WorldWideScience

Sample records for chemically specific cellular

  1. Molecular and cellular limits to somatosensory specificity

    Directory of Open Access Journals (Sweden)

    Viana Félix

    2008-04-01

    Full Text Available Abstract Animals detect environmental changes through sensory neural mechanisms that enable them to differentiate the quality, intensity and temporal characteristics of stimuli. The 'doctrine of specific nervous energies' postulates that the different sensory modalities experienced by humans result of the activation of specific nervous pathways. Identification of functional classes of sensory receptors provided scientific support to the concept that somatosensory modalities (touch, pain, temperature, kinesthesis are subserved by separate populations of sensory receptor neurons specialized in detecting innocuous and injurious stimuli of different quality (mechanical forces, temperature, chemical compounds. The identification of receptor proteins activated by different physicochemical stimuli, in particular ion channels of the Transient Receptor Potential (TRP superfamily, has put forward the concept that specificity of peripheral sensory receptor neurons is determined by their expression of a particular "molecular sensor" that confers to each functional type its selectivity to respond with a discharge of nerve impulses to stimuli of a given quality. Nonetheless, recent experimental data suggest that the various molecular sensors proposed as specific transducer molecules for stimuli of different quality are not as neatly associated with the distinct functional types of sensory receptors as originally proposed. First, many ion channel molecules initially associated to the transduction of only one particular form of energy are also activated by stimuli of different quality, implying a limited degree of specificity in their transducing capacities. Second, molecular sensors associated with a stimulus quality and hence to a sensory receptor type and ultimately to a sensory modality may be concomitantly expressed in sensory receptor neurons functionally defined as specific for another stimulus quality. Finally, activation of voltage gated channels

  2. Cellular-signaling pathways unveil the carcinogenic potential of chemicals.

    Science.gov (United States)

    Hendriks, Giel; van de Water, Bob; Schoonen, Willem; Vrieling, Harry

    2013-06-01

    Most of the current in vitro carcinogenicity assays assess the potential carcinogenic properties of chemicals through the detection of inflicted DNA damage or subsequent chromosome damage and gene mutations. Unfortunately, these assays generally do not provide mechanistic insight into the reactive properties of a chemical. Upon chemical-induced damage of biomolecules, molecular sensors will activate general and damage-specific cellular response pathways that provide protection against the (geno)toxic and potential carcinogenic properties of chemicals. These cellular defense mechanisms include activation of cell-cycle checkpoints, DNA repair systems and induction of apoptosis or necrosis. Visualization of activated cellular-signaling pathways forms a powerful means to readily detect the genotoxic potential of chemical compounds and simultaneously gain insight into their reactive properties. Over the past years, various in vitro reporter assays have been developed that monitor activation of general and more specific cellular-signaling pathways, including the GreenScreen HC and ToxTracker assays. In this review we provide a perspective on how we can exploit activation of cellular signaling pathways to shed light on the mode of action of the chemical exposure and to develop sophisticated mechanism-based in vitro assays for cancer risk assessment. PMID:23339022

  3. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this complicated organism, we needed to first turn our attention to a well understood organism. Pseudomonas aeruginosa (PA) is a well-studied organism and will be used to compare our results with others. Then, we will turn our attention to TD. It is expected that the research performed will provide key data to validate biochemical studies of TD and result in high profile publications in leading journals. For this project, our ultimate goal was to combine both Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) experimental analysis with computer simulations to provide unique 3D molecular structural, dynamics, and functional information on the order of microns for this DOE mission relevant microorganism, T. denitrificans. For FY05, our goals were to: (1) Determine proper media for optimal growth of PA; growth rate measurements in that media and characterization of metabolite signatures during growth via {sup 1}H and {sup 13}C NMR, (2) Determine and build mineral, metal, and implant material surfaces to support growth of PA, (3) Implementing new MRI sequences to image biofilms more efficiently and increase resolution with new hardware design, (4) Develop further diffusion and flow MRI measurements of biofilms and biofilm formation with different MRI pulse sequences and different hardware design, and (5) Develop a zero dimension model of the rate of growth and the metabolite profiles of PA. Our major accomplishments are discussed in the following text. However, the bulk of this work is described in the attached manuscript entitled, ''NMR Metabolomics of Planktonic and Biofilm Modes of Growth in Pseudomonas aeruginosa''. This paper will be submitted to the Journal of Bacteriology in coming weeks. In addition, this one-year effort has lead to our incorporation into the Enhanced Surveillance Campaign during FY05 for some proof-of-principle MRI measurements on polymers. We are currently using similar methods to evaluate these polymers. In addition, this work on MRI measurements on polymers has lead to a paper entitled, ''Characterization of local deformation in filled-silicone elastomers subject to high strain NMR MOUSE and Magnetic Resonance Imaging as a diagnostic tool for detection of inhomogeneities''.

  4. A Chemical Genetic Approach To The Study Of Cellular Transport

    NARCIS (Netherlands)

    Nieland, T.J.F.

    2005-01-01

    The focus of this thesis is the use of chemical genetics to study two different aspects of membrane biology, (a) the mechanisms underlying cellular lipid transport and (b) the intersection between endocytic and exocytic traffic. The broad goals of chemical genetics are to find novel chemical tool

  5. Chemical Specification of Autonomic Systems

    OpenAIRE

    Banâtre, Jean-Pierre; Fradet, Pascal; Radenac, Yann

    2004-01-01

    Autonomic computing provides a vision of information systems allowing self-management of many predefined properties. Such systems take care of their own behavior and of their interactions with other components without any external intervention. One of the major challenges concerns the expression of properties and constraints of autonomic systems. We believe that the {\\em chemical programming paradigm} (represented here by the Gamma formalism) is well-suited to the specification of autonomic s...

  6. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  7. Chemical Specific Adjustment Factors Workshop

    Science.gov (United States)

    The World Health Organization, through the International Programme on Chemical Safety (IPCS), has established guidance on the use of mechanistic data to replace default uncertainty factors for interspecies extrapolation and intraspecies variability in deriving risk values such as...

  8. Cellular organization of cortical barrel columns is whisker-specific

    OpenAIRE

    Meyer, Hanno S.; Egger, Robert; Guest, Jason M.; Foerster, Rita; Reissl, Stefan; Oberlaender, Marcel

    2013-01-01

    Cortical columns are thought to be the elementary functional building blocks of sensory cortices. Here we show that the cellular architecture of cortical “barrel” columns in rodent somatosensory cortex is not stereotypic, but specific for each whisker on the animals’ snout. Our findings challenge the concepts underlying contemporary simulation efforts that build up large-scale network models of repeatedly occurring identical cortical circuits.

  9. Regulation and Cellular Roles of Ubiquitin-specific Deubiquitinating Enzymes

    Science.gov (United States)

    Turcu, Francisca E. Reyes; Ventii, Karen H.; Wilkinson, Keith D.

    2009-01-01

    Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of proteins by a single ubiquitin (or ubiquitin-like protein), and remodel polyubiquitin (or ubiquitin-like) chains on target proteins. The human genome encodes nearly 100 DUBs with specificity for ubiquitin in five families: the UCH, USP, OTU, Josephin, and JAMM families. Four families are cysteine proteases, while the later is a family of metalloproteases. Most DUB activity is cryptic and active site rearrangements often occur during the binding of ubiquitin and/or scaffold proteins. DUBs with specificity for ubiquitin contain multiple domains with insertions and extensions modulating DUB substrate specificity, protein-protein interactions, and cellular localization. Binding partners and multi-protein complexes with which DUBs associate modulate DUB activity and substrate specificity. Quantitative studies of activity and protein-protein interactions, together with genetic studies and the advent of RNAi, have lead to new insights into the function of yeast and human DUBs. This review will discuss ubiquitin-specific DUBs, some of the generalizations emerging from recent studies of the regulation of DUB activity, and their roles in various cellular processes. Specific examples are drawn from studies of protein degradation, DNA repair, chromatin remodeling, cell cycle regulation, endocytosis, and modulation of signaling kinases. PMID:19489724

  10. Chemical cleaning specification: few tube test model

    International Nuclear Information System (INIS)

    The specification is for the waterside chemical cleaning of the 2 1/4 Cr - 1 Mo steel steam generator tubes. It describes the reagents and conditions for post-chemical cleaning passivation of the evaporator tubes

  11. Probing cellular dynamics with a chemical signal generator.

    Directory of Open Access Journals (Sweden)

    Brandon Kuczenski

    Full Text Available Observations of material and cellular systems in response to time-varying chemical stimuli can aid the analysis of dynamic processes. We describe a microfluidic "chemical signal generator," a technique to apply continuously varying chemical concentration waveforms to arbitrary locations in a microfluidic channel through feedback control of the interface between parallel laminar (co-flowing streams. As the flow rates of the streams are adjusted, the channel walls are exposed to a chemical environment that shifts between the individual streams. This approach can be used to probe the dynamic behavior of objects or substances adherent to the interior of the channel. To demonstrate the technique, we exposed live fibroblast cells to ionomycin, a membrane-permeable calcium ionophore, while assaying cytosolic calcium concentration. Through the manipulation of the laminar flow interface, we exposed the cells' endogenous calcium handling machinery to spatially-contained discrete and oscillatory intracellular disturbances, which were observed to elicit a regulatory response. The spatiotemporal precision of the generated signals opens avenues to previously unapproachable areas for potential investigation of cell signaling and material behavior.

  12. Chemical and radiochemical specifications - PWR power plants

    International Nuclear Information System (INIS)

    Published by EDF this document gives the chemical specifications of the PWR (Pressurized Water Reactor) nuclear power plants. Among the chemical parameters, some have to be respected for the safety. These parameters are listed in the STE (Technical Specifications of Exploitation). The values to respect, the analysis frequencies and the time states of possible drops are noticed in this document with the motion STE under the concerned parameter. (A.L.B.)

  13. Cellular automaton model of coupled mass transport and chemical reactions

    International Nuclear Information System (INIS)

    Mass transport, coupled with chemical reactions, is modelled as a cellular automaton in which solute molecules perform a random walk on a lattice and react according to a local probabilistic rule. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. The model is applied to the reactions a + b ↔c and a + b →c, where we observe interesting macroscopic effects resulting from microscopic fluctuations and spatial correlations between molecules. We also simulate autocatalytic reaction schemes displaying spontaneous formation of spatial concentration patterns. Finally, we propose and discuss the limitations of a simple model for mineral-solute interaction. (author) 5 figs., 20 refs

  14. Cellular automaton model of mass transport with chemical reactions

    International Nuclear Information System (INIS)

    The transport and chemical reactions of solutes are modelled as a cellular automaton in which molecules of different species perform a random walk on a regular lattice and react according to a local probabilistic rule. The model describes advection and diffusion in a simple way, and as no restriction is placed on the number of particles at a lattice site, it is also able to describe a wide variety of chemical reactions. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. Simulations on one-and two-dimensional lattices show that the discrete model can be used to approximate the solutions of the continuum equations. We discuss discrepancies which arise from correlations between molecules and how these discrepancies disappear as the continuum limit is approached. Of particular interest are simulations displaying long-time behaviour which depends on long-wavelength statistical fluctuations not accounted for by the standard equations. The model is applied to the reactions a + b ↔ c and a + b → c with homogeneous and inhomogeneous initial conditions as well as to systems subject to autocatalytic reactions and displaying spontaneous formation of spatial concentration patterns. (author) 9 figs., 34 refs

  15. Molecules for Fluorescence Detection of Specific Chemicals

    Science.gov (United States)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  16. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145

  17. Chemical proteomics strategies for elucidation of cellular steroid hormone targets

    OpenAIRE

    Golkowski, Martin

    2012-01-01

    The aim of the given work was the development and improvement of affinity chromatography-based methodologies as a means to elucidate the cellular target structures of endogenous and synthetic steroid hormones. Steroid hormones are among the most important regulators of physiological processes in mammals. Moreover, pharmacological agents based on or derived from steroid hormones are indispensable for the treatment of diseases related inflammation, the immune defense and the deregulation of the...

  18. Tunable CD44-specific cellular retargeting with hyaluronic acid nanoshells

    DEFF Research Database (Denmark)

    Ebbesen, Morten F.; Olesen, Morten T. J.; Gjelstrup, Mikkel C.;

    2014-01-01

    Purpose In this work we specifically investigate the molecular weight (Mw) dependent combinatorial properties of hyaluronic acid (HA) for exhibiting stealth and targeting properties using different Mw HA nanoshells to tune nanoparticle retargeting to CD44-expressing cancer cells. Methods HA of...

  19. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  20. Cellular and molecular specificity of pituitary gland physiology.

    Science.gov (United States)

    Perez-Castro, Carolina; Renner, Ulrich; Haedo, Mariana R; Stalla, Gunter K; Arzt, Eduardo

    2012-01-01

    The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis. PMID:22298650

  1. Cellular and molecular mechanisms of chemical synaptic transmission.

    Science.gov (United States)

    Millhorn, D E; Bayliss, D A; Erickson, J T; Gallman, E A; Szymeczek, C L; Czyzyk-Krzeska, M; Dean, J B

    1989-12-01

    During the last decade much progress has been made in understanding the cellular and molecular mechanisms by which nerve cells communicate with each other and nonneural (e.g., muscle) target tissue. This review is intended to provide the reader with an account of this work. We begin with an historical overview of research on cell-to-cell communication and then discuss recent developments that, in some instances, have led to dramatic changes in the concept of synaptic transmission. For instance, the finding that single neurons often contain multiple messengers (i.e., neurotransmitters) invalidated the long-held theory (i.e., Dale's Law) that individual neurons contain and release one and only one type of neurotransmitter. Moreover, the last decade witnessed the inclusion of an entire group of compounds, the neuropeptides, as messenger molecules. Enormous progress has also been made in elucidating postsynaptic receptor complexes and biochemical intermediaries involved in synaptic transmission. Here the development of recombinant DNA technology has made it possible to clone and determine the molecular structure for a number of receptors. This information has been used to gain insight into how these receptors function either as a ligand-gated channel or as a G protein-linked ligand recognition molecule. Perhaps the most progress made during this era was in understanding the molecular linkage of G protein-linked receptors to intramembranous and cytoplasmic macromolecules involved in signal amplification and transduction. We conclude with a brief discussion of how synaptic transmission leads to immediate alterations in the electrical activity and, in some cases, to a change in phenotype by altering gene expression. These alterations in cellular behavior are believed to be mediated by phosphoproteins, the final biochemical product of signal transduction. PMID:2575357

  2. Evidence for chemical and cellular reactivities of the formaldehyde releaser bronopol, independent of formaldehyde release.

    Science.gov (United States)

    Kireche, Mustapha; Peiffer, Jean-Luc; Antonios, Diane; Fabre, Isabelle; Giménez-Arnau, Elena; Pallardy, Marc; Lepoittevin, Jean-Pierre; Ourlin, Jean-Claude

    2011-12-19

    Formaldehyde and formaldehyde releasers are widely used preservatives and represent an important group of skin sensitizers. Formaldehyde is very often suspected to be the sensitizing agent of formaldehyde-releasers; however, many reported clinical cases of contact allergy to these molecules such as bronopol (2-bromo-2-nitropropane-1,3-diol) indicate negative skin reactions to formaldehyde suggesting a more complex mechanism. The aim of this study was to compare the chemical reactivity and biological activity of formaldehyde with those of two formaldehyde releasers: 2-bromo-2-nitropropane-1,3-diol and 1,3-dimethylol-5,5-dimethylhydantoin. A key step in the sensitization to chemicals is the formation of the hapten-protein antigenic complex via covalent binding between the chemical sensitizer and amino acids in proteins. The chemical reactivity of the three compounds was thus addressed using (13)C NMR analysis of adduct formation upon incubation with a set of nucleophilic amino acids. The biological activity was measured in two in vitro models based on dendritic cells and a monocytic cell line (CD34-DC and THP-1 model) through monitoring of a panel of biomarkers. The results obtained show that 2-bromo-2-nitropropane-1,3-diol produces low amount of free formaldehyde in physiological buffers but that its degradation generates various molecules including 2-bromoethanol. In addition, 2-bromo-2-nitropropane-1,3-diol also generates adducts with amino acids, not observed with formaldehyde alone, that could be explained by the reactivity of 2-bromoethanol. In parallel, in a cellular approach using the human monocytic THP-1 cell line, 2-bromo-2-nitropropane-1,3-diol activates THP-1 cells at concentrations that are not correlated to simple formaldehyde release. This observation is confirmed in the more physiological model CD34-DC. Moreover, in the THP-1 model, the expression profiles of several biomarkers are specific to 2-bromo-2-nitropropane-1,3-diol. Finally, the use in the

  3. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo.

    Science.gov (United States)

    Harris, John E

    2016-01-01

    For decades, research in autoimmunity has focused primarily on immune contributions to disease. Yet recent studies report elevated levels of reactive oxygen species and abnormal activation of the unfolded protein response in cells targeted by autoimmunity, implicating cellular stress originating from the target tissue as a contributing factor. A better understanding of this contribution may help to answer important lingering questions in organ-specific autoimmunity, as to what factors initiate disease and what directs its tissue specificity. Vitiligo, an autoimmune disease of the skin, has been the focus of translational research for over 30 years, and both melanocyte stress and immune mechanisms have been thought to be mutually exclusive explanations for pathogenesis. Chemical-induced vitiligo is a unique clinical presentation that reflects the importance of environmental influences on autoimmunity, provides insight into a new paradigm linking cell stress to the immune response, and serves as a template for other autoimmune diseases. In this review, I will discuss the evidence for cell stress contributions to a number of autoimmune diseases, the questions that remain, and how vitiligo, an underappreciated example of organ-specific autoimmunity, helps to answer them. PMID:26683142

  4. Cellular adaptation as an important response during chemical carcinogenesis

    International Nuclear Information System (INIS)

    Since disease processes are largely expressions of how living organisms react and respond to perturbations in the external and internal environments, adaptive or protective responses and their modulations and mechanisms are of the greatest concern in fundamental studies of disease pathogenesis. Such considerations are also of the greatest relevance in toxicology, including how living organisms respond to low levels of single and multiple xenobiotics and radiations. As the steps and mechanisms during cancer development are studied in greater depth, phenomena become apparent that suggest that adaptive reactions and responses may play important or even critical roles in the process of carcinogenesis. The question becomes whether the process of carcinogenesis is fundamentally an adversarial one (i.e., an abnormal cell in a vulnerable host), or is it more in the nature of a physiological selection or differentiation, which has survival value for the host as an adaptive phenomena? The very early initial interactions of mutagenic chemical carcinogens, radiations and viruses with DNA prejudice most to consider the adversarial 'abnormal' view as the appropriate one. Yet, the unusually common nature of the earliest altered rare cells that appear during carcinogenesis, their unusually bland nature, and their spontaneous differentiation to normal-appearing adult liver should be carefully considered

  5. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    Science.gov (United States)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  6. Biomimetic catalysts responsive to specific chemical signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan [Iowa State Univ., Ames, IA (United States)

    2015-03-04

    Part 1. Design of Biomimetic Catalysts Based on Amphiphilic Systems The overall objective of our research is to create biomimetic catalysts from amphiphilic molecules. More specifically, we aim to create supramolecular systems that can be used to control the microenvironment around a catalytic center in a biomimetic fashion and apply the learning to construct supramolecular catalysts with novel functions found in enzymatic catalysts. We have prepared synthetic molecules (i.e., foldamers) that could fold into helical structures with nanometer-sized internal hydrophilic cavities. Cavities of this size are typically observed only in the tertiary and quaternary structures of proteins but were formed in our foldamer prepared in just a few steps from the monomer. Similar to many proteins, our foldamers displayed cooperativity in the folding/unfolding equilibrium and followed a two-state conformational transition. In addition, their conformational change could be triggered by solvent polarity, pH, or presence of metal ions and certain organic molecules. We studied their environmentally dependent conformational changes in solutions, surfactant micelles, and lipid bilayer membranes. Unlike conventional rigid supramolecular host, a foldamer undergoes conformational change during guest binding. Our study in the molecular recognition of an oligocholate host yielded some extremely exciting results. Cooperativity between host conformation and host–guest interactions was found to “magnify” weak binding interactions. In other words, since binding affinity is determined by the overall change of free energy during the binding, guest-induced conformational change of the host, whether near or far from the binding site, affects the binding. This study has strong implications in catalysis because enzymes have been hypothesized to harvest similar intramolecular forces to strengthen their binding with the transition state of an enzyme-catalyzed reaction. The supramolecular and

  7. Green light radiation effects on free radicals inhibition in cellular and chemical systems.

    Science.gov (United States)

    Comorosan, Sorin; Polosan, Silviu; Jipa, Silviu; Popescu, Irinel; Marton, George; Ionescu, Elena; Cristache, Ligia; Badila, Dumitru; Mitrica, Radu

    2011-01-10

    Free radicals generation is inhibited through green light (GL) irradiation in cellular systems and in chemical reactions. Standard melanocyte cultures were UV-irradiated and the induced cellular reactive oxygen species (ROS) were quantified by the fluorescence technique. The same cell cultures, previously protected by a 24h GL exposure, displayed a significantly lower ROS production. A simple chemical reaction is subsequently chosen, in which the production of free radicals is well defined. Paraffin wax and mineral oil were GL irradiated during thermal degradation and the oxidation products checked by chemiluminescence [CL] and Fourier transform infrared spectra [FT-IR]. The same clear inhibition of the radical oxidation of alkanes is recorded. A quantum chemistry modeling of these results is performed and a mechanism involving a new type of Rydberg macromolecular systems with implications for biology and medicine is suggested. PMID:20934350

  8. Control of Directional Macromolecular Trafficking Across Specific Cellular Boundaries: A Key to Integrative Plant Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There is now solid evidence that cell-to-cell trafficking of certain proteins and RNAs plays a critical role in trans-cellular regulation of gene expression to coordinate cellular differentiation and development. Such trafficking also is critical for viral infection and plant defense. The mechanisms of trafficking remain poorly understood. Although some proteins may move between cells by diffusion, many proteins and RNAs move in a highly regulated fashion. Regulation is likely achieved through interactions between distinct protein or RNA motifs and cellular factors. Some motifs and factors have been identified. One of the major focuses for future studies is to identify all motifs and their cognate factors and further elucidate their roles in trafficking between specific cells. With increasing information from such studies, we should be able to develop an understanding of the mechanisms that regulate trafficking of various proteins and RNAs across all and specific cellular boundaries. On the basis of such mechanistic knowledge, we can further investigate how the trafficking machinery has evolved to regulate developmental and physiological processes in a plant, how pathogens have co-evolved to use this machinery for systemic spread in a plant, and how plants use this machinery for counterdefense.

  9. Recognition of chemical compounds in contaminated water using time-dependent multiple dose cellular responses

    International Nuclear Information System (INIS)

    Highlights: ► Dose- and time-dependent cellular responses are used to evaluate the cytotoxicity. ► The CI can reflect the cell number, cell viability, morphological change, etc. ► The CSVID can capture the dynamic information after cells exposed to toxins. ► The multi-class classification can distinguish the compounds using multi-doses. ► The majority vote strategy (fingerprint) can improve the classification accuracy. - Abstract: An early determination of toxicant compounds of water contaminations can gain critical time to protect citizens’ health and save substantial amounts of medical costs. To determine toxins in real time, a multi-dose classification algorithm using cellular state variable identification (CSVID) is developed in this paper. First, the dynamic cytotoxicity response profiles of living cells are measured using a real-time cell electronic sensing (RT-CES) system. Changes in cell number expressed as cell index (CI) are recorded on-line as time series. Then CSVID, which reflects the cell killing, cell lysis and certain cellular pathological changes, is extracted from those dynamic cellular responses. Finally, a support vector machine (SVM) algorithm based on CSVID is employed to classify chemical compounds and determine their analogous cellular response pathway. In order to increase the classification accuracy, a majority vote of the class labels is also proposed. Several validation studies demonstrate that CSVID-based classification algorithm has great potential in distinguishing the cytotoxicity response of the cells in the presence of toxins.

  10. Cellular specificity of HIV-1 replication can be controlled by LTR sequences

    International Nuclear Information System (INIS)

    Two well-established determinants of retroviral tropism are envelope sequences that regulate entry and LTR sequences that can regulate viral expression in a cell-specific manner. Studies with human immunodeficiency virus-1 (HIV-1) have demonstrated that tropism of this virus maps primarily to variable envelope sequences. Studies have demonstrated that T cell and macrophage-specific transcription factor binding motifs exist in the upstream region of the LTR U3; however, the ability of the core enhancer/promoter proximal elements (two NF-κB and three Sp1 sites) to function well in macrophages and T cells have led many to conclude that HIV LTR sequences are not primary determinants of HIV tropism. To determine if cellular specificity could be imparted to HIV by the core enhancer elements, the enhancer/promoter proximal region of the HIV LTR was substituted with motifs that control gene expression in a myeloid-specific manner. The enhancer region from equine infectious anemia virus (EIAV) when substituted for the HIV enhancer/promoter proximal region was found to drive expression in a macrophage-specific manner and was responsive to HIV Tat. The addition of a 5' methylation-dependent binding site (MDBP) and a promoter proximal Sp1 motif increased expression without altering cellular specificity. Spacing between the promoter proximal region and the TATA box was also found to influence LTR activity. Infectivity studies using chimeric LTRs within the context of a dual-tropic infectious molecular clone established that these LTRs directed HIV replication and production of infectious virions in macrophages but not primary T cells or T cell lines. This investigation demonstrates that cellular specificity can be imparted onto HIV-1 replication at the level of viral transcription and not entry

  11. BRCA1 function in T lymphocytes: a cellular specificity of a different kind

    OpenAIRE

    Gardner, Kevin; Liu, Edison T

    2000-01-01

    Recent work by Mak et al demonstrates that mice carrying a T-cell-specific disruption of the brca1 gene display markedly impaired T-lymphocyte development and proliferation in the absence of any increased tendency for the formation of tumors. Interestingly, the extent of these defects was found to be highly dependent on cellular context. Contrasting the rather broad tissue expression pattern of brca1 against its exquisitely selective etiologic role in cancers of the breast and ovary, many of ...

  12. Independence of Measles-Specific Humoral and Cellular Immune Responses to Vaccination

    OpenAIRE

    Jacobson, Robert M.; Ovsyannikova, Inna G.; Vierkant, Robert A.; Pankratz, V. Shane; Poland, Gregory A.

    2012-01-01

    With a larger, independent cohort and more sophisticated measures, we sought to confirm our work that indicated independence of humoral and cellular immunity following measles vaccination. We recruited an age-stratified random cohort of 764 healthy subjects from all socio-economic strata, all with medical-record documentation of two age-appropriate doses of measles-containing vaccine. We quantified measles-specific neutralizing antibody levels and assayed the IFN-γ ELISPOT response to measles...

  13. Pyrimidine-specific chemical reactions useful for DNA sequencing.

    OpenAIRE

    Rubin, C M; Schmid, C. W.

    1980-01-01

    Potassium permanganate reacts selectively with thymidine residues in DNA (1) while hydroxylamine hydrochloride at pH 6 specifically attacks cytosine (2). We have adopted these reactions for use with the chemical sequencing method developed by Maxam and Gilbert (3).

  14. In vitro chemical and cellular tests applied to uranium trioxide with different hydration states

    International Nuclear Information System (INIS)

    A simple and rapid in vitro chemical solubility test applicable to industrial uranium trioxide (UO3) was developed together with two in vitro cellular tests using rat alveolar macrophages maintained either in gas phase or in alginate beads at 37 degrees C. Industrial UO3 was characterized by particle size, X-ray, and IR spectra, and chemical transformation (e.g., aging and hydration of the dust) was also studied. Solvents used for the in vitro chemical solubility study included carbonates, citrates, phosphates, water, Eagle's basal medium, and Gamble's solution (simulated lung fluid), alone, with oxygen, or with superoxide ions. Results, expressed in terms of the half-time of dissolution, according to International Commission on Radiological Protection (ICRP) classification (D,W,Y), varied for different hydration states of UO3, showing a lower solubility of hydrated UO3 in solvents compared to basic UO3 or UO3 heated at 450 degrees C. Two in vitro cellular tests on cultured rat alveolar macrophages (cells maintained in gas phase and cells immobilized in alginate beads) were used on the same UO3 samples and generally showed a lower solution transfer rate in the presence of macrophages than in the culture medium alone. The results of in vitro chemical and cellular tests were compared, with four main conclusions; a good reproducibility of the three tests in Eagle's basal medium of the effect of hydration state on solubility, the classification of UO3 in terms of ICRP solubility criteria, and the ability of macrophoges to decrease uranium solubility in medium. 16 refs., 3 figs., 4 tabs

  15. GIM3E: Condition-specific Models of Cellular Metabolism Developed from Metabolomics and Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Brian; Ebrahim, Ali; Metz, Thomas O.; Adkins, Joshua N.; Palsson, Bernard O.; Hyduke, Daniel R.

    2013-11-15

    Motivation: Genome-scale metabolic models have been used extensively to investigate alterations in cellular metabolism. The accuracy of these models to represent cellular metabolism in specific conditions has been improved by constraining the model with omics data sources. However, few practical methods for integrating metabolomics data with other omics data sources into genome-scale models of metabolism have been reported. Results: GIMMME (Gene Inactivation Moderated by Metabolism, Metabolomics, and Expression) is an algorithm that enables the development of condition-specific models based on an objective function, transcriptomics, and intracellular metabolomics data. GIMMME establishes metabolite utilization requirements with metabolomics data, uses model-paired transcriptomics data to find experimentally supported solutions, and also provides calculations of the turnover (production / consumption) flux of metabolites. GIMMME was employed to investigate the effects of integrating additional omics datasets to create increasingly constrained solution spaces of Salmonella Typhimurium metabolism during growth in both rich and virulence media. This integration proved to be informative and resulted in a requirement of additional active reactions (12 in each case) or metabolites (26 or 29, respectively). The addition of constraints from transcriptomics also impacted the allowed solution space, and the cellular metabolites with turnover fluxes that were necessarily altered by the change in conditions increased from 118 to 271 of 1397. Availability: GIMMME has been implemented in Python and requires a COBRApy 0.2.x. The algorithm and sample data described here are freely available at: http://opencobra.sourceforge.net/

  16. A candidate DNA vaccine elicits HCV specific humoral and cellular immune responses

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; Ye Ye; You-Hua Xie; Yu-Ying Kong; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To investigate the immunogenicity of candidate DNA vaccine against hepatitis C virus (HCV) delivered by two plasmids expressing HCV envelope protein 1 (E1) and envelope protein 2 (E2) antigens respectively and to study the effect of CpG adjuvant on this candidate vaccine.METHODS: Recombinant plasmids expressing HCV E1 and E2 antigens respectively were used to simultaneously inoculate mice with or without CpG adjuvant. Antisera were then collected and titers of anti-HCV antibodies were analyzed by ELISA. One month after the last injection, animals were sacrificed to prepare single-cell suspension of splenocytes.These cells were subjected to HCVantigen specific proliferation assays and cytokine secretion assays to evaluate the cellular immune responses of the vaccinated animals.RESULTS: Antibody responses to HCV E1 and E2 antigens were detected in vaccinated animals. Animals receiving CpG adjuvant had slightly lower titers of anti-HCV antibodies in the sera, while the splenocytes from these animals showed higher HCV-antigen specific proliferation. Analysis of cytokine secretion from the splenocytes was consistent with the above results. While no antigen-specific IL-4 secretion was detected for all vaccinated animals, HCV antigen-specific INF-γ secretion was detected for the splenocytes of vaccinated animals. CpG adjuvant enhanced the secretion of INF-γ but did not change the profile of IL-4 secretion.CONCLUSION: Vaccination of mice with plasmids encoding HCV E1 and E2 antigens induces humoral and cellular immune responses. CpG adjuvant significantly enhances the cellular immune response.

  17. Recognition of chemical compounds in contaminated water using time-dependent multiple dose cellular responses

    Energy Technology Data Exchange (ETDEWEB)

    Pan, T.H., E-mail: thpan@ujs.edu.cn [School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada); Huang, B., E-mail: biao.huang@ualberta.ca [Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada); Xing, J.Z., E-mail: jzxing@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2S2 (Canada); Zhang, W.P., E-mail: weiping.zhang@gov.ab.ca [Alberta Health and Wellness, Edmonton, Alberta T5J 1S6 (Canada); Gabos, S., E-mail: stephan.gabos@gov.ab.ca [Alberta Health and Wellness, Edmonton, Alberta T5J 1S6 (Canada); Chen, J., E-mail: jchen@ece.ualberta.ca [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2S2 (Canada)

    2012-04-29

    Highlights: Black-Right-Pointing-Pointer Dose- and time-dependent cellular responses are used to evaluate the cytotoxicity. Black-Right-Pointing-Pointer The CI can reflect the cell number, cell viability, morphological change, etc. Black-Right-Pointing-Pointer The CSVID can capture the dynamic information after cells exposed to toxins. Black-Right-Pointing-Pointer The multi-class classification can distinguish the compounds using multi-doses. Black-Right-Pointing-Pointer The majority vote strategy (fingerprint) can improve the classification accuracy. - Abstract: An early determination of toxicant compounds of water contaminations can gain critical time to protect citizens' health and save substantial amounts of medical costs. To determine toxins in real time, a multi-dose classification algorithm using cellular state variable identification (CSVID) is developed in this paper. First, the dynamic cytotoxicity response profiles of living cells are measured using a real-time cell electronic sensing (RT-CES) system. Changes in cell number expressed as cell index (CI) are recorded on-line as time series. Then CSVID, which reflects the cell killing, cell lysis and certain cellular pathological changes, is extracted from those dynamic cellular responses. Finally, a support vector machine (SVM) algorithm based on CSVID is employed to classify chemical compounds and determine their analogous cellular response pathway. In order to increase the classification accuracy, a majority vote of the class labels is also proposed. Several validation studies demonstrate that CSVID-based classification algorithm has great potential in distinguishing the cytotoxicity response of the cells in the presence of toxins.

  18. Use of specific glycosidases to probe cellular interactions in the sea urchin embryo.

    Science.gov (United States)

    Idoni, Brian; Ghazarian, Haike; Metzenberg, Stan; Hutchins-Carroll, Virginia; Oppenheimer, Steven B; Carroll, Edward J

    2010-08-01

    We present an unusual and novel model for initial investigations of a putative role for specifically conformed glycans in cellular interactions. We have used alpha- and ss-amylase and alpha- and ss-glucosidase in dose-response experiments evaluating their effects on archenteron organization using the NIH designated sea urchin embryo model. In quantitative dose-response experiments, we show that defined activity levels of alpha-glucosidase and ss-amylase inhibited archenteron organization in living Lytechinus pictus gastrula embryos, whereas all concentrations of ss-glucosidase and alpha-amylase were without substantial effects on development. Product inhibition studies suggested that the enzymes were acting by their specific glycosidase activities and polyacrylamide gel electrophoresis suggested that there was no detectable protease contamination in the active enzyme samples. The results provide evidence for a role of glycans in sea urchin embryo cellular interactions with special reference to the possible structural conformation of these glycans based on the differential activities of the alpha- and ss-glycosidases. PMID:20435035

  19. Non-specific cellular uptake of surface-functionalized quantum dots

    CERN Document Server

    Kelf, T A; Sun, J; Kim, E J; Goldys, E M; Zvyagin, A V; 10.1088/0957-4484/21/28/285105

    2010-01-01

    We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically-significant moieties, e.g. carboxyl, amino, streptavidin were used, in combination with the surface derivatization with polyethylene glycol (PEG) in a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG-derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specifi...

  20. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhaohua, E-mail: ztang@jsd.claremont.edu [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Lin, Ren-Jang [Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Center, University of Sussex, Falmer, BN1 9RQ (United Kingdom)

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  1. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    International Nuclear Information System (INIS)

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A)+ RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G2 phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  2. Ultrastructural studies of time-course and cellular specificity of interleukin-1 mediated islet cytotoxicity

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Egeberg, J; Nerup, J; Bendtzen, K; Dinarello, C A; Nielsen, Jens Høiriis

    1987-01-01

    Previous electron-microscopic studies of isolated islets of Langerhans exposed to the monokine interleukin-1 for 7 days have indicated that interleukin-1 is cytotoxic to all islet cells. To study the time-course and possible cellular specificity of interleukin-1 cytotoxicity to islets exposed to...... interleukin-1 for short time periods, isolated rat or human islets were incubated with or without 25 U/ml highly purified human interleukin-1 for 24 h. Samples of rat islets were taken after 5 min, 30 min, 1, 2, 4, 6, 8, 10, 12, 16, 20 and 24 h and samples of human islets after 5 min, 30 min and 24 h of...... incubation and examined by electron microscopy in a blinded fashion. Already after 30 min, accumulation of opaque intracytoplasmic bodies without apparent surrounding membranes, and autophagic vacuoles were seen in about 20% of the beta cells examined in rat islets exposed to interleukin-1. After 16 h of...

  3. Specificity of psychiatric manifestations in relation to neurotoxic chemicals.

    Science.gov (United States)

    Ross, W D; Sholiton, M C

    1983-01-01

    Previous impressions of specificity of psychiatric manifestations in relation to particular chemical intoxications have been confirmed by comparisons of the symptoms and signs of two groups of individuals. Nine persons exposed to inorganic mercury had "erethism" and xenophobia in addition to non-specific features of central nervous system poisoning. Twelve men with heavy exposure to organotins, in contrast to ten men with light or no exposure, more frequently presented an unique alternation between outbursts of range and deep depression, the later lasting from a few hours to a few days. The more heavily exposed men also had a greater number of nonspecific symptoms from neurotoxins. PMID:6575580

  4. Isomer-Specific Biodegradation and Chemical Oxidation of Nonylphenol

    OpenAIRE

    Lu, Zhijiang

    2014-01-01

    Nonylphenol (NP), a well-known environmental estrogen with numerous isomers, is commonly treated as a single compound in the evaluation of its environmental occurrence, fate and transport, treatment removal and toxicity. Recent studies showed that NP isomers exhibited different estrogenicity and biodegradability. However, at present little systematic information is available on its isomer-specific biodegradation and chemical oxidation under natural and engineered conditions.We comprehensively...

  5. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome.

    Science.gov (United States)

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  6. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome

    Science.gov (United States)

    Hu, Benxia; Li, Xin; Huo, Yongxia; Yu, Yafen; Zhang, Qiuping; Chen, Guijun; Zhang, Yaping; Fraser, Nigel W.; Wu, Dongdong; Zhou, Jumin

    2016-01-01

    Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions. PMID:27354008

  7. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation

    OpenAIRE

    Shrivastav, Nidhi; Li, Deyu; Essigmann, John M.

    2009-01-01

    The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA les...

  8. Classification of Cells with Membrane Staining and/or Fixation Based on Cellular Specific Membrane Capacitance and Cytoplasm Conductivity

    OpenAIRE

    Song-Bin Huang; Yang Zhao; Deyong Chen; Shing-Lun Liu; Yana Luo; Tzu-Keng Chiu; Junbo Wang; Jian Chen; Min-Hsien Wu

    2015-01-01

    Single-cell electrical properties (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) have been regarded as potential label-free biophysical markers for the evaluation of cellular status. However, whether there exist correlations between these biophysical markers and cellular status (e.g., membrane-associate protein expression) is still unknown. To further validate the utility of single-cell electrical properties in cell type classification, Cspe...

  9. Effluent specific chemical markers for petroleum industry discharges

    International Nuclear Information System (INIS)

    Assessing the contribution of various sources to contaminant bioaccumulation in aquatic organism presents a number of challenges. The use of effluent-specific chemical markers would greatly facilitate identification of sources of contaminants found in aquatic organisms. Two classes of compounds were investigated for use as effluent-specific markers for petroleum industry discharges: alkylated polycyclic aromatic hydrocarbons (PAH) and rare earth elements (REE). Alkylated PAHs, specifically methyl and dimethyl naphthalenes, methyl and dimethyl phenanthrenes, and dibenzothiophene, appear to have excellent potential as effluent-specific markers for petroleum industry discharges. They are not associated with combustion sources, are abundant in crude oil and certain refined petroleum products, and were at detectable concentrations in bivalves exposed to refinery and produced water discharges. Three alkylated PAHs were detected in both refinery and produced water effluents, but not in receiving water samples from a highly urbanized estuary. REEs are incorporated into cracking catalysts used in refiners and would also appear to be excellent candidates for specific markers of refinery effluents. However, concentrations of REEs in a tertiary-treated refinery effluent were near or below detection and no significant bioaccumulation of REEs was observed for bivalves and fish

  10. PIXE and PIXE-induced XRF for chemical specification

    International Nuclear Information System (INIS)

    Wavelength dispersive X-ray spectra with fine structures in the PIXE and PIXE-induced XRF spectra have been proved to be very much useful for chemical specification of condensed matters. The fine structures have been reproduced theoretically by introducing molecular orbital calculations, the shake-off and resonant orbital rearrangement (ROR) processes, together with the direct Coulomb interaction between projectiles and target atoms, and the self-absorption of emitted X-rays through the targets. Comparison between observed and theoretical spectra is given here for F and S atoms

  11. Quantum chemical modelling of reactivity and selectivity of 1,2-dithiolanes towards retroviral and cellular zinc fingers

    Science.gov (United States)

    Topol, Igor A.; Nemukhin, Alexander V.; Burt, Stanley K.

    Interactions of 1,2-dithiolane species with zinc-containing sites, which mimic the zinc finger domains of retroviral and the cellular zinc finger proteins, have been investigated by quantum chemistry tools. According to the calculations, the immediate domains of zinc binding sites in the cellular and retroviral zinc fingers interact differently with such agents of the disulphide family. Thus, when approaching the model cellular-type domains, the molecules of 1,2-dithiolanes experience considerable potential barriers along the reaction path. However, these species react practically barrier-less with the model retroviral-type domains at the correlated DFT level. The results of the quantum chemical modelling provide firm support to the selectivity of 1,2-dithiolanes towards retroviral and cellular zinc fingers. This can be of great practical importance for the design of therapeutics that accomplish functional inactivation of the zinc fingers of the human immunodeficiency virus (HIV-1) retroviral type nucleocapsid protein NCp7.

  12. Effect of MWCNT surface and chemical modification on in vitro cellular response

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10–30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment–material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell–nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT’s agglomerates surrounded by numerous cells releasing toxic substances.

  13. Genome-wide Mapping of Cellular Protein-RNA Interactions Enabled by Chemical Crosslinking

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Li; Jinghui Song; Chengqi Yi

    2014-01-01

    RNA-protein interactions influence many biological processes. Identifying the binding sites of RNA-binding proteins (RBPs) remains one of the most fundamental and important chal-lenges to the studies of such interactions. Capturing RNA and RBPs via chemical crosslinking allows stringent purification procedures that significantly remove the non-specific RNA and protein interactions. Two major types of chemical crosslinking strategies have been developed to date, i.e., UV-enabled crosslinking and enzymatic mechanism-based covalent capture. In this review, we com-pare such strategies and their current applications, with an emphasis on the technologies themselves rather than the biology that has been revealed. We hope such methods could benefit broader audi-ence and also urge for the development of new methods to study RNA RBP interactions.

  14. Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy

    Science.gov (United States)

    Qian, Hong; Elson, Elliot L.

    Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.

  15. Amplification of SV40 and cellular genes in SV40 transformed Chinese hamster embryo cells treated with chemical carcinogens

    International Nuclear Information System (INIS)

    To study the effect of chemical carcinogens on the amplification of specific genes, we have constructed a model system, utilizing integrated SV40 as an example for an endogenous gene. Recently, we have shown that exposure of SV40 transformed Chinese hamster cells to a variety of carcinogens induced the amplification of the integrated SV40 genome. Functional T-antigen was necessary for the amplification phenomenon. The work presented in this manuscript shows that the functional origin of replication, which consists of the sequences at the origin of replication and an active T-antigen, is required for the amplification. Utilizing cloned SV40 inserts and the adjacent Chinese hamster sequences we were able to show that SV40 and the flanking cellular sequences were amplified. As the distance from the SV40 origin of replication increased, the extent of amplification was decreased. The amplified sequences are associated with both chromosomal and extrachromosomal sequences. Carcinogen-mediated amplification is not restricted to SV40 sequences and endogenous genes such as dehydrofolate reductase (dhfr), the histocompatibility gene (HLA) and c-ras/sup Ha/ gene are amplified. 26 references, 5 figures

  16. Modeling chemical systems using cellular automata a textbook and laboratory manual

    CERN Document Server

    Kier, Lemont B; Cheng, Chao-Kun

    2006-01-01

    Provides a practical introduction to an exciting modeling paradigm for complex systems. This book discusses the nature of scientific inquiry using models and simulations, and describes the nature of cellular automata models. It gives descriptions of how cellular automata models can be used in the study of a variety of phenomena.

  17. A cellular protein specifically binds to the 3'-terminal sequences of hepatitis C virus intermediate negative-strand RNA

    Institute of Scientific and Technical Information of China (English)

    王巍; 邓庆丽; 黄开红; 段朝晖; 邵静; 黄志清; 黄志明

    2003-01-01

    ObjectiveTo study the mechanism of the cellular proteins involved in the process of replication of hepatitis C virus (HCV) negative-strand RNA.MethodsUltraviolet (UV) cross-linking was used to identify the cellular proteins that would bind to the 3'-end of HCV negative-strand RNA. Competition experimentwas used to confirm the specificity of this binding, in which excess nonhomologous protein and RNA transcripts were used as competitors. The required binding sequence was determined by mapping, then the binding site was predicted through secondary structure analysis.ResultsA cellular protein of 45 kD (p45) was found to bind specifically to the 3'-endof HCV negative-strand RNA by UV cross-linking. nhomologous proteins and RNA transcripts could not compete out this binding, whereas the unlabeled 3'-endof HCV negative-strand RNA could. Mapping of the protein-binding site suggested that the 3'-end 131-278nt of HCV negative-strand RNA was the possible protein-binding region. Analysis of RNA secondary structure presumed that the potential binding site was located at 194-GAAAGAAC-201. ConclusionThe cellular protein p45 could specifically bind to the secondary structure of the 3'-end of HCV intermediate negative-strand RNA, and may play an important role in HCV RNA replication.

  18. Techniques to Study Specific Cell-Surface Receptor-Mediated Cellular Vitamin A Uptake

    OpenAIRE

    KAWAGUCHI, RIKI; Sun, Hui

    2010-01-01

    STRA6 is a multitransmembrane domain protein that was recently identified as the cell-surface receptor for plasma retinol binding protein (RBP), the vitamin A carrier protein in the blood. STRA6 binds to RBP with high affinity and mediates cellular uptake of vitamin A from RBP. It is not homologous to any known receptors, transporters, and channels, and it represents a new class of membrane transport protein. Consistent with the diverse physiological functions of vitamin A, STRA6 is widely ex...

  19. Site-specific recombinatorics: in situ cellular barcoding with the Cre Lox system

    OpenAIRE

    Weber, Tom S.; Dukes, Mark; Miles, Denise; Glaser, Stefan; Naik, Shalin; Duffy, Ken R.

    2016-01-01

    Cellular barcoding is a significant, recently developed, biotechnology tool that enables the familial identification of progeny of individual cells in vivo. Most existing approaches rely on ex vivo viral transduction of cells with barcodes, followed by adoptive transfer into an animal, which works well for some systems, but precludes barcoding cells in their native environment, such as those inside solid tissues. With a view to overcoming this limitation, we propose a new design for a genetic...

  20. The reconstitution of the thymus in immunosuppressed individuals restores CD4-specific cellular and humoral immune responses.

    Science.gov (United States)

    Plana, Montserrat; Garcia, Felipe; Darwich, Laila; Romeu, Joan; López, Anna; Cabrera, Cecilia; Massanella, Marta; Canto, Esther; Ruiz-Hernandez, Raul; Blanco, Julià; Sánchez, Marcelo; Gatell, Josep M; Clotet, Bonaventura; Ruiz, Lidia; Bofill, Margarita

    2011-07-01

    Infection with HIV-1 frequently results in the loss of specific cellular immune responses and an associated lack of antibodies. Recombinant growth hormone (rGH) administration reconstitutes thymic tissue and boosts the levels of peripheral T cells, so rGH therapy may be an effective adjuvant through promoting the recovery of lost cellular and T-cell-dependent humoral immune responses in immunosuppressed individuals. To test this concept, we administered rGH to a clinically defined group of HIV-1-infected subjects with defective cellular and serological immune responses to at least one of three commonly employed vaccines (hepatitis A, hepatitis B or tetanus toxoid). Of the original 278 HIV-1-infected patients entering the trial, only 20 conformed to these immunological criteria and were randomized into three groups: Group A (n = 8) receiving rGH and challenged with the same vaccine to which they were unresponsive and Groups B (n = 5) and C (n = 7) who received either rGH or vaccination alone, respectively. Of the eight subjects in Group A, five recovered CD4 cellular responses to vaccine antigen and four of these produced the corresponding antibodies. In the controls, three of the five in group B recovered cellular responses with two producing antibodies, whereas three of the seven in Group C recovered CD4 responses, with only two producing antibodies. Significantly, whereas seven of ten patients receiving rGH treatment in Group A (six patients) and B (one patient) recovered T-cell responses to HIVp24, only two of six in Group C responded similarly. In conclusion, reconstitution of the thymus in immunosuppressed adults through rGH hormone treatment restored both specific antibody and CD4 T-cell responses. PMID:21501161

  1. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum.

    Science.gov (United States)

    Kind, Stefanie; Kreye, Steffen; Wittmann, Christoph

    2011-09-01

    The present work describes the development of a superior strain of Corynebacterium glutamicum for diaminopentane (cadaverine) production via metabolic engineering of cellular transport processes. In C. glutamicum DAP-3c, a tailor-made producer, the diaminopentane forming enzyme, lysine decarboxylase, was inhibited in vivo by its end-product, suggesting a potential bottleneck at the level of the export. The previously proposed lysine exporter lysE was shown not to be involved in diaminopentane export. Its deletion did not reduce diaminopentane secretion and could therefore be exploited to completely eliminate the export of lysine, an undesired by-product. Genome-wide transcription profiling revealed the up-regulation of 35 candidate genes as response to diaminopentane overproduction, including several transporters. The highest expression increase (2.6-fold) was observed for a permease, encoded by cg2893. Targeted gene deletion in the producer resulted in a 90% reduced diaminopentane secretion. Genome-based overexpression of the exporter, however, revealed a 20% increased yield, a 75% reduced formation of the undesired by-product N-acetyl-diaminopentane and a substantially higher viability, reflected by increased specific rates for growth, glucose uptake and product formation. Similarly, deletion of cg2894, TetR type repressor neighboring the permease gene, resulted in improved production properties. The discovery and amplification of the permease, as presented here, displays a key contribution towards superior C. glutamicum strains for production of the platform chemical diaminopentane. The exact function of the permease remained unclear. Its genetic modification had pronounced effects on various intracellular pools of the biosynthetic pathway, which did not allow a final conclusion on its physiological role, although a direct contribution to diaminopentane export appears possible. PMID:21821142

  2. Mechanism resulting in chemical imbalance due to cellular damage associated with mechanoporation: A molecular dynamics study

    Science.gov (United States)

    Sliozberg, Yelena R.; Chantawansri, Tanya L.

    2016-05-01

    To elucidate the mechanism of ion transport through a transmembrane pore, all-atom molecular dynamics simulations were employed. A model membrane where a pore connects the intra- and extra-cellular compartment was considered. Pores with radii of 1.5 nm or less exhibited resealing over the course of 135 ns simulations, and ionic disturbance is minimal. Ion transport through a larger pore (2 nm radius) leads to a substantial change in the intra- and extra-cellular ionic concentrations. The influx of Na+ and Cl- ions down their concentration gradients is greater than the efflux of K+ leading to an osmotic influx of water.

  3. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts.

    Science.gov (United States)

    Geh, Stefan; Yücel, Raif; Duffin, Rodger; Albrecht, Catrin; Borm, Paul J A; Armbruster, Lorenz; Raulf-Heimsoth, Monika; Brüning, Thomas; Hoffmann, Eik; Rettenmeier, Albert W; Dopp, Elke

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Øbentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. PMID:16059726

  4. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.

    Science.gov (United States)

    Chou, Tzu-Yuan; Sun, Yung-Shin; Hou, Hsien-San; Wu, Shang-Ying; Zhu, Yun; Cheng, Ji-Yen; Lo, Kai-Yin

    2016-01-01

    Microfluidic devices are capable of creating a precise and controllable cellular micro-environment of pH, temperature, salt concentration, and other physical or chemical stimuli. They have been commonly used for in vitro cell studies by providing in vivo like surroundings. Especially, how cells response to chemical gradients, electrical fields, and shear stresses has drawn many interests since these phenomena are important in understanding cellular properties and functions. These microfluidic chips can be made of glass substrates, silicon wafers, polydimethylsiloxane (PDMS) polymers, polymethylmethacrylate (PMMA) substrates, or polyethyleneterephthalate (PET) substrates. Out of these materials, PMMA substrates are cheap and can be easily processed using laser ablation and writing. Although a few microfluidic devices have been designed and fabricated for generating multiple, coexisting chemical and electrical stimuli, none of them was considered efficient enough in reducing experimental repeats, particular for screening purposes. In this report, we describe our design and fabrication of two PMMA-based microfluidic chips for investigating cellular responses, in the production of reactive oxygen species and the migration, under single or coexisting chemical/electrical/shear stress stimuli. The first chip generates five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 in the culture regions, together with a shear stress gradient produced inside each of these areas. The second chip generates the same relative concentrations, but with five different electric field strengths created within each culture area. These devices not only provide cells with a precise, controllable micro-environment but also greatly increase the experimental throughput. PMID:27584698

  5. Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin

    Directory of Open Access Journals (Sweden)

    Jacquemont Céline

    2012-04-01

    Full Text Available Abstract Background Platinum compounds such as cisplatin and carboplatin are DNA crosslinking agents widely used for cancer chemotherapy. However, the effectiveness of platinum compounds is often tempered by the acquisition of cellular drug resistance. Until now, no pharmacological approach has successfully overcome cisplatin resistance in cancer treatment. Since the Fanconi anemia (FA pathway is a DNA damage response pathway required for cellular resistance to DNA interstrand crosslinking agents, identification of small molecules that inhibit the FA pathway may reveal classes of chemicals that sensitize cancer cells to cisplatin. Results Through a cell-based screening assay of over 16,000 chemicals, we identified 26 small molecules that inhibit ionizing radiation and cisplatin-induced FANCD2 foci formation, a marker of FA pathway activity, in multiple human cell lines. Most of these small molecules also compromised ionizing radiation-induced RAD51 foci formation and homologous recombination repair, indicating that they are not selective toward the regulation of FANCD2. These compounds include known inhibitors of the proteasome, cathepsin B, lysosome, CHK1, HSP90, CDK and PKC, and several uncharacterized chemicals including a novel proteasome inhibitor (Chembridge compound 5929407. Isobologram analyses demonstrated that half of the identified molecules sensitized ovarian cancer cells to cisplatin. Among them, 9 demonstrated increased efficiency toward FA pathway-proficient, cisplatin-resistant ovarian cancer cells. Six small molecules, including bortezomib (proteasome inhibitor, CA-074-Me (cathepsin B inhibitor and 17-AAG (HSP90 inhibitor, synergized with cisplatin specifically in FA-proficient ovarian cancer cells (2008 + FANCF, but not in FA-deficient isogenic cells (2008. In addition, geldanamycin (HSP90 inhibitor and two CHK1 inhibitors (UCN-01 and SB218078 exhibited a significantly stronger synergism with cisplatin in FA

  6. The cytotoxicity of lead and uranium on rat osteoblastic cells is highly dependent on chemical speciation and cellular accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S.; Carriere, M.; Thiebault, C.; Gouget, B. [CEA Saclay, CNRS - UMR9956, Lab Pierre Sue, F-91198 Gif Sur Yvette, (France); Malval, L. [INSERM, E366, Lab Biol Tissue Osseux, St Etienne, (France)

    2007-07-01

    Complete text of publication follows: Uranium (U) and lead (Pb), as other heavy metals, present a strong chemical toxicity. After blood contamination, U and Pb, complexed with proteins or inorganic molecules are conveyed to target organs, the skeleton being the major long-term storage site. Once in bones, both metals are incorporated in the hydroxyapatite matrix by substitution with calcium. They can thus be released during re-modelling, which explains in part their toxicity. Although the clinical effects of these metals are well known, the cellular mechanisms of their action are not well understood. To investigate the biological effects of U and Pb acute exposure on osteoblasts, ROS17/2.8 cells were exposed to Pb or U [0-1 mM] for 24 h. The most relevant chemical and physical states, namely the most likely forms (species) of the toxics in contact with cells after blood contamination were selected for cell exposure. For each metal species, Pb and U toxicity were assessed through cell viability assay. The results show that whatever the speciation, U chemical toxicity to bone cells is far lower than Pb toxicity. Pb appears to be cytotoxic when left free in the exposure medium or when it is complexed with bicarbonate, cysteine or citrate, but not with albumin or phosphate (an insoluble form of Pb). In order to explain these differences in sensitivity between different metals and metal chemical species, time-course and dose-response curves of cellular accumulation at lethal or sub-lethal doses were drawn by direct elemental analysis of metal concentrations in digested cell pellets, using Inductive Coupling Plasma Mass Spectroscopy. These showed a clear correlation between toxicity and cellular accumulation. Also, Pb induces an inhibition of ALP activity after 24 h exposure to sub-lethal doses, which is speciation-dependent and again correlates with cellular accumulation. Phenotypic effects of U are under investigation. In addition, electron-microscopic observation of

  7. Cellular Specificity of the Blood-CSF Barrier for Albumin Transfer across the Choroid Plexus Epithelium

    DEFF Research Database (Denmark)

    Liddelow, Shane A; Dzięgielewska, Katarzyna M; Møllgård, Kjeld;

    2014-01-01

    in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements...... of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood-CSF interface. We report that at all developmental stages mouse albumin and SPARC gave...... positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only...

  8. Chemical proteomics approaches for identifying the cellular targets of natural products.

    Science.gov (United States)

    Wright, M H; Sieber, S A

    2016-05-01

    Covering: 2010 up to 2016Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied "in situ" - in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide-alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss 'competitive mode' approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed. PMID:27098809

  9. Two-dimensional chemically tunable patterns with cellular structures fabricated via thermal pressing method

    International Nuclear Information System (INIS)

    A novel and versatile soft lithography method, i.e. thermal pressing method has been established to create colloid arrays by using multilevel inks. Patterned poly(dimethylsiloxane) stamp containing silicone dioxide microparticles was pressed into a polycaprolactone (PCL) film at the temperature around the T m of PCL. Subsequent removal of the colloids left cavity arrays. By initially incorporating chitosan, albumin or CdTe quantum dots into the silicone dioxide microparticles, removal of the ordered SiO2 microspheres would then release these substances which were stably embedded into the PCL matrices or suspended in the interiors of the cellular structures. By coating the SiO2 microspheres with multilayers previously, thin covers on the cellular structures could be obtained after removal of the templates

  10. Cellular resilience.

    Science.gov (United States)

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  11. Epitope specificity of human immunodeficiency virus-1 antibody dependent cellular cytotoxicity [ADCC] responses.

    Science.gov (United States)

    Pollara, Justin; Bonsignori, Mattia; Moody, M Anthony; Pazgier, Marzena; Haynes, Barton F; Ferrari, Guido

    2013-07-01

    Antibody dependent cellular cytotoxicity [ADCC] has been suggested to play an important role in control of Human Immunodeficiency Virus-1 [HIV-1] viral load and protection from infection. ADCC antibody responses have been mapped to multiple linear and conformational epitopes within the HIV-1 envelope glycoproteins gp120 and gp41. Many epitopes targeted by antibodies that mediate ADCC overlap with those recognized by antibodies capable of virus neutralization. In addition, recent studies conducted with human monoclonal antibodies derived from HIV-1 infected individuals and HIV-1 vaccine-candidate vaccinees have identified a number of antibodies that lack the ability to capture primary HIV-1 isolates or mediate neutralizing activity, but are able to bind to the surface of infected CD4+ T cells and mediate ADCC. Of note, the conformational changes in the gp120 that may not exclusively relate to binding of the CD4 molecule are important in exposing epitopes recognized by ADCC responses. Here we discuss the HIV-1 envelope epitopes targeted by ADCC antibodies in the context of the potential protective capacities of ADCC. PMID:24191939

  12. Region-Specific Diet-induced and Leptin-Induced Cellular Leptin Resistance Includes the Ventral Tegmental Area in Rats

    OpenAIRE

    Matheny, M.; Shapiro, A.; Tümer, N.; Scarpace, P. J.

    2010-01-01

    Diet-induced obesity (DIO) results in region-specific cellular leptin resistance in the arcuate nucleus (ARC) of the hypothalamus in one strain of mice and in several medial basal hypothalamic regions in another. We hypothesized that the ventral tegmental area (VTA) is also likely susceptible to diet-induced and leptin-induced leptin resistance in parallel to that in hypothalamic areas. We examined two forms of leptin resistance in F344xBN rats, that induced by 6-months of high fat (HF) feedi...

  13. Chemical Composition and, Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves

    OpenAIRE

    Muanda, François Nsemi; Bouayed, Jaouad; Djilani, Abdelouaheb; Yao, Chunyan; Soulimani, Rachid; Dicko, Amadou

    2011-01-01

    Desmodium adscendens plant is widely used as juice or tea in various parts of the world against a wide range of diseases. This study determines the quality and the quantity of polyphenols, flavonoids, anthocyanins, and tannins in D. adscendens leaves by UV-spectrophotometry and RP-HPLC methods. In addition, the antioxidant capacity of these phenolic compounds is evaluated by ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic)), DPPH (2,2-diphenyl-1 picrylhydrazyl), and Cellular tests. D. ...

  14. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Science.gov (United States)

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines. PMID:27362860

  15. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  16. High-affinity uranyl-specific antibodies suitable for cellular imaging

    International Nuclear Information System (INIS)

    Monoclonal antibodies (mAbs) have proved to be valuable models for the study of protein-metal interactions, and previous reports have described very specific antibodies to chelated metal ions, including uranyl. We raised specific mAbs against UO22+-DCP-BSA (DCP, 1, 10-phenanthroline-2,9-dicarboxylic acid) to generate new sets of antibodies that might cross-react with various complexed forms of uranyl in different environments for further application in the field of toxicology. Using counter-screening with UO22+-DCP-casein, we selected two highly specific mAbs against uranyl-DCP (KD = 10-100 pM): U04S and U08S. Competitive assays in the presence of different metal ions (UO22+, Fe3+, Zn2+, Cu2+, and Ca2+) showed that uranyl in solution can act as a good competitor, suggesting some antibody ability to cross-react with chelating groups other than DCP in the UO22+ equatorial coordination plane. Interestingly, one of the antibodies could be used for revealing uranyl cations in cell samples. Fluorescence activated cell sorting analyses after immuno-labeling revealed the interaction of uranyl with human kidney cells HK2. The intracellular accumulation of uranyl could be directly visualized by metal-immunostaining using fluorescent-labeled mAb. Our results suggest that U04S mAb epitopes mostly include the uranyl fraction and its para-topes can accommodate a wide variety of chelating groups. (authors)

  17. Specific cellular accumulation of photofrin-II in EC cells promotes photodynamic treatment efficacy in esophageal cancer.

    Science.gov (United States)

    Gao, Shegan; Liang, Shuo; Ding, Kaili; Qu, Zhifeng; Wang, Ying; Feng, Xiaoshan

    2016-06-01

    Photodynamic therapy (PDT), which uses a light-sensitive compound and laser irradiation, is a light-based oncological treatment modality. PDT offers an alternative, less invasive treatment for various malignant tumors, such as esophageal cancer (EC), through a photochemical reaction induced by photofrin-II or other oncotropic photosensitizers without severe complications. Previous studies has shown that cancerous tissues accumulated more photosensitizers than paired normal tissues, however, whether it is cellular or vascular mechanisms remains unknown. Herein, in vivo and in vitro examinations were performed to study the mechanisms by which photofrin-II effectively and specifically killed EC cells. In this study, EC tissue of patients treated with photofrin-II, human ESCC cellline SHEEC and parental normal cellline SHEE, primary culture cells of EC tissue were used. The concentration of photofrin-II in cells were evaluated by high-performance liquid chromatography (HPLC). The results exhibited that accumulation of photofrin-II in cancerous cells were significantly higher than that in non-cancerous cells (p<0.05) under certain dose and time period of incubation of photofrin-II. In summary, our study showed that, photofrin-II specifically accumulated in EC cells in vivo and in vitro after controlling for vascular factors, which provided strong evidence that maybe the cellular factor is the main mechanism by which photofrin-II-mediated PDT selectively caused EC cells death. PMID:26829562

  18. An Inducible System for Rapid Degradation of Specific Cellular Proteins Using Proteasome Adaptors

    Science.gov (United States)

    Wilmington, Shameika R.; Matouschek, Andreas

    2016-01-01

    A common way to study protein function is to deplete the protein of interest from cells and observe the response. Traditional methods involve disrupting gene expression but these techniques are only effective against newly synthesized proteins and leave previously existing and stable proteins untouched. Here, we introduce a technique that induces the rapid degradation of specific proteins in mammalian cells by shuttling the proteins to the proteasome for degradation in a ubiquitin-independent manner. We present two implementations of the system in human culture cells that can be used individually to control protein concentration. Our study presents a simple, robust, and flexible technology platform for manipulating intracellular protein levels. PMID:27043013

  19. Characterization of mouse cellular deoxyribonucleic acid homologous to Abelson murine leukemia virus-specific sequences.

    OpenAIRE

    Dale, B.; Ozanne, B.

    1981-01-01

    The genome of Abelson murine leukemia virus (A-MuLV) consists of sequences derived from both BALB/c mouse deoxyribonucleic acid and the genome of Moloney murine leukemia virus. Using deoxyribonucleic acid linear intermediates as a source of retroviral deoxyribonucleic acid, we isolated a recombinant plasmid which contained 1.9 kilobases of the 3.5-kilobase mouse-derived sequences found in A-MuLV (A-MuLV-specific sequences). We used this clone, designated pSA-17, as a probe restriction enzyme ...

  20. A physical chemical approach to understanding cellular dysfunction in type II diabetes

    Science.gov (United States)

    Miranker, Andrew

    2013-03-01

    The conversion of soluble protein into b-sheet rich amyloid fibers is the hallmark of a number of serious diseases. Precursors for many of these systems (e.g. Ab from Alzheimer's disease) reside in close association with a biological membranes. Membrane bilayers are reported to accelerate the rate of amyloid assembly. Furthermore, membrane permeabilization by amyloidogenic peptides can lead to toxicity. Given the b-sheet rich nature of mature amyloid, it is seemingly paradoxical that many precursors are either intrinsically b-helical, or transiently adopt an a-helical state upon association with membrane. We have investigated these phenomena in islet amyloid polypeptide (IAPP). IAPP is a 37-residue peptide hormone which forms amyloid fibers in individuals with type II diabetes. We report here the discovery of an oligomeric species that arises through stochastic nucleation on membranes, and results in disruption of the lipid bilayer. These species are stable, result in all-or-none leakage, and represent a definable protein/lipid phase that equilibrates over time. To characterize the reaction pathway of assembly, we apply an experimental design that includes ensemble and single particle evaluations in vitro and correlate these with quantitative measures of cellular toxicity.

  1. Chemical Composition and, Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves

    Directory of Open Access Journals (Sweden)

    François Nsemi Muanda

    2011-01-01

    Full Text Available Desmodium adscendens plant is widely used as juice or tea in various parts of the world against a wide range of diseases. This study determines the quality and the quantity of polyphenols, flavonoids, anthocyanins, and tannins in D. adscendens leaves by UV-spectrophotometry and RP-HPLC methods. In addition, the antioxidant capacity of these phenolic compounds is evaluated by ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic, DPPH (2,2-diphenyl-1 picrylhydrazyl, and Cellular tests. D. adscendens leaves are mainly composite of flavonoid compounds with 12.8 mg of catechin equivalent (CE/g dw. The amounts of total polyphenol compounds are 11.1 mg of gallic acid equivalent (GAE/g dw. The quantity of total anthocyanin and total tannin compounds is not considerable 0.0182 mg CgE/g dw and 0.39 mg CE/g dw, respectively. A direct correlation between phenolic compounds and antioxidant activity is observed (R2=0.96. The RP-HPLC analyses reveal that the main phenolic compound identified in the methanol-water extract is quercetrin dihydrat (2.11 mg/mL. According to the results, it is observed that D. adscendens leaves possess a considerable scavenging antioxidant and antiradical capacity, therefore these antioxidant properties might increase the therapeutic value of this medicinal plant.

  2. Chemical Composition and, Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves.

    Science.gov (United States)

    Muanda, François Nsemi; Bouayed, Jaouad; Djilani, Abdelouaheb; Yao, Chunyan; Soulimani, Rachid; Dicko, Amadou

    2011-01-01

    Desmodium adscendens plant is widely used as juice or tea in various parts of the world against a wide range of diseases. This study determines the quality and the quantity of polyphenols, flavonoids, anthocyanins, and tannins in D. adscendens leaves by UV-spectrophotometry and RP-HPLC methods. In addition, the antioxidant capacity of these phenolic compounds is evaluated by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic)), DPPH (2,2-diphenyl-1 picrylhydrazyl), and Cellular tests. D. adscendens leaves are mainly composite of flavonoid compounds with 12.8 mg of catechin equivalent (CE)/g dw. The amounts of total polyphenol compounds are 11.1 mg of gallic acid equivalent (GAE)/g dw. The quantity of total anthocyanin and total tannin compounds is not considerable 0.0182 mg CgE/g dw and 0.39 mg CE/g dw, respectively. A direct correlation between phenolic compounds and antioxidant activity is observed (R(2) = 0.96). The RP-HPLC analyses reveal that the main phenolic compound identified in the methanol-water extract is quercetrin dihydrat (2.11 mg/mL). According to the results, it is observed that D. adscendens leaves possess a considerable scavenging antioxidant and antiradical capacity, therefore these antioxidant properties might increase the therapeutic value of this medicinal plant. PMID:20976084

  3. Nanoparticle dynamics in the presence and absence of a cellular uptake altering chemical

    International Nuclear Information System (INIS)

    The far-reaching applications of nanoparticles (NPs) in drug delivery, medical imaging, diagnostics, and therapeutics have led to an increased potential for interfacing with a diverse range of biological environments. While metallic NPs such as copper NPs have been explored for their antimicrobial and catalytic properties, they have been shown to induce undesirable toxic effects. Nonetheless, bio modulators may be employed to control this cytotoxicity. Dynasore is a dynamin GTPase inhibitor that has been shown to rapidly and reversibly block clathrin dependent endocytic traffic within minutes of application. Here, we demonstrate that Dynasore can chemically bio-modulate the toxic effects of copper nanoparticles (Cu NPs), but not through reducing Cu NP internalization. In fact, Dynasore seems to possess secondary effects that have been unreported to date. We propose and test three potential mechanisms of cytotoxicity modulation: 1) through changes in agglomeration pattern, 2) through potential quenching of reactive oxygen species (ROS), and 3) through Cu+2 ion chelation. These results have far-reaching implications for understanding the complex interactions that occur at the interface of NPs in biological environments, especially during mechanistic chemical modification strategies.

  4. Design of parallel microfluidic gradient-generating networks for studying cellular response to chemical stimuli

    Institute of Scientific and Technical Information of China (English)

    Lihui WANG; Dayu LIU; Bo WANG; Jie SUN; Lianhong LI

    2008-01-01

    A microfluidic chip featuring laminar flow-based parallel gradient-generating networks was designed and fabricated. The microchip contains 5 gradient genera-tors and 30 cell chambers where the resulting concentra-tion gradients of drugs are delivered to stimulate on-chip cultured cells. The microfluidics exploits the advantage of lab-on-a-chip technology by integrating the generation of drug concentration gradients and a series of cell opera-tions including seeding, culture, stimulation and staining into a chip. The microfluidic network was patterned on a glass wafer, which was further bonded to a PDMS film. A series of weir structures were fabricated on the cell culture reservoir to facilitate cell positioning and seeding. Cell injection and fluid delivery were controlled by a syringe pump. Steady parallel concentration gradients were gen-erated by flowing two fluids in each network. Over time observation shows that the microchip was suitable for cell seeding and culture. The microchip described above was applied in studying the role of reduced glutathione (GSH) in mediating chemotherapy sensitivity of MCF-7 cells. MCF-7 cells were treated with concentration gradients of As2O3 and N-acetyl cysteine (NAC) for GSH modu-lation, followed by exposure to adriamycin. GSH levels were down-regulated upon As203 treatment and up-regu-lated upon NAC treatment. Suppression of intracellular GSH by treatment with As2O3 has been shown to increase sensitivity to adriamycin. Conversely, elevation of intra-cellular GSH by treatment with NAC leads to increased drug resistance. The integrated microfluidic chip is able to perform multiparametric pharmacological profiling with easy operation, and thus holds great potential for extra-polation to the cell based high-content drug screening.

  5. Cellular Biology in Terms of Stochastic Nonlinear Biochemical Dynamics: Emergent Properties, Isogenetic Variations and Chemical System Inheritability

    Science.gov (United States)

    Qian, Hong

    2010-12-01

    Based on a stochastic, nonlinear, open biochemical reaction system perspective, we present an analytical theory for cellular biochemical processes. The chemical master equation (CME) approach provides a unifying mathematical framework for cellular modeling. We apply this theory to both self-regulating gene networks and phosphorylation-dephosphorylation signaling modules with feedbacks. Two types of bistability are illustrated in mesoscopic biochemical systems: one that has a macroscopic, deterministic counterpart and another that does not. In certain cases, the latter stochastic bistability is shown to be a "ghost" of the extinction phenomenon. We argue the thermal fluctuations inherent in molecular processes do not disappear in mesoscopic cell-sized nonlinear systems; rather they manifest themselves as isogenetic variations on a different time scale. Isogenetic biochemical variations in terms of the stochastic attractors can have extremely long lifetime. Transitions among discrete stochastic attractors spend most of the time in "waiting", exhibit punctuated equilibria. It can be naturally passed to "daughter cells" via a simple growth and division process. The CME system follows a set of nonequilibrium thermodynamic laws that include non-increasing free energy F( t) with external energy drive Q hk ≥0, and total entropy production rate e p =- dF/ dt+ Q hk ≥0. In the thermodynamic limit, with a system's size being infinitely large, the nonlinear bistability in the CME exhibits many of the characteristics of macroscopic equilibrium phase transition.

  6. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure.

    Directory of Open Access Journals (Sweden)

    Denis Habauzit

    Full Text Available Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2, led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed. Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed. By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.

  7. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  8. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  9. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities.

    Science.gov (United States)

    Muschin, Tegshi; Budragchaa, Davaanyam; Kanamoto, Taisei; Nakashima, Hideki; Ichiyama, Koji; Yamamoto, Naoki; Shuqin, Han; Yoshida, Takashi

    2016-08-01

    Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8μg/mL and 0.2-1.1μg/mL, compared to those curdlan sulfates, 0.1μg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities. PMID:27154517

  10. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    Science.gov (United States)

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-01-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies. PMID:27405011

  11. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid

    International Nuclear Information System (INIS)

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0–10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge–charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na+,K+-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of − 38 to − 56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. - Highlights: • We examine the corneal cellular responses to photopolymerized biomaterials. • Charge density of membranes was increased with increasing volume ratio of AAc/HEMA. • 15–20 vol.% AAc decreased viability and proliferation of all

  12. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw

    2013-10-15

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0–10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge–charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na{sup +},K{sup +}-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of − 38 to − 56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. - Highlights: • We examine the corneal cellular responses to photopolymerized biomaterials. • Charge density of membranes was increased with increasing volume ratio of AAc/HEMA. • 15–20 vol.% AAc decreased viability and proliferation

  13. Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Miyanoiri, Yohei; Takeda, Mitsuhiro [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Okuma, Kosuke; Ono, Akira M.; Terauchi, Tsutomu [Tokyo Metropolitan University, Center for Priority Areas (Japan); Kainosho, Masatsune, E-mail: kainosho@tmu.ac.jp [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2013-09-21

    The {sup 1}H–{sup 13}C HMQC signals of the {sup 13}CH{sub 3} moieties of Ile, Leu, and Val residues, in an otherwise deuterated background, exhibit narrow line-widths, and thus are useful for investigating the structures and dynamics of larger proteins. This approach, named methyl TROSY, is economical as compared to laborious methods using chemically synthesized site- and stereo-specifically isotope-labeled amino acids, such as stereo-array isotope labeling amino acids, since moderately priced, commercially available isotope-labeled α-keto acid precursors can be used to prepare the necessary protein samples. The Ile δ{sub 1}-methyls can be selectively labeled, using isotope-labeled α-ketobutyrates as precursors. However, it is still difficult to prepare a residue-selectively Leu and Val labeled protein, since these residues share a common biosynthetic intermediate, α-ketoisovalerate. Another hindering drawback in using the α-ketoisovalerate precursor is the lack of stereo-selectivity for Leu and Val methyls. Here we present a differential labeling method for Leu and Val residues, using four kinds of stereo-specifically {sup 13}CH{sub 3}-labeled [U–{sup 2}H;{sup 15}N]-leucine and -valine, which can be efficiently incorporated into a protein using Escherichia coli cellular expression. The method allows the differential labeling of Leu and Val residues with any combination of stereo-specifically isotope-labeled prochiral methyls. Since relatively small amounts of labeled leucine and valine are required to prepare the NMR samples; i.e., 2 and 10 mg/100 mL of culture for leucine and valine, respectively, with sufficient isotope incorporation efficiency, this approach will be a good alternative to the precursor methods. The feasibility of the method is demonstrated for 82 kDa malate synthase G.

  14. In Vivo Evaluation of Site-Specifically PEGylated Chemically Self-Assembled Protein Nanostructures.

    Science.gov (United States)

    Shah, Rachit; Petersburg, Jacob; Gangar, Amit C; Fegan, Adrian; Wagner, Carston R; Kumarapperuma, Sidath C

    2016-07-01

    Chemically self-assembled nanorings (CSANs) are made of dihydrofolate reductase (DHFR) fusion proteins and have been successfully used in vitro for cellular cargo delivery and cell surface engineering applications. However, CSANs have yet to be evaluated for their in vivo stability, circulation, and tissue distribution. In an effort to evaluate CSANs in vivo, we engineered a site-specifically PEGylated epidermal growth factor receptor (EGFR) targeting DHFR molecules, characterized their self-assembly into CSANs with bivalent methotrexates (bis-MTX), visualized their in vivo tissue localization by microPET/CT imaging, and determined their ex vivo organ biodistribution by tissue-based gamma counting. A dimeric DHFR (DHFR(2)) molecule fused with a C-terminal EGFR targeting peptide (LARLLT) was engineered to incorporate a site-specific ketone functionality using unnatural amino acid mutagenesis. Aminooxy-PEG, of differing chain lengths, was successfully conjugated to the protein using oxime chemistry. These proteins were self-assembled into CSANs with bis-MTX DHFR dimerizers and characterized by size exclusion chromatography and dynamic light scattering. In vitro binding studies were performed with fluorescent CSANs assembled using bis-MTX-FITC, while in vivo microPET/CT imaging was performed with radiolabeled CSANs assembled using bis-MTX-DOTA[(64)Cu]. PEGylation reduced the uptake of anti-EGFR CSANs by mouse macrophages (RAW 264.7) up to 40% without altering the CSAN's binding affinity toward U-87 MG glioblastoma cells in vitro. A significant time dependent tumor accumulation of (64)Cu labeled anti-EGFR-CSANs was observed by microPET/CT imaging and biodistribution studies in mice bearing U-87 MG xenografts. PEGylated CSANs demonstrated a reduced uptake by the liver, kidneys, and spleen resulting in high contrast tumor imaging within an hour of intravenous injection (9.6% ID/g), and continued to increase up to 24 h (11.7% ID/g) while the background signal diminished

  15. Specificity of pH sensitive Tc(V)-DMS for acidophilic osteoclastic bone cells: biological and cellular studies

    International Nuclear Information System (INIS)

    Bone scintigraphy is a sensitive imaging method for detecting skeletal metastases but the low specificity has decreased its oncological use. Bone scintigraphy has relied on Tc-bisphosphonate (Tc-BP) agents with affinity for the mineral phase. However, bio-functional Tc(V)-DMS agent, sensitive to acid pH of tumoral tissue has shown osteotrophic properties, in adult bone pathologies. Objectives: Basis for understanding the osteotropic character of the pH sensitive Tc(V)-DMS in bone metastasis. Methods: Studies on differential Tc(V)-DMS and Tc-BP accumulation response were carried out by acidophilic osteoclast (OC) and basophilic osteoblast (OB) cells subjected to variable pH incubation media (HEPES, 370C) and by bone tissue of Ehrlich Ascites Tumor (EAT) bearing mice, exposed to systemic NH4Cl or glucose mediated acidification (GmAc). Agents injected into tail vein and bone radioactivity analyzed. Bone metabolism markers measured in blood and urine (pH, Pi, Ca , Alp, Dpd). Acid-base regulation effect at cellular level, analyzed by using bafilomycin, amiloride, DIDS and acetazolamide inhibitors. Results: Lack of any OB response to acidification or alkalinization detected with either Tc(V)-DMS or Tc-BP agent. However, OC cells were highly sensitivity to acidification only in the presence of Tc(V)-DMS showing great radioactivity increase as the pH was lowered. This specificity also detected, in EAT bearing mice; increased bone tissue accumulation in response to systemic acidification was clearly detected upon administration of Tc(V)-DMS only under GmAc, an experimental model showing high urine excretion of deoxypyridinoline, a bone resorption marker. Conclusion: Peculiarity of multi nucleated OC cells sensitive to the environment pH and their activation in acid pH has been well known. Tc-BP agent showed lack of affinity for OC or OB cells. Specific affinity of OC cells for Tc(V)-DMS and its increased bone accumulation with the systemic pH lowering reflect the p

  16. Investigations of cellular parameters to establish the response of a biomodulator: galactoside-specific Lectin from Viscum album plant extract.

    Science.gov (United States)

    Hajto, T; Hostanska, K; Fischer, J; Lentzen, H

    1996-09-01

    Injections of non-toxic doses of purified galactoside-specific lectin from the Viscum album plant (VAA-I) caused significant changes in the cellular host defense system in animal models. To establish the immunomodulatory potency of VAA-I on human subjects, four randomized double blind crossover trials were performed on healthy volunteers. In the first and second trials using either older (storage over 8 months at 4°C) or freshly (application immediately after production) isolated lectin enriched preparation from mistletoe extract by ultrafiltration with known VAA-I content, the effect of lectin on the number of CD 3+, CD4+, CD 8+, CD 16+/56+ cells, natural killer cytotoxicity and frequency of large granular lymphocytes was tested in peripheral blood of nine and eight individuals, respectively. In comparison to the significant increase in the number of peripheral lymphocytes observed in balb/c mice, human healthy individuals showed no significant difference between their responses after lectin enriched preparation and saline treatment. Due the considerable intrinsic fluctuation of these parameters in placebo control and the assumption that a change in immunomodulatory potency of VAA-I in lectin enriched preparation depends on aging, a third and fourth double blind trial, in this case using freshly isolated VAA-I from plant, were performed on six and eight healthy volunteers, respectively. In these studies an other more rapidly detectable parameter, the priming of polymorphonuclear (PMN) leukocytes, was monitored. In both studies, 5 h after lectin injection, significant enhancement in priming of circulating PMNs was found compared to the placebo response. PMID:23194960

  17. Host cell cytotoxicity, cellular repopulation dynamics, and phase-specific cell survival in X-irradiated rat rhabdomyosarcoma tumors

    International Nuclear Information System (INIS)

    Postirradiation tumor volume response, cellular repopulation dynamics, cell-cycle perturbations, and phase-specific cell survival were characterized in rat rhabdomyosarcoma R-1 tumors (the R2C5 subline) following an in situ 10-Gy dose of 225-kVp X rays. This X-ray dose produced a 7.5-day delay in tumor growth to twice the volume measured at the time of irradiation, and reduced the initial surviving fraction of R2C5 cells to 0.17 as measured by the excision assay procedure. The surviving fraction of R2C5 cells returned to unity by the 16th day after tumor irradiation. On the basis of flow cytometry measurements of DNA content in tumor cells stained with a noncytotoxic concentration of Hoechst 33342, a transient G2 block was observed 1 day after irradiation. Flow cytometry measurements also demonstrated that the tetraploid R2C5 cells constituted only 30% of the total tumor cell population, with the remainder being diploid host cells comprised of macrophages, monocytes, lymphocytes, and granulocytes. Large numbers of host cells infiltrated the irradiated tumors, leading to an increase in the percentage of diploid cells by Day 2 and reaching a level of more than 80% of the total tumor cell population by 4 to 8 days after irradiation. The influx of host cells into irradiated tumors was correlated temporally with a significant 12-fold decrease in the surviving fraction of R2C5 cells that occurred between Days 2 and 4 postirradiation. When the diploid host cell population was removed by cell sorting procedures, the surviving fraction of R2C5 cells at Day 4 substantially greater than that in the presence of the host cells. Experiments involving the mixing of 4/1 and 12/1 ratios of diploid host cells and tetraploid tumor cells isolated from irradiated and unirradiated tumors demonstrated that the cytotoxic effect of the host cells was specific for the irradiated tumor cells

  18. Composition of betel specific chemicals in saliva during betel chewing for the identification of biomarkers

    OpenAIRE

    Franke, Adrian A.; Mendez, Ana Joy; Lai, Jennifer F.; Arat-Cabading, Celine; Li, Xingnan; Custer, Laurie J.

    2015-01-01

    Betel nut chewing causes cancer in humans including strong associations with head and neck cancer in Guam. In the search for biomarkers of betel chewing we sought to identify chemicals specific for the 3 most commonly consumed betel preparations in Guam: nut (‘BN’), nut + Piper betle leaf (‘BL’), and betel quid (‘BQ’) consisting of nut+lime+tobacco+Piper betle leaf. Chemicals were extracted from the chewing material and saliva of subjects chewing these betel preparations. Saliva analysis invo...

  19. From cellular to chemical approach for acute neural and alternative options for age-induced functional diseases

    Institute of Scientific and Technical Information of China (English)

    Antonin; Bukovsky

    2015-01-01

    Endogenous "stem cell niche"(SCN) accompanying vessels contains immune system components which in vivo determine differentiation of multi potent stem cells toward proper cell types in given tissue. Combinations of sex steroids may represent novel chemical approach for neuronal areas of regenerative medicine,since they cause transformation of vascular smooth muscle stem cells into differentiating neuronal cells. Circulating sex steroids are present during pregnancy and can be utilized where needed,when various embryonic/fetal tissues develop from their stem cells. Utilization of induced regeneration of tissues(regenerative medicine) is expected being more effective in sudden failures of younger individuals carrying intact SCN,as compared to established chronic disorders caused by SCN alteration. An essential component of SCN are monocyte-derived cells exhibiting tissue-specific "stop effect"(SE) preventing,for instance,an aging of neuronal cells. Its alteration causes that implantation of neuronal stem cells will also result in their differentiation toward aging cells. When we repair the SE by supply of circulating mononuclear cells from young healthy individuals,we may be able to provide novel regenerative treatments of age-induced neural diseases by sex steroid combinations. Questions regarding some age-induced body alterations are also addressed.

  20. Composition of betel specific chemicals in saliva during betel chewing for the identification of biomarkers.

    Science.gov (United States)

    Franke, Adrian A; Mendez, Ana Joy; Lai, Jennifer F; Arat-Cabading, Celine; Li, Xingnan; Custer, Laurie J

    2015-06-01

    Betel nut chewing causes cancer in humans, including strong associations with head and neck cancer in Guam. In the search for biomarkers of betel chewing we sought to identify chemicals specific for the 3 most commonly consumed betel preparations in Guam: nut ('BN'), nut + Piper betle leaf ('BL'), and betel quid ('BQ') consisting of nut + lime + tobacco + Piper betle leaf. Chemicals were extracted from the chewing material and saliva of subjects chewing these betel preparations. Saliva analysis involved protein precipitation with acetonitrile, dilution with formic acid followed by LCMS analysis. Baseline and chewing saliva levels were compared using t-tests and differences between groups were compared by ANOVA; p areca-specific alkaloids, total tobacco-specific alkaloids and chavibetol. From this pilot study, we propose the following chemical patterns as biomarkers: areca alkaloids for BN use, areca alkaloids and chavibetol for BL use, and areca alkaloids plus chavibetol and tobacco-specific alkaloids for BQ use. PMID:25797484

  1. Effectiveness of an Applied Microbiology Course Specifically Designed for Chemical Engineering Majors

    Directory of Open Access Journals (Sweden)

    Gregory B. Hecht

    2009-12-01

    Full Text Available In recent years, the disciplines of microbiology and chemical engineering have developed an increasing convergence. To meet the needs of their future employers, today’s chemical engineering students must receive some background in microbiology. This report describes the development and content of “Biological Systems and Applications,” a novel course specifically designed to provide basic biology and applied microbiology knowledge, skills, and experience to sophomore chemical engineering majors. Data collected from entrance and exit surveys of the students demonstrated that the course is successful. The importance of the “project-base” learning technique and of interdisciplinary faculty-student and faculty-faculty collaborations are proposed as elements essential to the success of this particular course.

  2. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    OpenAIRE

    Sobek, Jens; Aquino, Catharine; Weigel, Wilfried; Schlapbach, Ralph

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop dr...

  3. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs.

    Science.gov (United States)

    Planells-Cases, Rosa; Lutter, Darius; Guyader, Charlotte; Gerhards, Nora M; Ullrich, Florian; Elger, Deborah A; Kucukosmanoglu, Asli; Xu, Guotai; Voss, Felizia K; Reincke, S Momsen; Stauber, Tobias; Blomen, Vincent A; Vis, Daniel J; Wessels, Lodewyk F; Brummelkamp, Thijn R; Borst, Piet; Rottenberg, Sven; Jentsch, Thomas J

    2015-12-14

    Although platinum-based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume-regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8-dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug-induced apoptosis independently from drug uptake, possibly by impairing VRAC-dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D-containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors. PMID:26530471

  4. Chemical mixtures: Evaluation of risk for child-specific exposures in a multi-stressor environment

    International Nuclear Information System (INIS)

    Evaluating the health impact from exposure to chemical mixtures is multifaceted. One component is exposure. Exposure, and consequently risk assessment for mixtures and chemicals in general, are often viewed in terms of a given exposure to a given population at a given location over a given time period. However, environmental exposures are present throughout human lifetime. As a result, an evaluation of risk must include the distinctive characteristics related to chemical exposures which will impact risk depending upon the particular life stage where exposure occurs. Risks to offspring may be associated with unique exposures in utero, during infancy, childhood, or adolescent periods. For example, exposure of infants to anthropogenic chemicals via breast milk may be of concern. The Agency for Toxic Substances and Disease Registry's (ATSDR's) approach to evaluating risks associated with exposure to mixtures of chemicals is presented. In addition to the breast milk issues, indoor exposure to combined air pollutants, drinking water contaminants, and soil and dust contaminants are discussed. The difference between a mixture's risk evaluation for children and adults is in the distinct exposure scenarios resulting from variations in behavior, physiology, and/or pharmacokinetics between adults and children rather than in the method for the specific mixtures evaluation per se

  5. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    International Nuclear Information System (INIS)

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS

  6. Antioxidant activity of proanthocyanidins-rich fractions from Choerospondias axillaris peels using a combination of chemical-based methods and cellular-based assay.

    Science.gov (United States)

    Li, Qian; Wang, Xieyi; Chen, Jun; Liu, Chengmei; Li, Ti; McClements, David Julian; Dai, Taotao; Liu, Jiyan

    2016-10-01

    An extract isolated from Choerospondias axillaris peels was separated into five fractions using size-exclusion chromatography. The structural composition and mean degree of polymerization (mDP) of these fractions were then characterized by acid-catalysis followed by HPLC analysis. The antioxidant activity of each fraction was determined using a combination of chemical-based methods (DPPH, ABTS(+) radical scavenging activity, ferric-reducing antioxidant power, and phosphomolybdate assay) and a cellular-based assay. All fractions tested were found to have high total phenolics contents and were rich in proanthocyanidins. The mDP of fractions (F1-F5) ranged from 1.92 to 9.25. When tested by the chemical-based assays, the antioxidant activity of the fractions did not depend on molecular weight of the phenolics. Conversely, when tested by the cellular-based assay the antioxidant activity actually decreased with increasing molecular weight of the proanthocyanidins. These experiments highlight the limitations of using chemical-based assays to establish the antioxidant activity of proanthocyanidins within biological systems. PMID:27132855

  7. Transcriptome-Wide Cleavage Site Mapping on Cellular mRNAs Reveals Features Underlying Sequence-Specific Cleavage by the Viral Ribonuclease SOX.

    Directory of Open Access Journals (Sweden)

    Marta Maria Gaglia

    2015-12-01

    Full Text Available Many viruses express factors that reduce host gene expression through widespread degradation of cellular mRNA. An example of this class of proteins is the mRNA-targeting endoribonuclease SOX from the gamma-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV. Previous studies indicated that cleavage of messenger RNAs (mRNA by SOX occurs at specific locations defined by the sequence of the target RNA, which is at odds with the down-regulation of a large portion of cellular transcripts. In this study, we address this paradox by using high-throughput sequencing of cleavage intermediates combined with a custom bioinformatics-based analysis pipeline to identify SOX cleavage sites across the mRNA transcriptome. These data, coupled with targeted mutagenesis, reveal that while cleavage sites are specific and reproducible, they are defined by a degenerate sequence motif containing a small number of conserved residues rather than a strong consensus sequence. This degenerate element is well represented in both human and KSHV mRNA, and its presence correlates with RNA destabilization by SOX. This represents a new endonuclease targeting strategy, in which use of a degenerate targeting element enables RNA cleavage at specific locations without restricting the range of targets. Furthermore, it shows that strong target selectivity can be achieved without a high degree of sequence specificity.

  8. Bacillus subtilis deoxyribonuclease activity specific for single-stranded deoxyribonucleic acid: cellular site and variations during germination and sporulation.

    OpenAIRE

    Cobianchi, F; Attolini, C; Falaschi, A; Ciarrocchi, G

    1980-01-01

    The endonuclease of Bacillus subtilis specific for single-stranded deoxyribonucleic acid is absent in spores, appears during germination only after the start of deoxyribonucleic acid synthesis, and is located almost exclusively in the periplasm.

  9. A single dose of inactivated hepatitis A vaccine promotes HAV-specific memory cellular response similar to that induced by a natural infection.

    Science.gov (United States)

    Melgaço, Juliana Gil; Morgado, Lucas Nóbrega; Santiago, Marta Almeida; Oliveira, Jaqueline Mendes de; Lewis-Ximenez, Lia Laura; Hasselmann, Bárbara; Cruz, Oswaldo Gonçalves; Pinto, Marcelo Alves; Vitral, Claudia Lamarca

    2015-07-31

    Based on current studies on the effects of single dose vaccines on antibody production, Latin American countries have adopted a single dose vaccine program. However, no data are available on the activation of cellular response to a single dose of hepatitis A. Our study investigated the functional reactivity of the memory cell phenotype after hepatitis A virus (HAV) stimulation through administration of the first or second dose of HAV vaccine and compared the response to that of a baseline group to an initial natural infection. Proliferation assays showed that the first vaccine dose induced HAV-specific cellular response; this response was similar to that induced by a second dose or an initial natural infection. Thus, from the first dose to the second dose, increase in the frequencies of classical memory B cells, TCD8 cells, and central memory TCD4 and TCD8 cells were observed. Regarding cytokine production, increased IL-6, IL-10, TNF, and IFNγ levels were observed after vaccination. Our findings suggest that a single dose of HAV vaccine promotes HAV-specific memory cell response similar to that induced by a natural infection. The HAV-specific T cell immunity induced by primary vaccination persisted independently of the protective plasma antibody level. In addition, our results suggest that a single dose immunization system could serve as an alternative strategy for the prevention of hepatitis A in developing countries. PMID:26144899

  10. Inhibition of RANKL-dependent cellular fusion in pre-osteoclasts by amiloride and a NHE10-specific monoclonal antibody.

    Science.gov (United States)

    Mine, Yuichi; Shuto, Takahiro; Nikawa, Hiroki; Kawai, Toshihisa; Ohara, Masaru; Kawahara, Kazuko; Ohta, Kouji; Kukita, Toshio; Terada, Yoshihiro; Makihira, Seicho

    2015-06-01

    The functions of Na(+) /H(+) exchangers (NHEs) during osteoclastic differentiation were investigated using the NHE inhibitor amiloride and a monoclonal antibody (MAb). Compared with sRANKL-stimulated control cells, amiloride decreased the number of large TRAP-positive osteoclast cells (OCs) with ≥10 nuclei and increased the number of small TRAP-positive OCs with ≤10 nuclei during sRANKL-dependent osteoclastic differentiation of RAW264.7 cells. NHE10 mRNA expression and OC differentiation markers were increased by sRANKL stimulation in dose- and time-dependent manners. NHEs 1-9 mRNA expression was not increased by sRANKL stimulation. Similar to amiloride, a rat anti-mouse NHE10 MAb (clone 6B11) decreased the number of large TRAP-positive OCs, but increased the number of small TRAP-positive OCs. These findings suggested that inhibition of NHEs by amiloride or an anti-NHE10 MAb prevented sRANKL-promoted cellular fusion. The anti-NHE10 MAb has the potential for use as an effective inhibitor of bone resorption for targeted bone disease therapy. PMID:25612314

  11. Cellular Dynamic Simulator: An Event Driven Molecular Simulation Environment for Cellular Physiology

    OpenAIRE

    Byrne, Michael J.; Waxham, M. Neal; Kubota, Yoshihisa

    2010-01-01

    In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multi...

  12. Cellular receptor for 125I-labeled tumor necrosis factor: specific binding, affinity labeling, and relationship to sensitivity

    International Nuclear Information System (INIS)

    Tumor necrosis factor (TNF) is a proteinaceous toxin shed by stimulated myeloid cells. Murine TNF was radioiodinated to a specific activity of 1 mCi/nmol (1 Ci = 37 GBq) of monomer. 125I-labeled TNF (125-TNF) retained complete cytotoxic activity and it was immunochemically identical to the native toxin in a quantitative immunoprecipitation assay. It could be shown by competition binding that 125I-TNF bound to intact L929 cells with a specificity equal to that of native toxin. The conditions of time, temperature, and concentration involved in equilibrium specific binding to intact cells were studied in detail. J774.1 cells, the source of the toxin, demonstrated similar binding but were not sensitive to 125I-TNF cytotoxicity. Normal lymphoid organ cell suspensions and two human tumorigenic cell lines were not sensitive and failed to demonstrate specific binding. 125I-TNF, covalently cross-linked to its receptor on sensitive L-M cells with disuccinimidyl suberate, was isolated and analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and autoradiography. Two specific bands were identified. The presence of the binding site appears to be necessary but not sufficient to explain the sensitivity of cells to the cytotoxic action of TNF

  13. High specific surface area carbon nanotubes from catalytic chemical vapor deposition process

    OpenAIRE

    Bacsa, Revathi; Laurent, Christophe; Peigney, Alain; Bacsa, Wolfgang; Vaugien, Thibaud; Rousset, Abel

    2000-01-01

    A carbon nanotube specimen with a carbon content of 83 wt.% (95 vol.%) and a specific surface area equal to 790 m2/g (corresponding to 948 m2/g of carbon) is prepared by a catalytic chemical vapor deposition method. The nanotubes, 90% of which are single- and double-walled, are individual rather than in bundles. High-resolution electron microscopy shows a diameter distribution in the range 0.8-5 nm and Raman spectroscopy shows a high proportion of tubular carbon. Both techniques reveal a maxi...

  14. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  15. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    International Nuclear Information System (INIS)

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens

  16. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress

    Science.gov (United States)

    Fat-specific protein 27 (FSP27), a member of the cell death-inducing DNA fragmentation factor a-like effector (Cide) family, is highly expressed in adipose tissues and is a lipid droplet (LD)-associated protein that induces the accumulation of LDs. Using a yeast two-hybrid system to examine potentia...

  17. The IgG-specific endoglycosidase EndoS inhibits both cellular and complement-mediated autoimmune hemolysis

    OpenAIRE

    Allhorn, Maria; Briceño, Juana G.; Baudino, Lucie; Lood, Christian; Olsson, Martin L.; Izui, Shozo; Collin, Mattias

    2010-01-01

    EndoS from Streptococcus pyogenes is an immunomodulating enzyme that specifically hydrolyzes glycans from human immunoglobulin G and thereby affects antibody effector functions. Autoimmune hemolytic anemia is caused by antibody-mediated red blood cell (RBC) destruction and often resists treatment with corticosteroids that also cause frequent adverse effects. We show here that anti-RhD (anti-D) and rabbit anti–human-RBC antibodies (anti-RBC) mediated destruction of RBC, ie, phagocytosis, compl...

  18. Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation.

    Science.gov (United States)

    David, Gregory; Grandinetti, Kathryn B; Finnerty, Patricia M; Simpson, Natalie; Chu, Gerald C; Depinho, Ronald A

    2008-03-18

    The Sin3-histone deacetylase (HDAC) corepressor complex is conserved from yeast to humans. Mammals possess two highly related Sin3 proteins, mSin3A and mSin3B, which serve as scaffolds tethering HDAC enzymatic activity, and numerous sequence-specific transcription factors to enable local chromatin regulation at specific gene targets. Despite broad overlapping expression of mSin3A and mSin3B, mSin3A is cell-essential and vital for early embryonic development. Here, genetic disruption of mSin3B reveals a very different phenotype characterized by the survival of cultured cells and lethality at late stages of embryonic development with defective differentiation of multiple lineages-phenotypes that are strikingly reminiscent of those associated with loss of retinoblastoma family members or E2F transcriptional repressors. Additionally, we observe that, whereas mSin3B(-/-) cells cycle normally under standard growth conditions, they show an impaired ability to exit the cell cycle with limiting growth factors. Correspondingly, mSin3B interacts physically with the promoters of known E2F target genes, and its deficiency is associated with derepression of these gene targets in vivo. Together, these results reveal a critical role for mSin3B in the control of cell cycle exit and terminal differentiation in mammals and establish contrasting roles for the mSin3 proteins in the growth and development of specific lineages. PMID:18332431

  19. Live cell imaging with chemical specificity using dual frequency CARS microscopy.

    Science.gov (United States)

    Pope, Iestyn; Langbein, Wolfgang; Borri, Paola; Watson, Peter

    2012-01-01

    Live cell microscopy using fluorescent proteins and small fluorescent probes is a well-established and essential tool for cell biology; however, there is a considerable need for noninvasive techniques able to study tissue and cell dynamics without the need to introduce chemical or genetically encoded probes. Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging tool for cell biologists to examine live cell dynamics with chemical specificity in a label-free, noninvasive way. CARS is a multiphoton process offering intrinsic three-dimensional submicron resolution, where the image contrast is obtained from light inelastically scattered by the vibrations of endogenous chemical bonds. CARS is particularly well suited to study lipid biology, since the CARS signal of localized lipids (exhibiting a large amount of identical bonds in the focal volume) is very strong. Conversely, photostable, lipid-specific markers for fluorescence microscopy are difficult to produce and the process of labeling often affects lipid localization and function, making imaging lipids in live cells challenging, and accurate quantification often impossible. Here, we describe in detail the principles behind our experimental setup for performing CARS microscopy of lipid droplets on live cells. Since typical vibrational resonances in liquid have coherence times in the picosecond range, CARS is preferably implemented with picosecond lasers which are however expensive and less efficient than femtosecond lasers, which could also be used for other multiphoton techniques such as two-photon fluorescence. In our setup, we show that femtosecond lasers can be spectrally focused in a simple, alignment insensitive, and cost-effective way to achieve a vibrational excitation similar to picosecond lasers. This opens the way to integrate CARS and two-photon fluorescence in a single multimodal instrument for its widespread application. We also describe our dual frequency CARS system which eliminates

  20. Cellular biopolymers and molecular structure of a secondary pulp and paper mill sludge verified by spectroscopy and chemical extraction techniques.

    Science.gov (United States)

    Edalatmanesh, Maryam; Sain, Mohini; Liss, Steven N

    2010-01-01

    For proper treatment, recycling, or disposal of the pulp and paper mill secondary sludge qualitative and quantitative determination of its characteristics are necessary. Chemical extraction, quantitative characterization, and spectroscopic experiments have been performed to determine the molecular composition and chemical functionality of a pulp and paper mill secondary sludge. In order to extract the low-molecular-weight substances, soxhlet extraction with polar and non-polar solvents was performed where most of the target substances (17±1.3%.) were extracted after 2 hours. Over time, this extraction followed a first-order kinetics. Fiber analyses have shown 12±3% lignin, 28±3% cellulose, and 12±4% hemicelluloses content. The ash content was about 17±0.5%. In this work, 7 and 16% intra- and extracellular polymeric substances, respectively, were extracted from the secondary sludge. EPS and mixture of intra- and extracellular biopolymers have shown similar chemical functionalities. These analyses confirmed that the paper secondary sludge consisted mainly of wood fiber, i.e. lignocellulosic substances, along with proteins and polysaccharides originated from microorganisms. PMID:21123914

  1. A chemically labeled cytotoxic agent: Two-photon fluorophore for optical tracking of cellular pathway in chemotherapy

    OpenAIRE

    Wang, Xiaopeng; Krebs, Linda J.; Al-Nuri, Mohammed; Pudavar, Haridas E.; Ghosal, Saswati; Liebow, Charles; Nagy, Attila A.; Schally, Andrew V.; Prasad, Paras N.

    1999-01-01

    Chemotherapy is commonly used in the treatment of cancers. However, the mechanism of action of many of these agents is not well understood. We present the synthesis of a two-photon fluorophore (C625) and its biological application when chemically linked to a chemotherapeutic agent (AN-152). By using two-photon laser-scanning microscopy, the drug:fluorophore conjugate can be observed directly as it interacts with receptor-positive cell lines. The results of this project visually show the recep...

  2. Specific cellular incorporation of a pyrene-labelled cholesterol: lipoprotein-mediated delivery toward ordered intracellular membranes.

    Directory of Open Access Journals (Sweden)

    Gérald Gaibelet

    Full Text Available In the aim of testing tools for tracing cell trafficking of exogenous cholesterol, two fluorescent derivatives of cholesterol, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol and 21-methylpyrenyl-cholesterol (Pyr-met-Chol, with distinctive chemico-physical characteristics, have been compared for their cell incorporation properties, using two cell models differently handling cholesterol, with two incorporation routes. In the Caco-2 cell model, the cholesterol probes were delivered in bile salt micelles, as a model of intestinal absorption. The two probes displayed contrasting behaviors for cell uptake characteristics, cell staining, and efflux kinetics. In particular, Pyr-met-Chol cell incorporation involved SR-BI, while that of NBD-Chol appeared purely passive. In the PC-3 cell model, which overexpresses lipoprotein receptors, the cholesterol probes were delivered via the serum components, as a model of systemic delivery. We showed that Pyr-met-Chol-labelled purified LDL or HDL were able to specifically deliver Pyr-met-Chol to the PC-3 cells, while NBD-Chol incorporation was independent of lipoproteins. Observations by fluorescence microscopy evidenced that, while NBD-Chol readily stained the cytosolic lipid droplets, Pyr-met-Chol labelling led to the intense staining of intracellular structures of membranous nature, in agreement with the absence of detectable esterification of Pyr-met-Chol. A 48 h incubation of PC-3 cells with either Pyr-met-Chol-labelled LDL or HDL gave same staining patterns, mainly colocalizing with Lamp1, caveolin-1 and CD63. These data indicated convergent trafficking downwards their respective receptors, LDL-R and SR-BI, toward the cholesterol-rich internal membrane compartments, late endosomes and multivesicular bodies. Interestingly, Pyr-met-Chol staining of these structures exhibited a high excimer fluorescence emission, revealing their ordered membrane environment, and indicating that Pyr-met-Chol behaves as a fair

  3. Specific cellular incorporation of a pyrene-labelled cholesterol: lipoprotein-mediated delivery toward ordered intracellular membranes.

    Science.gov (United States)

    Gaibelet, Gérald; Allart, Sophie; Tercé, François; Azalbert, Vincent; Bertrand-Michel, Justine; Hamdi, Safouane; Collet, Xavier; Orlowski, Stéphane

    2015-01-01

    In the aim of testing tools for tracing cell trafficking of exogenous cholesterol, two fluorescent derivatives of cholesterol, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), with distinctive chemico-physical characteristics, have been compared for their cell incorporation properties, using two cell models differently handling cholesterol, with two incorporation routes. In the Caco-2 cell model, the cholesterol probes were delivered in bile salt micelles, as a model of intestinal absorption. The two probes displayed contrasting behaviors for cell uptake characteristics, cell staining, and efflux kinetics. In particular, Pyr-met-Chol cell incorporation involved SR-BI, while that of NBD-Chol appeared purely passive. In the PC-3 cell model, which overexpresses lipoprotein receptors, the cholesterol probes were delivered via the serum components, as a model of systemic delivery. We showed that Pyr-met-Chol-labelled purified LDL or HDL were able to specifically deliver Pyr-met-Chol to the PC-3 cells, while NBD-Chol incorporation was independent of lipoproteins. Observations by fluorescence microscopy evidenced that, while NBD-Chol readily stained the cytosolic lipid droplets, Pyr-met-Chol labelling led to the intense staining of intracellular structures of membranous nature, in agreement with the absence of detectable esterification of Pyr-met-Chol. A 48 h incubation of PC-3 cells with either Pyr-met-Chol-labelled LDL or HDL gave same staining patterns, mainly colocalizing with Lamp1, caveolin-1 and CD63. These data indicated convergent trafficking downwards their respective receptors, LDL-R and SR-BI, toward the cholesterol-rich internal membrane compartments, late endosomes and multivesicular bodies. Interestingly, Pyr-met-Chol staining of these structures exhibited a high excimer fluorescence emission, revealing their ordered membrane environment, and indicating that Pyr-met-Chol behaves as a fair cholesterol tracer

  4. Ablation of the cellular prion protein, PrPC, specifically on follicular dendritic cells has no effect on their maturation or function.

    Science.gov (United States)

    McCulloch, Laura; Brown, Karen L; Mabbott, Neil A

    2013-03-01

    Follicular dendritic cells (FDC) are situated in the primary follicles of lymphoid tissues where they maintain the structural integrity of the B-lymphocyte follicle, and help to drive immunoglobulin class-switch recombination, somatic hypermutation and affinity maturation during the germinal centre response. FDC can also provide a reservoir for pathogens that infect germinal centres including HIV and prions. FDC express high levels of the normal cellular form of the prion protein (PrP(C) ), which makes them susceptible to prion infection. The function of PrP(C) is uncertain and it is not known why FDC require such high levels of expression of a protein that is found mainly on cells of the central nervous system. In this study, the function of FDC was assessed in mice that had PrP(C) ablated specifically in their FDC. In mice with FDC-specific PrP(C) ablation, our analysis revealed no observable deficits in lymphoid follicle microarchitecture and FDC status. No effects on FDC ability to trap immune complexes or drive antigen-specific antibody responses and affinity maturation in B lymphocytes were observed. These data clearly demonstrate that PrP(C) expression is dispensable for the functional maturation of FDC and their ability to maintain antigen-specific antibody responses and affinity maturation. PMID:23121447

  5. Dietary Korean mistletoe enhances cellular non-specific immune responses and survival of Japanese eel (Anguilla japonica).

    Science.gov (United States)

    Choi, Sang-Hoon; Park, Kwan-Ha; Yoon, Taek-Joon; Kim, Jong-Bae; Jang, Yong-Suk; Choe, Chung Hyeon

    2008-01-01

    The present study was performed to investigate the immunostimulatory effects of Korean mistletoe extract (KM-110; Viscum album Coloratum) on the non-specific immune response and protection against Aeromonas hydrophila infection in Japanese eel (Anguilla japonica). Eels were fed under 4 regimes, 0%, 0.1%, 0.5% and 1.0% KM-110 mixed diet. On day 14 after feeding, 15 fish from each group were injected i.p. with live A. hydrophila (3 x 10(6)CFU) and the remaining unchallenged fish from each group were used to study the innate immune response. On 14 days post-infection, the total survival rates were 26.6% in control, and 33.3%, 66.6% and 80% in 0.1%, 0.5% and 1% KM-110-treated groups, respectively. The maximum lysozyme activity was observed in the 1% KM-110-treated group. There was no significant difference of lysozyme activity between 0.1% and 0.5% KM-110 group. Superoxide anion (O(2)(-)) production was significantly (pcontrol and 0.1% KM-110 group. No significant difference of (O(2)(-) production was found between 0.5% and 1% KM-110 group. Likewise, there was a significant increase in phagocytic activity in the 0.5% KM-110 group compared with the 0.1% group (p<0.05), but no significant difference between the 0.5% and the 1% KM-110 group indicating that 0.5% KM-110 concentration is suitable for stimulating maximum phagocytic activity resulting in a high amount of ROI production. Considering the present results, KM-110 could be utilized as a promising immunostimulating substance for a diet in aquaculture. PMID:18023593

  6. Quantitative Chemically-Specific Coherent Diffractive Imaging of Buried Interfaces using a Tabletop EUV Nanoscope

    CERN Document Server

    Shanblatt, Elisabeth R; Gardner, Dennis F; Mancini, Giulia F; Karl, Robert M; Tanksalvala, Michael D; Bevis, Charles S; Vartanian, Victor H; Kapteyn, Henry C; Adams, Daniel E; Murnane, Margaret M

    2016-01-01

    Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither optical microscopy nor atomic force microscopy can image the buried interfaces. Short wavelength (29 nm) high harmonic light can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Moreover, differences in the absolute reflectivity of the interfaces before and after coating reveal the formation of interstitial diffusion and oxidation layers at the Al-Cu and Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability for quantitative, chemically-specific imaging of buried structures, and the material evolution that occurs at these buried ...

  7. Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy; Russell, Marion; Apte, Michael G.

    2010-06-01

    Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers where emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.

  8. Chemical mechanism and specificity of the C5-mannuronan epimerase reaction.

    Science.gov (United States)

    Jerga, Agoston; Stanley, Matthew D; Tipton, Peter A

    2006-08-01

    C5-mannuronan epimerase catalyzes the formation of alpha-L-guluronate residues from beta-D-mannuronate residues in the synthesis of the linear polysaccharide alginate. The reaction requires the abstraction of a proton from C5 of the residue undergoing epimerization followed by re-protonation on the opposite face. Rapid-mixing chemical quench experiments were conducted to determine the nature of the intermediate formed upon proton abstraction in the reaction catalyzed by the enzyme from Pseudomonas aeruginosa. Colorimetric and HPLC analysis of quenched samples indicated that shortened oligosaccharides containing an unsaturated sugar residue form as transient intermediates in the epimerization reaction. This suggests that the carbanion is stabilized by glycal formation, concomitant with cleavage of the glycosidic bond between the residue undergoing epimerization and the adjacent residue. The time dependence of glycal formation suggested that slow steps flank the chemical steps in the catalytic cycle. Solvent isotope effects on V and V/K were unity, consistent with a catalytic cycle in which chemistry is not rate-limiting. The specificity of the epimerase with regard to neighboring residues was examined, and it was determined that the enzyme showed no bias for mannuronate residues adjacent to guluronates versus those adjacent to mannuronates. Proton abstraction and sugar epimerization were irreversible. Existing guluronate residues already present in the polysaccharide were not converted to mannuronates, nor was incorporation of solvent deuterium into existing mannuronates observed. PMID:16866359

  9. Chemical-specific adjustment factors (inter-species toxicokinetics) to establish the ADI for steviol glycosides.

    Science.gov (United States)

    Roberts, Ashley; Lynch, Barry; Rogerson, Rebecca; Renwick, Andrew; Kern, Hua; Coffee, Matthew; Cuellar-Kingston, Nicole; Eapen, Alex; Crincoli, Christine; Pugh, George; Bhusari, Sachin; Purkayastha, Sidd; Carakostas, Michael

    2016-08-01

    The acceptable daily intake (ADI) of commercially available steviol glycosides is currently 0-4 mg/kg body weight (bw)/day, based on application of a 100-fold uncertainty factor to a no-observed-adverse-effect-level value from a chronic rat study. Within the 100-fold uncertainty factor is a 10-fold uncertainty factor to account for inter-species differences in toxicokinetics (4-fold) and toxicodynamics (2.5-fold). Single dose pharmacokinetics of stevioside were studied in rats (40 and 1000 mg/kg bw) and in male human subjects (40 mg/kg bw) to generate a chemical-specific, inter-species toxicokinetic adjustment factor. Tmax values for steviol were at ∼8 and ∼20 h after administration in rats and humans, respectively. Peak concentrations of steviol were similar in rats and humans, while steviol glucuronide concentrations were significantly higher in humans. Glucuronidation in rats was not saturated over the dose range 40-1000 mg/kg bw. The AUC0-last for steviol was approximately 2.8-fold greater in humans compared to rats. Chemical-specific adjustment factors for extrapolating toxicokinetics from rat to human of 1 and 2.8 were established based on Cmax and AUC0-last data respectively. Because these factors are lower than the default value of 4.0, a higher ADI for steviol glycosides of between 6 and 16 mg/kg bw/d is justified. PMID:27181453

  10. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) -Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART)

    DEFF Research Database (Denmark)

    Skov Jensen, Sanne; Fomsgaard, Anders; Borggren, Marie; Tingstedt, Jeanette Linnea; Gerstoft, Jan; Kronborg, Gitte; Rasmussen, Line Dahlerup; Pedersen, Court; Karlsson, Ingrid

    2015-01-01

    Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated...... the ability of effector cells and antibodies to mediate ADCC separately and in combination using the ADCC-PanToxiLux assay. The ability of the peripheral blood mononuclear cells (PBMCs) to mediate ADCC was significantly higher in individuals who had been treated with ART before seroconversion......, compared to the individuals initiating ART at a low CD4+ T cell count (<350 cells/μl blood) and the ART-naïve individuals. The frequency of CD16 expressing natural killer (NK) cells correlated with both the duration of ART and Granzyme B (GzB) activity. In contrast, the plasma titer of antibodies mediating...

  11. In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects

    International Nuclear Information System (INIS)

    Silicon carbide is an extremely hard, wear resistant, and thermally stable material with particular photoluminescence and interesting biocompatibility properties. For this reason, it is largely employed for industrial applications such as ceramics. More recently, nano-sized SiC particles were expected to enlarge their use in several fields such as composite supports, power electronics, biomaterials, etc. However, their large-scaled development is restricted by the potential toxicity of nanoparticles related to their manipulation and inhalation. This study aimed at synthesizing (by laser pyrolysis or sol–gel methods), characterizing physico-chemical properties of six samples of SiC nanopowders, then determining their in vitro biological impact(s). Using a macrophage cell line, toxicity was assessed in terms of cell membrane damage (LDH release), inflammatory effect (TNF-α production), and oxidative stress (reactive oxygen species generation). None of the six samples showed cytotoxicity while remarkable pro-oxidative reactions and inflammatory response were recorded, whose intensity appears related to the physico-chemical features of nano-sized SiC particles. In vitro data clearly showed an impact of the extent of nanoparticle surface area and the nature of crystalline phases (α-SiC vs. β-SiC) on the TNF-α production, a role of surface iron on free radical release, and of the oxidation state of the surface on cellular H2O2 production.

  12. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  13. Inference of Specific Gene Regulation by Environmental Chemicals in Human Embryonic Stem Cells

    OpenAIRE

    Sachiyo Aburatani; Wataru Fujibuchi

    2012-01-01

    We are exposed to many environmental chemicals in our daily life. Certain chemicals threaten our health, especially that of embryos and can cause serious developmental problems. To prevent abnormal development and diseases caused by chemicals, it is important to clarify the mechanisms of chemical toxicity in embryonic cells. The gene regulatory network is one of the useful methods for clarifying functional mechanisms in living cells, so we applied a statistical method to infer the gene regula...

  14. A new cell line for high throughput HIV-specific antibody-dependent cellular cytotoxicity (ADCC) and cell-to-cell virus transmission studies

    Science.gov (United States)

    Orlandi, Chiara; Flinko, Robin; Lewis, George K.

    2016-01-01

    Several lines of evidence indicate that antibody-dependent cellular cytotoxicity (Wren et al., 2013) is important in the pathogenesis of HIV-1 infection. Namely, ADCC is induced during natural HIV-1 infection or in HIV-1 vaccine studies, the latter demonstrated by the RV144 vaccine trial. To expedite the assessment of ADCC in studies of HIV, we have developed a high throughput assay. We have optimized the rapid fluorometric antibody-mediated cytotoxicity assay (RFADCC) by transfecting the EGFP-CEM-NKr cell line to constitutively express SNAP-tagged CCR5. This cell line can then serve as a source of HIV-specific targets when coated with monomeric gp120, spinoculated with inactivated intact virions, infected by cell-free viral diffusion or infected by cell-to-cell transmission of virus. The optimized strategy has two significant advantages over the original RFADCC method: First, the preparation of detectable target cells is less labor intensive and faster as it does not rely on multiple staining and washing steps for target cells. Second, because the target cell markers GFP and SNAP are constitutively expressed, the assay provides highly reproducible data. These strengths make the optimized RFADCC assay suitable not only for studies of HIV-1 specific cytotoxicity but also for studies of cell–cell transmission of virus. In conclusion, this assay provides a new generation T cell line that can expedite large clinical studies as well as research studies in humans or non-human primates. PMID:26969387

  15. Organization of a system of guarantee of quality for the control of specifications of chemical reagents

    International Nuclear Information System (INIS)

    Analytic methods were implemented based on valuations acid-base and redox for the quantitative determination of sodium hidroxid, iodine and iron chloride III, like part of a system of quality for the technical specifications of these reagents. The planning of its system of quality includes two fundamental parts: insurance and control of quality. In the insurance part the state of operation of the team that you uses settled down, gauges the one that achieve to maintain under the supervision of a single operator (electronic equip and glassware) and the design of the appropriate documents settled down to carry out the periodic supervision of the acting of the same ones and other aspects characteristic of the system (experimental results). Also protocolized and validated the analytic methods to use following the approaches of precision given by ASTM, organism whose methodologies are recognized in the country like official; other procedures, as that of calibration of the volumetric equipments, they were also protocolized. In the part of control of quality, the limits settled down and procedures were applied the scales and used other, to the necessary distilled water to carry out the determinations and to the used chemical reagents. With base in the obtained results you determines that the analyzed reagents fulfill the specifications of ACS (and with those reported by the maker) at the same time settled down that the laboratory 09 of the Chemistry School, used in a large part of development of this project, it didn't fulfill the necessary requirements so that it works as laboratory of control of quality. As an alternative, the administration of the School outlines as solution the use of the Laboratory of Insurance of the Quality from the Unit of Service to the Industry for such end

  16. Toxicological and chemical investigation of untreated municipal wastewater: Fraction- and species-specific toxicity.

    Science.gov (United States)

    Hrubik, Jelena; Glisic, Branka; Tubic, Aleksandra; Ivancev-Tumbas, Ivana; Kovacevic, Radmila; Samardzija, Dragana; Andric, Nebojsa; Kaisarevic, Sonja

    2016-05-01

    Absence of a municipal wastewater (WW) treatment plant results in the untreated WW discharge into the recipient. The present study investigated toxic effects and chemical composition of water extracts and fractions from untreated WW and recipient Danube River (DR). Samples were prepared by solid-phase extraction and silica gel fractionation and screened for EROD activity and cytotoxicity using aquatic models, comprising of fish liver cells (PLHC-1) and a model of the early development of zebrafish embryos, while rat (H4IIE) and human (HepG2) hepatoma cells served as mammalian models. Polar fraction caused cytotoxicity and increased the EROD activity in PLHC-1 cells, and increased mortality and developmental abnormalities in developing zebrafish embryos. In H4IIE, polar fraction induced inhibition of cell growth and increased EROD activity, whereas HepG2 exerted low or no response to the exposure. Non-polar and medium-polar fractions were ineffective. Tentative identification by GC/MS showed that WW is characterized by the hydrocarbons, alkylphenols, plasticizers, and a certain number of benzene derivatives and organic acids. In DR, smaller number of organic compounds was identified and toxicity was less pronounced than in WW treatments. The present study revealed the potent toxic effect of polar fraction of untreated WW, with biological responses varying in sensitivity across organisms. Obtained results confirmed that fraction- and species-specific toxicity should be considered when assessing health risk of environmental pollution. PMID:26829069

  17. Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions.

    Directory of Open Access Journals (Sweden)

    Slaven Erceg

    Full Text Available BACKGROUND: Human embryonic stem cells (hESC provide a unique model to study early events in human development. The hESC-derived cells can potentially be used to replace or restore different tissues including neuronal that have been damaged by disease or injury. METHODOLOGY AND PRINCIPAL FINDINGS: The cells of two different hESC lines were converted to neural rosettes using adherent and chemically defined conditions. The progenitor cells were exposed to retinoic acid (RA or to human recombinant basic fibroblast growth factor (bFGF in the late phase of the rosette formation. Exposing the progenitor cells to RA suppressed differentiation to rostral forebrain dopamine neural lineage and promoted that of spinal neural tissue including motor neurons. The functional characteristics of these differentiated neuronal precursors under both, rostral (bFGF and caudalizing (RA signals were confirmed by patch clamp analysis. CONCLUSIONS/SIGNIFICANCE: These findings suggest that our differentiation protocol has the capacity to generate region-specific and electrophysiologically active neurons under in vitro conditions without embryoid body formation, co-culture with stromal cells and without presence of cells of mesodermal or endodermal lineages.

  18. Site-Specific Variability in the Chemical Diversity of the Antarctic Red Alga Plocamium cartilagineum

    Directory of Open Access Journals (Sweden)

    Ryan M. Young

    2013-06-01

    Full Text Available Plocamium cartilagineum is a common red alga on the benthos of Antarctica and can be a dominant understory species along the western Antarctic Peninsula. Algae from this region have been studied chemically, and like “P. cartilagineum” from other worldwide locations where it is common, it is rich in halogenated monoterpenes, some of which have been implicated as feeding deterrents toward sympatric algal predators. Secondary metabolites are highly variable in this alga, both qualitatively and quantitatively, leading us to probe individual plants to track the possible link of variability to genetic or other factors. Using cox1 and rbcL gene sequencing, we find that the Antarctic alga divides into two closely related phylogroups, but not species, each of which is further divided into one of five chemogroups. The chemogroups themselves, defined on the basis of Bray-Curtis similarity profiling of GC/QqQ chromatographic analyses, are largely site specific within a 10 km2 area. Thus, on the limited geographical range of this analysis, P. cartilagineum displays only modest genetic radiation, but its secondary metabolome was found to have experienced more extensive radiation. Such metabogenomic divergence demonstrated on the larger geographical scale of the Antarctic Peninsula, or perhaps even continent-wide, may contribute to the discovery of cryptic speciation.

  19. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath.

    Science.gov (United States)

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-01-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely "suspense" or "comedy" caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising. PMID:27160439

  20. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    Science.gov (United States)

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-05-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising.

  1. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    Science.gov (United States)

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-01-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising. PMID:27160439

  2. Effect of a hands-free wire on specific absorption rate for a waist-mounted 1.8 GHz cellular telephone handset

    International Nuclear Information System (INIS)

    A common feature of cellular telephony is the use of a 'hands-free' audio extension lead connected to a waist-worn handset. Interaction between the transmitting antenna, the wire and the user's body can occur, with detrimental effects including polar pattern degradation, reduced efficiency and localized increases in specific absorption rate (SAR). Using a realistic full-body model of an adult male, finite difference time domain analysis was employed to investigate the coupling between a hip-mounted 1.8 GHz handset fitted with a monopole antenna and a 1 m long wire representing a hands-free wire. Conduction current densities were computed for three identifiable coupling modes: magnetic-only, conductive-only and combined conductive-and-magnetic. Magnetic-only coupling was dominant. Without the lead, placing the handset at waist height led to a 42.8% increase in the total energy deposited in the body, compared to use at the head. Introducing the lead further increased the body loss, with a reduction in system radiation efficiency from 52% to 43.7%. Without the hands-free lead, the peak 1 g and 10 g SARs were 0.450 W kg-1 and 0.265 W kg-1, respectively, for 125 mW transmit power. With the hands-free lead connected, these values increased to 1.14 W kg-1 and 0.430 W kg-1, respectively

  3. Ubiquitin-specific Peptidase 10 (USP10) Deubiquitinates and Stabilizes MutS Homolog 2 (MSH2) to Regulate Cellular Sensitivity to DNA Damage.

    Science.gov (United States)

    Zhang, Mu; Hu, Chen; Tong, Dan; Xiang, Shengyan; Williams, Kendra; Bai, Wenlong; Li, Guo-Min; Bepler, Gerold; Zhang, Xiaohong

    2016-05-13

    MSH2 is a key DNA mismatch repair protein, which plays an important role in genomic stability. In addition to its DNA repair function, MSH2 serves as a sensor for DNA base analogs-provoked DNA replication errors and binds to various DNA damage-induced adducts to trigger cell cycle arrest or apoptosis. Loss or depletion of MSH2 from cells renders resistance to certain DNA-damaging agents. Therefore, the level of MSH2 determines DNA damage response. Previous studies showed that the level of MSH2 protein is modulated by the ubiquitin-proteasome pathway, and histone deacetylase 6 (HDAC6) serves as an ubiquitin E3 ligase. However, the deubiquitinating enzymes, which regulate MSH2 remain unknown. Here we report that ubiquitin-specific peptidase 10 (USP10) interacts with and stabilizes MSH2. USP10 deubiquitinates MSH2 in vitro and in vivo Moreover, the protein level of MSH2 is positively correlated with the USP10 protein level in a panel of lung cancer cell lines. Knockdown of USP10 in lung cancer cells exhibits increased cell survival and decreased apoptosis upon the treatment of DNA-methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and antimetabolite 6-thioguanine (6-TG). The above phenotypes can be rescued by ectopic expression of MSH2. In addition, knockdown of MSH2 decreases the cellular mismatch repair activity. Overall, our results suggest a novel USP10-MSH2 pathway regulating DNA damage response and DNA mismatch repair. PMID:26975374

  4. In vitro cellular responses to silicon carbide particles manufactured through the Acheson process: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects.

    Science.gov (United States)

    Boudard, Delphine; Forest, Valérie; Pourchez, Jérémie; Boumahdi, Najih; Tomatis, Maura; Fubini, Bice; Guilhot, Bernard; Cottier, Michèle; Grosseau, Philippe

    2014-08-01

    Silicon carbide (SiC) an industrial-scale product manufactured through the Acheson process, is largely employed in various applications. Its toxicity has been poorly investigated. Our study aims at characterizing the physico-chemical features and the in vitro impact on biological activity of five manufactured SiC powders: two coarse powders (SiC C1/C2), two fine powders (SiC F1/F2) and a powder rich in iron impurities (SiC I). RAW 264.7 macrophages were exposed to the different SiC particles and the cellular responses were evaluated. Contrary to what happens with silica, no SiC cytotoxicity was observed but pro-oxidative and pro-inflammatory responses of variable intensity were evidenced. Oxidative stress (H₂O₂ production) appeared related to SiC particle size, while iron level regulated pro-inflammatory response (TNFα production). To investigate the impact of surface reactivity on the biological responses, coarse SiC C1 and fine SiC F1 powders were submitted to different thermal treatments (650-1400 °C) in order to alter the oxidation state of the particle surface. At 1400 °C a decrease in TNFα production and an increase in HO·, COO(·-) radicals production were observed in correlation with the formation of a surface layer of crystalline silica. Finally, a strong correlation was observed between surface oxidation state and in vitro toxicity. PMID:24603312

  5. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  6. Preparation of poly(β-L-malic acid-based charge-conversional nanoconjugates for tumor-specific uptake and cellular delivery

    Directory of Open Access Journals (Sweden)

    Zhou Q

    2015-03-01

    Full Text Available Qing Zhou,1,* Tiehong Yang,1,* Youbei Qiao,1 Songyan Guo,1 Lin Zhu,2 Hong Wu11Department of Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China; 2Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Health Science Center, Kingsville, Texas, USA*These authors contributed equally to this workAbstract: In this study, a multifunctional poly(β-L-malic acid-based nanoconjugate with a pH-dependent charge conversional characteristic was developed for tumor-specific drug delivery. The short branched polyethylenimine-modified poly(β-L-malic acid (PEPM was first synthesized. Then, the fragment HAb18 F(ab′2 and 2,3-dimethylmaleic anhydride were covalently attached to the PEPM to form the nanoconjugate, HDPEPM. In this nanoconjugate, the 2,3-dimethylmaleic anhydride, the shielding group, could shield the positive charge of the conjugate at pH 7.4, while it was selectively hydrolyzed in the tumor extracellular space (pH 6.8 to expose the previously-shielded positive charge. To study the anticancer activity, the anticancer drug, doxorubicin, was covalently attached to the nanoconjugate. The doxorubicin-loaded HDPEPM nanoconjugate was able to efficiently undergo a quick charge conversion from -11.62 mV to 9.04 mV in response to the tumor extracellular pH. The electrostatic interaction between the positively charged HDPEPM nanoconjugates and the negatively charged cell membrane significantly enhanced their cellular uptake, resulting in the enhanced anticancer activity. Also, the tumor targetability of the nanoconjugates could be further improved via the fragment HAb18 F(ab′2 ligand–receptor-mediated tumor cell-specific endocytosis.Keywords: nanoconjugate, charge-conversional, PMLA, pH-sensitive  

  7. A toxicokinetic study of specifically acting and reactive organic chemicals for the prediction of internal effect concentrations in Scenedesmus vacuolatus.

    Science.gov (United States)

    Vogs, Carolina; Kühnert, Agnes; Hug, Christine; Küster, Eberhard; Altenburger, Rolf

    2015-01-01

    The toxic potency of chemicals is determined by using the internal effect concentration by accounting for differences in toxicokinetic processes and mechanisms of toxic action. The present study examines toxicokinetics of specifically acting and reactive chemicals in the green algae Scenedesmus vacuolatus by using an indirect method. Concentration depletion in the exposure medium was measured for chemicals of lower (log KOW  2-naphthylamine) hydrophobicity at 7 to 8 time points over 240 min or 360 min. Uptake and overall elimination rates were estimated by fitting a toxicokinetic model to the observed concentration depletions. The equilibrium of exposure concentrations was reached within minutes to hours or was even not observed within the exposure time. The kinetics of bioconcentration cannot be explained by the chemical's hydrophobicity only, but influential factors such as ionization of chemicals, the ion trapping mechanism, or the potential susceptibility for biotransformation are discussed. Internal effect concentrations associated with 50% inhibition of S. vacuolatus reproduction were predicted by linking the bioconcentration kinetics to the effect concentrations and ranged from 0.0480 mmol/kg wet weight to 7.61 mmol/kg wet weight for specifically acting and reactive chemicals. Knowing the time-course of the internal effect concentration may promote an understanding of toxicity processes such as delayed toxicity, carry-over toxicity, or mixture toxicity in future studies. PMID:25263251

  8. Specifications

    International Nuclear Information System (INIS)

    As part of the Danish RERTR Program, three fuel elements with LEU U3O8-Al fuel and three fuel elements with LEU U3Si2-Al fuel were manufactured by NUKEM for irradiation testing in the DR-3 reactor at the Risoe National Laboratory in Denmark. The specifications for the elements with U3O8-Al fuel are presented here as an illustration only. Specifications for the elements with U3Si2-Al fuel were very similar. In this example, materials, material numbers, documents numbers, and drawing numbers specific to a single fabricator have been deleted. (author)

  9. Specific and Optional Curriculum: An Experience in the Undergraduate Program of Chemical Engineering in Cienfuegos University, Cuba

    Science.gov (United States)

    Martínez, Yolanda García; Velázquez, Claudia Alvarado; Castillo, Rolando Delgado

    2016-01-01

    This paper pursues to define the pillars for designing the specific (SC) and optional curricula (OC) of Unit Operations and Processes (UOP) Discipline in the Chemical Engineering Program. To achieve this objective a methodology was developed, which was characterized by the participation of every member in the educational process: professors,…

  10. Zinc injection implementation process at EDF: risk analysis, chemical specifications and operating procedures

    International Nuclear Information System (INIS)

    's strategy and the different measures adopted by EDF to provide the necessary tools to the French units : zinc injection procedures, risk analysis, chemistry -radiochemistry surveillance programs, and chemical specifications. This work can be useful for other utilities, assisting them in optimizing and/or implementing the zinc injection in the most suitable conditions, which would help to obtain the expected results in the current and the future reactors. (author)

  11. Chemical espionage on species-specific butterfly anti-aphrodisiacs by hitchhiking Trichogramma wasps

    NARCIS (Netherlands)

    Huigens, M.E.; Woelke, J.B.; Pashalidou, F.G.; Bukovinszky, T.; Smid, H.M.; Fatouros, N.E.

    2010-01-01

    Parasitic wasps employ a wide range of chemical cues to find their hosts. Very recently, we discovered how 2 closely related egg parasitoids, Trichogramma brassicae and Trichogramma evanescens, exploit the anti-aphrodisiac pheromone benzyl cyanide of one of their hosts, the gregarious large cabbage

  12. Rescue of vasopressin V2 receptor mutants by chemical chaperones: specificity and mechanism.

    NARCIS (Netherlands)

    Robben, J.H.; Sze, M.; Knoers, N.V.A.M.; Deen, P.M.T.

    2006-01-01

    Because missense mutations in genetic diseases of membrane proteins often result in endoplasmic reticulum (ER) retention of functional proteins, drug-induced rescue of their cell surface expression and understanding the underlying mechanism are of clinical value. To study this, we tested chemical ch

  13. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    International Nuclear Information System (INIS)

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  14. PREVENTION REFERENCE MANUAL: CHEMICAL SPECIFIC, VOLUME 14: CONTROL OF ACCIDENTAL RELEASES OF PHOSGENE

    Science.gov (United States)

    The report, discussing phosgene, is one of a series addressing the prevention of accidental releases of toxic chemicals. Phosgene, a highly reactive and corrosive liquid that boils at room temperature has an Immediately Dangerous to Life and Health (lDLH) conctntration of 2 ppm, ...

  15. Country-specific chemical signatures of persistent environmental compounds in breast milk

    DEFF Research Database (Denmark)

    Krysiak-Baltyn, Konrad; Toppari, J.; Skakkebaek, N.E.;

    2010-01-01

    , exhibits much lower incidences of these disorders. The reasons behind the observed trends are unexplained, but environmental endocrine disrupting chemicals (EDCs) that affect foetal testis development are probably involved. Levels of persistent chemicals in breast milk can be considered a proxy......Recent reports have confirmed a worldwide increasing trend of testicular cancer incidence, and a conspicuously high prevalence of this disease and other male reproductive disorders, including cryptorchidism and hypospadias, in Denmark. In contrast, Finland, a similarly industrialized Nordic country...... in testicular cancer or in adversely affecting development of the foetal testis in humans and animals, our findings reinforce the view that environmental exposure to EDCs may explain some of the temporal and between-country differences in incidence of male reproductive disorders....

  16. Portable Chemical Sensors for Monitoring Infection-Specific Volatiles in Asymptomatic Citrus

    OpenAIRE

    Fink, R.L.; A. A. Aksenov; Thuesen, L.H.; Pasamontes, A.; Cheung, W.H.K.; Peirano, D.J.; Davis, C.E.

    2014-01-01

    Volatile organic compounds (VOCs) are emitted from all plants, and there is mounting evidence these VOCs reflect internal health status and change in response to pathogen infection and other cues. Our group has developed a portable chemical sensing platform that can monitor for VOC emission changes that result from citrus bacterial and viral infections. To date, our VOC library includes putative signal fingerprints for Huanglongbing (HLB), citrus tristeza virus (CTV) and citrus variegated chl...

  17. Rescue of vasopressin V2 receptor mutants by chemical chaperones: specificity and mechanism.

    OpenAIRE

    Robben, J.H.; Sze, M.; Knoers, N.V.A.M.; Deen, P. M. T.

    2006-01-01

    Because missense mutations in genetic diseases of membrane proteins often result in endoplasmic reticulum (ER) retention of functional proteins, drug-induced rescue of their cell surface expression and understanding the underlying mechanism are of clinical value. To study this, we tested chemical chaperones and sarco(endo)plasmic reticulum Ca2+ ATPase pump inhibitors on Madin-Darby canine kidney cells expressing nine ER-retained vasopressin type-2 receptor (V2R) mutants involved in nephrogeni...

  18. Chemical specificity in short-chain fatty acids and their analogues in increasing osmotic fragility in rat erythrocytes in vitro.

    OpenAIRE

    Mineo, Hitoshi; HARA Hiroshi

    2007-01-01

    We examined the role of the chemical specificity of short-chain fatty acids (SCFAs) and their derivatives in increasing osmotic fragility (OF) in rat red blood cells (RBCs). Except for formic acid, normal SCFAs with 2 to 8 carbons increased the OF in rat RBCs with increasing number of hydrocarbons in a dose-dependent manner. Replacement of the carboxylic group with sulfonic group inhibited, but did not abolish, the SCFA-mediated increase in OF. Introduction of another carboxylic group (dicarb...

  19. Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification

    OpenAIRE

    Jager, M; Nir, E; Weiss, S

    2006-01-01

    An often limiting factor for studying protein folding by single-molecule fluorescence resonance energy transfer (FRET) is the ability to site-specifically introduce a photostable organic FRET donor (D) and a complementary acceptor (A) into a polypeptide chain. Using alternating-laser excitation and chymotrypsin inhibitor 2 as a model, we show that chemical labeling of a unique cysteine, followed by enzymatic modification of a reactive glutamine in an N-terminally appended substrate sequence r...

  20. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  1. Chemical inhibition of autophagy: Examining its potential to increase the specific productivity of recombinant CHO cell lines.

    Science.gov (United States)

    Baek, Eric; Kim, Che Lin; Kim, Mi Gyeom; Lee, Jae Seong; Lee, Gyun Min

    2016-09-01

    Chinese hamster ovary (CHO) cells activate and undergo apoptosis and autophagy for various environmental stresses. Unlike apoptosis, studies on increasing the production of therapeutic proteins in CHO cells by targeting the autophagy pathway are limited. In order to identify the effects of chemical autophagy inhibitors on the specific productivity (qp ), nine chemical inhibitors that had been reported to target three different phases of autophagy (metformin, dorsomorphin, resveratrol, and SP600125 against initiation and nucleation; 3-MA, wortmannin, and LY294002 against elongation, and chloroquine and bafilomycin A1 against autophagosome fusion) were used to treat three recombinant CHO (rCHO) cell lines: the Fc-fusion protein-producing DG44 (DG44-Fc) and DUKX-B11 (DUKX-Fc) and antibody-producing DG44 (DG44-Ab) cell lines. Among the nine chemical inhibitors tested, 3-MA, dorsomorphin, and SP600125 significantly increased the qp of DG44-Fc and DUKX-Fc. In contrast, for DG44-Ab, only 3-MA significantly increased the qp . The autophagy-inhibiting activity of the nine chemical inhibitors on the rCHO cell lines was evaluated through Western blot analysis and flow cytometry. Unexpectedly, some chemical inhibitors did not exhibit any apparent inhibition activity on autophagy. The chemical inhibitors that enhanced the qp , 3-MA, dorsomorphin, and SP600125, exhibited instead an increased autophagic flux. Taken all together, the chemical inhibition of autophagy was not effective in increasing the qp in rCHO cell lines and the positive effect of 3-MA, dorsomorphin, and SP600125 on the qp was not due to the inhibition of autophagy. Biotechnol. Bioeng. 2016;113: 1953-1961. © 2016 Wiley Periodicals, Inc. PMID:26914152

  2. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  3. Cellular Dynamic Simulator: An Event Driven Molecular Simulation Environment for Cellular Physiology

    Science.gov (United States)

    Byrne, Michael J.; Waxham, M. Neal; Kubota, Yoshihisa

    2010-01-01

    In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations. PMID:20361275

  4. Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.

    Science.gov (United States)

    Stewart, C. E.; Amatangelo, K.; Neff, J. C.

    2008-12-01

    Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (tannin-derivatives. There was a general decrease of lignin-derived phenolic compounds from live to litter to soils and an increase in more recalcitrant, aromatic and aliphatic C. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.

  5. Cellular Automata

    OpenAIRE

    Bagnoli, Franco

    1998-01-01

    An introduction to cellular automata (both deterministic and probabilistic) with examples. Definition of deterministic automata, dynamical properties, damage spreading and Lyapunov exponents; probabilistic automata and Markov processes, nonequilibrium phase transitions, directed percolation, diffusion; simulation techniques, mean field. Investigation themes: life, epidemics, forest fires, percolation, modeling of ecosystems and speciation. They represent my notes for the school "Dynamical Mod...

  6. Modeling the exposure of children and adults via diet to chemicals in the environment with crop-specific models

    International Nuclear Information System (INIS)

    Exposure to chemicals via diet is a major uptake pathway for many compounds but is often estimated in a rather generic way. We use a new model framework (NMF) with crop-specific models to predict the dietary intake by 4-5-year-old children and 14-75-year-old women of three environmental compounds from their background concentrations in soil and air. Calculated daily intakes of benzo(a)pyrene and 2,3,7,8-TCDD are in good agreement with measured results from diet studies. The major source of both compounds in human diet is deposition from air. Inhalation of air and ingestion of soil play a minor role. Children take up more than twice the amount than adults per kg bodyweight, due to higher consumption per kg bodyweight. Contrary, the methods for indirect human exposure suggested in the Technical Guidance Document (TGD) for chemical risk assessment in the EU lead to overprediction, due to unrealistic consumption data and a false root model. - This paper addresses exposure of children and adults to environmental chemicals via the terrestrial food chain using crop-specific plant uptake models

  7. Cell-type specific photoreceptors and light signaling pathways in the multicellular green alga volvox carteri and their potential role in cellular differentiation

    OpenAIRE

    Kianianmomeni, Arash

    2015-01-01

    The formation of multicellular organisms requires genetically predefined signaling pathways in various cell types. Besides differences in size, energy balance and life time, cell types should be enable to modulate appropriate developmental and adaptive responses in ever-changing surrounding environment. One of the most important environmental cues is light which regulates a variety of physiological and cellular processes. During evolution, diverse light-sensitive proteins, so-called photorece...

  8. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  9. Determination of the chemical and radiochemical purity and specific radioactivity of [18F]FDG by HPLC

    International Nuclear Information System (INIS)

    High performance liquid chromatography (HPLC) in combination with the radioactivity detection is the best control method for the radiochemical purity of [18F]FDG. An anion exchange separation mechanism allows isocratic separation of carbohydrates. Using a strong basic eluent, the weakly acid carbohydrates form anions and are therefore retained on the anion exchange resin. The chemical and radiochemical purity and specific radioactivity can be determined simultaneously by including in the chromatographic system a mass detector sensitive, enough for quantitative determination of the product species. (orig.)

  10. The 3′ Untranslated Region of the Rabies Virus Glycoprotein mRNA Specifically Interacts with Cellular PCBP2 Protein and Promotes Transcript Stability

    OpenAIRE

    Palusa, Saiprasad; Ndaluka, Christina; Bowen, Richard A.; Wilusz, Carol J.; Wilusz, Jeffrey

    2012-01-01

    Viral polymerase entry and pausing at intergenic junctions is predicted to lead to a defined polarity in the levels of rhabdovirus gene expression. Interestingly, we observed that the rabies virus glycoprotein mRNA is differentially over-expressed based on this model relative to other transcripts during infection of 293T cells. During infection, the rabies virus glycoprotein mRNA also selectively interacts with the cellular poly(rC)-binding protein 2 (PCBP2), a factor known to influence mRNA ...

  11. Humoral and cellular CMV responses in healthy donors; identification of a frequent population of CMV-specific, CD4+ T cells in seronegative donors

    DEFF Research Database (Denmark)

    Loeth, Nina; Assing, Kristian; Madsen, Hans O; Vindeløv, Lars; Buus, Soren; Buus, Anette Stryhn

    2012-01-01

    CMV status is an important risk factor in immune compromised patients. In hematopoeitic cell transplantations (HCT), both donor and recipient are tested routinely for CMV status by serological assays; however, one might argue that it might also be of relevance to examine CMV status by cellular (i...... protein, pp65. Of the 44 seronegative donors, only five (11%) mounted ex vivo T cell responses; surprisingly, 33 (75%) mounted strong CD4+ T cell responses after a brief in vitro peptide stimulation culture. This may have significant implications for the analysis and selection of HCT donors....

  12. Chemical mechanism and substrate specificity of RhlI, an acylhomoserine lactone synthase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Raychaudhuri, Aniruddha; Jerga, Agoston; Tipton, Peter A

    2005-03-01

    The enzyme RhlI catalyzes the formation of N-butyrylhomoserine lactone from S-adenosylmethionine and N-butyrylacyl carrier protein. N-Butyrylhomoserine lactone serves as a quorum-sensing signal molecule in Pseudomonas aeruginosa, and is implicated in the regulation of many processes involved in bacterial virulence and infectivity. The P. aeruginosa genome contains three genes encoding acyl carrier proteins. We have cloned all three genes, expressed the acyl carrier proteins, and characterized each as a substrate for RhlI. A continuous, spectrophotometric assay was developed to facilitate kinetic and mechanistic studies of RhlI. Acp1, which has not been characterized previously, was a good substrate for RhlI, with a K(m) of 7 microM; the reaction proceeded with a k(cat) value of 0.35 s(-1). AcpP, which supports fatty acid biosynthesis, was also a good substrate in the RhlI reaction, where k(cat) was 0.46 s(-1), and the K(m) for AcpP was 6 microM. The third acyl carrier protein, Acp3, was a poor substrate for RhlI, with a K(m) of 280 microM; k(cat) was 0.03 s(-1). Taken together with microarray data from the literature which show that expression of the gene encoding Acp1 is under the control of the quorum-sensing system, our data suggest that Acp1 is likely to be the substrate for RhlI in vivo. Isotope labeling studies were conducted to investigate the chemical mechanism of the RhlI-catalyzed lactonization reaction. Solvent deuterons were not incorporated into product, which implicates a direct attack mechanism in which the carboxylate oxygen of the presumptive N-butyryl-SAM intermediate attacks the methylene carbon adjacent to the sulfonium ion. Alternative mechanisms, in which N-butyrylvinylglycine is formed via elimination of methylthioadenosine, were ruled out on the basis of the observation that RhlI failed to convert authentic N-butyrylvinylglycine to N-butyryl-L-homoserine lactone. PMID:15723540

  13. Pre-Transplant Donor-Specific T-Cell Alloreactivity Is Strongly Associated with Early Acute Cellular Rejection in Kidney Transplant Recipients Not Receiving T-Cell Depleting Induction Therapy

    Science.gov (United States)

    Crespo, Elena; Lucia, Marc; Cruzado, Josep M.; Luque, Sergio; Melilli, Edoardo; Manonelles, Anna; Lloberas, Nuria; Torras, Joan; Grinyó, Josep M.; Bestard, Oriol

    2015-01-01

    Preformed T-cell immune-sensitization should most likely impact allograft outcome during the initial period after kidney transplantation, since donor-specific memory T-cells may rapidly recognize alloantigens and activate the effector immune response, which leads to allograft rejection. However, the precise time-frame in which acute rejection is fundamentally triggered by preformed donor-specific memory T cells rather than by de novo activated naïve T cells is still to be established. Here, preformed donor-specific alloreactive T-cell responses were evaluated using the IFN-γ ELISPOT assay in a large consecutive cohort of kidney transplant patients (n = 90), to assess the main clinical variables associated with cellular sensitization and its predominant time-frame impact on allograft outcome, and was further validated in an independent new set of kidney transplant recipients (n = 67). We found that most highly T-cell sensitized patients were elderly patients with particularly poor HLA class-I matching, without any clinically recognizable sensitizing events. While one-year incidence of all types of biopsy-proven acute rejection did not differ between T-cell alloreactive and non-alloreactive patients, Receiver Operating Characteristic curve analysis indicated the first two months after transplantation as the highest risk time period for acute cellular rejection associated with baseline T-cell sensitization. This effect was particularly evident in young and highly alloreactive individuals that did not receive T-cell depletion immunosuppression. Multivariate analysis confirmed preformed T-cell sensitization as an independent predictor of early acute cellular rejection. In summary, monitoring anti-donor T-cell sensitization before transplantation may help to identify patients at increased risk of acute cellular rejection, particularly in the early phases after kidney transplantation, and thus guide decision-making regarding the use of induction therapy. PMID:25689405

  14. From the Cover: Specific chemical and structural damage to proteins produced by synchrotron radiation

    Science.gov (United States)

    Weik, Martin; Ravelli, Raimond B. G.; Kryger, Gitay; McSweeney, Sean; Raves, Maria L.; Harel, Michal; Gros, Piet; Silman, Israel; Kroon, Jan; Sussman, Joel L.

    2000-01-01

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  15. Rational steering of insulin binding specificity by intra-chain chemical crosslinking

    Science.gov (United States)

    Viková, Jitka; Collinsová, Michaela; Kletvíková, Emília; Buděšínský, Miloš; Kaplan, Vojtěch; Žáková, Lenka; Veverka, Václav; Hexnerová, Rozálie; Aviñó, Roberto J. Tarazona; Straková, Jana; Selicharová, Irena; Vaněk, Václav; Wright, Daniel W.; Watson, Christopher J.; Turkenburg, Johan P.; Brzozowski, Andrzej M.; Jiráček, Jiří

    2016-01-01

    Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the CuI-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone’s B-chain C-terminus for its IR-B specificity.

  16. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  17. Cellular Homeostasis and Aging.

    Science.gov (United States)

    Hartl, F Ulrich

    2016-06-01

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans. PMID:27050288

  18. Chemical fractionation tests on South African coal sources to obtain species-specific information on ash fusion temperatures (AFT)

    Energy Technology Data Exchange (ETDEWEB)

    J.C. van Dyk; L.L. Baxter; J.H.P. van Heerden; R.L.J. Coetzer [Sasol Technology, Sasolburg (South Africa). Syngas and Coal Technologies, R& amp; D Division

    2005-10-01

    Detailed coal and feedstock characteristics are essential to predict gasification performance when a specific coal source is to be gasified. One property that specifically gives detail information on the suitability of a coal source for gasification purposes is the ash fusion temperature (AFT). The AFT of a coal source indicates the extent to which ash agglomeration and ash clinkering are likely to occur within the gasifier. The principal aim of this paper is to obtain mineral species-specific information on ash properties and the specific affect on AFT. Chemical fractionation treatment resulted in coals having different mineral properties that can be used to explain the affect of specific minerals on the AFT of coal. The highest concentration and species of minerals were removed from the coal by acid leaching (HCl and HNO{sub 3}) where Al, Ca, Mg, Na and Fe were removed in high concentrations from the coal. The AFT of coal after leaching increased to {gt}1600{sup o}C. Based on the 95% confidence intervals depicted the following components can be highlighted as having a statistical significant effect on the AFT: Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, CaO, MgO, P{sub 2}O{sub 5} and SiO{sub 2}-Al{sub 2}O{sub 3} combination. When mineral ratio was used, the best correlation coefficient ) with AFT was obtained with the dolomite ratio. This is in agreement with the results obtained from the correlations between the AFT and the ash composition where CaO and MgO resulted in the best correlation with AFT. Results presented in this paper again highlights the fact and confirmed work from other researchers that ash composition (elemental analyses) on its own does not explain AFT behavior or commercial performance of coal accurately. 14 refs., 6 figs., 6 tabs.

  19. A chemical lift-off process: removing non-specific adsorption in an electrochemical Epstein-Barr virus immunoassay.

    Science.gov (United States)

    Stratmann, Lutz; Gebala, Magdalena; Schuhmann, Wolfgang

    2013-07-22

    Upon contact of sensor surfaces with complex biological samples containing a variety of different proteins, non-specific adsorption hampers the high-sensitive detection of the analyte in question. To substantially decrease the impact of non-specific adsorption at thiol-based self-assembled monolayers, a chemical lift-off process is introduced. A sequence of local hydrolysis of isooctyl 3-mercaptopropionate, covalent binding of an antigen against the Epstein-Barr virus (EBV), stepwise incubation with a serum sample possibly containing the EBV antibody and an enzyme-labeled anti-human antibody is completed with a lift-off by integral hydrolysis of the remaining ester groups at the self-assembled monolayer. The cleavage of the ester removes any non-specifically bound protein during a following stringent washing step. The substantial improvement of the detection limit of an electrochemical immunoassay against EBV using native recombinant antigens, their immobilization after local deprotection using a scanning electrochemical microscope (SECM) and the local read-out using the generator-collector mode of SECM with redox cycling amplification demonstrates the successful application of the proposed lift-off procedure. PMID:23681905

  20. Specificity in chemical profiles of workers, brood and mutualistic fungi in Atta, Acromyrmex, and Sericomyrmex fungus-growing ants

    DEFF Research Database (Denmark)

    Richard, Freddie-Jeanne; Poulsen, Michael; Drijfhout, Falko; Jones, Graeme; Boomsma, Jacobus Jan

    2007-01-01

    , acetates, acids, and esters. The chemical profiles in all three species are likely to be sufficiently different to allow discrimination at the species and colony level and sufficiently similar within colonies to generate a relatively constant colony-specific chemical gestalt. The relative likelihood of...

  1. Synthesis of SF5CF2-Containing Enones and Instability of This Group in Specific Chemical Environments and Reaction Conditions.

    Science.gov (United States)

    Dudziński, Piotr; Matsnev, Andrej V; Thrasher, Joseph S; Haufe, Günter

    2016-06-01

    The chemistry of the SF5CF2 moiety has been scarcely investigated. In this report, we present synthetic pathways to a variety of SF5CF2-substituted compounds starting from vinyl ethers and SF5CF2C(O)Cl. In specific chemical environments and under particular reaction conditions, the SF5CF2 moiety is unstable in downstream products resulting in the elimination of the SF5(-) anion and its decomposition to SF4 and F(-). Surprisingly, the formed F(-) can attack the intermediate difluorovinyl moiety to form trifluoromethyl substituted products. This appears to happen when an intermediate neighboring group participation involving a double bond is possible. Under slightly different conditions, the reaction stops at the stage of a difluorovinyl compound. PMID:27159371

  2. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon

    Science.gov (United States)

    Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K.

    2003-01-01

    Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetramethylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.

  3. A computational study of liposome logic: towards cellular computing from the bottom up

    OpenAIRE

    Smaldon, James; Romero-Campero, Francisco J.; Fernández Trillo, Francisco; Gheorghe, Marian; Alexander, Cameron; Krasnogor, Natalio

    2010-01-01

    In this paper we propose a new bottom-up approach to cellular computing, in which computational chemical processes are encapsulated within liposomes. This “liposome logic” approach (also called vesicle computing) makes use of supra-molecular chemistry constructs, e.g. protocells, chells, etc. as minimal cellular platforms to which logical functionality can be added. Modeling and simulations feature prominently in “top-down” synthetic biology, particularly in the specification, design and impl...

  4. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia.

    Science.gov (United States)

    Skavland, J; Jørgensen, K M; Hadziavdic, K; Hovland, R; Jonassen, I; Bruserud, O; Gjertsen, B T

    2011-02-01

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial. PMID:22829110

  5. A synthetic lymph node containing inactivated Treponema pallidum cells elicits strong, antigen-specific humoral and cellular immune responses in mice.

    Science.gov (United States)

    Stamm, Lola V; Drapp, Rebecca L

    2014-02-01

    The goal of this study was to investigate the use of a synthetic lymph node (SLN) for delivery of Treponema pallidum (Tp) antigens. Immune responses of C57BL/6 mice were analyzed at 4, 8, and 12 weeks after SLN implantation. Group 1 mice received SLN with no antigen; Group 2, SLN with formalin-inactivated Tp (f-Tp); and Group 3, SLN with f-Tp plus a CpG oligodeoxynucleotide. When tested by ELISA, sera from Group 2 and Group 3 mice showed stronger IgG antibody reactivity than sera from Group 1 mice to sonicates of f-Tp or untreated Tp, but not to sonicate of normal rabbit testicular extract at all times. The IgG1 level was higher than IgG2c level for Group 2 mice at all times and for Group 3 mice at 4 and 8 weeks. IgG1 and IgG2c levels were nearly equivalent for Group 3 mice at 12 weeks. Immunoblotting showed that IgG from Group 2 and Group 3 mice recognized several Tp proteins at all times. Supernatants of splenocytes from Group 2 and Group 3 mice contained significantly more IFNγ than those from Group 1 mice after stimulation with f-Tp at all times. A significant level of IL-4 was not detected in any supernatants. These data show that strong humoral and cellular immune responses to Tp can be elicited via a SLN. PMID:24106125

  6. On the effects of straight metallic jewellery on the specific absorption rates resulting from face-illuminating radio communication devices at popular cellular frequencies.

    Science.gov (United States)

    Whittow, W G; Panagamuwa, C J; Edwards, R M; Vardaxoglou, J C

    2008-03-01

    This paper presents simulated and measured phantom results for the possible effects that head worn jewellery may have on the relative levels of energy absorbed in the human head with cellular enabled mobile communication devices. The FDTD electromagnetic code used with simple and complex anatomical mathematical phantoms was used to consider the interactions of metallic jewellery, heads and representative sources at 900 and 1800 MHz. Illuminated metallic pins of different lengths were positioned in front of the face. Initially, a homogenous phantom was used to understand the relative enhancement mechanisms. This geometry allowed the results to be validated with the industry standard DASY4 robot SAR measurement system related to the CENELEC head. Jewellery pins were then added to an anatomically realistic head. The relative increase in the 1 g and 10 g SAR, due to a pin with a length 0.4lambda near the eyebrows of a complex, anatomically realistic head was approximately three times at 1800 MHz. Such pins increased the SAR averaged over a 1 g or 10 g mass by redistributing the energy absorbed inside the head and focusing this energy towards the area of the head nearest to the centre of the pin. Although, the pins increased the SAR, the SAR standards were not breached and the jewellery produced lower values than those of previous studies when the source was positioned close to the ear. PMID:18296756

  7. On the effects of straight metallic jewellery on the specific absorption rates resulting from face-illuminating radio communication devices at popular cellular frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Whittow, W G; Panagamuwa, C J; Edwards, R M; Vardaxoglou, J C [Electronic and Electrical Engineering, Department of Loughborough University, Leicestershire (United Kingdom)], E-mail: w.g.whittow@lboro.ac.uk, E-mail: c.j.panagamuwa@lboro.ac.uk, E-mail: r.m.edwards@lboro.ac.uk, E-mail: j.c.vardaxoglou@lboro.ac.uk

    2008-03-07

    This paper presents simulated and measured phantom results for the possible effects that head worn jewellery may have on the relative levels of energy absorbed in the human head with cellular enabled mobile communication devices. The FDTD electromagnetic code used with simple and complex anatomical mathematical phantoms was used to consider the interactions of metallic jewellery, heads and representative sources at 900 and 1800 MHz. Illuminated metallic pins of different lengths were positioned in front of the face. Initially, a homogenous phantom was used to understand the relative enhancement mechanisms. This geometry allowed the results to be validated with the industry standard DASY4 robot SAR measurement system related to the CENELEC head. Jewellery pins were then added to an anatomically realistic head. The relative increase in the 1 g and 10 g SAR, due to a pin with a length 0.4{lambda} near the eyebrows of a complex, anatomically realistic head was approximately three times at 1800 MHz. Such pins increased the SAR averaged over a 1 g or 10 g mass by redistributing the energy absorbed inside the head and focusing this energy towards the area of the head nearest to the centre of the pin. Although, the pins increased the SAR, the SAR standards were not breached and the jewellery produced lower values than those of previous studies when the source was positioned close to the ear.

  8. On the effects of straight metallic jewellery on the specific absorption rates resulting from face-illuminating radio communication devices at popular cellular frequencies

    International Nuclear Information System (INIS)

    This paper presents simulated and measured phantom results for the possible effects that head worn jewellery may have on the relative levels of energy absorbed in the human head with cellular enabled mobile communication devices. The FDTD electromagnetic code used with simple and complex anatomical mathematical phantoms was used to consider the interactions of metallic jewellery, heads and representative sources at 900 and 1800 MHz. Illuminated metallic pins of different lengths were positioned in front of the face. Initially, a homogenous phantom was used to understand the relative enhancement mechanisms. This geometry allowed the results to be validated with the industry standard DASY4 robot SAR measurement system related to the CENELEC head. Jewellery pins were then added to an anatomically realistic head. The relative increase in the 1 g and 10 g SAR, due to a pin with a length 0.4λ near the eyebrows of a complex, anatomically realistic head was approximately three times at 1800 MHz. Such pins increased the SAR averaged over a 1 g or 10 g mass by redistributing the energy absorbed inside the head and focusing this energy towards the area of the head nearest to the centre of the pin. Although, the pins increased the SAR, the SAR standards were not breached and the jewellery produced lower values than those of previous studies when the source was positioned close to the ear

  9. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia

    International Nuclear Information System (INIS)

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial

  10. Radiation and chemical interactions producing cellular and subcellular damage and their repair. Coordinated programme on improvement in radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    As a result of biochemical studies on the DNA repair of damages induced by ionizing radiation as well as on the radiosensitization with chemicals containing halogen atoms, it was suggested that inhibition of the post-irradiation repair by chemical factors may be useful in improving the radiotherapy. It was possbile to prepare an in vitro repair system in combination with transforming DNA of Bacillus subtilis as well as human placenta extracts; it was shown that certain radiosensitizers worked actually as repair inhibitors in this in vitro system

  11. The Chemically-Specific Structure of an Amorphous Molybdenum Germanium Alloy by Anomalous X-ray Scattering

    International Nuclear Information System (INIS)

    Since its inception in the late 1970s, anomalous x-ray scattering (AXS) has been employed for chemically-specific structure determination in a wide variety of noncrystalline materials. These studies have successfully produced differential distribution functions (DDFs) which provide information about the compositionally-averaged environment of a specific atomic species in the sample. Despite the wide success in obtaining DDFs, there are very few examples of successful extraction of the fully chemically-specific partial pair distribution functions (PPDFs), the most detailed description of an amorphous sample possible by x-ray scattering. Extracting the PPDFs is notoriously difficult since the matrix equation involved is ill-conditioned and thus extremely sensitive to errors present in the experimental quantities that enter the equation. Instead of addressing this sensitivity by modifying the data through mathematical methods, sources of error have been removed experimentally: A focusing analyzer crystal was combined with a position-sensitive linear detector to experimentally eliminate unwanted inelastic scattering intensity over most of the reciprocal space range probed. This instrumentation has been used in data collection for the extraction of PPDFs from amorphous (a)-MoGe3. This composition arises as a phase separation endpoint in the Ge-rich region of the vapor-deposited Mo-Ge amorphous alloy system but is not present at equilibrium. Since the first Ge-rich compound in the Mo-Ge equilibrium system is MoGe2, previous workers have speculated that perhaps a unique MoGe3 compound exists in the amorphous system. Rather than indicating a distinct MoGe3 compound with definitive local structure, however, the coordination results are more consistent with a densely-packed alloy having a wide range of solid solubility. Significant improvement in the quality and reliability of experimental PPDFs from a-MoGe3 by AXS has been achieved solely through the experimental

  12. MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity.

    Directory of Open Access Journals (Sweden)

    Maximilian W Plank

    Full Text Available MicroRNAs are post-transcriptional regulators of gene expression that are differentially regulated during development and in inflammatory diseases. A role for miRNAs in allergic asthma is emerging and further investigation is required to determine whether they may serve as potential therapeutic targets. We profiled miRNA expression in murine lungs from an ovalbumin-induced allergic airways disease model, and compared expression to animals receiving dexamethasone treatment and non-allergic controls. Our analysis identified 29 miRNAs that were significantly altered during allergic inflammation. Target prediction analysis revealed novel genes with altered expression in allergic airways disease and suggests synergistic miRNA regulation of target mRNAs. To assess the impacts of one induced miRNA on pathology, we targeted miR-155-5p using a specific antagomir. Antagomir administration successfully reduced miR-155-5p expression with high specificity, but failed to alter the disease phenotype. Interestingly, further investigation revealed that antagomir delivery has variable efficacy across different immune cell types, effectively targeting myeloid cell populations, but exhibiting poor uptake in lymphocytes. Our findings demonstrate that antagomir-based targeting of miRNA function in the lung is highly specific, but highlights cell-specificity as a key limitation to be considered for antagomir-based strategies as therapeutics.

  13. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model

    Czech Academy of Sciences Publication Activity Database

    Sovadinová, I.; Babica, Pavel; Böke, H.; Kumar, E.; Wilke, A.; Park, J.-S.; Trosko, J. E.; Upham, B. L.

    2015-01-01

    Roč. 10, 5 no.e0124454 (2015), s. 1-16. E-ISSN 1932-6203 R&D Projects: GA MŠk LH12034 Institutional support: RVO:67985939 Keywords : gap junctional intercellular communication * resveratrol * phosphatidylcholine-specific phospholipase C Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2014

  14. Cellular-scale hydrodynamics

    DEFF Research Database (Denmark)

    Abkarian, Manouk; Faivre, Magalie; Horton, Renita; Smistrup, Kristian; Best-Popescu, Catherine A; Stone, Howard A.

    2008-01-01

    Microfluidic tools are providing many new insights into the chemical, physical and physicochemical responses of cells. Both suspension-level and single-cell measurements have been studied. We review our studies of these kinds of problems for red blood cells with particular focus on the shapes of ...... mechanical effects on suspended cells can be studied systematically in small devices, and how these features can be exploited to develop methods for characterizing physicochemical responses and possibly for the diagnosis of cellular-scale changes to environmental factors....

  15. Induction of intrahepatic HCV NS4B, NS5A and NS5B-specific cellular immune responses following peripheral immunization.

    Directory of Open Access Journals (Sweden)

    Krystle A Lang Kuhs

    Full Text Available Numerous studies have suggested that an effective Hepatitis C Virus (HCV vaccine must induce strong cytotoxic and IFN-γ+ T cell responses targeting the non-structural region of the virus. Most importantly, these responses must be able to migrate into and remain functional within the liver, an organ known to cause T cell tolerance. Using three novel HCV DNA vaccines encoding non-structural proteins NS4B, NS5A and NS5B, we assessed the ability of peripheral immunization to induce functional intrahepatic immunity both in the presence and absence of cognate HCV antigen expression within the liver. We have shown that these constructs induced potent HCV-specific CD4+ and CD8+ T cell responses in the spleen of C57BL/6 mice and that these responses were detected within the liver following peripheral immunization. Additionally, using a transfection method to express HCV antigen within the liver, we showed that intrahepatic HCV-specific T cells remained highly functional within the liver and retained the ability to become highly activated as evidenced by upregulation of IFN-γ and clearance of HCV protein expressing hepatocytes. Taken together, these findings suggest that peripheral immunization can induce potent HCV-specific T cell responses able to traffic to and function within the tolerant environment of the liver.

  16. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    International Nuclear Information System (INIS)

    This segment of the report of the proceedings of the National Cancer Institute symposium is devoted to the presentations about studies with in vitro cell systems, in vitro-in vivo systems, and whole animals including humans. The NCI symposium was designed to cover many aspects of carcinogenesis so that the similarities and differences of the manner in which ionizing radiation and chemical carcinogens initiate cancer and complete its expression could be examined. The hope was that the identification of both the common and the clearly distinct features would help elucidate mechanisms and indicate areas for new research

  17. Transformation by viral and cellular oncogenes of a mouse BALB/3T3 cell mutant resistant to transformation by chemical carcinogens.

    OpenAIRE

    Ono, M; Yakushinji, M; Segawa, K.; Kuwano, M

    1988-01-01

    The mouse cell line MO-5 is resistant to transformation by various chemical carcinogens and also by UV irradiation (C. Yasutake, Y. Kuratomi, M. Ono, S. Masumi, and M. Kuwano, Cancer Res. 47:4894-4899, 1987). Northern (RNA) blot analysis showed active expression of ras and myc genes in MO-5 and BALB/3T3 cells. The effect of transfection of various oncogenes on transformation was compared in MO-5 cells and parental BALB/3T3 cells. Activated c-H-ras, c-N-ras, and v-mos gene induced transformati...

  18. Evaluation of the effect of the specific CCR1 antagonist CP-481715 on the clinical and cellular responses observed following epicutaneous nickel challenge in human subjects

    DEFF Research Database (Denmark)

    Borregaard, Jeanett; Skov, Lone; Wang, Lisy;

    2008-01-01

    BACKGROUND: The CC-chemokine receptor-1 (CCR1) is thought to be involved in recruitment of inflammatory cells in allergic contact dermatitis (ACD). CP-481715 is a specific antagonist of CCR1. OBJECTIVES: To determine the inhibitory effects of CP-418 715 in ACD by evaluating the clinical signs and...... 3000 mg CP-418 715 QD). Twenty-four hours after the first drug administration, nickel sulfate patches were applied on subjects' backs and removed 48 hours later. RESULTS: Pretreatment with 1000 mg CP-481715 TID resulted in significant reductions in visual scores of the nickel reactions (P = 0.......01). Instrumentally measured erythema tended to decrease in the CP-481715 mg TID group (P = 0.06). No differences were noted between the 3000 mg CP-481715 mg QD group and pooled placebo. No significant differences were found for immunohistological cell counts. CP-418 715 was generally safe and well tolerated...

  19. Integrated remediation approach at a former chemical blending facility : excavation, dual-phase extraction and site-specific risk assessment

    International Nuclear Information System (INIS)

    The remediation of hydrocarbon impacted soil at a decommissioned chemical facility was described. The main contaminants were: naphthalene; xylenes; toluene; and acetone. Additional contaminants included ethyl benzene and chloroform. Free-phase liquid hydrocarbons were detected on- and off-site. An integrated remedial approach was adopted due to the complex nature of soil and groundwater quality impacts, as well as to minimize human health risks and allow for the sale of the property for unrestricted industrial use. Remedial efforts included tank removal, excavation and installation of a dual phase system. Over a 3 year period, the system extracted the majority of free-phase liquid hydrocarbons from groundwater and soil, and an estimated 18,000 l of equivalent product. Decreases in dissolved hydrocarbons were observed. However, confirmatory drilling has indicated limited reduction in xylenes and naphthalene concentrations in near surface soil samples. It was concluded that the current remediation system is producing limited returns, and a site specific risk assessment has been conducted to discuss risk management closure options

  20. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (l-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells.

    Science.gov (United States)

    Abolmaali, Samira Sadat; Tamaddon, Ali Mohammad; Mohammadi, Samaneh; Amoozgar, Zohreh; Dinarvand, Rasoul

    2016-05-01

    Self-assembled nanogels were engineered by forming Zn(2+)-coordinated micellar templates of PEGylated poly ethyleneimine (PEG-g-PEI), chemical crosslinking and subsequent removal of the metal ion. Creation of stable micellar templates is a crucial step for preparing the nanogels. To this aim, imidazole moieties were introduced to the polymer by Fmoc-l-histidine using carbodiimide chemistry. It was hypothesized the nanogels loaded with methotrexate (MTX), a chemotherapeutic agent, circumvent impaired carrier activity in HepG2 cells (MTX-resistant hepatocellular carcinoma). So, the nanogels were post-loaded with MTX and characterized by (1)H-NMR, FTIR, dynamic light scattering-zeta potential, atomic force microscopy, and drug release experiments. Cellular uptake and the antitumor activity of MTX-loaded nanogels were investigated by flow cytometry and MTT assay. Discrete, spherical and uniform nanogels, with sizes about 77-83nm and a relatively high drug loading (54±4% w/w), showed a low polydispersity and neutral surface charges. The MTX-loaded nanogels, unlike empty nanogels, lowered viability of HepG2 cells; the nanogels demonstrated cell-cycle arrest and apoptosis comparably higher than MTX as free drug that was shown to be through i) cellular uptake of the nanogels by clathrin-mediated transport and ii) endosomolytic activity of the nanogels in HepG2 cells. These findings indicate the potential antitumor application of this preparation, which has to be investigated in-vivo. PMID:26952497

  1. The modulation of extracellular superoxide dismutase in the specifically enhanced cellular immune response against secondary challenge of Vibrio splendidus in Pacific oyster (Crassostrea gigas).

    Science.gov (United States)

    Liu, Conghui; Zhang, Tao; Wang, Lingling; Wang, Mengqiang; Wang, Weilin; Jia, Zhihao; Jiang, Shuai; Song, Linsheng

    2016-10-01

    Extracellular superoxide dismutase (EcSOD) is a copper-containing glycoprotein playing an important role in antioxidant defense of living cells exposed to oxidative stress, and also participating in microorganism internalization and cell adhesion in invertebrates. EcSOD from oyster (designated CgEcSOD) had been previously reported to bind lipopolysaccharides (LPS) and act as a bridge molecule in Vibrio splendidus internalization. Its mRNA expression pattern, PAMP binding spectrum and microorganism binding capability were examined in the present study. The mRNA expression of CgEcSOD in hemocytes was significantly up-regulated at the initial phase and decreased sharply at 48 h post V. splendidus stimulation. The recombinant CgEcSOD protein (rCgEcSOD) could bind LPS, PGN and poly (I:C), as well as various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibrio anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica at the presence of divalent metal ions Cu(2+). After the secondary V. splendidus stimulation, the mRNA and protein of CgEcSOD were both down-regulated significantly. The results collectively indicated that CgEcSOD could not only function in the immune recognition, but also might contribute to the immune priming of oyster by inhibiting the foreign microbe invasion through a specific down-regulation. PMID:27268574

  2. Expression of MPB83 from Mycobacterium bovis in Brucella abortus S19 induces specific cellular immune response against the recombinant antigen in BALB/c mice.

    Science.gov (United States)

    Sabio y García, Julia V; Bigi, Fabiana; Rossetti, Osvaldo; Campos, Eleonora

    2010-12-01

    Immunodominant MPB83 antigen from Mycobacterium bovis was expressed as a chimeric protein fused to either β-galactosidase, outer membrane lipoprotein OMP19 or periplasmic protein BP26 in gram-negative Brucella abortus S19, in all cases driven by each gene's own promoter. All fusion proteins were successfully expressed and localized in the expected subcellular fraction. Moreover, OMP19-MPB83 was processed as a lipoprotein when expressed in B. abortus. Splenocytes from BALB/c mice immunized with the recombinant S19 strains carrying the genes coding for the heterologous antigens in replicative plasmids, showed equally specific INF-γ production in response to MPB83 stimulation. Association to the lipid moiety of OMP19 presented no advantage in terms of immunogenicity for MPB83. In contrast, fusion to BP26, which was encoded by an integrative plasmid, resulted in a weaker immune response. None of the constructions affected the survival rate or the infection pattern of Brucella. We concluded that B. abortus S19 is an appropriate candidate for the expression of M. bovis antigens both associated to the membrane or cytosolic fraction and may provide the basis for a future combined vaccine for bovine brucellosis and tuberculosis. PMID:20888425

  3. Sol-gel process preparation and evaluation of the analytical performances of an hydrazine specific chemical sensor

    International Nuclear Information System (INIS)

    The realisation of optical fibers active chemical collector to analyze hydrazine in line, in the spent fuel reprocessing process is the subject of this work. The p.dimethyl-amino-benzaldehyde has been chosen as reagent for its chemical and optical properties

  4. Mechanisms of cellular transformation by carcinogenic agents

    International Nuclear Information System (INIS)

    This book contains 14 chapters. Some of the chapter titles are: DNA Modification by Chemical Carcinogens; Role of DNA Lesions and Repair in the Transformation of Human Cells; The Induction and Regulation of Radiogenic Transformation In Vitro: Cellular and Molecular Mechanisms; Cellular Transformation by Adenoviruses; and The fos Gene

  5. Mechanisms of cellular transformation by carcinogenic agents

    Energy Technology Data Exchange (ETDEWEB)

    Grunberger, D.; Goff, S.P.

    1987-01-01

    This book contains 14 chapters. Some of the chapter titles are: DNA Modification by Chemical Carcinogens; Role of DNA Lesions and Repair in the Transformation of Human Cells; The Induction and Regulation of Radiogenic Transformation In Vitro: Cellular and Molecular Mechanisms; Cellular Transformation by Adenoviruses; and The fos Gene.

  6. Predicting 15N chemical shifts in proteins using the preceding residue-specific individual shielding surfaces from φ, ψi-1, and χ1torsion angles

    International Nuclear Information System (INIS)

    Empirical shielding surfaces are most commonly used to predict chemical shifts in proteins from known backbone torsion angles, φ and ψ. However, the prediction of 15N chemical shifts using this technique is significantly poorer, compared to that for the other nuclei such as 1Hα, 13Cα, and 13Cβ. In this study, we investigated the effects from the preceding residue and the side-chain geometry, χ1, on 15N chemical shifts by statistical methods. For an amino acid sequence XY, the 15N chemical shift of Y is expressed as a function of the amino acid types of X and Y, as well as the backbone torsion angles, φ and ψi-1. Accordingly, 380 empirical 'Preceding Residue Specific Individual (PRSI)' 15N chemical shift shielding surfaces, representing all the combinations of X and Y (except for Y=Pro), were built and used to predict 15N chemical shift from φ and ψi-1. We further investigated the χ1 effects, which were found to account for differences in 15N chemical shifts by ∼5 ppm for amino acids Val, Ile, Thr, Phe, His, Tyr, and Trp. Taking the χ1 effects into account, the χ1-calibrated PRSI shielding surfaces (XPRSI) were built and used to predict 15N chemical shifts for these amino acids. We demonstrated that 15N chemical shift predictions are significantly improved by incorporating the preceding residue and χ1 effects. The present PRSI and XPRSI shielding surfaces were extensively compared with three recently published programs, SHIFTX (Neal et al., 2003), SHIFTS (Xu and Case, 2001 and 2002), and PROSHIFT (Meiler, 2003) on a set of ten randomly selected proteins. A set of Java programs using XPRSI shielding surfaces to predict 15N chemical shifts in proteins were developed and are freely available for academic users at http://www.pronmr.com or by sending email to one of the authors Yunjun Wang

  7. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, van der I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Loey, van A.

    2011-01-01

    The impact of thermal, high pressure (HP) and pulsed electric field (PEF) processing for mild pasteurization of orange juice was compared on a fair basis, using processing conditions leading to an equivalent degree of microbial inactivation. Examining the effect on specific chemical and biochemical

  8. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    Directory of Open Access Journals (Sweden)

    Hettne Kristina M

    2013-01-01

    Full Text Available Abstract Background Availability of chemical response-specific lists of genes (gene sets for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM, and that these can be used with gene set analysis (GSA methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human and 588 (mouse gene sets from the Comparative Toxicogenomics Database (CTD. We tested for significant differential expression (SDE (false discovery rate -corrected p-values Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Conclusions Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.

  9. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds......, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  10. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    OpenAIRE

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-01-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labe...

  11. Specifics of chemical etching of vanadium dioxide films in proximity to temperature of phase transformation metal-semiconductors

    International Nuclear Information System (INIS)

    A study was made on kinetics and mechanism of chemical etching of vanadium dioxide films in aqueous media (HNO3, HCl, HClO4, C2H2O4, KMnO4, FeCl3 solutions) close by the temperature of metal-semiconductor phase transformation. It is shown that phenomenon of abnormal increase of dissolution rate in the vicinity of temperature of metal-semiconductor phase transformation is typical for the process of chemical etching of vanadium dioxide films in acid media. Reduction of hydrogen ions takes place on vanadium dioxide at t>ttrans

  12. Cellular signalling properties in microcircuits

    DEFF Research Database (Denmark)

    Toledo-Rodriguez, Maria; El Manira, Abdeljabbar; Wallén, Peter; Svirskis, Gytis; Hounsgaard, Jørn

    2005-01-01

    Molecules and cells are the signalling elements in microcircuits. Recent studies have uncovered bewildering diversity in postsynaptic signalling properties in all areas of the vertebrate nervous system. Major effort is now being invested in establishing the specialized signalling properties at th...... cellular and molecular levels in microcircuits in specific brain regions. This review is part of the TINS Microcircuits Special Feature....

  13. The Origins of Cellular Life

    OpenAIRE

    Schrum, Jason P.; Zhu, Ting F.; SZOSTAK, JACK W.

    2010-01-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of fun...

  14. An isomer-specific high-energy collision-induced dissociation MS/MS database for forensic applications: a proof-of-concept on chemical warfare agent markers.

    Science.gov (United States)

    Subramaniam, Raja; Östin, Anders; Nygren, Yvonne; Juhlin, Lars; Nilsson, Calle; Åstot, Crister

    2011-09-01

    Spectra database search has become the most popular technique for the identification of unknown chemicals, minimizing the need for authentic reference chemicals. In the present study, an isomer-specific high-energy collision-induced dissociation (CID) MS/MS spectra database of 12 isomeric O-hexyl methylphosphonic acids (degradation markers of nerve agents) was created. Phosphonate anions were produced by the electrospray ionization of phosphonic acids or negative-ion chemical ionization of their fluorinated derivatives and were analysed in a hybrid magnetic-sector-time-of-flight tandem mass spectrometer. A centre-of-mass energy (E(com)) of 65 eV led to an optimal sequential carbon-carbon bond breakage, which was interpreted in terms of charge remote fragmentation. The proposed mechanism is discussed in comparison with the routinely used low-energy CID MS/MS. Even-mass (odd-electron) charge remote fragmentation ion series were diagnostic of the O-alkyl chain structure and can be used to interpret unknown spectra. Together with the odd-mass ion series, they formed highly reproducible, isomer-specific spectra that gave significantly higher database matches and probability factors (by 1.5 times) than did the EI MS spectra of the trimethylsilyl derivatives of the same isomers. In addition, ionization by negative-ion chemical ionization and electrospray ionization resulted in similar spectra, which further highlights the general potential of the high-energy CID MS/MS technique. PMID:21915956

  15. Exact Solution to the Extended Zwanzig Model for Quasi-Sigmoidal Chemically Induced Denaturation Profiles: Specific Heat and Configurational Entropy

    OpenAIRE

    Aguilar-Pineda, G. E.; Olivares-Quiroz, L.

    2014-01-01

    Temperature and chemically induced denaturation comprise two of the most characteristic mechanisms to achieve the passage from the native state N to any of the unstructured states Dj in the denatured ensemble in proteins and peptides. In this work we present a full analytical solution for the configurational partition function qs of a homopolymer chain poly-X in the extended Zwanzig model (EZM) for a quasisigmoidal denaturation profile. This solution is built up from an EZM exact solution in...

  16. General Aspects and First Progress Report on a Frame of a Research on Specific Professional Knowledge of Chemistry Teachers Associated with the Notion of Chemical Nomenclature

    Directory of Open Access Journals (Sweden)

    Gerardo Andrés Perafán Echeverri

    2014-04-01

    Full Text Available Within the framework of research about professional teacher’s knowledge, our business is to identify and to characterize with case study method, a kind of specific professional teacher´s knowledge of Chemistry professorate, associated to the chemical nomenclature notion. This kind of research guides the sight to the teaching contents, but it postulates the teacher as an essential actor of that knowledge, rather than ignore of the other actors (didactic community, researchers, specialists, students, etc. our research realizes the specific construction that the teacher makes, beyond the «spontaneous epistemologies» category, between others, which seems to deny an academic and discipline character of the built knowledge by the teachers. First, we show a brief reference to the research program on professional teacher´s knowledge which frames in the development of research line about Specific Professional Teacher´s Knowledge associated with Particular Categories, which belongs to the research group «Por las Aulas Colombianas- INVAUCOL». After that, we show a short justification about the choice of the particular category: chemical nomenclature, as a studied object, besides the historical importance that it has to the professional teaching consolidation, recognizing the teacher´s specific contributions to discipline body construction of school knowledge. Finally, weset in consideration some general methodological criteria defined in this research, and we show too, some preliminary reflections derived from field work in thepresent state of the project.

  17. Specific interactions of functionalised gold surfaces with ammonium perchlorate or starch; towards a chemical cartography of their mixture

    Science.gov (United States)

    Mercier, D.; Mercader, C.; Quere, S.; Hairault, L.; Méthivier, C.; Pradier, C. M.

    2012-10-01

    By functionalising gold samples, planar wafers or AFM tips, with an acid- or an amino acid-terminated thiols, mercaptoundecanoic acid (MUA) and homocystein (H-Cyst) respectively, we were able to differentiate the interactions with ammonium perchlorate (AP) and starch (S), two components of a nanocomposition mixture. To do so, the interaction between gold functionalized surfaces and the two targeted compounds have been characterized and quantified by several complementary techniques. Polarisation modulation-infrared spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS), providing chemical analyses of gold surfaces after contacting S or AP, proved that both compounds were retained on MUA or H-Cyst-modified surfaces, but to various extents. Quartz crystal microbalance on-line measurements enabled to monitor the kinetics of interaction and showed distinct differences in the behaviour of MUA and H-Cyst-surfaces towards the two compounds. Having observed that only H-Cyst-modified surfaces enables to get a contrast on the chemical force microscopy (CFM) images, this new result could be well explained by examining the data obtained by combining the above-mentioned surface characterisation techniques.

  18. Specific interactions of functionalised gold surfaces with ammonium perchlorate or starch; towards a chemical cartography of their mixture

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, D. [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Mercader, C.; Quere, S.; Hairault, L. [CEA, DAM, Le Ripault, F-37260 Monts (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Methivier, C. [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Pradier, C.M., E-mail: claire-Marie.pradier@upmc.fr [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Measurements of interactions by Quartz Crystal Microbalance. Black-Right-Pointing-Pointer AFM and CFM measurements, tip functionalisation. Black-Right-Pointing-Pointer Surface nano-imaging. - Abstract: By functionalising gold samples, planar wafers or AFM tips, with an acid- or an amino acid-terminated thiols, mercaptoundecanoic acid (MUA) and homocystein (H-Cyst) respectively, we were able to differentiate the interactions with ammonium perchlorate (AP) and starch (S), two components of a nanocomposition mixture. To do so, the interaction between gold functionalized surfaces and the two targeted compounds have been characterized and quantified by several complementary techniques. Polarisation modulation-infrared spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS), providing chemical analyses of gold surfaces after contacting S or AP, proved that both compounds were retained on MUA or H-Cyst-modified surfaces, but to various extents. Quartz crystal microbalance on-line measurements enabled to monitor the kinetics of interaction and showed distinct differences in the behaviour of MUA and H-Cyst-surfaces towards the two compounds. Having observed that only H-Cyst-modified surfaces enables to get a contrast on the chemical force microscopy (CFM) images, this new result could be well explained by examining the data obtained by combining the above-mentioned surface characterisation techniques.

  19. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    Science.gov (United States)

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:26277093

  20. First Chemical Analysis and Characterization of the Male Species-Specific Cephalic Labial-Gland Secretions of South American Bumblebees.

    Science.gov (United States)

    Brasero, Nicolas; Martinet, Baptiste; Urbanová, Klára; Valterová, Irena; Torres, Alexandra; Hoffmann, Wolfgang; Rasmont, Pierre; Lecocq, Thomas

    2015-10-01

    The evolution of signals and reproductive traits involved in the pre-mating recognition has been in focus of abundant research in several model species, such as bumblebees (genus Bombus). However, the most-studied bumblebee reproductive trait, the male cephalic labial gland secretions (CLGS), remains unknown among bumblebee species from South America. In this study, the CLGS of five South American bumblebees of the subgenera Thoracobombus (Bombus excellens and B. atratus) and Cullumanobombus (B. rubicundus, B. hortulanus, and B. melaleucus) were investigated, by comparing the chemical compositions of their secretions to those of closely related European species. The results showed an obvious interspecific differentiation in both subgenera. The interspecific differentiation among the species of the Thoracobombus subgenus involved different compounds present at high contents (main compounds), while those of the Cullumanobombus subgenus shared the same main components. This suggests that among the species of the Cullumanobombus subgenus, the differentiation in minor components could lead to species discrimination. PMID:26460558

  1. Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling

    Science.gov (United States)

    Motorin, Yuri; Burhenne, Jürgen; Teimer, Roman; Koynov, Kaloian; Willnow, Sophie; Weinhold, Elmar; Helm, Mark

    2011-01-01

    This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNAPhe. LC/MS and LC/MS/MS techniques were used to detect and characterize the modified nucleoside as well as its cycloaddition product with a fluorescent azide. The latter resulted from a labeling reaction via Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition click chemistry, producing site-specifically labeled RNA whose suitability for single molecule fluorescence experiments was verified in fluorescence correlation spectroscopy experiments. PMID:21037259

  2. Physical and chemical characterization of a Giardia lamblia-specific antigen useful in the coprodiagnosis of giardiasis.

    OpenAIRE

    Rosoff, J D; Stibbs, H H

    1986-01-01

    We recently reported the isolation and identification of a Giardia lamblia-specific antigen (GSA 65) that is shed in the stool of giardiasis patients. In the present study, this antigen was affinity purified from sonic extracts of axenically cultured G. lamblia trophozoites and characterized to better understand its biological function and its potential usefulness in the design of coprodiagnostic assays for giardiasis. GSA 65 was resistant to proteolytic digestion with trypsin, chymotrypsin, ...

  3. Induction of chromosome aberrations, sister chromatid exchanges and specific locus mutations by radiation and chemicals, and the application of the studies to population monitoring and risk estimation

    International Nuclear Information System (INIS)

    The major portion of the research of the Mammalian Cytogenetics Group can be considered to be directed towards estimating the genetic risk, and potentially the carcinogenicity, of radiation and chemical exposures to man. The approach taken is to attempt to determine the mechanism of induction of chromosome aberrations, sister chromatid exchanges and specific locus mutations, and to apply the information obtained to the interpretation of data from currently used assay systems, or for the development of new, more sensitive, or more predictive, assays. This report is divided into several sections, each one representing a separate series of experiments. There is a logical progression to the sections, and there is a clear relationship between them. The sections are: (1) x-ray-induced chromosome aberrations and the involvement of repair of DNA base damage; (2) hypothesis for the mechanism of induction of chromosome aberrations; (3) the induction of chromosome aberrations in lymphocytes from Down's syndrome individuals; (4) the induction of chromosome aberrations by chemical agents; (5) interactive effects of radiation and chemical agents; (6) risk estimation and population monitoring; (7) the mechanism of induction of sister chromatid exchanges and specific locus mutations; and (8) studies with a transplantable mouse myeloid leukemia - an animal model. The intention of these studies is to improve our ability to extrapolate from data obtained with laboratory animals to the likely outcome in man, in order to provide estimates of the genetic, and potentially the carcinogenic, risk to man from exposures to radiation and chemical agents. There are several studies that have been recently initiated but are not reported here because of limited results so far. These particularly involve the development or improvement of assay systems to provide a greater predictive value or greater sensitivity

  4. Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling

    OpenAIRE

    Motorin, Yuri; Burhenne, Jürgen; Teimer, Roman; Koynov, Kaloian; Willnow, Sophie; Weinhold, Elmar; Helm, Mark

    2010-01-01

    This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNAPhe. LC/MS a...

  5. Cellular Signaling Pathways and Their Clinical Reflections

    Directory of Open Access Journals (Sweden)

    N. Ceren Sumer-Turanligil

    2010-06-01

    Full Text Available Cellular signaling pathways have important roles in cellular growth, differentiation, inflammatory response and apoptosis and in regulation of cellular responses under various chemical stimulators. Different proteins which belong to these pathways may be exposed to loss-of-function or gain-of-function mutations; this may lead to many clinical phenotypes including primarily cancer. In this review information about basic working principles of these pathways and diseases related to them are included. [Archives Medical Review Journal 2010; 19(3.000: 180-191

  6. Cellular Cell Bifurcation of Cylindrical Detonations

    Institute of Scientific and Technical Information of China (English)

    HAN Gui-Lai; JIANG Zong-Lin; WANG Chun; ZHANG Fan

    2008-01-01

    Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

  7. Comparison of Protein N-Homocysteinylation in Rat Plasma under Elevated Homocysteine Using a Specific Chemical Labeling Method.

    Science.gov (United States)

    Zang, Tianzhu; Pottenplackel, Ligi Paul; Handy, Diane E; Loscalzo, Joseph; Dai, Shujia; Deth, Richard C; Zhou, Zhaohui Sunny; Ma, Jisheng

    2016-01-01

    Elevated blood concentrations of homocysteine have been well established as a risk factor for cardiovascular diseases and neuropsychiatric diseases, yet the etiologic relationship of homocysteine to these disorders remains poorly understood. Protein N-homocysteinylation has been hypothesized as a contributing factor; however, it has not been examined globally owing to the lack of suitable detection methods. We recently developed a selective chemical method to label N-homocysteinylated proteins with a biotin-aldehyde tag followed by Western blotting analysis, which was further optimized in this study. We then investigated the variation of protein N-homocysteinylation in plasma from rats on a vitamin B12 deficient diet. Elevated "total homocysteine" concentrations were determined in rats with a vitamin B12 deficient diet. Correspondingly, overall levels of plasma protein N-homocysteinylation displayed an increased trend, and furthermore, more pronounced and statistically significant changes (e.g., 1.8-fold, p-value: 0.03) were observed for some individual protein bands. Our results suggest that, as expected, a general metabolic correlation exists between "total homocysteine" and N-homocysteinylation, although other factors are involved in homocysteine/homocysteine thiolactone metabolism, such as the transsulfuration of homocysteine by cystathionine β-synthase or the hydrolysis of homocysteine thiolactone by paraoxonase 1 (PON1), may play more significant or direct roles in determining the level of N-homocysteinylation. PMID:27617989

  8. Signal processing in cellular clocks

    OpenAIRE

    Forger, Daniel B.

    2011-01-01

    Many biochemical events within a cell need to be timed properly to occur at specific times of day, after other events have happened within the cell or in response to environmental signals. The cellular biochemical feedback loops that time these events have already received much recent attention in the experimental and modeling communities. Here, we show how ideas from signal processing can be applied to understand the function of these clocks. Consider two signals from the network s(t) and r(...

  9. Deuterated nucleotides as chemical probes of RNA structure: a detailed protocol for the enzymatic synthesis of a complete set of nucleotides specifically deuterated at ribose carbons

    Directory of Open Access Journals (Sweden)

    Robert N. Azad

    2015-05-01

    Full Text Available We describe here a detailed protocol for the synthesis of ribonucleotides specifically deuterated at each ribose carbon atom. We synthesized 20 specifically deuterated ribonucleotides: ATP, CTP, GTP, and UTP, each of which contained one of five deuterated riboses (either 1′-D, 2″-D, 3′-D, 4′-D, or 5′,5″-D2. Our synthetic approach is inspired by the pioneering work of Tolbert and Williamson, who developed a method for the convenient one-pot enzymatic synthesis of nucleotides (Tolbert, T. J. and Williamson, J. R. (1996 J. Am. Chem. Soc. 118, 7929–7940. Our protocol consists of a comprehensive list of required chemical and enzymatic reagents and equipment, detailed procedures for enzymatic assays and nucleotide synthesis, and chromatographic procedures for purification of deuterated nucleotides. As an example of the utility of specifically deuterated nucleotides, we used them to synthesize specifically deuterated sarcin/ricin loop (SRL RNA and measured the deuterium kinetic isotope effect on hydroxyl radical cleavage of the SRL.

  10. Modelling cellular behaviour

    Science.gov (United States)

    Endy, Drew; Brent, Roger

    2001-01-01

    Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.

  11. Nonlinear optical methods for cellular imaging and localization.

    Science.gov (United States)

    McVey, A; Crain, J

    2014-07-01

    Of all the ways in which complex materials (including many biological systems) can be explored, imaging is perhaps the most powerful because delivering high information content directly. This is particular relevant in aspects of cellular localization where the physical proximity of molecules is crucial in biochemical processes. A great deal of effort in imaging has been spent on enabling chemically selective imaging so that only specific features are revealed. This is almost always achieved by adding fluorescent chemical labels to specific molecules. Under appropriate illumination conditions only the molecules (via their labels) will be visible. The technique is simple and elegant but does suffer from fundamental limitations: (1) the fluorescent labels may fade when illuminated (a phenomenon called photobleaching) thereby constantly decreasing signal contrast over the course of image acquisition. To combat photobleaching one must reduce observation times or apply unfavourably low excitation levels all of which reduce the information content of images; (2) the fluorescent species may be deactivated by various environmental factors (the general term is fluorescence quenching); (3) the presence of fluorescent labels may introduce unexpected complications or may interfere with processes of interest (4) Some molecules of interest cannot be labelled. In these circumstances we require a fundamentally different strategy. One of the most promising alternative is based on a technique called Coherent Anti-Stokes Raman scattering (CARS). CARS is a fundamentally more complex process than is fluorescence and the experimental procedures and optical systems required to deliver high quality CARS images are intricate. However, the rewards are correspondingly very high: CARS probes the chemically distinct vibrations of the constituent molecules in a complex system and is therefore also chemically selective as are fluorescence-based methods. Moreover,the potentially severe problems of

  12. Label-Free Analysis of Cellular Lipid Droplet Formation by Non-Linear Microscopy

    Science.gov (United States)

    Schie, Iwan W.

    Cellular lipid droplets (LD) are cellular organelles that can be found in every cell type. Recent research indicates that cellular LD are involved in a large number of cellular metabolic functions, such as lipid metabolism, protection from lipotoxicity, protein storage and degradation, and many more. LD formation is frequently associated with adverse health effects, i.e. alcoholic and non-alcoholic fatty liver disease, diabetes type-2, as well as many cardiovascular disorders. Despite their wide presence, LDs are the least studied and most poorly understood cellular organelles. Typically, LDs are investigated using fluorescence-based techniques that require staining with exogenous fluorophores. Other techniques, e.g. biochemical assays, require the destruction of cells that prohibit the analysis of living cells. Therefore, in my thesis research I developed a novel compound fast-scanning nonlinear optical microscope equipped with the ability to also acquire Raman spectra at specific image locations. This system allows us to image label-free cellular LD formation in living cells and analyze the composition of single cellular LDs. Images can be acquired at near video-rate (˜16 frames/s). Furthermore, the system has the ability to acquire very large images of tissue of up to 7.5x15 cm2 total area by stitching together scans with dimensions of 1x1 mm2 in less than 1 minute. The system also enables the user to acquire Raman spectra from points of interest in the multiphoton images and provides chemically-specific data from sample volumes as small as 1 femtoliter. In my thesis I used this setup to determine the effects of VLDL lipolysis products on primary rat hepatocytes. By analyzing the Raman spectra and comparing the peak ratios for saturated and unsaturated fatty acid it was determined that the small cellular LD are highly saturated, while large cellular LDs contain mostly unsaturated lipids. Furthermore, I established a method to determine the specific contribution

  13. Cellular computation using classifier systems

    OpenAIRE

    Kelly, Ciaran; Decraene, James, Lobo, Victor; Mitchell, George G.; McMullin, Barry; O'Brien, Darragh

    2006-01-01

    The EU FP6 Integrated Project PACE ('Programmable Artificial Cell Evolution') is investigating the creation, de novo, of chemical 'protocells'. These will be minimal 'wetware' chemical systems integrating molecular information carriers, primitive energy conversion (metabolism) and containment (membrane). Ultimately they should be capable of autonomous reproduction, and be 'programmable' to realise specific desired function. A key objective of PACE is to explore the application of such pro...

  14. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  15. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  16. OPEN QUESTIONS IN ORIGIN OF LIFE: EXPERIMENTAL STUDIES ON THE ORIGIN OF NUCLEIC ACIDS AND PROTEINS WITH SPECIFIC AND FUNCTIONAL SEQUENCES BY A CHEMICAL SYNTHETIC BIOLOGY APPROACH

    Directory of Open Access Journals (Sweden)

    Katarzyna Adamala

    2014-02-01

    We have recently addressed these questions by using a chemical synthetic biology approach. In particular, we have tested the catalytic activity of small peptides, like Ser-His, with respect to peptide- and nucleotides-condensation, as a realistic model of primitive organocatalysis. We have also set up a strategy for exploring the sequence space of random proteins and RNAs (the so-called “never born biopolymer” project with respect to the production of folded structures. Being still far from solved, the main aspects of these “open questions” are discussed here, by commenting on recent results obtained in our groups and by providing a unifying view on the problem and possible solutions. In particular, we propose a general scenario for macromolecule formation via fragment-condensation, as a scheme for the emergence of specific sequences based on molecular growth and selection.

  17. Determination of Specific Refractive Index Increment (dn/dc)μ at a Constant Chemical Potential, for Solutions of Polymer in Mixed Solvents by the GPC Method

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-guo; LI Xiao-wen; CHENG Rong-shi

    2007-01-01

    A new chromatographic method is described for the determination of specific refractive index increment(dn/dc)μ at a constant chemical potential, for polymer/mixed solvent systems. In this method the (dn/dc) is obtained by measuring the areas of solvated-polymer peaks when the mixed solvent is used as an eluent. Values of(dn/dc)μ for the poly(dimethylsiloxane) (PDMS) -benzene-methanol system, determined by the proposed method are in good agreement with those determined by the conventional dialysis method. The new approach has the advantages of simplicity, fast speed, and high reproducibility. The experimental results for stearic acid-chloroform-methanol system show that this method can also be applied to nonpolymer/mixed solvent systems for the determination of (dn/dc)μ.

  18. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  19. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular......; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates...

  20. Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae.

    Science.gov (United States)

    Dong, Xiaofeng; Kashio, Makiko; Peng, Guangda; Wang, Xinyue; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2016-06-01

    We identified and characterized the TRPA1 channel of Tropilaelaps mercedesae (TmTRPA1), one of two major species of honeybee ectoparasitic mite. Three TmTRPA1 isoforms with unique N-terminal sequences were activated by heat, and the isoform highly expressed in the mite's front legs, TmTRPA1b, was also activated by 27 plant-derived compounds including electrophiles. This suggests that the heat- and electrophile-dependent gating mechanisms as nocisensitive TRPA1 channel are well conserved between arthropod species. Intriguingly, one TmTRPA1 isoform, TmTRPA1a, was activated by only six compounds compared with two other isoforms, demonstrating that the N-terminal sequences are critical determinants for the chemical sensitivity. This is the first example of isoform-specific modulation of chemical sensitivity of TRPA1 channel in one species. α-terpineol showed repellent activity towards T. mercedesae in a laboratory assay and repressed T. mercedesae entry for reproduction into the brood cells with fifth instar larvae in hives. Thus, α-terpineol could be used as the potential compound to control two major honeybee ectoparasitic mites, T. mercedesae and Varroa destructor, in the apiculture industry. PMID:27307515

  1. Cellular oncogenes in neoplasia.

    OpenAIRE

    Chan, V T; McGee, J O

    1987-01-01

    In recent years cellular homologues of many viral oncogenes have been identified. As these genes are partially homologous to viral oncogenes and are activated in some tumour cell lines they are termed "proto-oncogenes". In tumour cell lines proto-oncogenes are activated by either quantitative or qualitative changes in gene structure: activation of these genes was originally thought to be a necessary primary event in carcinogenesis, but activated cellular oncogenes, unlike viral oncogenes, do ...

  2. Cellular Cardiomyoplasty: Clinical Application

    OpenAIRE

    Chachques, J. (J.); Acar, C; J. Herreros; Trainini, J. (Jorge); Prosper, F.; D’Attellis, N. (N.); Fabiani, J. N.; Carpentier, A

    2004-01-01

    Myocardial regeneration can be induced with the implantation of a variety of myogenic and angiogenic cell types. More than 150 patients have been treated with cellular cardiomyoplasty worldwide, 18 patients have been treated by our group. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit postischemic remodelling, and restore regional myocardial contractility. Techniques for skeletal myoblasts culture and ex vivo expansion using auto...

  3. Numerical investigation on evolution of cylindrical cellular detonation

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; JIANG Zong-lin; HU Zong-min; HAN Gui-lai

    2008-01-01

    Cylindrical cellular detonation is numerically investigated by solving twodimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh.The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction.Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas.Split of cellular structures shows different features in the near-field and far-field from the initiation zone.Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation.Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.

  4. Development of high-throughput yeast-cell-based bioreporter assays for specific monitoring of bisphenol A and chemical testing of endocrine disrupting compounds

    OpenAIRE

    RajasÀrkkÀ, Johanna

    2013-01-01

    Chemicalization of the modern society has become a topic of debate in the past few decades. Especially chemicals that affect the human reproduction and hormonal system, the so-called endocrine disrupting compounds, have raised concern in public and regulatory agencies. There is a growing need for suitable testing methods to screen endocrine disrupting potential of new and old chemicals. While the European Union chemical legislation REACH has increased the need of chemical testing methods, one...

  5. Cellular automata a parallel model

    CERN Document Server

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  6. Chemical stability of amorphous materials: specific and general media effects in the role of water in the degradation of freeze-dried zoniporide.

    Science.gov (United States)

    Luthra, Suman A; Shalaev, Evgenyi Y; Medek, Ales; Hong, Jinyang; Pikal, Michael J

    2012-09-01

    The objective of the present work was to determine whether hydrolysis in a model lyophile was influenced by general media effects with water-changing properties of the medium or via a specific mechanism of water as a reactant. Four formulations of zoniporide and sucrose (1:10) were prepared with variable amounts of sorbitol [0%-25% (w/v) of total solids). These formulations were then equilibrated at 6% and 11% relative humidity using saturated salt solutions. The lyophile cakes were analyzed by differential scanning calorimetery (DSC), (isothermal microcalorimetry (IMC), solid- state nuclear magnetic resonance (ssNMR) spectroscopy, and ultraviolet-visible diffuse reflectance (DFR) spectroscopy. DSC and IMC were used to assess the global molecular mobility. ssNMR relaxation times were measured to access local mobility. The DFR was used to determine the solid-state acidity expressed as the Hammett acidity function. Stability of samples was evaluated at 40°C by monitoring potency and purity by high-performance liquid chromatography (HPLC). Results were interpreted in terms of the various roles of water: media effect, plasticization, polarity, and reactant. The kinetics of hydrolysis was observed to be correlated with either/both specific "chemical" effects, that is, water reactant as well as media effect, specifically global molecular mobility of the matrix. Increase in reaction rate with increase in water content is not linear and is a weaker dependence than in some hydrolytic reactions in organic solvents. A moderate amount of an inert plasticizer, sorbitol, conferred additional stabilization, possibly by restricting the amplitude and frequency of fast motions that are on a small length scale. PMID:22461087

  7. Purification by DNA affinity precipitation of the cellular factors HEB1-p67 and HEB1-p94 which bind specifically to the human T-cell leukemia virus type-I 21 bp enhancer.

    OpenAIRE

    Lombard-Platet, G; Jalinot, P

    1993-01-01

    Transcription driven by the proviral promoter of the Human T-cell Leukemia Virus type I (HTLV-I) is tightly regulated by the Tax1 transactivator. This viral protein potently induces the enhancer activity of a 21 bp motif repeated three times in the promoter. We have previously shown that this induction results from the binding of Tax1 to this enhancer sequence and that this association is mediated by the cellular factor HEB1. In this paper we report the purification of this factor by chromato...

  8. Symposium on molecular and cellular mechanisms of mutagenesis

    International Nuclear Information System (INIS)

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents

  9. QUANTITATIVE CHANGES IN THE SYNAPTIC VESICLE PROTEINS SYNAPSIN I AND P38 AND THE ASTROCYTE-SPECIFIC PROTEIN GLIAL FIBRILLARY ACIDIC PROTEIN ARE ASSOCIATED WITH CHEMICAL-INDUCED INJURY TO THE RAT CENTRAL NERVOUS SYSTEM (JOURNAL VERSION)

    Science.gov (United States)

    Measurements of neuron-specific and glia-specific proteins were used to characterize chemical-induced injury to the rat CNS. Trimethyltin (TMT), a neurotoxicant which preferentially damages neurons in limbic structures, was employed to produce consistent, time-dependent, dose-rel...

  10. Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation: Could protein S-nitrosylation be the unifying oxidative modification to explain the cellular signaling activity of superoxide and hydrogen peroxide?

    Science.gov (United States)

    Clement, Marie-Veronique

    2014-10-01

    Accumulating evidence indicates that reactive oxygen species (ROS) and reactive nitrogen species (RNS) function as signaling molecules in physiological settings by acting as second messengers in response to external stimuli such as growth factors, cytokines and hormones. The nature of the ROS involved in cell signaling as well as the underlying mechanisms by which ROS modify protein function to influence cellular processes have been unfolding over the past decade. ROS and RNS influence various cellular processes by altering the function of critical proteins via reversible oxidation of "reactive cysteine" residues. Protein S-nitrosylation is a mechanism of nitric oxide-based signaling, however, while the presence of NO is sufficient and may be a prerequisite for the formation of cysteine-SNO, we reasoned that if protein-SNO formation is a critical cystein modification for redox driven signal transduction, an increase in intracellular ROS such as H2O2 and O2(-), shown to be independently involved in cell signaling, might both promote the formation of protein-SNO. In this respect, the present study shows that an increase in protein-SNO was detected not only upon an increase in the intracellular level of nitric oxide (NO), but also following exposure to low concentration of exogenous hydrogen peroxide (H2O2) or upon inhibition of the Cu/Zn superoxide dismutase that results in increased intracellular O2(-). PMID:26461291

  11. Irregular Cellular Learning Automata.

    Science.gov (United States)

    Esnaashari, Mehdi; Meybodi, Mohammad Reza

    2015-08-01

    Cellular learning automaton (CLA) is a recently introduced model that combines cellular automaton (CA) and learning automaton (LA). The basic idea of CLA is to use LA to adjust the state transition probability of stochastic CA. This model has been used to solve problems in areas such as channel assignment in cellular networks, call admission control, image processing, and very large scale integration placement. In this paper, an extension of CLA called irregular CLA (ICLA) is introduced. This extension is obtained by removing the structure regularity assumption in CLA. Irregularity in the structure of ICLA is needed in some applications, such as computer networks, web mining, and grid computing. The concept of expediency has been introduced for ICLA and then, conditions under which an ICLA becomes expedient are analytically found. PMID:25291810

  12. 具有高比表面积的稻壳灰的制备及其化学活性的研究%Study on Preparation of Rice Husk Ash with High Specific Surface Area and Its Chemical Reactivity

    Institute of Scientific and Technical Information of China (English)

    冯庆革; 林清宇; 童张法; S.Sugita

    2004-01-01

    Preparation of rice husk ash with high specific surface area and chemical reactivity of the product are reported in this paper. The amorphous rice husk ash with high specific surface area of 311 m2·g-1 was produced by heating acid treated rice husk at 700℃ for 4 h. The isotherms of rice husk ash are similar in shape to type Ⅱof Brunaner's classification with mesopores being predominant. The rice husk ash has a high chemical reactivity,especially that pretreated with acid. This chemical reactivity depends on ashing temperature and pretreatment conditions. There is an exponential relation between the specific surface area of rice husk ash and the change in the conductivity of saturated Ca(OH)2 solution with rice husk ash, from which the specific surface area can be known according to the conductivity change.

  13. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  14. Translating partitioned cellular automata into classical type cellular automata

    OpenAIRE

    Poupet, Victor

    2008-01-01

    Partitioned cellular automata are a variant of cellular automata that was defined in order to make it very simple to create complex automata having strong properties such as number conservation and reversibility (which are often difficult to obtain on cellular automata). In this article we show how a partitioned cellular automaton can be translated into a regular cellular automaton in such a way that these properties are conserved.

  15. Chemical genetics reveals a specific requirement for Cdk2 activity in the DNA damage response and identifies Nbs1 as a Cdk2 substrate in human cells.

    Directory of Open Access Journals (Sweden)

    Lara Wohlbold

    2012-08-01

    Full Text Available The cyclin-dependent kinases (CDKs that promote cell-cycle progression are targets for negative regulation by signals from damaged or unreplicated DNA, but also play active roles in response to DNA lesions. The requirement for activity in the face of DNA damage implies that there are mechanisms to insulate certain CDKs from checkpoint inhibition. It remains difficult, however, to assign precise functions to specific CDKs in protecting genomic integrity. In mammals, Cdk2 is active throughout S and G2 phases, but Cdk2 protein is dispensable for survival, owing to compensation by other CDKs. That plasticity obscured a requirement for Cdk2 activity in proliferation of human cells, which we uncovered by replacement of wild-type Cdk2 with a mutant version sensitized to inhibition by bulky adenine analogs. Here we show that transient, selective inhibition of analog-sensitive (AS Cdk2 after exposure to ionizing radiation (IR enhances cell-killing. In extracts supplemented with an ATP analog used preferentially by AS kinases, Cdk2(as phosphorylated the Nijmegen Breakage Syndrome gene product Nbs1-a component of the conserved Mre11-Rad50-Nbs1 complex required for normal DNA damage repair and checkpoint signaling-dependent on a consensus CDK recognition site at Ser432. In vivo, selective inhibition of Cdk2 delayed and diminished Nbs1-Ser432 phosphorylation during S phase, and mutation of Ser432 to Ala or Asp increased IR-sensitivity. Therefore, by chemical genetics, we uncovered both a non-redundant requirement for Cdk2 activity in response to DNA damage and a specific target of Cdk2 within the DNA repair machinery.

  16. Effect of cellular phospholipid modification on phorbol diester binding

    International Nuclear Information System (INIS)

    The influence of cellular lipid composition on the specific binding of [20-3H]phorbol-12,13-dibutyrate to intact human promyelocytic leukemia cells was investigated. Cellular phospholipid composition could be manipulated by culturing cells in serum-free, chemically defined media containing base analogues of phospholipid polar head groups. Human promyelocytic leukemia cells grown in the presence of dimethylethanolamine, monomethylethanolamine, 3-aminopropanol, or isopropylethanolamine assimilated these natural and unnatural base moieties into endogenous phospholipids to the extent that 22 to 52% of the cell glycerophospholipids contained the base analogue. The formation of the phospholipid analogues was accompanied by a pronounced reduction in the levels of intracellular choline and ethanolamine glycerophospholipids. Analogue-supplemented cultures exhibited a reduced growth rate compared to control cells maintained in choline-containing medium. Specific [20-3H ]phorbol-12,13-dibutyrate binding was examined in lipid-altered cells and shown to be markedly higher (approximately 200% of control) in cells grown with dimethyl- or monomethylethanolamine. In contrast, exposure of cells to 3-aminopropanol or isopropylethanolamine resulted in a major reduction in [20-3H]phorbol-12,13-dibutyrate binding. Only minimal changes in nonspecific binding occurred between control and experimental cells. Because phorbol esters are highly membrane targeted, it is possible that phospholipid modification or the resulting changes in membrane organization influence receptor dynamics

  17. α--AMYLASES OF Aspergillus flavus var. oryzae AND Bacillus subtilis: THE SUBSTRATE SPECIFICITY AND RESISTANCE TO A NUMBER OF CHEMICALLY ACTIVE SUBSTANCES

    Directory of Open Access Journals (Sweden)

    K. V. Avdiyuk

    2013-06-01

    Full Text Available The ability of Aspergillus flavus var. oryzae 80428 and Bacillus subtilis 147 α-amylases to split different carbohydrate-containing substrates, such as maltose, sucrose, trehalose, dextrin, α- and β-cyclodextrin, amylose, amylopectin, glycogen, pullulan, soluble starch, insoluble starch, corn starch, wheat starch, dextran 500 has been studied. It was shown that investigated enzymes differ by substrate specificity. α-Amylase of A. flavus var. oryzae 80428 rapidly hydrolysed soluble potato and wheat starch, while the α-amylase of B. subtilis 147 — only wheat starch. Both enzymes don’t cleave maltose, α-cyclodextrin and dextran 500. A. flavus var. oryzae 80428 α-amylase display very small ability to hydrolyze pullulan, while α-amylase of B. subtilis 147 it does not act in general. The lowest values of Michaelis constant for both enzymes at splitting of glycogen have been obtained, indicating that enzymes have the greatest affinity to this substrate. The studies of influence of chemically active substances on activity of A. flavus var. oryzae 80428 and B. subtilis 147 ?-amylases show there are resistant to urea, deoxycholic acid, Tween-80, Triton X-100 and hydrogen peroxide. It’s indicate the enzymes tested may be competitive in compare with earlier described in literature enzymes. The obtained results give a possibility to propose in future usage these enzymes in different fields of industry, foremost in detergent industry.

  18. Genetic Dominance & Cellular Processes

    Science.gov (United States)

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  19. Radioactivity of cellular concrete

    International Nuclear Information System (INIS)

    The natural radioactivity of cellular concrete is discussed. Some data on the concentrations of 40K, 226Ra and 232Th in building materials in Poland are given. The results of dose rates measurements in living quarters as well as outside are presented. (A.S.)

  20. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  1. Parametric study of double cellular detonation structure

    Science.gov (United States)

    Khasainov, B.; Virot, F.; Presles, H.-N.; Desbordes, D.

    2013-05-01

    A parametric numerical study is performed of a detonation cellular structure in a model gaseous explosive mixture whose decomposition occurs in two successive exothermic reaction steps with markedly different characteristic times. Kinetic and energetic parameters of both reactions are varied in a wide range in the case of one-dimensional steady and two-dimensional (2D) quasi-steady self-supported detonations. The range of governing parameters of both exothermic steps is defined where a "marked" double cellular structure exists. It is shown that the two-level cellular structure is completely governed by the kinetic parameters and the local overdrive ratio of the detonation front propagating inside large cells. Furthermore, since it is quite cumbersome to use detailed chemical kinetics in unsteady 2D case, the proposed work should help to identify the mixtures and the domain of their equivalence ratio where double detonation structure could be observed.

  2. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  3. An integrated cellular model to evaluate cytotoxic effects in mammalian cell lines.

    Science.gov (United States)

    Fernández Freire, P; Peropadre, A; Pérez Martín, J M; Herrero, O; Hazen, M J

    2009-12-01

    The ever growing anthropogenic pressure to the environment has lead in 2007 to the revision of the existing legislation and the approval of the new European law regarding the production and importation of chemicals, known as REACH. This new legal framework supports the development of alternative methods to animal experimentation encouraging the improvement and/or design of new methodological strategies for the toxicological evaluation of chemical compounds. Even though cytotoxicity studies are a reductionist approach to acute toxicity in vivo, they offer the best agreement between obtaining relevant information about the mechanism of toxic action and the use of alternative methods. Following this trend, this work presents an integrated cellular strategy in order to know the toxicity and mechanism of action of chemical compounds, using simple and reproducible in vitro systems. The experimental procedures are performed in two steps. The first one involves the systematic analysis of the main cellular targets using proliferation, viability and morphological probes. The second step relies upon the results obtained in the first step, including specific assays that focus on the mechanism of toxic action and the cellular response. The benefits of this strategy are exemplified with two real cases: pentachlorophenol and rotenone. PMID:19540333

  4. Pre-Transplant Donor-Specific T-Cell Alloreactivity Is Strongly Associated with Early Acute Cellular Rejection in Kidney Transplant Recipients Not Receiving T-Cell Depleting Induction Therapy

    OpenAIRE

    Crespo, Elena; Lucia, Marc; Cruzado, Josep M.; Luque, Sergio; Melilli, Edoardo; Manonelles, Anna; Lloberas, Nuria; Torras, Joan; Grinyó, Josep M.; Bestard, Oriol

    2015-01-01

    Preformed T-cell immune-sensitization should most likely impact allograft outcome during the initial period after kidney transplantation, since donor-specific memory T-cells may rapidly recognize alloantigens and activate the effector immune response, which leads to allograft rejection. However, the precise time-frame in which acute rejection is fundamentally triggered by preformed donor-specific memory T cells rather than by de novo activated naïve T cells is still to be established. Here, p...

  5. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  6. Induction of specific humoral and cellular immune responses in a mouse model following gene fusion of HSP70C and Hantaan virus Gn and S0.7 in an adenoviral vector.

    Directory of Open Access Journals (Sweden)

    Linfeng Cheng

    Full Text Available Heat shock proteins (HSPs display adjuvant functions when given as fusion proteins to enhance vaccination efficiency. To evaluate enhanced potency of Hantaan virus (HTNV glycoprotein (GP and nucleocapsid protein (NP immunogenicity by heat shock protein 70 (HSP70, a recombinant adenovirus rAd-GnS0.7-pCAG-HSP70C expression vector was developed by genetically linking the HSP70 C-terminal gene (HSP70 359-610 aa, HSP70C to the Gn and 0.7 kb fragment of the NP (aa1-274-S0.7. C57BL/6 mice were immunized with these recombinant adenoviral vectors. A series of immunological assays determined the immunogenicity of the recombinant adenoviral vectors. The results showed that rAd-GnS0.7-pCAG-HSP70C induced a stronger humoral and cellular immune response than other recombinant adenoviruses (rAd-GnS0.7-pCAG and rAd-GnS0.7 and the HFRS vaccine control. Animal protection experiments showed that rAd-GnS0.7-pCAG-HSP70C was effective at protecting C57BL/6 mice from HTNV infection. The results of the immunological experiments showed that HSP70C lead to enhanced vaccine potency, and suggested significant potential in the development of genetically engineered vaccines against HTNV.

  7. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  8. Introduction to Tissular and Cellular Engineering

    Institute of Scientific and Technical Information of China (English)

    JF; STOLTZ

    2005-01-01

    Most human tissues do not regenerate spontaneously, which is why cellular therapies and tissular engineering are promising alternatives. The principle is simple: cells are sampled in a patient and introduced in the damaged tissue or in a tridimentional porous support and cultivated in a bioreactor in which the physico-chemical and mechanical parameters are controlled. Once the tissues (or the cells) are mature they may be implanted. In parallel, the development of biotherapies with stem cells is a field of ...

  9. Animal and cellular models of human disease

    OpenAIRE

    Arends, Mark; White, Eric; Whitelaw, Christopher

    2016-01-01

    In this eighteenth (2016) Annual Review Issue of The Journal of Pathology, we present a collection of 19 invited review articles that cover different aspects of cellular and animal models of disease. These include genetically-engineered models, chemically-induced models, naturally-occurring models, and combinations thereof, with the focus on recent methodological and conceptual developments across a wide range of human diseases.

  10. Oxidative stress action in cellular aging

    OpenAIRE

    Monique Cristine de Oliveira; João Paulo Ferreira Schoffen

    2010-01-01

    Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the fac...

  11. Electromagnetic cellular interactions

    Czech Academy of Sciences Publication Activity Database

    Cifra, Michal; Fields, J. S.; Farhadi, A.

    2011-01-01

    Roč. 105, č. 3 (2011), 223-246. ISSN 0079-6107. [36th International Congress of Physiological Sciences (IUPS2009). Kyoto, 27.07.2009-01.08.2009] R&D Projects: GA ČR(CZ) GPP102/10/P454 Institutional research plan: CEZ:AV0Z20670512 Keywords : bioelectric phenomena * cellular biophysics Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.203, year: 2011

  12. Magnetic Cellular Switches

    OpenAIRE

    Overby, Darryl R.; Alenghat, Francis J.; Montoya-Zavala, Martín; Bei, HuCheng; Oh, Philmo; Karavitis, John; Ingber, Donald E.

    2004-01-01

    This paper focuses on the development of magnetic cellular switches to enable magnetic control of intracellular functions in living mammalian cells, including receptor signal transduction and gene transcription. Our approach takes advantage of the mechanosensitivity of adenosine 3′,5′-monophosphate (cAMP) induction and downstream transcription controlled by the cAMP regulatory element (CRE) to engineer gene constructs that optically report gene expression in living cells. We activate transcri...

  13. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory.

    Science.gov (United States)

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G

    2016-03-01

    Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure. PMID:26841076

  14. Cellular therapy in Tuberculosis

    Directory of Open Access Journals (Sweden)

    Shreemanta K. Parida

    2015-03-01

    Full Text Available Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB. We review here the role of Mesenchymal stromal cells, (MSCs, as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy.

  15. Cellular therapy in tuberculosis.

    Science.gov (United States)

    Parida, Shreemanta K; Madansein, Rajhmun; Singh, Nalini; Padayatchi, Nesri; Master, Iqbal; Naidu, Kantharuben; Zumla, Alimuddin; Maeurer, Markus

    2015-03-01

    Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB). We review here the role of Mesenchymal stromal cells, (MSCs), as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy. PMID:25809753

  16. Quantum cellular automata

    Science.gov (United States)

    Porod, Wolfgang; Lent, Craig S.; Bernstein, Gary H.

    1994-06-01

    The Notre Dame group has developed a new paradigm for ultra-dense and ultra-fast information processing in nanoelectronic systems. These Quantum Cellular Automata (QCA's) are the first concrete proposal for a technology based on arrays of coupled quantum dots. The basic building block of these cellular arrays is the Notre Dame Logic Cell, as it has been called in the literature. The phenomenon of Coulomb exclusion, which is a synergistic interplay of quantum confinement and Coulomb interaction, leads to a bistable behavior of each cell which makes possible their use in large-scale cellular arrays. The physical interaction between neighboring cells has been exploited to implement logic functions. New functionality may be achieved in this fashion, and the Notre Dame group invented a versatile majority logic gate. In a series of papers, the feasibility of QCA wires, wire crossing, inverters, and Boolean logic gates was demonstrated. A major finding is that all logic functions may be integrated in a hierarchial fashion which allows the design of complicated QCA structures. The most complicated system which was simulated to date is a one-bit full adder consisting of some 200 cells. In addition to exploring these new concepts, efforts are under way to physically realize such structures both in semiconductor and metal systems. Extensive modeling work of semiconductor quantum dot structures has helped identify optimum design parameters for QCA experimental implementations.

  17. Universal map for cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    García-Morales, V., E-mail: vmorales@ph.tum.de [Institute for Advanced Study – Technische Universität München, Lichtenbergstr. 2a, D-85748 Garching (Germany)

    2012-08-20

    A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived. -- Highlights: ► A universal map is derived for all deterministic 1D cellular automata (CA). ► The map is generalized to 2D for Von Neumann, Moore and hexagonal neighborhoods. ► A map for all Wolfram's 256 elementary CAs is derived. ► A map for Conway's “Game of Life” is obtained.

  18. Heterogeneous Force Chains in Cellularized Biopolymer Network

    OpenAIRE

    Liang, Long; Jones, Christopher; Sun, Bo; Jiao, Yang

    2015-01-01

    Biopolymer Networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the mechanical response of a model biopolymer network due to the active contraction of embedded cells. Specifically, a graph (bond-node) model derived from confocal microscopy data is used to represent the network microstructure, and cell contraction is modeled by applying correlated displacements at specific nodes, representing the fo...

  19. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  20. A p38 substrate-specific MK2-EGFP translocation assay for identification and validation of new p38 inhibitors in living cells: a comprising alternative for acquisition of cellular p38 inhibition data.

    Directory of Open Access Journals (Sweden)

    Roman Anton

    Full Text Available The fundamental role of p38 mitogen-activated protein kinases (MAPKs in inflammation underlines their importance as therapeutic targets for various inflammatory medical conditions, including infectious, vascular, neurobiological and autoimmune disease. Although decades of research have yielded several p38 inhibitors, most clinical trials have failed, due to lack of selectivity and efficacy in vivo. This underlines the continuous need to screen for novel structures and chemotypes of p38 inhibitors. Here we report an optimized MK2-EGFP translocation assay in a semi-automated image based High Content Analysis (HCA system to screen a combinatorial library of 3362 proprietary compounds with extensive variations of chemotypes. By determining the levels of redistribution of MK2-EGFP upon activation of the Rac/p38 pathway in combination with compound treatment, new candidates were identified, which modulate p38 activity in living cells. Based on integrated analysis of TNFα release from human whole blood, biochemical kinase activity assays and JNK3 selectivity testing, we show that this cell based assay reveals a high overlap and predictability for cellular efficacy, selectivity and potency of tested compounds. As a result we disclose a new comprehensive short-list of subtype inhibitors which are functional in the low nanomolar range and might provide the basis for further lead-optimization. In accordance to previous reports, we demonstrate that the MK2-EGFP translocation assay is a suitable primary screening approach for p38-MAPK drug development and provide an attractive labor- and cost saving alternative to other cell based methods including determination of cytokine release from hPBMCs or whole blood.

  1. A p38 Substrate-Specific MK2-EGFP Translocation Assay for Identification and Validation of New p38 Inhibitors in Living Cells: A Comprising Alternative for Acquisition of Cellular p38 Inhibition Data

    Science.gov (United States)

    Anton, Roman; Bauer, Silke M.; Keck, Peter R. W. E. F.; Laufer, Stefan; Rothbauer, Ulrich

    2014-01-01

    The fundamental role of p38 mitogen-activated protein kinases (MAPKs) in inflammation underlines their importance as therapeutic targets for various inflammatory medical conditions, including infectious, vascular, neurobiological and autoimmune disease. Although decades of research have yielded several p38 inhibitors, most clinical trials have failed, due to lack of selectivity and efficacy in vivo. This underlines the continuous need to screen for novel structures and chemotypes of p38 inhibitors. Here we report an optimized MK2-EGFP translocation assay in a semi-automated image based High Content Analysis (HCA) system to screen a combinatorial library of 3362 proprietary compounds with extensive variations of chemotypes. By determining the levels of redistribution of MK2-EGFP upon activation of the Rac/p38 pathway in combination with compound treatment, new candidates were identified, which modulate p38 activity in living cells. Based on integrated analysis of TNFα release from human whole blood, biochemical kinase activity assays and JNK3 selectivity testing, we show that this cell based assay reveals a high overlap and predictability for cellular efficacy, selectivity and potency of tested compounds. As a result we disclose a new comprehensive short-list of subtype inhibitors which are functional in the low nanomolar range and might provide the basis for further lead-optimization. In accordance to previous reports, we demonstrate that the MK2-EGFP translocation assay is a suitable primary screening approach for p38-MAPK drug development and provide an attractive labor- and cost saving alternative to other cell based methods including determination of cytokine release from hPBMCs or whole blood. PMID:24743242

  2. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens

    OpenAIRE

    Pollard, Steven M; YOSHIKAWA, KOICHI; Clarke, Ian D.; Danovi, Davide; Stricker, Stefan; Russell, Roslin; Bayani, Jane; Head, Renee; Lee, Marco; Bernstein, Mark; Squire, Jeremy A.; Smith, Austin; Dirks, Peter

    2009-01-01

    Human brain tumors appear to have a hierarchical cellular organization suggestive of a stem cell foundation. In vitro expansion of the putative cancer stem cells as stable cell lines would provide a powerful model system to study their biology. Here, we demonstrate routine and efficient derivation of adherent cell lines from malignant glioma that display stem cell properties and initiate high-grade gliomas following xenotransplantation. Significantly, glioma neural stem (GNS) cell lines from ...

  3. Cellular effects of LRRK2 mutations

    OpenAIRE

    Cookson, Mark R.

    2012-01-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are a relatively common cause of inherited Parkinson's disease (PD) but the mechanism(s) by which mutations lead to disease are poorly understood. Here, I will discuss what is known about LRRK2 in cellular models, focusing on specifically on assays that have been used to tease apart the effects of LRRK2 mutations on cellular phenotypes. LRRK2 expression has been suggested to cause loss of neuronal viability, although because it also has a stro...

  4. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  5. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  6. Cellular mechanics and motility

    Science.gov (United States)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  7. Radiolabelled Cellular Blood Elements

    International Nuclear Information System (INIS)

    This volume contains the abstracts of the 5th International Symposion on Radiolabelling of Cellular Blood Elements to be held in Vienna, Austria, September 10-14, 1989. The Meeting is the fifth in a series of meetings designed to discuss the basics and clinical application of radiolabelling techniques. In these days, beside the search for new labelling agents and extending the knowledge in clinical use, the use of monoclonal antibodies is a big new challenge. All reviewed contributions that have been accepted for presentation are contained in this volume. (authors) 58 of them are of INIS scope

  8. Linking Cellular and Mechanical Processes in Articular Cartilage Lesion Formation: A Mathematical Model

    OpenAIRE

    Kapitanov, Georgi I.; Wang, Xiayi; Ayati, Bruce P; Brouillette, Marc J.; Martin, James A.

    2016-01-01

    A severe application of stress on articular cartilage can initiate a cascade of biochemical reactions that can lead to the development of osteoarthritis. We constructed a multiscale mathematical model of the process with three components: cellular, chemical, and mechanical. The cellular component describes the different chondrocyte states according to the chemicals these cells release. The chemical component models the change in concentrations of those chemicals. The mechanical component cont...

  9. Software-Defined Cellular Mobile Network Solutions

    Institute of Scientific and Technical Information of China (English)

    Jiandong Li; Peng Liu; Hongyan Li

    2014-01-01

    The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, pro-vides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solu-tions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only software-defined cellular network solutions and specifications in order to provide possible research directions.

  10. Persistent cellular motion control and trapping using mechanotactic signaling.

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhu

    Full Text Available Chemotactic signaling and the associated directed cell migration have been extensively studied owing to their importance in emergent processes of cellular aggregation. In contrast, mechanotactic signaling has been relatively overlooked despite its potential for unique ways to artificially signal cells with the aim to effectively gain control over their motile behavior. The possibility of mimicking cellular mechanotactic signals offers a fascinating novel strategy to achieve targeted cell delivery for in vitro tissue growth if proven to be effective with mammalian cells. Using (i optimal level of extracellular calcium ([Ca(2+]ext = 3 mM we found, (ii controllable fluid shear stress of low magnitude (σ < 0.5 Pa, and (iii the ability to swiftly reverse flow direction (within one second, we are able to successfully signal Dictyostelium discoideum amoebae and trigger migratory responses with heretofore unreported control and precision. Specifically, we are able to systematically determine the mechanical input signal required to achieve any predetermined sequences of steps including straightforward motion, reversal and trapping. The mechanotactic cellular trapping is achieved for the first time and is associated with a stalling frequency of 0.06 ~ 0.1 Hz for a reversing direction mechanostimulus, above which the cells are effectively trapped while maintaining a high level of directional sensing. The value of this frequency is very close to the stalling frequency recently reported for chemotactic cell trapping [Meier B, et al. (2011 Proc Natl Acad Sci USA 108:11417-11422], suggesting that the limiting factor may be the slowness of the internal chemically-based motility apparatus.

  11. In vitro cellular responses to silicon carbide particles manufactured through the Acheson process: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects.

    OpenAIRE

    Boudard, Delphine; Forest, Valérie; Pourchez, Jérémie; Boumahdi, Najih; Tomatis, Maura; Fubini, Bice; Guilhot, Bernard; Cottier, Michèle; Grosseau, Philippe

    2014-01-01

    Silicon carbide (SiC) an industrial-scale product manufactured through the Acheson process, is largely employed in various applications. Its toxicity has been poorly investigated. Our study aims at characterizing the physico-chemical features and the in vitro impact on biological activity of five manufactured SiC powders: two coarse powders (SiC C1/C2), two fine powders (SiC F1/F2) and a powder rich in iron impurities (SiC I). RAW 264.7 macrophages were exposed to the different SiC particles ...

  12. Integrated cellular systems

    Science.gov (United States)

    Harper, Jason C.

    The generation of new three-dimensional (3D) matrices that enable integration of biomolecular components and whole cells into device architectures, without adversely altering their morphology or activity, continues to be an expanding and challenging field of research. This research is driven by the promise that encapsulated biomolecules and cells can significantly impact areas as diverse as biocatalysis, controlled delivery of therapeutics, environmental and industrial process monitoring, early warning of warfare agents, bioelectronics, photonics, smart prosthetics, advanced physiological sensors, portable medical diagnostic devices, and tissue/organ replacement. This work focuses on the development of a fundamental understanding of the biochemical and nanomaterial mechanisms that govern the cell directed assembly and integration process. It was shown that this integration process relies on the ability of cells to actively develop a pH gradient in response to evaporation induced osmotic stress, which catalyzes silica condensation within a thin 3D volume surrounding the cells, creating a functional bio/nano interface. The mechanism responsible for introducing functional foreign membrane-bound proteins via proteoliposome addition to the silica-lipid-cell matrix was also determined. Utilizing this new understanding, 3D cellular immobilization capabilities were extended using sol-gel matrices endowed with glycerol, trehalose, and media components. The effects of these additives, and the metabolic phase of encapsulated S. cerivisiase cells, on long-term viability and the rate of inducible gene expression was studied. This enabled the entrapment of cells within a novel microfluidic platform capable of simultaneous colorimetric, fluorescent, and electrochemical detection of a single analyte, significantly improving confidence in the biosensor output. As a complementary approach, multiphoton protein lithography was utilized to engineer 3D protein matrices in which to

  13. Efficiency of cellular information processing

    CERN Document Server

    Barato, Andre C; Seifert, Udo

    2014-01-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the E. coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium i...

  14. Chromatin chemistry goes cellular.

    OpenAIRE

    W. Fischle; D. Schwarzer; Mootz, H.

    2015-01-01

    Analysing post-translational modifications of histone proteins as they occur within chromatin is challenging due to their large number and chemical diversity. A major step forward has now been achieved by using split intein chemistry to engineer functionalized histones within cells.

  15. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  16. Modeling and cellular studies

    International Nuclear Information System (INIS)

    Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage

  17. Analysis of the levels of lysine-specific demethylase 1 (LSD1) mRNA in human ovarian tumors and the effects of chemical LSD1 inhibitors in ovarian cancer cell lines

    OpenAIRE

    Konovalov, Sergiy; Garcia-Bassets, Ivan

    2013-01-01

    Background Lysine-specific demethylase 1 (LSD1, also known as KDM1A and AOF2) is a chromatin-modifying activity that catalyzes the removal of methyl groups from lysine residues in histone and non-histone proteins, regulating gene transcription. LSD1 is overexpressed in several cancer types, and chemical inhibition of the LSD1 activity has been proposed as a candidate cancer therapy. Here, we examine the levels of LSD1 mRNA in human ovarian tumors and the cytotoxicity of several chemical LSD1 ...

  18. Autocatalytic closure and the evolution of cellular information processing networks

    OpenAIRE

    Decraene, James

    2009-01-01

    Cellular Information Processing Networks (CIPNs) are chemical networks of interacting molecules occurring in living cells. Through complex molecular interactions, CIPNs are able to coordinate critical cellular activities in response to internal and external stimuli. We hypothesise that CIPNs may be abstractly regarded as subsets of collectively autocatalytic (i.e., organisationally closed) reaction networks. These closure properties would subsequently interact with the evolution and adaptatio...

  19. Peroxisomes: a Nexus for Lipid Metabolism and Cellular Signaling

    OpenAIRE

    Lodhi, Irfan J.; Semenkovich, Clay F.

    2014-01-01

    Peroxisomes are often dismissed as the cellular hoi polloi, relegated to cleaning up reactive oxygen chemical debris discarded by other organelles. However, their functions extend far beyond hydrogen peroxide metabolism. Peroxisomes are intimately associated with lipid droplets and mitochondria, and their ability to carry out fatty acid oxidation and lipid synthesis, especially the production of ether lipids, may be critical for generating cellular signals required for normal physiology. Here...

  20. ChemProt: a disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Nielsen, Sonny Kim; Audouze, Karine Marie Laure;

    2011-01-01

    Systems pharmacology is an emergent area that studies drug action across multiple scales of complexity, from molecular and cellular to tissue and organism levels. There is a critical need to develop network-based approaches to integrate the growing body of chemical biology knowledge with network...... biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical-protein annotation resources, as well as disease-associated protein-protein interactions (PPIs). We assembled more than 700 000 unique chemicals with biological annotation for 30...... 578 proteins. We gathered over 2-million chemical-protein interactions, which were integrated in a quality scored human PPI network of 428 429 interactions. The PPI network layer allows for studying disease and tissue specificity through each protein complex. ChemProt can assist in the in silico...

  1. Eukaryotic protein domains as functional units of cellular evolution

    DEFF Research Database (Denmark)

    Jin, Jing; Xie, Xueying; Chen, Chen;

    2009-01-01

    of different domain types to assess the molecular compartment occupied by each domain. This reveals that specific subsets of domains demarcate particular cellular processes, such as growth factor signaling, chromatin remodeling, apoptotic and inflammatory responses, or vesicular trafficking. We suggest...

  2. Application of Digital Cellular Radio for Mobile Location Estimation

    Directory of Open Access Journals (Sweden)

    Farhat Anwar

    2012-08-01

    Full Text Available The capability to locate the position of mobiles is a prerequisite to implement a wide range of evolving ITS services. Radiolocation has the potential to serve a wide geographical area. This paper reports an investigation regarding the feasibility of utilizing cellular radio for the purpose of mobile location estimation. Basic strategies to be utilized for location estimation are elaborated. Two possible approaches for cellular based location estimation are investigated with the help of computer simulation. Their effectiveness and relative merits and demerits are identified. An algorithm specifically adapted for cellular environment is reported with specific features where mobiles, irrespective of their numbers, can locate their position without adversely loading the cellular system.Key Words: ITS, GSM, Cellular Radio, DRGS, GPS.

  3. Production of activated carbon with high specific surface area from bean-curd refuse by chemical activation; Okara wo genryo toshita yakuhin fukatsuho ni yoru kohihyomenseki kasseitan no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Muroyama, K.; Hayashi, J.; Sato, A.; Takemoto, S. [Kansai Univ., Osaka (Japan). Faculty of Engineering

    1996-05-15

    A large amount of bean-curd refuse is exhausted as-product of tofu in Japan. On the other hand, activated carbon is used widely from old times in chemicals, medicines and food industry. Recently, since environmental contamination has come to head, the demand of activated carbon is more increased. The authors tried to produce activated carbons with high specific surface area from bean-curd refuse by chemical activation using several alkali metal compounds. The effects of carbonization temperature, holding time and impregnation ratio of reagent to dried bean-curd refuse on pore structure of activated carbons produced were investigated. Among the chemicals tested K2CO3 is found to be the most effective as the impregnation reagent. In a range of carbonization temperature above 700{degree}C, the specific surface area of the activated carbon produced increases rapidly, takes a maximum at a carbonization temperature of about 800{degree}C and decreases with further increase in temperature above 800{degree}C. The specific surface area attains a maximum at a holding time of about 60 min. The specific surface area increases with increasing impregnation ratio up to an impregnation ratio of 1.00. 7 refs., 7 figs., 1 tab.

  4. Designing beauty the art of cellular automata

    CERN Document Server

    Martínez, Genaro

    2016-01-01

    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  5. A three-tiered approach for linking pharmacokinetic considerations to the adverse outcome pathway framework for chemical-specific risk assessment

    Science.gov (United States)

    The power of the adverse outcome pathway (AOP) framework arises from its utilization of pathway-based data to describe the initial interaction of a chemical with a molecular target (molecular initiating event; (MIE), followed by a progression through a series of key events that l...

  6. Urine specific gravity test

    Science.gov (United States)

    Urine specific gravity is a laboratory test that shows the concentration of all chemical particles in the urine. ... changes to will tell the provider the specific gravity of your urine. The dipstick test gives only ...

  7. Mechanical and Chemical Signaling in Angiogenesis

    CERN Document Server

    2013-01-01

    This volume of Studies in Mechanobiology, Tissue Engineering and Biomaterials describes the most recent advances in angiogenesis research at all biological length scales: molecular, cellular and tissue, in both in vivo and in vitro settings.  Angiogenesis experts from diverse fields including engineering, cell and developmental biology, and chemistry have contributed chapters which focus on the mechanical and chemical signals which affect and promote blood vessel growth. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. 

  8. Cellular and molecular basis of cerebellar development

    Science.gov (United States)

    Martinez, Salvador; Andreu, Abraham; Mecklenburg, Nora; Echevarria, Diego

    2013-01-01

    Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering, and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification, and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function. PMID:23805080

  9. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  10. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  11. The State of Cellular Probes

    OpenAIRE

    Yim, Youngbin

    2003-01-01

    Cellular probe technology is one of several potentially promising technologies for obtaining accurate travel time information. In 1996, the Federal Communications Commission (FCC) mandated E911 requirements that cellular location be provided when 911 emergency calls come in to emergency management authorities. The E911 requirements allow 50 -300 meters from the emergency call location, depending on the type of cellular phone technology used and whether handset-based or network-based solutions...

  12. Never-ageing cellular senescence

    OpenAIRE

    Ogrunc, Müge; d’Adda di Fagagna, Fabrizio

    2011-01-01

    Cellular senescence was historically discovered as a form of cellular ageing of in vitro cultured cells. It has been under the spotlight following the evidence of oncogene-induced senescence in vivo and its role as a potent tumour suppressor mechanism. Presently, a PubMed search using keywords ‘cellular senescence and cancer’ reveals 8398 number of references (by April 2011) showing that while our knowledge of senescence keeps expanding, the complexity of the phenomenon keeps us – researchers...

  13. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    Science.gov (United States)

    Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-10-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.

  14. State-selected chemical reaction dynamics at the S matrix level - Final-state specificities of near-threshold processes at low and high energies

    Science.gov (United States)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1992-01-01

    State-to-state reaction probabilities are found to be highly final-state specific at state-selected threshold energies for the reactions O + H2 yield OH + H and H + H2 yield H2 + H. The study includes initial rotational states with quantum numbers 0-15, and the specificity is especially dramatic for the more highly rotationally excited reactants. The analysis is based on accurate quantum mechanical reactive scattering calculations. Final-state specificity is shown in general to increase with the rotational quantum number of the reactant diatom, and the trends are confirmed for both zero and nonzero values of the total angular momentum.

  15. Active Cellular Nematics

    Science.gov (United States)

    Duclos, Guillaume; Erlenkaemper, Christoph; Garcia, Simon; Yevick, Hannah; Joanny, Jean-François; Silberzan, Pascal; Biology inspired physics at mesoscales Team; Physical approach of biological problems Team

    We study the emergence of a nematic order in a two-dimensional tissue of apolar elongated fibroblast cells. Initially, these cells are very motile and the monolayer is characterized by giant density fluctuations, a signature of far-from-equilibrium systems. As the cell density increases because of proliferation, the cells align with each other forming large perfectly oriented domains while the cellular movements slow down and eventually freeze. Therefore topological defects characteristic of nematic phases remain trapped at long times, preventing the development of infinite domains. By analogy with classical non-active nematics, we have investigated the role of boundaries and we have shown that cells confined in stripes of width smaller than typically 500 µm are perfectly aligned in the stripe direction. Experiments performed in cross-shaped patterns show that both the number of cells and the degree of alignment impact the final orientation. Reference: Duclos G., Garcia S., Yevick H.G. and Silberzan P., ''Perfect nematic order in confined monolayers of spindle-shaped cells'', Soft Matter, 10, 14, 2014

  16. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination

    OpenAIRE

    Fan, Hsiu-Fang; Cheng, Yong-Song; Ma, Chien-Hui; Jayaram, Makkuni

    2015-01-01

    Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of ‘non-productive’, ‘pre-synaptic’ and ‘synaptic...

  17. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  18. 47 CFR 22.909 - Cellular markets.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular...

  19. Cellular basis of memory for addiction.

    Science.gov (United States)

    Nestler, Eric J

    2013-12-01

    DESPITE THE IMPORTANCE OF NUMEROUS PSYCHOSOCIAL FACTORS, AT ITS CORE, DRUG ADDICTION INVOLVES A BIOLOGICAL PROCESS: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. Here, we review the types of molecular and cellular adaptations that occur in specific brain regions to mediate addiction-associated behavioral abnormalities. These include alterations in gene expression achieved in part via epigenetic mechanisms, plasticity in the neurophysiological functioning of neurons and synapses, and associated plasticity in neuronal and synaptic morphology mediated in part by altered neurotrophic factor signaling. Each of these types of drug-induced modifications can be viewed as a form of "cellular or molecular memory." Moreover, it is striking that most addiction-related forms of plasticity are very similar to the types of plasticity that have been associated with more classic forms of "behavioral memory," perhaps reflecting the finite repertoire of adaptive mechanisms available to neurons when faced with environmental challenges. Finally, addiction-related molecular and cellular adaptations involve most of the same brain regions that mediate more classic forms of memory, consistent with the view that abnormal memories are important drivers of addiction syndromes. The goal of these studies which aim to explicate the molecular and cellular basis of drug addiction is to eventually develop biologically based diagnostic tests, as well as more effective treatments for addiction disorders. PMID:24459410

  20. Chemical composition of drinking water as a possible environment-specific factor modifying the thyroid risk in the areas subjected to radioiodine contamination

    Science.gov (United States)

    Kolmykova, Lyudmila; Korobova, Elena; Ryzhenko, Boris

    2015-04-01

    Water is one of the main natural agents providing chemical elements' migration in the environment and food chains. In our opinion a study of spatial variation of the essential trace elements in local drinking water is worth considering as the factor that may contribute to variation of the health risk in areas contaminated by radionuclides and radioiodine in particular. Radioiodine was proved to increase the risk of thyroid cancer among children who lived in areas contaminated during the Chernobyl accident. It was also shown that low stable iodine status of the contaminated area and population also contributed to the risk of this disease in case of radionuclide contamination. The goal of the study was to investigate chemical composition of the drinking water in rural settlements of the Bryansk oblast' subjected to radioiodine contamination and to evaluate speciation of stable I and Se on the basis of their total concentration and chemical composition of the real water samples with the help of thermodynamic modelling. Water samples were collected from different aquifers discharging at different depths (dug wells, local private bore holes and water pipes) in rural settlements located in areas with contrasting soil iodine status. Thermodynamic modelling was performed using original software (HCh code of Y.Shvarov, Moscow State University, RUSSIA) incorporating the measured pH, Corg and elements' concentration values. Performed modelling showed possibility of formation of complex CaI+ ion in aqueous phase, I sorption by goethite and transfer of Se to solid phase as FeSe in the observed pH-Eh conditions. It helped to identify environmental conditions providing high I and Se mobility and their depletion from natural waters. Both the experimental data and modeling showed that I and Se migration and deficiency in natural water is closely connected to pH, Eh conditions and the concentration of typomorphic chemical elements (Ca, Mg, Fe) defining the class of water migration

  1. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  2. Cellular phones: are they detrimental?

    Science.gov (United States)

    Salama, Osama E; Abou El Naga, Randa M

    2004-01-01

    The issue of possible health effects of cellular phones is very much alive in the public's mind where the rapid increase in the number of the users of cell phones in the last decade has increased the exposure of people to the electromagnetic fields (EMFs). Health consequences of long term use of mobile phones are not known in detail but available data indicates the development of non specific annoying symptoms on acute exposure to mobile phone radiations. In an attempt to determine the prevalence of such cell phones associated health manifestations and the factors affecting their occurrence, a cross sectional study was conducted in five randomly selected faculties of Alexandria University. Where, 300 individuals including teaching staff, students and literate employee were equally allocated and randomly selected among the five faculties. Data about mobile phone's users and their medical history, their pattern of mobile usage and the possible deleterious health manifestations associated with cellular phone use was collected. The results revealed 68% prevalence of mobile phone usage, nearly three quarters of them (72.5%) were complainers of the health manifestations. They suffered from headache (43%), earache (38.3%), sense of fatigue (31.6%), sleep disturbance (29.5%), concentration difficulty (28.5%) and face burning sensation (19.2%). Both univariate and multivariate analysis were consistent in their findings. Symptomatic users were found to have significantly higher frequency of calls/day, longer call duration and longer total duration of mobile phone usage/day than non symptomatic users. For headache both call duration and frequency of calls/day were the significant predicting factors for its occurrence (chi2 = 18.208, p = 0.0001). For earache, in addition to call duration, the longer period of owning the mobile phone were significant predictors (chi2 = 16.996, p = 0.0002). Sense of fatigue was significantly affected by both call duration and age of the user

  3. Physico-chemical characterization of mortars as a tool in studying specific hydraulic components: application to the study of ancient Naxos aqueduct

    Science.gov (United States)

    Maravelaki-Kalaitzaki, P.; Galanos, A.; Doganis, I.; Kallithrakas-Kontos, N.

    2011-07-01

    Mortars and plasters from the ancient aqueduct on the island of Naxos, Greece, were studied with regard to mineralogical and chemical composition, grain size distribution, raw materials and hydraulic properties, in order to assess their characteristics and design compatible repair mortars. The authentic materials contained lime, crushed-brick, siliceous and calcitic aggregates, in different proportions according to mortar type. Crushed-bricks fired at low temperatures and lightweight volcanic aggregates contained amorphous phases, which upon reaction with lime yielded hydraulic components capable of protecting the construction from the continuous presence of water. Hydraulic calcium silicate/aluminate hydrates, the proportions and the perfect packing of the raw materials, along with the diligent application justify the longevity and durability of the studied samples. The hydraulic properties of samples were pointed out through (a) the well-established CO2/H2O ratio derived from the thermogravimetric analysis and (b) by introducing two powerful indices issued from the chemical analysis, namely CaOhydr and soluble SiO2 hydr. These indices improved the clustering of hydraulic mortars and provided better correlation between mortars, plasters and their binders. By comparing grain size distribution and hydraulicity indices it was possible to distinguish among the construction phases. Based on this study, repair mortars were formulated by hydraulic lime, siliceous sand, calcareous and crushed-brick aggregates, with the optimal water content, ensuring optimum workability and compatible appearance with the authentic ones.

  4. Identification of cellular targets for specific therapies in neurodevelopmental disorders

    OpenAIRE

    Vaz, Ana Rita Mendonça, 1984-

    2010-01-01

    Tese de doutoramento, Farmácia (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Farmácia, 2010 The present dissertation is focused in neonatal hyperbilirubinemia, a very common condition in the neonatal period, characterized by increased concentrations of unconjugated bilirubin (UCB). High levels of UCB may lead to bilirubin-induced neurologic dysfunction (BIND), particularly in premature infants, which may be a starting point to the appearance of long-term ...

  5. Open questions in origin of life: experimental studies on the origin of nucleic acids and proteins with specific and functional sequences by a chemical synthetic biology approach

    DEFF Research Database (Denmark)

    Adamala, K.; Anella, F.; Wieczorek, R.;

    2014-01-01

    In this mini-review we present some experimental approaches to the important issue in the origin of life, namely the origin of nucleic acids and proteins with specific and functional sequences. The formation of macromolecules on prebiotic Earth faces practical and conceptual difficulties. From the...

  6. Chemical networks

    Science.gov (United States)

    Thi, Wing-Fai

    2015-09-01

    This chapter discusses the fundamental ideas of how chemical networks are build, their strengths and limitations. The chemical reactions that occur in disks combine the cold phase reactions used to model cold molecular clouds with the hot chemistry applied to planetary atmosphere models. With a general understanding of the different types of reactions that can occur, one can proceed in building a network of chemical reactions and use it to explain the abundance of species seen in disks. One on-going research subject is finding new paths to synthesize species either in the gas-phase or on grain surfaces. Specific formation routes for water or carbon monoxide are discussed in more details. 13th Lecture of the Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  7. Molecular features of cellular reprogramming and development.

    Science.gov (United States)

    Smith, Zachary D; Sindhu, Camille; Meissner, Alexander

    2016-03-01

    Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation. PMID:26883001

  8. Material and mechanical factors:new strategy in cellular neurogenesis

    Institute of Scientific and Technical Information of China (English)

    Hillary Stoll; Il Keun Kwon; Jung Yul Lim

    2014-01-01

    Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharma-cological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracellular factors, including material and mechanical cues, also have a strong potential to induce cellular neurogenesis. This article will review recent data on the material (chemical patterning, micro/nano-topography, carbon nanotube, graphene) and mechanical (static cue from substrate stiffness, dynamic cue from stretch and lfow shear) stimulations of cellular neuro-genesis. These approaches may provide new neural regenerative medicine protocols. Scaffolding material templates capable of triggering cellular neurogenesis can be explored in the presence of neurogenesis-stimulatory mechanical environments, and also with conventional soluble factors, to enhance axonal growth and neural network formation in neural tissue engineering.

  9. Sequence-Specific 2-Cyanobenzothiazole Ligation.

    Science.gov (United States)

    Ramil, Carlo P; An, Peng; Yu, Zhipeng; Lin, Qing

    2016-05-01

    The use of small, natural chemical reporters in conjunction with catalyst-free bioorthogonal reactions will greatly streamline protein labeling in a cellular environment with minimum perturbation to their function. Here we report the discovery of a 2-cyanobenzothiazole (CBT)-reactive peptide tag, CX10R7, from a cysteine-encoded peptide phage library using the phage-assisted interrogation of reactivity method. Fusion of CX10R7 with a protein of interest allows site-specific labeling of the protein with CBT both in vitro and on the surface of E. coli cells. Mutagenesis studies indicated that the reactivity and specificity of CX10R7 are attributed to the sequence environment, in which the residues surrounding cysteine help to stabilize the ligation product. PMID:27082895

  10. Cytokines as cellular communicators

    Directory of Open Access Journals (Sweden)

    R. Debets

    1996-01-01

    Full Text Available Cytokines and their receptors are involved in the pathophysiology of many diseases. Here we present a detailed review on cytokines, receptors and signalling routes, and show that one important lesson from cytokine biology is the complex and diverse regulation of cytokine activity. The activity of cytokines is controlled at the level of transcription, translation, storage, processing, posttranslational modification, trapping, binding by soluble proteins, and receptor number and/or function. Translation of this diverse regulation in strategies aimed at the control of cytokine activity will result in the development of more specific and selective drugs to treat diseases.

  11. Α-AMYLASES OF ASPERGILLUS FLAVUS VAR. ORYZA E AND BACILLUS SUBTILIS: THE SUBSTRATE SPECIFICITY AND RESISTANCE TO A NUMBER OF CHEMICALLY ACTIVE SUBSTANCES

    OpenAIRE

    Avdiyuk, K.; Varbanets, L.

    2013-01-01

    The ability of Aspergillus flavus var. oryzae 80428 and Bacillus subtilis 147 αІamylases to split different carbohydrateІcontaining substrates, such as maltose, sucrose, trehalose, dextrin, αІ and βІcyclodextrin, amylose, amylopectin, glyІ cogen, pullulan, soluble starch, insoluble starch, corn starch, wheat starch, dextran 500 has been studied. It was shown that investigated enzymes differ by substrate specificity. αІAmylase of A. flavus var. oryzae 80428 rapidly hydrolysed soluble potato an...

  12. Actual problems of cellular cardiomyoplasty

    Directory of Open Access Journals (Sweden)

    Bulat Kaupov

    2010-04-01

    Full Text Available The paper provides review of cellular technologies used incardiology, describes types of cellular preparations depending onsources of cells and types of compounding cells. The generalmechanisms of therapies with stem cells applications are described.Use of cellular preparations for treatment of cardiovascular diseasesand is improvement of the forecast at patients with heartinsufficiency of various genesis is considered as alternative topractice with organ transplantations. Efforts of biotechnologicallaboratories are directed on search of optimum population of cellsfor application in cardiology and studying of mechanisms andfactors regulating function of cardiac stem cells.

  13. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  14. Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

    OpenAIRE

    Lin, Tien-ho; Bar-Joseph, Ziv; Murphy, Robert F.

    2011-01-01

    Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to m...

  15. Cellular scaling rules for the brain of afrotherians

    OpenAIRE

    Kleber eNeves; Fernanda eMeireles Ferreira; Fernanda eTovar-Moll; Nadine eGravett; Bennett, Nigel C.; Consolate eKaswera; Emmanuel eGilissen; Paul eManger; Suzana eHerculano-Houzel

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that nonneuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from ...

  16. Cellular scaling rules for the brain of afrotherians

    OpenAIRE

    Neves, Kleber; Ferreira, Fernanda M.; Tovar-Moll, Fernanda; Gravett, Nadine; Bennett, Nigel C.; Kaswera, Consolate; Gilissen, Emmanuel; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from...

  17. Origami interleaved tube cellular materials

    International Nuclear Information System (INIS)

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)

  18. Weed host specificity of the aphid, Aphis spiraecola: developmental and reproductive performance of aphids in relation to plant growth and leaf chemicals of the Siam weed, Chromolaena odorata.

    Science.gov (United States)

    Agarwala, B K; Das, Jhuma

    2012-01-01

    Density, distribution, and nutritional quality of plants are the causal basis of host plant selection in aphids. Nutritional qualities of a plant vary according to its growth stage and also in response to seasonal variation. How host plant growth stages shape aphid performance was studied in Aphis spiraecola Patch (Homoptera: Aphididae) on the perennial Siam weed, Chromolaena odorata (L.) King and Robinson (Asterales: Asteraceae). This plant species is the preferred host in the hot and humid tropical parts of northeast and southern India. Variations in developmental and reproductive performances in apterous viviparous female aphids were recorded in relation to differences in leaf chemicals in different growth stages of C. odorata. Aphids reproduced at higher rates in the vegetative stage of C. odorata when developmental time was shortest, and fecundity was higher in a longer reproductive time. Intrinsic rate of increase and net reproductive rate were also recorded to be higher in the vegetative stage of the weed host. In the vegetative stage, leaves contained higher quantity of proteins and nitrogen, which are vital for insect reproduction. Results of this study have demonstrated that A spiraecola showed synchronization of its developmental and reproductive performances to growth stages of C. odorata, which occur in high abundance in the study area. PMID:22950746

  19. Cellular mechanisms during vascular development

    OpenAIRE

    Blum, Yannick

    2012-01-01

    The vascular system is an essential organ in vertebrate animals and provides the organism with enough oxygen and nutrients. It is composed of an interconnected network of blood vessels, which form using a number of different morphogenetic mechanisms. Angiogenesis describes the formation of new blood vessels from preexisting vessels. A number of molecular pathways have been shown to be essential during angiogenesis. However, cellular architecture of blood vessels as well as cellular mechanisms...

  20. Predictive Modelling of Cellular Load

    OpenAIRE

    Carolan, Emmett; McLoone, Seamus; Farrell, Ronan

    2015-01-01

    This work examines the temporal dynamics of cellular load in four Irish regions. Large scale underutilisation of network resources is identified both at the regional level and at the level of individual cells. Cellular load is modeled and prediction intervals are generated. These prediction intervals are used to put an upper bound on usage in a particular cell at a particular time. Opportunities for improvements in network utilization by incorporating these upper bounds on usage are identifie...

  1. Cellular automaton for chimera states

    OpenAIRE

    García-Morales, Vladimir

    2016-01-01

    A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the...

  2. β-Amyloid pathogenesis: Chemical properties versus cellular levels

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Kepp, Kasper Planeta

    2016-01-01

    Although genetic Aβ variants cause early-onset Alzheimer's disease, literature reports on Aβ properties are heterogeneous, obscuring molecular mechanisms, as illustrated by recent failures of Aβ-level targeting trials. Thus, we combined available data on Aβ levels and ratios, aggregation propensi...

  3. Chemical Synthesis of the Galacturonic Acid Containing Pentasaccharide Antigen of the O-Specific Polysaccharide of Vibrio cholerae O139 and Its Five Fragments.

    Science.gov (United States)

    Lu, Xiaowei; Kováč, Pavol

    2016-08-01

    Three pentasaccharides, two tetrasaccharides, and a trisaccharide fragment of the O-specific antigen of Vibrio cholerae O139 were synthesized by applying 1 + 1, 2 + 1, 3 + 1, and 4 + 1 coupling strategies. The most challenging tasks involved were the synthesis of the 1,2-cis-glycosidic linkage between galactose and the linker (spacer) molecule and final purification of the target multicharged substances. Difficulties with final deprotection by hydrogenation/hydrogenolysis caused by the presence of galacturonic acid were overcome by protecting the acid with a group inert to the treatment with hydrogen. Some intermediates described previously as incompletely characterized amorphous materials were obtained in the crystalline condition and were fully characterized for the first time. PMID:27452084

  4. Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations

    Directory of Open Access Journals (Sweden)

    Pavel Mader

    2014-01-01

    Full Text Available Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs. Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.

  5. Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations

    Science.gov (United States)

    Mader, Pavel; Pecina, Adam; Cígler, Petr; Lepšík, Martin; Šícha, Václav; Hobza, Pavel; Grüner, Bohumír; Fanfrlík, Jindřich; Brynda, Jiří; Řezáčová, Pavlína

    2014-01-01

    Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs). Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively. PMID:25309911

  6. A computational study of liposome logic: towards cellular computing from the bottom up.

    Science.gov (United States)

    Smaldon, James; Romero-Campero, Francisco J; Fernández Trillo, Francisco; Gheorghe, Marian; Alexander, Cameron; Krasnogor, Natalio

    2010-09-01

    In this paper we propose a new bottom-up approach to cellular computing, in which computational chemical processes are encapsulated within liposomes. This "liposome logic" approach (also called vesicle computing) makes use of supra-molecular chemistry constructs, e.g. protocells, chells, etc. as minimal cellular platforms to which logical functionality can be added. Modeling and simulations feature prominently in "top-down" synthetic biology, particularly in the specification, design and implementation of logic circuits through bacterial genome reengineering. The second contribution in this paper is the demonstration of a novel set of tools for the specification, modelling and analysis of "bottom-up" liposome logic. In particular, simulation and modelling techniques are used to analyse some example liposome logic designs, ranging from relatively simple NOT gates and NAND gates to SR-Latches, D Flip-Flops all the way to 3 bit ripple counters. The approach we propose consists of specifying, by means of P systems, gene regulatory network-like systems operating inside proto-membranes. This P systems specification can be automatically translated and executed through a multiscaled pipeline composed of dissipative particle dynamics (DPD) simulator and Gillespie's stochastic simulation algorithm (SSA). Finally, model selection and analysis can be performed through a model checking phase. This is the first paper we are aware of that brings to bear formal specifications, DPD, SSA and model checking to the problem of modeling target computational functionality in protocells. Potential chemical routes for the laboratory implementation of these simulations are also discussed thus for the first time suggesting a potentially realistic physiochemical implementation for membrane computing from the bottom-up. PMID:21886681

  7. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  8. Computing Equilibrium Chemical Compositions

    Science.gov (United States)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  9. Repair and mutagenesis in procaryotes as cellular responses to ambiental agents

    International Nuclear Information System (INIS)

    The correct and incorrect mechanisms of DNA repair are discussed, as well as the cellular responses induced by the DNA lesions; the reductone mollecular effects; the cellular interactions among irradiated populations of microorganisms and the utilization of microbial assays for the detection of oncogenic activities of chemicals. (M.A.)

  10. Site-specific functionalization for chemical speciation of Cr(III) and Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling

    Science.gov (United States)

    Jain, Priyanka; Varshney, Shilpa; Srivastava, Shalini

    2015-10-01

    Site-specific functionalizations are the emergent attention for the enhancement of sorption latent of heavy metals. Limited chemistry has been applied for the fabrication of diafunctionalized materials having potential to tether both environmentally stable oxidation states of chromium (Cr(III) and Cr(VI). Polyaniline impregnated nanocellulose composite (PANI-NCC) has been fabricated using click chemistry and explored for the removal of Cr(III) and Cr(VI) from hydrological environment. The structure, stability, morphology, particle size, surface area, hydrophilicity, and porosity of fabricated PANI-NCC were characterized comprehensively using analytical techniques and mathematical tools. The maximum sorption performance of PANI-NCC was procured for (Cr(III): 47.06 mg g-1; 94.12 %) and (Cr(VI): 48.92 mg g-1; 97.84 %) by equilibrating 0.5 g sorbent dose with 1000 mL of 25 mg L-1 chromium conc. at pH 6.5 and 2.5 for Cr(III) and Cr(VI), respectively. The sorption data showed a best fit to the Langmuir isotherm and pseudo-second-order kinetic model. The negative value of ∆ G° (-8.59 and -11.16 kJ mol-1) and ∆ H° (66.46 × 10-1 and 17.84 × 10-1 kJ mol-1), and positive value of ∆ S° (26.66 and 31.46 J mol-1K-1) for Cr(III) and Cr(VI), respectively, reflect the spontaneous, feasibility, and exothermic nature of the sorption process. The application of fabricated PANI-NCC for removing both the forms of chromium in the presence of other heavy metals was also tested at laboratory and industrial waste water regime. These findings open up new avenues in the row of high performance, scalable, and economic nanobiomaterial for the remediation of both forms of chromium from water streams.

  11. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  12. Prognosis of Different Cellular Generations

    Directory of Open Access Journals (Sweden)

    Preetish Ranjan

    2013-04-01

    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  13. Simultaneous Analysis of Major Coenzymes of Cellular Redox Reactions and Energy Using ex Vivo (1)H NMR Spectroscopy.

    Science.gov (United States)

    Nagana Gowda, G A; Abell, Lauren; Lee, Chi Fung; Tian, Rong; Raftery, Daniel

    2016-05-01

    Coenzymes of cellular redox reactions and cellular energy mediate biochemical reactions fundamental to the functioning of all living cells. Despite their immense interest, no simple method exists to gain insights into their cellular concentrations in a single step. We show that a simple (1)H NMR experiment can simultaneously measure oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD(+) and NADH), oxidized and reduced forms of nicotinamide adenine dinucleotide phosphate (NADP(+) and NADPH), and adenosine triphosphate (ATP) and its precursors, adenosine diphosphate (ADP) and adenosine monophosphate (AMP), using mouse heart, kidney, brain, liver, and skeletal muscle tissue extracts as examples. Combining 1D/2D NMR experiments, chemical shift libraries, and authentic compound data, reliable peak identities for these coenzymes have been established. To assess this methodology, cardiac NADH and NAD(+) ratios/pool sizes were measured using mouse models with a cardiac-specific knockout of the mitochondrial Complex I Ndufs4 gene (cKO) and cardiac-specific overexpression of nicotinamide phosphoribosyltransferase (cNAMPT) as examples. Sensitivity of NAD(+) and NADH to cKO or cNAMPT was observed, as anticipated. Time-dependent investigations showed that the levels of NADH and NADPH diminish by up to ∼50% within 24 h; concomitantly, NAD(+) and NADP(+) increase proportionately; however, degassing the sample and flushing the sample tubes with helium gas halted such changes. The analysis protocol along with the annotated characteristic fingerprints for each coenzyme is provided for easy identification and absolute quantification using a single internal reference for routine use. The ability to visualize the ubiquitous coenzymes fundamental to cellular functions, simultaneously and reliably, offers a new avenue to interrogate the mechanistic details of cellular function in health and disease. PMID:27043450

  14. Modeling cellular effects of coal pollutants

    International Nuclear Information System (INIS)

    The goal of this project is to develop and test models for the dose and dose-rate dependence of biological effects of coal pollutants on mammalian cells in tissue culture. Particular attention is given to the interaction of pollutants with the genetic material (deoxyribonucleic acid, or NDA) in the cell. Unlike radiation, which can interact directly with chromatin, chemical pollutants undergo numerous changes before the ultimate carcinogen becomes covalently bound to the DNA. Synthetic vesicles formed from a phospholipid bilayer are being used to investigate chemical transformations that may occur during the transport of pollutants across cellular membranes. The initial damage to DNA is rapidly modified by enzymatic repair systems in most living organisms. A model has been developed for predicting the effects of excision repair on the survival of human cells exposed to chemical carcinogens. In addition to the excision system, normal human cells also have tolerance mechanisms that permit continued growth and division of cells without removal of the damage. We are investigating the biological effect of damage passed to daughter cells by these tolerance mechanisms

  15. PM - processing for manufacturing of metals with cellular structures

    International Nuclear Information System (INIS)

    In this review the major Processes about manufacturing of metals with cellular structure are described - based on powder metallurgy, chemical deposition and some other methods (without melting techniques). It can be shown that during the last decade many interesting innovations led to new production methods to design cellular materials. Some of them are used nowadays in industry. Also characterization and properties become more important and have therefore been carried out carefully, because of their strong influence on the functions and applications of such materials. (author)

  16. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    Directory of Open Access Journals (Sweden)

    O.Popescu

    1999-01-01

    Full Text Available Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of isolated and purified glyconectins revealed the presence of specific carbohydrate structures, acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight containing fucose, glucuronic or galacturonic acids, and sulfate groups, originally found in sponges and sea urchin embryos, may represent a new class of carbohydrate carcino-embryonal antigens in mice and humans. Such interactions between biological macromolecules are usually investigated by kinetic binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance, and other spectroscopic analyses. However, these methods do not supply a direct estimation of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Recently, we have introduced atomic force microscopy to quantify the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion proteoglycans is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. As a model, we selected the glyconectin 1, a cell adhesion proteoglycan isolated from the marine sponge Microciona prolifera. This glyconectin mediates in vivo cell recognition and aggregation via homophilic, species-specific, polyvalent, and calcium ion-dependent carbohydrate-carbohydrate interactions. Under physiological conditions, an adhesive force of up to 400 piconewtons

  17. Aging, cellular senescence, and cancer.

    Science.gov (United States)

    Campisi, Judith

    2013-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyperplastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. PMID:23140366

  18. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics by...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were...

  19. Cellular-based preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  20. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  1. Adaptive stochastic cellular automata: Applications

    Science.gov (United States)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  2. Cellular senescence in aging primates.

    Science.gov (United States)

    Herbig, Utz; Ferreira, Mark; Condel, Laura; Carey, Dee; Sedivy, John M

    2006-03-01

    The aging of organisms is characterized by a gradual functional decline of all organ systems. Mammalian somatic cells in culture display a limited proliferative life span, at the end of which they undergo an irreversible cell cycle arrest known as replicative senescence. Whether cellular senescence contributes to organismal aging has been controversial. We investigated telomere dysfunction, a recently discovered biomarker of cellular senescence, and found that the number of senescent fibroblasts increases exponentially in the skin of aging baboons, reaching >15% of all cells in very old individuals. In addition, the same cells contain activated ataxia-telangiectasia mutated kinase and heterochromatinized nuclei, confirming their senescent status. PMID:16456035

  3. Cellular automaton for chimera states

    Science.gov (United States)

    García-Morales, Vladimir

    2016-04-01

    A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, some synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent structures with different periodicities are formed.

  4. Prognosis of Different Cellular Generations

    OpenAIRE

    Preetish Ranjan; Prabhat Kumar

    2013-01-01

    Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequen...

  5. Cellular and molecular mechanisms underlying radiation carcinogenesis

    International Nuclear Information System (INIS)

    When considering and analyzing experimental material concerning cellular aspects of the problem of radiation carcinogenesis, the following conclusions can be made: neoplastic transformation of cells in a culture is caused already by small radiation doses, under the effect of which the level of DNA injury is quite insignificant; the frequency of cell transformation depends on the type of radiation, it is particularly pronounced under the effect of radiations with a high linear energy transfer; a correlation between the processes of postradiation recovery and radiogenic transformation of cells is detected, nonrepairable injures of DNA playing the most important role in radiation carcinogenesis; tumour promoters and anticarcinogenic agens produce a modifying effect on the transformation of irradiated cells. Molecular mechanisms of oncogene activation are thoroughly studied using the model of virus carcinogenesis, the problem of the nature of chemical and, in particular, radiation cell transformation remains scantily investigated

  6. A cellular automata model for ant trails

    Indian Academy of Sciences (India)

    Sibel Gokce; Ozhan Kayacan

    2013-05-01

    In this study, the unidirectional ant traffic flow with U-turn in an ant trail was investigated using one-dimensional cellular automata model. It is known that ants communicate with each other by dropping a chemical, called pheromone, on the substrate. Apart from the studies in the literature, it was considered in the model that (i) ant colony consists of two kinds of ants, goodand poor-smelling ants, (ii) ants might make U-turn for some special reasons. For some values of densities of good- and poor-smelling ants, the flux and mean velocity of the colony were studied as a function of density and evaporation rate of pheromone.

  7. Biological (molecular and cellular) markers of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.; D' Surney, S.J.; Gettys-Hull, C.; Greeley, M.S. Jr.

    1991-12-15

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO{sup 6}-ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O{sup 6}-ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP.

  8. Biological (molecular and cellular) markers of toxicity

    International Nuclear Information System (INIS)

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO6-ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O6-ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP

  9. Selective Chemical Labeling of Proteins with Small Fluorescent Molecules Based on Metal-Chelation Methodology

    OpenAIRE

    Nobuaki Soh

    2008-01-01

    Site-specific chemical labeling utilizing small fluorescent molecules is a powerful and attractive technique for in vivo and in vitro analysis of cellular proteins, which can circumvent some problems in genetic encoding labeling by large fluorescent proteins. In particular, affinity labeling based on metal-chelation, advantageous due to the high selectivity/simplicity and the small tag-size, is promising, as well as enzymatic covalent labeling, thereby a variety of novel methods have been stu...

  10. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  11. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    the specific organelle that mesoporous silica nanoparticles could approach via the identification of harvested proteins from exocytosis process. Based on the study of endo- and exocytosis behavior of mesoporous silica nanoparticle materials, we can design smarter drug delivery vehicles for cancer therapy that can be effectively controlled. The destination, uptake efficiency and the cellular distribution of mesoporous silica nanoparticle materials can be programmable. As a result, release mechanism and release rate of drug delivery systems can be a well-controlled process. The deep investigation of an endo- and exocytosis study of mesoporous silica nanoparticle materials promotes the development of drug delivery applications.

  12. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M;

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...

  13. Quantum Cloning by Cellular Automata

    OpenAIRE

    D'Ariano, G. M.; Macchiavello, C.; M. Rossi

    2012-01-01

    We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.

  14. Analysis of cellular manufacturing systems

    NARCIS (Netherlands)

    Heragu, Sunderesh; Meng, Gang; Zijm, Henk; Ommeren, van Jan-Kees

    2001-01-01

    In this paper, we present an open queuing network modeling approach to estimate performance measures of a cellular manufacturing layout. It is assumed a layout and production data for a planning period of specified length are available. The production data takes into account, processing and handli

  15. 仙贞片对糖尿病大鼠肾皮质终末期糖化终产物及其受体mRNA表达的影响%Effect of Xianzhen Tablet on Content of Advanced Glycosylation End Products (AGEs) and mRNA Expression of AGE-specific Cellular Receptor in Renal Cortex of Diabetic Rats

    Institute of Scientific and Technical Information of China (English)

    唐代屹; 郭赛珊; 孙仁宇

    2005-01-01

    目的观察仙贞片对糖尿病大鼠肾皮质终末期糖化终产物(advanced glycation end products,AGEs)含量及其糖化终产物特异性受体(AGE-specific cellular receptor,RAGE)信使核糖核酸(messenger ribonucleic acid,mRNA)表达的影响,探讨其对糖尿病大鼠肾保护的作用机制.方法采用链脲佐菌素(streptozotocin,STZ)复制糖尿病持续性高血糖肾损害大鼠模型,用荧光测定法和逆转录-多聚酶链式反应(reverse transcription polymerase chain reaction,RT-PCR)技术检测模型大鼠肾皮质AGEs含量及RAGEmRNA的表达,与氨基胍作对照.结果实验12周模型大鼠肾皮质AGEs相对含量及RAGE mRNA表达明显高于正常对照组(P<0.05),仙贞片及氨基胍治疗组肾皮质AGEs相对含量及RAGE mRNA表达明显低于模型组(P<0.05),仙贞片与氨基胍组比较差异无显著性(P>0.05).结论仙贞片能减轻糖尿病大鼠肾皮质内AGEs的积聚,下调RAGE mRNA的过度表达,与氨基胍相近似,具有抑制蛋白非酶糖基化的作用,可能是其肾保护作用的机制之一.

  16. Interferon-γ: biological function and application for study of cellular immune response

    Directory of Open Access Journals (Sweden)

    A. A. Lutckii

    2015-01-01

    Full Text Available Cellular immune response plays a central role in control of intracellular pathogens like viruses, some bacteria and parasites. Evaluation of presence, specificity and strength of cellular immune response can be done by investigation of reaction of immune cells to specific stimulus, like antigen. The major cellular reactions to antigen stimulation are production of cytokines, proliferation and cytotoxicity. This review is focused on interferon-gamma as one of the central Th1 cytokines: its biology, immunological role and application as marker of cellular immune response.

  17. Activation of the NLRP3 inflammasome by cellular labile iron.

    Science.gov (United States)

    Nakamura, Kyohei; Kawakami, Toru; Yamamoto, Naoki; Tomizawa, Miyu; Fujiwara, Tohru; Ishii, Tomonori; Harigae, Hideo; Ogasawara, Kouetsu

    2016-02-01

    Cellular labile iron, which contains chelatable redox-active Fe(2+), has been implicated in iron-mediated cellular toxicity leading to multiple organ dysfunction. Iron homeostasis is controlled by monocytes/macrophages through their iron recycling and storage capacities. Furthermore, iron sequestration by monocytes/macrophages is regulated by pro-inflammatory cytokines including interleukin-1, highlighting the importance of these cells in the crosstalk between inflammation and iron homeostasis. However, a role for cellular labile iron in monocyte/macrophage-mediated inflammatory responses has not been defined. Here we describe how cellular labile iron activates the NLRP3 inflammasome in human monocytes. Stimulation of lipopolysaccharide-primed peripheral blood mononuclear cells with ferric ammonium citrate increases the level of cellular Fe(2+) levels in monocytes and induces production of interleukin-1β in a dose-dependent manner. This ferric ammonium citrate-induced interleukin-1β production is dependent on caspase-1 and is significantly inhibited by an Fe(2+)-specific chelator. Ferric ammonium citrate consistently induced interleukin-1β secretion in THP1 cells, but not in NLRP3-deficient THP1 cells, indicating a requirement for the NLRP3 inflammasome. Additionally, activation of the inflammasome is mediated by potassium efflux, reactive oxygen species-mediated mitochondrial dysfunction, and lysosomal membrane permeabilization. Thus, these results suggest that monocytes/macrophages not only sequestrate iron during inflammation, but also mediate inflammation in response to cellular labile iron, which provides novel insights into the role of iron in chronic inflammation. PMID:26577567

  18. Cellular proteins in influenza virus particles.

    Directory of Open Access Journals (Sweden)

    Megan L Shaw

    2008-06-01

    Full Text Available Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes.

  19. Probing cellular behaviors through nanopatterned chitosan membranes

    International Nuclear Information System (INIS)

    This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h), they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80%) of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia) showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions. (paper)

  20. Numerical simulation of Mach reflection of cellular detonations

    Science.gov (United States)

    Li, J.; Lee, J. H. S.

    2016-07-01

    The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.

  1. Cellular solidification of transparent monotectics

    Science.gov (United States)

    Kaulker, W. F.

    1986-01-01

    Understanding how liquid phase particles are engulfed or pushed during freezing of a monotectic is addressed. The additional complication is that the solid-liquid interface is nonplanar due to constitutional undercooling. Some evidence of particle pushing where the particles are the liquid phase of the montectic was already observed. Cellular freezing of the succinonitrile-glycerol system also occurred. Only a few compositions were tested at that time. The starting materials were not especially pure so that cellular interface observed was likely due to the presence of unkown impurities, the major portion of which was water. Topics addressed include: the effort of modeling the particle pushing process using the computer, establishing an apparatus for the determination of phase diagrams, and the measurement of the temperature gradients with a specimen which will solidify on the temperature gradient microscope stage.

  2. Cellular ceramics in combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Fuessel, Alexander; Boettge, Daniela; Adler, Joerg; Marschallek, Felix; Michaelis, Alexander [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden (Germany)

    2011-11-15

    Cellular materials have become increasingly interesting for applications in combustion environments. Improvements like high power efficiency and low emissions are the main targets of technological development in combustion processes. However, despite scientific and technical success in developing new or improved burner concepts over recent years, a lot of problems remain to be solved in the field of materials science: due to the high power density of the burners the materials are subjected to high loads in terms of thermal shock, temperature and corrosion, especially in so-called porous burner technology. This article shows some examples of research and development strategies and results in developing improved cellular ceramics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Designing Underwater Cellular Networks Parameters

    Directory of Open Access Journals (Sweden)

    Pejman Khadivi

    2008-09-01

    Full Text Available Oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance are some of the applications of underwater networks. Underwater networks should send the gathered information to other users or an offshore station via a base station in the sea. Since the available bandwidth in underwater is severely limited, frequency reuse and cellular networks concepts are very important. In this paper, after driving the ratio of signal to interference for underwater acoustic channels, the constraints for the cell radius are determined. One of the important results of this work is that, for special parameters like bandwidth, it may be impossible to provide the required signal to interference ratio and bandwidth for the network users. Furthermore, in this paper, number of supportable users, per-user bandwidth, and the user capacity for a cellular underwater network are determined.

  4. Pomegranate Extracts and Cancer Prevention: Molecular and Cellular Activities

    OpenAIRE

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Adhami, Vaqar M.; Mukhtar, Hasan

    2013-01-01

    There is increased appreciation by the scientific community that dietary phytochemicals can be potential weapons in the fight against cancer. Emerging data has provided new insights into the molecular and cellular framework needed to establish novel mechanism-based strategies for cancer prevention by selective bioactive food components. The unique chemical composition of the pomegranate fruit, rich in antioxidant tannins and flavonoids has drawn the attention of many investigators. Polyphenol...

  5. Stochastic Nature in Cellular Processes

    Institute of Scientific and Technical Information of China (English)

    刘波; 刘圣君; 王祺; 晏世伟; 耿轶钊; SAKATA Fumihiko; GAO Xing-Fa

    2011-01-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  6. Xtoys cellular automata on xwindows

    CERN Document Server

    Creutz, M

    1995-01-01

    Xtoys is a collection of xwindow programs for demonstrating simulations of various statistical models. Included are xising, for the two dimensional Ising model, xpotts, for the q-state Potts model, xautomalab, for a fairly general class of totalistic cellular automata, xsand, for the Bak-Tang-Wiesenfield model of self organized criticality, and xfires, a simple forest fire simulation. The programs should compile on any machine supporting xwindows.

  7. Cellular reactions to patterned biointerfaces

    OpenAIRE

    Schulte, Vera Antonie

    2012-01-01

    The subject of this thesis is to study cellular reactions to topographically, mechanically and biochemically tunable polymeric biomaterials. Different aspects of in vitro cell-biomaterial interactions were systematically studied with the murine fibroblast cell line NIH L929 and primary human dermal fibroblasts (HDFs). Besides a general cytocompatibility assessment of the applied materials and the quantification of cell adhesion per se, cell morphological changes (e.g. cell spreading) and intr...

  8. Analysis of cellular manufacturing systems

    OpenAIRE

    Heragu, Sunderesh; Meng, Gang; Zijm, Henk; Ommeren, van, J.C.

    2001-01-01

    In this paper, we present an open queuing network modeling approach to estimate performance measures of a cellular manufacturing layout. It is assumed a layout and production data for a planning period of specified length are available. The production data takes into account, processing and handling set-up times as well as transfer and process batch size information of multiple products that flow through the system. It is assumed that two sets of discrete material handling devices are used fo...

  9. Cellular Dynamics of RNA Modification

    OpenAIRE

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characteri...

  10. Cellular Dynamics of RNA Modification

    Science.gov (United States)

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Conspectus Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characterized protein and DNA modifications, many RNA modifications are not essential for life. Instead, increasingly more evidence indicates that RNA modifications can play regulatory roles in cells, especially in response to stress conditions. In this Account, we review some known examples of RNA modifications that are dynamically controlled in cells and introduce some contemporary technologies and methods that enhance the studies of cellular dynamics of RNA modifications. Examples of RNA modifications discussed in this Account include (Figure 1): (1) 4-thio uridine (s4U) which can act as a cellular sensor of near UV-light; (2) queuosine (Q) which is a potential biomarker for malignancy; (3) N6-methyl adenine (m6A) which is the prevalent modification in eukaryotic mRNAs; and (4) pseudouridine (ψ) which are inducible by nutrient deprivation. Two recent technical advances that stimulated the studies of cellular dynamics of modified ribonucleosides are also described. First, a genome-wide method combines primer extension and microarray to study N1-methyl adenine (m1A) hypomodification in human tRNA. Second, a quantitative mass spectrometric method investigates dynamic changes of a wide range of tRNA modifications under stress conditions in yeast. In addition, we discuss potential mechanisms that control dynamic regulation of RNA modifications, and hypotheses for discovering potential RNA de-modification enzymes. We conclude the Account by highlighting the need to develop new

  11. CELLULAR FETAL MICROCHIMERISM IN PREECLAMPSIA

    OpenAIRE

    Gammill, Hilary S; Aydelotte, Tessa M.; Guthrie, Katherine A.; Nkwopara, Evangelyn C.; Nelson, J. Lee

    2013-01-01

    Previous studies have shown elevated concentrations of free fetal deoxyribonucleic acid and erythroblasts in maternal circulation in preeclampsia compared with normal pregnancy. Pluripotent and immunocompetent fetal cells also transfer to the maternal circulation during pregnancy, but whether concentrations of fetal mononuclear cells also differed in preeclampsia was unknown. We sought to quantify cellular fetal microchimerism in maternal circulation in women with preeclampsia and healthy con...

  12. Progress of cellular dedifferentiation research

    Institute of Scientific and Technical Information of China (English)

    LIU Hu-xian; HU Da-hai; JIA Chi-yu; FU Xiao-bing

    2006-01-01

    Differentiation, the stepwise specialization of cells, and transdifferentiation, the apparent switching of one cell type into another, capture much of the stem cell spotlight. But dedifferentiation, the developmental reversal of a cell before it reinvents itself, is an important process too. In multicellular organisms, cellular dedifferentiation is the major process underlying totipotency, regeneration and formation of new stem cell lineages. In humans,dedifferentiation is often associated with carcinogenesis.The study of cellular dedifferentiation in animals,particularly early events related to cell fate-switch and determination, is limited by the lack of a suitable,convenient experimental system. The classic example of dedifferentiation is limb and tail regeneration in urodele amphibians, such as salamanders. Recently, several investigators have shown that certain mammalian cell types can be induced to dedifferentiate to progenitor cells when stimulated with the appropriate signals or materials. These discoveries open the possibility that researchers might enhance the endogenous regenerative capacity of mammals by inducing cellular dedifferentiation in vivo.

  13. A new description of cellular quiescence.

    Directory of Open Access Journals (Sweden)

    Hilary A Coller

    2006-03-01

    Full Text Available Cellular quiescence, defined as reversible growth/proliferation arrest, is thought to represent a homogenous state induced by diverse anti-mitogenic signals. We used transcriptional profiling to characterize human diploid fibroblasts that exited the cell cycle after exposure to three independent signals--mitogen withdrawal, contact inhibition, and loss of adhesion. We show here that each signal caused regulation of a unique set of genes known to be important for cessation of growth and division. Therefore, contrary to expectation, cells enter different quiescent states that are determined by the initiating signal. However, underlying this diversity we discovered a set of genes whose specific expression in non-dividing cells was signal-independent, and therefore representative of quiescence per se, rather than the signal that induced it. This fibroblast "quiescence program" contained genes that enforced the non-dividing state, and ensured the reversibility of the cell cycle arrest. We further demonstrate that one mechanism by which the reversibility of quiescence is insured is the suppression of terminal differentiation. Expression of the quiescence program was not simply a downstream consequence of exit from the cell cycle, because key parts, including those involved in suppressing differentiation, were not recapitulated during the cell cycle arrest caused by direct inhibition of cyclin-dependent kinases. These studies form a basis for understanding the normal biology of cellular quiescence.

  14. Dynamic properties of cellular neural networks

    Directory of Open Access Journals (Sweden)

    Angela Slavova

    1993-01-01

    Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.

  15. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  16. Typing of murine cell-surface antigens by cellular radioimmunoassay

    International Nuclear Information System (INIS)

    A cellular radioimmunoassay utilizing 125I-labelled Protein A was used for detecting antigen-antibody complexes on gultaraldehyde fixed cells attached to microtiter plates. This method is rapid, sensitive and specific for revealing H-2 private and public specificities as well as Ia and Lyt antigens. As plates may be kept for months, several reactivities can be tested in one step on a large panel rendering a regular supply of animals unnecessary. (Auth.)

  17. Multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Tran, Marie Thi Dao; Arendt-Nielsen, Lars; Kupers, Ron;

    2013-01-01

    BACKGROUND: Multiple Chemical Sensitivity (MCS) is a chronic condition characterized by recurrent, non-specific symptoms in response to chemically unrelated exposures in non-toxic concentrations. Although the pathophysiology of MCS remains unknown, central sensitization may be an important factor...

  18. Movies of cellular and sub-cellular motion by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yu Lingfeng

    2006-03-01

    Full Text Available Abstract Background Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. Methods A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Results Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable

  19. Wireless traffic steering for green cellular networks

    CERN Document Server

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)

    2016-01-01

    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  20. Gene expression module-based chemical function similarity search

    OpenAIRE

    Li, Yun; Hao, Pei; Zheng, Siyuan; Tu, Kang; Fan, Haiwei; Zhu, Ruixin; Ding, Guohui; Dong, Changzheng; Wang, Chuan; Li, Xuan; Thiesen, H.-J.; Chen, Y. Eugene; Jiang, HuaLiang; Liu, Lei; Li, Yixue

    2008-01-01

    Investigation of biological processes using selective chemical interventions is generally applied in biomedical research and drug discovery. Many studies of this kind make use of gene expression experiments to explore cellular responses to chemical interventions. Recently, some research groups constructed libraries of chemical related expression profiles, and introduced similarity comparison into chemical induced transcriptome analysis. Resembling sequence similarity alignment, expression pat...

  1. Pathologic Cellular Events in Smoking-Related Pancreatitis

    International Nuclear Information System (INIS)

    Pancreatitis, a debilitating inflammatory disorder, results from pancreatic injury. Alcohol abuse is the foremost cause, although cigarette smoking has recently surfaced as a distinct risk factor. The mechanisms by which cigarette smoke and its toxins initiate pathological cellular events leading to pancreatitis, have not been clearly defined. Although cigarette smoke is composed of more than 4000 compounds, it is mainly nicotine and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which have been extensively studied with respect to pancreatic diseases. This review summarizes these research findings and highlights cellular pathways which may be of relevance in initiation and progression of smoking-related pancreatitis

  2. Pathologic Cellular Events in Smoking-Related Pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, Edwin [Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520 (United States); Veterans Affairs Connecticut Healthcare, West Haven, CT 06516 (United States)

    2015-04-29

    Pancreatitis, a debilitating inflammatory disorder, results from pancreatic injury. Alcohol abuse is the foremost cause, although cigarette smoking has recently surfaced as a distinct risk factor. The mechanisms by which cigarette smoke and its toxins initiate pathological cellular events leading to pancreatitis, have not been clearly defined. Although cigarette smoke is composed of more than 4000 compounds, it is mainly nicotine and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which have been extensively studied with respect to pancreatic diseases. This review summarizes these research findings and highlights cellular pathways which may be of relevance in initiation and progression of smoking-related pancreatitis.

  3. WWW Business Applications Based on the Cellular Model

    Institute of Scientific and Technical Information of China (English)

    Toshio Kodama; Tosiyasu L. Kunii; Yoichi Seki

    2008-01-01

    A cellular model based on the Incrementally Modular Abstraction Hierarchy (IMAH) is a novel model that can represent the architecture of and changes in cyberworlds, preserving invariants from a general level to a specific one. We have developed a data processing system called the Cellular Data System (CDS). In the development of business applications, you can prevent combinatorial explosion in the process of business design and testing by using CDS. In this paper, we have first designed and implemented wide-use algebra on the presentation level. Next, we have developed and verified the effectiveness of two general business applications using CDS: 1) a customer information management system, and 2) an estimate system.

  4. Oxidative stress action in cellular aging

    Directory of Open Access Journals (Sweden)

    Monique Cristine de Oliveira

    2010-12-01

    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  5. Chemical sputtering

    International Nuclear Information System (INIS)

    In this thesis, the author focuses on chemical sputtering by keV ions, treating two specific examples: the chemical effects occurring when bombarding simple condensed gases and the mechanisms of the ion-assisted etching process. First, however, the mechanism of sputtering of condensed gases in general is discussed. These mechanisms have been investigated using condensed noble gases as target material. The thesis is a compilation of articles published elsewhere. Contents: sputtering of condensed noble gases by keV heavy ions; surface distribution as an observable factor in the energy distribution of sputtered particles; reactive sputtering of simple condensed gases by keV heavy ion bombardment; mass spectra of nozzle-produced small molecular clusters of H2O, NH3, CO and CH4; mass and energy distribution of particles sputter-etched from Si in a XeF2 environment; argon-ion assisted etching of silicon by molecular chlorine; energy distribution of sputtered poly-atomic molecules. (Auth.)

  6. A versatile toolbox for posttranscriptional chemical labeling and imaging of RNA

    Science.gov (United States)

    Sawant, Anupam A.; Tanpure, Arun A.; Mukherjee, Progya P.; Athavale, Soumitra; Kelkar, Ashwin; Galande, Sanjeev; Srivatsan, Seergazhi G.

    2016-01-01

    Cellular RNA labeling strategies based on bioorthogonal chemical reactions are much less developed in comparison to glycan, protein and DNA due to its inherent instability and lack of effective methods to introduce bioorthogonal reactive functionalities (e.g. azide) into RNA. Here we report the development of a simple and modular posttranscriptional chemical labeling and imaging technique for RNA by using a novel toolbox comprised of azide-modified UTP analogs. These analogs facilitate the enzymatic incorporation of azide groups into RNA, which can be posttranscriptionally labeled with a variety of probes by click and Staudinger reactions. Importantly, we show for the first time the specific incorporation of azide groups into cellular RNA by endogenous RNA polymerases, which enabled the imaging of newly transcribing RNA in fixed and in live cells by click reactions. This labeling method is practical and provides a new platform to study RNA in vitro and in cells. PMID:26384420

  7. A High-Content Imaging Screen for Cellular Regulators of β-Catenin Protein Abundance.

    Science.gov (United States)

    Zeng, Xin; Montoute, Monica; Bee, Tiger W; Lin, Hong; Kallal, Lorena A; Liu, Yan; Agarwal, Pankaj; Wang, Dayuan; Lu, Quinn; Morrow, Dwight; Pope, Andrew J; Wu, Zining

    2016-03-01

    Abnormal accumulation of β-catenin protein, a key transcriptional activator required for Wnt signaling, is the hallmark of many tumor types, including colon cancer. In normal cells, β-catenin protein level is tightly controlled by a multiprotein complex through the proteosome pathway. Mutations in the components of the β-catenin degradation complex, such as adenomatous polyposis coli (APC) and Axin, lead to β-catenin stabilization and the constitutive activation of target genes. Since the signal transduction of Wnt/β-catenin is mainly mediated by protein-protein interactions, this pathway has been particularly refractory to conventional target-based small-molecule screening. Here we designed a cellular high-content imaging assay to detect β-catenin protein through immunofluorescent staining in the SW480 colon cancer cell line, which has elevated β-catenin endogenously. We demonstrate that the assay is robust and specific to screen a focused biologically diverse chemical library set against known targets that play diverse cellular functions. We identified a number of hits that reduce β-catenin levels without causing cell death. These hits may serve as tools to understand the dynamics of β-catenin degradation. This study demonstrates that detecting cell-based β-catenin protein stability is a viable approach to identifying novel mechanisms of β-catenin regulation as well as small molecules of therapeutic potential. PMID:26656867

  8. Game of Life Cellular Automata

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  9. Mathematical Physics of Cellular Automata

    CERN Document Server

    Garcia-Morales, Vladimir

    2012-01-01

    A universal map is derived for all deterministic 1D cellular automata (CA) containing no freely adjustable parameters. The map can be extended to an arbitrary number of dimensions and topologies and its invariances allow to classify all CA rules into equivalence classes. Complexity in 1D systems is then shown to emerge from the weak symmetry breaking of the addition modulo an integer number p. The latter symmetry is possessed by certain rules that produce Pascal simplices in their time evolution. These results elucidate Wolfram's classification of CA dynamics.

  10. Estimation in Cellular Radio Systems

    OpenAIRE

    Blom, Jonas; Gunnarsson, Fredrik; Gustafsson, Fredrik

    1999-01-01

    The problem to track time-varying parameters in cellular radio systems is studied, and the focus is on estimation based only on the signals that are readily available. Previous work have demonstrated very good performance, but were relying on analog measurement that are not available. Most of the information is lost due to quantization and sampling at a rate that might be as low as 2 Hz (GSM case). For that matter a maximum likelihood estimator have been designed and exemplified in the case o...

  11. 'Biomoleculas': cellular metabolism didactic software

    International Nuclear Information System (INIS)

    'Biomoleculas' is a software that deals with topics such as the digestion, cellular metabolism and excretion of nutrients. It is a pleasant, simple and didactic guide, made by and for students. In this program, each biomolecule (carbohydrates, lipids and proteins) is accompanied until its degradation and assimilation by crossing and interrelating the different metabolic channels to finally show the destination of the different metabolites formed and the way in which these are excreted. It is used at present as a teaching-learning process tool by the chair of Physiology and Biophysics at the Facultad de Ingenieria - Universidad Nacional de Entre Rios

  12. Protein accounting in the cellular economy

    Science.gov (United States)

    Vázquez-Laslop, Nora; Mankin, Alexander S.

    2014-01-01

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. (2014) gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the needs. PMID:24766801

  13. Cellular Functions of Transient Receptor Potential channels

    OpenAIRE

    Dadon, Daniela; Minke, Baruch

    2010-01-01

    Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca2+. In this review we focus on the roles of these channels in: i) cell death ii) proliferation and differentiation and iii) synaptic vesicle release.

  14. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    International Nuclear Information System (INIS)

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action

  15. The Urge to Merge: When Cellular Service Providers Pool Capacity

    CERN Document Server

    Hua, Sha; Panwar, Shivendra

    2011-01-01

    As cellular networks are turning into a platform for ubiquitous data access, cellular operators are facing a severe data capacity crisis due to the exponential growth of traffic generated by mobile users. In this work, we investigate the benefits of sharing infrastructure and spectrum among two cellular operators. Specifically, we provide a multi-cell analytical model using stochastic geometry to identify the performance gain under different sharing strategies, which gives tractable and accurate results. To validate the performance using a realistic setting, we conduct extensive simulations for a multi-cell OFDMA system using real base station locations. Both analytical and simulation results show that even a simple cooperation strategy between two similar operators, where they share spectrum and base stations, roughly quadruples capacity as compared to the capacity of a single operator. This is equivalent to doubling the capacity per customer, providing a strong incentive for operators to cooperate, if not a...

  16. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  17. Cellular Therapy for Heart Failure.

    Science.gov (United States)

    Psaltis, Peter J; Schwarz, Nisha; Toledo-Flores, Deborah; Nicholls, Stephen J

    2016-01-01

    The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management. PMID:27280304

  18. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    Science.gov (United States)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

  19. New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Directory of Open Access Journals (Sweden)

    Stroncek David F

    2012-03-01

    Full Text Available Abstract A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL, are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs, chimeric antibody-T cell receptors (CARs and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies.

  20. In Vivo Screening of Chemically Modified RNA duplexes for their Ability to Induce Innate Immune Responses

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen; Wengel, Jesper; Lorenzen, Niels

    Due to their sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form with...

  1. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  2. Evolving localizations in reaction-diffusion cellular automata

    CERN Document Server

    Adamatzky, Andrew; Collet, Pierre; Sapin, Emmanuel

    2007-01-01

    We consider hexagonal cellular automata with immediate cell neighbourhood and three cell-states. Every cell calculates its next state depending on the integral representation of states in its neighbourhood, i.e. how many neighbours are in each one state. We employ evolutionary algorithms to breed local transition functions that support mobile localizations (gliders), and characterize sets of the functions selected in terms of quasi-chemical systems. Analysis of the set of functions evolved allows to speculate that mobile localizations are likely to emerge in the quasi-chemical systems with limited diffusion of one reagent, a small number of molecules is required for amplification of travelling localizations, and reactions leading to stationary localizations involve relatively equal amount of quasi-chemical species. Techniques developed can be applied in cascading signals in nature-inspired spatially extended computing devices, and phenomenological studies and classification of non-linear discrete systems.

  3. Thermomechanical characterisation of cellular rubber

    Science.gov (United States)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-01-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  4. Discrete geodesics and cellular automata

    CERN Document Server

    Arrighi, Pablo

    2015-01-01

    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  5. Cellular compartmentalization of secondary metabolism

    Directory of Open Access Journals (Sweden)

    H. Corby eKistler

    2015-02-01

    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  6. Heterogeneous Force Chains in Cellularized Biopolymer Network

    Science.gov (United States)

    Liang, Long; Jones, Christopher Allen Rucksack; Sun, Bo; Jiao, Yang

    Biopolymer Networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the mechanical response of a model biopolymer network due to the active contraction of embedded cells. Specifically, a graph (bond-node) model derived from confocal microscopy data is used to represent the network microstructure, and cell contraction is modeled by applying correlated displacements at specific nodes, representing the focal adhesion sites. A force-based stochastic relaxation method is employed to obtain force-balanced network under cell contraction. We find that the majority of the forces are carried by a small number of heterogeneous force chains emerged from the contracting cells. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to the reorientation induced by cell contraction. Large fluctuations of the forces along different force chains are observed. Importantly, the decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure could support long-range mechanical signaling between cells.

  7. Cellular tolerance to pulsed heating

    Science.gov (United States)

    Simanovski, Dimitrii; Sarkar, M.; Irani, A.; O'Connell-Rodwell, C.; Contag, C.; Schwettman, H. Alan; Palanker, D.

    2005-04-01

    Many laser therapies involve significant heating of tissue with pulses varying from picoseconds to minutes in duration. In some of the applications heating is a primary goal, while in others it is an undesirable side effect. In both cases, if a hyperthermia is involved, the knowledge about the threshold temperature leading to irreversible cellular damage is critically important. We study the dependence of the threshold temperature on duration of the heat exposure in the range of 0.3 ms to 5 seconds. Thin layer of cells cultured in a Petri dish was exposed to a pulsed CO2 laser radiation. Laser beam was focused onto sample providing Gaussian intensity distribution in the focal plane with a beam diameter (2w) 2-10 mm. Surface temperature in the central part of the focal spot (1mm in diameter) was measured by thermal infrared (IR) emission from the sample, recorded with a fast IR detector. For pulses shorter than 1 s the temperature profile across the focal spot was found to closely correspond to the radial distribution of the laser beam intensity, thus allowing for accurate determination of temperature at any given distance from the center of the spot. Immediate cellular damage was assessed using vital staining with the live/dead fluorescent assay. Threshold temperatures were found to vary from 65 °C at 5 s of heating to 160 °C at pulses of 0.3 ms in duration. The shorter end of this range was limited by vaporization, which occurs during the laser pulse and results in mechanical damage to cells. Dependence of the maximal temperature on pulse duration could be approximated by Arrhenius law with activation energy being about 1 eV.

  8. Microfabricated platforms for the study of neuronal and cellular networks

    Energy Technology Data Exchange (ETDEWEB)

    Berdondini, L; Generelli, S; Kraus, T; Guenat, O T; Koster, S; Linder, V; Koudelka-Hep, M; Rooij, N F de [SAMLAB, Institute of Microtechnology, University of Neuchatel (Switzerland)

    2006-04-01

    In this contribution we present the development of three microfabricated devices for the study of neuronal and cellular networks. Together, these devices form an attractive toolbox, which is useful to stimulate and record signals of both electrical and chemical nature. One approach consist of microelectrode arrays for the study of neuronal networks, and allow for the electrical stimulation of individual cells in the network, while the other electrodes of the array record the electrical activity of the remaining cells of the network. We also present the use of micropipettes that can measure the extra- and intracellular concentrations of ions in cells cultures. A third approach exploits the laminar flows in a microfluidic device, to deliver minute amounts of drug to some cells in a cellular network. These three illustrations show that microfabricated platforms are appealing analytical tools in the context of cell biology.

  9. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Science.gov (United States)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  10. Chemical use

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  11. Cellular and molecular biology group

    International Nuclear Information System (INIS)

    Model DNA polymers have been employed to measure physico-chemical effects of X-irradiation and the influence of known base sequences on the transcription by RNA polymerases. These experiments allow quantitative estimates of the fidelity of transcription in the presence of physical and chemical agents. Cells in culture provide the basic system for studying radiation effects on DNA synthesis, organization of DNA in the nucleus, effects of pollutants on genetic information transfer and gene expression, nucleic acid structure, proliferation capacity, histone phosphorylation, and chromatin structure and function. Mathematical models of the immune response have been formulated, and the biochemical properties of the cell surface have been characterized. The use of flow systems to provide rapid karyotype analysis has been established for relatively simple karyotypes, and a series of cell-cycle-dependent, temperature-sensitive mutant mammalian cell lines have been derived and appear useful for cycle progression and mutagenesis studies

  12. Programming and Reprogramming Cellular Age in the Era of Induced Pluripotency.

    Science.gov (United States)

    Studer, Lorenz; Vera, Elsa; Cornacchia, Daniela

    2015-06-01

    The ability to reprogram adult somatic cells back to pluripotency presents a powerful tool for studying cell-fate identity and modeling human disease. However, the reversal of cellular age during reprogramming results in an embryonic-like state of induced pluripotent stem cells (iPSCs) and their derivatives, which presents specific challenges for modeling late onset disease. This age reset requires novel methods to mimic age-related changes but also offers opportunities for studying cellular rejuvenation in real time. Here, we discuss how iPSC research may transform studies of aging and enable the precise programming of cellular age in parallel to cell-fate specification. PMID:26046759

  13. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  14. The similia principle: results obtained in a cellular model system.

    Science.gov (United States)

    Wiegant, Fred; Van Wijk, Roeland

    2010-01-01

    This paper describes the results of a research program focused on the beneficial effect of low dose stress conditions that were applied according to the similia principle to cells previously disturbed by more severe stress conditions. In first instance, we discuss criteria for research on the similia principle at the cellular level. Then, the homologous ('isopathic') approach is reviewed, in which the initial (high dose) stress used to disturb cellular physiology and the subsequent (low dose) stress are identical. Beneficial effects of low dose stress are described in terms of increased cellular survival capacity and at the molecular level as an increase in the synthesis of heat shock proteins (hsps). Both phenomena reflect a stimulation of the endogenous cellular self-recovery capacity. Low dose stress conditions applied in a homologous approach stimulate the synthesis of hsps and enhance survival in comparison with stressed cells that were incubated in the absence of low dose stress conditions. Thirdly, the specificity of the low dose stress condition is described where the initial (high dose) stress is different in nature from the subsequently applied (low dose) stress; the heterologous or 'heteropathic' approach. The results support the similia principle at the cellular level and add to understanding of how low dose stress conditions influence the regulatory processes underlying self-recovery. In addition, the phenomenon of 'symptom aggravation' which is also observed at the cellular level, is discussed in the context of self-recovery. Finally, the difference in efficiency between the homologous and the heterologous approach is discussed; a perspective is indicated for further research; and the relationship between studies on the similia principle and the recently introduced concept of 'postconditioning hormesis' is emphasized. PMID:20129172

  15. Sleep Depth and Fatigue: Role of Cellular Inflammatory Activation

    OpenAIRE

    Thomas, KaMala S.; Motivala, S.; Olmstead, R; Irwin, M. R.

    2010-01-01

    Individuals with underlying inflammation present with a high prevalence of non-specific co-morbid symptoms including sleep disturbance and fatigue. However, the association between cellular expression of proinflammatory cytokines, alterations of sleep depth and daytime fatigue has not been concurrently examined. In healthy adults (24 – 61 years old), evening levels of monocyte intracellular proinflammatory cytokine production were assessed prior to evaluation of polysomonographic sleep and me...

  16. tRNA modifications regulate translation during cellular stress

    OpenAIRE

    Gu, Chen; Thomas J Begley; Peter C. Dedon

    2014-01-01

    The regulation of gene expression in response to stress is an essential cellular protection mechanism. Recent advances in tRNA modification analysis and genome-based codon bias analytics have facilitated studies that lead to a novel model for translational control, with translation elongation dynamically regulated during stress responses. Stress-induced increases in specific anticodon wobble bases are required for the optimal translation of stress response transcripts that are significantly b...

  17. Mathematical models and multiscale simulations of cellular secretion processes

    OpenAIRE

    González-Vélez, Virginia

    2011-01-01

    Exocytosis is the cellular process whereby a product such as a hormone or a neurotransmitter is released as a response to stimulation. There are a lot of exocytotic cells in mammals, and each cell type has their specific subcellular mechanisms, needed to achieve the final substance release. Therefore, unveiling the role of subcellular mechanisms in secretion processes is highly relevant to understand disease evolution and possible therapies. The efficiency of the coupling between stimulus...

  18. Cellular response after irradiation: Cell cycle control and apoptosis

    International Nuclear Information System (INIS)

    The importance of apoptotic death was assessed in a set of experiments, involving eight human tumour cell lines (breast cancer, bladder carcinoma, medulloblastoma). Various aspects of the quantitative study of apoptosis and methods based on the detection of DNA fragmentation (in situ tailing and comet assay) are described and discussed. Data obtained support the hypothesis that apoptosis is not crucial for cellular radiosensitivity and that the relationship between p53 functionality or clonogenic survival and apoptosis may bee cell type specific. (author)

  19. Cellular-Based Statistical Model for Mobile Dispersion

    OpenAIRE

    Abdulla, Mouhamed; Shayan, Yousef R.

    2013-01-01

    While analyzing mobile systems we often approximate the actual coverage surface and assume an ideal cell shape. In a multi-cellular network, because of its tessellating nature, a hexagon is more preferred than a circular geometry. Despite this reality, perhaps due to the inherent simplicity, only a model for circular based random spreading is available. However, if used, this results an unfair terminal distribution for non-circular contours. Therefore, in this paper we specifically derived an...

  20. The mammary cellular hierarchy and breast cancer

    OpenAIRE

    Oakes, Samantha R.; Gallego-Ortega, David; Ormandy, Christopher J.

    2014-01-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and ...

  1. A radiation measurement study on cellular phone

    International Nuclear Information System (INIS)

    This paper will explain the radiation level produced by various selected cellular phone from various models and brands available in the market. The result obtained from this study will also recommend whether a cellular phone is safe for public usage or it might cause any effect on public health. Finally, a database of radiation measurement level produced by selected various cellular phone will also be developed and exhibited in this paper. (Author)

  2. Predicting Cellular Growth from Gene Expression Signatures

    OpenAIRE

    Dunham, Maitreya J.; Troyanskaya, Olga G.; Airoldi, Edoardo; Broach, James R.; Caudy, Amy A.; Gresham, David; Botstein, David; Huttenhower, Curtis; Lu, Charles

    2009-01-01

    Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazo...

  3. Cellular structure in system of interacting particles

    OpenAIRE

    Lev, Bohdan

    2008-01-01

    The general description of formation the cellular structure in the system of interacting particles is proposed. Interactions between particles are presumably well-understood and the phase transition in which can be studied in the scale of particle resolution. We presented analytical results of possible cellular structures for suspension of colloidal particles, in system particles immersed in liquid crystal and gravitational system. We have shown that cellular structure formation can occur in ...

  4. Radiation, nitric oxide and cellular death

    International Nuclear Information System (INIS)

    The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death

  5. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  6. Mini Screening of Kinase Inhibitors Affecting Period-length of Mammalian Cellular Circadian Clock

    International Nuclear Information System (INIS)

    In mammalian circadian rhythms, the transcriptional-translational feedback loop (TTFL) consisting of a set of clock genes is believed to elicit the circadian clock oscillation. The TTFL model explains that the accumulation and degradation of mPER and mCRY proteins control the period-length (tau) of the circadian clock. Although recent studies revealed that the Casein Kinase Iεδ (CKIεδ) regurates the phosphorylation of mPER proteins and the circadian period-length, other kinases are also likely to contribute the phosphorylation of mPER. Here, we performed small scale screening using 84 chemical compounds known as kinase inhibitors to identify candidates possibly affecting the circadian period-length in mammalian cells. Screening by this high-throughput real-time bioluminescence monitoring system revealed that the several chemical compounds apparently lengthened the cellular circadian clock oscillation. These compounds are known as inhibitors against kinases such as Casein Kinase II (CKII), PI3-kinase (PI3K) and c-Jun N-terminal Kinase (JNK) in addition to CKIεδ. Although these kinase inhibitors may have some non-specific effects on other factors, our mini screening identified new candidates contributing to period-length control in mammalian cells

  7. Sol-gel process preparation and evaluation of the analytical performances of an hydrazine specific chemical sensor; Preparation par procede sol-gel et evaluation des performances analytiques d`un capteur chimique specifique de l`hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Gojon, C

    1996-12-01

    The realisation of optical fibers active chemical collector to analyze hydrazine in line, in the spent fuel reprocessing process is the subject of this work. The p.dimethyl-amino-benzaldehyde has been chosen as reagent for its chemical and optical properties. 186 refs.

  8. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  9. The cellular particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    This work presents a variant of the Particle Swarm Optimization (PSO) original algorithm, the Cellular-PSO. Inspired by the cellular Genetic Algorithm (GA), particles in Cellular-PSO are arranged into a matrix of cells interconnected according to a given topology. Such topology defines particle's neighborhood, inside which social adaptation may occur. As a consequence, population diversity is increased and the optimization process becomes more efficient and robust. The proposed Cellular-PSO has been applied to the nuclear reactor core design optimization problem and comparative experiments demonstrated that it is superior to the standard PSO. (author)

  10. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies proposes to develop a unique structural cellular core material to improve mechanical performance, reduce platform weight and lower...

  11. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

    Science.gov (United States)

    Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C

    2015-03-01

    Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner. PMID:25654326

  12. Illuminating cellular physiology: recent developments.

    Science.gov (United States)

    Brovko, Lubov Y; Griffiths, Mansel W

    2007-01-01

    Bioluminescent methods are gaining more and more attention among scientists due to their sensitivity, selectivity and simplicity; coupled with the fact that the bioluminescence can be monitored both in vitro and in vivo. Since the discovery of bioluminescence in the 19th century, enzymes involved in the bioluminescent process have been isolated and cloned. The bioluminescent reactions in several different organisms have also been fully characterized and used as reporters in a wide variety of biochemical assays. From the 1990s it became clear that bioluminescence can be detected and quantified directly from inside a living cell. This gave rise to numerous possibilities for the in vivo monitoring of intracellular processes non-invasively using bioluminescent molecules as reporters. This review describes recent developments in the area of bioluminescent imaging for cell biology. Newly developed imaging methods allow transcriptional/translational regulation, signal transduction, protein-protein interaction, oncogenic transformation, cell and protein trafficking, and target drug action to be monitored in vivo in real-time with high temporal and spatial resolution; thus providing researchers with priceless information on cellular functions. Advantages and limitations of these novel bioluminescent methods are discussed and possible future developments identified. PMID:17725230

  13. Chemical machining

    Directory of Open Access Journals (Sweden)

    A. Yardimeden

    2007-08-01

    Full Text Available Purpose: Nontraditional machining processes are widely used to manufacture geometrically complex and precision parts for aerospace, electronics and automotive industries. There are different geometrically designed parts, such as deep internal cavities, miniaturized microelectronics and fine quality components may only be produced by nontraditional machining processes. This paper is aiming to give details of chemical machining process, industrial applications, applied chemical etchants and machined materials. Advantages and disadvantages of the chemical machining are mentioned.Design/methodology/approach: In this study, chemical machining process was described its importance as nontraditional machining process. The steps of process were discussed in detail. The tolerances of machined parts were examined.Findings: Paper describes the chemical machining process, industrial applications, applied chemical etchants and machined materials.Practical implications: The machining operation should be carried out carefully to produce a desired geometry. Environmental laws have important effects when chemical machining is used.Originality/value: The importance of nontraditional machining processes is very high.

  14. Chemical Leukoderma.

    Science.gov (United States)

    Bonamonte, Domenico; Vestita, Michelangelo; Romita, Paolo; Filoni, Angela; Foti, Caterina; Angelini, Gianni

    2016-01-01

    Chemical leukoderma, often clinically mimicking idiopathic vitiligo and other congenital and acquired hypopigmentation, is an acquired form of cutaneous pigment loss caused by exposure to a variety of chemicals that act through selective melanocytotoxicity. Most of these chemicals are phenols and aromatic or aliphatic catechols derivatives. These chemicals, however, are harmful for melanocytes in individuals with an individual susceptibility. Nowadays, chemical leukoderma is fairly common, caused by common domestic products. The presence of numerous acquired confetti- or pea-sized macules is clinically characteristic of chemical leukoderma, albeit not diagnostic. Other relevant diagnostic elements are a history of repeated exposure to a known or suspected depigmenting agent at the sites of onset and a macules distribution corresponding to sites of chemical exposure. Spontaneous repigmentation has been reported when the causative agent is avoided; the repigmentation process is perifollicular and gradual, taking place for a variable period of weeks to months. PMID:27172302

  15. Environmental/chemical thesaurus

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, C.R.; Dailey, N.S.; Jordan, A.C.; Miller, K.C.; Owens, E.T.; Rickert, L.W.

    1978-06-01

    The Environmental/Chemical Thesaurus approaches scientific language control problems from a multidisciplinary view. The Environmental/Biomedical Terminology Index (EBTI) was used as a base for the present thesaurus. The Environmental/Chemical Thesaurus, funded by the Environmental Protection Agency, used as its source of new terms those major terms found in 13 Environmental Protection Agency data bases. The scope of this thesaurus includes not only environmental and biomedical sciences, but also the physical sciences with emphasis placed on chemistry. Specific chemical compounds are not included; only classes of chemicals are given. To adhere to this level of classification, drugs and pesticides are identified by class rather than by specific chemical name. An attempt was also made to expand the areas of sociology and economics. Terminology dealing with law, demography, and geography was expanded. Proper names of languages and races were excluded. Geographic terms were expanded to include proper names for oceans, continents, major lakes, rivers, and islands. Political divisions were added to allow for proper names of countries and states. With such a broad scope, terminology for specific sciences does not provide for indexing to the lowest levels in plant, animal, or chemical classifications.

  16. Environmental/chemical thesaurus

    International Nuclear Information System (INIS)

    The Environmental/Chemical Thesaurus approaches scientific language control problems from a multidisciplinary view. The Environmental/Biomedical Terminology Index (EBTI) was used as a base for the present thesaurus. The Environmental/Chemical Thesaurus, funded by the Environmental Protection Agency, used as its source of new terms those major terms found in 13 Environmental Protection Agency data bases. The scope of this thesaurus includes not only environmental and biomedical sciences, but also the physical sciences with emphasis placed on chemistry. Specific chemical compounds are not included; only classes of chemicals are given. To adhere to this level of classification, drugs and pesticides are identified by class rather than by specific chemical name. An attempt was also made to expand the areas of sociology and economics. Terminology dealing with law, demography, and geography was expanded. Proper names of languages and races were excluded. Geographic terms were expanded to include proper names for oceans, continents, major lakes, rivers, and islands. Political divisions were added to allow for proper names of countries and states. With such a broad scope, terminology for specific sciences does not provide for indexing to the lowest levels in plant, animal, or chemical classifications

  17. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Wei, Miaoyan; Lü, Lisheng; Lin, Peiyi; Chen, Zhisheng; Quan, Zhiwei; Tang, Zhaohui

    2016-09-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy associated with unfavorable prognosis and for which no effective treatments are available. Its molecular pathogenesis is poorly understood. Genome-wide sequencing and high-throughput technologies have provided critical insights into the molecular basis of ICC while sparking a heated debate on the cellular origin. Cancer exhibits variabilities in origin, progression and cell biology. Recent evidence suggests that ICC has multiple cellular origins, including differentiated hepatocytes; intrahepatic biliary epithelial cells (IBECs)/cholangiocytes; pluripotent stem cells, such as hepatic stem/progenitor cells (HPCs) and biliary tree stem/progenitor cells (BTSCs); and peribiliary gland (PBG). However, both somatic mutagenesis and epigenomic features are highly cell type-specific. Multiple cellular origins may have profoundly different genomic landscapes and key signaling pathways, driving phenotypic variation and thereby posing significant challenges to personalized medicine in terms of achieving the optimal drug response and patient outcome. Considering this information, we have summarized the latest experimental evidence and relevant literature to provide an up-to-date view of the cellular origin of ICC, which will contribute to establishment of a hierarchical model of carcinogenesis and allow for improvement of the anatomical-based classification of ICC. These new insights have important implications for both the diagnosis and treatment of ICC patients. PMID:26940139

  18. Mechanisms involved in cellular ceramide homeostasis

    Directory of Open Access Journals (Sweden)

    Hussain M

    2012-07-01

    Full Text Available Abstract Sphingolipids are ubiquitous and critical components of biological membranes. Their biosynthesis starts with soluble precursors in the endoplasmic reticulum and culminates in the Golgi complex and plasma membrane. Ceramides are important intermediates in the biosynthesis of sphingolipids, such as sphingomyelin, and their overload in the membranes is injurious to cells. The major product of ceramide metabolism is sphingomyelin. We observed that sphingomyelin synthase (SMS 1 or SMS2 deficiencies significantly decreased plasma and liver sphingomyelin levels. However, SMS2 but not SMS1 deficiency increased plasma ceramides. Surprisingly, SMS1 deficiency significantly increased glucosylceramide and ganglioside GM3, but SMS2 deficiency did not. To explain these unexpected findings about modest to no significant changes in ceramides and increases in other sphingolipids after the ablation of SMS1, we hypothesize that cells have evolved several organelle specific mechanisms to maintain ceramide homeostasis. First, ceramides in the endoplasmic reticulum membranes are controlled by its export to Golgi by protein mediated transfer. Second, in the Golgi, ceramide levels are modulated by their enzymatic conversion to different sphingolipids such as sphingomyelin, and glucosylceramides. Additionally, these sphingolipids can become part of triglyceride-rich apolipoprotein B-containing lipoproteins and be secreted. Third, in the plasma membrane ceramide levels are maintained by ceramide/sphingomyelin cycle, delivery to lysosomes, and efflux to extracellular plasma acceptors. All these pathways might have evolved to ensure steady cellular ceramide levels.

  19. Multistructural biomimetic substrates for controlled cellular differentiation

    International Nuclear Information System (INIS)

    Multidimensional scaffolds are considered to be ideal candidates for regenerative medicine and tissue engineering based on their potential to provide an excellent microenvironment and direct the fate of the cultured cells. More recently, the use of stem cells in medicine has opened a new technological opportunity for controlled tissue formation. However, the mechanism through which the substrate directs the differentiation of stem cells is still rather unclear. Data concerning its specific surface chemistry, topology, and its signaling ability need to be further understood and analyzed. In our study, atomic force microscopy was used to study the stiffness, roughness, and topology of the collagen (Coll) and metallized collagen (MC) substrates, proposed as an excellent substrate for regenerative medicine. The importance of signaling molecules was studied by constructing a new hybrid signaling substrate that contains both collagen and laminin extracellular matrix (ECM) proteins. The cellular response—such as attachment capability, proliferation and cardiac and neuronal phenotype expression on the metallized and non-metallized hybrid substrates (collagen + laminin)—was studied using MTT viability assay and immunohistochemistry studies. Our findings indicate that such hybrid materials could play an important role in the regeneration of complex tissues. (paper)

  20. Modeling the topological organization of cellular processes.

    Science.gov (United States)

    Giavitto, Jean-Louis; Michel, Olivier

    2003-07-01

    The cell as a dynamical system presents the characteristics of having a dynamical structure. That is, the exact phase space of the system cannot be fixed before the evolution and integrative cell models must state the evolution of the structure jointly with the evolution of the cell state. This kind of dynamical systems is very challenging to model and simulate. New programming concepts must be developed to ease their modeling and simulation. In this context, the goal of the MGS project is to develop an experimental programming language dedicated to the simulation of this kind of systems. MGS proposes a unified view on several computational mechanisms (CHAM, Lindenmayer systems, Paun systems, cellular automata) enabling the specification of spatially localized computations on heterogeneous entities. The evolution of a dynamical structure is handled through the concept of transformation which relies on the topological organization of the system components. An example based on the modeling of spatially distributed biochemical networks is used to illustrate how these notions can be used to model the spatial and temporal organization of intracellular processes. PMID:12915272

  1. Cellular events and biomarkers of wound healing

    Directory of Open Access Journals (Sweden)

    Shah Jumaat Mohd. Yussof

    2012-01-01

    Full Text Available Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs and the tissue inhibitors of these metalloproteinases (TIMPs. MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.

  2. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  3. Immune cellular response to HPV: current concepts

    Directory of Open Access Journals (Sweden)

    Maria Alice Guimarães Gonçalves

    2004-02-01

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  4. Recent development of cellular manufacturing systems

    Indian Academy of Sciences (India)

    P K Arora; A Haleem; M K Singh

    2013-06-01

    Cellular manufacturing system has been proved a vital approach for batch and job shop production systems. Group technology has been an essential tool for developing a cellular manufacturing system. The paper aims to discuss various cell formation techniques and highlights the significant research work done in past over the years and attempts to points out the gap in research.

  5. LMS filters for cellular CDMA overlay

    OpenAIRE

    Wang, J.

    1996-01-01

    This paper extends and complements previous research we have performed on the performance of nonadaptive narrowband suppression filters when used in cellular CDMA overlay situations. In this paper, an adaptive LMS filter is applied to cellular CDMA overlay situations in order to reject narrowband interference.

  6. From Cnn Dynamics to Cellular Wave Computers

    Science.gov (United States)

    Roska, Tamas

    2013-01-01

    Embedded in a historical overview, the development of the Cellular Wave Computing paradigm is presented, starting from the standard CNN dynamics. The theoretical aspects, the physical implementation, the innovation process, as well as the biological relevance are discussed in details. Finally, the latest developments, the physical versus virtual cellular machines, as well as some open questions are presented.

  7. Modulating anti-MicroRNA-21 activity and specificity using oligonucleotide derivatives and length optimization

    DEFF Research Database (Denmark)

    Munoz-Alarcon, Andres; Guterstam, Peter; Romero, Cristian;

    2012-01-01

    MicroRNAs are short, endogenous RNAs that direct posttranscriptional regulation of gene expression vital for many developmental and cellular functions. Implicated in the pathogenesis of several human diseases, this group of RNAs provides interesting targets for therapeutic intervention. Anti......-microRNA oligonucleotides constitute a class of synthetic antisense oligonucleotides used to interfere with microRNAs. In this study, we investigate the effects of chemical modifications and truncations on activity and specificity of anti-microRNA oligonucleotides targeting microRNA-21. We observed an increased activity...

  8. Chemical networks*

    OpenAIRE

    Thi Wing-Fai

    2015-01-01

    This chapter discusses the fundamental ideas of how chemical networks are build, their strengths and limitations. The chemical reactions that occur in disks combine the cold phase reactions used to model cold molecular clouds with the hot chemistry applied to planetary atmosphere models. With a general understanding of the different types of reactions that can occur, one can proceed in building a network of chemical reactions and use it to explain the abundance of species seen in disks. One o...

  9. The Universe as a Cellular System

    CERN Document Server

    Aragón-Calvo, Miguel A

    2014-01-01

    Cellular systems are observed everywhere in nature, from crystal domains in metals, soap froth and cucumber cells to the network of cosmological voids. Surprisingly, despite their disparate scale and origin all cellular systems follow certain scaling laws relating their geometry, topology and dynamics. Using a cosmological N-body simulation we found that the Cosmic Web, the largest known cellular system, follows the same scaling relations seen elsewhere in nature. Our results extend the validity of scaling relations in cellular systems by over 30 orders of magnitude in scale with respect to previous studies. The dynamics of cellular systems can be used to interpret local observations such as the local velocity anomaly as the result of a collapsing void in our cosmic backyard. Moreover, scaling relations depend on the curvature of space, providing an independent measure of geometry.

  10. Fabrication of Biocompatible, Vibrational Magnetoelastic Materials for Controlling Cellular Adhesion

    Directory of Open Access Journals (Sweden)

    Rupak M. Rajachar

    2012-02-01

    Full Text Available This paper describes the functionalization of magnetoelastic (ME materials with Parylene-C coating to improve the surface reactivity to cellular response. Previous study has demonstrated that vibrating ME materials were capable of modulating cellular adhesion when activated by an externally applied AC magnetic field. However, since ME materials are not inherently biocompatible, surface modifications are needed for their implementation in biological settings. Here, the long-term stability of the ME material in an aqueous and biological environment is achieved by chemical-vapor deposition of a conformal Parylene-C layer, and further functionalized by methods of oxygen plasma etching and protein adsorption. In vitro cytotoxicity measurement and characterization of the vibrational behavior of the ME materials showed that Parylene-C coatings of 10 µm or greater could prevent hydrolytic degradation without sacrificing the vibrational behavior of the ME material. This work allows for long-term durability and functionality of ME materials in an aqueous and biological environment and makes the potential use of this technology in monitoring and modulating cellular behavior at the surface of implantable devices feasible.

  11. Cellular distribution and localisation of iron in adult rat brain (substantia nigra)

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Ch. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany)]. E-mail: meinecke@physik.uni-leipzig.de; Morawski, M. [Paul-Flechsig-Institute for Brain research, University of Leipzig, Jahnallee 59, D-04109 Leipzig (Germany); Reinert, T. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany); Arendt, T. [Paul-Flechsig-Institute for Brain research, University of Leipzig, Jahnallee 59, D-04109 Leipzig (Germany); Butz, T. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany)

    2006-08-15

    Iron appears to be one of the main factors in the metal induced neurodegeneration. Quantitative information on cellular, sub-cellular and cell specific distributions of iron is therefore important to assess. The investigations reported here were carried out on a brain from an adult rat. Therefore, 6 {mu}m thick embedded, unstained brain sections containing the midbrain (substantia nigra, SN) were analysed. Particle induced X-ray emission (PIXE) using a focussed proton beam (beam - diameter app. 1 {mu}m) was performed to determine the quantitative iron content on a cellular and sub-cellular level. The integral analysis shows that the iron content in the SN pars reticulata is twice as high than in the SN pars compacta. The analysis of the iron content on the cellular level revealed no remarkable differences between glia cells and neurons. This is in contrast to other studies using staining techniques.

  12. Cellular distribution and localisation of iron in adult rat brain (substantia nigra)

    International Nuclear Information System (INIS)

    Iron appears to be one of the main factors in the metal induced neurodegeneration. Quantitative information on cellular, sub-cellular and cell specific distributions of iron is therefore important to assess. The investigations reported here were carried out on a brain from an adult rat. Therefore, 6 μm thick embedded, unstained brain sections containing the midbrain (substantia nigra, SN) were analysed. Particle induced X-ray emission (PIXE) using a focussed proton beam (beam - diameter app. 1 μm) was performed to determine the quantitative iron content on a cellular and sub-cellular level. The integral analysis shows that the iron content in the SN pars reticulata is twice as high than in the SN pars compacta. The analysis of the iron content on the cellular level revealed no remarkable differences between glia cells and neurons. This is in contrast to other studies using staining techniques

  13. Improving Quality of Clustering using Cellular Automata for Information retrieval

    Directory of Open Access Journals (Sweden)

    P. K. Sree

    2008-01-01

    Full Text Available Clustering has been widely applied to Information Retrieval (IR on the grounds of its potential improved effectiveness over inverted file search. Clustering is a mostly unsupervised procedure and the majority of the clustering algorithms depend on certain assumptions in order to define the subgroups present in a data set .A clustering quality measure is a function that, given a data set and its partition into clusters, returns a non-negative real number representing the quality of that clustering. Moreover, they may behave in a different way depending on the features of the data set and their input parameters values. Therefore, in most applications the resulting clustering scheme requires some sort of evaluation as regards its validity. The quality of clustering can be enhanced by using a Cellular Automata Classifier for information retrieval. In this study we take the view that if cellular automata with clustering is applied to search results (query-specific clustering, then it has the potential to increase the retrieval effectiveness compared both to that of static clustering and of conventional inverted file search. We conducted a number of experiments using ten document collections and eight hierarchic clustering methods. Our results show that the effectiveness of query-specific clustering with cellular automata is indeed higher and suggest that there is scope for its application to IR.

  14. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  15. Molecular biophysics: detection and characterization of damage in molecular, cellular, and physiological systems

    International Nuclear Information System (INIS)

    This section contains summaries of research on the detection and characterization of damage in molecular, cellular, and physiological systems. Projects under investigation in this section include: chemical synthesis of nucleic acid derivatives; structural and conformational properties of biological molecules in solution; crystallographic and chemical studies of immunoglobulin structure; instrument design and development for x-ray and neutron scattering studies of biological molecules; and chromobiology and circadian regulation

  16. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    Science.gov (United States)

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data. PMID:26805432

  17. Chemical machining

    OpenAIRE

    A. Yardimeden; T. Ozben; O. Cakir

    2007-01-01

    Purpose: Nontraditional machining processes are widely used to manufacture geometrically complex and precision parts for aerospace, electronics and automotive industries. There are different geometrically designed parts, such as deep internal cavities, miniaturized microelectronics and fine quality components may only be produced by nontraditional machining processes. This paper is aiming to give details of chemical machining process, industrial applications, applied chemical etchants and mac...

  18. Chemical Radioprotectors

    Directory of Open Access Journals (Sweden)

    S. N. Upadhyay

    2005-10-01

    Full Text Available Protection of biological systems against radiation damage is of paramount importance during accidental and unavoidable exposure to radiation. Several physico-chemical and biological factors collectively contribute to the damage caused by radiation and are, therefore, targets for developing radioprotectors. Work on the development of chemicals capable of protecting biological systemsfrom radiation damage was initiated nearly six decades ago with cysteine being the first molecule to be reported. Chemicals capable of scavenging free radicals, inducing oxygen depletion,antioxidants and modulators of immune response have been some of the radioprotectors extensively investigated with limited success. Mechanism of action of some chemical radioprotectors and their combinations have been elucidated, while further understanding is required in many instances. The present review elaborates on structure-activity relationship of some of the chemical radioprotectors, their evaluation, and assessment, limitation, and future prospects.

  19. Estimating cellular network performance during hurricanes

    International Nuclear Information System (INIS)

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  20. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Xue-Mei Gu; Han-Chang Huang; Zhao-Feng Jiang

    2012-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder.The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau,as well as neuronal loss in specific brain regions.Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease.Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ,accumulation of which might interfere with the homeostasis of cellular metabolism.Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis.Mitochondrial dysfunction might contribute to Aβ neurotoxicity.In this review,we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.

  1. Coverage and Economy of Cellular Networks with Many Base Stations

    CERN Document Server

    Lee, Seunghyun

    2012-01-01

    The performance of a cellular network can be significantly improved by employing many base stations (BSs), which shortens transmission distances. However, there exist no known results on quantifying the performance gains from deploying many BSs. To address this issue, we adopt a stochastic-geometry model of the downlink cellular network and analyze the mobile outage probability. Specifically, given Poisson distributed BSs, the outage probability is shown to diminish inversely with the increasing ratio between the BS and mobile densities. Furthermore, we analyze the optimal tradeoff between the performance gain from increasing the BS density and the resultant network cost accounting for energy consumption, BS hardware and backhaul cables. The optimal BS density is proved to be proportional to the square root of the mobile density and the inverse of the square root of the cost factors considered.

  2. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    Directory of Open Access Journals (Sweden)

    Jiali Xing

    Full Text Available Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS, reducing power (RP, and inhibition of linoleic acid peroxidation (ILAP. Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs.

  3. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value FTIR microspectroscopy confirmed that cytostatic cells were viable and could still recover while also describing early cellular stress related responses on a molecular level.

  4. Simulations of Living Cell Origins Using a Cellular Automata Model

    Science.gov (United States)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  5. Image Specificity

    OpenAIRE

    Jas, Mainak; Parikh, Devi

    2015-01-01

    For some images, descriptions written by multiple people are consistent with each other. But for other images, descriptions across people vary considerably. In other words, some images are specific $-$ they elicit consistent descriptions from different people $-$ while other images are ambiguous. Applications involving images and text can benefit from an understanding of which images are specific and which ones are ambiguous. For instance, consider text-based image retrieval. If a query descr...

  6. Phenylbutyric acid induces the cellular senescence through an Akt/p21WAF1 signaling pathway

    International Nuclear Information System (INIS)

    Highlights: ► Phenylbutyric acid induces cellular senescence. ► Phenylbutyric acid activates Akt kinase. ► The knockdown of PERK also can induce cellular senescence. ► Akt/p21WAF1 pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins – PERK, ATF6 and IRE1 – initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21WAF1 induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21WAF1 pathway by PERK inhibition.

  7. Macromolecular lesions and cellular radiation chemistry

    International Nuclear Information System (INIS)

    Our studies of the interaction of densely ionizing particles with macromolecules in the living cell may be divided into four parts: characterization of lesions to cellular DNA in the unmodified Bragg ionization curve; characterization of lesions to cellular DNA in the spread Bragg curve as used in radiation therapy; elucidation of the cellular radiation chemistry characteristic of high vs. low LET radiation qualities; and the introduction of novel techniques designed to give a better understanding of the fundamental properties of induction of lesions and their repair potentials in high LET radiation

  8. Integrating mitochondrial translation into the cellular context.

    Science.gov (United States)

    Richter-Dennerlein, Ricarda; Dennerlein, Sven; Rehling, Peter

    2015-10-01

    Mitochondrial-encoded subunits of the oxidative phosphorylation system assemble with nuclear-encoded subunits into enzymatic complexes. Recent findings showed that mitochondrial translation is linked to other mitochondrial functions, as well as to cellular processes. The supply of mitochondrial-encoded proteins is coordinated by the coupling of mitochondrial protein synthesis with assembly of respiratory chain complexes. MicroRNAs imported from the cytoplasm into mitochondria were, surprisingly, found to act as regulators of mitochondrial translation. In turn, translation in mitochondria controls cellular proliferation, and mitochondrial ribosomal subunits contribute to the cytoplasmic stress response. Thus, translation in mitochondria is apparently integrated into cellular processes. PMID:26535422

  9. Cellular and molecular mechanisms in kidney fibrosis

    Science.gov (United States)

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution. PMID:24892703

  10. Nanomechanics of magnetically driven cellular endocytosis

    Science.gov (United States)

    Zablotskii, V.; Lunov, O.; Dejneka, A.; Jastrabík, L.; Polyakova, T.; Syrovets, T.; Simmet, Th.

    2011-10-01

    Being essential for many pharmacodynamic and pharmacokinetic processes and playing a crucial role in regulating substrate detachment that enables cellular locomotion, endocytotic mechanisms in many aspects still remain a mystery and therefore can hardly be controlled. Here, we report on experimental and modeling studies of the magnetically assisted endocytosis of functionalized superparamagnetic iron oxide nanoparticles by prostate cancer cells (PC-3) and characterize the time and force scales of the cellular uptake machinery. The results indicate how the cellular uptake rate could be controlled by applied magnetic field, membrane elasticity, and nanoparticle magnetic moment.

  11. Interworking of Wireless LANs and Cellular Networks

    CERN Document Server

    Song, Wei

    2012-01-01

    The next-generation of wireless communications are envisioned to be supported by heterogeneous networks by using various wireless access technologies. The popular cellular networks and wireless local area networks (WLANs) present perfectly complementary characteristics in terms of service capacity, mobility support, and quality-of-service (QoS) provisioning. The cellular/WLAN interworking is an effective way to promote the evolution of wireless networks. "Interworking of Wireless LANs and Cellular Networks" focuses on three aspects, namely access selection, call admission control and

  12. Chemical Aspects of Dentistry.

    Science.gov (United States)

    Helfman, Murry

    1982-01-01

    Dental caries (tooth decay) and periodontal (gum) disease are treated/prevented by procedures utilizing chemical expertise. Procedures and suggestions on how they might be incorporated into the high school chemistry curriculum are described. Specific topics discussed include dental caries, fluoride, diet, tooth decay prevention, silver amalgan,…

  13. The renewable chemicals industry

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Rass-Hansen, J.; Marsden, Charlotte Clare;

    2008-01-01

    and educational tools are introduced to allow initial estimates of which chemical processes could be viable. Specifically, fossil and renewables value chains are used to indicate where renewable feedstocks can be optimally valorized. Additionally, C factors are introduced that specify the amount of CO2 produced...... to arrive at cost-competitive and environmentally friendly processes....

  14. Field-emission scanning electron microscopy of the internal cellular organization of fungi

    NARCIS (Netherlands)

    Muller, W.H.; Aelst, van A.C.; Humbel, B.M.; Krift, van der T.P.; Boekhout, T.

    2000-01-01

    Internal viewing of the cellular organization of hyphae by scanning electron microscopy is an alternative to observing sectioned fungal material with a transmission electron microscope. To study cytoplasmic organelles in the hyphal cells of fungi by SEM, colonies were chemically fixed with glutarald

  15. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking.

    Science.gov (United States)

    Li, Jianchao; Lu, Qing; Zhang, Mingjie

    2016-08-01

    Unconventional myosins are a superfamily of actin-based molecular motors playing diverse roles including cellular trafficking, mechanical supports, force sensing and transmission, etc. The variable neck and tail domains of unconventional myosins function to bind to specific cargoes including proteins and lipid vesicles and thus are largely responsible for the diverse cellular functions of myosins in vivo. In addition, the tail regions, together with their cognate cargoes, can regulate activities of the motor heads. This review outlines the advances made in recent years on cargo recognition and cargo binding-induced regulation of the activity of several unconventional myosins including myosin-I, V, VI and X in cellular trafficking. We approach this topic by describing a series of high-resolution structures of the neck and tail domains of these unconventional myosins either alone or in complex with their specific cargoes, and by discussing potential implications of these structural studies on cellular trafficking of these myosin motors. PMID:26842936

  16. Induction of multixenobiotic defense mechanisms in resistant Daphnia magna clones as a general cellular response to stress.

    Science.gov (United States)

    Jordão, Rita; Campos, Bruno; Lemos, Marco F L; Soares, Amadeu M V M; Tauler, Romà; Barata, Carlos

    2016-06-01

    Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transporters and of the stress protein hsp70 in clones selected to be genetically resistant to ABCB1 chemical substrates. Clones resistant to mitoxantrone, ivermectin and pentachlorophenol showed distinctive transcriptional responses of transporter protein coding genes and of putative transporter dye activities. Expression of hsp70 proteins also varied across resistant clones. Clones resistant to mitoxantrone and pentachlorophenol showed high constitutive levels of hsp70. Transcriptional levels of the abcb1 gene transporter and of putative dye transporter activity were also induced to a greater extent in the pentachlorophenol resistant clone. Observed higher dye transporter activities in individuals from clones resistant to mitoxantrone and ivermectin were unrelated with transcriptional levels of the studied four abcc and abcb1 transporter genes. These findings suggest that Abcb1 induction in D. magna may be a part of a general cellular stress response. PMID:27039215

  17. Atributos químicos e área superficial específica em Latossolo subtropical de altitude sob usos e manejos distintos Chemical attributes and specific surface area in highland subtropical Oxisol under different use and managements

    Directory of Open Access Journals (Sweden)

    Cristiano Albino Tomasi

    2012-12-01

    Full Text Available A interferência antrópica tem modificado a condição original do solo nos Campos de Cima da Serra. O estudo avaliou atributos químicos e físicos de um Latossolo sob campo nativo (CN, campo nativo manejado com queima (CNq, mata nativa (MN, florestamento de pinus (FP e lavoura em sistema plantio convencional (LA, nas camadas de 0,00-0,025, 0,025-0,05, 0,05-0,10, 0,10-0,20, 0,20-0,30m. A mineralogia foi avaliada por difratometria de raios X. Foram avaliados o C orgânico total (COT, pH (H2O; Ca, Mg, K, Na e Al trocáveis; H+Al e P; e calculou-se a soma de bases, a capacidade de troca de cátions, a saturação por bases e por Al. Estimou-se a área superficial específica (ASE e a capacidade máxima de adsorção de fósforo (CMAP. O solo apresentou mineralogia caulinítica e oxídica. No CN, o COT variou entre 15,3 e 56,4g kg-1, o pH foi ≤4,8, a CTC foi alta (18The original landscape of Campos de Cima da Serra region has changed by anthropogenic interference. The study aimed to evaluate soil chemical and physical attributes of an Oxisol under natural grassland (CN, burned natural grassland (CNq, natural forest (MN, pine afforestation (PF and annual crops in conventional tillage system (LA, in the 0.00-0.025, 0.025-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.30m layers. The mineralogy was evaluated by X-ray diffraction. It was evaluated the total organic carbon (TOC; pH (H2O; exchangeable Ca, Mg, K, Na and Al; H+Al and P contents; and calculated bases sum (S, cation exchange capacity (CEC and bases and Al saturation on CEC. It was estimated soil specific surface area (SSA and maximum phosphorus adsorption capacity (MPAC. The soil showed kaolinitic and oxidic mineralogy. In the CN soil TOC content ranged between 15.3 and 56.4g kg-1, pH values ≤4.8; CEC was high (18

  18. Biodegradable Magnetic Particles for Cellular MRI

    Science.gov (United States)

    Nkansah, Michael Kwasi

    Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple

  19. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  20. Thrombospondin-1 Interacts with Trypanosoma cruzi Surface Calreticulin to Enhance Cellular Infection

    OpenAIRE

    Johnson, Candice A.; Kleshchenko, Yulia Y.; Ikejiani, Adaeze O.; Udoko, Aniekanabasi N.; Cardenas, Tatiana C.; Pratap, Siddharth; Duquette, Mark A.; Lima, Maria F.; Lawler, Jack; Villalta, Fernando; Nde, Pius N.

    2012-01-01

    Trypanosoma cruzi causes Chagas disease, which is a neglected tropical disease that produces severe pathology and mortality. The mechanisms by which the parasite invades cells are not well elucidated. We recently reported that T. cruzi up-regulates the expression of thrombospondin-1 (TSP-1) to enhance the process of cellular invasion. Here we characterize a novel TSP-1 interaction with T. cruzi that enhances cellular infection. We show that labeled TSP-1 interacts specifically with the surfac...