic reactions convert volatile iodine into non-volatile iodine oxide particulates. Black-Right-Pointing-Pointer Alkaline and evaporating sump decrease the iodine volatility in containment. Black-Right-Pointing-Pointer Release of volatile iodine from containment surfaces explained the long term stationary residual gaseous iodine concentration. - Abstract: The Phebus Fission Product (FP) Program studies key phenomena of severe accidents in water-cooled nuclear reactors. In the framework of the Phebus program, five in-pile experiments have been performed that cover fuel rod degradation and behaviour of fission products released via the coolant circuit into the containment vessel. The focus of this paper is on iodine behaviour during the Phebus FPT2 test. FPT2 used a 33 GWd/t uranium dioxide fuel enriched to 4.5%, re-irradiated in situ for 7 days to a burn-up of 130 MWd/t. This test was performed to study the impact of steam-poor conditions and boric acid on the fission product chemistry. For the containment vessel, more specifically, the objective was to study iodine chemistry in an alkaline sump under evaporating conditions. The iodine results of the Phebus FPT2 test confirmed many of the essential features of iodine behaviour in the containment vessel provided by the first two Phebus tests, FPT0 and FPT1. These are the existence of an early gaseous iodine fraction, the persistence of low gaseous iodine concentrations and the importance of the sump in suppressing the iodine partitioning from sump to atmosphere. The main new insights provided by the Phebus FPT2 test were the iodine desorption from stainless steel walls deposits and the role of the evaporating sump in further iodine depletion in the containment atmosphere. The current paper presents an interpretation of

  18. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Science.gov (United States)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  19. "Greening" a Familiar General Chemistry Experiment: Coffee Cup Calorimetry to Determine the Enthalpy of Neutralization of an Acid-Base Reaction and the Specific Heat Capacity of Metals

    Science.gov (United States)

    Bopegedera, A. M. R. P.; Perera, K. Nishanthi R.

    2017-01-01

    Coffee cup calorimetry, performed with calorimeters made with styrofoam coffee cups, is a familiar experiment in the general chemistry laboratory. These calorimeters are inexpensive, easy to use, and provide good insulation for most thermodynamics experiments. This paper presents the successful substitution of paper coffee cups for styrofoam cups…

  20. [Continuum based fast Fourier transform processing of infrared spectrum].

    Science.gov (United States)

    Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai

    2009-12-01

    To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.

  1. Partial fourier and parallel MR image reconstruction with integrated gradient nonlinearity correction.

    Science.gov (United States)

    Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Weavers, Paul T; Huston, John; Gray, Erin M; Bernstein, Matt A

    2016-06-01

    To describe how integrated gradient nonlinearity (GNL) correction can be used within noniterative partial Fourier (homodyne) and parallel (SENSE and GRAPPA) MR image reconstruction strategies, and demonstrate that performing GNL correction during, rather than after, these routines mitigates the image blurring and resolution loss caused by postreconstruction image domain based GNL correction. Starting from partial Fourier and parallel magnetic resonance imaging signal models that explicitly account for GNL, noniterative image reconstruction strategies for each accelerated acquisition technique are derived under the same core mathematical assumptions as their standard counterparts. A series of phantom and in vivo experiments on retrospectively undersampled data were performed to investigate the spatial resolution benefit of integrated GNL correction over conventional postreconstruction correction. Phantom and in vivo results demonstrate that the integrated GNL correction reduces the image blurring introduced by the conventional GNL correction, while still correcting GNL-induced coarse-scale geometrical distortion. Images generated from undersampled data using the proposed integrated GNL strategies offer superior depiction of fine image detail, for example, phantom resolution inserts and anatomical tissue boundaries. Noniterative partial Fourier and parallel imaging reconstruction methods with integrated GNL correction reduce the resolution loss that occurs during conventional postreconstruction GNL correction while preserving the computational efficiency of standard reconstruction techniques. Magn Reson Med 75:2534-2544, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans.

    Science.gov (United States)

    Magnes, Jenny; Hastings, Harold M; Raley-Susman, Kathleen M; Alivisatos, Clara; Warner, Adam; Hulsey-Vincent, Miranda

    2017-09-13

    This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.

  3. Exploring Fourier Series and Gibbs Phenomenon Using Mathematica

    Science.gov (United States)

    Ghosh, Jonaki B.

    2011-01-01

    This article describes a laboratory module on Fourier series and Gibbs phenomenon which was undertaken by 32 Year 12 students. It shows how the use of CAS played the role of an "amplifier" by making higher level mathematical concepts accessible to students of year 12. Using Mathematica students were able to visualise Fourier series of…

  4. Closed-Loop Dynamic Parameter Identification of Robot Manipulators Using Modified Fourier Series

    Directory of Open Access Journals (Sweden)

    Wenxiang Wu

    2012-05-01

    Full Text Available This paper concerns the problem of dynamic parameter identification of robot manipulators and proposes a closed-loop identification procedure using modified Fourier series (MFS as exciting trajectories. First, a static continuous friction model is involved to model joint friction for realizable friction compensation in controller design. Second, MFS satisfying the boundary conditions are firstly designed as periodic exciting trajectories. To minimize the sensitivity to measurement noise, the coefficients of MFS are optimized according to the condition number criterion. Moreover, to obtain accurate parameter estimates, the maximum likelihood estimation (MLE method considering the influence of measurement noise is adopted. The proposed identification procedure has been implemented on the first three axes of the QIANJIANG-I 6-DOF robot manipulator. Experiment results verify the effectiveness of the proposed approach, and comparison between identification using MFS and that using finite Fourier series (FFS reveals that the proposed method achieves better identification accuracy.

  5. International conference Fourier Analysis and Pseudo-Differential Operators

    CERN Document Server

    Turunen, Ville; Fourier Analysis : Pseudo-differential Operators, Time-Frequency Analysis and Partial Differential Equations

    2014-01-01

    This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. This collection of 20 refereed articles is based on selected talks given at the international conference “Fourier Analysis and Pseudo-Differential Operators,” June 25–30, 2012, at Aalto University, Finland, and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series “Fourier Analysis and Partial Differential Equations.”

  6. An improved acoustic Fourier boundary element method formulation using fast Fourier transform integration

    NARCIS (Netherlands)

    Kuijpers, A.H.W.M.; Verbeek, G.; Verheij, J.W.

    1997-01-01

    Effective use of the Fourier series boundary element method (FBEM) for everyday applications is hindered by the significant numerical problems that have to be overcome for its implementation. In the FBEM formulation for acoustics, some integrals over the angle of revolution arise, which need to be

  7. Infrared Fourier spectres of pectin obtained from pumpkin

    International Nuclear Information System (INIS)

    Usmanova, S.R.; Dzhonmurodov, A.S.; Nazirova, Kh.I.; Mukhidinov, Z.K.

    2015-01-01

    Present article is devoted to infrared Fourier spectres of pectin obtained from pumpkin. The analysis of pectin obtained from pumpkin was conducted by means of infrared spectrophotometer with Fourier transformation. The infrared spectroscopic study of pectin polysaccharide fraction of pectin matter, as well as pectin helium and micro helium obtained by means of fast extraction was conducted.

  8. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    Science.gov (United States)

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  9. Using a Sequence of Experiments with Turmeric Pigments from Food to Teach Extraction, Distillation, and Thin-Layer Chromatography to Introductory Organic Chemistry Students

    Science.gov (United States)

    da S. F. Fagundes, Thayssa; Dutra, Karen Danielle B.; Ribeiro, Carlos Magno R.; de A. Epifanio, Rosa^ngela; Valverde, Alessandra L.

    2016-01-01

    This experiment encourages students to use deductive reasoning skills to understand the correlation between different techniques used in a chemistry laboratory and to extract and analyze curcuminoids using natural products and processed food from a grocery store. Turmeric pigments were used to teach continuous or discontinuous extraction, vacuum…

  10. Symplectic geometry and Fourier analysis

    CERN Document Server

    Wallach, Nolan R

    2018-01-01

    Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.

  11. PFS: the Planetary Fourier Spectrometer for Mars Express

    Science.gov (United States)

    Formisano, V.; Grassi, D.; Orfei, R.; Biondi, D.; Mencarelli, E.; Mattana, A.; Nespoli, F.; Maturilli, A.; Giuranna, M.; Rossi, M.; Maggi, M.; Baldetti, P.; Chionchio, G.; Saggin, B.; Angrilli, F.; Bianchini, G.; Piccioni, G.; di Lellis, A.; Cerroni, P.; Capaccioni, F.; Capria, M. T.; Coradini, A.; Fonti, S.; Orofino, V.; Blanco, A.; Colangeli, L.; Palomba, E.; Esposito, F.; Patsaev, D.; Moroz, V.; Zasova, L.; Ignatiev, N.; Khatuntsev, I.; Moshkin, B.; Ekonomov, A.; Grigoriev, A.; Nechaev, V.; Kiselev, A.; Nikolsky, Y.; Gnedykh, V.; Titov, D.; Orleanski, P.; Rataj, M.; Malgoska, M.; Jurewicz, A.; Blecka, M. I.; Hirsh, H.; Arnold, G.; Lellouch, E.; Marten, A.; Encrenaz, T.; Lopez Moreno, J.; Atreya, S., Gobbi, P.

    2004-08-01

    The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is optimised for atmospheric studies, covering the IR range of 1.2-45 μm in two channels. The apodised spectral resolution is 2 cm-1, while the sampling is 1 cm-1. The FOV is about 2° for the short wavelength (SW) channel and 4° for the long wavelength (LW) channel, corresponding to spatial resolutions of 10 km and 20 km, respectively, from an altitude of 300 km. PFS will also provide unique data on the surface-atmosphere interaction and the mineralogical composition of the surface. It will be the first Fourier spectrometer covering 1-5 μm to orbit the Earth or Mars. The experiment has real-time onboard Fast Fourier Transform (FFT) in order to select the spectral range of interest for data transmission to ground. Measurement of the 15-μm CO2 band is very important. Its profile gives, via a complex temperature-profile retrieval technique, the vertical pressure temperature relation, which is the basis of the global atmospheric study. The SW channel uses a PbSe detector cooled to 200-220K, while the LW channel is based on a pyroelectric (LiTaO3) device working at room temperature. The interferogram is measured at every 150 nm displacement step of the corner cube retroreflectors (corresponding to 600 nm optical path difference) via a laser diode monochromatic interferogram (a sine wave), with the zero crossings controlling the double pendulum motion. PFS will operate for about 1.5 h around the pericentre of the orbit. With a measurement every 10 s, 600 measurements per orbit will be acquired, corresponding to 224 Mbit. Onboard compression will reduce it to 125 Mbit or less, depending on the allocated data volume per day. An important requirement is to observe at all local times in order to include night-side vertical temperature profiles. Total instrument mass is 31.2 kg.

  12. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  13. Sets of Fourier coefficients using numerical quadrature

    International Nuclear Information System (INIS)

    Lyness, J. N.

    2001-01-01

    One approach to the calculation of Fourier trigonometric coefficients f(r) of a given function f(x) is to apply the trapezoidal quadrature rule to the integral representation f(r)=(line i ntegral)(sub 0)(sup 1) f(x)e(sup -2(pi)irx)dx. Some of the difficulties in this approach are discussed. A possible way of overcoming many of these is by means of a subtraction function. Thus, one sets f(x)= h(sub p-1)(x)+ g(sub p)(x), where h(sub -1)(x) is an algebraic polynomial of degree p-1, specified in such a way that the Fourier series of g(sub p)(x) converges more rapidly than that of f(x). To obtain the Fourier coefficients of f(x), one uses an analytic expression for those of h(sub p-1)(x) and numerical quadrature to approximately those of g(sub p)(x)

  14. Superheavy Elements Challenge Experimental and Theoretical Chemistry

    CERN Document Server

    Zvára, I

    2003-01-01

    When reflecting on the story of superheavy elements, the an experimenter, acknowledges the role, which the predictions of nuclear and chemical theories have played in ongoing studies. Today, the problems of major interest for experimental chemistry are the studies of elements 112 and 114 including their chemical identification. Advanced quantum chemistry calculations of atoms and molecules would be of much help. First experiments with element 112 evidence that the metal is much more volatile and inert than mercury.

  15. Solution of 3-dimensional diffusion equation by finite Fourier transformation

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    1978-01-01

    Three dimensional diffusion equation in Cartesian co-ordinates is solved by using the finite Fourier transformation. This method is different from the usual Fourier transformation method in the sense that the solutions are obtained without performing the inverse Fourier transformation. The advantage has been taken of the fact that the flux is finite and integrable in the finite region. By applying this condition, a two-dimensional integral equation, involving flux and its normal derivative at the boundary, is obtained. By solving this equation with given boundary conditions, all of the boundary values are determined. In order to calculate the flux inside the region, flux is expanded into three-dimensional Fourier series. The Fourier coefficients of the flux in the region are calculated from the boundary values. The advantage of this method is that the integrated flux is obtained without knowing the fluxes inside the region as in the case of finite difference method. (author)

  16. Maximizing the Adjacent Possible in Automata Chemistries.

    Science.gov (United States)

    Hickinbotham, Simon; Clark, Edward; Nellis, Adam; Stepney, Susan; Clarke, Tim; Young, Peter

    2016-01-01

    Automata chemistries are good vehicles for experimentation in open-ended evolution, but they are by necessity complex systems whose low-level properties require careful design. To aid the process of designing automata chemistries, we develop an abstract model that classifies the features of a chemistry from a physical (bottom up) perspective and from a biological (top down) perspective. There are two levels: things that can evolve, and things that cannot. We equate the evolving level with biology and the non-evolving level with physics. We design our initial organisms in the biology, so they can evolve. We design the physics to facilitate evolvable biologies. This architecture leads to a set of design principles that should be observed when creating an instantiation of the architecture. These principles are Everything Evolves, Everything's Soft, and Everything Dies. To evaluate these ideas, we present experiments in the recently developed Stringmol automata chemistry. We examine the properties of Stringmol with respect to the principles, and so demonstrate the usefulness of the principles in designing automata chemistries.

  17. The Combined Effects of Classroom Teaching and Learning Strategy Use on Students' Chemistry Self-Efficacy

    Science.gov (United States)

    Cheung, Derek

    2015-02-01

    For students to be successful in school chemistry, a strong sense of self-efficacy is essential. Chemistry self-efficacy can be defined as students' beliefs about the extent to which they are capable of performing specific chemistry tasks. According to Bandura (Psychol. Rev. 84:191-215, 1977), students acquire information about their level of self-efficacy from four sources: performance accomplishments, vicarious experiences, verbal persuasion, and physiological states. No published studies have investigated how instructional strategies in chemistry lessons can provide students with positive experiences with these four sources of self-efficacy information and how the instructional strategies promote students' chemistry self-efficacy. In this study, questionnaire items were constructed to measure student perceptions about instructional strategies, termed efficacy-enhancing teaching, which can provide positive experiences with the four sources of self-efficacy information. Structural equation modeling was then applied to test a hypothesized mediation model, positing that efficacy-enhancing teaching positively affects students' chemistry self-efficacy through their use of deep learning strategies such as metacognitive control strategies. A total of 590 chemistry students at nine secondary schools in Hong Kong participated in the survey. The mediation model provided a good fit to the student data. Efficacy-enhancing teaching had a direct effect on students' chemistry self-efficacy. Efficacy-enhancing teaching also directly affected students' use of deep learning strategies, which in turn affected students' chemistry self-efficacy. The implications of these findings for developing secondary school students' chemistry self-efficacy are discussed.

  18. Sunscreen synthesis and their immobilisation on polymethylmethacrylate: an integrated project in organic chemistry, polymer chemistry and photochemistry

    International Nuclear Information System (INIS)

    Murtinho, Dina Maria B.; Serra, Maria Elisa S.; Pineiro, Marta

    2010-01-01

    Dibenzalacetone and other aldol condensation products are known sunscreens commonly used in cosmetics. This type of compounds can easily be prepared in an Organic Chemistry Lab by reaction of aldehydes with ketones in basic medium. These compounds can be incorporated in poly(methyl methacrylate) and used as UV light absorbers, for example in sunglasses. This project has the advantage of using inexpensive reagents which are readily available in Chemistry Laboratories. This experiment can also be a base starting point for discussions of organic, polymer and photochemistry topics. (author)

  19. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed. copyright American Institute of Physics 1995

  20. Short-time variations of the solar neutrino luminosity (Fourier analysis of the argon-37 production rate data)

    International Nuclear Information System (INIS)

    Haubold, H.J.; Gerth, E.

    1985-01-01

    We continue the Fourier analysis of the argon-37 production rate for runs 18--80 observed in Davis' well known solar neutrino experiment. The method of Fourier analysis with the unequally-spaced data of Davis and associates is described and the discovered periods we compare with our recently published results for the analysis of runs 18--69 (Haubold and Gerth, 1983). The harmonic analysis of the data of runs 18--80 shows time variations of the solar neutrino flux with periods π = 8.33; 5.26; 2.13; 1.56; 0.83; 0.64; 0.54; and 0.50 years, respectively, which confirms our earlier computations

  1. Predicting continued participation in college chemistry for men and women

    Science.gov (United States)

    Deboer, George E.

    The purpose of this study was to test the effectiveness of a cognitive motivational model of course selection patterns to explain the continued participation of men and women in college science courses. A number of cognitive motivational constructs were analyzed in a path model and their effect on students' intention to continue in college chemistry was determined. Variables in the model included self-perceived ability in science, future expectations, level of past success, effort expended, subjective interpretations of both past success and task difficulty, and the intention to continue in college chemistry.The results showed no sex differences in course performance, the plan to continue in chemistry, perceived ability in science, or past achievement in science courses. The path analysis did confirm the usefulness of the cognitive motivational perspective to explain the intention of both men and women to continue in science. Central to that process appears to be a person's belief about their ability. Students who had confidence in their ability in chemistry expected to do well in the future and were more likely to take more chemistry. Ability ratings in turn were dependent on a number of past achievement experiences and the personal interpretation of those experiences.

  2. Fourier Series Formalization in ACL2(r

    Directory of Open Access Journals (Sweden)

    Cuong K. Chau

    2015-09-01

    Full Text Available We formalize some basic properties of Fourier series in the logic of ACL2(r, which is a variant of ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis. More specifically, we extend a framework for formally evaluating definite integrals of real-valued, continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework is also applied to functions containing free arguments. Using this framework, we are able to prove the orthogonality relationships between trigonometric functions, which are the essential properties in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by applying the extended framework along with the First Fundamental Theorem of Calculus and the sum rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is a straightforward corollary. We also present our formalization of the sum rule for definite integrals of infinite series in ACL2(r. Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity of a limit function under certain conditions. A key technique in our proofs of these theorems is to apply the overspill principle from non-standard analysis.

  3. Fast fourier algorithms in spectral computation and analysis of vibrating machines

    International Nuclear Information System (INIS)

    Farooq, U.; Hafeez, T.; Khan, M.Z.; Amir, M.

    2001-01-01

    In this work we have discussed Fourier and its history series, relationships among various Fourier mappings, Fourier coefficients, transforms, inverse transforms, integrals, analyses, discrete and fast algorithms for data processing and analysis of vibrating systems. The evaluation of magnitude of the source signal at transmission time, related coefficient matrix, intensity, and magnitude at the receiving end (stations). Matrix computation of Fourier transform has been explained, and applications are presented. The fast Fourier transforms, new computational scheme. have been tested with an example. The work also includes digital programs for obtaining the frequency contents of time function. It has been explained that how the fast Fourier algorithms (FFT) has decreased computational work by several order of magnitudes and split the spectrum of a signal into two (even and odd modes) at every successive step. That fast quantitative processing for discrete Fourier transforms' computations as well as signal splitting and combination provides an efficient. and reliable tool for spectral analyses. Fourier series decompose the given variable into a sum of oscillatory functions each having a specific frequency. These frequencies, with their corresponding amplitude and phase angles, constitute the frequency contents of the original time functions. These fast processing achievements, signals decomposition and combination may be carried out by the principle of superposition and convolution for, even, signals of different frequencies. Considerable information about a machine or a structure can be derived from variable speed and frequency tests. (author)

  4. A Comparison of How Undergraduates, Graduate Students, and Professors Organize Organic Chemistry Reactions

    Science.gov (United States)

    Galloway, Kelli R.; Leung, Min Wah; Flynn, Alison B.

    2018-01-01

    To explore the differences between how organic chemistry students and organic chemistry professors think about organic chemistry reactions, we administered a card sort task to participants with a range of knowledge and experience levels. Beginning students created a variety of categories ranging from structural similarities to process oriented…

  5. Quantum-classical correspondence for the Fourier spectrum of a trajectory

    International Nuclear Information System (INIS)

    Heller, E.J.

    1983-01-01

    Using a displaced localized wavepacket (coherent state) as a quantum analog to a classical trajectory, we examine the Fourier spectrum of the expectation value of position Xsub(t)sup(Q), and compare it with the classical Fourier spectrum of position Xsub(t). In both the quasiperiodic and chaotic regimes, a strong classical-quantum correspondence exists in the Fourier spectrum. However, the quantum spectrum has certain interesting features not present in the classical case. (orig.)

  6. The adsorption of amino acids and cations onto goethite: a prebiotic chemistry experiment.

    Science.gov (United States)

    Farias, Ana Paula S F; Carneiro, Cristine E A; de Batista Fonseca, Inês C; Zaia, Cássia T B V; Zaia, Dimas A M

    2016-06-01

    Few prebiotic chemistry experiments have assessed the adsorption of biomolecules by iron oxide-hydroxides. The present work investigated the effects of cations in artificial seawaters on the adsorption of Gly, α-Ala and β-Ala onto goethite, and vice versa. Goethite served to concentrate K and Mg cations from solution; these effects could have played important roles in peptide nucleoside formation. Goethite showed low adsorption of Gly and α-Ala. On the other hand, β-Ala (a non-protein amino acid) was highly adsorbed by goethite. Because Gly and α-Ala are the most common amino acids in living beings, and iron oxide-hydroxides are widespread on Earth, additional iron oxides should be studied. Increased ionic strength in artificial seawaters decreased the adsorption of amino acids by goethite. Because Na was highly abundant in the artificial seawater, it showed the highest effect on amino acid adsorption. β-Ala increased the adsorption of K and Ca by goethite, this effect could have been important for peptide synthesis.

  7. Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K., E-mail: rvv@ornl.gov; Belianinov, Alex; Baddorf, Arthur P.; Tselev, Alexander; Jesse, S. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Gianfrancesco, Anthony G. [UT/ORNL Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States); Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); UT/ORNL Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-03-02

    Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La{sub 5/8}Ca{sub 3/8}MnO{sub 3} (LCMO) films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis and Independent Component Analysis of the Sliding FFT dataset reveal the distinct changes in crystallography, step edges, and boundaries between the multiple sub-lattices. The implications for the LCMO system are discussed. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.

  8. Fourier descriptor classification of differential eddy current probe impedance plane trajectories

    International Nuclear Information System (INIS)

    Lord, W.; Satish, S.R.

    1984-01-01

    This chapter describes the use of a parametric model for representing the two-dimensional eddy current impedance plane trajectory. The main advantage of this approach is the ability to reconstruct the trajectory from the model coefficients. Fourier descriptors are used to facilitate defect classification. The Fourier descriptors are obtained by expanding the complex contour function in a Fourier series. Functions of Fourier coefficients which are invariant under transformation of the trajectory are derived and incorporated into a feature vector. Defect classification is obtained by using the K-Means algorithm to cluster the feature vectors. It is demonstrated that the Fourier descriptor approach represents a powerful tool which have several advantages over nonparametric approaches including its insensitivity to drift in the eddy current instrument as well as variations in the probe speed

  9. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  10. Spectrums Transform Operators in Bases of Fourier and Walsh Functions

    Directory of Open Access Journals (Sweden)

    V. V. Syuzev

    2017-01-01

    Full Text Available The problems of synthesis of the efficient algorithms for digital processing of discrete signals require transforming the signal spectra from one basis system into other. The rational solution to this problem is to construct the Fourier kernel, which is a spectrum of some basis functions, according to the system of functions of the other basis. However, Fourier kernel properties are not equally studied and described for all basis systems of practical importance. The article sets a task and presents an original way to solve the problem of mutual transformation of trigonometric Fourier spectrum into Walsh spectrum of different basis systems.The relevance of this theoretical and applied problem is stipulated, on the one hand, by the prevalence of trigonometric Fourier basis for harmonic representation of digital signals, and, on the other hand, by the fact that Walsh basis systems allow us to have efficient algorithms to simulate signals. The problem solution is achieved through building the Fourier kernel of a special structure that allows us to establish independent groups of Fourier and Walsh spectrum coefficients for further reducing the computational complexity of the transform algorithms.The article analyzes the properties of the system of trigonometric Fourier functions and shows its completeness. Considers the Walsh function basis systems in three versions, namely those of Hadamard, Paley, and Hartmut giving different ordering and analytical descriptions of the functions that make up the basis. Proves a completeness of these systems.Sequentially, for each of the three Walsh systems the analytical curves for the Fourier kernel components are obtained, and Fourier kernel themselves are built with binary rational number of samples of basis functions. The kernels are presented in matrix form and, as an example, recorded for a particular value of the discrete interval of N, equal to 8. The analysis spectral coefficients of the Fourier kernel

  11. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  12. Fourier Magnitude-Based Privacy-Preserving Clustering on Time-Series Data

    Science.gov (United States)

    Kim, Hea-Suk; Moon, Yang-Sae

    Privacy-preserving clustering (PPC in short) is important in publishing sensitive time-series data. Previous PPC solutions, however, have a problem of not preserving distance orders or incurring privacy breach. To solve this problem, we propose a new PPC approach that exploits Fourier magnitudes of time-series. Our magnitude-based method does not cause privacy breach even though its techniques or related parameters are publicly revealed. Using magnitudes only, however, incurs the distance order problem, and we thus present magnitude selection strategies to preserve as many Euclidean distance orders as possible. Through extensive experiments, we showcase the superiority of our magnitude-based approach.

  13. Random sampling of evolution time space and Fourier transform processing

    International Nuclear Information System (INIS)

    Kazimierczuk, Krzysztof; Zawadzka, Anna; Kozminski, Wiktor; Zhukov, Igor

    2006-01-01

    Application of Fourier Transform for processing 3D NMR spectra with random sampling of evolution time space is presented. The 2D FT is calculated for pairs of frequencies, instead of conventional sequence of one-dimensional transforms. Signal to noise ratios and linewidths for different random distributions were investigated by simulations and experiments. The experimental examples include 3D HNCA, HNCACB and 15 N-edited NOESY-HSQC spectra of 13 C 15 N labeled ubiquitin sample. Obtained results revealed general applicability of proposed method and the significant improvement of resolution in comparison with conventional spectra recorded in the same time

  14. Síntese de biodiesel: uma proposta contextualizada de experimento para laboratório de química geral Synthesis of biodiesel: a contextualized experiment proposal for the general chemistry laboratory

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2007-10-01

    Full Text Available The contextualized understanding of concepts in Chemistry by students from other areas is a challenging task. In this experiment, the synthesis of biodiesel is done by base catalyzed transesterification of refined soy oil with methanol at room temperature and common glassware found in any chemistry laboratory. The proposal permits introducing several concepts, such as that of emulsion, viscosity and catalysis to illustrate an activity based on an actual problem. In this didactic approach, some common problems of biodiesel production, such as soap formation and phase separation, are introduced into the procedure in order to raise questions and motivate the students to participate in the experimental work and stimulate reflections about critical aspects of biodiesel production. This experiment was carried out in the first semester of 2006, in experimental general chemistry taken by physics and agricultural, civil and chemical engineering students of UNICAMP.

  15. Innovative design method of automobile profile based on Fourier descriptor

    Science.gov (United States)

    Gao, Shuyong; Fu, Chaoxing; Xia, Fan; Shen, Wei

    2017-10-01

    Aiming at the innovation of the contours of automobile side, this paper presents an innovative design method of vehicle side profile based on Fourier descriptor. The design flow of this design method is: pre-processing, coordinate extraction, standardization, discrete Fourier transform, simplified Fourier descriptor, exchange descriptor innovation, inverse Fourier transform to get the outline of innovative design. Innovative concepts of the innovative methods of gene exchange among species and the innovative methods of gene exchange among different species are presented, and the contours of the innovative design are obtained separately. A three-dimensional model of a car is obtained by referring to the profile curve which is obtained by exchanging xenogeneic genes. The feasibility of the method proposed in this paper is verified by various aspects.

  16. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    Science.gov (United States)

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  17. A unified Fourier theory for time-of-flight PET data

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier–John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John’s equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations

  18. Analysis of moiré fringes by Wiener filtering: An extension to the Fourier method

    International Nuclear Information System (INIS)

    Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2012-01-01

    In X-ray Talbot interferometry, tilting the phase grating with respect to the absorption grating results in the formation of spatial fringes. The analysis of this moiré pattern, classically performed by the Fourier method, allows the extraction of the sample phase shift information from a single image. In this context, an extension to the Fourier method is proposed. The filter used to extract the fringe information is chosen optimally in the least-squares sense, given models for the zeroth and first order modes, noise and the modulation transfer function. The latter is obtained by measuring the detector response to moiré fringes with increasing frequencies. The obtained Wiener filter allows a better reconstruction of the phase information at all fringe frequencies, compared to the usual box or gaussian filters. This is demonstrated quantitatively by experiments using synchrotron radiation.

  19. Lacunary Fourier Series and a Qualitative Uncertainty Principle for ...

    Indian Academy of Sciences (India)

    We define lacunary Fourier series on a compact connected semisimple Lie group . If f ∈ L 1 ( G ) has lacunary Fourier series and vanishes on a non empty open subset of , then we prove that vanishes identically. This result can be viewed as a qualitative uncertainty principle.

  20. Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation

    Science.gov (United States)

    Pagán Muñoz, Raúl; Hornikx, Maarten

    2017-11-01

    The Fourier Pseudospectral time-domain (Fourier PSTD) method was shown to be an efficient way of modelling acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. This paper presents a hybrid approach to solve the LEE, coupling Fourier PSTD with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel method is to allow the computation of complex geometries and to be a step towards the implementation of frequency dependent boundary conditions by using the benefits of DG at the boundaries, while keeping the efficient Fourier PSTD in the bulk of the domain. The hybridization approach is based on conformal meshes to avoid spatial interpolation of the DG solutions when transferring values from DG to Fourier PSTD, while the data transfer from Fourier PSTD to DG is done utilizing spectral interpolation of the Fourier PSTD solutions. The accuracy of the hybrid approach is presented for one- and two-dimensional acoustic problems and the main sources of error are investigated. It is concluded that the hybrid methodology does not introduce significant errors compared to the Fourier PSTD stand-alone solver. An example of a cylinder scattering problem is presented and accurate results have been obtained when using the proposed approach. Finally, no instabilities were found during long-time calculation using the current hybrid methodology on a two-dimensional domain.

  1. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  2. Novel properties of the Fourier decomposition of the sinogram

    International Nuclear Information System (INIS)

    Edholm, P.R.; Lewitt, R.M.; Lindholm, B.

    1986-01-01

    The double Fourier decomposition of the sinogram is obtained by first taking the Fourier transform of each parallel-ray projection and then calculating the coefficients of a Fourier series with respect to angle for each frequency component of the transformed projections. The values of these coefficients may be plotted on a two-dimensional map whose coordinates are spatial frequency ω (continuous) and angular harmonic number n (discrete). For absolute value of ω large, the Fourier coefficients on the line n=kω of slope k through the origin of the coefficient space are found to depend strongly on the contributions to the projection data that, for each view, come from a certain distance to the detector plane, where the distance is a linear function of k. The values of these coefficients depend only weakly on contributions from other distances from the detector. The theoretical basis of this property is presented in this paper and a potential application to emission computerized tomography is discussed

  3. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav; Petrova, Guergana

    2009-01-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node

  4. Comparative analysis of imaging configurations and objectives for Fourier microscopy.

    Science.gov (United States)

    Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid

    2015-11-01

    Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.

  5. Quantitative heart scintigraphy using Fourier analysis of unformated list mode data

    International Nuclear Information System (INIS)

    Knopp, R.; Schmidt, H.; Reichmann, K.; Biersack, H.J.; Winkler, C.

    1981-01-01

    Fourier transformation in radioventriculography is used for smoothing of the left ventricular volume curves as well as for the evaluating of regional wall motions by means of amplitude and phase imaging. Our new method is based on Fourier transformation from unformatted list mode data, pixel by pixel. Determination of the Fourier coefficients of 4 harmonic waves as a maximum is performed and frame sequences are generated by Fourier resynthesis. As main advantages of the method can be regarded a) considerable improvement of the image quality and b) substantial reduction of time needed for data acquisition. (orig.) [de

  6. What are today's choices for PWRs water chemistry?

    International Nuclear Information System (INIS)

    Berge, P.

    1998-01-01

    Water chemistry has always been, from the very beginning of operation of power Pressurized Water Reactors (PWRs), an important factor in determining the integrity of many reactor components. For both the primary and secondary coolant circuits, the parameters to control the quality of the chemistry have been subject to changes in time. These changes were dictated mainly by corrosion problems which required an adjustment of the chemistry, before any modification could be made in the design or the selection of materials for the subsequently built reactors or replacement components. The situation today, despite 40 years of experience, still leaves open different options for the specifications of the chemistry of the circuits. These options are sometimes due to differences in design or materials of the circuits, but more often, to the perception by the plant chemists, of the role of the chemistry on the different phenomena which could affect the operation of their plant. Paul Cohen, who was well known in the nuclear industry for the early development of the chemistry in PWRs in the USA, used to say, 'if the head chemist has changed in a plant, the chemistry will change'. The purpose of this lecture is to discuss some of the options which are offered to the chemist in compliance with the basic principles of the chemistry guidelines. (J.P.N.)

  7. From Fourier analysis to wavelets

    CERN Document Server

    Gomes, Jonas

    2015-01-01

    This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints.  Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform.  The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets.  Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis.  Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.

  8. Web-Based Job Submission Interface for the GAMESS Computational Chemistry Program

    Science.gov (United States)

    Perri, M. J.; Weber, S. H.

    2014-01-01

    A Web site is described that facilitates use of the free computational chemistry software: General Atomic and Molecular Electronic Structure System (GAMESS). Its goal is to provide an opportunity for undergraduate students to perform computational chemistry experiments without the need to purchase expensive software.

  9. Upper-Level Undergraduate Chemistry Students' Goals for Their Laboratory Coursework

    Science.gov (United States)

    DeKorver, Brittland K.; Towns, Marcy H.

    2016-01-01

    Efforts to reform undergraduate chemistry laboratory coursework typically focus on the curricula of introductory-level courses, while upper-level courses are bypassed. This study used video-stimulated recall to interview 17 junior- and senior- level chemistry majors after they carried out an experiment as part of a laboratory course. It is assumed…

  10. A Cross-Age Study of Science Student Teachers' Chemistry Attitudes

    Science.gov (United States)

    Çalik, Muammer; Ültay, Neslihan; Kolomuç, Ali; Aytar, Ayse

    2015-01-01

    The aim of this study is to investigate the effects of some variables (gender and year of study) on science student teachers' (SSTs) chemistry attitudes. An adapted version of Chemistry Attitudes and Experiences Questionnaire was administered to 983 SSTs drawn from four different universities in the region of Eastern Black Sea, Turkey. Significant…

  11. [Tracking study to improve basic academic ability in chemistry for freshmen].

    Science.gov (United States)

    Sato, Atsuko; Morone, Mieko; Azuma, Yutaka

    2010-08-01

    The aims of this study were to assess the basic academic ability of freshmen with regard to chemistry and implement suitable educational guidance measures. At Tohoku Pharmaceutical University, basic academic ability examinations are conducted in chemistry for freshmen immediately after entrance into the college. From 2003 to 2009, the examination was conducted using the same questions, and the secular changes in the mean percentage of correct response were statistically analyzed. An experience survey was also conducted on 2007 and 2009 freshmen regarding chemical experiments at senior high school. Analysis of the basic academic ability examinations revealed a significant decrease in the mean percentage of correct responses after 2007. With regard to the answers for each question, there was a significant decrease in the percentage of correct answers for approximately 80% of questions. In particular, a marked decrease was observed for calculation questions involving percentages. A significant decrease was also observed in the number of students who had experiences with chemical experiments in high school. However, notable results have been achieved through the implementation of practice incorporating calculation problems in order to improve calculation ability. Learning of chemistry and a lack of experimental experience in high school may be contributory factors in the decrease in chemistry academic ability. In consideration of the professional ability demanded of pharmacists, the decrease in calculation ability should be regarded as a serious issue and suitable measures for improving calculation ability are urgently required.

  12. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  13. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  14. The Fourier Transform for Certain HyperKähler Fourfolds

    NARCIS (Netherlands)

    Shen, M.; Vial, C.

    2016-01-01

    Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring CH∗(A). By using a codimension-2 algebraic cycle

  15. A hands-on approach to teaching environmental awareness and pollutant remediation to undergraduate chemistry students

    Science.gov (United States)

    Salman Ashraf, S.; Rauf, M. A.; Abdullah, Fatema H.

    2012-07-01

    Background : One of the unfortunate side effects of the industrial revolution has been the constant assault of the environment with various forms of pollution. Lately, this issue has taken a more critical dimension as prospects of global climate change and irreversible ecosystem damage are becoming a reality. Purpose : College graduates (especially chemists), should therefore not only be aware of these issues but also be taught how chemistry can help reduce environmental pollution. Furthermore, the role and importance of chemistry in sustainable development and solving environmental problems needs to be highlighted. Programme/intervention description : To this effect, we have designed a simple undergraduate experiment that is based on the green chemistry approach of using photolytic oxidation to degrade a model organic pollutant. This approach used UV light and hydrogen peroxide to produce reactive hydroxyl radicals, which subsequently break down and degrade Acridine Orange (model pollutant). The dye degradation was monitored spectrophotometrically and the apparent rate of decolouration was found to be first order. Possible radical initiated mechanisms that may be involved in this remediation experiment have been used to explain the observed dye decolouration. Sample : To test the usefulness of this newly developed experiment, we incorporated it as a module into a second year 'Professional skills' chemistry course with an enrollment of six female students. Anonymous survey of the students after the completion of the module was very positive and indicated that objectives of the experiment were satisfactorily achieved. Results : We believe this experiment not only raises students' awareness about green chemistry and environmental issues, but also teaches them valuable experimental skills such as experimental design, data manipulation and basic kinetics. Survey of students who were taught this unit in a second year course was very positive and supported the usefulness

  16. General chemistry courses that can affect achievement: An action research study in developing a plan to improve undergraduate chemistry courses

    Science.gov (United States)

    Shweikeh, Eman

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty

  17. Water temperature forecasting and estimation using fourier series and communication theory techniques

    International Nuclear Information System (INIS)

    Long, L.L.

    1976-01-01

    Fourier series and statistical communication theory techniques are utilized in the estimation of river water temperature increases caused by external thermal inputs. An example estimate assuming a constant thermal input is demonstrated. A regression fit of the Fourier series approximation of temperature is then used to forecast daily average water temperatures. Also, a 60-day prediction of daily average water temperature is made with the aid of the Fourier regression fit by using significant Fourier components

  18. From Fourier Transforms to Singular Eigenfunctions for Multigroup Transport

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    2001-01-01

    A new Fourier transform approach to the solution of the multigroup transport equation with anisotropic scattering and isotropic source is presented. Through routine analytical continuation, the inversion contour is shifted from the real line to produce contributions from the poles and cuts in the complex plane. The integrand along the branch cut is then recast in terms of matrix continuum singular eigenfunctions, demonstrating equivalence of Fourier transform inversion and the singular eigenfunction expansion. The significance of this paper is that it represents the initial step in revealing the intimate connection between the Fourier transform and singular eigenfunction approaches as well as serves as a basis for a numerical algorithm

  19. Residual Stress Studies Using the Cairo Fourier Diffractometer Facility

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; El-Shaer, Y.H.

    2002-01-01

    The present paper deals with residual stress studies using the Cairo Fourier diffractometer facility CFDF. The CFDF is a reverse - time of -flight (RTOF) diffractometer; applies a Fourier chopper. The measurements were performed for copper samples in order to study the residual stress after welding. The maximum modulation of the Fourier chopper during the measurements was 136 khz; leading to a time resolution half-width of about 7 μ s. It has been found from the present measurements that, the resulting diffraction spectra could be successfully used for studying the residual stress; in the wavelength range between 0.7-2.9 A degree at ∼ 0.45 % relative resolution

  20. Bilaterally symmetric Fourier approximations of the skull outlines of ...

    Indian Academy of Sciences (India)

    Present work illustrates a scheme of quantitative description of the shape of the skull outlines of temnospondyl amphibians using bilaterally symmetric closed Fourier curves. Some special points have been identified on the Fourier fits of the skull outlines, which are the local maxima, or minima of the distances from the ...