WorldWideScience

Sample records for chemistry analytical

  1. Analytical chemistry

    International Nuclear Information System (INIS)

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  2. Science Update: Analytical Chemistry.

    Science.gov (United States)

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  3. Analytical Chemistry in Russia.

    Science.gov (United States)

    Zolotov, Yuri

    2016-09-01

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  4. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  5. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed. PMID:26631024

  6. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  7. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  8. Analytical chemistry in space

    CERN Document Server

    Wainerdi, Richard E

    1970-01-01

    Analytical Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by

  9. [Photonic crystals for analytical chemistry].

    Science.gov (United States)

    Chen, Yi; Li, Jincheng

    2009-09-01

    Photonic crystals, originally created to control the transmission of light, have found their increasing value in the field of analytical chemistry and are probable to become a hot research area soon. This review is hence composed, focusing on their analytical chemistry-oriented applications, including especially their use in chromatography, capillary- and chip-based electrophoresis.

  10. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  11. Making Decisions by Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    It has been long recognized that results of analytical chemistry are not flawless, owing to the fact that professional laboratories and research laboratories analysing the same type of samples by the same type of instruments are likely to obtain significantly different results. The European....... These discrepancies are very unfortunate because erroneous conclusions may arise from an otherwise meticulous and dedicated effort of research staff. This may eventually lead to unreliable conclusions thus jeopardizing investigations of environmental monitoring, climate changes, food safety, clinical chemistry...... of accuracy published in research literature. The possible deviations are suspected to originate from long-term variations of detection systems of instrumental analysis, and the impact on these findings on future measurements of analytical chemistry is discussed....

  12. Nuclear techniques in analytical chemistry

    CERN Document Server

    Moses, Alfred J; Gordon, L

    1964-01-01

    Nuclear Techniques in Analytical Chemistry discusses highly sensitive nuclear techniques that determine the micro- and macro-amounts or trace elements of materials. With the increasingly frequent demand for the chemical determination of trace amounts of elements in materials, the analytical chemist had to search for more sensitive methods of analysis. This book accustoms analytical chemists with nuclear techniques that possess the desired sensitivity and applicability at trace levels. The topics covered include safe handling of radioactivity; measurement of natural radioactivity; and neutron a

  13. Analytical chemistry and semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, P.W. (Univ. of Illinois at Urbana-Champaign (USA)); Harris, T.D. (AT T Bell Laboratories, Murray Hill, NJ (USA))

    1990-07-15

    Advances in analytical chemistry are crucial to the continued expansion of electronic and optoelectronic materials in device applications. This report explains the critical role that the defect chemistry of semiconductor material in a device and the difficulty of extracting chemical information about defects. The authors focus on the generic class of chemical analysis problems resulting from the fact that the spatial distribution of chemical composition is the single most important factor in determining the operative properties of electronic and optoelectronic materials. 31 refs., 7 figs., 1 tabs.

  14. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  15. Laser ablation in analytical chemistry.

    Science.gov (United States)

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  16. Significant steps in the evolution of analytical chemistry--is the today's analytical chemistry only chemistry?

    Science.gov (United States)

    Karayannis, Miltiades I; Efstathiou, Constantinos E

    2012-12-15

    In this review the history of chemistry and specifically the history and the significant steps of the evolution of analytical chemistry are presented. In chronological time spans, covering the ancient world, the middle ages, the period of the 19th century, and the three evolutional periods, from the verge of the 19th century to contemporary times, it is given information for the progress of chemistry and analytical chemistry. During this period, analytical chemistry moved gradually from its pure empirical nature to more rational scientific activities, transforming itself to an autonomous branch of chemistry and a separate discipline. It is also shown that analytical chemistry moved gradually from the status of exclusive serving the chemical science, towards serving, the environment, health, law, almost all areas of science and technology, and the overall society. Some recommendations are also directed to analytical chemistry educators concerning the indispensable nature of knowledge of classical analytical chemistry and the associated laboratory exercises and to analysts, in general, why it is important to use the chemical knowledge to make measurements on problems of everyday life.

  17. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  18. Analytical Chemistry Division's sample transaction system

    International Nuclear Information System (INIS)

    The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing

  19. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  20. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Marek Tobiszewski

    2015-06-01

    Full Text Available The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  1. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed. PMID:26076112

  2. Modern analytical chemistry in the contemporary world

    Science.gov (United States)

    Šíma, Jan

    2016-02-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.

  3. Analytical spectroscopy. Analytical Chemistry Symposia Series, Volume 19

    International Nuclear Information System (INIS)

    This book contains papers covering several fields in analytical chemistry including lasers, mass spectrometry, inductively coupled plasma, activation analysis and emission spectroscopy. Separate abstracting and indexing was done for 64 papers in this book

  4. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    OpenAIRE

    Marek Tobiszewski; Mariusz Marć; Agnieszka Gałuszka; Jacek Namieśnik

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-establis...

  5. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  6. Light-emitting diodes for analytical chemistry.

    Science.gov (United States)

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  7. Course on Advanced Analytical Chemistry and Chromatography

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Fristrup, Peter; Nielsen, Kristian Fog;

    2011-01-01

    Methods of analytical chemistry constitute an integral part of decision making in chemical research, and students must master a high degree of knowledge, in order to perform reliable analysis. At DTU departments of chemistry it was thus decided to develop a course that was attractive to master...... students of different direction of studies, to Ph.D. students and to professionals that need an update of their current state of skills and knowledge. A course of 10 ECTS points was devised with the purpose of introducing students to analytical chemistry and chromatography with the aim of including theory...

  8. Distribution of knowledge in analytical chemistry

    International Nuclear Information System (INIS)

    The CEA contributes to the development of knowledge in analytical chemistry by research work in its laboratories, at the same time using the acquired information for the daily execution of many determinations. In its own interests the CEA must therefore pass on this known-how to those who carry out analyses on its behalf: the analytical laboratories and the analysts themselves. At the analytical laboratory level the Committee for the Establishment of analytical methods (CETAMA) offers a permanent liaison service. Where analysts are concerned. Close relations with educational or professional training establishment enable CEA personnel to attend causes and instruction periods as students or to collaborate as instructors. The work of the CETAMA and the educational and professional training activities to which the CEA contributes in the field of analytical chemistry are outlined

  9. Analytical Chemistry Division: annual report (for) 1986

    International Nuclear Information System (INIS)

    The Research and Development (R and D) activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1986 are reported in the form of individual summaries. Analytical consultancies to outside organisations are also described in brief. Information regarding number of samples analysed, publications, invited talks, award of research degrees, training imparted to scientists from R and D organisations in the country and abroad etc. is given in the appendices at the end of the report. (M.G.B.)

  10. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    Science.gov (United States)

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  11. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    Science.gov (United States)

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  12. Analytical Chemistry Division : annual report (for) 1985

    International Nuclear Information System (INIS)

    An account of the various activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1985 is presented. The main function of the Division is to provide chemical analysis support to India's atomic energy programme. In addition, the Division also offers its analytical services, mostly for measurement of concentrations at trace levels to Indian industries and other research organization in the country. A list of these determinations is given. The report also describes the research and development (R and D) activities - both completed and in progress, in the form of individual summaries. During the year an ultra trace analytical laboratory for analysis of critical samples without contamination was set up using indigenous material and technology. Publications and training activities of the staff, training of the staff from other institution, guidance by the staff for post-graduate degree and invited talks by the staff are listed in the appendices at the end of the report. (M.G.B.)

  13. Analytical Chemistry Core Capability Assessment - Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

    2012-05-16

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This

  14. Analytical Chemistry Core Capability Assessment - Preliminary Report

    International Nuclear Information System (INIS)

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be

  15. Fundamentals of analytical chemistry, 5th edition

    International Nuclear Information System (INIS)

    Fundamentals of Analytical Chemistry is divided into three roughly equal parts. The first 14 chapters cover classical methods of analysis, including titrimetry and gravimetry as well as solution equilibria and statistical analysis. The next 11 chapters address electroanalytical, optical, and chromatographic methods of analysis. The remainder of the text is devoted to discussions of sample manipulation and pretreatment, good laboratory practices, and detailed directions for performing examples of 17 different types of classical and instrumental analyses. Like its predecessors, this fifth edition provides comprehensive coverage of classical analytical methods and the major instrumental ones in a literary style that is clear, straightforward, and readable. New terms are carefully defined as they are introduced, and each term is italicized for emphasis and for ease of relocation by the student who may forget its meaning. The chapters on analyses of real-world samples, on avoiding interferences, and on techniques for sample preparation should prove especially useful for the practicing chemist

  16. International Congress on Analytical Chemistry. Abstracts. V. 1

    International Nuclear Information System (INIS)

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997. The main directs of investigations in such regions of analytical chemistry as quantitative and qualitative analysis, microanalysis, sample preparation and preconcentration, analytical reagents, chromatography and related techniques, flow analysis, electroanalytical and kinetic methods sensors are elucidated

  17. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  18. Analytical chemistry of oil well treating chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Maddin, C.M.; Loop, V.R.

    1973-01-01

    Chemical reactions in an oil reservoir are often an unknown and can only be simulated in the laboratory. One aid in correlating downhole reactions with lab tests is analysis of returned treating fluids from the reservoir. Analytical chemistry provides powerful tools for monitoring oil-well treating chemicals. Visible absorption spectro-photometry provides methods for cationic, anionic, and nonionic surfactants as well as for acrylate- and phosphorus-based scale inhibitors. It is useful for measuring sequestrant concentrations from their reactions with metal ions, alcohols by chromate reduction, arsenic-based acidizing inhibitors, nitrogen-based downhole inhibitors, polyacrylamide- and carbohydrate-based fracturing and diverting chemicals. Ultraviolet spectrophotometry is well suited to the measurement of cement-setting retarder concentrations and organic acidizing inhibitors. Gas-liquid chromatography measures nonreactive solvent concentrations and acetylenic alcohols used in acidizing inhibitors. (21 refs.)

  19. Experimental design in analytical chemistry--part II: applications.

    Science.gov (United States)

    Ebrahimi-Najafabadi, Heshmatollah; Leardi, Riccardo; Jalali-Heravi, Mehdi

    2014-01-01

    This paper reviews the applications of experimental design to optimize some analytical chemistry techniques such as extraction, chromatography separation, capillary electrophoresis, spectroscopy, and electroanalytical methods.

  20. Lecture Notes and Exercises for Course 21240 (Basic Analytical Chemistry)

    DEFF Research Database (Denmark)

    1998-01-01

    The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years.......The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years....

  1. Lecture Notes and Exercises for Course 21240 (Basic Analytical Chemistry)

    DEFF Research Database (Denmark)

    1999-01-01

    The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years.......The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years....

  2. International Congress on Analytical Chemistry. Abstracts. V. 2

    International Nuclear Information System (INIS)

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997 is presented. The main directs of investigations are elucidated in such regions of analytical chemistry as quantitative and qualitative chemical analysis, sample preparation, express test methods of environmental and biological materials, clinical analysis, analysis of food and agricultural products

  3. Some Points in Future Trends in Analytical Chemistry

    Institute of Scientific and Technical Information of China (English)

    WANG; ErKang

    2001-01-01

    Analytical chemistry is a science of measurement and characterization. Analytical testing is the eyes for science and technology and also for the production. It is an important target to demonstrate the developing level for science and technology and also the economy in a country. Science and technology and economy development need analytical chemistry. Chemistry needs analytical chemistry and vice versa.  Analytical chemistry as a science involves all techniques and methods for obtaining information regarding the composition, identity, purity and constitution of samples of matter in term of the kind, quantity, and grouping of atoms and molecules, as well as the determination of those physical properties and behavior that can be corrected with those objectives.  ……

  4. Some Points in Future Trends in Analytical Chemistry

    Institute of Scientific and Technical Information of China (English)

    WANG ErKang

    2001-01-01

    @@ Analytical chemistry is a science of measurement and characterization. Analytical testing is the eyes for science and technology and also for the production. It is an important target to demonstrate the developing level for science and technology and also the economy in a country. Science and technology and economy development need analytical chemistry. Chemistry needs analytical chemistry and vice versa. Analytical chemistry as a science involves all techniques and methods for obtaining information regarding the composition, identity, purity and constitution of samples of matter in term of the kind, quantity, and grouping of atoms and molecules, as well as the determination of those physical properties and behavior that can be corrected with those objectives.

  5. Analytical Chemistry Laboratory progress report for FY 1989

    International Nuclear Information System (INIS)

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  6. Analytical Chemistry Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  7. Analytical Chemistry Laboratory: Progress report for FY 1988

    International Nuclear Information System (INIS)

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  8. Analytical Chemistry Laboratory: Progress report for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  9. Incorporating Information Literacy Skills into Analytical Chemistry: An Evolutionary Step

    Science.gov (United States)

    Walczak, Mary M.; Jackson, Paul T.

    2007-01-01

    The American Chemical Society (ACS) has recently decided to incorporate various information literacy skills for teaching analytical chemistry to the students. The methodology has been found to be extremely effective, as it provides better understanding to the students.

  10. Abstracts of the 3. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    Abstracts from experimental research works on analytical chemistry are presented. The following techniques were mainly used: differential pulse polarography, atomic absorption spectrophotometry, ion exchange chromatography and gamma spectroscopy. (C.L.B.)

  11. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  12. Analytical Chemistry Division's sample transaction system

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, J.S.; Tilson, P.A.

    1980-10-01

    The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing.

  13. [Recent advancement of photonic-crystal-based analytical chemistry].

    Science.gov (United States)

    Chen, Yun; Guo, Zhenpeng; Wang, Jinyi; Chen, Yi

    2014-04-01

    Photonic crystals are a type of novel materials with ordered structure, nanopores/channels and optical band gap. They have hence important applications in physics, chemistry, biological science and engineering fields. This review summarizes the recent advancement of photonic crystals in analytical chemistry applications, with focus on sensing and separating fields happening in the nearest 5 years.

  14. Analytical Chemistry Laboratory progress report for FY 1985

    International Nuclear Information System (INIS)

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab

  15. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  16. Analytical chemistry: Sweet solution to sensing

    Science.gov (United States)

    Sia, Samuel K.; Chin, Curtis D.

    2011-09-01

    Glucose meters allow rapid and quantitative measurement of blood sugar levels for diabetes sufferers worldwide. Now a new method allows this proven technology to be used to quantify a much wider range of analytes.

  17. Biochemical Applications in the Analytical Chemistry Lab

    Science.gov (United States)

    Strong, Cynthia; Ruttencutter, Jeffrey

    2004-01-01

    An HPLC and a UV-visible spectrophotometer are identified as instruments that helps to incorporate more biologically-relevant experiments into the course, in order to increase the students understanding of selected biochemistry topics and enhances their ability to apply an analytical approach to biochemical problems. The experiment teaches…

  18. Synergistic relationships between Analytical Chemistry and written standards

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, Miguel, E-mail: qa1vacam@uco.es; Lucena, Rafael

    2013-07-25

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived.

  19. Synergistic relationships between Analytical Chemistry and written standards

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived

  20. Bias Assessment of General Chemistry Analytes using Commutable Samples.

    Science.gov (United States)

    Koerbin, Gus; Tate, Jillian R; Ryan, Julie; Jones, Graham Rd; Sikaris, Ken A; Kanowski, David; Reed, Maxine; Gill, Janice; Koumantakis, George; Yen, Tina; St John, Andrew; Hickman, Peter E; Simpson, Aaron; Graham, Peter

    2014-11-01

    Harmonisation of reference intervals for routine general chemistry analytes has been a goal for many years. Analytical bias may prevent this harmonisation. To determine if analytical bias is present when comparing methods, the use of commutable samples, or samples that have the same properties as the clinical samples routinely analysed, should be used as reference samples to eliminate the possibility of matrix effect. The use of commutable samples has improved the identification of unacceptable analytical performance in the Netherlands and Spain. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has undertaken a pilot study using commutable samples in an attempt to determine not only country specific reference intervals but to make them comparable between countries. Australia and New Zealand, through the Australasian Association of Clinical Biochemists (AACB), have also undertaken an assessment of analytical bias using commutable samples and determined that of the 27 general chemistry analytes studied, 19 showed sufficiently small between method biases as to not prevent harmonisation of reference intervals. Application of evidence based approaches including the determination of analytical bias using commutable material is necessary when seeking to harmonise reference intervals.

  1. Analytical Chemistry Section Chemistry Research Group, Winfrith. Report for 1982 and 1983

    International Nuclear Information System (INIS)

    This report reviews the principal activities of the Analytical Chemistry Section of Chemistry Research Group, Winfrith, during 1982 and 1983. The objectives of the report are to outline the range of chemical analysis support services available at Winfrith, indicate the research areas from which samples currently originate, and identify instrumental techniques where significant updating has occurred. (author)

  2. Synergistic relationships between Analytical Chemistry and written standards.

    Science.gov (United States)

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived. PMID:23845474

  3. Synergistic relationships between Analytical Chemistry and written standards.

    Science.gov (United States)

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived.

  4. Magnetic ionic liquids in analytical chemistry: A review.

    Science.gov (United States)

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties.

  5. Magnetic ionic liquids in analytical chemistry: A review.

    Science.gov (United States)

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties. PMID:27506339

  6. Analytical Chemistry Laboratory Progress Report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  7. Abstracts of the 2. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    Abstracts of theoretical and experimental works on Qualitative and Quantitative Analytical Chemistry are presented. Among the various analytical techniques used, emphasis is given to: neutron activation analysis, crystal doping and annealing, isotopic tracing, fission tracks detection, atomic absorption spectrophotometry, emission spectroscopy with induced coupled plasma, X-ray diffraction, nuclear magnetic resonance, mass spectrometry, polarography, ion exchange and/or thin-layer chromatography, electrodeposition, potentiometric titration and others. (C.L.B)

  8. Nuclear analytical techniques applied to forensic chemistry

    International Nuclear Information System (INIS)

    Gun shot residues produced by firing guns are mainly composed by visible particles. The individual characterization of these particles allows distinguishing those ones containing heavy metals, from gun shot residues, from those having a different origin or history. In this work, the results obtained from the study of gun shot residues particles collected from hands are presented. The aim of the analysis is to establish whether a person has shot a firing gun has been in contact with one after the shot has been produced. As reference samples, particles collected hands of persons affected to different activities were studied to make comparisons. The complete study was based on the application of nuclear analytical techniques such as Scanning Electron Microscopy, Energy Dispersive X Ray Electron Probe Microanalysis and Graphite Furnace Atomic Absorption Spectrometry. The essays allow to be completed within time compatible with the forensic requirements. (author)

  9. Analytical Chemistry Laboratory progress report for FY 1998

    International Nuclear Information System (INIS)

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL

  10. Analytical Chemistry Laboratory progress report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  11. Using Presentation Software to Flip an Undergraduate Analytical Chemistry Course

    Science.gov (United States)

    Fitzgerald, Neil; Li, Luisa

    2015-01-01

    An undergraduate analytical chemistry course has been adapted to a flipped course format. Course content was provided by video clips, text, graphics, audio, and simple animations organized as concept maps using the cloud-based presentation platform, Prezi. The advantages of using Prezi to present course content in a flipped course format are…

  12. Spectroelectrochemical Sensing of Aqueous Iron: An Experiment for Analytical Chemistry

    Science.gov (United States)

    Shtoyko, Tanya; Stuart, Dean; Gray, H. Neil

    2007-01-01

    We have designed a laboratory experiment to illustrate the use of spectroelectrochemical techniques for determination of aqueous iron. The experiment described in this article is applicable to an undergraduate laboratory course in analytical chemistry. Students are asked to fabricate spectroelectrochemical sensors, make electrochemical and optical…

  13. An Interactive Analytical Chemistry Summer Camp for Middle School Girls

    Science.gov (United States)

    Robbins, Mary E.; Schoenfisch, Mark H.

    2005-01-01

    A summer outreach program, which was implemented for the first time in the summer of 2004, that provided middle school girls with an opportunity to conduct college-level analytical chemistry experiments under the guidance of female graduate students is explained. The program proved beneficial to participants at each level.

  14. Proceedings of the 4. National Meeting on Analytical Chemistry - Abstracts

    International Nuclear Information System (INIS)

    The 4. National Meeting on Analytical Chemistry includes analysis of nuclear interest elements with nuclear and non nuclear methods and the elements not interest of nuclear energy with nuclear methods. The materials analysed are rocks, ores, metals alloys, waters, plants and biological materials. (C.G.C.)

  15. Abstracts of the 1. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    Abstracts from experimental studies on analytical chemistry are presented. Several techniques have been used, such as: neutron activation analysis, potentiometry, optical emission spectroscopy, alpha and gamma spectroscopy, atomic absorption spectrophotometry, radiometric analysis, fission track detection, complexometry and others. Samples analysed are of various kinds: environmental materials (soil, water, air), rocks, coal, lanthanide complexes, polycarbonates and synthetic quartz. (C.L.B.)

  16. Contributions of Analytical Chemistry to the Clinical Laboratory.

    Science.gov (United States)

    Skogerboe, Kristen J.

    1988-01-01

    Highlights several analytical techniques that are being used in state-of-the-art clinical labs. Illustrates how other advances in instrumentation may contribute to clinical chemistry in the future. Topics include: biosensors, polarization spectroscopy, chemiluminescence, fluorescence, photothermal deflection, and chromatography in clinical…

  17. Analytical Chemistry Laboratory progress report for FY 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  18. Analytical chemistry methods for metallic core components: Revision March 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of alloys used to fabricate core components. These alloys are 302, 308, 316, 316-Ti, and 321 stainless steels and 600 and 718 Inconels and they may include other 300-series stainless steels.

  19. Analytical Chemistry Division : annual report for the year 1980

    International Nuclear Information System (INIS)

    The research and development activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, during 1980 are reported in the form of abstracts. Various methods nuclear, spectral, thermal, electrochemical ion exchange developed for chemical analysis are described. Solvent extraction studies are also reviewed. (M.G.B.)

  20. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  1. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    Science.gov (United States)

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons.

  2. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    Science.gov (United States)

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. PMID:26592608

  3. Role-Playing in Analytical Chemistry: The Alumni Speak

    Science.gov (United States)

    Jackson, Paul T.; Walters, John P.

    2000-08-01

    Cooperative learning constructs take a variety of forms. Over the last 15 years, one such pedagogical structure, role-playing, has been used in the analytical chemistry curriculum at St. Olaf College. A long-term assessment of this teaching method was conducted through use of a survey distributed to alumni graduating between 1987 and 1997. The graduates overwhelmingly indicated that the use of role-playing had a positive impact on their careers as well as their lives. Furthermore, many non-achievement learning outcomes attributed to cooperative learning experiences were reinforced through the survey response. Role-playing created an effective environment in which to develop communication and collaborative skills in addition to the technical skills that are essential to analytical chemistry. These results support continued evolutionary development of this teaching method.

  4. Analytical Chemistry Division, annual report for the year 1973

    International Nuclear Information System (INIS)

    Research and development activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay (India), for the year 1973 are reported. From the point of view of nuclear science and technology, the following are worth mentioning: (1) radiochemical analysis of mercury in marine products (2) rapid anion exchange separation and spectrophotometric determination of gadolinium in uranium dioxide-gadolinium oxide blend and (3) neutron activation analysis for forensic purpose. (M.G.B.)

  5. MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

    2012-06-13

    The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R&D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for {sup 239}Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R&D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

  6. Chemiluminescence microarrays in analytical chemistry: a critical review.

    Science.gov (United States)

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  7. 78 FR 4170 - License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO

    Science.gov (United States)

    2013-01-18

    ... COMMISSION License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO AGENCY... issuance of a license amendment to Materials License No. 24-13365-01 issued to Analytical Bio-Chemistry... accession numbers are: 1. Analytical Bio-Chemistry Laboratories, Inc., Licensee amendment request...

  8. The evolution of analytical chemistry methods in foodomics.

    Science.gov (United States)

    Gallo, Monica; Ferranti, Pasquale

    2016-01-01

    The methodologies of food analysis have greatly evolved over the past 100 years, from basic assays based on solution chemistry to those relying on the modern instrumental platforms. Today, the development and optimization of integrated analytical approaches based on different techniques to study at molecular level the chemical composition of a food may allow to define a 'food fingerprint', valuable to assess nutritional value, safety and quality, authenticity and security of foods. This comprehensive strategy, defined foodomics, includes emerging work areas such as food chemistry, phytochemistry, advanced analytical techniques, biosensors and bioinformatics. Integrated approaches can help to elucidate some critical issues in food analysis, but also to face the new challenges of a globalized world: security, sustainability and food productions in response to environmental world-wide changes. They include the development of powerful analytical methods to ensure the origin and quality of food, as well as the discovery of biomarkers to identify potential food safety problems. In the area of nutrition, the future challenge is to identify, through specific biomarkers, individual peculiarities that allow early diagnosis and then a personalized prognosis and diet for patients with food-related disorders. Far from the aim of an exhaustive review of the abundant literature dedicated to the applications of omic sciences in food analysis, we will explore how classical approaches, such as those used in chemistry and biochemistry, have evolved to intersect with the new omics technologies to produce a progress in our understanding of the complexity of foods. Perhaps most importantly, a key objective of the review will be to explore the development of simple and robust methods for a fully applied use of omics data in food science. PMID:26363946

  9. The evolution of analytical chemistry methods in foodomics.

    Science.gov (United States)

    Gallo, Monica; Ferranti, Pasquale

    2016-01-01

    The methodologies of food analysis have greatly evolved over the past 100 years, from basic assays based on solution chemistry to those relying on the modern instrumental platforms. Today, the development and optimization of integrated analytical approaches based on different techniques to study at molecular level the chemical composition of a food may allow to define a 'food fingerprint', valuable to assess nutritional value, safety and quality, authenticity and security of foods. This comprehensive strategy, defined foodomics, includes emerging work areas such as food chemistry, phytochemistry, advanced analytical techniques, biosensors and bioinformatics. Integrated approaches can help to elucidate some critical issues in food analysis, but also to face the new challenges of a globalized world: security, sustainability and food productions in response to environmental world-wide changes. They include the development of powerful analytical methods to ensure the origin and quality of food, as well as the discovery of biomarkers to identify potential food safety problems. In the area of nutrition, the future challenge is to identify, through specific biomarkers, individual peculiarities that allow early diagnosis and then a personalized prognosis and diet for patients with food-related disorders. Far from the aim of an exhaustive review of the abundant literature dedicated to the applications of omic sciences in food analysis, we will explore how classical approaches, such as those used in chemistry and biochemistry, have evolved to intersect with the new omics technologies to produce a progress in our understanding of the complexity of foods. Perhaps most importantly, a key objective of the review will be to explore the development of simple and robust methods for a fully applied use of omics data in food science.

  10. Nucleic Acid i-Motif Structures in Analytical Chemistry.

    Science.gov (United States)

    Alba, Joan Josep; Sadurní, Anna; Gargallo, Raimundo

    2016-09-01

    Under the appropriate experimental conditions of pH and temperature, cytosine-rich segments in DNA or RNA sequences may produce a characteristic folded structure known as an i-motif. Besides its potential role in vivo, which is still under investigation, this structure has attracted increasing interest in other fields due to its sharp, fast and reversible pH-driven conformational changes. This "on/off" switch at molecular level is being used in nanotechnology and analytical chemistry to develop nanomachines and sensors, respectively. This paper presents a review of the latest applications of this structure in the field of chemical analysis.

  11. Karlsruhe international conference on analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    This volume presents 218 abstracts of contributions by researchers working in the analytical chemistry field of nuclear technology. The majority of the papers deal with analysis with respect to process control in fuel reprocessing plants, fission and corrosion product characterization throughout the fuel cycle as well as studies of the chemical composition of radioactive wastes. Great interest is taken in the development and optimization of methods and instrumentation especially for in-line process control. About 3/4 of the papers have been entered into the data base separately. (RB)

  12. Applications of Optical Microcavity Resonators in Analytical Chemistry.

    Science.gov (United States)

    Wade, James H; Bailey, Ryan C

    2016-06-12

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.

  13. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    International Nuclear Information System (INIS)

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  14. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.O. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Nolan, K. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Smyth, M.R. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Mizaikoff, B. [Georgia Institute of Technology, School of Chemistry and Biochemistry, 770 State Street, Boggs Building, Atlanta, GA 30332-0400 (United States)]. E-mail: boris.mizaikoff@chemistry.gatech.edu

    2005-04-04

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  15. Clinical chemistry: challenges for analytical chemistry and the nanosciences from medicine.

    Science.gov (United States)

    Durner, Jürgen

    2010-02-01

    Clinical chemistry and laboratory medicine can look back over more than 150 years of eventful history. The subject encompasses all the medicinal disciplines as well as the remaining natural sciences. Clinical chemistry demonstrates how new insights from basic research in biochemical, biological, analytical chemical, engineering, and information technology can be transferred into the daily routine of medicine to improve diagnosis, therapeutic monitoring, and prevention. This Review begins with a presentation of the development of clinical chemistry. Individual steps between the drawing of blood and interpretation of laboratory data are then illustrated; here not only are pitfalls described, but so are quality control systems. The introduction of new methods and trends into medicinal analysis is explored, along with opportunities and problems associated with personalized medicine.

  16. Selectivity in analytical chemistry: two interpretations for univariate methods.

    Science.gov (United States)

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-01-01

    Selectivity is extremely important in analytical chemistry but its definition is elusive despite continued efforts by professional organizations and individual scientists. This paper shows that the existing selectivity concepts for univariate analytical methods broadly fall in two classes: selectivity concepts based on measurement error and concepts based on response surfaces (the response surface being the 3D plot of the univariate signal as a function of analyte and interferent concentration, respectively). The strengths and weaknesses of the different definitions are analyzed and contradictions between them unveiled. The error based selectivity is very general and very safe but its application to a range of samples (as opposed to a single sample) requires the knowledge of some constraint about the possible sample compositions. The selectivity concepts based on the response surface are easily applied to linear response surfaces but may lead to difficulties and counterintuitive results when applied to nonlinear response surfaces. A particular advantage of this class of selectivity is that with linear response surfaces it can provide a concentration independent measure of selectivity. In contrast, the error based selectivity concept allows only yes/no type decision about selectivity.

  17. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results.

  18. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    International Nuclear Information System (INIS)

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results

  19. Laser ablation in analytical chemistry-a review.

    Science.gov (United States)

    Russo, Richard E; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S

    2002-05-24

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas. PMID:18968642

  20. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    Science.gov (United States)

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  1. European analytical column No. 36 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Emons, Hendrik; Andersen, Jens Enevold Thaulov

    2008-01-01

    European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)......European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)...

  2. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    Science.gov (United States)

    Offroy, Marc; Duponchel, Ludovic

    2016-03-01

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data).

  3. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Ming M.; Leasure, Craig S.

    1998-08-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately $16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition, $8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately $35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004.

  4. 35th International Symposium on Environmental Analytical Chemistry - ISEAC 35. Book of Abstracts

    International Nuclear Information System (INIS)

    The ISEAC 35 is organized by the International Association of Environmental Analytical Chemistry (IAEAC), the Committee on Analytical Chemistry of the Polish Academy of Science (PAS), and the Chemical Faculty of Gdansk University of Technology (GUT). The Symposium includes a number of invited lectures treating frontier topics of environmental analytical chemistry, such as: (a) miniaturized spectroscopic tools for environmental survey analysis, (b) remote sensing in marine research, (c) xenobiotics in natural waters, (d) sampling and sample handling for environmental analysis. Book of Abstracts contains abstracts of 9 invited lectures, 62 oral presentations and 250 posters.

  5. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory.

    Science.gov (United States)

    Cancilla, Devon A.

    2001-01-01

    Introduces an undergraduate level problem-based analytical chemistry laboratory course integrated with an environmental law course. Aims to develop an understanding among students on the use of environmental indicators for environmental evaluation. (Contains 30 references.) (YDS)

  6. A conflict of analysis: analytical chemistry and milk adulteration in Victorian Britain.

    Science.gov (United States)

    Steere-Williams, Jacob

    2014-08-01

    This article centres on a particularly intense debate within British analytical chemistry in the late nineteenth century, between local public analysts and the government chemists of the Inland Revenue Service. The two groups differed in both practical methodologies and in the interpretation of analytical findings. The most striking debates in this period were related to milk analysis, highlighted especially in Victorian courtrooms. It was in protracted court cases, such as the well known Manchester Milk Case in 1883, that analytical chemistry was performed between local public analysts and the government chemists, who were often both used as expert witnesses. Victorian courtrooms were thus important sites in the context of the uneven professionalisation of chemistry. I use this tension to highlight what Christopher Hamlin has called the defining feature of Victorian public health, namely conflicts of professional jurisdiction, which adds nuance to histories of the struggle of professionalisation and public credibility in analytical chemistry.

  7. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  8. Effects of Computer Based Learning on Students' Attitudes and Achievements towards Analytical Chemistry

    Science.gov (United States)

    Akcay, Husamettin; Durmaz, Asli; Tuysuz, Cengiz; Feyzioglu, Burak

    2006-01-01

    The aim of this study was to compare the effects of computer-based learning and traditional method on students' attitudes and achievement towards analytical chemistry. Students from Chemistry Education Department at Dokuz Eylul University (D.E.U) were selected randomly and divided into three groups; two experimental (Eg-1 and Eg-2) and a control…

  9. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Science.gov (United States)

    2010-02-23

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...-Chemistry Laboratories, Inc. (the Licensee) pursuant to 10 CFR part 30. By application dated October...

  10. New research directions in the development of analytical chemistry

    OpenAIRE

    Rema Matakova

    2016-01-01

    The article shows that discovering nanoscale elements made it possible to synthesize new chemical compounds without chemical reaction and defined the basis of effective development of nanoanalytical chemistry in the past two decades. The article focuses on the prospective development of bioanalytical chemistry, based on reagentless sensory methods of analysis of biochemical processes to cure fast dangerous infections of the century. Unusual opportunity of development of «green» chemistr...

  11. Pre-analytical phase in clinical chemistry laboratory

    Directory of Open Access Journals (Sweden)

    Neogi SS

    2016-07-01

    Full Text Available The laboratory testing process is divided into the pre-analytical, analytical and post-analytical phases. For obtaining reliable test results, the prevention and detection of errors at all steps is required. While analytical standards have been developed by recognized quality control criteria, there is a scarcity in the development of standards for the preanalytical phase. This phase is most prone to errors as the steps involved are directly dependent on humans and are out of direct control of the laboratory. Such errors in preanalytical stage often only become apparent in the analytical or post-analytical phase. The development of a pre-analytical quality manual is essential in achieving total quality control. Correct practices and strategies of error prevention can reduce preanalytical errors. This review focuses on prevention of pre-analytical errors that occur while collecting a specimen of blood, urine and cerebrospinal fluid. Most of these can be easily prevented with understanding and education of the personnel involved in and responsible for executing this crucial pre-analytical phase.

  12. Second Karlsruhe international conference on analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Around 180 abstracts of invited lectures and poster presentations of the international analytical conference are presented in this book. They cover analytical applications throughout the fuel cycle and radioanalysis of manifold materials. Most of the abstracts are prepared separately for input in INIS and EDB. (RB)

  13. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    Science.gov (United States)

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  14. Analytical capabilities and services of Lawrence Livermore Laboratory's General Chemistry Division

    International Nuclear Information System (INIS)

    This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel

  15. Analytical Pharmaceutical Chemistry--Bridging Disciplines and Interests

    Science.gov (United States)

    Smith, Robert V.

    1977-01-01

    Because of their interest and expertise in the analysis of drugs in biological fluids, analytical pharmaceutical chemists can contribute significantly to interdisciplinary research and teaching efforts. Suggestions for such efforts are described. (Author/LBH)

  16. THE USAGE OF MICROWAVE ENERGY IN ANALYTICAL CHEMISTRY AREA AND PREPERATION OF CATALYSIS

    OpenAIRE

    KUŞLU, Soner; Feyza ÇAVUŞ

    2008-01-01

    In this article, microwave energy, because of its excellent properties, has been used in the analytical chemistry applications such as sample digestion, solvent extraction, sample drying, the measurement of moisture, analyt desorption and adsorption, sample clean-up, chromogenic reaction, speciation and nebulization of analytical samples, the effect of microwaves on catalysis preperation used in industry, the hypotesis and the ideas written on this matter and the examples concerned with the p...

  17. European analytical column no. 37 (January 2009) Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Grasserbauer, Manfred; Andersen, Jens Enevold Thaulov

    2009-01-01

    This issue of the European Analytical Column has again a somewhat different format: once more DAC invited a guest columnist to give his views on various matters related to Analytical Chemistry in Europe. This year, Professor Manfred Grasserbauer of the Vienna University of Technology focuses...... on current challenges for European analytical chemistry. During the period 2002–2007 Professor Grasserbauer was Director of the Institute for Environment and Sustainability, Joint Research Centre of the European Commission, Ispra. There is no doubt that many challenges exist at the present time for all of us...... representing a major branch of chemistry, namely analytical chemistry. The global financial crisis is affecting all branches of chemistry, especially analytical chemistry since our discipline by tradition has many close links to industry. Already now a decrease of industrial commitment with respect to new...

  18. European analytical column No. 37 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Grasserbauer, Manfred; Andersen, Jens Enevold Thaulov

    2009-01-01

    The European Analytical Column again has a somewhat different format. We have once more invited a guest columnist to give his views on various matters related to analytical chemistry in Europe. This year we have invited Prof. Manfred Grasserbauer of Vienna University of Technology to present some...... of the current challenges for European analytical chemistry. During the period 2002– 2007 Manfred Grasserbauer was Director of the Institute for Environment and Sustainability, Joint Research Centre of the European Commission, Ispra. There is no doubt that many challenges exist at the present time for all those...... representing a major branch of chemistry, namely, analytical chemistry. The global financial crisis is affecting all branches of chemistry, but analytical chemistry in particular since our discipline by tradition has many close links to industry. We are already noticing a decreased industrial commitment...

  19. Determination of Teaching Methods in Chemistry Education by the Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Mehmet YÜKSE

    2013-06-01

    Full Text Available In this study, the relative importance of the topics of the chemistry course for the 9th grade of the secondary education and their teaching methods for an effective chemistry course have been determined by the Analytic Hierarchy Process (AHP technique. The AHP model of the research have been composed based on the topics in the chemistry course for the 9th grade and pair wise comparison matrix have been determined according to teachers’ view. As a result of the study, relative importance of the topics of the chemistry course as per percentage are compounds (47.8 %, chemical changes (26.5 %, chemical mixture (13.6 %, the development of chemistry (6.3 %, chemistry in our lives (5.8 %. The relative percentages of the teaching methods are narrative (32 %, demonstration (24.9 %, laboratory (18.9 %, question and answer (15.2 %, project work (9 %.

  20. An Experiential Research-Focused Approach: Implementation in a Nonlaboratory-Based Graduate-Level Analytical Chemistry Course

    Science.gov (United States)

    Toh, Chee-Seng

    2007-01-01

    A project is described which incorporates nonlaboratory research skills in a graduate level course on analytical chemistry. This project will help students to grasp the basic principles and concepts of modern analytical techniques and also help them develop relevant research skills in analytical chemistry.

  1. Flow Injection Analysis: A Revolution in Modern Analytical Chemistry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    A review is made of the fundamentals of Flow Injection Analysis (FIA), and the versatility and applicability of this analytical concept is demonstrated by a series of examples, comprizing the use of different types of FIA-manifolds and various detection devices (optical and electrochemical...

  2. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    International Nuclear Information System (INIS)

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned

  3. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, K.A.; Gray, C.E. (comp.)

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

  4. Analytical Chemistry in the European Higher Education Area European Higher Education

    DEFF Research Database (Denmark)

    A Eurobachelor degree of Chemistry was endorsed by the EuCheMS division of analytical chemistry in 2004, and it has since then been adopted by many European universities. In the second stage of the European Higher Education Area (EHEA) process of harmonization, there is now focus on developing...... in the EHEA. The weight given to analytical chemistry has been subject to much discussion because mathematics, physics, language, information technology, social competencies and other skills tend to impose on the model for a qualified professional. However, it is a fact that most professionals of chemistry...... material and tools for the assessment of quality in measurements, and each country has their own national organisation that represents BIPM, which is a key organisation of standardisation. The methods and procedures maintained by these organisations may be understood by the student at the master level...

  5. In Situ Scanning Probe Microscopy and New Perspectives in Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Zhang, Jingdong; Chi, Qijin;

    1999-01-01

    for molecular- and mesoscopic-scale analytical chemistry, are then reviewed. They are illustrated by metallic electro-crystallisation and -dissolution, and in situ STM spectroscopy of large redox molecules. The biophysically oriented analytical options of in situ atomic force microscopy, and analytical chemical......The resolution of scanning probe microscopies is unpresedented but the techniques are fraught with limitations as analytical tools. These limitations and their relationship to the physical mechanisms of image contrast are first discussed. Some new options based on in situ STM, which hold prospects...

  6. Lead - a preanalytical/analytical variable in clinical chemistry

    Directory of Open Access Journals (Sweden)

    Rašić-Mišić Ivana

    2014-01-01

    Full Text Available Lead is one of the most studied clinically important metals due its high toxicity and a high number of workers exposed to it. The interest toward Pb is elevated by the fact that children are especially susceptible to lead poisoning. Research regarding lead poisoning requires a complex, multi-disciplinary (clinical medical and clinical chemical approach. Monitoring human exposure to lead (intake, i.e. poisoning may be achieved by quantification of Pb in tissues and body fluids. For that reason, a number of accurate and reliable analytical methods for the determination of Pb (analytical/preanalytical variable were developed. An objective of this review paper is to provide key information necessary for proper interpretation of results of lead related clinical/laboratory tests. [Projekat Ministarstva nauke Republike Srbije, br. 172061

  7. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  8. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    International Nuclear Information System (INIS)

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited

  9. Organization of a cognitive activity of students when teaching analytical chemistry

    OpenAIRE

    А. Tapalova; O. Suleimenova

    2012-01-01

    Qualitative analysis allows using basic knowledge of general and inorganic chemistry for the solution of practical problems, disclosure the chemism of the processes that are fundamental for  the methods of analysis. Systematic qualitative analysis develops analytical thinking, establishes a scientific style of thinking of students.Сhemical analysis requires certain skills and abilities and develops the general chemical culture of the future teachers оn chemistry. The result can be evaluated i...

  10. Nuclear analytical chemistry for the IAEA action team in Iraq

    International Nuclear Information System (INIS)

    At the end of the 1991 Gulf War the U.N. Security Council Resolution called upon IAEA, assisted by the U.N. Special Commission, to carry out inspections of all Iraqi nuclear installations. The IAEA Action Team succeeded in implementing, on very short notice, a comprehensive system of inspection activities, including sampling and analysis at the Agency's Laboratories and other laboratories in Member States. The Agency's Laboratories developed and implemented an analytical strategy with the aim to rapidly and accurately obtain the information necessary for verifying the Iraqi declarations. The analyses ranged from screening for α and β/γ-emitters to accurate determinations of the amounts and isotopic composition of the radionuclides and associated trace elements and compounds. The arsenal of methods included ultra-sensitive radiometric methods, mass spectrometry, neutron activation, X-ray fluorescence and inductively coupled plasma emission spectrometry. Selected results include the detection of uranium chloride compounds, special composition steels, and quantitative accounting of uranium and plutonium production. The selectivity, sensitivity and reliability of the applied analytical techniques in conjunction with validated sampling procedures are essential components of an analytical measurements system that can provide credible results. (author). 5 refs., 5 tabs

  11. Waste minimization in analytical chemistry through innovative sample preparation techniques

    International Nuclear Information System (INIS)

    Because toxic solvents and other hazardous materials are commonly used in analytical methods, characterization procedures result in significant and costly amount of waste. We are developing alternative analytical methods in the radiological and organic areas to reduce the volume or form of the hazardous waste produced during sample analysis. For the radiological area, we have examined high-pressure, closed-vessel microwave digestion as a way to minimize waste from sample preparation operations. Heated solutions of strong mineral acids can be avoided for sample digestion by using the microwave approach. Because reactivity increases with pressure, we examined the use of less hazardous solvents to leach selected contaminants from soil for subsequent analysis. We demonstrated the feasibility of this approach by extracting plutonium from a NET reference material using citric and tartaric acids with microwave digestion. Analytical results were comparable to traditional digestion methods, while hazardous waste was reduced by a factor often. We also evaluated the suitability of other natural acids, determined the extraction performance on a wider variety of soil types, and examined the extraction efficiency of other contaminants. For the organic area, we examined ways to minimize the wastes associated with the determination of polychlorinated biphenyls (PCBs) in environmental samples. Conventional methods for analyzing semivolatile organic compounds are labor intensive and require copious amounts of hazardous solvents. For soil and sediment samples, we have a method to analyze PCBs that is based on microscale extraction using benign solvents (e.g., water or hexane). The extraction is performed at elevated temperatures in stainless steel cells containing the sample and solvent. Gas chromatography-mass spectrometry (GC/MS) was used to quantitate the analytes in the isolated extract. More recently, we developed a method utilizing solid-phase microextraction (SPME) for natural

  12. European analytical column No. 37 from the Division of Analytical Chemistry (DAC of the European Association for Chemical and Molecular Sciences (EuCheMS

    Directory of Open Access Journals (Sweden)

    BO KARLBERG

    2009-04-01

    Full Text Available INTRODUCTORY COMMENTS FROM THE CHAIRMAN OF DACThe European Analytical Column has again a somewhat different format. We have once more invited a guest columnist to give their views on various matters related to Analytical Chemistry in Europe. This year we have invited Professor Manfred Grasserbauer of the Vienna University of Technology to present some of the current challenges for European analytical chemistry. During the period 2002–2007 Professor Grasserbauer was Director of the Institute for Environment and Sustainability, Joint Research Centre of the European Commission, Ispra. There is no doubt that many challenges exist at the present time for all of us representing a major branch of chemistry, namely analytical chemistry.The global financial crisis is affecting all branches of chemistry but analytical chemistry in particular since our discipline by tradition has many close links to industry. We notice already now a decreased industrial commitment with respect to new research projects and sponsoring of conferences. It is therefore important that we strengthen our efforts and that we keep our presence at analytical chemistry meetings and conferences unchanged.Recent activities of DAC and details regarding the major analytical-chemistry event this year in Europe, Euroanalysis XV in Innsbruck, are also reported.

  13. Analytical chemistry in semiconductor manufacturing: Techniques, role of nuclear methods and need for quality control

    International Nuclear Information System (INIS)

    This report is the result of a consultants meeting held in Gaithersburg, USA, 2-3 October 1987. The meeting was hosted by the National Bureau of Standards and Technology, and it was attended by 18 participants from Denmark, Finland, India, Japan, Norway, People's Republic of China and the USA. The purpose of the meeting was to assess the present status of analytical chemistry in semiconductor manufacturing, the role of nuclear analytical methods and the need for internationally organized quality control of the chemical analysis. The report contains the three presentations in full and a summary report of the discussions. Thus, it gives an overview of the need of analytical chemistry in manufacturing of silicon based devices, the use of nuclear analytical methods, and discusses the need for quality control. Refs, figs and tabs

  14. The Analytical Chemistry of Drug Monitoring in Athletes

    Science.gov (United States)

    Bowers, Larry D.

    2009-07-01

    The detection and deterrence of the abuse of performance-enhancing drugs in sport are important to maintaining a level playing field among athletes and to decreasing the risk to athletes’ health. The World Anti-Doping Program consists of six documents, three of which play a role in analytical development: The World Anti-Doping Code, The List of Prohibited Substances and Methods, and The International Standard for Laboratories. Among the classes of prohibited substances, three have given rise to the most recent analytical developments in the field: anabolic agents; peptide and protein hormones; and methods to increase oxygen delivery to the tissues, including recombinant erythropoietin. Methods for anabolic agents, including designer steroids, have been enhanced through the use of liquid chromatography/tandem mass spectrometry and gas chromatography/combustion/isotope-ratio mass spectrometry. Protein and peptide identification and quantification have benefited from advances in liquid chromatography/tandem mass spectrometry. Incorporation of techniques such as flow cytometry and isoelectric focusing have supported the detection of blood doping.

  15. Analytical chemistry in water quality monitoring during manned space missions

    Science.gov (United States)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  16. European analytical column No. 37 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    OpenAIRE

    BO KARLBERG; MANFRED GRASSERBAUER; JENS E. T. ANDERSEN

    2009-01-01

    INTRODUCTORY COMMENTS FROM THE CHAIRMAN OF DACThe European Analytical Column has again a somewhat different format. We have once more invited a guest columnist to give their views on various matters related to Analytical Chemistry in Europe. This year we have invited Professor Manfred Grasserbauer of the Vienna University of Technology to present some of the current challenges for European analytical chemistry. During the period 2002–2007 Professor Grasserbauer was Director of the Institute f...

  17. Bibliometric mapping: eight decades of analytical chemistry, with special focus on the use of mass spectrometry.

    Science.gov (United States)

    Waaijer, Cathelijn J F; Palmblad, Magnus

    2015-01-01

    In this Feature we use automatic bibliometric mapping tools to visualize the history of analytical chemistry from the 1920s until the present. In particular, we have focused on the application of mass spectrometry in different fields. The analysis shows major shifts in research focus and use of mass spectrometry. We conclude by discussing the application of bibliometric mapping and visualization tools in analytical chemists' research.

  18. Closure of an analytical chemistry glove box in alpha laboratory

    International Nuclear Information System (INIS)

    The works with plutonium are performed in gloves box, operated below atmospheric pressure, to protect the experimenters from this alpha-active material. After 12 years of continual processes, it was necessary the decommissioning of the chemistry glove box in our alpha-laboratory. A great deal of our attention was devoted to the working techniques because of extreme care needed to avoid activity release. The decommissioning includes the following main operations: a) Planning and documentation for the regulatory authority. b) Internal decontamination with surface cleaning and chelating agents. c) Measurement of the remainder internal radioactivity. d) Sealing of the glove ports and nozzles. e) Disconnection of the glove box from the exhaust duct. f) Design and construction of a container for the glove box. g) Transportation of the glove box from alpha-laboratory, to a transitory storage until its final disposal. The above mentioned operations are described in this paper including too: data of personal doses during the operations, characteristics and volumes of radioactive wastes and a description of the instrument used for the measurement of inside glove box activity. (Author)

  19. Twenty-ninth ORNL/DOE conference on analytical chemistry in energy technology. Abstracts of papers

    International Nuclear Information System (INIS)

    This booklet contains separate abstracts of 55 individual papers presented at this conference. Different sections in the book are titled as follows: laser techniques; resonance ionization spectroscopy; laser applications; new developments in mass spectrometry; analytical chemistry of hazardous waste; and automation and data management

  20. 6. Seminar of the IIE-ININ-IMP on technological specialties. Topic 12: analytical chemistry

    International Nuclear Information System (INIS)

    The document includes 9 papers presented at the 6. Seminar of the IIE-ININ-IMP (Mexico) on technological specialties in the field of analytical chemistry. (Topic 12). 3 items were in INIS subject scope and a separate abstract was prepared for each of them

  1. Design concepts for an analytical chemistry laboratory to support plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.A.; Treibs, H.A.; Hartenstein, S.D.

    1990-08-31

    Design concepts were developed for an analytical chemistry laboratory to support the plutonium processing functions of the Special Isotope Separation (SIS) Production Plant. These concepts include pneumatic sample delivery, total containment of samples during analyses, robotic-based dry sample storage, continuous flow air locks for introducing supplies into the gloveboxes, and a within-laboratory sample transport system capable of multiple, simultaneous transfers.

  2. Design concepts for an analytical chemistry laboratory to support plutonium processing

    International Nuclear Information System (INIS)

    Design concepts were developed for an analytical chemistry laboratory to support the plutonium processing functions of the Special Isotope Separation (SIS) Production Plant. These concepts include pneumatic sample delivery, total containment of samples during analyses, robotic-based dry sample storage, continuous flow air locks for introducing supplies into the gloveboxes, and a within-laboratory sample transport system capable of multiple, simultaneous transfers

  3. Teaching Effective Communication in a Writing-Intensive Analytical Chemistry Course.

    Science.gov (United States)

    Whelan, Rebecca J.; Zare, Richard N.

    2003-01-01

    Presents a variety of activities, assignments, and mentoring structures to address the challenges of teaching writing while at the same time delivering analytical chemistry content. Emphasizes the importance of students being able to communicate in the language of their chosen field. (Author/NB)

  4. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    Science.gov (United States)

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  5. Student Learning and Evaluation in Analytical Chemistry Using a Problem-Oriented Approach and Portfolio Assessment

    Science.gov (United States)

    Boyce, Mary C.; Singh, Kuki

    2008-01-01

    This paper describes a student-focused activity that promotes effective learning in analytical chemistry. Providing an environment where students were responsible for their own learning allowed them to participate at all levels from designing the problem to be addressed, planning the laboratory work to support their learning, to providing evidence…

  6. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    Science.gov (United States)

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  7. Incorporating Students' Self-Designed, Research-Based Analytical Chemistry Projects into the Instrumentation Curriculum

    Science.gov (United States)

    Gao, Ruomei

    2015-01-01

    In a typical chemistry instrumentation laboratory, students learn analytical techniques through a well-developed procedure. Such an approach, however, does not engage students in a creative endeavor. To foster the intrinsic motivation of students' desire to learn, improve their confidence in self-directed learning activities and enhance their…

  8. Juicing the Juice: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    Science.gov (United States)

    Schaber, Peter M.; Dinan, Frank J.; St. Phillips, Michael; Larson, Renee; Pines, Harvey A.; Larkin, Judith E.

    2011-01-01

    A young, inexperienced Food and Drug Administration (FDA) chemist is asked to distinguish between authentic fresh orange juice and suspected reconstituted orange juice falsely labeled as fresh. In an advanced instrumental analytical chemistry application of this case, inductively coupled plasma (ICP) spectroscopy is used to distinguish between the…

  9. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  10. Island Explorations: Discovering Effects of Environmental Research-Based Lab Activities on Analytical Chemistry Students

    Science.gov (United States)

    Tomasik, Janice Hall; LeCaptain, Dale; Murphy, Sarah; Martin, Mary; Knight, Rachel M.; Harke, Maureen A.; Burke, Ryan; Beck, Kara; Acevedo-Polakovich, I. David

    2014-01-01

    Motivating students in analytical chemistry can be challenging, in part because of the complexity and breadth of topics involved. Some methods that help encourage students and convey real-world relevancy of the material include incorporating environmental issues, research-based lab experiments, and service learning projects. In this paper, we…

  11. Online Video Tutorials Increase Learning of Difficult Concepts in an Undergraduate Analytical Chemistry Course

    Science.gov (United States)

    He, Yi; Swenson, Sandra; Lents, Nathan

    2012-01-01

    Educational technology has enhanced, even revolutionized, pedagogy in many areas of higher education. This study examines the incorporation of video tutorials as a supplement to learning in an undergraduate analytical chemistry course. The concepts and problems in which students faced difficulty were first identified by assessing students'…

  12. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    Science.gov (United States)

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  13. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  14. 8. Seminar of the IMP-IIE-ININ on technological specialties. Topic 9: Analytical Chemistry

    International Nuclear Information System (INIS)

    The document includes four papers considered within the INIS subject scope, which were presented at the 8th Seminar of the IMP-IIE-ININ on technological specialities (Section Analytical Chemistry), held on 26 June 1996 in Cuernavaca (Mexico). A separate abstract and indexing were provided for each paper

  15. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry

    OpenAIRE

    Ying LI; Fabiano-Tixier, Anne-Sylvie; Vian, Maryline; Chemat, Farid

    2013-01-01

    We present an overview on solvent-free microwave-extraction techniques of bioactive compounds from natural products. This new technique is based on the concept of green analytical chemistry. It has proved to be an alternative to other techniques with the advantages of reducing extraction times, energy consumption, solvent use and CO2 emissions.

  16. Analysis of a Natural Yellow Dye: An Experiment for Analytical Organic Chemistry

    NARCIS (Netherlands)

    Villela, A.; Derksen, G.C.H.; Beek, van T.A.

    2014-01-01

    This experiment exposes second-year undergraduate students taking a course in analytical organic chemistry to high-performance liquid chromatography (HPLC) and quantitative analysis using the internal standard method. This is accomplished using the real-world application of natural dyes for textiles

  17. Analytical Chemistry Division annual progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.

    1993-04-01

    This report is divided into: Analytical spectroscopy (optical spectroscopy, organic mass spectrometry, inorganic mass spectrometry, secondary ion mass spectrometry), inorganic and radiochemistry (transuranium and activation analysis, low-level radiochemical analysis, inorganic analysis, radioactive materials analysis, special projects), organic chemistry (organic spectroscopy, separations and synthesis, special projects, organic analysis, ORNL/UT research program), operations (quality assurance/quality control, environmental protection, safety, analytical improvement, training, radiation control), education programs, supplementary activities, and presentation of research results. Tables are included for articles reviewed or refereed for periodicals, analytical service work, division manpower and financial summary, and organization chart; a glossary is also included.

  18. Hard Cap Espresso Machines in Analytical Chemistry: What Else?

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel; Esteve-Turrillas, Francesc A

    2016-06-21

    A hard cap espresso machine has been used in combination with liquid chromatography with molecular fluorescence detection for the determination of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils and sediments providing appropriate extraction efficiencies and quantitative results. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benz[b]fluoranthene, benz[k]fluoranthene, benz[a]pyrene, dibenz[a,h]anthracene, benz[ghi]perylene, and indeno[1,2,3-cd]pyrene were used as target compounds. It should be mentioned that the pairs benz[a]anthracene-chrysene and dibenz[a,h]anthracene-benz[ghi]perylene peaks coelute under the employed chromatographic conditions; thus, those compounds were determined together. PAHs were extracted from 5.0 g of soil, previously homogenized, freeze-dried, and sieved to 250 μm, with 50 mL of 40% (v/v) acetonitrile in water at a temperature of 72 ± 3 °C. The proposed procedure is really fast, with an extraction time of 11 s, and it reduces the required amount of organic solvent to do the sample preparation. The obtained limit of detection for the evaluated PAHs was from 1 to 38 μg kg(-1). Recoveries were calculated using clean soils spiked with 100, 500, 1000, and 2000 μg kg(-1) PAHs with values ranging from 81 to 121% and good precision with relative standard deviation values lower than 30%. The method was validated using soil and sediment certified reference materials and also using real samples by comparison with ultrasound-assisted extraction, as reference methodology, obtaining statistically comparable results. Thus, the use of hard cap espresso machines in the analytical laboratories offers tremendous possibilities as low cost extraction units for the extraction of solid samples. PMID:27224000

  19. Hard Cap Espresso Machines in Analytical Chemistry: What Else?

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel; Esteve-Turrillas, Francesc A

    2016-06-21

    A hard cap espresso machine has been used in combination with liquid chromatography with molecular fluorescence detection for the determination of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils and sediments providing appropriate extraction efficiencies and quantitative results. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benz[b]fluoranthene, benz[k]fluoranthene, benz[a]pyrene, dibenz[a,h]anthracene, benz[ghi]perylene, and indeno[1,2,3-cd]pyrene were used as target compounds. It should be mentioned that the pairs benz[a]anthracene-chrysene and dibenz[a,h]anthracene-benz[ghi]perylene peaks coelute under the employed chromatographic conditions; thus, those compounds were determined together. PAHs were extracted from 5.0 g of soil, previously homogenized, freeze-dried, and sieved to 250 μm, with 50 mL of 40% (v/v) acetonitrile in water at a temperature of 72 ± 3 °C. The proposed procedure is really fast, with an extraction time of 11 s, and it reduces the required amount of organic solvent to do the sample preparation. The obtained limit of detection for the evaluated PAHs was from 1 to 38 μg kg(-1). Recoveries were calculated using clean soils spiked with 100, 500, 1000, and 2000 μg kg(-1) PAHs with values ranging from 81 to 121% and good precision with relative standard deviation values lower than 30%. The method was validated using soil and sediment certified reference materials and also using real samples by comparison with ultrasound-assisted extraction, as reference methodology, obtaining statistically comparable results. Thus, the use of hard cap espresso machines in the analytical laboratories offers tremendous possibilities as low cost extraction units for the extraction of solid samples.

  20. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment

    Science.gov (United States)

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    Objectives This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. Methods The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. Results These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. Conclusions This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies. PMID:26206364

  1. The Efficacy of Problem-Based Learning in an Analytical Laboratory Course for Pre-Service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, A. L.

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking…

  2. Analytical Chemistry (edited by R. Kellner, J.- M. Mermet, M. Otto, and H. M. Widmer)

    Science.gov (United States)

    Thompson, Reviewed By Robert Q.

    2000-04-01

    This text, written in English, was developed by the Division of Analytical Chemistry of the Federation of European Chemical Societies to support the university-level Eurocurriculum in analytical chemistry, a major effort of academics and other analytical scientists throughout Europe and an outgrowth of the economic unification of European countries. The goal of a uniform curriculum and text for analytical chemistry across national borders is laudable, and the editors, led by the late Robert Kellner, deserve commendation for their accomplishments. (The U.S., in contrast, has been late in considering the analytical chemistry curriculum and only recently has published a pamphlet, Curricular Developments in the Analytical Sciences, an outgrowth of several NSF-sponsored workshops.) I can't remember another analytical text that begins with mention of the "big bang" and the beginnings of the universe (!), but I don't believe that the authors and publisher are looking to export their curriculum to neighboring planets. However, I am sure that they are interested in the North American market and its strong analytical chemistry community. It is in this context and in comparison with leading analytical texts in the U.S. that I write this review. At first glance, Analytical Chemistry overwhelms. It is a large book of more than 900 pages, a mass of 2.3 kg, and a volume of nearly 3 L. It is not a book that is easy to stuff into a backpack for the trip to class or lab. Students also may resent paying top dollar for a book that might not last the semester, given that the pages of my review copy began to pull away from the binding after only a few days of gentle use. Beneath the snazzy cover there is a dearth of color printing and photographs. This, combined with a smallish font and figures that are inconsistent in size, quality, and font, makes for a book that is not especially easy on the eyes. The large margins provide ample space for the numerous figures, figure captions, and

  3. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    International Nuclear Information System (INIS)

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8

  4. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  5. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin.

  6. Over a century of detection and quantification capabilities in analytical chemistry--historical overview and trends.

    Science.gov (United States)

    Belter, Magdalena; Sajnóg, Adam; Barałkiewicz, Danuta

    2014-11-01

    The detection limit (LD) and the quantification limit (LQ) are important parameters in the validation process. Estimation of these parameters is especially important when trace and ultra-trace quantities of analyte are to be detected. When the apparatus response from the analyte is below the detection limit, it does not necessarily mean that the analyte is not present in the sample. It may be a message that the analyte concentration could be below the detection capabilities of the instrument or analytical method. By using a more sensitive detector or a different analytical method it is possible to quantitatively determine the analyte in a given sample. The terms associated with detection capabilities have been present in the scientific literature for at least the past 100 years. Numerous terms, definitions and approaches to calculations have been presented during that time period. This paper is an attempt to collect and summarize the principal approaches to the definition and calculation of detection and quantification abilities published from the beginning of 20th century up until the present. Some of the most important methods are described in detail. Furthermore, the authors would like to popularize the knowledge of metrology in chemistry, particularly that part of it which concerns validation of the analytical procedure.

  7. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    International Nuclear Information System (INIS)

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period

  8. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W. S. [ed.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period.

  9. 75 years of the Division of Analytical Chemistry of the American Chemical Society.

    Science.gov (United States)

    Hirsch, Roland F

    2013-04-01

    The Division of Analytical Chemistry is celebrating the 75th anniversary of its founding in 1938. We celebrate the continuing high importance of our discipline for all aspects of chemical science and for its applications in so many aspects of everyday life. We especially celebrate the accomplishments of our fellow analytical chemists through the years, and the impact we have had on the profession. This article is a short history of the Division within the context of the parallel development of our profession and our science.

  10. On the outside looking in: redefining the role of analytical chemistry in the biosciences.

    Science.gov (United States)

    Hare, Dominic J; New, Elizabeth J

    2016-07-12

    Biomedical research has moved on from the study of the structure of organs, cells and organelles. Today, the key questions that must be addressed to understand the body in health and disease are related to fundamental biochemistry: the distribution and speciation of chemicals, the regulation of chemical reactions, and the control of chemical environments. To see advances in this field, it is essential for analytical chemists to actively engage in this process, from beginning to end. In this Feature Article, we review the progress that has been made towards gaining an understanding of the chemistry of the body, while commenting on the intrinsic disconnect between new innovations in the field of analytical chemistry and practical application within the biosciences. We identify the challenges that prevent chemists from making a greater impact in this field, and highlight key steps for moving forward.

  11. On the outside looking in: redefining the role of analytical chemistry in the biosciences.

    Science.gov (United States)

    Hare, Dominic J; New, Elizabeth J

    2016-07-12

    Biomedical research has moved on from the study of the structure of organs, cells and organelles. Today, the key questions that must be addressed to understand the body in health and disease are related to fundamental biochemistry: the distribution and speciation of chemicals, the regulation of chemical reactions, and the control of chemical environments. To see advances in this field, it is essential for analytical chemists to actively engage in this process, from beginning to end. In this Feature Article, we review the progress that has been made towards gaining an understanding of the chemistry of the body, while commenting on the intrinsic disconnect between new innovations in the field of analytical chemistry and practical application within the biosciences. We identify the challenges that prevent chemists from making a greater impact in this field, and highlight key steps for moving forward. PMID:26898242

  12. Organization of a cognitive activity of students when teaching analytical chemistry

    Directory of Open Access Journals (Sweden)

    А. Tapalova

    2012-12-01

    Full Text Available Qualitative analysis allows using basic knowledge of general and inorganic chemistry for the solution of practical problems, disclosure the chemism of the processes that are fundamental for  the methods of analysis. Systematic qualitative analysis develops analytical thinking, establishes a scientific style of thinking of students.Сhemical analysis requires certain skills and abilities and develops the general chemical culture of the future teachers оn chemistry. The result can be evaluated in the course of self-control, peer review, and solving creative problems. Mastering the techniques of critical thinking (comparison, abstraction, generalization and their use in a particular chemical material - are necessary element in the formation of professional thinking of the future chemistry teacher.

  13. XVIII International Chernyaev conference on chemistry, analytics and technology of platinum metals. Summaries of reports. Part I

    International Nuclear Information System (INIS)

    The book contains abstracts of reports represented at Conference on chemistry, analytics and technology of platinum metals. Results reflecting modern state and prospects of development of theoretical and experimental investigations in the region of chemistry of complexes of platinum metals and their reactivity, complexing in aqueous solutions and heterogeneous extraction and adsorption systems are considered. Summaries of reports on chemistry of complexes of platinum metals are represented in the first part of the book

  14. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  15. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    Science.gov (United States)

    MacAlady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  16. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed.

  17. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    International Nuclear Information System (INIS)

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed

  18. Graphene-based materials: fabrication and application for adsorption in analytical chemistry.

    Science.gov (United States)

    Wang, Xin; Liu, Bo; Lu, Qipeng; Qu, Qishu

    2014-10-01

    Graphene, a single layer of carbon atoms densely packed into a honeycomb crystal lattice with unique electronic, chemical, and mechanical properties, is the 2D allotrope of carbon. Owing to the remarkable properties, graphene and graphene-based materials are likely to find potential applications as a sorbent in analytical chemistry. The current review focuses predominantly on the recent development of graphene-based materials and demonstrates their enhanced performance in adsorption of organic compounds, metal ions, and solid phase extraction as well as in separation science since mostly 2012.

  19. Applications of everyday IT and communications devices in modern analytical chemistry: A review.

    Science.gov (United States)

    Grudpan, Kate; Kolev, Spas D; Lapanantnopakhun, Somchai; McKelvie, Ian D; Wongwilai, Wasin

    2015-05-01

    This paper reviews the development and recent use of everyday communications and IT equipment (mobile phones, digital cameras, scanners, webcams, etc) as detection devices for colorimetric chemistries. Such devices can readily be applied for visible detection using reaction formats such as microfluidic paper based analytical devices (µPADs), indicator papers, and well plate reaction vessels. Their use is highly advantageous with respect to cost, simplicity and portability, and offers many opportunities in the areas of point of care diagnosis, and at-site monitoring of environmental, agricultural, food and beverage parameters.

  20. Portable microwave assisted extraction: An original concept for green analytical chemistry.

    Science.gov (United States)

    Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid

    2013-11-01

    This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory.

  1. Nuclear forensics and nuclear analytical chemistry - iridium determination in a referred forensic sample

    International Nuclear Information System (INIS)

    Nuclear approaches for compositional characterization has bright application prospect in forensic perspective towards assessment of nature and origin of seized material. The macro and micro physical properties of nuclear materials can be specifically associated with a process or type of nuclear activity. Under the jurisdiction of nuclear analytical chemistry as well as nuclear forensics, thrust areas of scientific endeavor like determination of radioisotopes, isotopic and mass ratios, analysis for impurity contents, arriving at chemical forms/species and physical parameters play supporting evidence in forensic investigations. The analytical methods developed for this purposes can be used in international safeguards as well for nuclear forensics. Nuclear material seized in nuclear trafficking can be identified and a profile of the nuclear material can be created

  2. CIEQUI: An oracle database for information management in the analytical chemistry unit of CIEMAT

    International Nuclear Information System (INIS)

    An in-house software product named CIEQUI has been developed in CIEMAT, with purpose-written programs as a laboratory information management system (LIMS). It is grounded upon relational data base from ORACLE, with the supported languages SQL, PL/SQL, SQL*Plus, and DEC BASIS, and with the tools SQL*Loader, SQL*Forms and SQL*Menu. Its internal organization and functional structure are schematically represented and the advantages and disadvantages of a tailored management system are described. Although it is difficult to unity the analysis criteria in a R AND D organization such as CIEMAT, because of the wide variety in the sample type and in the involved determinations, our system provides remarkable advantages. CIEQUI reflects the complexity of the laboratories it serves. It is a system easily accessible to all, that help us in many tasks about organization and management of the analytical service provided through the different laboratories of the CIEMAT Analytical Chemistry Unit. (Author)

  3. Recent developments in computer vision-based analytical chemistry: A tutorial review.

    Science.gov (United States)

    Capitán-Vallvey, Luis Fermín; López-Ruiz, Nuria; Martínez-Olmos, Antonio; Erenas, Miguel M; Palma, Alberto J

    2015-10-29

    Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed.

  4. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry.

    Science.gov (United States)

    Wang, Huai-Song; Song, Min; Hang, Tai-Jun

    2016-02-10

    The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.

  5. Implementation of Scheduling Algorithm with Robotic Arm and Analytical Plate for Clinical Chemistry Analyzer

    Directory of Open Access Journals (Sweden)

    Sudha Ramasamy

    2013-02-01

    Full Text Available Complete automation is the ultimate goal in health care industry and this is of utmost importance in clinical laboratories. Processor based bio robots are involved in all these automation procedures. In this study, the indigenous robotic platform, used in clinical chemistry analyzers, which is highly flexible and user friendly for small or medium sized hospitals, is designed. A microcontroller based robotic arm is put forth as the robotic platform and this is capable of handling blood samples, reagents, etc. The basic design is of a compact, three circular analytical plates, placed one inside the other. The samples and reagents are loaded onto the analytical plate; the arm then transfers the blood samples and reagents successively to the reaction cell and if required, next to an incubating unit. Two different arms perform all the different tasks based on the controlling algorithm. The circuit manipulating the path of the robot arm, along with other controlling circuitry of the arm is embedded within the arm itself. By automating this unit, the flexibility and throughput of the tests will be increased. Controlled and precise use of reagents and high accuracy of results are additional advantages. Data handling is also simplified. The robotic arm and analytical plate has been designed, a prototype model has been made and synchronization between the two has been achieved. The clear description of arm and analytical plate movement along with the synchronization algorithms are presented in this study.

  6. Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry.

    Science.gov (United States)

    van der Sneppen, L; Ariese, F; Gooijer, C; Ubachs, W

    2009-01-01

    Due to its simplicity, versatility, and straightforward interpretation into absolute concentrations, molecular absorbance detection is widely used in liquid-phase analytical chemistry. Because this method is inherently less sensitive than zero-background techniques such as fluorescence detection, alternative, more sensitive measurement principles are being explored. This review discusses one of these: cavity ring-down spectroscopy (CRDS). Advantages of this technique include its long measurement pathlength and its insensitivity to light-source-intensity fluctuations. CRDS is already a well-established technique in the gas phase, so we focus on two new modes: liquid-phase CRDS and evanescent-wave (EW)-CRDS. Applications of liquid-phase CRDS in analytical chemistry focus on improving the sensitivity of absorbance detection in liquid chromatography. Currently, EW-CRDS is still in early stages: It is used to study basic interactions between molecules and silica surfaces. However, in the future this method may be used to develop, for instance, biosensors with high specificity. PMID:20636052

  7. Analytical Chemistry at the Laboratoire d'Electrochimie Physique et Analytique.

    Science.gov (United States)

    Bondarenko, Alexandra; Cortés-Salazar, Fernando; Gasilova, Natalia; Lesch, Andreas; Qiao, Liang; Girault, Hubert H

    2015-01-01

    The Laboratoire d'Electrochimie Physique et Analytique (LEPA) has moved to the new Energypolis campus in Sion. This laboratory is involved in energy research in particular by studying charge transfer reactions at soft interfaces and developing interfacial redox electrocatalysis, by pioneering the concept of photo-ionic cells and by integrating redox flow batteries for the production of hydrogen at the pilot scale. Nonetheless, this laboratory has a long tradition in analytical chemistry with the development of microfabrication techniques such as laser photo-ablation, screen-printing and more recently inkjet printing for the design and fabrication of biosensors and immunosensors. As shown in the present review, the laboratory has recently pioneered new technologies for electrochemical and mass spectrometry imaging and for the screening of allergy in patients. The role of the laboratory in the Valais landscape will be to foster the collaboration with the HES to develop teaching and research in analytical chemistry as this field is a major source of employment for chemists.

  8. Peptide interfaces with graphene: an emerging intersection of analytical chemistry, theory, and materials.

    Science.gov (United States)

    Russell, Shane R; Claridge, Shelley A

    2016-04-01

    Because noncovalent interface functionalization is frequently required in graphene-based devices, biomolecular self-assembly has begun to emerge as a route for controlling substrate electronic structure or binding specificity for soluble analytes. The remarkable diversity of structures that arise in biological self-assembly hints at the possibility of equally diverse and well-controlled surface chemistry at graphene interfaces. However, predicting and analyzing adsorbed monolayer structures at such interfaces raises substantial experimental and theoretical challenges. In contrast with the relatively well-developed monolayer chemistry and characterization methods applied at coinage metal surfaces, monolayers on graphene are both less robust and more structurally complex, levying more stringent requirements on characterization techniques. Theory presents opportunities to understand early binding events that lay the groundwork for full monolayer structure. However, predicting interactions between complex biomolecules, solvent, and substrate is necessitating a suite of new force fields and algorithms to assess likely binding configurations, solvent effects, and modulations to substrate electronic properties. This article briefly discusses emerging analytical and theoretical methods used to develop a rigorous chemical understanding of the self-assembly of peptide-graphene interfaces and prospects for future advances in the field.

  9. Chemistry

    International Nuclear Information System (INIS)

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF3 and dissolved UF4, and, in some cases, between the dissolved uranium fluorides and graphite, and the UC2. Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U4+/U3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  10. Chemistry

    International Nuclear Information System (INIS)

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF4--H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF2--ThF4 for Fe and analysis of LiF--BeF--ThF4 for Te

  11. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1983-05-01

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period.

  12. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period

  13. Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. G.

    2010-03-01

    The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

  14. Teaching Effectiveness of Integrating Task-based Approach into Inorganic and Analytical Chemistry Course

    Institute of Scientific and Technical Information of China (English)

    Tianjiao; WEI; Yiru; WANG; Sen; HUANG

    2013-01-01

    From the perspective of students,the effectiveness of task-based approach in In-organic and Analytical Chemistry course were summarized.The strength and weak points of TBA were analyzed,and the specific suggestions for obtaining better effect were put forward.The result showed a satisfactory achievement and unexpected result in showing the effectiveness of this teaching model.Not only could this TBA enhance student’s overall knowledge of discipline but also cultivate students’ multi-dimensional competence:competence in searching literatures, communication and management,autonomous,co-operative and reflective learning,and competence in analyzing and problem-solving,as well as improving their language expression ability,and skills in using multi-media and internet technology into their academic course learning and research.The implication of this research on the classroom teaching practice will shed light on the future teaching reform of other courses in China.

  15. Analytical Models of Exoplanetary Atmospheres. III. Gaseous C-H-O-N Chemistry with 9 Molecules

    CERN Document Server

    Heng, Kevin

    2016-01-01

    We present novel, analytical, equilibrium-chemistry formulae for the abundances of molecules in hot exoplanetary atmospheres that include the carbon, oxygen and nitrogen networks. Our hydrogen-dominated solutions involve acetylene (C$_2$H$_2$), ammonia (NH$_3$), carbon dioxide (CO$_2$), carbon monoxide (CO), ethylene (C$_2$H$_4$), hydrogen cyanide (HCN), methane (CH$_4$), molecular nitrogen (N$_2$) and water (H$_2$O). By considering only the gaseous phase, we prove that the mixing ratio of carbon monoxide is governed by a decic equation (polynomial equation of degree 10). We validate our solutions against numerical calculations of equilibrium chemistry that perform Gibbs free energy minimization and demonstrate that they are accurate for temperatures from 500--3000 K. In hydrogen-dominated atmospheres, the ratio of abundances of HCN to CH$_4$ is nearly constant across a wide range of carbon-to-oxygen ratios, which makes it a robust diagnostic of the metallicity in the gas phase. Our validated formulae allow f...

  16. Effect of repeated freezing and thawing on 18 clinical chemistry analytes in rat serum.

    Science.gov (United States)

    Kale, Vijay P; Patel, Sweta G; Gunjal, Prashant S; Wakchaure, Santosh U; Sundar, Rajesh S; Ranvir, Ramchandra K; Jain, Mukul R

    2012-07-01

    In a preclinical research laboratory, using serum samples that have been frozen and thawed repeatedly is sometimes unavoidable when needing to confirm previous results or perform additional analysis. Here we determined the effects of multiple cycles of refrigeration or freezing and thawing of rat serum at 3 temperature conditions for different storage times on clinical chemistry analytes. Serum samples obtained from adult Wistar rats were stored at 2 to 8 °C and -10 to -20 °C for as long as 72 h and at -70 °C for as long as 30 d. At different time points (24, 48, and 72 h for samples stored at 2 to 8 °C or -10 to -20 °C and 1, 7, and 30 d for samples stored at -70 °C), the samples were brought to room temperature, analyzed, and then stored again at the designated temperature. The results obtained after each storage cycle were compared with those obtained from the initial analysis of fresh samples. Of the 18 serum analytes evaluated, 14 were stable without significant changes, even after 3 freeze-thaw cycles at the tested temperature ranges. Results from this study will help researchers working with rat serum to interpret the biochemical data obtained from serum samples that have been frozen and thawed repeatedly. PMID:23043814

  17. Tetraglyme Trap for the Determination of Volatile Organic Compounds in Urban Air: Projects for Undergraduate Analytical Chemistry

    Science.gov (United States)

    Hope, Wilbert W.; Johnson, Clyde; Johnson, Leon P.

    2004-01-01

    The differences in the levels of volatile organic compounds (VOCs), in the ambient air from the two urban locations, were studied by the undergraduate analytical chemistry students. Tetraglyme is very widely used due to its simplicity and its potential for use to investigate VOCs in ambient and indoor air employing a purge-and-trap concentrator…

  18. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  19. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  20. Chemistry

    International Nuclear Information System (INIS)

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na3CrF6 and Na5Cr3F14, were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li2BeF4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe2+ and Cr3+ and the determination of the U3+/U4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF4--NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF4--NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  1. Automatic evaluation and data generation for analytical chemistry instrumental analysis exercises

    Directory of Open Access Journals (Sweden)

    Arsenio Muñoz de la Peña

    2014-01-01

    Full Text Available In general, laboratory activities are costly in terms of time, space, and money. As such, the ability to provide realistically simulated laboratory data that enables students to practice data analysis techniques as a complementary activity would be expected to reduce these costs while opening up very interesting possibilities. In the present work, a novel methodology is presented for design of analytical chemistry instrumental analysis exercises that can be automatically personalized for each student and the results evaluated immediately. The proposed system provides each student with a different set of experimental data generated randomly while satisfying a set of constraints, rather than using data obtained from actual laboratory work. This allows the instructor to provide students with a set of practical problems to complement their regular laboratory work along with the corresponding feedback provided by the system's automatic evaluation process. To this end, the Goodle Grading Management System (GMS, an innovative web-based educational tool for automating the collection and assessment of practical exercises for engineering and scientific courses, was developed. The proposed methodology takes full advantage of the Goodle GMS fusion code architecture. The design of a particular exercise is provided ad hoc by the instructor and requires basic Matlab knowledge. The system has been employed with satisfactory results in several university courses. To demonstrate the automatic evaluation process, three exercises are presented in detail. The first exercise involves a linear regression analysis of data and the calculation of the quality parameters of an instrumental analysis method. The second and third exercises address two different comparison tests, a comparison test of the mean and a t-paired test.

  2. 8. Latin American Symposium on Environmental and Sanitary Analytical Chemistry: abstracts

    International Nuclear Information System (INIS)

    The rapid changes and development of world economy, incidental to continued growth in consumption of industrial goods, continue presenting biological and biochemical interactions unsuspected or underestimated. This has imposed increasing challenges in the study of the effects on human health and environmental, vital issues that affect all citizens of the planet and the biota in general, but have not yet been sufficiently studied or well understood. Stringent criteria are needed to determine the impacts on health, long-term, of technical and chemical inventions today. This movement has received support from consumers and politicians, in the case of the European Union, the largest common market in the world. Large employers already know that it is necessary to develop the new green technology and its controls, if they are to survive in the global economy of a future that is next. The countries of the great region of Latin America have presented a specific weight very noticeable on the world community and have not been independent of the process generalized and they also correspond to scientifically scrutinize the environmental interactive phenomena to deal with possible negative consequences, give solutions and options satisfactory to their leaders and its population. The scientific program included new techniques, qualitative and quantitative, applied to the determination of substances and microorganisms in organisms and ecosystems. The evaluation of the effects of pollution on the environment has been focused so, as the development of standards for pollution control and various activities related to the study and solution of environmental problems facing the area. Abstracts of oral presentations and posters that were presented at the 8th Latin American Symposium on Environmental Analytical Chemistry and Health were included in this compendium. (author)

  3. General Procedure for the Easy Calculation of pH in an Introductory Course of General or Analytical Chemistry

    Science.gov (United States)

    Cepriá, Gemma; Salvatella, Luis

    2014-01-01

    All pH calculations for simple acid-base systems used in introductory courses on general or analytical chemistry can be carried out by using a general procedure requiring the use of predominance diagrams. In particular, the pH is calculated as the sum of an independent term equaling the average pK[subscript a] values of the acids involved in the…

  4. Effects of 7-E, KWL and Conventional Instruction on Analytical Thinking, Learning Achievement and Attitudes toward Chemistry Learning

    OpenAIRE

    Rungrawee Siribunnam; Sombat Tayraukham

    2009-01-01

    Problem statement: The purposes of this research were to compare in analytical thinking, science learning achievement and attitudes toward chemistry learning of Matthayomsuksa 5 students who learned using the 7-E learning cycle, KWL learning method and conventional approach. Approach: The sample consisted of 154 Matthayomsuksa 5 students attending in the first semester of the academic year 2008, Phayakkhaphumwitthayakhan School, Phayakkhaphumphisai District, Mahasarakham Province, cluster ran...

  5. Effects of 7-E, KWL and Conventional Instruction on Analytical Thinking, Learning Achievement and Attitudes toward Chemistry Learning

    Directory of Open Access Journals (Sweden)

    Rungrawee Siribunnam

    2009-01-01

    Full Text Available Problem statement: The purposes of this research were to compare in analytical thinking, science learning achievement and attitudes toward chemistry learning of Matthayomsuksa 5 students who learned using the 7-E learning cycle, KWL learning method and conventional approach. Approach: The sample consisted of 154 Matthayomsuksa 5 students attending in the first semester of the academic year 2008, Phayakkhaphumwitthayakhan School, Phayakkhaphumphisai District, Mahasarakham Province, cluster random sampling technique was employed. The were divided into two experimental groups who learned using the 7-E learning cycle and KWL learning activities and one control group who learned using the conventional approach. Results: The research instruments were: (1 12 lesson plans for organization of 7-E learning cycle, 12 lesson plans for organization of KWL learning method and 12 lesson plans for organization of the conventional approach; (2 A 30-item analytical thinking test; (3 A 40-item achievement test of science learning achievement and (4 A 20-item of attitudes toward chemistry learning. The statistics used for analyzing the collected data were mean, standard deviation, F-test (one-way MANOVA, Hotelling’s T2 and Univariate t-test. The results of the study revealed that the students who learned using the 7-E learning cycle, KWL learning method and the conventional approach were differently showed analytical thinking, science learning achievement and attitudes toward chemistry learning at the 0.05 level of significance. The students who learned using the 7-E learning cycle showed more science learning achievement than did the students who learned using KWL learning method. Also the result and indicated than analytical thinking, science learning achievement and attitudes toward chemistry learning higher than did the students who learned using the conventional approach. In addition, the students who learned using KWL learning method showed higher analytical

  6. An Example of Analytical Chemistry Comprehensive Experiment%一个分析化学综合实验

    Institute of Scientific and Technical Information of China (English)

    欧丽娟; 孙爱明; 刘开建

    2016-01-01

    介绍了一个贴近生活的分析化学综合实验—分光光度法测定食品中铁含量。该实验以邻二氮菲为显色剂,对动物肝脏、蔬菜、水果等食品中铁元素含量进行测定,在一个实验中实现了无机化学、物理化学、分析化学和仪器分析的相关学科知识的有机结合,有利于提高学生对分析化学知识的综合操作能力和应用能力,增强了学生的创新能力和团队协作意识。%An Analytical Chemistry comprehensive experiment of determination of iron in food by spectrophotometry with phenanthroline was introduced. The experiment involved the related comprehensive knowledge of Inorganic Chemistry, Physical Chemistry, Analytical Chemistry and Instrumental Analysis which can improve the comprehensive operational ability of the students, enhance students' innovation ability and team spirit.

  7. Black Boxes in Analytical Chemistry: University Students' Misconceptions of Instrumental Analysis

    Science.gov (United States)

    Carbo, Antonio Domenech; Adelantado, Jose Vicente Gimeno; Reig, Francisco Bosch

    2010-01-01

    Misconceptions of chemistry and chemical engineering university students concerning instrumental analysis have been established from coordinated tests, tutorial interviews and laboratory lessons. Misconceptions can be divided into: (1) formal, involving specific concepts and formulations within the general frame of chemistry; (2)…

  8. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    Science.gov (United States)

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.

  9. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  10. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    International Nuclear Information System (INIS)

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance

  11. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.; Lyon, W.S. (ed.)

    1980-05-01

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance. (DLC)

  12. Analytical Chemistry Division annual progress report for period ending November 30, 1977

    International Nuclear Information System (INIS)

    Activities for the year are summarized in sections on analytical methodology, mass and mass emission spectrometry, analytical services, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance and safety. Presentations of research results in publications and reports are tabulated

  13. Analytical Chemistry Division annual progress report for period ending November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1978-03-01

    Activities for the year are summarized in sections on analytical methodology, mass and mass emission spectrometry, analytical services, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance and safety. Presentations of research results in publications and reports are tabulated. (JRD)

  14. Focus on the nanomaterial-based biosensor papers in Chinese Journal of Analytical Chemistry of the year 2010

    Institute of Scientific and Technical Information of China (English)

    LIU Xia; MA LiNa; WANG ZhenXin

    2011-01-01

    Because of their unique physical and chemical properties,nanomaterials have been widely used to develop biosensing systems for bioanalytical and biomedical applications.The journal Chinese Journal of Analytical Chemistry published 35 papers on nanomaterial-based biosensors in 2010,including 5 reviews [1-5] and 29 research articles [6-34].These biosensing systems were fabricated by a broad range of nanomaterials (e.g.,carbon nanotube,gold nanoparticle,magnetic nanoparticle,silica nanoparticle,quantum dot,and so forth,Figure 1),some of them have high quality and get great achievements.

  15. A Multidisciplinary Science Summer Camp for Students with Emphasis on Environmental and Analytical Chemistry

    Science.gov (United States)

    Schwarz, Gunnar; Frenzel, Wolfgang; Richter, Wolfgang M.; Ta¨uscher, Lothar; Kubsch, Georg

    2016-01-01

    This paper presents the course of events of a five-day summer camp on environmental chemistry with high emphasis on chemical analysis. The annual camp was optional and open for students of all disciplines and levels. The duration of the summer camp was five and a half days in the Feldberg Lake District in northeast Germany (federal state of…

  16. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    Science.gov (United States)

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  17. Using Cooperative Learning to Teach Chemistry: A Meta-Analytic Review

    Science.gov (United States)

    Warfa, Abdi-Rizak M.

    2016-01-01

    A meta-analysis of recent quantitative studies that examine the effects of cooperative learning (CL) on achievement outcomes in chemistry is presented. Findings from 25 chemical education studies involving 3985 participants (N[subscript treatment] = 1,845; N[subscript control] = 2,140) and published since 2001 show positive association between…

  18. Opening Remarks for "Analytical Chemistry, Monitoring, and Environmental Fate and Transport" Session at Fluoros 2015

    Science.gov (United States)

    There have been a number of revolutionary developments during the past decade that have led to a much more comprehensive understanding of per- and polyfluoroalkyl substances (PFASs) in the environment. Improvements in analytical instrumentation have made liquid chromatography tri...

  19. Analytical Chemistry Division annual progress report for period ending November 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (comp. and ed.)

    1976-02-01

    Separate abstracts were prepared for each of the six sections on analytical research and development. Service analyses, activities related to education, supplementary professional activities, and means of presentation of research results are also discussed. (JGB)

  20. Analytical Chemistry Division annual progress report for period ending November 30, 1975

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for each of the six sections on analytical research and development. Service analyses, activities related to education, supplementary professional activities, and means of presentation of research results are also discussed

  1. Determination of inclusion chemistry and size distribution in steel weldments by analytical electron microscopy

    OpenAIRE

    Hackstaff, Craig Allen

    2001-01-01

    The U.S. Navy has been concerned about reducing the number of inclusions in steel weldments to increase the toughness of the weld metal. Research has shown that particular inclusions can nucleate the acicular ferrite micro structure in the weld metal, which can increase toughness without compromising strength. The present study investigated the inclusion chemistry and size distribution in aluminum-deoxidized C-Mn steel weldments. The results showed that the addition of aluminum to the C-Mn we...

  2. Selected clinical chemistry analytes correlate with the pathogenesis of inclusion body hepatitis experimentally induced by fowl aviadenoviruses.

    Science.gov (United States)

    Matos, Miguel; Grafl, Beatrice; Liebhart, Dieter; Schwendenwein, Ilse; Hess, Michael

    2016-10-01

    In the present study, clinical chemistry was applied to assess the pathogenesis and progression of experimentally induced inclusion body hepatitis (IBH). For this, five fowl aviadenovirus (FAdV) strains from recent IBH field outbreaks were used to orally inoculate different groups of day-old specific pathogen-free chickens, which were weighed, sampled and examined during necropsy by sequential killing. Mortalities of 50% and 30% were recorded in two groups between 6 and 9 days post-infection (dpi), along with a decreased weight of 23% and 20%, respectively, compared to the control group. Macroscopical changes were seen in the liver and kidney between 6 and 10 dpi, with no lesions being observed in the other organs. Histological lesions were observed in the liver and pancreas during the same period. Plasma was collected from killed birds of each group at each time point and the following clinical chemistry analytes were investigated: aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), bile acids, total protein, albumin, uric acid and lipase. Plasma protein profile, AST and GLDH, together with bile acids values paralleled the macroscopical and histopathological lesions in the liver, while plasma lipase activity levels coincided with lesions observed in pancreas. In agreement with the histology and clinical chemistry, viral load in the target organs, liver and pancreas, was highest at 7 dpi. Thus, clinical chemistry was found to be a valuable tool in evaluating and monitoring the progression of IBH in experimentally infected birds, providing a deeper knowledge of the underlying pathophysiological mechanisms of a FAdV infection in chickens.

  3. Non-selective chemical sensors in analytical chemistry: from ''electronic nose'' to ''electronic tongue''

    International Nuclear Information System (INIS)

    Development, recent historical background and analytical applications of promising sensor instruments based on sensor arrays with data processing by pattern recognition methods have been described. Attention is paid to the ''electronic tongue'' based on an array of original non-specific (non-selective) potentiometric chemical sensors. Application results for integral qualitative analysis of beverages and for quantitative analysis of biological liquids and solutions, containing heavy metals are reported. Discriminating abilities and precision obtained allow to consider ''electronic tongue'' as a perspective analytical tool. (orig.)

  4. Thirty-seventh ORNL/DOE conference on analytical chemistry in energy technology: Abstracts of papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Abstracts only are given for papers presented during the following topical sessions: Opportunities for collaboration: Industry, academic, national laboratories; Developments in sensor technology; Analysis in containment facilities; Improving the quality of environmental data; Process analysis; Field analysis; Radiological separations; Interactive analytical seminars; Measurements and chemical industry initiatives; and Isotopic measurements and mass spectroscopy.

  5. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    International Nuclear Information System (INIS)

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included

  6. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment

    Science.gov (United States)

    Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano

    2012-01-01

    An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…

  7. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1981-05-01

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis. (DLC)

  8. Analytical Chemistry Division annual progress report for period ending November 30, 1976

    International Nuclear Information System (INIS)

    Activities for the year in the areas of advanced methodology, mass and emission spectroscopy, analytical services for reactor projects and environmental and radiochemical analyses, bio-organic analysis, and quality assurance and safety are reviewed. Presentations of research results in publications, reports, and oral presentations are tabulated

  9. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1985-04-01

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included.

  10. Analytical Chemistry Division. Annual progress report for period ending December 31, 1980

    International Nuclear Information System (INIS)

    This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis

  11. Analytical Chemistry Division annual progress report for period ending November 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1977-02-01

    Activities for the year in the areas of advanced methodology, mass and emission spectroscopy, analytical services for reactor projects and environmental and radiochemical analyses, bio-organic analysis, and quality assurance and safety are reviewed. Presentations of research results in publications, reports, and oral presentations are tabulated. (JSR)

  12. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1984-05-01

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included. (DLC)

  13. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    International Nuclear Information System (INIS)

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included

  14. Instrumental Analysis of Biodiesel Content in Commercial Diesel Blends: An Experiment for Undergraduate Analytical Chemistry

    Science.gov (United States)

    Feng, Z. Vivian; Buchman, Joseph T.

    2012-01-01

    The potential of replacing petroleum fuels with renewable biofuels has drawn significant public interest. Many states have imposed biodiesel mandates or incentives to use commercial biodiesel blends. We present an inquiry-driven experiment where students are given the tasks to gather samples, develop analytical methods using various instrumental…

  15. Comparison of the single channel and multichannel (multivariate) concepts of selectivity in analytical chemistry.

    Science.gov (United States)

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-07-01

    Different measures of selectivity are in use for single channel and multichannel linear analytical measurements, respectively. It is important to understand that these two measures express related but still distinctly different features of the respective measurements. These relationships are clarified by introducing new arguments. The most widely used selectivity measure of multichannel linear methods (which is based on the net analyte signal, NAS, concept) expresses the sensitivity to random errors of a determination where all bias from interferents is computationally eliminated using pure component spectra. The conventional selectivity measure of single channel linear measurements, on the other hand, helps to estimate the bias caused by an interferent in a biased measurement. In single channel methods expert knowledge about the samples is used to limit the possible range of interferent concentrations. The same kind of expert knowledge allows improved (lower mean squared error, MSE) analyte determinations also in "classical" multichannel measurements if those are intractable due to perfect collinearity or to high noise inflation. To achieve this goal bias variance tradeoff is employed, hence there remains some bias in the results and therefore the concept of single channel selectivity can be extended in a natural way to multichannel measurements. This extended definition and the resulting selectivity measure can also be applied to the so-called inverse multivariate methods like partial least squares regression (PLSR), principal component regression (PCR) and ridge regression (RR).

  16. 分析化学的“准”与绿色环保%Accuracy and Green Environmental Protection of Analytical Chemistry

    Institute of Scientific and Technical Information of China (English)

    赵景波

    2014-01-01

    实现分析化学这门学科的任务和目的就是分析结果的准确性,“准”是分析化学的灵魂。从夯实理论基础、了解科技前沿、熟练操作技能、综合分析结果和绿色环保理念五个方面阐述实现“准”,同时使分析化学成为绿色化学、环保化学。%The task and purpose of the analytical chemistry discipline is the accuracy of analytical results. 'Accuracy' is the soul of analytical chemis-try. This article discusses how to achieve 'accuracy', and make analytical Chemistry, green Chemistry and environmental y Friendly Chemistry, from five aspects:solid theoretical basis, understanding the frontier of science and technology, mastering operating skil s, comprehensive analysis of results and good green environmental protection idea.

  17. Filmes de metal-hexacianoferrato: uma ferramenta em química analítica Metal-hexacyanoferrate films: a tool in analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Ivanildo Luiz de Mattos

    2001-04-01

    Full Text Available Chemically modified electrodes based on hexacyanometalate films are presented as a tool in analytical chemistry. Use of amperometric sensors and/or biosensors based on the metal-hexacyanoferrate films is a tendency. This article reviews some applications of these films for analytical determination of both inorganic (e.g. As3+, S2O3(2- and organic (e.g. cysteine, hydrazine, ascorbic acid, gluthatione, glucose, etc. compounds.

  18. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay.

    Science.gov (United States)

    Pohanka, Miroslav

    2015-06-11

    Smartphones are popular devices frequently equipped with sensitive sensors and great computational ability. Despite the widespread availability of smartphones, practical uses in analytical chemistry are limited, though some papers have proposed promising applications. In the present paper, a smartphone is used as a tool for the determination of cholinesterasemia i.e., the determination of a biochemical marker butyrylcholinesterase (BChE). The work should demonstrate suitability of a smartphone-integrated camera for analytical purposes. Paper strips soaked with indoxylacetate were used for the determination of BChE activity, while the standard Ellman's assay was used as a reference measurement. In the smartphone-based assay, BChE converted indoxylacetate to indigo blue and coloration was photographed using the phone's integrated camera. A RGB color model was analyzed and color values for the individual color channels were determined. The assay was verified using plasma samples and samples containing pure BChE, and validated using Ellmans's assay. The smartphone assay was proved to be reliable and applicable for routine diagnoses where BChE serves as a marker (liver function tests; some poisonings, etc.). It can be concluded that the assay is expected to be of practical applicability because of the results' relevance.

  19. Design concepts for an analytical chemistry laboratory to support plutonium processing

    International Nuclear Information System (INIS)

    The Idaho National Engineering Laboratory was chosen as the preferred site for the location of the special isotope separation (SIS) production plant. The SIS plant will use the atomic vapor laser isotope separation process to ionize the undesirable isotopes of plutonium (238Pu, 240Pu, and 241Pu) in the metal vapor and separate them electrostatically from the desirable isotope 239Pu. Feed to the plant will be reactor-grade plutonium oxide, and the product will be weapons-grade plutonium metal. The SIS plant uses both pyrochemical and aqueous processes. An analytical laboratory, the Material and Process Control Laboratory (MPCL), was designed for making chemical measurements for process control, material control and accountability, and criticality safety

  20. Design concepts for an analytical chemistry laboratory to support plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.A.; Treibs, H.A.; Hartenstein, S.D.

    1990-01-01

    The Idaho National Engineering Laboratory was chosen as the preferred site for the location of the special isotope separation (SIS) production plant. The SIS plant will use the atomic vapor laser isotope separation process to ionize the undesirable isotopes of plutonium ([sup 238]Pu, [sup 240]Pu, and [sup 241]Pu) in the metal vapor and separate them electrostatically from the desirable isotope [sup 239]Pu. Feed to the plant will be reactor-grade plutonium oxide, and the product will be weapons-grade plutonium metal. The SIS plant uses both pyrochemical and aqueous processes. An analytical laboratory, the Material and Process Control Laboratory (MPCL), was designed for making chemical measurements for process control, material control and accountability, and criticality safety.

  1. Nuclear analytical techniques applied to forensic chemistry; Aplicacion de tecnicas analiticas nucleares en quimica forense

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, Veronica; Montoro, Silvia [Universidad Nacional del Litoral, Santa Fe (Argentina). Facultad de Ingenieria Quimica. Dept. de Quimica Analitica; Pratta, Nora; Giandomenico, Angel Di [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Santa Fe (Argentina). Centro Regional de Investigaciones y Desarrollo de Santa Fe

    1999-11-01

    Gun shot residues produced by firing guns are mainly composed by visible particles. The individual characterization of these particles allows distinguishing those ones containing heavy metals, from gun shot residues, from those having a different origin or history. In this work, the results obtained from the study of gun shot residues particles collected from hands are presented. The aim of the analysis is to establish whether a person has shot a firing gun has been in contact with one after the shot has been produced. As reference samples, particles collected hands of persons affected to different activities were studied to make comparisons. The complete study was based on the application of nuclear analytical techniques such as Scanning Electron Microscopy, Energy Dispersive X Ray Electron Probe Microanalysis and Graphite Furnace Atomic Absorption Spectrometry. The essays allow to be completed within time compatible with the forensic requirements. (author) 5 refs., 3 figs., 1 tab.; e-mail: csedax e adigian at arcride.edu.ar

  2. Curriculum Reform and Practice of Inorganic and Analytical Chemistry in Our Chemistry Department%浅谈我校化学专业无机及分析化学课程改革与实践

    Institute of Scientific and Technical Information of China (English)

    张丽; 刘鑫

    2011-01-01

    To foster the application talent as the goal, by carrying out non-woven professional occasion in our school, integrated inorganic chemistry and analytical chemistry courses, establish "Inorganic and Analytical Chemistry ". Make a series of explorations in the integration of teaching resources, teaching content, updating teaching methods, the experimental system reform, strengthening practice and so on.%以培养应用性人才为目标,借我校开展非织造专业之际,整合无机化学及分析化学课程,建立《无机及分析化学课程》,在整合教学资源,优化教学内容,更新教学手段,改革实验体系,加强实践环节等方面进行了一系列的探索。

  3. Extraction and Quantitation of FD&C Red Dye #40 from Beverages Containing Cranberry Juice: A College-Level Analytical Chemistry Experiment

    Science.gov (United States)

    Rossi, Henry F., III; Rizzo, Jacqueline; Zimmerman, Devon C.; Usher, Karyn M.

    2012-01-01

    A chemical separation experiment can be an interesting addition to an introductory analytical chemistry laboratory course. We have developed an experiment to extract FD&C Red Dye #40 from beverages containing cranberry juice. After extraction, the dye is quantified using colorimetry. The experiment gives students hands-on experience in using solid…

  4. Analytical Chemistry Teaching Reform Based on Innovative Talents Training%基于创新人才培养的分析化学教学改革

    Institute of Scientific and Technical Information of China (English)

    何静

    2015-01-01

    This article selects Analytical Chemistry Teaching reform under the conditions of innovative talents training as the key of present study, combined with the author practical experience, first introduced in Analytical Chemistry Teaching in Universities constraining factor, and then deeply analyze the analytical chemistry teaching reform program innovative talents training environment, looking through the optimization of analytical chemistry teaching reform path, to carry out chemical analysis on the future of teaching practice reference recommendations.%文章选择创新人才培养条件下的分析化学教学改革为本次研究的重点内容,结合笔者实践经验,首先介绍高校分析化学教学制约性因素,再对创新人才培养环境下的分析化学教学改革程序进行深入剖析,期待通过优化分析化学教学改革路径,对日后分析化学教学实践活动的开展提供参考建议.

  5. Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates

    Science.gov (United States)

    Field, Christopher Ryan

    2009-01-01

    Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…

  6. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    Directory of Open Access Journals (Sweden)

    Enrico Prenesti

    2012-01-01

    Full Text Available A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria. Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture, ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing.

  7. Installation for analytic chemistry under irradiation; Installation de chimie analytique sous rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    Fradin, J.; Azoeuf, P.; Guillon, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    An installation has been set up for carrying out manipulations and chemical analyses on radioactive products. It is completely remote-controlled and is of linear shape, 15 metres long; it is made up of three zones: - an active zone containing the apparatus, - a rear zone giving access to the active zone, - a forward zone independent of the two others and completely protected from which the remote-control of the apparatus is effected. The whole assembly has been designed so that each apparatus corresponding to an analytical technique is set up in a sealed enclosure. The sealed enclosures are interconnected by a conveyor. After three years operation, a critical review is now made of the installation. (authors) [French] L'installation a ete realisee pour effectuer des manipulations et des analyses chimiques sur des produits radioactifs. Elle est totalement telecommandee et se presente sous une forme lineaire de 15 metres de longueur et comporte trois zones: - une zone active d'appareillage, - une zone arriere d'intervention, - une zone avant independante des deux premieres et totalement protegee, ou s'operent les telecommandes de l'appareillage. L'ensemble a ete concu de facon a ce que chaque appareillage correspondant a une technique d'analyse soit implante dans une enceinte etanche. Les enceintes etanches sont reliees entre elles par un convoyeur. Apres trois annees de fonctionnement nous faisons le bilan et les critiques de l'installation. (auteurs)

  8. Content of Analytical Chemistry Course for the Engineering Students from Different Specialties%工科分析化学教学内容的选择

    Institute of Scientific and Technical Information of China (English)

    胡坪; 王燕; 张文清; 王月荣; 章弘扬

    2012-01-01

    分析化学课程作为与化学相关工科专业的基础课,其教学内容的选择至关重要。本文从学时数、先修课程、专业差异及实验配套等四个方面探讨了该课程在教学内容选取时需要考虑的主要问题。我们提出了包括分析化学基础、化学分析和仪器分析三个模块9章教学内容的32学时理论课教学方案。教学实践证明,该教学内容对于工科人才的培养是行之有效的。%Since Analytical Chemistry is the basic course of the engineering specialties relating to chemistry,the selection of the content of the course is very important.The paper discusses the main difficulties in choosing the content of Analytical Chemistry course such as less credit hours and advance-placement,difference between specialty,etc.Furthermore,teaching arrangements of 32 credit hours including the basic principle of Analytical Chemistry,Chemical Analysis and Instrumental Analysis are brought forward.It has proved that the teaching practice is effective for training engineering students.

  9. Authentic Learning Enviroment in Analytical Chemistry Using Cooperative Methods and Open-Ended Laboratories in Large Lecture Courses

    Science.gov (United States)

    Wright, John C.

    1996-09-01

    It is recognized that a need exists to move from the passive learning styles that have characterized chemistry courses to an active style in which students participate and assume responsibility for their learning (1 - 5). In addition, it is argued that course reform should be linked to authentic student achievement, so that students can actively experience the feelings of practicing professionals (6). Course experiments where such changes have been introduced have proven successful but the number of examples of such changes is limited in the higher level courses or courses with large enrollments (7 - 11). In this paper, a one-semester introductory analytical chemistry course is described that accomplishes this goal by the use of open-ended laboratories, cooperative learning, and spreadsheet programs. The course uses many of the ideas described by Walters (7). It is offered at the upperclass level to nonmajors and at the freshman level to students with solid chemistry backgrounds from high school. Typically there are 90 students, who are divided into 5 sections. A teaching assistant is assigned to each section. The course has two 4-hour laboratories and two or three lectures each week (depending on whether it is the upperclass or freshman course). The heart of the course changes is the use of open-ended laboratory experiments in the last half of the course. A sample group project is to have the students develop a mixture of acid-base indicators that can serve as a spectroscopic pH meter. These projects are enhanced by dividing the students into teams of four who take charge of all aspects of accomplishing the projects' goals. Since there are many skills required to make these projects work, the first half of the course is spent developing the individual conceptual, computational, laboratory, problem solving, and group skills so students are prepared for the last half. These changes have markedly improved the student attitudes towards each other and towards learning

  10. Seminar教学模式在分析化学实验中的应用%Application of Seminar Teaching Pattern in Analytical Chemistry Experiment

    Institute of Scientific and Technical Information of China (English)

    葛伊莉; 郭慧

    2011-01-01

    Seminar teaching pattern was used in analytical chemistry experiment of undergraduate students.Most students participated in the course think that seminar teaching pattern can improve the quality of teaching and studying and promote the capacity of students in teaching themselves.The teaching practice shows that it is feasible for Seminar teaching pattern applied in analytical chemistry experiment.%在本科分析化学实验课中采用了Seminar教学模式进行教学探究,参与课程的大多数学生认为Seminar教学模式能明显改善教学效果并能提升学生自主学习能力,教学实践证明Seminar教学模式在分析化学实验中的运用是可行的。

  11. Initial Discussion of Teaching Reform in Analytical Chemistry Experiment%分析化学实验教学改革初探

    Institute of Scientific and Technical Information of China (English)

    欧丽娟

    2013-01-01

    The traditional teaching of analytical chemistry experi-ment has many disadvantages and needs to reform. According to teaching practice, a series of reform and exploration for analytical chemistry experiment are carried out in Hunan Institute of Tech-nology, which includes the content of experiment, the teaching method, and the testing system. The results are remarkable.%  传统的分析化学实验教学存在诸多弊端,亟须改革。结合教学实践,湖南工学院从实验内容、教学方法和考核方式等方面对分析化学实验教学进行了积极的改革与探索,取得了良好的成效。

  12. Earle K. Plyler Prize for Molecular Spectroscopy & Dynamics Lecture: Broadband Rotational Spectroscopy for Chemical Kinetics, Molecular Structure, and Analytical Chemistry

    Science.gov (United States)

    Pate, Brooks

    2013-03-01

    Advances in high-speed digital electronics have enabled a new generation of molecular rotational spectroscopy techniques that provide instantaneous broadband spectral coverage. These techniques use a chirped excitation pulse to coherently excite the molecular sample over a spectral bandwidth of 10 GHz or larger through rapid passage. The subsequent time-domain emission is recorded using high-speed digitizers (up to 100 Gigasample/s) and the frequency domain spectrum is produced by fast Fourier transformation. The chirped-pulse Fourier transform (CP-FT) method has been implemented in the microwave frequency range (2-40 GHz) for studies of cold samples in pulsed jet sources and in the mm-wave/terahertz (THz) frequency range for studies of samples at room-temperature. The method has opened new applications for molecular rotational spectroscopy in the area of chemical kinetics where dynamic rotational spectroscopy is used to measure the rates of unimolecular isomerization reactions in highly excited molecules prepared by pulsed infrared laser excitation. In these applications, the isomerization rate is obtained from an analysis of the overall line shapes which are modified by chemical exchange leading to coalescence behavior similar to the effect in NMR spectroscopy. The sensitivity of the method and the ability to extend it to low frequency (2-8 GHz) have significantly increased the size range of molecules and molecular clusters for structure determination using isotopic substitution to build up the 3D molecular structures atom-by-atom. Application to the structure of water clusters with up to 15 water molecules will be presented. When coupled with advances in solid-state mm-wave/THz devices, this method provides a direct digital technique for analytical chemistry of room-temperature gases based on molecular rotational spectroscopy. These high-throughput methods can analyze complex sample mixtures with unmatched chemical selectivity and short analysis times. Work

  13. An Exploration for the Green Chemistry Teaching Reform in Analytical Chemistry for Agricultural University%农业高校分析化学课程教学绿色化的改革探索

    Institute of Scientific and Technical Information of China (English)

    白玲; 李铭芳; 吴东平; 汪小强

    2011-01-01

    In response to the current problems of analytical chmistry teaching, and taking green chemistry as main-stroke, the green chemistry teaching reform in analytical chemistry was explored. A series of reform thoughts and measures were conducted at the aspect of teaching theory concept, the teaching contents, the teaching method and means, the appraising system of courses, and so on. Better teaching results were made. It would promote development of green chemistry,and realize low carbon economy and the sustainable development of national economy.%针对农业高校分析化学课程教学的现状,以绿色化学为主线,进行了分析化学课程教学绿色化的改革探索.从教学理念、教学内容、教学方法和手段、考核手段等方面,提出了一系列改革思路和具体措施,取得了较好的教学效果.

  14. A importância da Química Analítica Qualitativa nos cursos de Química das instituições de ensino superior brasileiras The importance of Qualitative Analytical Chemistry in Chemistry courses in Brazilian universities

    Directory of Open Access Journals (Sweden)

    Terezinha Ribeiro Alvim

    2006-02-01

    Full Text Available The results of a survey of institutions offering undergraduate studies, with the objective of evaluating the importance of Qualitative Analytical Chemistry for Chemistry courses in Brazil, are presented and discussed. Judging by the data, the content of the course of Qualitative Analytical Chemistry is considered by the Brazilian institutions offering undergraduate studies to be a body of knowledge essential for the formation of the chemist. This aspect is deemed valid for both baccalaureate and teaching license studies.

  15. Evaluation of clinical chemistry analytes from a single mouse using diluted plasma: effective way to reduce the number of animals in toxicity studies.

    Science.gov (United States)

    Goyal, Vinod Kumar; Pandey, Santosh Kumar; Kakade, Somesh; Nirogi, Ramakrishna

    2016-10-01

    Clinical chemistry is an essential analytical tool in many areas of research, drug assessment and development, and in the evaluation of general health. A certain amount of blood is required to evaluate all blood analytes. Experiments where mice are used, it is difficult to measure all analytes due to the small amount of blood that can be obtained from a single animal. To overcome this problem, separate cohorts of animals are used in toxicity studies for hematology and biochemistry analysis. This requires the use of extra animals and additional resources. Hence interpretation of results derived from using these different animals can be unreliable. This study was undertaken to explore the possibility of using diluted plasma for measuring various biochemistry analytes. Plasma from mice was diluted to 3, 5 and 10-fold with Water for Injection, and various biochemistry analytes were analyzed using an automated analyzer. Results of diluted and undiluted plasma from the same mouse were compared. Most of the analytes from the diluted plasma were found to be well within the ranges of the undiluted plasma except for sodium, potassium and chloride. Diluting plasma to analyze some analytes also freed up undiluted plasma for analyzing electrolytes. In conclusion, in order to obtain reliable and interpretable data from a single mouse it is worthwhile considering diluting the plasma, which should reduce the number of animals used in an experiment.

  16. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    Science.gov (United States)

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product.

  17. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    Science.gov (United States)

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product. PMID:26183807

  18. The Role of Analytical Chemistry in Drug Research and Development%分析化学在药物研发中的任务和作用

    Institute of Scientific and Technical Information of China (English)

    陈丹华

    2014-01-01

    药品质量包括身份、纯度、强度、疗效、稳定性和安全性.分析化学与药品质量直接相关.本文结合作者在药物分析化学方面的研究成果和长期体会,论述分析化学在药物研究与开发方面的任务和作用.%Drug quality includes identity,purity,strength,safety,efficacy,and stability.Analytical chemistry is directly related to the quality of the drug.Analytical scientists are fully responsible in identification,purity determination,assay,reference standard selection and characterization,physical form characterization,purification and stability study.They also play important roles in other areas of drug development by working together with synthetic chemists,pharmacologists,toxicologists,formulators,regulatory and quality assurance personnel.This article discusses the role,responsibility and importance of analytical chemistry in drug research and development with examples of author's own research results and pharmaceutical experience.

  19. 蓬勃发展的现代有机分析化学%Flourishing development of modern organic analytical chemistry

    Institute of Scientific and Technical Information of China (English)

    张来新; 朱海云; 王冬梅

    2012-01-01

    简要介绍了有机分析化学的发展与应用,重点综述了:①现代有机分析新方法新技术在食物检测中的应用;②现代有机分析新方法新技术对水资源的分析检测;③现代有机分析新方法新技术对水产品中毒性物质的检测.并对现代有机分析化学的发展进行了展望.%The development and application of organic analytical chemistry was briefly introduces,and focused on the survey of applications of new modem organic analytical methods in the fields of food test, water resource detection,and toxic substance test of the aquatic products. Future development of the organic analytical chemistry was prospected in the end.

  20. Croatian Analytical Terminology

    OpenAIRE

    Kastelan-Macan; M.

    2008-01-01

    Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals...

  1. Guideline for Evaluating Analytical Chemistry Capabilities and Recommending Upgraded Methods and Instrumentation for Nuclear Material Control and Accountability at Russian Nuclear Facilities

    International Nuclear Information System (INIS)

    Analytical chemistry plays a key role in nuclear material control and accounting (MC and A). A large part of Special Nuclear Material (SNM) inventories and virtually all of the highly attractive SNM inventories are based on sampling bulk materials followed by destructive assay (DA) of these materials. These measurements support MC and A in process control, physical inventory verification, evaluation of the effects of process changes, detecting and resolving shipper-receiver differences, and the resolution of inspector-facility differences. When evaluating these important functions, US Project Teams need to carefully assess the existing Russian analytical chemistry capabilities and to specify appropriate upgrades where needed. This evaluation and the specification of upgrades have proven difficult, in part, because of the highly specialized and technical nature of DA and because of the wide variety of methods and applications. In addition, providing a DA capability to a Russian analytical laboratory requires much more than simply supplying new instrumentation. Experience has shown that DA upgrades at Russian analytical facilities require more support equipment than was originally anticipated by US Teams. The purpose of this guidance document is to: (1) recommend criteria for US Projects Teams to use in their evaluation of Russian DA capabilities; (2) provide a basis for selection of appropriate upgrades where capabilities are inadequate to support MC and A goals; and (3) to provide a list of Da methods suitable for MC and A with the following information: performance and applications information, strengths and limitations, and references and information on cost. Criteria for evaluating existing capabilities and determining appropriate upgrades are difficult to define. However, this is the basic information needed by the US project Teams. Section IV addresses these criteria

  2. Guideline for Evaluating Analytical Chemistry Capabilities and Recommending Upgraded Methods and Instrumentation for Nuclear Material Control and Accountability at Russian Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Russ, G.P.

    1999-10-21

    Analytical chemistry plays a key role in nuclear material control and accounting (MC and A). A large part of Special Nuclear Material (SNM) inventories and virtually all of the highly attractive SNM inventories are based on sampling bulk materials followed by destructive assay (DA) of these materials. These measurements support MC and A in process control, physical inventory verification, evaluation of the effects of process changes, detecting and resolving shipper-receiver differences, and the resolution of inspector-facility differences. When evaluating these important functions, US Project Teams need to carefully assess the existing Russian analytical chemistry capabilities and to specify appropriate upgrades where needed. This evaluation and the specification of upgrades have proven difficult, in part, because of the highly specialized and technical nature of DA and because of the wide variety of methods and applications. In addition, providing a DA capability to a Russian analytical laboratory requires much more than simply supplying new instrumentation. Experience has shown that DA upgrades at Russian analytical facilities require more support equipment than was originally anticipated by US Teams. The purpose of this guidance document is to: (1) recommend criteria for US Projects Teams to use in their evaluation of Russian DA capabilities; (2) provide a basis for selection of appropriate upgrades where capabilities are inadequate to support MC and A goals; and (3) to provide a list of Da methods suitable for MC and A with the following information: performance and applications information, strengths and limitations, and references and information on cost. Criteria for evaluating existing capabilities and determining appropriate upgrades are difficult to define. However, this is the basic information needed by the US project Teams. Section IV addresses these criteria.

  3. MICROSCOPY, MICRO-CHEMISTRY AND FTIR AS ANALYTICAL TOOLS FOR IDENTIFYING TRANSPARENT FINISHES CASE STUDIES FROM ASTRA MUSEUM – SIBIU

    Directory of Open Access Journals (Sweden)

    Maria Cristina TIMAR

    2015-12-01

    Full Text Available Conservation of cultural heritage relies on scientific investigation of artefacts, a key point being identification of the original materials. In this context, besides wood species identification, investigation of finishing layers is of ultimate importance for old furniture and any other wooden objects with historic, documentary or artistic value. The present paper refers to a series of micro-destructive investigation methods applied for identification of finishing materials, namely: simple in situ and laboratory physical tests, optical microscopy, micro-chemistry and FTIR – ATR analysis. Small samples of finishing layers were taken from four furniture objects belonging to CNM ASTRA Sibiu and were analysed according to the usual procedures of the laboratories from Sibiu and Brasov. The results showed that physical tests and microscopy are useful to get basic information on the samples’ morphology and possible classes of coating materials, while micro-chemistry revealed by some successive tests more specific information on the type of finishing materials. FTIR - ATR is a rapid method of identifying the coating materials based on available reference samples or spectra. However, this is not always straightforward and preliminary physical tests of solubility are useful to select the adequate references, while micro-chemistry tests could complete the FTIR result, especially for those components of the finishing layer present in very small amounts (less than 5%, bellow the FTIR sensitivity. Corroboration of microscopy, physical and micro-chemistry tests with FTIR can provide more reliable results in terms of finishes identification and also valuable information for restoration.

  4. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...

  5. Exploration and Practice of Teaching Methods. in Analytical Chemistry%分析化学教学方法探索与实践

    Institute of Scientific and Technical Information of China (English)

    赵丹

    2012-01-01

    分析化学作为化学专业的基础课程之一,具有非常重要的作用。文章介绍了分析化学教学中几种重要的教学方法:兴趣培养教学法、启发式教学法、类比式教学法、逻辑推理教学法和归纳式教学法,并结合作者自身的教学实践,探讨了各种方法在教学中的作用。%As one of the foundation courses of chemistry, analytical chemistry plays a very important role. This article describes several important teaching methods in analytical chemistry: fostering interest in teaching methods, heuristic teaching method, analog teaching methods, logical reasoning teaching methods and inductive teaching method. With combination of teaching practice, the author discusses the effect of all methods in teaching.

  6. Some Idea about the Teaching of "Analytical Chemistry and Experiment"%对“分析化学及实验”教学的一点思考

    Institute of Scientific and Technical Information of China (English)

    胡晓斌

    2014-01-01

    在当前高等教育大众化、大学生有厌学情绪的情况下,为了避免课程教学的表面化,应改进课程评分模式,拓展讲课内容的维度,提高学生的学习参与度。在教学过程中,应做到理论课和实验课紧密配合,严格要求学生进行规范的实验操作,让学生参与设计性试验和教师科研,以提高“分析化学及实验”的教学效果。%Against the background of the popularization of higher education and the appearance of weary mood in learning among college students, the dimension of class teaching should beex-panded and the course scoring model should be improved to in-crease student learning participation and avoid going through the motions in course teaching and learning. The close coordination between analytical chemistry theory course and experimental course must be carried out. Student must be ordered to operate and exercise strictly and exactly in experimental class. Teachers should guide students to take part in designing experiments and teachers' scientific research projects, thus improving the teaching effects of analytical chemistry and experiment.

  7. "In situ" extraction of essential oils by use of Dean-Stark glassware and a Vigreux column inside a microwave oven: a procedure for teaching green analytical chemistry.

    Science.gov (United States)

    Chemat, Farid; Perino-Issartier, Sandrine; Petitcolas, Emmanuel; Fernandez, Xavier

    2012-08-01

    One of the principal objectives of sustainable and green processing development remains the dissemination and teaching of green chemistry in colleges, high schools, and academic laboratories. This paper describes simple glassware that illustrates the phenomenon of extraction in a conventional microwave oven as energy source and a process for green analytical chemistry. Simple glassware comprising a Dean-Stark apparatus (for extraction of aromatic plant material and recovery of essential oils and distilled water) and a Vigreux column (as an air-cooled condenser inside the microwave oven) was designed as an in-situ extraction vessel inside a microwave oven. The efficiency of this experiment was validated for extraction of essential oils from 30 g fresh orange peel, a by-product in the production of orange juice. Every laboratory throughout the world can use this equipment. The microwave power is 100 W and the irradiation time 15 min. The method is performed at atmospheric pressure without added solvent or water and furnishes essential oils similar to those obtained by conventional hydro or steam distillation. By use of GC-MS, 22 compounds in orange peel were separated and identified; the main compounds were limonene (72.1%), β-pinene (8.4%), and γ-terpinene (6.9%). This procedure is appropriate for the teaching laboratory, does not require any special microwave equipment, and enables the students to learn the skills of extraction, and chromatographic and spectroscopic analysis. They are also exposed to a dramatic visual example of rapid, sustainable, and green extraction of an essential oil, and are introduced to successful sustainable and green analytical chemistry. PMID:22526656

  8. Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    OpenAIRE

    Heng, Kevin; Lyons, James R.; Tsai, Shang-Min

    2015-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van't Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients) and procedures associated with the Gibbs free energy (minimisation, rescaling) have a common physical and mathematical origin. We address an ambiguity ...

  9. News for analytical chemists

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Karlberg, Bo

    2009-01-01

    The EuCheMS Division of Analytical Chemistry (DAC) maintains a website with informations on groups of analytical chemistry at European universities (www.dac-euchems. org). Everyone may contribute to the database and contributors are responsible for an annual update of the information. The service...... is offered free of charge. The report on activities of DAC during 2008 was published in journals of analytical chemistry where Manfred Grasserbauer contributed with his personal view on analytical chemistry in the assessment of climate changes and sustainable application of the natural resources to human...... directed to various topics of analytical chemistry. Although affected by the global financial crisis, the Euroanalysis Conference will be held on 6 to 10 September in Innsbruck, Austria. For next year, the programme for the analytical section of the 3rd European Chemistry Congress is in preparation...

  10. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  11. International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1994-12-16

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories.

  12. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    Science.gov (United States)

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  13. European Analytical Column

    DEFF Research Database (Denmark)

    Karlberg, B.; Grasserbauer, M.; Andersen, Jens Enevold Thaulov

    2009-01-01

    The European Analytical Column has once more invited a guest columnist to give his views on various matters related to analytical chemistry in Europe. This year, we have invited Professor Manfred Grasserbauer of the Vienna University of Technology to present some of the current challenges...... for European analytical chemistry. During the period 2002–07, Professor Grasserbauer was Director of the Institute for Environment and Sustainability, Joint Research Centre of the European Commission (EC), Ispra, Italy. There is no doubt that many challenges exist at the present time for all of us representing...... a major branch of chemistry, namely analytical chemistry. The global financial crisis is affecting all branches of chemistry, but analytical chemistry, in particular, since our discipline by tradition has many close links to industry. We have already noticed decreased industrial commitment with respect...

  14. Generation,Development,and Recent Applications in Modern Organic Analytical Chemistry%现代有机分析化学的产生发展及应用新进展∗

    Institute of Scientific and Technical Information of China (English)

    张来新

    2014-01-01

    This paper briefly introduced the generation,development,and applications of modern organic analyti-cal chemistry. Emphases were put on three parts:① applications of new nano-materials in modern organic analyti-cal chemistry;② applications of modern organic analytical chemistry in medicine science and biology;③ applica-tions of modern organic analytical chemistry in food analysis and food chemistry.%简要介绍了现代有机分析化学的产生发展及应用,详细综述了:①新型纳米材料在现代有机分析化学中的应用;②现代有机分析化学在医药学及生物学方面的应用;③现代有机分析化学在食品分析及食品化学中的应用。

  15. Discussion on Teaching Methods of Analytical Chemistry Experiment%分析化学实验教学方法初探

    Institute of Scientific and Technical Information of China (English)

    周瑞

    2016-01-01

    To the current situation of teaching of Analytical Chemistry Experiment , the importance of verified experiment teaching was explained .Some suggestions of how to start verified experiment and cultivation of the steady basic skills were given from the views of basic skills training , the processing of experimental data and class interaction .The necessity of open design experiment was analyzed .How to mobilize the initiative and creativity of students was discussed taking advantage of open design experiment .Opinions about the development direction of Analytical Chemistry Experiment teaching were raised , which should changed from verified experiment to the parallel mode in verified and open design experiment.%针对分析化学实验教学的现状,阐述了开设验证性基础实验的必要性。从基本操作技能的训练、实验数据的处理分析和课堂互动三个方面分别讨论了如何更好的开设验证性实验,培养学生扎实的实验基本功;在开设验证性实验的基础上,说明了开设设计性实验的必要性,对如何利用设计性实验调动学生探究科学的积极性和创造性提出了几点建议;认为今后分析化学实验的发展方向应该由验证性转向验证性和设计性并行的教学方式。

  16. Application of Liquid-Phase Deposition in Analytical Chemistry%液相沉积法(LPD)在分析化学中的应用

    Institute of Scientific and Technical Information of China (English)

    余琼卫; 冯钰锜

    2011-01-01

    Liquid phase deposition (LPD) technique, developed from wet chemical processing, is a new thin film-forming method to create thin oxide films from aqueous solutions. Due to the distinguishing characteristic of LPD, it has received increasing interest in recent years and been widely used in many fields, especially in the preparation of functional oxide coatings for integrated circuit, metal oxide semiconducting nanomaterials, biosensor, photocatalysis and antibacterial materials. In current review, we first briefly introduced the basic principles and characteristics of LPD and then summarized previous empirical studies for the preparation of metal oxide thin films fabricated by using LPD technique. Furthermore, the applications of LPD method in analytical chemistry, such as the preparation of separation media for chromatography and solid-phase extraction, chemical sensors and composited electrodes, are discussed in detail. At last, the future development and application of LPD in analytical chemistry is prospected.%液相沉积法(LPD)是湿化学法中发展起来的一种全新成膜方法,现已广泛应用于集成电路、金属-氧化物半导体、生物传感器、光催化及抗菌材料领域功能性薄膜的制备.本文简要介绍了液相沉积法的原理、特点及采用LPD法制备的多种金属氧化物薄膜,并详细综述了近年来液相沉积技术在分析化学领域中的应用,主要包括LPD在制备分离介质、化学传感器、复合电极等材料中的应用,并对LPD法在分析化学中的未来发展趋势进行了展望.

  17. Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O

    CERN Document Server

    Heng, Kevin; Tsai, Shang-Min

    2015-01-01

    We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets. Starting from the first law of thermodynamics, we demonstrate that the van't Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients) and procedures associated with the Gibbs free energy (minimisation, rescaling) have a common physical and mathematical origin. We correct an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and rigorously derive its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. To avoid confusion, we simply term them the dimensionless and dimensional equilibrium constants. We demonstrate that the Arrhenius equation takes on a functional form that is more gene...

  18. 分析化学教学与实践案例分析关联性初探%An Approach to the Relationship between Analytical Chemistry Teaching and Practice Case Analysis

    Institute of Scientific and Technical Information of China (English)

    高琳

    2011-01-01

    Based on the analysis of the current situation of ana-lytical chemistry teaching,teaching experience and the practical feature of analytical chemistry,this paper proposes the integration of the theory,experiment teaching of analytical chemistry and various analytical objects through a case analysis,hoping to im-prove students' learning orientation.The perfect integration of class teaching and practice can improve teaching effect and st-udents' understanding of analytical chemistry,broad students' thinking,cultivate their DIY ability,thus effective teaching goal can be achieved.%本文通过对当前不同学科专业的大学分析化学教学现状进行分析,总结教学过程存在的问题,结合分析化学学科实践性强等特点,提出通过结合具体案例,把分析化学的理论和试验教学与不同学科的具体分析对象相结合,以此来提高学习针对性;将课堂教学和实践应用有机结合,达到改善教学效果,提高学生对分析化学学科实践性认识,拓宽学生思维,培养学生动手能力等目的。

  19. 配位印迹聚合物在分析化学中的应用进展%Application Development of Complex Imprinted Polymer in Analytical Chemistry

    Institute of Scientific and Technical Information of China (English)

    黄健祥; 胡玉玲; 胡玉斐; 李攻科

    2012-01-01

    分子印迹聚合物(MIP)是一种对目标分子(模板分子)具有选择性结合能力的聚合物.配位印迹聚合物(CIP)是基于金属离子与功能单体、模板分子间配位作用的分子印迹聚合物,既沿袭了MIP的优点,又具有适用于极性环境等优点,在食品、环境、生物、医药等领域目标物的识别中有良好的应用潜力.本文介绍了CIP的原理和特点,综述了CIP在分析化学中的应用进展,展望了CIP的发展前景.%Molecularly imprinted polymer (MIP) has the selective binding ability for target molecule (template molecule). Based on the coordination among metal, functional monomer and template molecule, complex imprinted polymer (CIP) holds selectivity derived from MIP and has some specialties like being stable and effective in polar environment, which make a great potential of the recognition of target analytes in food, environmental, biological and pharmaceutical samples. In this paper, the characteristic of CIP was introduced. Its development of application in analytical chemistry was summarized. The foreground of complex imprinted technique was previewed.

  20. Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM

    Science.gov (United States)

    Penna, Andrea; Careri, Maria; Spencer, Nicholas D.; Rossi, Antonella

    2015-08-01

    Since it was proposed for the first time, desorption electrospray ionization-mass spectrometry (DESI-MS) has been evaluated for applicability in numerous areas. Elucidations of the ionization mechanisms and the subsequent formation of isolated gas-phase ions have been proposed so far. In this context, the role of both surface and pneumatic effects on ion-formation yield has recently been investigated. Nevertheless, the effect of the surface chemistry has not yet been completely understood. Functionalized glass surfaces have been prepared, in order to tailor surface performance for ion formation. Three substrates were functionalized by depositing three different silanes [3-mercaptopropyltriethoxysilane (MTES), octyltriethoxysilane (OTES), and 1H,1H,2H,2H-perfluorooctyltriethoxy-silane (FOTES)] from toluene solution onto standard glass slides. Surface characterization was carried out by contact-angle measurements, tapping-mode atomic force microscopy, and X-ray photoelectron spectroscopy. Morphologically homogeneous and thickness-controlled films in the nm range were obtained, with surface free energies lying between 15 and 70 mJ/m2. These results are discussed, together with those of DESI-MS on low-molecular-weight compounds such as melamine, tetracycline, and lincomycin, also taking into account the effects of the sprayer potential and its correlation with surface wettability. The results demonstrate that ion-formation efficiency is affected by surface wettability, and this was demonstrated operating above and below the onset of the electrospray.

  1. Study on the Construction of Practical Teaching Model in Analytical Chemistry Experiment Teaching%实践型分析化学实验教学模式的构建研究

    Institute of Scientific and Technical Information of China (English)

    祁文静; 吴狄; 饶灿

    2015-01-01

    指出了分析化学作为基础化学课程,其配套的实验教学也同样具有重要的教学意义,分析了当前分析化学实验教学存在的问题,探讨了实践型分析化学实验教学模式的构建,以期提供参考。%As a basic chemistry course ,the article points out that the auxiliary experiment teaching also has important significance in teaching .the article analyzes the current problems exist in the analytical chemistry experiment course and discusses the construction of practical teaching model in analytical chemistry experi‐ment teaching ,w hich aim to provide some references .

  2. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  3. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  4. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  5. The Role Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting Edge Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Hugo eAguilaniu

    2016-02-01

    Full Text Available Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches such as comprehensive and highly selective liquid chromatography coupled to mass spectrometry (LC-MS based or new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS if we are to obtain a better understanding of the biological functions of steroid signaling.

  6. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    Science.gov (United States)

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in biological or environmental samples. Due to low consumption of eluent (usually 0.3-1mL/run) mainly composed of water-alcohol binary mixtures, this method can be considered as environmentally friendly and green chemistry focused analytical tool, supplementary to analytical protocols involving column chromatography or planar micro-fluidic devices. PMID:21669284

  7. 分析化学实验仪器改进的几点探索%Some Experiences of Improving Analytical Chemistry Experiment

    Institute of Scientific and Technical Information of China (English)

    曲仕明; 高世杰; 王集会

    2012-01-01

    设计了一种可用于分析化学实验及企事业单位化验室的复合式滴定台,方便了相关人员的实验操作,并大大提高了实验台利用率;发明了一套可修复损坏的酸碱式滴定管的仪器;探索了一种解决酸碱式滴定管刻度线读数模糊不清问题的方法,方便了学生读数。通过以上改进,节省了教学成本。%A new- type burette holder was designed for analytical chemistry experiments and testing laboratories of enterprises and institutions. An instrument for repairing the damaged burettes was also invented. In addition, the unclear scale lines of burettes can be easy to read by the new method. Thus, the teaching cost was saved and the students would fell easy in a titration experiment.

  8. Applications of Spiropyran Derivatives in Analytical Chemistry%螺吡喃化合物在分析化学中的应用

    Institute of Scientific and Technical Information of China (English)

    邵娜; 张向媛; 杨荣华

    2011-01-01

    Spiropyrans, an important class of photochromic compounds that undergo reversible structural isomerization between a colorless spiropyran form and a colored merocyanine, are an attractive starting point in constructions of molecular-level devices with molecular recognition function and signal transduction ability due to their unique molecule binding ability and signal transduction function. The merocyanine may interact with their environment (solvent or matrix) leading to different photochromic responses. By exploiting such characteristics,spiropyrans have been employed not only in materials chemistry for molecular switches, but also in analytical chemistry as molecular sensors. During the past decades, a number of receptors possessing diverse spiropyran skeletons have been designed and utilized for optical sensing of metal ions, some for neutral molecules, such as nucleobases, amino acids, peptide and DNA, and a few for anions. Some work has also been done in eletrochemical sensing using spiropyran-modified electrode. This review summarizes the progress in the study of spiropyran derivatives in analytical chemistry, including their application as spectroscopic sensors for metal ions,anions and organic molecules, and also the application of spiropyran in electrochemical immuno-sensor. Traditional spiropyran derivatives containing crown ether moieties or -NO2 group, and special kinds of spiropyrans like bisspiropyran which is more super in binding selectivity, are discussed in detail.%螺吡喃作为一种有机光致变色化合物,能够发生无色闭环体螺吡喃与有色开环体部花菁之间可逆的结构异构化,由于具有特殊的分子识别能力和信号传导功能,已经成为分子探针领域极具吸引力的主体分子之一.螺吡喃不仅被广泛应用于光电材料领域作为分子器件,而且作为传感器广泛应用于分析化学领域.研究者们设计了多种具有不同结构的螺吡喃分子,将其应用

  9. 微型分析化学实验教学与“两型社会”观教育%Microscale Analytical Chemistry Experimental Teaching and Education on Concept of "Two-oriented Society"

    Institute of Scientific and Technical Information of China (English)

    谭亮; 杨素芳; 马铭; 唐浩; 郭宾

    2012-01-01

    The construction of a resource-conserving and environment-friendly society is the only way to realize the sustainable development of society and economy, which requires the concern and efforts of the whole society. Microscale analytical chemistry experiment has become one of trends of teaching reform in analytical chemistry experiments. It is also an important method and content for actualization of "quality-education and creativity-education idea" in chemistry education. This paper defines the significance of the construction of " two-oriented society" and positive roles of microscale analytical chemistry experiment. Some practices in the teaching process of microscale analytical chemistry experiment are displayed. It is expected that the work related will increase the comprehensive ability of students and induce them to make due contributions for the construction of "two-oriented society".%建设资源节约型和环境友好型社会是实现社会经济可持续发展的必由之路,需要全社会的参与.微型分析化学实验是分析化学实验教学改革的趋势之一,也是在化学专业教学中实施创新教育和素质教育的重要途径和内容之一.论文阐明了“两型社会”建设的重要意义、微型分析化学实验的积极作用以及开展微型分析化学实验教学的一些做法.相关工作有助于提高学生的综合素质,为“两型社会”建设做出应有的贡献.

  10. Annual report 1987 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1987 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistry, mineral processing, and general. 13 ills., (author)

  11. Annual report 1982 chemistry department

    International Nuclear Information System (INIS)

    The work going on in the Risoe National Laboratory, Chemistry Department is briefly surveyed by a presentation of all articles and reports published in 1982. The facilities and equipment are barely mentioned. The papers are divided into eight activities: 1. neutron activation analysis 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry 6. radical chemistry 7. poitron annihilation 8. uranium process chemistry. (author)

  12. Millimeter-Wave Spectroscopy for Analytical Chemistry: Thermal Evolution of Low Volatility Impurities and Detection with a Fourier Transform Molecular Rotational Resonance Spectrometer (tev Ft-Mrr

    Science.gov (United States)

    Harris, Brent; Fields, Shelby S.; Neill, Justin L.; Pulliam, Robin; Muckle, Matt; Pate, Brooks

    2016-06-01

    Recent advances in Fourier transform millimeter-wave spectroscopy techniques have renewed the application reach of molecular rotational spectroscopy for analytical chemistry. We present a sampling method for sub ppm analysis of low volatility impurities by thermal evolution from solid powders using a millimeter-wave Fourier transform molecular rotational resonance (FT-MRR) spectrometer for detection. This application of FT-MRR is relevant to the manufacturing of safe oral pharmaceuticals. Low volatility impurities can be challenging to detect at 1 ppm levels with chromatographic techniques. One such example of a potentially mutagenic impurity is acetamide (v.p. 1 Torr at 40 C, m.p. 80 C). We measured the pure reference spectrum of acetamide by flowing the sublimated vapor pressure of acetamide crystals through the FT-MRR spectrometer. The spectrometer lower detection level (LDL) for a broadband (> 20 GHz, 10 min.) spectrum is 300 nTorr, 30 pmol, or 2 ng. For a 50 mg powder, perfect sample transfer efficiency can yield a w/w % detection limit of 35 ppb. We extended the sampling method for the acetamide reference measurement to an acetaminophen sample spiked with 5000 ppm acetamide in order to test the sample transfer efficiency when liberated from an pharmaceutical powder. A spectral reference matching algorithm detected the presence of several impurities including acetaldehyde, acetic acid, and acetonitrile that evolved at the melting point of acetaminophen, demonstrating the capability of FT-MRR for identification without a routine chemical standard. The method detection limit (MDL) without further development is less than 10 ppm w/w %. Resolved FT-MRR mixture spectra will be presented with a description of sampling methods.

  13. Algas: da economia nos ambientes aquáticos à bioremediação e à química analítica Algae: from aquatic environment economy to bioremediation and analytical chemistry

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Vidotti

    2004-02-01

    Full Text Available Algae constitute a large group of many different organisms, essentially aquatic and able to live in all systems giving them sufficient light and humidity. Some algae species have been used in the evaluation or in the bioremediation of aquatic systems. More recently algae have been suggested as interesting tools in the field of analytical chemistry. In this work the most important aspects related to the different uses of algae are presented with a brief discussion.

  14. Analytical chemistry under the impact of modern science and technology and its philosophical thought%现代科技冲击下的分析化学及哲学思考

    Institute of Scientific and Technical Information of China (English)

    赖国松; 张海丽

    2013-01-01

    Conventional analytical chemistry is a second discipline tasking in determination and characterizing mainly in the field of chemistry .With the development of modern science and technology , analytical chemistry has absorbed and combined some fresh knowledge of some related disciplines such as physics , biology , material and informational science , which resulted in the great enhancement of the level of discipline intercross and the enlargement of discipline foundation and research fields . The analytical method also transformed from the chemical analysis mainly by hand to the instrumental analysis .However, its possible negative influence to the human being and society of analytical chemistry should be properly thought about when it plays more and more important roles in the modern society among with its fast development .%传统的分析化学是一门在化学领域以测量和表征为主要任务的二级学科。伴随着现代科技的进步,分析化学不断吸纳和结合包括物理、生物、材料、信息学科在内的其它相关学科的最新成果,学科交叉程度越来越高,学科基础和研究领域不断拓展,研究手段也实现了以人工的化学分析为主到以仪器分析为主的重大转变。然而,随着分析化学的不断发展,分析化学在现代社会中发挥着越来越重要作用的同时,对人类社会可能造成的安全、伦理道德等方面的影响也不容忽视。

  15. Practice Investigation of PBL Teaching in Analytical Chemistry of Pharmacy%药学专业分析化学教学中实施PBL教学法的实践初探

    Institute of Scientific and Technical Information of China (English)

    李建荣

    2016-01-01

    Based on the actual situation of Pharmacy Vocational College Majors and market demand, to make a few of PBL in analytical chemistry application measures provided for information and reference.%本文基于高职院校药学专业学生的实际情况与市场需求,提出几点PBL教学法在分析化学中的应用措施,仅供参考与借鉴。

  16. 面向"卓越计划"的分析化学教学改革探索%Exploration on the Teaching Reform of Analytical Chem-istry Facing "Excellence Program"

    Institute of Scientific and Technical Information of China (English)

    张春燕; 罗建新; 胡汉祥

    2016-01-01

    无机非金属材料工程专业是我校实施教育部"卓越工程师培养计划"专业之一,分析化学是无机非金属材料与工程专业的重要基础课程.针对卓越工程师培养要求和分析化学课程教学特点,探索了面向"卓越计划"的分析化学教学内容、教学方式和考核机制的改革与实践.%Inorganic nonmetallic materials engineering is a major of our college that implements"excellent engineers training pro-gram"proposed by Ministry of Education, while analytical chem-istry is an important foundation course for inorganic nonmetallic materials engineering major. In view of the requirements of ex-cellent engineers training and the teaching characteristics of ana-lytical chemistry, this paper explores the reform and practice of the teaching content, teaching style and evaluation mechanism of analytical chemistry facing"excellence program".

  17. X-ray fluorescence in Member States (Spain): Main activities related to the use of XRF techniques at the Analytical and Environmental Chemistry Research Group of the University of Girona (UdG)

    International Nuclear Information System (INIS)

    The Analytical and Environmental Chemistry Group (QAA) is a consolidated research group of the Department of Chemistry of the University of Girona (North- East Spain). The main research topics of the group are related to the development and application of analytical methodologies for the determination of inorganic and organic species in different kind of environmental, clinical and industrial samples. From the beginning of the 2000’s, one of the research focuses of the group, is the use of X-ray fluorescence spectrometry (XRF) for the determination of trace amounts of metals and metalloids mostly in samples related to the environmental and industrial fields. For instance, in collaboration with the Institute of Earth Sciences “Jaume Almera” (ICTJA-CSIC, Spain), we have developed and successfully applied several analytical approaches based on the use of EDXRF (Energy dispersive XRF), WDXRF (Wavelength dispersive XRF) and PEDXRF (Polarised EDXRF) for the determination of metals at trace levels in complex liquid samples such as sea water or electroplating waters in vegetation samples collected around mining environments or in active pharmaceutical ingredients. At present, the evaluation of the analytical possibilities of TXRF (Total reflection XRF) in the chemical analysis field is also one of the research topics of QAA. In this sense, several contributions related to the use of this technique for element determination in liquid and solid samples have been developed. A summary of these contributions is summarized in the last section of this review

  18. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  19. 分析化学课程资源开发与建设的实践研究%Practical Research on Development and Construction of Analytical Chemistry Curriculum Resources

    Institute of Scientific and Technical Information of China (English)

    张军丽; 闫凤美; 王世兵; 潘庆才

    2016-01-01

    结合应用化学专业分析化学课程建设的实践,开发了基于工作过程系统化的模式下的课程资源,从课程教学目标、课程体系和教学内容优化、教学方法和手段转变等方面整合分析化学教学资源,建设了课程网站,进一步推动教学资源的开发和应用。形成情景教学模式,提高学生独立分析问题和解决实际问题的能力,充分调动了学生学习积极性。%Under work process guidance pattern, construction situation of analytical chemistry curriculum resources of applied chemistry specialty were presented, combining with practical teaching. Some teaching targets were explored and course system and teaching contents, transformed methods and means were optimized. The teaching resources of analytical chemistry were integrated to build courses website, which further promoted the development and application of teaching resources. Situational teaching model improved students' ability to analyze problems and solve practical problems independently, which fully mobilized the enthusiasm of students learning.

  20. Annual report 1983 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1983 are presented. The facilities and equipment are barely mentioned. The activities are divided into nine groups: 1. radioisotope chemistry 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry and waste disposal 6. radical chemstry 7. positron annihilation 8. mineral processing 9. general. (author)

  1. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  2. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  3. Application of green analysis and testing technique in food analytical chemistry%绿色分析测试技术在食品检验中的应用

    Institute of Scientific and Technical Information of China (English)

    王仕兴; 牛华; 张学忠; 杨凡; 彭珍华; 祝红昆; 马雪涛; 李军明

    2012-01-01

    绿色分析技术已成为国际分析化学的前沿科学,是一种新型的分析技术。绿色分析技术要求食品分析和检验者们能够发展绿色的分析方法和技术,从源头上制止污染的产生,减轻食品分析对操作者造成的伤害和对环境造成的污染。无污染或少污染的绿色分析化学技术将是今后食品分析的发展方向。文章重点介绍绿色分析测试技术在食品检验中的应用。%Green analysis and testing technique is a frontier area of analysis science and that is a new analysis technique.Green analysis and testing technique requires developing green analytical methods which eliminate the pollution from headstream and reduce damage and pollution.Free from pollution or little pollution in green analytical chemistry would be the development direction of food analytical chemistry.Its application and research progress in food detection were mainly introduced.

  4. Sixty Years of Chemistry at CAS

    Institute of Scientific and Technical Information of China (English)

    WAN Li-Jun

    2011-01-01

    @@ As one of the fundamental and key disciplines of natural sciences, chemistry deals with the properties, composition, structure, transformation and applications of substances.It could be further divided into several branches, such as inorganic chemistry, organic chemistry, physical chemistry, polymer chemistry, analytical chemistry and chemical engineering.In recent years, many new branches and fields have emerged amide the continuous development of chemistry and its interdisciplinary research with mathematics, physics, astronomy, earth science, biology, medical science, materials science, and environmental science.

  5. Quantitative Analysis of Heavy Metals in Children's Toys and Jewelry: A Multi-Instrument, Multitechnique Exercise in Analytical Chemistry and Public Health

    Science.gov (United States)

    Finch, Lauren E.; Hillyer, Margot M.; Leopold, Michael C.

    2015-01-01

    For most chemistry curricula, laboratory-based activities in quantitative and instrumental analysis continue to be an important aspect of student development/training, one that can be more effective if conceptual understanding is delivered through an inquiry-based process relating the material to relevant issues of public interest and student…

  6. 面向工程应用的分析化学教学改革探索%Exploration on the Teaching Reform of Analytical Chem-istry Facing Engineering Application

    Institute of Scientific and Technical Information of China (English)

    张春燕; 罗建新; 张萍; 李爱阳

    2016-01-01

    湖南工学院作为一新建地方本科院校,以“三重一高”“重基础、重技术、重能力、高素质”为应用型人才培养模式,以服务地区经济和以人为本的教育思想,完善分析化学教学体系,创新教学环节,探索了面向工程应用的分析化学教学内容、教学方式和考核机制的改革与实践。%Hu'nan Institute of Technology, as a newly-established local university, has explored the reform and practice on the teaching content, teaching method and evaluation mechanism of analytical chemistry, based on the improvement and innovation of analytical chemistry teaching system and teaching process with"focusing on foundation, technique, ability and high quality" as the model of applied talent cultivation and serving local economy and people-orientation as the education idea.

  7. Construction of Higher Vocational Colleges Analytical Chemistry Training Guidance Teachers%高职院校分析化学实训指导教师队伍的建设

    Institute of Scientific and Technical Information of China (English)

    罗维

    2014-01-01

    The construction of a high-quality technical training guidance was the premise to cultivate high-quality skilled students, and the important guarantee of teaching quality in Higher Vocational College practice. Training guidance of analytical chemistry in Higher Vocational Colleges should have good psychological quality, develop specific teaching plan, and guide the students strictly and carefully in the training process. The construction of training guidance of analytical chemistry should establish the strict entry system, employ the business skilled craftsmen and hold a skills competition.%建设一支高素质技能型的实训指导教师是培养高素质技能型学生的首要前提,是高职院校实践教学质量的重要保障。高职院校分析化学实训指导教师应具备优秀的心理素质,制定具体的实训教学计划,在实训过程中严格细致地指导学生。建设分析化学实训指导教师应从严格入门制度的建立、企业能工巧匠的聘任、技能大比拼三个方面来进行。

  8. Surface chemistry

    CERN Document Server

    Desai, KR

    2008-01-01

    The surface Chemistry of a material as a whole is crucially dependent upon the Nature and type of surfaces exposed on crystallites. It is therefore vitally important to independently Study different, well - defined surfaces through surface analytical techniques. In addition to composition and structure of surface, the subject also provides information on dynamic light scattering, micro emulsions, colloid Stability control and nanostructures. The present book endeavour to bring before the reader that the understanding and exploitation of Solid state phenomena depended largely on the ability to

  9. Exploration of Reform on Teaching Contents in Inorganic and Analytical Chemistry Experiment%无机及分析化学实验教学内容改革的探索

    Institute of Scientific and Technical Information of China (English)

    王宏胜; 陈新华; 许志红; 王磊; 张万强

    2011-01-01

    Chemical experiment was one of the important contents in chemistry teaching.Inorganic chemistry experiment and analytical chemistry experiment were reformed on the teaching outline of the specialty of food science and engineering.The experimental contents were reasonably setted,which can arouse the students' learning interest,improve the experimental teaching effect and the experimental operating ability of students effectively.%化学实验是化学课程教学的重要内容之一。根据我校食品科学与工程专业教学大纲的要求,进行了无机化学实验和分析化学实验课程整合。通过合理安排实验内容,能够激发学生的学习兴趣,有效提高实验教学效果和学生的实验操作技能。

  10. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  11. Developing and Implementing Inquiry-Based, Water Quality Laboratory Experiments for High School Students to Explore Real Environmental Issues Using Analytical Chemistry

    Science.gov (United States)

    Mandler, Daphna; Blonder, Ron; Yayon, Malka; Mamlok-Naaman, Rachel; Hofstein, Avi

    2014-01-01

    This paper describes the rationale and the implementation of five laboratory experiments; four of them, intended for high-school students, are inquiry-based activities that explore the quality of water. The context of water provides students with an opportunity to study the importance of analytical methods and how they influence our everyday…

  12. Low-Cost Method for Quantifying Sodium in Coconut Water and Seawater for the Undergraduate Analytical Chemistry Laboratory: Flame Test, a Mobile Phone Camera, and Image Processing

    Science.gov (United States)

    Moraes, Edgar P.; da Silva, Nilbert S. A.; de Morais, Camilo de L. M.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2014-01-01

    The flame test is a classical analytical method that is often used to teach students how to identify specific metals. However, some universities in developing countries have difficulties acquiring the sophisticated instrumentation needed to demonstrate how to identify and quantify metals. In this context, a method was developed based on the flame…

  13. Recent Progress in the Nuclear Magnetic Resonance Applications in Analytical Chemistry%核磁共振波谱在分析化学领域应用的新进展

    Institute of Scientific and Technical Information of China (English)

    王桂芳; 马廷灿; 刘买利

    2012-01-01

    Development of new and effective methods for measuring chemical composition, molecular structures, interactions and dynamics is one of the major issues of analytical chemistry. Spectral analysis (spectroscopy, mass spectrometry and nuclear magnetic resonance) is the most commonly used analytical tool to address these issues. Nuclear magnetic resonance is capable to determine structure for small molecules, macromolecules and complicated biological systems, and it is considered as the most powerful tool in analytical chemistry. This paper reviewed recent progress of nuclear magnetic resonance in biological macromolecules system, complex system and the hyphenated method applications in analytical chemistry. In the first part, we gave a brief introduction of nuclear magnetic resonance technology and its applications in analytical chemistry field. The detailed application descriptions of nuclear magnetic resonance technology have been summarized from part two to part four. In the second part, we summarized the applications of nuclear magnetic resonance technology in biological macro- molecules system, including the main nuclear magnetic resonance technology development in three dimensional protein structural analysis field and its applications; the related methods and applications in the dynamic study of protein complex, the in-cell nuclear magnetic resonance labeling methods development history and its applications, and also the methods of nuclear magnetic resonance technologies in studying the interactions of protein and drugs. In the third part, the qualitative and quantitative analysis of nuclear magnetic resonance technologies in complex systems has been summarized, including the applications in the metabolomics and the applications in the field of food quality and safety. In the fourth part, we briefly introduced the joint applications of magnetic resonance technologies and other separation methods such as chromatography and spectroscopic ways. The conclusions of

  14. Miniaturizing and automation of free acidity measurements for uranium (VI)-HNO3 solutions: Development of a new sequential injection analysis for a sustainable radio-analytical chemistry.

    Science.gov (United States)

    Néri-Quiroz, José; Canto, Fabrice; Guillerme, Laurent; Couston, Laurent; Magnaldo, Alastair; Dugas, Vincent

    2016-10-01

    A miniaturized and automated approach for the determination of free acidity in solutions containing uranium (VI) is presented. The measurement technique is based on the concept of sequential injection analysis with on-line spectroscopic detection. The proposed methodology relies on the complexation and alkalimetric titration of nitric acid using a pH 5.6 sodium oxalate solution. The titration process is followed by UV/VIS detection at 650nm thanks to addition of Congo red as universal pH indicator. Mixing sequence as well as method validity was investigated by numerical simulation. This new analytical design allows fast (2.3min), reliable and accurate free acidity determination of low volume samples (10µL) containing uranium/[H(+)] moles ratio of 1:3 with relative standard deviation of safety, personnel exposure to radioactive samples and to drastically reduce environmental impacts or analytical radioactive waste. PMID:27474315

  15. Guidance on students’ quick transformation of thought pattern in the experiment teaching of inorganic and analytical chemistry%无机-分析化学实验教学中引导学生思维方式快速转换研究

    Institute of Scientific and Technical Information of China (English)

    郝扶影; 徐华杰; 刘昭第; 姚向东; 孙林

    2014-01-01

    On the basis of the experiment teaching status and experience of inorganic and analytical chemistry in our depart-ment, this article discussed how to perfect the unity of theoretical teaching and experimental teaching and how to strengthen curricu-lum model of the integration of inorganic chemistry experiment and analytical chemistry experiment. In the teaching of inorganic chemistry experiment, with the cooperation of the multimedia technology, we lay emphasis on cultivating students’ concept of“quantity” and integrate the qualitative and the quantitative methods to realize the seamless connection of inorganic chemistry and analytical chemistry experiment. In this way, we can quickly guide the students to transform their thought pattern from inorganic chemistry to analytical chemistry.%结合本院的无机及分析化学实验教学状况及实践经验,阐述如何完善理论教学与实验教学的统一,强化将无机化学和分析化学实验融为一体的课程设置模式。在无机化学实验的教学中,结合多媒体技术,注重培养学生“量”的概念,融合定性与定量,实现无机与分析的无缝衔接,快速引导学生从无机到分析思维方式的转换。

  16. Miniaturizing and automation of free acidity measurements for uranium (VI)-HNO3 solutions: Development of a new sequential injection analysis for a sustainable radio-analytical chemistry.

    Science.gov (United States)

    Néri-Quiroz, José; Canto, Fabrice; Guillerme, Laurent; Couston, Laurent; Magnaldo, Alastair; Dugas, Vincent

    2016-10-01

    A miniaturized and automated approach for the determination of free acidity in solutions containing uranium (VI) is presented. The measurement technique is based on the concept of sequential injection analysis with on-line spectroscopic detection. The proposed methodology relies on the complexation and alkalimetric titration of nitric acid using a pH 5.6 sodium oxalate solution. The titration process is followed by UV/VIS detection at 650nm thanks to addition of Congo red as universal pH indicator. Mixing sequence as well as method validity was investigated by numerical simulation. This new analytical design allows fast (2.3min), reliable and accurate free acidity determination of low volume samples (10µL) containing uranium/[H(+)] moles ratio of 1:3 with relative standard deviation of analytical parameters are important especially in nuclear-related applications to improve laboratory safety, personnel exposure to radioactive samples and to drastically reduce environmental impacts or analytical radioactive waste.

  17. Research on Enhancing Bilingual Analytical Chemistry Teaching in Provincial Colleges and Universities%省属高校加强分析化学双语教学的探索与研究

    Institute of Scientific and Technical Information of China (English)

    郑刚; 李冬洁

    2014-01-01

    本文重点介绍了近年西安理工大学理学院开展分析化学教学实践中运用双语教学的经验和一些体会,深入剖析了双语教学的基本内涵,指出了现阶段高校在实际课堂上,双语教学出现的一系列问题,并对此提出相应的建议和对策。%This article mainly introduces the experience of bilingual analytical chemistry teaching in Faculty of Sciences, Xi'an University of Technology in recent years. The basic connotation of bilingual teaching is analyzed in-depth. The problems in the bilingual teaching at present are pointed out and corresponding suggestions and countermeasures are put forward.

  18. 初探分析化学与药物分析实验合并的教学改革与实践%Practice and reformation of experimental teaching combination of analytical chemistry and pharmaceutical analysis

    Institute of Scientific and Technical Information of China (English)

    尚校军; 杨丽娟; 马素英; 孙祥德

    2011-01-01

    Analytical chemistry and pharmaceutical analysis are two major courses of pharmacy. Based on the relations of them, the experimental teaching reform of combining the two courses had been done, to the aims of improving teaching effect , cultiva ting the students'creative ability and optimizing the teaching resources.%分析化学和药物分析都是药学专业非常重要的课程,根据两者的关系和特点,我们从实验教学方面进行合并教学研究改革,以期达到优化教学资源,增强教学效果,培养实用型人才的目的.

  19. 灰岩中的游离二氧化硅的化学物相分析方法的探讨%Discussion of Chemistry Phase Analytic Method of the Dissociation Silicon Dioxide in Calcareous Rock

    Institute of Scientific and Technical Information of China (English)

    雷萍; 蒲志; 陈伟

    2011-01-01

    介绍了灰岩中游离二氧化硅的化学物相分析方法,以热浓磷酸溶矿,氟硼酸解聚已溶出的硅酸,使游离二氧化硅与其他矿物分离,再用重量法进行测定。%Introduced the chemistry phase analytic method of the dissociation silicon dioxide in calcareous rock,dissolved the dissociation silicon dioxide and other ore mineral by the heat thick phosphoric acid and the fluoboric acid depolymerization silicic acid which was dissolved,and used the weight method to carry on the determination again.

  20. 资源环境科学专业分析化学课程教学改革的研究%Teaching Reform and Practice of Analytical Chemistry in Resources and Environmental Science Specialty

    Institute of Scientific and Technical Information of China (English)

    马丽; 李华; 李辉

    2015-01-01

    为培养创新型应用型的资源环境科学人才,本文在分析资源环境科学专业学科特点和分析化学课程教学现状的基础上,结合绵阳师范学院资源环境科学课程体系及培养目标,对分析化学课程设置、教学手段、能力培养及考核形式等方面进行了改革探索,实践证明,以上措施的实施,充分调动了学生学习的积极性、主动性和创造性,促进了知识传授、能力培养和创新的有机统一。%This paper introduced the reform exploration of the curriculum, teaching methods, ability training and inspection way of analytical chemistry, in order to cultivate innovative and ap-plied resources and environmental science talents, based on the analysis of discipline characteristics, present situation of analyti-cal chemistry teaching, curriculum system and the cultivating target of resources and environmental science specialty. The practice had proved that these measures stimulated the students' initiative, enthusiasm and creativity of learning knowledge and promoted the integration of knowledge, ability training and inno-vation.

  1. Discussion on Lean Concepts in Inorganic and Analytic Chemistry Experiment Teaching%浅析精益思想在无机及分析化学实验教学中的应用

    Institute of Scientific and Technical Information of China (English)

    覃利琴; 陈渊; 王荣芳; 陶萍芳

    2016-01-01

    According to the wastefulness action of Inorganic and Analytical Chemistry courses and modernism Lean Management theory, it was advance advised that the waste time was decreased via optimizing the course contents and renewing teaching methods, the waste materiel was decreased via adjusting experimental project, using micro-scale experiment and new technique, the economic benefits were increased by popularizing green chemistry and debasing pollution costs, the safety and efficiency were insured by criterion experiment operation, the Lean Management atmosphere were consolidated by cultivating good consciousness and attainments, which enhanced the effect of experiment teaching.%从无机及分析化学实验教学中存在的浪费现象入手,导入现代精益管理理念,提出通过优化课程内容及更新教学方法来减少时间浪费;通过调整项目及使用新技术来减少物料浪费;通过推广绿色化学来提升经济效益;通过规范实验操作来确保安全高效;通过培养良好意识来巩固精益氛围,实现可持续教学。

  2. Surface analytical and electrochemical characterization of oxide film layers formed on Incoloy 800 and carbon steel in simulated secondary water chemistry conditions of PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Rangarajan, Srinivasan; Chandran, Sinu; Balaji, Vadivelu; Narasimhan, Sevilmedu V. [BARC Facilities, Kalpakkam, Tamil Nadu (India). Water and Steam Chemistry Div.

    2011-06-15

    The water chemistry in the steam generator (SG) circuits of Indian pressurized heavy water reactors (PHWRs) is controlled by the all-volatile treatment (AVT) procedure, wherein volatile amines are used to maintain the alkaline pH required for minimizing the corrosion of the structural materials. Earlier, Monel and morpholine were used as the steam generator material and the alkalizing agent respectively. However, currently they have been replaced by Incoloy 800 and ethanolamine (ETA). ETA was chosen because of its beneficial effects due to low pKb and Kd values, loading behavior on the condensate polishing unit (CPU), and also based on cost comparison with other amines. Since we have Incoloy 800 on the tube side and carbon steel (CS) on the shell side in the SG circuits, efforts were taken to study the nature of the oxide films formed on these surfaces and to evaluate the corrosion resistance and electrochemical properties of the same under simulated secondary water chemistry conditions of PHWRs containing different dissolved oxygen (DO) concentrations. In this context, experiments were carried out by exposing finely polished CS and Incoloy 800 coupons to ETA-based medium in the presence and absence of hydrazine (pH: 9.2) at 240 C under two different DO conditions (< 10 {mu}g . L{sup -1} and 300 {mu}g . L{sup -1}) for 24 hours. Oxide films formed under these conditions were characterized using scanning electron microscopy, Raman spectroscopy, electrochemical impedance, polarization and Mott-Schottky techniques. Further, studies at a controlled DO level (< 10 {mu}g . L{sup -1}) were carried out for different time durations, viz., 7 and 30 days. The composition, surface morphology, oxide thickness, resistance, type of semiconductivity and defect density of the oxide films were evaluated and correlated with the DO levels and are discussed elaborately in this paper. (orig.)

  3. Surface analytical and electrochemical characterization of oxide films formed on Incoloy-800 and carbon steel in simulated secondary water chemistry conditions of PHWRs

    International Nuclear Information System (INIS)

    The water chemistry in the Steam Generator (SG) Circuits of Indian Pressurized Heavy Water Reactors (PHWRs) is controlled by the all volatile treatment (AVT) procedure, wherein volatile amines are used to maintain the alkaline pH required for minimizing the corrosion of the structural materials. Earlier, Monel and morpholine were used as the Steam Generator material and the alkalizing agent respectively. However, currently they are replaced by Incoloy-800 and Ethanolamine (ETA). ETA was chosen because of its beneficial effects due to low pKb and Kd values, loading behaviour on condensate polishing unit (CPU) and also on cost comparison with other amines. Since we have Incoloy-800 on the tube side and Carbon steel(CS) on the shell side in the SG circuits, efforts were taken to study the nature of the oxide films formed on these surfaces and to evaluate the corrosion resistance and electrochemical properties of the same, under simulated secondary water chemistry conditions of PHWRs containing different dissolved oxygen (DO) concentration. In this context, experiments were carried out by exposing finely polished CS and Incoloy -800 coupons to ETA based medium in the presence and absence of Hydrazine (pH: 9.2) at 240 oC under two different DO conditions (< 10 ppb and 200 ppb) for 24 hours. Oxide films formed under these conditions were characterized using SEM, Raman spectroscopy, electrochemical impedance, polarization and Mott-Schottky techniques. Further, studies at a controlled DO level ( < 10 ppb) were carried out for different time durations viz., 7- and 30- days. The composition, surface morphology, oxide thickness, resistance, type of semi-conductivity and defect density of the oxide films were evaluated and correlated with the DO levels and discussed elaborately in this paper. (author)

  4. Surface analytical and electrochemical characterization of oxide film layers formed on Incoloy 800 and carbon steel in simulated secondary water chemistry conditions of PHWRs

    International Nuclear Information System (INIS)

    The water chemistry in the steam generator (SG) circuits of Indian pressurized heavy water reactors (PHWRs) is controlled by the all-volatile treatment (AVT) procedure, wherein volatile amines are used to maintain the alkaline pH required for minimizing the corrosion of the structural materials. Earlier, Monel and morpholine were used as the steam generator material and the alkalizing agent respectively. However, currently they have been replaced by Incoloy 800 and ethanolamine (ETA). ETA was chosen because of its beneficial effects due to low pKb and Kd values, loading behavior on the condensate polishing unit (CPU), and also based on cost comparison with other amines. Since we have Incoloy 800 on the tube side and carbon steel (CS) on the shell side in the SG circuits, efforts were taken to study the nature of the oxide films formed on these surfaces and to evaluate the corrosion resistance and electrochemical properties of the same under simulated secondary water chemistry conditions of PHWRs containing different dissolved oxygen (DO) concentrations. In this context, experiments were carried out by exposing finely polished CS and Incoloy 800 coupons to ETA-based medium in the presence and absence of hydrazine (pH: 9.2) at 240 C under two different DO conditions (-1 and 300 μg . L-1) for 24 hours. Oxide films formed under these conditions were characterized using scanning electron microscopy, Raman spectroscopy, electrochemical impedance, polarization and Mott-Schottky techniques. Further, studies at a controlled DO level (-1) were carried out for different time durations, viz., 7 and 30 days. The composition, surface morphology, oxide thickness, resistance, type of semiconductivity and defect density of the oxide films were evaluated and correlated with the DO levels and are discussed elaborately in this paper. (orig.)

  5. Eleventh international symposium on radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry

  6. Eleventh international symposium on radiopharmaceutical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  7. Detailed analytical study of radiolysis products of simple organic compounds as a methodological approach to investigate prebiotic chemistry-Part 1

    International Nuclear Information System (INIS)

    Aqueous solutions of simple organic C1 compounds (methanol and acetonitrile) and ammonia, presumably present on primordial Earth, were subjected to 60Co gamma irradiation (total dose 800 kGy). The irradiation gave a complex mixture of organic compounds leading interestingly to a positive balance of synthesis vs. degradation reactions. In particular, if acetonitrile was used, nucleobase analogues could be detected among products. Highly sensitive and powerful analytical techniques (e.g. GC-MS, HPLC-MS) made this investigation feasible at a reasonable cost in terms of time and results. Plausible reaction pathways leading to major compounds were proposed, supported by literature data.

  8. Detailed analytical study of radiolysis products of simple organic compounds as a methodological approach to investigate prebiotic chemistry-Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Dondi, D., E-mail: dondi@unipv.i [Department of General Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100 (Italy); Merli, D. [Department of General Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100 (Italy); Pretali, L. [Department of Organic Chemistry, University of Pavia, Via Taramelli 10, Pavia 27100 (Italy); Buttafava, A.; Faucitano, A. [Department of General Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100 (Italy)

    2011-03-15

    Aqueous solutions of simple organic C1 compounds (methanol and acetonitrile) and ammonia, presumably present on primordial Earth, were subjected to {sup 60}Co gamma irradiation (total dose 800 kGy). The irradiation gave a complex mixture of organic compounds leading interestingly to a positive balance of synthesis vs. degradation reactions. In particular, if acetonitrile was used, nucleobase analogues could be detected among products. Highly sensitive and powerful analytical techniques (e.g. GC-MS, HPLC-MS) made this investigation feasible at a reasonable cost in terms of time and results. Plausible reaction pathways leading to major compounds were proposed, supported by literature data.

  9. Enzymatic Spectrophotometric Reaction Rate Determination of Glucose in Fruit Drinks and Carbonated Beverages. An Analytical Chemistry Laboratory Experiment for Food Science-Oriented Students

    Science.gov (United States)

    Vasilarou, Argyro-Maria G.; Georgiou, Constantinos A.

    2000-10-01

    The glucose oxidase-horseradish peroxidase coupled reaction using phenol and 4-aminoantipyrine is used for the kinetic determination of glucose in drinks and beverages. This laboratory experiment demonstrates the implementation of reaction rate kinetic methods of analysis, the use of enzymes as selective analytical reagents for the determination of substrates, the kinetic masking of ascorbic acid interference, and the analysis of glucose in drinks and beverages. The method is optimized for student use in the temperature range of 18-28 °C and can be used in low-budget laboratories equipped with an inexpensive visible photometer. The mixed enzyme-chromogen solution that is used is stable for two months. Precision ranged from 5.1 to 12% RSD for analyses conducted during a period of two months by 48 students.

  10. Croatian Analytical Terminology

    Directory of Open Access Journals (Sweden)

    Kastelan-Macan; M.

    2008-04-01

    Full Text Available Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals of our predecessors. Due to the political situation, they did not succeed entirely, but for the scientists in independent Croatia this is a duty, because language is one of the most important features of the Croatian identity. The awareness of the need to introduce Croatian terminology was systematically developed in the second half of the 19th century, along with the founding of scientific societies and the wish of scientists to write their scientific works in Croatian, so that the results of their research may be applied in economy. Many authors of textbooks from the 19th and the first half of the 20th century contributed to Croatian analytical terminology (F. Rački, B. Šulek, P. Žulić, G. Pexidr, J. Domac, G. Janeček , F. Bubanović, V. Njegovan and others. M. DeŢelić published the first systematic chemical terminology in 1940, adjusted to the IUPAC recommendations. In the second half of 20th century textbooks in classic analytical chemistry were written by V. Marjanović-Krajovan, M. Gyiketta-Ogrizek, S. Žilić and others. I. Filipović wrote the General and Inorganic Chemistry textbook and the Laboratory Handbook (in collaboration with P. Sabioncello and contributed greatly to establishing the terminology in instrumental analytical methods.The source of Croatian nomenclature in modern analytical chemistry today are translated textbooks by Skoog, West and Holler, as well as by Günnzler i Gremlich, and original textbooks by S. Turina, Z.

  11. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  12. Soap bubbles in analytical chemistry. Conductometric determination of sub-parts per million levels of sulfur dioxide with a soap bubble.

    Science.gov (United States)

    Kanyanee, Tinakorn; Borst, Walter L; Jakmunee, Jaroon; Grudpan, Kate; Li, Jianzhong; Dasgupta, Purnendu K

    2006-04-15

    Soap bubbles provide a fascinating tool that is little used analytically. With a very low liquid volume to surface area ratio, a soap bubble can potentially provide a very useful interface for preconcentration where mass transfer to an interfacial surface is important. Here we use an automated system to create bubbles of uniform size and film thickness. We utilize purified Triton-X 100, a nonionic surfactant, to make soap bubbles. We use such bubbles as a gas-sampling interface. Incorporating hydrogen peroxide into the bubble provides a system where electrical conductance increases as the bubble is exposed to low concentrations of sulfur dioxide gas. We theoretically derive the conductance of a hollow conducting spherical thin film with spherical cap electrodes. We measure the film thickness by incorporating a dye in the bubble making solution and laser transmission photometry and find that it agrees well with the geometrically computed thickness. With the conductance of the bubble-making soap solution being measured by conventional methods, we show that the measured values of the bubble conductance with known bubble and electrode dimensions closely correspond to the theoretically computed value. Finally, we demonstrate that sub-ppm levels of SO(2) can readily be detected by the conductivity change of a hydrogen peroxide-doped soap bubble, measured in situ, when the gas flows around the bubble. PMID:16615794

  13. The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry.

    Science.gov (United States)

    Aguilaniu, Hugo; Fabrizio, Paola; Witting, Michael

    2016-01-01

    Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes, such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i) the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii) the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches including comprehensive and highly selective liquid chromatography coupled to mass spectrometry based on new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS) if we are to obtain a better understanding of the biological functions of steroid signaling.

  14. The Role of Dafachronic Acid Signaling in Development and Longevity in Caenorhabditis elegans: Digging Deeper Using Cutting-Edge Analytical Chemistry

    Science.gov (United States)

    Aguilaniu, Hugo; Fabrizio, Paola; Witting, Michael

    2016-01-01

    Steroid hormones regulate physiological processes in species ranging from plants to humans. A wide range of steroid hormones exist, and their contributions to processes, such as growth, reproduction, development, and aging, is almost always complex. Understanding the biosynthetic pathways that generate steroid hormones and the signaling pathways that mediate their effects is thus of fundamental importance. In this work, we review recent advances in (i) the biological role of steroid hormones in the roundworm Caenorhabditis elegans and (ii) the development of novel methods to facilitate the detection and identification of these molecules. Our current understanding of steroid signaling in this simple organism serves to illustrate the challenges we face moving forward. First, it seems clear that we have not yet identified all of the enzymes responsible for steroid biosynthesis and/or degradation. Second, perturbation of steroid signaling affects a wide range of phenotypes, and subtly different steroid molecules can have distinct effects. Finally, steroid hormone levels are critically important, and minute variations in quantity can profoundly impact a phenotype. Thus, it is imperative that we develop innovative analytical tools and combine them with cutting-edge approaches including comprehensive and highly selective liquid chromatography coupled to mass spectrometry based on new methods such as supercritical fluid chromatography coupled to mass spectrometry (SFC-MS) if we are to obtain a better understanding of the biological functions of steroid signaling. PMID:26903948

  15. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  16. Research on the path of improving the operational skills in analytical chemistry experiment%提高分析化学实验操作技能的路径探究

    Institute of Scientific and Technical Information of China (English)

    龚菊如

    2013-01-01

    加强学生实验基本技能以及观察、分析、解决问题的能力的培养,是分析化学实验教学的一项重要任务,本文结合技工学校分析化学实验教学和实践操作过程中实际问题,对提高分析化学实验基本操作技能的路径进行探讨,以提升技校生对未来工作岗位的适应性。%To strengthen the training of the students' basic experiment skills and the ability to observe, analyze and solve problems, is an important task in analytical chemical experiment teaching, this paper analyzes the practical problems in technical schools teaching and practice of chemical experiment in the process of operation, carries on the discussion to improve the path analysis of basic chemistry experiment skills, to improve the adaptability of technical school students on future work.

  17. A Theoretical and Practical Research on the Bilingual Teaching of Analytical Chemistry Experiment%分析化学实验课程双语教学实践与探析

    Institute of Scientific and Technical Information of China (English)

    赵文峰; 刘翠; 史延慧

    2014-01-01

    在分析化学实施双语教学的初期开展实验课双语教学的优势分析的基础上,结合分析化学实验双语教学的实践过程中所取得的经验,对英文实验讲义的编写、实验准备工作、实验预习、讲解、操作及实验报告等各个教学环节中的具体方法和体会,进行了深入细致的总结和探讨。%This paper analyzes the advantages of the initial ana-lytical chemistry experiment bilingual teaching and summarizes the practical experience extracted from our teaching process. De-tails will be discussed on the basis of a thorough research such as the design of the English experiment handout, preparation of the experiment, experiment preview, instruction, manipulation, report and so on.

  18. The Preliminary Reform of Analytical Chemistry Course Assessment for the Experimental Class of Pharmacy%面向药学实验班的分析化学课程考核改革初探

    Institute of Scientific and Technical Information of China (English)

    唐睿; 温金莲; 朱明芳

    2014-01-01

    传统分析化学课程考核方式存在一定局限性;药学创新实验班的课程考核体系革新表明,混合考试模式能加强考试对教学的引导功能,促进学生学习方法的自我改进,提升对所学知识体系的掌握和创造性运用,并使教师对学生的学习状况做出科学合理的评价。%The traditional curriculum assessment methods of ana-lytical chemistry had some limitations; the curriculum evaluation system reform of pharmaceutical innovation experimental class showed that the hybrid exam model could enhance the guiding function of exam at teaching,promote students' self-improvement, strengthen their grasp of the knowledge and creative use of it, and help the teacher make scientific evaluation on students' learning situation.

  19. Application and Enlightenment of Massive Open Online Course in Analytical Chemistry Teaching%慕课在《分析化学》教学中的应用与启示

    Institute of Scientific and Technical Information of China (English)

    肖得力; 何华; 季一兵; 李洁

    2015-01-01

    MOOC is known as Massive Open Online course, which is a new kind of teaching and learning mode rapid developed. Based on the problems of traditional teaching mode, the application and enlightenment of MOOC to the current education workers were discussed. In our opinion, if MOOC was applied to Analytical Chemistry in the theoretical and experimental teaching, and let more people enjoy the low cost and high quality education resources, it will have a positive guiding significance for colleges and universities.%“慕课”又称为大型开放式网络课程( MOOC),是当前迅速发展的一种新的教育、学习模式。本文针对传统教学模式下《分析化学》教学中存在的弊端与问题,探讨了“慕课”在《分析化学》教学中的应用及其对当前教育工作者的启示。认为将“慕课”理念应用于《分析化学》的理论和实验教学,让更多的人享受低成本、高质量的教育资源,对高校教学改革具有积极的指导意义。

  20. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  1. Forensic Chemistry--A Symposium Collection.

    Science.gov (United States)

    Journal of Chemical Education, 1985

    1985-01-01

    Presents a collection of articles to provide chemistry teachers with resource materials to add forensic chemistry units to their chemistry courses. Topics range from development of forensic science laboratory courses and mock-crime scenes to forensic serology and analytical techniques. (JN)

  2. Supplemental Instruction in Physical Chemistry I

    Science.gov (United States)

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  3. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  4. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  5. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  6. Colour Chemistry

    Science.gov (United States)

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  7. Exploration and Practice of the Constructivism Teaching Theory in Inorganic and Analytical Chemistry Teaching%建构主义教学理论在无机及分析化学教学中的探索与实践

    Institute of Scientific and Technical Information of China (English)

    唐小兰; 刘英菊

    2016-01-01

    在无机及分析化学的教学实践中,探讨了怎样结合无机及分析化学课程的特点运用建构主义教学理论。根据课程内容采取相应的教学模式,培养学生的自主学习能力,进一步提高教学质量,并促进创新人才的培养。%This article discusses about the application of constructivism teaching theory in inorganic and analytical chemistry teaching based on the characteristics of inorganic and analytical chemistry course. The teaching mode, independence of students and teaching quality are improved in this way.

  8. Exploration on Bilingual Teaching Model of Analytical Chemistry Theory Course and Experiment Course for Traditional Chinese Medicine Specialty%中药学专业分析化学及其实验双语教学新模式探索

    Institute of Scientific and Technical Information of China (English)

    夏林波; 陈晓霞; 王巍; 宋爽

    2011-01-01

    分析化学及其实验课程实行双语教学对提高学生的专业知识和英语水平有着重要的现实意义.本论文对中药学专业分析化学及其实验双语教学新模式进行相关探索,为今后进一步深化教学改革提供线索和依据.%Bilingual teaching in the Analytical Chemistry theory course and experiment course is very important to increase students' professional knowledge and improve their English.In this article, some explorations on bilingual teaching model of Analytical Chemistry theory course and experiment course for Traditional Chinese Medicine specialty was carried out by author.It might provide some important clues and basis for further deepening the reform of teaching in the future.

  9. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  10. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  11. Quality assurance for environmental analytical chemistry: 1980

    Energy Technology Data Exchange (ETDEWEB)

    Gladney, E.S.; Goode, W.E.; Perrin, D.R.; Burns, C.E.

    1981-09-01

    The continuing quality assurance effort by the Environmental Surveillance Group is presented. Included are all standard materials now in use, their consensus or certified concentrations, quality control charts, and all quality assurance measurements made by H-8 during 1980.

  12. Analytical chemistry: Virulence caught green-handed

    Science.gov (United States)

    Sanchez, Laura M.; Dorrestein, Pieter C.

    2013-03-01

    Many of us eat mushrooms, but few of us have probably ever thought about -- let alone witnessed -- the epic battle of kingdoms that can occur between this delicacy and its bacterial pathogens. Now, imaging mass spectrometry has enabled the identification of a bacterium's potent antifungal weapon of choice.

  13. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOC and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program

  14. The Application of “Problem-Inquiry Teaching”in Analytical Chemistry Courses%“问题探究式”教学方法在分析化学教学中的运用

    Institute of Scientific and Technical Information of China (English)

    韩疏影; 邓海山; 红梅

    2015-01-01

    针对高校学生的学习主动性不足、专业意识性不足、开放性学习习惯不足、“我要学”理念不足等弊端,将“问题探究式”教学方法引入高校课堂,是高等院校教学变革的尝试。“问题探究式”教学法是基于问题式学习的一种建构式教学方式,“问题探究式”教学方法的核心内容是:知识问题化,问题层次化。文章详细地阐述了“问题探究式”教学方法在高等院校的分析化学理论课程以及实验课程方面的具体应用。%In this paper, teaching method of “problem-inquiry teaching mode” was introduced into college classes for the purpose of solving problems commonly existing in many colleges and universities , such as deficiency in learning initiative, professional consciousness, open learning habits, and the concept of “I want to learn”in college students, which was a kind of teaching reform of colleges and universities in China.“problem-inquiry teaching mode” teaching method is a constructive practice based on problem-oriented learning , and its core concepts are:turn knowledge into questions, and turn questions to be hierarchical. This article in detail elaborated the specific applications of “problem-inquiry teaching mode” teaching method in theory and experiment courses of analytical chemistry in colleges and universities.

  15. Chinese Journal of Chemistry Instructions for Authors 2005

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 General Chinese Journal of Chemistry is an international peer-reviewed journal published in English, with its editorial office hosted by the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. It publishes original research work in all fields of chemistry, i.e. physical, inorganic, organic and analytic chemistry, etc., in the forms of Accounts, Full Papers, Notes and Communications.

  16. Remote Electro-Analytical Laboratory

    Directory of Open Access Journals (Sweden)

    Ratnanjali Gandhi

    2011-02-01

    Full Text Available Remote Laboratories are web based distance learning laboratories that have immense potential to disseminate technology in the area of practical science. These laboratories can be accessed through Internet. In the present paper, we will be discussing our experiences in setting up a remote analytical laboratory at our center. Further, we will discuss remote experiments in the area of electro-analytical chemistry & colorimetry and their role in strengthening the system of science education.

  17. Art and Chemistry

    OpenAIRE

    Walter, Philippe

    2015-01-01

    Philippe Walter’s teaching, which he delivered as holder of the Liliane Bettencourt Annual Chair of Technological Innovation, was completed with two lectures on “practical work” to deal with a real case. The conditions and challenges of interdisciplinary research combining analytical chemistry, art history and archaeology were thus discussed in relation to specific works. The Holy Family, Constantin Abraham (1785-1855) by Raphaël (aka), Sanzio Raffaello (1483-1520), hard porcelain, Sèvres, C...

  18. Result Evaluation and Analytical Conditions of Microalbuminuria Determination by Hitachi Automatic Chemistry Analyzer%日立生化分析仪检测尿微量白蛋白结果评价与分析条件

    Institute of Scientific and Technical Information of China (English)

    熊声贺; 樊斌; 黄新城

    2012-01-01

    Objective To compare the results of microalbuminuria (MAU) determination with automatic chemistry analyzer under different analytical conditions. Methods The same specimens were used for MAU determination with a Hitachi automatic chemistry analyzer according to CLSI EP9-A2 and EP7-A2 by three detection methods: 1) the random analysis of blood and urine samples in a same batch;2) the separate batch analysis of urine samples;3) the same batch analysis of blood samples by inserting urine samples. The data were statistically analyzed. Results Results a-chieved by method 1 were significantly different from the specific protein analysis data (P 0. 05,r=0. 998 9,bias = 0. 8). Results achieved by method 3 showed serious cross-contamination in serum specimens (maximum contamination rate,341. 3%). Conclusion According to medical decision level, CLIA'88 (2003) and EP7-A2, method 1 for MAU determination may mislead clinical diagnosis and treatment;method 2 for MAU determination may interfere with subsequent detection;method 3 for MAU determination can meet the requirements of clinical application.%目的 研究生化分析仪在不同分析条件下检测尿微量白蛋白(MAU)的差异.方法基于全自动生化分析仪,以CLSI EP9-A2和EP7-A2方案为基础,设计3种检测方法(方法1:血、尿样本同批随机分析;方法2:尿样单独批次分析;方法3:批尿样插入血样同批分析)测相同样本中的MAU,并对检测数据进行统计学分析.结果 与特定蛋白分析数据比较:方法1所得结果差异有统计学意义(P0.05,r=0.998 9,偏倚=0.8);方法3结果显示血清样本对后续多个MAU检测存在严重携带交叉污染,污染率最高可达341.3%.结论 根据临床医学决定水平和CLIA'88(2003)及EP7-A2要求,方法1可能会误导临床诊断和治疗;方法3显示系统携带交叉污染会对后续多个检测结果造成干扰;方法2可满足临床应用要求.

  19. Analytic Materials

    CERN Document Server

    Milton, Graeme W

    2016-01-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer $p$. If $p$ takes its maximum value then we have a complete analytic material. Otherwise it is incomplete analytic material of rank $p$. For two-dimensional materials further progress can be made in the identification of analytic materials by using the well-known fact that a $90^\\circ$ rotation applied to a divergence free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.

  20. Analytic trigonometry

    CERN Document Server

    Bruce, William J; Maxwell, E A; Sneddon, I N

    1963-01-01

    Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions

  1. Bioinorganic Chemistry

    OpenAIRE

    Bertini, Ivano; Gray, Harry B.; Lippard, Stephen J.; Valentine, Joan Selverstone

    1994-01-01

    This book covers material that could be included in a one-quarter or one-semester course in bioinorganic chemistry for graduate students and advanced undergraduate students in chemistry or biochemistry. We believe that such a course should provide students with the background required to follow the research literature in the field. The topics were chosen to represent those areas of bioinorganic chemistry that are mature enough for textbook presentation. Although each chapter presents material...

  2. Organic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  3. Social Chemistry

    OpenAIRE

    Lichtfouse, Eric; Schwarzbauer, Jan; Robert, Didier

    2012-01-01

    International audience This article is both an essay to propose social chemistry as a new scientific discipline, and a preface of the book Environmental Chemistry for a Sustainable World. Environmental chemistry is a fast emerging discipline aiming at the understanding the fate of pollutants in ecosystems and at designing novel processes that are safe for ecosystems. Past pollution should be cleaned, future pollution should be predicted and avoided (Lichtfouse et al., 2005a). Such advices ...

  4. Computational chemistry

    OpenAIRE

    Truhlar, Donald G.; McKoy, Vincent

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  5. From organic chemistry to fat and oil chemistry*

    Directory of Open Access Journals (Sweden)

    Deffense Etienne

    2009-01-01

    Full Text Available With his work on animal fat and identification of fatty acids, Chevreul was a pioneer in organic chemistry. As Chevreul, I had a passion for organic chemistry too. It was then, an honour and a pleasure to present in 2008 at EFL in Athens this presentation entitled “From organic chemistry to fat and oil chemistry” because my background in organic chemistry helped me all along my professional career to understand and implement new developments related to oil and fat technology and processing. Among the topics which I worked out, I highlighted more particularly the following subjects: the degumming chemistry of oil and fat; the improvement of physical refining; a new chemical analytical tool for the dry fractionation; new development in the dry fractionation

  6. 浅析思维导图在分析化学教学中的应用%A Brief Analysis on the Application of Mind Map in Ana-lytical Chemistry Teaching

    Institute of Scientific and Technical Information of China (English)

    严军; 朱伟伟

    2016-01-01

    思维导图,以节点和连线为基本元素,形象地展示不同元素之间的对比、递进、因果等关联性,并由此建立系统的知识架构,已成为一种行之有效的教学手段。本文以作者近年来从事的分析化学教学活动为研究对象,讨论了如何利用思维导图帮助学生在学习过程中有效地对不同章节的知识点进行关联。实践表明,思维导图能增强学生对知识点本身的深入理解,同时也可培养其解决实际问题的能力。此外,基于思维导图设计的课程考查可更加全面地评测学生对分析化学的整体掌握情况,有利于在教学过程中发现学生的学习瓶颈并制定改善策略。%Mind map has become a useful teaching means, which can well represent the link among the different elements and de-velop a knowledge system. Based on the teaching activities of analytical chemistry in the past several years, we discussed how to use mind map to improve teaching effects. The results show that mind map can enhance the understanding of knowledge points, moreover, strengthen the ability of experimental design. In addition, the examination based on mind map can effectively e-valuate the students and guide the teachers to make correspond-ing strategy.

  7. 无机及分析化学课堂互动模式的研究与实践%Research and Practice on Interaction Pattern of Inorganic and Analytical Chemistry

    Institute of Scientific and Technical Information of China (English)

    马奕春; 黄丽红; 卢秀莲

    2014-01-01

    Interaction between teachers and students is the foun-dation of the well-going of classroom teaching. To satisfy emo-tional needs of modern college students, and pursue better effects of classroom teaching, the change of teacher-student relationship, from the traditional"teaching and being-taught"to"leading and assisting", is needed. The process of classroom teaching needs the maintenance from both teachers and students. Teachers can lead well by enhancing the teaching ability, organizing teaching activities to cultivate students' sense of ownership,encouraging students to involve in the interaction of classroom teaching in or-der to play the"assisting"role. Based on the teaching practice of inorganic and analytical chemistry, this "leading and assisting"interaction pattern between teachers and students was discussed.%师生互动是维持课堂教学顺利进行的基础。为满足当今大学生的情感需求,追求更好的课堂教学效果,师生关系需要从传统的“教与被教”转变为“主导和辅助”的互动关系,课堂教学的进行需要师生双方的维护。教师需要提高自身教学水平来做好主导工作,并通过组织教学活动来培养起学生的主人翁意识,鼓励学生参与到课堂教学互动中,从而起到“辅助”作用。本文在无机及分析化学教学实践的基础上,对师生间的这种“主导和辅助”的互动模式进行了讨论。

  8. Good chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    The subject matter in chemistry courses reflects almost nothing of the issues that chemists are interested in. It is important to formulate a set of topics - and a Medical College Admissions Test reflecting them - that would leave chemistry departments no choice but to change their teaching.

  9. International congress on analytical science for advanced material processing and environmental impact assessment

    International Nuclear Information System (INIS)

    The topics covered in the proceedings of the International Congress on Analytical Science 2010 include sampling and sample treatment pre-concentration (including solid phase extraction) organic analytical reagents, chemometrics, quality assurance/quality control, chromatography (GC, HPLC, IC, TLC etc.) and related techniques, hyphenated methods atomic spectroscopy (absorption, emission, fluorescence, XRF, XRD, lasers), molecular spectroscopy (IR, Raman), separation methods in analytical chemistry, sensors. Mass spectrometry, nuclear analytical methods, electroanalytical methods, geoanalytical chemistry, thermal analysis, process analytical chemistry, molecular probes for analyte sensing and imaging, express test methods, surface analytical methods, analytical microscopy, bioanalytical chemistry, environmental analysis, characterization of nano materials, analysis of new materials (including high-purity materials), analysis of food and agricultural products, clinical/forensic analysis, online analysis/process analytical chemistry, novel analytical techniques, lab on chips, LIMS, trace metal analysis and speciation. Papers relevant to INIS are indexed separately

  10. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  11. Analytical Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s analytical laboratories in Pittsburgh, PA, and Albany, OR, give researchers access to the equipment they need to thoroughly study the properties of materials...

  12. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  13. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  14. Introductory Chemistry

    OpenAIRE

    Baron, Mark; Gonzalez-Rodriguez, Jose; Stevens, Gary; Gray, Nathan; Atherton, Thomas; Winn, Joss

    2010-01-01

    Teaching and Learning resources for the 1st Year Introductory Chemistry course (Forensic Science). 30 credits. These are Open Educational Resources (OER), made available for re-use under a Creative Commons license.

  15. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  16. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  17. New trends and developments in radiation chemistry

    International Nuclear Information System (INIS)

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It uses radiation as the initiator of chemical reactions. Practical applications of radiation chemistry today extend to many fields, including health care, food and agriculture, manufacturing, industrial pollution abatement, biotechnology and telecommunications. The important advantage of radiation chemistry lies in its ability to be used to produce, and study, almost any reactive atomic and molecular species playing a part in chemical reactions, synthesis, industrial processes, or in biological systems. The techniques are applicable to gaseous, liquid, solid, and heterogeneous systems. By combining different techniques of radiation chemistry with analytical chemistry, the reaction mechanism and kinetics of chemical reactions are studied. In November 1988 in Bologna, Italy, the IAEA convened an advisory group meeting to assess new trends and developments in radiation chemistry. The present publication includes most of the contributions presented at the meeting. Refs, figs and tabs

  18. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  19. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  20. Abstracts of the 16. Latin-American Congress of Chemistry

    International Nuclear Information System (INIS)

    Abstracts of experimental works on analytical chemistry, physical-chemistry, medical chemistry and technology of chemical processes are presented. Those papers dealing with the application of nuclear techniques for the analysis of various substances and also those concerned with the study of materials and/or elements of nuclear interest, are indexed. (C.L.B.)

  1. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  2. Analytical quadrics

    CERN Document Server

    Spain, Barry; Ulam, S; Stark, M

    1960-01-01

    Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi

  3. Desafios da química analítica frente às necessidades da indústria farmacêutica Challenges of analytical chemistry in face of the needs of the pharmaceutical industry

    OpenAIRE

    Alberto dos Santos Pereira; Beatriz Bicalho; Sérgio Lilla; Gilberto de Nucci

    2005-01-01

    The development of liquid chromatography-mass spectrometric (LC-MS) techniques in the last few decades has made possible the analysis of trace amounts of analytes from complex matrices. With LC, the analytes of interest can be separated from each other as well as from the interfering matrix, after which they can be reliably identified thanks to the sensitivity and specificity of MS. LC-MS has become an irreplaceable tool for many applications, ranging from the analysis of proteins or pharmace...

  4. Nuclear Chemistry and Services

    Energy Technology Data Exchange (ETDEWEB)

    Vandevelde, L

    2002-04-01

    The objectives, the programme, and the achievements of R and D at the Belgian Nuclear Research Centre SCK-CEN in the field of nuclear chemistry and analytical techniques are summarized. Major achievement in 2001 included the completion of a project on the measurement of critical radionuclides in reactor waste fluxes (the ARIANE project), the radiochemical characterisation of beryllium material originating from the second matrix of the BR2 reactor as well as to a the organisation of a workshop on the analysis of thorium and its isotopes in workplace materials.

  5. Analytical Searching.

    Science.gov (United States)

    Pappas, Marjorie L.

    1995-01-01

    Discusses analytical searching, a process that enables searchers of electronic resources to develop a planned strategy by combining words or phrases with Boolean operators. Defines simple and complex searching, and describes search strategies developed with Boolean logic and truncation. Provides guidelines for teaching students analytical…

  6. Radiation Chemistry

    Science.gov (United States)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  7. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  8. Quality assurance for health and environmental chemistry: 1986

    International Nuclear Information System (INIS)

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group at the Los Alamos National Laboratory. The philosophy, methodology, and computing resources used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1986. 27 refs., 3 figs

  9. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  10. On Analysis of Common Students’Problems in Analytic Chemistry Titration Experiment and Suggestions on the Teaching Improvement%分析化学滴定实验学生常见问题分析及教学改进建议

    Institute of Scientific and Technical Information of China (English)

    许文菊; 易华玉; 张小丹; 井佩

    2014-01-01

    结合多年的教学实践,对西南大学化学化工学院2012级学生的分析化学滴定实验进行了课堂调查,并对学生在称量、无损定量转移、滴定、读数、实验报告撰写等方面存在的问题进行了总结分析,寻找问题产生的原因,以进一步改进和完善分析化学实验教学。%In this paper,the real classes in which 2012 grade students in our school did the analytic chemis-try titration experiments were investigated.Combined with the authors’long-term teaching practice,the students’problems in weighing,non-loss quantitative transfer,titration,reading data and writing the ex-periment report were summarized and analyzed,and the reasons resulting in these problems were further searched in order to improve the analytic chemistry experiment teaching.

  11. 生物类专业无机及分析化学教学改革研究——以淮南师范学院为例%On teaching reform of inorganic and analytical chemistry in the major of biology

    Institute of Scientific and Technical Information of China (English)

    刘道富; 陈永红; 胡云虎

    2012-01-01

    无机及分析化学是生物类专业的学科基础课,课程的教学质量和学生的学习效果,对后续课程的学习有较大影响。为切实提高无机及分析化学的教学质量,在实际教学过程中,从构建新课程体系、精练教学内容、更新教学手段、应用网络资源等方面进行了一系列教学改革,取得了良好的效果。%Inorganic and analytical chemistry is discipline-based courses in the Major of Biology. Quality of teaching and students" learning effect has a great influence on the study of Follow-up courses. In order to improve the teaching quality of inorganic and analytical chemistry, a series of teaching reform was carried out in the practical teaching process, which includes building the new course system, concising teaching contents, updatin teaching method, and applying the network resources and so on. The result is that the better effect has been obtained.

  12. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  13. Quantum chemistry

    CERN Document Server

    Lowe, John P

    2006-01-01

    Lowe's new edition assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry. It can serve as a primary text in quantum chemistry courses, and enables students and researchers to comprehend the current literature. This third edition has been thoroughly updated and includes numerous new exercises to facilitate self-study and solutions to selected exercises.* Assumes little initial mathematical or physical sophistication, developing insights and abilities in the context of actual problems* Provides thorough treatment

  14. 40 CFR 158.355 - Enforcement analytical method.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Enforcement analytical method. 158.355... DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.355 Enforcement analytical method. An analytical method suitable for enforcement purposes must be provided for each active ingredient in...

  15. Exploration on the Teaching Reform of Inorganic and Analytical Chemistry Experiment Course in Applied and Technical Universities%探讨应用技术型大学无机与分析化学实验课程教学改革

    Institute of Scientific and Technical Information of China (English)

    何静

    2015-01-01

    针对目前大学无机及分析化学实验课程所存在的一些弊端,本文提出对教学内容改革的建议,使内容富有层次化.改革化学实验的环节,使实验预习、实验过程、课后辅导逐步形成一体化.改革化学教学模式以提升教学效果.对大学化学实验课程的实验环节、教学手段以及教学模式等三方面进行改革,培养学生用实事求是、严谨的态度对待化学实验课程教学,提高学生的实际动手操作能力、分析问题的能力.%In view of the shortcomings existing in the current col-lege inorganic and analytical chemistry experiment course, this paper proposes some suggestions on the reform of its teaching content, in order to make its content more diversified. The links of chemistry experiments should be reformed in order to gradually integrate the preparation, process and after counseling of experi-ments. The mode of chemistry teaching should be reformed to improve the teaching effect. Through the above reform, students' practical and rigorous attitude towards chemistry experiment course teaching can be cultivated, and their abilities of practical operation and problem analysis will also be improved.

  16. Some electroanalytical investigations into the cure chemistry of industrial sealants

    OpenAIRE

    Raftery, Declan Patrick

    1996-01-01

    This thesis represents a study of the cure chemistry of three contrasting adhesive technologies, applying a range of analytical approaches to gain further insight into the complex chemistry of adhesives. An introduction is given in chapter one into the general chemistry of adhesives and their analysis, with particular emphasis on anaerobic adhesives and the crucial role played by transition metals in the cure chemistry. In order to elucidate the role played by tertiary amines and saccahri...

  17. Organic chemistry

    International Nuclear Information System (INIS)

    The activities of the mycotoxin research group are discussed. This includes the isolation and structure determination of mycotoxins, plant products, the biosyntheris of mycotoxins, the synthesis and characteristics of steroids, the synthesis and mechanistic aspects of heterocyclic chemistry and the functionality of steroids over long distances. Nmr spectra and mass spectroscopy are some of the techniques used

  18. Reinventing Chemistry

    OpenAIRE

    Whitesides, George McClelland

    2015-01-01

    Chemistry is in a period of change, from an era focused on molecules and reactions, to one in which manipulations of systems of molecules and reactions will be essential parts of controlling larger systems. This Essay traces paths from the past to possible futures.

  19. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  20. Organometallic chemistry

    OpenAIRE

    Bashkin, James K.; M.L.H. Green; Dr. M. L. H. Green

    1982-01-01

    Transition metal organometallic chemistry is a rapidly expanding field, which has an important relationship to industrial problems of petrochemical catalysis. This thesis describes studies of fundamental organometallic reaction processes, such as C-H and C-C bond formation and cleavage, and investigations of the structure and bonding of organometallic compounds. A number of techniques were used to pursue these studies, including synthesis, X-ray crystallography, and semi-em...

  1. Disk Chemistry*

    OpenAIRE

    Thi Wing-Fai

    2015-01-01

    The chemical species in protoplanetary disks react with each other. The chemical species control part of the thermal balance in those disks. How the chemistry proceeds in the varied conditions encountered in disks relies on detailed microscopic understanding of the reactions through experiments or theoretical studies. This chapter strives to summarize and explain in simple terms the different types of chemical reactions that can lead to complex species. The first part of the chapter deals wit...

  2. Interstellar chemistry

    OpenAIRE

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species o...

  3. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  4. 地方高校转型发展背景下的分析化学实验改革构想%The Reform of Analytical Chemistry Experiment Teaching under the Background of the Transformation of Local U-niversities

    Institute of Scientific and Technical Information of China (English)

    吕瑞; 谭晓磊

    2016-01-01

    在地方本科院校转型发展的大背景下,分析化学实验作为传统的基础实验课程,也承担着改革传统教学模式,适应地方经济发展需要的迫切任务,本文通过分析目前实验教学过程中存在的问题,以培养应用型人才为目标,提出了一些实验教学改革的措施。%In the background of the transformation of local uni-versities, analytical chemistry experiment, which is a basic course of chemistry, undertakes an urgent task:reforming the traditional teaching mode to adapt to the local economic development needs. In this article, according to the problems in the experiment teaching, some measures based on cultivating application-orient-ed talents in experiment teaching reform are put forward.

  5. Comparison of two dry chemistry analyzers and a wet chemistry analyzer using canine serum.

    Science.gov (United States)

    Lanevschi, Anne; Kramer, John W.

    1996-01-01

    Canine serum was used to compare seven chemistry analytes on two tabletop clinical dry chemistry analyzers, Boehringer's Reflotron and Kodak's Ektachem. Results were compared to those obtained on a wet chemistry reference analyzer, Roche Diagnostic's Cobas Mira. Analytes measured were urea nitrogen (BUN), creatinine, glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol and bilirubin. Nine to 12 canine sera with values in the low, normal, and high range were evaluated. The correlations were acceptable for all comparisons with correlation coefficients greater than 0.98 for all analytes. Regression analysis resulted in significant differences for both tabletop analyzers when compared to the reference analyzer for cholesterol and bilirubin, and for glucose and AST on the Kodak Ektachem. Differences appeared to result from proportional systematic error occurring at high analyte concentrations.

  6. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  7. Organic chemistry on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen; Zaera, Francisco [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2006-07-15

    Chemistry on solid surfaces is central to many areas of practical interest such as heterogeneous catalysis, tribology, electrochemistry, and materials processing. With the development of many surface-sensitive analytical techniques in the past decades, great advances have been possible in our understanding of such surface chemistry at the molecular level. Earlier studies with model systems, single crystals in particular, have provided rich information about the adsorption and reaction kinetics of simple inorganic molecules. More recently, the same approach has been expanded to the study of the surface chemistry of relatively complex organic molecules, in large measure in connection with the selective synthesis of fine chemicals and pharmaceuticals. In this report, the chemical reactions of organic molecules and fragments on solid surfaces, mainly on single crystals of metals but also on crystals of metal oxides, carbides, nitrides, phosphides, sulfides and semiconductors as well as on more complex models such as bimetallics, alloys, and supported particles, are reviewed. A scheme borrowed from the organometallic and organic chemistry literature is followed in which key examples of representative reactions are cited first, and general reactivity trends in terms of both the reactants and the nature of the surface are then identified to highlight important mechanistic details. An attempt has been made to emphasize recent advances, but key earlier examples are cited as needed. Finally, correlations between surface and organometallic and organic chemistry, the relevance of surface reactions to applied catalysis and materials functionalization, and some promising future directions in this area are briefly discussed. (author)

  8. Beryllium chemistry and processing

    CERN Document Server

    Walsh, Kenneth A

    2009-01-01

    This book introduces beryllium; its history, its chemical, mechanical, and physical properties including nuclear properties. The 29 chapters include the mineralogy of beryllium and the preferred global sources of ore bodies. The identification and specifics of the industrial metallurgical processes used to form oxide from the ore and then metal from the oxide are thoroughly described. The special features of beryllium chemistry are introduced, including analytical chemical practices. Beryllium compounds of industrial interest are identified and discussed. Alloying, casting, powder processing, forming, metal removal, joining and other manufacturing processes are covered. The effect of composition and process on the mechanical and physical properties of beryllium alloys assists the reader in material selection. The physical metallurgy chapter brings conformity between chemical and physical metallurgical processing of beryllium, metal, alloys, and compounds. The environmental degradation of beryllium and its all...

  9. Cyclodextrin chemistry

    International Nuclear Information System (INIS)

    The chemistry of cyclodextrins was studied. This study included synthesising some cyclodextrin derivatives, preparing selected inclusion complexes with cyclodextrin and investigating the effects of gamma irradiation on cyclodextrins and certain linear oligosaccharides. This report presents a brief review of the structure and properties of cyclodextrins, the synthesis of cyclodextrin derivatives, their complexation and applications. This is followed by a description of the synthesis of some cyclodextrin derivatives and the preparation of inclusion complexes of cyclodextrin with some organic compounds. Finally, the effects of gamma irradiation on cyclodextrins, some of their derivatives and certain structurally related carbohydrates are discussed. The gamma irradiation studies were carried out for two reasons: to study the effects of gamma irradiation on cyclodextrins and their derivatives; and to investigate selectivity during the gamma irradiation of cyclodextrin derivatives

  10. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  11. Touring the Tomato: A Suite of Chemistry Laboratory Experiments

    Science.gov (United States)

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E.

    2013-01-01

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical

  12. Public perception of chemistry

    OpenAIRE

    Stražar, Alenka

    2015-01-01

    The thesis deals with the perception of chemistry among the public, which reflects the stereotypes that people have about chemistry. It presents the existing classification of stereotypes about chemistry and their upgrade. An analysis of movies that reflect the existing perception of chemistry in the public is written. Literature on selected aspects of the application of chemistry in movies is collected and analyzed. A qualification of perception of chemistry in the movies is presented based ...

  13. Science Update: Inorganic Chemistry.

    Science.gov (United States)

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  14. Extractive Electrospray Ionization Mass Spectrometry for Uranium Chemistry Studies

    OpenAIRE

    Chen, Huanwen; Luo, Mingbiao; Xiao, Saijin; OUYANG Yongzhong; Zhou, Yafei; Zhang, Xinglei

    2013-01-01

    Uranium chemistry is of sustainable interest. Breakthroughs in uranium studies make serious impacts in many fields including chemistry, physics, energy and biology, because uranium plays fundamentally important roles in these fields. Substantial progress in uranium studies normally requires development of novel analytical tools. Extractive electrospray ionization mass spectrometry (EESI-MS) is a sensitive technique for trace detection of various analytes in complex matrices without sample pre...

  15. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  16. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  17. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  18. Abstracts of the 1. Regional Meeting on Chemistry

    International Nuclear Information System (INIS)

    Abstracts from papers on Analytical, Inorganic and Organic Chemistry as well as on Physico-Chemistry are presented. Emphasis is given to the following subjects: use of nuclear techniques for chemical analysis, separation processes, studies about reaction kinetics and thermodynamic properties, radioisotopes production and applications, labelled compounds, electron-molecule collisions, construction of measuring instruments and data acquisition systems. (C.L.B.)

  19. Explorations on the Teaching of Analytical Chemistry as a Fundamental Course under the "University Innovation Capability Promotion Plan"%“高等学校创新能力提升计划”下的分析化学基础课教学的几点探索

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      “分析化学”是高等院校化学、生命科学和医学院等理工科专业的核心专业基础课程,其教学改革对相关学科人才培养意义深重。依据“高等学校创新能力提升计划”对高校职能的总体要求,文章从分析化学课程的现状、特性、基本理论与实践的教学等方面,提出了人才培养为核心,通过各方资源“协同”的方式,提升分析化学教学改革的教学设计思路。%Analytical Chemistry (AC) is one of the fundamental courses for undergraduate students and graduate students, who are major in chemistry, chemical engineering, life science and/or medical science in universities/colleges. The teaching reforms in AC is crucial for the cultivating of creative talents. The principles of AC, such as, present situation, characteristics, basic theory and teaching practice in accordance with the general requirements of the University Innovation Capability Promotion Plan (UICPP) for College Functions, the article proposed personnel training for the core, all resources"synergy"ways to enhance the teaching reform strategies in AC.

  20. Trace Chemistry

    Science.gov (United States)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  1. Migration chemistry

    International Nuclear Information System (INIS)

    Migration chemistry, the influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour of pollutants in the environment, is an interplay between the actual natur of the pollutant and the characteristics of the environment, such as pH, redox conditions and organic matter content. The wide selection of possible pollutants in combination with varying geological media, as well as the operation of different chemical -, biochemical - and physico-chemical reactions compleactes the prediction of the influence of these processes on the mobility of pollutants. The report summarizes a wide range of potential pollutants in the terrestrial environment as well as a variety of chemical -, biochemical - and physico-chemical reactions, which can be expected to influence the migration behaviour, comprising diffusion, dispersion, convection, sorption/desorption, precipitation/dissolution, transformations/degradations, biochemical reactions and complex formation. The latter comprises the complexation of metal ions as well as non-polar organics to naturally occurring organic macromolecules. The influence of the single types of processes on the migration process is elucidated based on theoretical studies. The influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour is unambiguous, as the processes apparently control the transport of pollutants in the terrestrial environment. As the simple, conventional KD concept breaks down, it is suggested that the migration process should be described in terms of the alternative concepts chemical dispersion, average-elution-time and effective retention. (AB) (134 refs.)

  2. Microarrays, Integrated Analytical Systems

    Science.gov (United States)

    Combinatorial chemistry is used to find materials that form sensor microarrays. This book discusses the fundamentals, and then proceeds to the many applications of microarrays, from measuring gene expression (DNA microarrays) to protein-protein interactions, peptide chemistry, carbodhydrate chemistry, electrochemical detection, and microfluidics.

  3. Chemistry and metallurgy of plutonium

    International Nuclear Information System (INIS)

    Plutonium is a strategic element with unique chemistry and metallurgy. It has five valence states with close redox potentials and many of them coexist in solutions. It is a hard Lewis acid and forms strong complexes with hard Lewis bases. Its redox and complexing characteristics are useful in its separation and analytical chemistry. Plutonium metal has several allotropic forms even though its melting point is only 639.5℃. It is a metal with very high density and one of the few metals which shrinks on heating. It holds promise of abundant nuclear energy, but also has potential for being diverted towards nuclear explosive devices. This paper is a brief compilation from available literature. (author)

  4. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640

  5. Teaching chemistry with neutron activation analysis at Dalhousie University

    International Nuclear Information System (INIS)

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) has been operating since July 1976 and has proven to be an invaluable tool in many teaching programs. These reactors are inherently safe and are designed to serve teaching and research needs of the universities, research centers, hospitals, etc. Since the DUSR has been, from its inception, associated with the Trace Analysis Research Centre, which is the Analytical Chemistry Division of the Department of Chemistry, the main thrust of its use continues to be in the field of nuclear analytical chemistry. Both teaching and research programs involve trace element analysis by neutron activation

  6. Quality assurance for health and environmental chemistry: 1989

    International Nuclear Information System (INIS)

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1989. 38 refs., 8 figs., 3 tabs

  7. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators

  8. Progress report, Chemistry and Materials Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    Research results are reported in such areas as ion penetration, electron microscopy, metal physics and radiation damage, nuclear methods of analysis, fuel analysis, and general analytical chemistry, electrochemistry, radiation chemistry, hydrogen-deuterium exchange, and surface chemistry of nuclear materials like zirconium base alloys. (E.C.B.)

  9. Undergraduate Chemistry Students' Perceptions of and Misconceptions about Buffers and Buffer Problems

    Science.gov (United States)

    Orgill, MaryKay; Sutherland, Aynsley

    2008-01-01

    Both upper- and lower-level chemistry students struggle with understanding the concept of buffers and with solving corresponding buffer problems. While it might be reasonable to expect general chemistry students to struggle with this abstract concept, it is surprising that upper-level students in analytical chemistry and biochemistry continue to…

  10. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  11. 允许总误差在西格玛度量用于评价临床化学检测项目分析质量上的应用研究%Application of allowable total error in sigma metrics for assessing the analytical quality of clinical chemistry determination

    Institute of Scientific and Technical Information of China (English)

    张路; 王薇; 王治国

    2015-01-01

    Objective To investigate the importance of allowable total error (TEa) source in sigma(σ) metrics for assessing the analytical quality of clinical chemistry determination.Methods In this study, the data were collected from the second internal quality control of routine chemistry and the first external quality assessment of routine chemistry in 2014 organized by the National Center for Clinical Laboratory.One of the laboratories was selected for its coefficient of variation ( CV) and the bias of 19 clinical chemistry items from the data.σof 2 runs were calculated by 5 different TEa. The σmetrics′performance for assessing the analytical quality of clinical chemistry determination was analyzed comparatively.Results σmetrics varied with the changes of TEa and imprecision.Under the National Health Industry Standard, the majorσvalues(68.4%)for control 1 ranged from 2 to 4 and from 3 to 6 for control 2(58%).Under RiliBÄK, except triglyceride (negative) and alanine aminotransferase (ALT)(3, up to 7.69, and 84.2% of control 2 showed a σvalue >3, up to 10.43.Under biological variability, theσvalue of control 1 ranged from 1 to 5, and the most (63%) was <3, and that of control 2 ranged from 1 to 6, but those of 9 from 19 were <3.Under the TEa of Australian, theσvalue of control 1 was <3, and that of 79%control 2 was <3 .The σvalue of control 2 was generally higher than that of control 1.Conclusions The 6σis an efficient way to control quality, but the lack of TEa for many analytes and inconsistent TEa from different sources are important variables for the interpretation ofσmetrics in a routine clinical laboratory.%目的:探讨不同允许总误差( TEa)来源对西格玛(σ)度量评价实验室临床化学检验项目分析质量的重要性。方法用卫生部临床检验中心2014年第2次常规化学室内质控数据及2014年第1次常规化学室间质评某实验室19个检测项目的变异系数( CV)及百分差值(用其

  12. ACTINET-I3 Summer School on Analytical Innovation in the field of actinide recycling - Slides of the presentations

    International Nuclear Information System (INIS)

    This conference dealt with 3 main topics: analytical innovation in separation processes (hyphenated techniques, analytical chips,...), actinide recycling (extraction, interfaces, processes,...) and chemistry and thermodynamics of actinides. This document is composed of the slides of the presentations

  13. Industrial Chemistry and School Chemistry: Making Chemistry Studies More Relevant

    Science.gov (United States)

    Hofstein, Avi; Kesner, Miri

    2006-01-01

    In this paper, we present the development and implementation over the period of more than 15 years of learning materials focusing on industrial chemistry as the main theme. The work was conducted in the Department of Science Teaching at the Weizmann Institute of Science, Israel. The project's general goal was to teach chemistry concepts in the…

  14. 分析化学课程以实验为导向、学生自主活动为主体教学模式的构建%Construction of an Experiment-oriented and Learner Autonomy-dominated Teaching Model in Analytic Chemistry

    Institute of Scientific and Technical Information of China (English)

    李志富

    2015-01-01

    Based on the analysis of some teaching practices, a kind of experiment-oriented teaching process centered around the learner’s autonomic activities was constructed to give full play to students learning autonomy, which helped to guide the medicine majors to have more initiative and freedom in learning rather than receive knowledge passively. The practices employed helped students to have sufifcient faith in their own ability. Medicine majors involved in this teaching experience practically had great fun in analytical chemistry teaching and learning.%构建以实验为导向,以学生自主活动为主体的分析化学教学模式,发挥学生学习的主动性,将学生由被动接受知识推向主动获取知识的前台,让学生以参与者的信念和心态学习,真正感知学习分析化学课程的乐趣。

  15. 能力培养为核心的大学基础课教学模式的研究——以"无机及分析化学"课程为例%Research on the Teaching Model of College Foundation Courses with Ability Cultivation as the Core: A Case Study on "Inorganic and Analytical Chemistry"

    Institute of Scientific and Technical Information of China (English)

    龚宁; 黄森; 王海强; 刘艳萍; 王文己

    2015-01-01

    本文通过"无机及分析化学"多年教学改革实践,研究探讨了大学基础课培养学生创新能力的模式,认为大学基础课教学改革重点在于学习习惯的培养,有目的培养学生独立精神和思考质疑的学习习惯,并建立了相应的教学模式.%Based on many years' practice of teaching reform on"Inorganic and Analytical Chemistry", we studied and explored the model of cultivating students' innovative ability in college foundation courses, holding that the key of college foundation courses teaching reform lies in the cultivation of learning habits and the targeted cultivation of students' independent spirit and learning habit of thinking and doubting, and we also established a teaching model accordingly.

  16. 基于职业导向的《无机及分析化学》基础课改革的探索与实践%Exploration and Practice of the Reform Based onthe Career-oriented Basic CourseInorganic and Analytical Chemistry

    Institute of Scientific and Technical Information of China (English)

    曹侃; 张爽

    2012-01-01

    Inorganic and Analytical Chemistry is an important specialized basic course of the biological and food specialty of vocational education, which plays a key supporting role in the students" cultivation of their vocational skills and professional qualities. Several rounds of exploration and practice of the career-oriented teaching reform which starts with the teaching content, teaching time, teaching methods and assessment methods will make students more adaptable to the requirements of the positions.%《无机及分析化学》是高职生物类及食品类专业的一门重要的专业基础课,对学生的职业技能和职业素养起到主要支撑作用。通过几轮基于职业导向的教学改革的探索与实践,分别从教学内容、教学时间、教学方法和考核方式入手,让学生能更加适应职业岗位的要求。

  17. From Matter to Life:Chemistry?Chemistry!

    Institute of Scientific and Technical Information of China (English)

    Jean-Marie; LEHN

    2007-01-01

    1 Results Animate as well as inanimate matter,living organisms as well as materials,are formed of molecules and of the organized entities resulting from the interaction of molecules with each other.Chemistry provides the bridge between the molecules of inanimate matter and the highly complex molecular architectures and systems which make up living organisms. Synthetic chemistry has developed a very powerful set of methods for constructing ever more complex molecules.Supramolecular chemistry seeks to con...

  18. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  19. Nitrogen Compounds in Radiation Chemistry

    International Nuclear Information System (INIS)

    Water radiolysis in presence of N2 is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N2 and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO2- and NO3-. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N2O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  20. Nitrogen Compounds in Radiation Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Sims, H.E. [NNL Sellafield (United Kingdom); Dey, G.R. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vaudey, C.E.; Peaucelle, C. [Institut de Physique Nucleaire de Lyon - IPNL, 69 - Lyon (France); Boucher, J.L. [Lab. de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS 45 rue des Saints Peres, 75270 Paris cedex 06, Univ Paris 5, 75 (France); Toulhoat, N. [Institut de Physique Nucleaire de Lyon (France); Commissariat a l' Energie Atomique CEA/DEN, Centre de Saclay (France); Bererd, N. [Institut de Physique Nucleaire de Lyon (France); IUT Departement Chimie, Universite Claude Bernard Lyon 1 (France); Koppenol, W.H. [Department of Chemistry and Applied Biosciences, ETH Zurich (Switzerland); Janata, E. [Helmholtz-Zentrum fuer Materialien und Energie, Solar Energy Research, Berlin (Germany); Dauvois, V.; Durand, D.; Legand, S.; Roujou, J.L.; Doizi, D.; Dannoux, A.; Lamouroux, C. [Laboratoire de Speciation des Radionucleides et des Molecules, DEN/DPC/Service d' Etude du Comportement des Radionucleides, CEA Saclay, 91 - Gif sur yvette (France)

    2009-07-01

    Water radiolysis in presence of N{sub 2} is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N{sub 2} and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO{sub 2}- and NO{sub 3}-. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N{sub 2}O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  1. 基于 Robust 统计的食品质量与安全专业分析化学实验结果评价--以食用白醋中总酸度的测定为例%Evaluation on the Analytical Chemistry Experimental Result Based on Robust Statistics for Food Quality and Safety Major-A Case Study on Determination of the Total Acidity in Edible Vinegar

    Institute of Scientific and Technical Information of China (English)

    周雅琳

    2016-01-01

    "Determination of the total acidity in edible vinegar" is one of the analytical chemistry experiments for the undergraduates of food quality and safety major.As an example,the students'experimental results are evaluated by robust statistics,and the scientific,accurate,intuitive scores of students can be obtained fast.It is more reasonable than that of traditional method.Furthermore,the undergraduates experiment teaching of analytical chemistry can be improved by this method.%“食用白醋中总酸度的测定”是笔者学校食品质量与安全专业本科生开设的分析化学实验之一。以该实验为例,结合实际教学中在学生实验结果评价中的问题,应用 Robust 统计技术能够科学、准确、直观地得出评价结果,与传统的实验结果评价方法相比,具有较大的优势。

  2. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    Science.gov (United States)

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  3. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  4. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  5. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  6. Yearly scientific meeting: chemistry in human health and environment protection. Bialystok'92

    International Nuclear Information System (INIS)

    The conference has been divided into 12 sections devoted to following topics: analytical chemistry; environmental chemistry; chemistry of natural compounds; chemistry of pharmaceutics and toxic compounds; chemistry in medicine; electrochemistry; young scientists forum; didactics and history of chemistry; chemistry and industry - technologies environment friendly; new trends in polymer science; crystallochemistry; pro-ecological actions in leather industry. Different analytical methods for determination of heavy methods and rare earths have been presented. Some of them have been successfully applied for the examination of environmental and biological materials. The basic chemical and physico-chemical studies including thermodynamic, crystal structure, coordination chemistry, sorption properties etc. have been extensively resented. The existence of radioactive elements in environment has been also investigated, especially in respect to municipal and industrial wastes and products of their processing. The radiation effects for different materials have been reported and discussed as well

  7. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  8. Progress report, Chemistry and Materials Division, 1 April to 30 June, 1979

    International Nuclear Information System (INIS)

    Research results are reported by groups investigating ion penetration, nuclear methods of analysis, accelerator operation, general analytical chemistry, radoactivity measurement, deuterium analysis, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry and laser photochemistry, hydrogen-water exchange, isotope chemistry, surface chemistry, and electron microscopy. Work in an associated laboratory at the University of Toronto on isotopic changes in reaction rates is reported. (L.L.)

  9. Education and careers of European analytical chemists

    OpenAIRE

    Salzer R.; Taylor, Philip; MAJCEN Nineta; VARELLA Evangelia; KOZARIS Ioannis

    2014-01-01

    What roles do analytical chemists play in the European labour force? Which chemical subdisciplines offer the most job opportunities? Does higher education in chemistry in Europe provide appropriate specialization for graduates? Reliable answers to these and other questions have been derived from the first European employment survey of chemists and chemical engineers, which was conducted in 2013. The American Chemical Society (ACS) regularly publishes an employment survey in Chemical & Enginee...

  10. Green chemistry: A tool in Pharmaceutical Chemistry

    Directory of Open Access Journals (Sweden)

    Smita Talaviya

    2012-07-01

    Full Text Available Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceuticals is to utilize eco-friendly, non-hazardous, reproducible and efficient solvents and catalysts in synthesis of drug molecules, drug intermediates and in researches involving synthetic chemistry. Microwave synthesis is also an important tool of green chemistry by being an energy efficient process.

  11. Environmental chemistry: Volume A

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  12. CHINESE JOURNAL OF CHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Chinese Journal of Chemistry is an international journal published in English by the Chinese Chemical Society with its editorial office hosted by Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

  13. Organic chemistry experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Seok Sik

    2005-02-15

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  14. Frontiers in Gold Chemistry

    OpenAIRE

    Mohamed, Ahmed A.

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  15. Green Chemistry and Education.

    Science.gov (United States)

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  16. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    Science.gov (United States)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  17. Nuclear magnetic resonance spectroscopy, analytical chemistry by open learning

    International Nuclear Information System (INIS)

    This elementary text on NMR spectroscopy is designed for self-study, primarily by those studying to be chemical technicians. The style is informal and direct. The basic elements of chemical shifts, spin-spin coupling, integrated intensities, and relaxation times are discussed briefly, with examples, but the emphasis is much more on this is the way it is than on providing a satisfying rationale. Quick introduction to sample preparation, NMR instrumentation, and signal enhancement techniques are included, but these are very sketchy. Only four pages are devoted to the Fourier Transform technique, hardly enough to give anyone a reasonable basis for understanding the technique and its power. About a third of the main part of the text is devoted to practical applications of 1H and 13C NMR spectroscopy, including structural assignments of peaks in the spectra of simple molecules and quantitative measurements of simple mixtures. The author provides a variety of questions and problems throughout the book, some of the simple memory-retention type but some more thought-provoking. The last 90 pages of the book are devoted to answering the questions and problems posed in the five chapters

  18. Analytical Chemistry Laboratory progress report for FY 1992

    International Nuclear Information System (INIS)

    The ACL activities covered IFR fuel reprocessing, corium-concrete interactions, environmental samples, wastes, WIPP support, Advanced Photon Source, H-Tc superconductors, EBWR vessel, soils, illegal drug detection, quality control, etc

  19. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

  20. Control strategy for a flexible analytical chemistry robotics system

    OpenAIRE

    Cachero, M. C. Diaz

    1999-01-01

    This thesis is the result of work carried out during more than two years on a Teaching Company Scheme. Liaison took place between Rhone-Poulenc Agriculture Limited (the industrial partner), hereafter referred to as RPAL or the company, and Middlesex University (the academic partner). The aim of the Scheme was to realise the design, development, commissioning, testing and validation of an intelligent robotic system for sample analysis of trace pesticides and metabolites in order to enable q...

  1. Some aspects of analytical chemistry of rare earth elements

    International Nuclear Information System (INIS)

    A review of literature on the analysis of lanthanides performed by means of UV and IR absorption spectrophotometry, luminescence, spectral emission analysis, atomic absorption, mass spectrography and spectrometry as well as by ion exchange chromatography is given. It has been found that in direct and simultaneous determination of many lanthanides occuring over a wide concentration range the most precise results are obtained by the mass spectrography and ion exchange chromatography with fluorescent indicators. (author)

  2. Quality assurance for environmental analytical chemistry at Los Alamos

    International Nuclear Information System (INIS)

    The basic structure philosophy of the program as it has evolved over the past five years is discussed with particular emphasis on traceability and use of certified reference materials. Typical summary results of the program and interactive computerized quality assurance system are presented

  3. Analytical chemistry challenges at the back end of fuel cycle

    International Nuclear Information System (INIS)

    Among the various nuclear fuel cycle activities, spent fuel reprocessing and nuclear waste management play key role for adaptation of closed fuel cycle option and success of three stage Indian nuclear power programme. Reprocessing mainly aims to recover fissile and fertile component from spent fuel using well known PUREX/THOREX processes. Waste management deals with all the activities which are essential for safe management of radioactive wastes that get generated during entire nuclear fuel cycle operation

  4. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 6, Physical testing

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.

  5. Extractive electrospray ionization mass spectrometry for uranium chemistry studies.

    Science.gov (United States)

    Chen, Huanwen; Luo, Mingbiao; Xiao, Saijin; Ouyang, Yongzhong; Zhou, Yafei; Zhang, Xinglei

    2013-01-01

    Uranium chemistry is of sustainable interest. Breakthroughs in uranium studies make serious impacts in many fields including chemistry, physics, energy and biology, because uranium plays fundamentally important roles in these fields. Substantial progress in uranium studies normally requires development of novel analytical tools. Extractive electrospray ionization mass spectrometry (EESI-MS) is a sensitive technique for trace detection of various analytes in complex matrices without sample pretreatment. EESI-MS shows excellent performance for monitoring uranium species in various samples at trace levels since it tolerates extremely complex matrices. Therefore, EESI-MS is an alternative choice for studying uranium chemistry, especially when it combines ion trap mass spectrometry. In this presentation, three examples of EESI-MS for uranium chemistry studies will be given, illustrating the potential applications of EESI-MS in synthesis chemistry, physical chemistry, and analytical chemistry of uranium. More specifically, case studies on EESI-MS for synthesis and characterization of novel uranium species, and for rapid detection of uranium and its isotope ratios in various samples will be presented. Novel methods based on EESI-MS for screening uranium ores and radioactive iodine-129 will be presented. PMID:24349940

  6. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  7. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  8. The EPOS Automated Selective Chemistry Analyzer evaluated.

    Science.gov (United States)

    Moses, G C; Lightle, G O; Tuckerman, J F; Henderson, A R

    1986-01-01

    We evaluated the analytical performance of the EPOS (Eppendorf Patient Oriented System) Automated Selective Chemistry Analyzer, using the following tests for serum analytes: alanine and aspartate aminotransferases, lactate dehydrogenase, creatine kinase, gamma-glutamyltransferase, alkaline phosphatase, and glucose. Results from the EPOS correlated well with those from comparison instruments (r greater than or equal to 0.990). Precision and linearity limits were excellent for all tests; linearity of the optical and pipetting systems was satisfactory. Reagent carryover was negligible. Sample-to-sample carryover was less than 1% for all tests, but only lactate dehydrogenase was less than the manufacturer's specified 0.5%. Volumes aspirated and dispensed by the sample and reagent II pipetting systems differed significantly from preset values, especially at lower settings; the reagent I system was satisfactory at all volumes tested. Minimal daily maintenance and an external data-reduction system make the EPOS a practical alternative to other bench-top chemistry analyzers.

  9. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    GERÇEK, Zuhal

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  10. Philosophy of Chemistry or Philosophy with Chemistry?

    OpenAIRE

    Bernadette Bensaude-Vincent

    2014-01-01

    Chemistry deserves more philosophical attention not so much to do justice to a long-neglected science or to enhance its cultural prestige, but to undermine a number of taken-for-granted assumptions about scientific rationality and more importantly to diversify our metaphysical views of nature and reality. In brief, this paper does not make the case for a philosophy of chemistry. It rather urges philosophers of science to listen to chemists and discuss what they learn from them. Because over t...

  11. The Chemistry of Flammable Gas Generation

    Energy Technology Data Exchange (ETDEWEB)

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  12. The Chemistry of Flammable Gas Generation

    International Nuclear Information System (INIS)

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data

  13. Journal of Business Chemistry

    OpenAIRE

    2013-01-01

    The Journal of Business Chemistry examines issues associated with leadership and management for chemists and managers working in chemical research or industry. This journal is devoted to improving and developing the field of Business Chemistry. The Journal of Business Chemistry publishes peer-reviewed papers (including case studies) and essays. Areas for possible publication in include: leadership issues in the chemical and biochemical industry, such as teamwork, team building, mentoring, coa...

  14. Mathematical Thinking in Chemistry

    OpenAIRE

    José L. Villaveces; Guillermo Restrepo

    2012-01-01

    Mathematical chemistry is often thought to be a 20th-century subdiscipline of chemistry, but in this paper we discuss several early chemical ideas and some landmarks of chemistry as instances of the mathematical way of thinking; many of them before 1900. By the mathematical way of thinking, we follow Weyl's description of it in terms of functional thinking, i.e. setting up variables, symbolizing them, and seeking for functions relating them. The cases we discuss are Plato's triangles, Geoffro...

  15. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  16. Art, Meet Chemistry; Chemistry, Meet Art: Case Studies, Current Literature, and Instrumental Methods Combined to Create a Hands-On Experience for Nonmajors and Instrumental Analysis Students

    Science.gov (United States)

    Nivens, Delana A.; Padgett, Clifford W.; Chase, Jeffery M.; Verges, Katie J.; Jamieson, Deborah S.

    2010-01-01

    Case studies and current literature are combined with spectroscopic analysis to provide a unique chemistry experience for art history students and to provide a unique inquiry-based laboratory experiment for analytical chemistry students. The XRF analysis method was used to demonstrate to nonscience majors (art history students) a powerful…

  17. The Chemistry Institute

    OpenAIRE

    Fontecave, Marc

    2015-01-01

    Chemistry at the Collège de France has received particular attention over the last few years. After the departures of Profs Jean-Marie Lehn and Jacques Livage, new ambition for developing this discipline has led to the creation of several Chairs: Prof. Marc Fontecave’s Chair of Chemistry of Biological Processes in 2008, Prof. Clément Sanchez’ Chair of Chemistry of Hybrid Materials in 2011, and the Chair of Chemistry of Materials and Energy, which Prof. Jean-Marie Tarascon has held since 2014....

  18. Group theory and chemistry

    CERN Document Server

    Bishop, David M

    1993-01-01

    Group theoretical principles are an integral part of modern chemistry. Not only do they help account for a wide variety of chemical phenomena, they simplify quantum chemical calculations. Indeed, knowledge of their application to chemical problems is essential for students of chemistry. This complete, self-contained study, written for advanced undergraduate-level and graduate-level chemistry students, clearly and concisely introduces the subject of group theory and demonstrates its application to chemical problems.To assist chemistry students with the mathematics involved, Professor Bishop ha

  19. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  20. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  1. Hanford analytical services quality assurance requirements documents

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, J.E.

    1997-09-25

    Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements

  2. 在农科无机及分析化学教学中应用任务教学法的成效与思考%Teaching Effectiveness of Integrating Task-based Approach into In-organic and Analytical Chemistry Course

    Institute of Scientific and Technical Information of China (English)

    魏天娇; 王艺儒; 黄森

    2012-01-01

    From the perspective of students, the effectiveness of task-based approach (TBA) in In-organic and Analytical Chemistry course were summarized. The strength and weak points of TBA were analyzed, the specific suggestions for obtaining better effect were put forward. The result showed a satisfactory achievement and unexpected result in showing the effectiveness of this teaching model. Not only could this TBA enhance students' overall knowledge of discipline but also cultivate students' multi-dimensional competences; competence in searching literatures, communication and management, autonomous, co-operative and reflective learning, and competence in analyzing and problem-solving, as well as improving their language expression ability, and skills in using multi-medium and internet technology into their academic course learning and research. The implication of this research on the classroom teaching practice will shed light on the future teaching reform of other courses in China.%从学生学习者的角度对农科无机及分析化学教学中应用任务教学法的效果进行了总结,分析了任务教学法的利与弊、得与失,提出了应用任务教学法获得更好效果的具体建议.任务教学法在农科无机及分析化学教学的应用实践表明,任务教学法的应用受到了学生的广泛欢迎,极大地调动了学生学习的积极性、参与性和创造性,提高了学生查阅文献能力、交际能力、组织能力、语言表达能力、制作PPT的能力和分析问题解决问题能力,是对传统教学法和多媒体教学法对学生能力培养缺失的补充.

  3. ENVIRONMENTAL ANALYTICAL CHEMISTRY OF PHARMACEUTICAL AND PERSONAL CARE PRODUCTS: THE SEPARATIONS FOCUS TURNS TO POLAR ANALYTES

    Science.gov (United States)

    Within the scope of a number of emerging contaminant issues in environmental analysis, one area that has received a great deal of public interest has been the assessment of the role of pharmaceuticals and personal care products (PPCPs) as stressors and agents of change in ecosyst...

  4. European analytical column no. 39. Analytical chemistry and bioanalytical chemistrya yet unshaped social relationship

    DEFF Research Database (Denmark)

    Horvai, George; Worsfold, Paul; Karlberg, Bo;

    2011-01-01

    as acceptors 18 different β-xylosyl-oligosaccharides were synthesised in 2–36% (BxlA) and 6–66% (BxlB) yields by transxylosylation. BxlA utilised the monosaccharides d-mannose, d-lyxose, d-talose, d-xylose, d-arabinose, l-fucose, d-glucose, d-galactose and d-fructose as acceptors, whereas BxlB used the same...... except for d-lyxose, d-arabinose and l-fucose. BxlB transxylosylated the disaccharides xylobiose, lactulose, sucrose, lactose and turanose in upto 35% yield, while BxlA gave inferior yields on these acceptors. The regioselectivity was acceptor dependent and primarily involved β-1,4 or 1,6 product linkage...

  5. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  6. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  7. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  8. Open access and medicinal chemistry

    OpenAIRE

    Swain Chris

    2007-01-01

    Abstract Chemistry Central is a new open access website for chemists publishing peer-reviewed research in chemistry from a range of open access journals. A new addition, Chemistry Central Journal, will cover all of chemistry and will be broken down into discipline-specific sections, and Im delighted that Medicinal Chemistry will be a key discipline in this new journal.

  9. Physical Chemistry of Molecular

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Established in 2009, the group consists of six researchers and more than 70 research assistants and graduate students from the CAS Key Laboratory of Molecular Nanostructures and Nanotechnologies at the CAS Institute of Chemistry.Its research focuses on the physical chemistry involved in molecular assembly, molecular nanostructures, functional nanomaterials and conceptual nano-devices.

  10. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  11. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  12. Career Options in Chemistry.

    Science.gov (United States)

    Belloli, Robert C.

    1985-01-01

    Describes a credit/no credit course which focuses on career options in chemistry. The course (consisting of 15 one-hour seminar-type sessions) includes guest speakers for several sessions and an emphasis (in introductory sessions) on graduate school in chemistry, the chemical industry, resumes, and interviews. Also briefly describes an internship…

  13. Exercises in Computational Chemistry

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16).......A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16)....

  14. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  15. Mathematical Thinking in Chemistry

    Directory of Open Access Journals (Sweden)

    José L. Villaveces

    2012-05-01

    Full Text Available Mathematical chemistry is often thought to be a 20th-century subdiscipline of chemistry, but in this paper we discuss several early chemical ideas and some landmarks of chemistry as instances of the mathematical way of thinking; many of them before 1900. By the mathematical way of thinking, we follow Weyl's description of it in terms of functional thinking, i.e. setting up variables, symbolizing them, and seeking for functions relating them. The cases we discuss are Plato's triangles, Geoffroy's affinity table, Lavoisier's classification of substances and their relationships, Mendeleev's periodic table, Cayley's enumeration of alkanes, Sylvester's association of algebra and chemistry, and Wiener's relationship between molecular structure and boiling points. These examples show that mathematical chemistry has much more than a century of history.

  16. System approach to chemistry course

    OpenAIRE

    Lorina E. Kruglova; Valentina G. Derendyaeva

    2010-01-01

    The article considers the raise of chemistry profile for engineers and constructors training, discloses the system approach to chemistry course and singles out the most important modules from the course of general chemistry for construction industry.

  17. Some Heterodox Analytic Philosophy

    Directory of Open Access Journals (Sweden)

    Guillermo E. Rosado Haddock

    2013-04-01

    Full Text Available Analytic philosophy has been the most influential philosophical movement in 20th century philosophy. It has surely contributed like no other movement to the elucidation and demarcation of philosophical problems. Nonetheless, the empiricist and sometimes even nominalist convictions of orthodox analytic philosophers have served them to inadequately render even philosophers they consider their own and to propound very questionable conceptions.

  18. The Analytical Hierarchy Process

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn

    2007-01-01

    The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use.......The technical note gathers the theory behind the Analytical Hierarchy Process (AHP) and present its advantages and disadvantages in practical use....

  19. Teaching the Analytical Life

    Science.gov (United States)

    Jackson, Brian

    2010-01-01

    Using a survey of 138 writing programs, I argue that we must be more explicit about what we think students should get out of analysis to make it more likely that students will transfer their analytical skills to different settings. To ensure our students take analytical skills with them at the end of the semester, we must simplify the task we…

  20. Progress report, Chemistry and Materials Division, October 1 to December 31, 1976

    International Nuclear Information System (INIS)

    A summary is given of research largely centering around radiation effects on materials, radiation and analytical chemistry, surface studies, and materials science, esp. zirconium base alloys and their problems and properties in nuclear service. (E.C.B.)