WorldWideScience

Sample records for chemically reactive ions

  1. Nano-patterning of perpendicular magnetic recording media by low-energy implantation of chemically reactive ions

    International Nuclear Information System (INIS)

    Martin-Gonzalez, M.S.; Briones, F.; Garcia-Martin, J.M.; Montserrat, J.; Vila, L.; Faini, G.; Testa, A.M.; Fiorani, D.; Rohrmann, H.

    2010-01-01

    Magnetic nano-patterning of perpendicular hard disk media with perpendicular anisotropy, but preserving disk surface planarity, is presented here. Reactive ion implantation is used to locally modify the chemical composition (hence the magnetization and magnetic anisotropy) of the Co/Pd multilayer in irradiated areas. The procedure involves low energy, chemically reactive ion irradiation through a resist mask. Among N, P and As ions, P are shown to be most adequate to obtain optimum bit density and topography flatness for industrial Co/Pd multilayer media. The effect of this ion contributes to isolate perpendicular bits by destroying both anisotropy and magnetic exchange in the irradiated areas. Low ion fluences are effective due to the stabilization of atomic displacement levels by the chemical effect of covalent impurities.

  2. Surface characterization after subaperture reactive ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Miessler, Andre; Arnold, Thomas; Rauschenbach, Bernd [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), Leipzig (Germany)

    2010-07-01

    In usual ion beam etching processes using inert gas (Ar, Xe, Kr..) the material removal is determined by physical sputtering effects on the surface. The admixture of suitable gases (CF{sub 4}+O{sub 2}) into the glow discharge of the ion beam source leads to the generation of reactive particles, which are accelerated towards the substrate where they enhance the sputtering process by formation of volatile chemical reaction products. During the last two decades research in Reactive Ion Beam Etching (RIBE) has been done using a broad beam ion source which allows the treatment of smaller samples (diameter sample < diameter beam). Our goal was to apply a sub-aperture Kaufman-type ion source in combination with an applicative movement of the sample with respect to the source, which enables us to etch areas larger than the typical lateral dimensions of the ion beam. Concerning this matter, the etching behavior in the beam periphery plays a decisive role and has to be investigated. We use interferometry to characterize the final surface topography and XPS measurements to analyze the chemical composition of the samples after RIBE.

  3. Pattern transfer on fused silica samples using sub-aperture reactive ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Miessler, Andre; Arnold, Thomas [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany)

    2012-07-01

    In comparison to sole Ar ion beam sputtering Reactive Ion Beam Etching (RIBE) reveals the main advantage of increasing the selectivity for different kind of materials due to chemical contributions during the material removal. Therefore RIBE is qualified to be an excellent candidate for pattern transfer applications. The goal of the present study is to apply a sub-aperture reactive ion beam for pattern transfer on large fused silica samples. Concerning this matter, the etching behavior in the ion beam periphery plays a decisive role. Using a Kaufman-typed ion source with NF{sub 3} as reactive gas, XPS measurements of the modified surface exposes impurities like Ni, Fe and Cr, which belongs to chemically eroded material of the plasma pot and a layer formation of silicon nitride, handicaps the etching process mainly in the beam periphery where the sputtering contribution decrease. These side effects influence the pattern transfer of trench structures, produced in AZ MIR 701 photoresist by lithography on a 2'' fused silica plate, by changing the selectivity due to modified chemical reactions of the resist layer. Concerning this we investigate a RF-Ion source for sub aperture reactive ion beam applications and finally we examine the pattern transfer on large fused silica plates using NF{sub 3}-sub-aperture RIBE.

  4. Pattern transfer on large samples using a sub-aperture reactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Miessler, Andre; Mill, Agnes; Gerlach, Juergen W.; Arnold, Thomas [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany)

    2011-07-01

    In comparison to sole Ar ion beam sputtering Reactive Ion Beam Etching (RIBE) reveals the main advantage of increasing the selectivity for different kind of materials due to chemical contributions during the material removal. Therefore RIBE is qualified to be an excellent candidate for pattern transfer applications. The goal of the present study is to apply a sub-aperture reactive ion beam for pattern transfer on large fused silica samples. Concerning this matter, the etching behavior in the ion beam periphery plays a decisive role. Using CF{sub 4} as reactive gas, XPS measurements of the modified surface exposes impurities like Ni, Fe and Cr, which belongs to chemically eroded material of the plasma pot as well as an accumulation of carbon (up to 40 atomic percent) in the beam periphery, respectively. The substitution of CF{sub 4} by NF{sub 3} as reactive gas reveals a lot of benefits: more stable ion beam conditions in combination with a reduction of the beam size down to a diameter of 5 mm and a reduced amount of the Ni, Fe and Cr contaminations. However, a layer formation of silicon nitride handicaps the chemical contribution of the etching process. These negative side effects influence the transfer of trench structures on quartz by changing the selectivity due to altered chemical reaction of the modified resist layer. Concerning this we investigate the pattern transfer on large fused silica plates using NF{sub 3}-sub-aperture RIBE.

  5. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  6. Dependence of energy per molecule on sputtering yields with reactive gas cluster ions

    International Nuclear Information System (INIS)

    Toyoda, Noriaki; Yamada, Isao

    2010-01-01

    Gas cluster ions show dense energy deposition on a target surface, which result in the enhancement of chemical reactions. In reactive sputtering with gas cluster ions, the energy per atom or molecule plays an important role. In this study, the average cluster size (N, the number of atoms or molecules in a cluster ion) was controlled; thereby the dependences of the energy per molecule on the sputtering yields of carbon by CO 2 cluster ions and that of Si by SF 6 /Ar mixed gas cluster ions were investigated. Large CO 2 cluster ions with energy per molecule of 1 eV showed high reactive sputtering yield of an amorphous carbon film. However, these ions did not cause the formation of large craters on a graphite surface. It is possible to achieve very low damage etching by controlling the energy per molecule of reactive cluster ions. Further, in the case of SF 6 /Ar mixed cluster ions, it was found that reactive sputtering was enhanced when a small amount of SF 6 gas (∼10%) was mixed with Ar. The reactive sputtering yield of Si by one SF 6 molecule linearly increased with the energy per molecule.

  7. Reactive ion assisted deposition of aluminum oxynitride thin films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Suits, F.

    1989-01-01

    Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO/sub x/N/sub y/) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound

  8. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device

    International Nuclear Information System (INIS)

    Min, Zhong; Zhi-Tang, Song; Bo, Liu; Song-Lin, Feng; Bomy, Chen

    2008-01-01

    In order to improve nano-scale phase change memory performance, a super-clean interface should be obtained after chemical mechanical polishing (CMP) of Ge 2 Sb 2 Te 5 phase change films. We use reactive ion etching (RIE) as the cleaning method. The cleaning effect is analysed by scanning electron microscopy and an energy dispersive spectrometer. The results show that particle residue on the surface has been removed. Meanwhile, Ge 2 Sb 2 Te 5 material stoichiometric content ratios are unchanged. After the top electrode is deposited, current-voltage characteristics test demonstrates that the set threshold voltage is reduced from 13 V to 2.7V and the threshold current from 0.1mA to 0.025mA. Furthermore, we analyse the RIE cleaning principle and compare it with the ultrasonic method

  9. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    Science.gov (United States)

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Modeling of altered layer formation during reactive ion etching of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Mutzke, A. [Max-Planck-Institute of Plasmaphysics, EURATOM Association, D-17491 Greifswald (Germany); Rai, A., E-mail: Abha.Rai@ipp.mpg.de [Max-Planck-Institute of Plasmaphysics, EURATOM Association, D-17491 Greifswald (Germany); Schneider, R.; Angelin, E.J.; Hippler, R. [Institute of Physics, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Str.6, D-17489 Greifswald (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Experimental result showing the preferential sputtering of GaAs (150 keV Ar{sup +} and thermal O on GaAs) during reactive ion beam etching (RIBE) has been reported. Black-Right-Pointing-Pointer A model based on binary collisions (SDTrimSP) is presented to simulate RIBE. Black-Right-Pointing-Pointer The model is used to explain the reported experimental data and also the results by Grigonis and co-workers [1]. - Abstract: The binary collision based SDTrimSP model has been used to simulate the reactive ion beam etching (RIBE) of GaAs in the presence of energetic Ar ions and thermal O atoms. It includes the collisional effects, diffusive processes and chemical reactions taking place in the system. The model parameters are fitted using the experimental observations of Grigonis and co-workers [1] and validated with the experimental results obtained during the GaAs ion etching presented in this paper. A detailed analysis is presented to understand the effect of the diffusive processes and the role of O during RIBE of GaAs. It is shown how the presence of damage caused by the energetic Ar coupled with the presence of thermal O opens up chemical reaction channels which eventually leads to the preferential sputtering of Ga observed at the ion etching facility at University of Greifswald.

  11. Transport of secondary electrons and reactive species in ion tracks

    Science.gov (United States)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  12. Self-organised synthesis of Rh nanostructures with tunable chemical reactivity

    Directory of Open Access Journals (Sweden)

    Lizzit S

    2007-01-01

    Full Text Available AbstractNonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110 are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.

  13. Reactive ion etching of microphotonic structures

    International Nuclear Information System (INIS)

    Du, J.; Glasscock, J.; Vanajek, J.; Savvides, N.

    2004-01-01

    Full text: Fabrication of microphotonic structures such as planar waveguides and other periodic structures based on silicon technology has become increasingly important due to the potential for integration of planar optical devices. We have fabricated various periodic microstructures on silicon wafers using standard optical lithography and reactive ion etching (RIE). For optical applications the surface roughness and the sidewall angle or steepness of microstructures are the most critical factors. In particular, sidewall roughness of the etched waveguide core accounts for most of the optical propagation loss. We show that by varying the main RIE parameters such as gas pressure, RF power and CF 4 /Ar/O 2 gas composition it is possible to produce microstructures with near-vertical sidewalls and very smooth surfaces. In addition to plasma etching conditions, poor edge quality of the mask often causes sidewall roughness. We employed Ni/Cr metal masks in these experiments for deep etching, and used Ar + ion milling instead of wet chemical etching to open the mask. This improves the edge quality of the mask and ultimately results in smooth sidewalls

  14. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  15. Activation of Reactive MALDI Adduct Ions Enables Differentiation of Dihydroxylated Vitamin D Isomers

    Science.gov (United States)

    Qi, Yulin; Müller, Miriam J.; Volmer, Dietrich A.

    2017-12-01

    Vitamin D compounds are secosteroids, which are best known for their role in bone health. More recent studies have shown that vitamin D metabolites and catabolites such as dihydroxylated species (e.g., 1,25- and 24,25-dihydroxyvitamin D3) play key roles in the pathologies of various diseases. Identification of these isomers by mass spectrometry is challenging and currently relies on liquid chromatography, as the isomers exhibit virtually identical product ion spectra under collision induced dissociation conditions. Here, we developed a simple MALDI-CID method that utilizes ion activation of reactive analyte/matrix adducts to distinguish isomeric dihydroxyvitamin D3 species, without the need for chromatography separation or chemical derivatization techniques. Specifically, reactive 1,5-diaminonaphthalene adducts of dihydroxyvitamin D3 compounds formed during MADI were activated and specific cleavages in the secosteroid's backbone structure were achieved that produced isomer-diagnostic fragment ions. [Figure not available: see fulltext.

  16. Chemical Reactivity Test (CRT)

    Energy Technology Data Exchange (ETDEWEB)

    Zaka, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-13

    The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).

  17. Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media.

    Science.gov (United States)

    Gustavsson, J; Ginebra, M P; Engel, E; Planell, J

    2011-12-01

    Solution-mediated surface reactions occur for most calcium phosphate-based biomaterials and may influence cellular response. A reasonable extrapolation of such processes observed in vitro to in vivo performance requires a deep understanding of the underlying mechanisms. We therefore systematically investigated the nature of ion reactivity of calcium-deficient hydroxyapatite (CDHA) by exposing it for different periods of time to standard cell culture media of different chemical composition (DMEM and McCoy medium, with and without osteogenic supplements and serum proteins). Kinetic ion interaction studies of principal extracellular ions revealed non-linear sorption of Ca²⁺ (∼50% sorption) and K⁺ (∼8%) as well as acidification of all media during initial contact with CDHA (48h). Interestingly, inorganic phosphorus (P(i)) was sorbed from McCoy medium (∼50%) or when using osteogenic media containing β-glycerophosphate, but not from DMEM medium. Non-linear sorption data could be perfectly described by pseudo-first-order and pseudo-second-order sorption models. At longer contact time (21 days), and with frequent renewal of culture medium, sorption of Ca²⁺ remained constant throughout the experiment, while sorption of P(i) gradually decreased in McCoy medium. In great contrast, CDHA began to release P(i) slowly with time when using DMEM medium. Infrared spectra showed that CDHA exposed to culture media had a carbonated surface chemistry, suggesting that carbonate plays a key role in the ion reactivity of CDHA. Our data show that different compositions of the aqueous environment may provoke opposite ion reactivity of CDHA, and this must be carefully considered when evaluating the osteoinductive potential of the material. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. An autonomous organic reaction search engine for chemical reactivity

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  19. Phase equilibria in chemical reactive fluid mixtures

    International Nuclear Information System (INIS)

    Maurer, Gerd

    2011-01-01

    Downstream processing is a major part of nearly all processes in the chemical industries. Most separation processes in the chemical (and related) industries for fluid mixtures are based on phase equilibrium phenomena. The majority of separation processes can be modelled assuming that chemical reactions are of no (or very minor) importance, i.e., assuming that the overall speciation remains unchanged during a separation process. However, there are also a large number of industrially important processes where the thermodynamic properties are influenced by chemical reactions. The phase equilibrium of chemical reactive mixtures has been a major research area of the author's group over nearly 40 years. In this contribution, three examples from that research are discussed. The first example deals with the vapour phase dimerisation of carboxylic acids and its consequences on phase equilibrium phenomena and phase equilibrium predictions. The second example deals with the solubility of sour gases (e.g., carbon dioxide and sulfur dioxide) in aqueous solutions of ammonia. That topic has been of interest for many years, e.g., in relation with the gasification and liquefaction of coal and, more recently, with the removal of carbon dioxide from flue gas in the 'chilled ammonia process'. The third example deals with phase equilibrium phenomena in aqueous solutions of polyelectrolytes. It deals with the phenomenon of 'counter ion condensation' and methods to model the Gibbs free energy of such solutions.

  20. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  1. Fragmentation and reactivity of energy-selected ferrocenium ions

    International Nuclear Information System (INIS)

    Mestdagh, H.; Dutuit, O.; Heninger, M.; Thissen, R.; Alcaraz, C.

    2002-01-01

    In this study, results concerning the discussion of state-selected ferrocenium ions (c-C 5 H 5 ) 2 Fe + commonly called Cp 2 Fe + , as well as their reactions with methanol and ethanol are presented. Parent ions Cp 2 Fe + were produced by vacuumultraviolett (VUV) photoionization of neutral ferrocene using synchrotron radiation, and selected in internal energy by threshold photoelectron-photoion coincidences. The apparatus is divided into three differentially pumped regions: the source, the reaction and the detection zones. In source, state-selected parent ions are formed and can be selected in mass by a first quadrupole filter. State-selected ions are then injected in the second zone which is a RF octopole ion guide where reaction product ions are mass analyzed by a second quadrupole filter and detected by microchannelplates. In addition, the long flight time in the octopoles (several hundreds of microseconds) allows studying long-lived metastable ions. Total mass spectra were recorded at different photon energies, in addition to the main CpFe + and Fe + fragments, several minor fragments were detected such as C 10 H 10 + which reflects the formation of a C-C bond between the two Cp ligands. Losses of CH 3 , C 2 H 2 and C-4H 4 also indicate that important structure rearrangements take place before cleavage. The appearance energies of each mass-selected fragment ion were measured by recording fragment ion yields as a function of photon energy. Surprisingly, all fragments were found to have the same energy onset, i.e. 13.2 eV photon energy, except for C 3 H 3 Fe + (m/z 95). For Fe + ions, a sharp increase was observed at 17 eV, above the thermochemical onset of Fe + + 2 Cp. The 13.2 eV appearance energy of Fe + is thus assigned to the formation of Fe - + C 10 H 10 . The reactivity of ferrocenium ion with methanol and ethanol was investigated as a function of photon energy. While no reaction occurs at lower photon energies, several reaction products appear at 13.0 e

  2. Polymer degradation in reactive ion etching and its possible application to all dry processes

    International Nuclear Information System (INIS)

    Hiraoka, H.; Welsh, L.W. Jr.

    1981-01-01

    Dry etching processes involving CF 4 -plasma and reactive ion etching become increasingly important for microcircuit fabrication techniques. In these techniques polymer degradation and etch resistance against reactive species like F atoms and CF 3 + ions are the key factors in the processes. It is well-known that classical electron beam resists like poly(methyl methacrylate) and poly(1-butene sulfone) are not suitable for dry etching processes because they degrade rapidly under these etching conditions. In order to find a correlation of etching rate and polymer structures the thickness loss of polymer films have been measured for a variety of polymer films in reactive ion etching conditions, where CF 3 + ions are the major reactive species with an accelerating potential of 500 volts. Because of its high CF 4 -plasma and reactive ion etch resistance, and because of its high electron beam sensitivity, poly(methacrylonitrile) provides a positive working electron beam resist uniquely suited for all dry processes. (author)

  3. Production of chemically reactive radioactive ion beams through on-line separation

    International Nuclear Information System (INIS)

    Joinet, A.

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO 2 , Nb, Ti, V,TiO 2 , CeO x , ThO 2 , C, ZrC 4 and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target

  4. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    Science.gov (United States)

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  5. Reactive Landing of Dendrimer Ions onto Activated Self-assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Laskin, Julia

    2014-02-06

    The reactivity of gaseous, amine-terminated polyamidoamine (PAMAM) dendrimer ions with activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester groups (NHS-SAM) is examined using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS). The reaction extent is determined from depletion of the infrared band at 1753 cm-1, corresponding to the stretching vibration of the NHS carbonyl groups following ion deposition. For reaction yields below 10%, NHS band depletion follows a linear dependence on the ion dose. By comparing the kinetics plots obtained for 1,12-dodecanediamine and different generations of dendrimer ions (G0–G3) containing 4, 8, 16, and 32 terminal amino group, we demonstrate that the relative reaction efficiency increases linearly with the number of NH2 groups in the molecule. This finding is rationalized assuming the formation of multiple amide bonds upon collision of higher-generation dendrimers with NHS-SAM. Furthermore, by comparing the NHS band depletion following deposition of [M+4H]4+ ions of the G2 dendrimer at 30, 80, and 120 eV, we demonstrate that the ion’s kinetic energy has no measurable effect on reaction efficiency. Similarly, the ion’s charge state only has a minor effect on the reactive landing efficiency of dendrimer ions. Our results indicate that reactive landing is an efficient approach for highly selective covalent immobilization of complex multifunctional molecules onto organic surfaces terminated with labile functional groups.

  6. Triplasmatron sources for broad and reactive ion beams

    International Nuclear Information System (INIS)

    Lejeune, C.; Grandchamp, J.P.; Kessi, O.; Gilles, J.P.

    1986-01-01

    Two alternative discharge structures, which are both convenient for the extraction of broad and reactive ion beams, are described. They have been designed in order to overcome both lifetime and beam contamination problems while preserving a high ionization efficiency and a smooth plasma uniformity. They both use a hot cathode duoplasmatron discharge to inject ionizing electrons into the main ionization chamber, according to the triplasmatron concept. The triplasmatron multipolar ion source (TMIS) uses the magnetic multipolar containment of both electrons and ions, whereas the triplasmatron reflex ion source (TRIS) uses the electrostatic and geometric containment of the ionizing electrons. The behaviour and performance of both structures are reported and discussed with a special emphasis to the operation with either oxygen or fluorocarbon gases. (author)

  7. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.

    Science.gov (United States)

    Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S

    2017-06-29

    The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.

  8. Study on chemical reactivity control of liquid sodium. Research program

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki; Sugiyama, Ken-ichiro; Kitagawa, Hiroshi; Oka, Nobuki; Yoshioka, Naoki

    2007-01-01

    Liquid sodium has the excellent properties as coolant of the fast breeder reactor (FBR). On the other hand, it reacts high with water and oxygen. So an innovative technology to suppress the reactivity is desired. The purpose of this study is to control the chemical reactivity of liquid sodium by dispersing the nanometer-size metallic particles (we call them Nano-particles) into liquid sodium. We focus on the atomic interaction between Nano-particles and sodium atoms. And we try to apply it to suppress the chemical reactivity of liquid sodium. Liquid sodium dispersing Nano-particles is named 'Nano-fluid'. Research programs of this study are the Nano-particles production, the evaluation of reactivity suppression of liquid sodium and the feasibility study to FBR plant. In this paper, the research programs and status are described. The important factors for particle production were understood. In order to evaluate the chemical reactivity of Nano-fluid the research programs were planned. The feasibility of the application of Nano-fluid to the coolant of FBR plant was evaluated preliminarily from the viewpoint of design and operation. (author)

  9. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    Science.gov (United States)

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with

  10. Phase rule calculations and the thermodynamics of reactive systems under chemical equilibrium

    Directory of Open Access Journals (Sweden)

    PLATT G. M.

    1999-01-01

    Full Text Available In this paper, we examine the resolution of some phase rule problems within the context of multiple chemical equilibrium reactions, using cubic equations of state and an activity coefficient model. Bubble and dew reactive surfaces, reactive azeotropic loci and reactive critical loci are generated and presented in graphical form. Also isobaric bubble and dew reactive enthalpy loci, which may be useful in the modeling of reactive distillation operations, are depicted. All the formalism here employed is developed within the coordinate transformation of Ung and Doherty, which is appropriate for equilibrium reactive or multireactive systems. The major contribution of this work is the determination of critical loci for reactive or multireactive equilibrium systems. Since it is known that for some class of chemical reactions the kinetics and product distribution exhibit high sensitivity to pressure near criticality, the present study may be useful as a predicting tool in these cases if the chemical equilibrium condition is not too far from the real phenomenon.

  11. Reactivity of Dual-Use Decontaminants with Chemical Warfare Agents

    Science.gov (United States)

    2016-07-01

    REACTIVITY OF DUAL-USE DECONTAMINANTS WITH CHEMICAL WARFARE AGENTS ECBC-TR-1384... Decontaminants with Chemical Warfare Agents 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Willis, Matthew P...extraction) of chemical warfare agents from materials. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent Liquid-phase

  12. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    Science.gov (United States)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  13. Communication: Enhanced chemical reactivity of graphene on a Ni(111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi [Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I–35131 Padova, Italy and DEMOCRITOS National Simulation Center of the Italian Istituto Officina dei Materiali (IOM) of the Italian National Research Council (CNR), Trieste (Italy)

    2016-03-21

    Due to the unique combination of structural, mechanical, and transport properties, graphene has emerged as an exceptional candidate for catalysis applications. The low chemical reactivity caused by sp{sup 2} hybridization and strongly delocalized π electrons, however, represents a main challenge for straightforward use of graphene in its pristine, free-standing form. Following recent experimental indications, we show that due to charge hybridization, a Ni(111) substrate can enhance the chemical reactivity of graphene, as exemplified by the interaction with the CO molecule. While CO only physisorbs on free-standing graphene, chemisorption of CO involving formation of ethylene dione complexes is predicted in Ni(111)-graphene. Higher chemical reactivity is also suggested in the case of oxidized graphene, opening the way to a simple and efficient control of graphene chemical properties, devoid of complex defect patterning or active metallic structures deposition.

  14. Communication: Enhanced chemical reactivity of graphene on a Ni(111) substrate

    International Nuclear Information System (INIS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2016-01-01

    Due to the unique combination of structural, mechanical, and transport properties, graphene has emerged as an exceptional candidate for catalysis applications. The low chemical reactivity caused by sp 2 hybridization and strongly delocalized π electrons, however, represents a main challenge for straightforward use of graphene in its pristine, free-standing form. Following recent experimental indications, we show that due to charge hybridization, a Ni(111) substrate can enhance the chemical reactivity of graphene, as exemplified by the interaction with the CO molecule. While CO only physisorbs on free-standing graphene, chemisorption of CO involving formation of ethylene dione complexes is predicted in Ni(111)-graphene. Higher chemical reactivity is also suggested in the case of oxidized graphene, opening the way to a simple and efficient control of graphene chemical properties, devoid of complex defect patterning or active metallic structures deposition.

  15. The influence of projectile ion induced chemistry on surface pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Prasanta, E-mail: prasantak@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Satpati, Biswarup [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2016-07-14

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  16. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    Energy Technology Data Exchange (ETDEWEB)

    Malek, Ali; Balawender, Robert, E-mail: rbalawender@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw (Poland)

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  17. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    International Nuclear Information System (INIS)

    Malek, Ali; Balawender, Robert

    2015-01-01

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor

  18. Fluxes of chemically reactive species inferred from mean concentration measurements

    NARCIS (Netherlands)

    Galmarini, S.; Vilà-Guerau De Arellano, J.; Duyzer, J.H.

    1997-01-01

    A method is presented for the calculation of the fluxes of chemically reactive species on the basis of routine measurements of meteorological variables and chemical species. The method takes explicity into account the influence of chemical reactions on the fluxes of the species. As a demonstration

  19. Chemical stability and in chemico reactivity of 24 fragrance ingredients of concern for skin sensitization risk assessment.

    Science.gov (United States)

    Avonto, Cristina; Wang, Mei; Chittiboyina, Amar G; Vukmanovic, Stanislav; Khan, Ikhlas A

    2018-02-01

    Twenty-four pure fragrance ingredients have been identified as potential concern for skin sensitization. Several of these compounds are chemically unstable and convert into reactive species upon exposure to air or light. In the present work, a systematic investigation of the correlation between chemical stability and reactivity has been undertaken. The compounds were subjected to forced photodegradation for three months and the chemical changes were studied with GC-MS. At the end of the stability study, two-thirds of the samples were found to be unstable. The generation of chemically reactive species was investigated using the in chemico HTS-DCYA assay. Eleven and fourteen compounds were chemically reactive before and after three months, respectively. A significant increase in reactivity upon degradation was found for isoeugenol, linalool, limonene, lyral, citronellol and geraniol; in the same conditions, the reactivity of hydroxycitronellal decreased. The non-reactive compounds α-isomethyl ionone, benzyl alcohol, amyl cinnamal and farnesol became reactive after photo-oxidative degradation. Overall, forced degradation resulted in four non-reactive fragrance compounds to display in chemico thiol reactivity, while ten out of 24 compounds remained inactive. Chemical degradation does not necessarily occur with generation of reactive species. Non-chemical activation may be involved for the 10 stable unreactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography

    International Nuclear Information System (INIS)

    Woldering, Leon A; Tjerkstra, R Willem; Vos, Willem L; Jansen, Henri V; Setija, Irwan D

    2008-01-01

    We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF 6 , optimized for the formation of deep nanopores. We have realized structures with pitches between 440 and 750 nm, pore diameters between 310 and 515 nm, and depth to diameter aspect ratios up to 16. To the best of our knowledge, this is the highest aspect ratio ever reported for arrays of nanopores in silicon made with a reactive ion etching process. Our experimental results show that the etching rate of the nanopores is aspect-ratio-dependent, and is mostly influenced by the angular distribution of the etching ions. Furthermore we show both experimentally and theoretically that, for sub-micrometer structures, reducing the sidewall erosion is the best way to maximize the aspect ratio of the pores. Our structures have potential applications in chemical sensors, in the control of liquid wetting of surfaces, and as capacitors in high-frequency electronics. We demonstrate by means of optical reflectivity that our high-quality structures are very well suited as photonic crystals. Since the process studied is compatible with existing CMOS semiconductor fabrication, it allows for the incorporation of the etched arrays in silicon chips

  1. Reactivity of the cadmium ion in concentrated phosphoric acid solutions.

    Science.gov (United States)

    De Gyves, J; Gonzales, J; Louis, C; Bessiere, J

    1989-07-01

    The solvation transfer coefficients which characterize the changes of ion reactivity with phosphoric acid concentration have been calculated for cadmium from the constants of the successive chloride complexes, and for silver and diethyldithiophosphate from potentiometric measurements. They evidence the strong desolvation of the cadmium species in concentrated phosphoric acid media, causing a remarkable increase of its reactivity. They allow the results of liquid-liquid extraction, precipitation and flotation reactions to be correctly interpreted and their changes to be foreseen when the reagents are modified.

  2. Control of the ambident reactivity of the nitrite ion

    DEFF Research Database (Denmark)

    Dong, Hai; Rahm, Martin; Thota, Niranjan

    2013-01-01

    of this difference was addressed. The ambident reactivity of the nitrite ion has been found to be the cause of the complex product formation observed, which can be controlled by a neighbouring equatorial ester group. Both N-attack and O-attack occur in the absence of the ester group, whereas O-attack is favoured...

  3. Adherent zirconia films by reactive ion implantation

    International Nuclear Information System (INIS)

    Bunker, S.N.; Armini, A.J.

    1993-01-01

    Conventional methods of forming ceramic coatings on metal substrates, such as CVD or plasma spray, typically retain a sharp interface and may have adhesion problems. In order to produce a completely mixed interface for better adhesion, a method using reactive ion implantation was used which can grow a thick stoichiometric film of an oxide ceramic starting from inside the substrate. Zirconium oxide ceramic films have been produced by this technique using a high-energy zirconium ion beam in an oxygen gas ambient. Compositional data are shown based on Auger electron spectroscopy of the film. Tribological properties of the layer were determined from wear and friction measurements using a pin-on-disk test apparatus. The adhesion was measured both by a scratch technique as well as by thermal shock. Results show an extremely adherent ZrO 2 film with good tribological properties

  4. Freestanding nanostructures via reactive ion beam angled etching

    Directory of Open Access Journals (Sweden)

    Haig A. Atikian

    2017-05-01

    Full Text Available Freestanding nanostructures play an important role in optical and mechanical devices for classical and quantum applications. Here, we use reactive ion beam angled etching to fabricate optical resonators in bulk polycrystalline and single crystal diamond. Reported quality factors are approximately 30 000 and 286 000, respectively. The devices show uniformity across 25 mm samples, a significant improvement over comparable techniques yielding freestanding nanostructures.

  5. Cathode and ion-luminescence of Eu:ZnO thin films prepared by reactive magnetron sputtering and plasma decomposition of non-volatile precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Rostra, Jorge [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, C/Américo Vespucio 49, E-41092 Sevilla (Spain); Ferrer, Francisco J. [Centro Nacional de Aceleradores, CSIC, Univ. Sevilla, Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Martín, Inocencio R. [Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, U. La Laguna, C/Astrofísico Francisco Sánchez s/n, E-38206 La Laguna, Santa Cruz de Tenerife (Spain); González-Elipe, Agustín R.; Yubero, Francisco [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, C/Américo Vespucio 49, E-41092 Sevilla (Spain)

    2016-10-15

    This paper reports the luminescent behavior of Eu:ZnO thin films prepared by an one-step procedure that combines reactive magnetron sputtering deposition of ZnO with the plasma activated decomposition of a non-volatile acetylacetonate precursor of Eu sublimated in an effusion cell. Chemical composition and microstructure of the Eu:ZnO thin films have been characterized by several methods and their photo-, cathode- and ion-luminescent properties studied as a function of Eu concentration. The high transparency and well controlled optical properties of the films have demonstrated to be ideal for the development of cathode- and ion- luminescence sensors.

  6. Spatially resolved images of reactive ions in the Orion Bar,★★.

    Science.gov (United States)

    Goicoechea, Javier R; Cuadrado, Sara; Pety, Jérôme; Bron, Emeric; Black, John H; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne

    2017-05-01

    We report high angular resolution (4.9″×3.0″) images of reactive ions SH + , HOC + , and SO + toward the Orion Bar photodissociation region (PDR). We used ALMA-ACA to map several rotational lines at 0.8 mm, complemented with multi-line observations obtained with the IRAM 30 m telescope. The SH + and HOC + emission is restricted to a narrow layer of 2″- to 10″-width (≈800 to 4000 AU depending on the assumed PDR geometry) that follows the vibrationally excited [Formula: see text] emission. Both ions efficiently form very close to the H/H 2 transition zone, at a depth of A v ≲1 mag into the neutral cloud, where abundant C + , S + , and [Formula: see text] coexist. SO + peaks slightly deeper into the cloud. The observed ions have low rotational temperatures ( T rot ≈10-30 K≪ T k ) and narrow line-widths (~2-3 km s -1 ), a factor of ≃2 narrower that those of the lighter reactive ion CH + . This is consistent with the higher reactivity and faster radiative pumping rates of CH + compared to the heavier ions, which are driven relatively faster toward smaller velocity dispersion by elastic collisions and toward lower T rot by inelastic collisions. We estimate column densities and average physical conditions from an excitation model ( n (H 2 )≈10 5 -10 6 cm -3 , n ( e - )≈10 cm -3 , and T k ≈200 K). Regardless of the excitation details, SH + and HOC + clearly trace the most exposed layers of the UV-irradiated molecular cloud surface, whereas SO + arises from slightly more shielded layers.

  7. Deep Reactive Ion Etching for High Aspect Ratio Microelectromechanical Components

    DEFF Research Database (Denmark)

    Jensen, Søren; Yalcinkaya, Arda Deniz; Jacobsen, S.

    2004-01-01

    A deep reactive ion etch (DRIE) process for fabrication of high aspect ratio trenches has been developed. Trenches with aspect ratios exceeding 20 and vertical sidewalls with low roughness have been demonstrated. The process has successfully been used in the fabrication of silicon-on-insulator (SOI...

  8. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  9. Elementary processes in plasma-surface interactions with emphasis on ions

    International Nuclear Information System (INIS)

    Zalm, P.C.

    1985-01-01

    Elementary processes occurring at solid surfaces immersed in low pressure plasmas are reviewed. In particular mechanisms leading to anisotropic or directional etching are discussed. The crucial role of ion bombardment is emphasized. First a brief summary of the interaction of (excited) neutrals, ions and electrons with targets is given. Next various aspects of sputter-etching with noble gas and reactive ions are surveyed. Finally it will be argued that synergistic effects, invoked by ion bombardment of a surface under simultaneous exposure to a reactive gas flux, are foremost important in explaining anisotropic plasma etching. It is shown that the role of the ions is not merely to stimulate the chemical reaction path but rather that the active gas flow chemically enhances the sputtering. (author)

  10. Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites

    Science.gov (United States)

    Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.

    2017-07-01

    Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.

  11. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  12. Chemical and catalytic effects of ion implantation

    International Nuclear Information System (INIS)

    Wolf, G.K.

    1982-01-01

    Energetic particles are used for inducing chemical reactions as well as for modifying the properties of materials with regard to their bulk and surface chemical behavior. The effects are partly caused by radiation damage or phase intermixing, partly by the chemical properties of the individual bombarding particles. In this contribution a survey of relevant applications of these techniques is presented: (1) Chemical reactions of implanted and recoil atoms and their use for syntheses, doping and labeling of compounds. (2) The formation of thin films by decomposing chemical compounds with ion beams. 3) Catalytic effects on substrates treated by sputtering or ion implantation. Recent results with nonmetallic substrates are reviewed. Mainly hydrogenation reactions at a solid/gas interface or redox reactions at an electrified solid/liquid interface are mentioned. The present status and future prospects of these kinds of investigations will be discussed. (author)

  13. A Study of Moroccan Pupils' Difficulties at Second Baccalaureate Year in Solving Chemistry Problems Relating to the Reactivity of Ethanoate Ions and to Copper-Aluminium Cells

    Science.gov (United States)

    Ouasri, Ali

    2017-01-01

    This paper investigates the difficulties that Moroccan pupils (18-19) of the second Baccalaureate year encountered in solving chemical equilibrium problems relating to ethanoate ions' reactivity with water and methanoic acid, and to copper-aluminum cells. The pupils were asked to provide answers to questions derived from two problems. The…

  14. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Hu, Qichi

    2017-03-13

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS+2H]2+, and two charge states of ubiquitin, [U+5H]5+ and [U+13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs

  15. Chemical sputtering of graphite by H+ ions

    International Nuclear Information System (INIS)

    Busharov, N.P.; Gorbatov, E.A.; Gusev, V.M.; Guseva, M.I.; Martynenko, Y.V.

    1976-01-01

    In a study of the sputtering coefficient S for the sputtering of graphite by 10-keV H + ions as a function of the graphite temperature during the bombardment, it is found that at T> or =750degreeC the coefficient S is independent of the target temperature and has an anomalously high value, S=0.085 atom/ion. The high rate of sputtering of graphite by atomic hydrogen ions is shown to be due to chemical sputtering of the graphite, resulting primarily in the formation of CH 4 molecules. At T=1100degreeC, S falls off by a factor of about 3. A model for the chemical sputtering of graphite is proposed

  16. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: the Lagrangian approach.

    Science.gov (United States)

    Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng

    2015-03-01

    Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment.

    Science.gov (United States)

    Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R

    2014-02-18

    We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.

  18. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  19. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  20. Reactive ion etching of polymer materials for an energy harvesting device

    DEFF Research Database (Denmark)

    Wang, Fei; Bertelsen, Christian Vinther; Skands, Gustav

    2012-01-01

    In this paper, we have demonstrated deep reactive ion etching (RIE) of two MEMS compatible polymer materials CYTOP and TOPAS, which may be useful for energy harvesting devices. The CYTOP polymer was patterned and used as the electret for the following corona charging while the TOPAS polymer...

  1. Chemical and physical characteristics of phosphate rock materials of varying reactivity

    International Nuclear Information System (INIS)

    Syers, J.K.; Currie, L.D.

    1986-01-01

    Several chemical and physical properties of 10 phosphate rock (PR) materials of varying reactivity were evaluated. The highest concentrations of As and Cd were noted. Because Cd and U can accumulate in biological systems, it may be necessary to direct more attention towards the likely implications of Cd and U concentrations when evaluating a PR for direct application. Three sequential extractions with 2% citric acid may be more useful for comparing the chemical solubility of PR materials, particularly for those containing appreciable CaC0 3 . The poor relationship obtained between surface area and the solubility of the PR materials suggests that surface area plays a secondary role to chemical reactivity in controlling the solubility of a PR in a chemical extractant. A Promesh plot provided an effective method for describing the particle-size characteristics of those PR materials which occurred as sands. Fundamental characteristics, such as mean particle size and uniformity, can readily be determined from a Promesh plot. (author)

  2. A novel non-sequential hydrogen-pulsed deep reactive ion etching of silicon

    International Nuclear Information System (INIS)

    Gharooni, M; Mohajerzadeh, A; Sandoughsaz, A; Khanof, S; Mohajerzadeh, S; Asl-Soleimani, E

    2013-01-01

    A non-sequential pulsed-mode deep reactive ion etching of silicon is reported that employs continuous etching and passivation based on SF 6 and H 2 gases. The passivation layer, as an important step for deep vertical etching of silicon, is feasible by hydrogen pulses in proper time-slots. By adjusting the etching parameters such as plasma power, H 2 and SF 6 flows and hydrogen pulse timing, the process can be controlled for minimum underetch and high etch-rate at the same time. High-aspect-ratio features can be realized with low-density plasma power and by controlling the reaction chemistry. The so-called reactive ion etching lag has been minimized by operating the reactor at higher pressures. X-ray photoelectron spectroscopy and scanning electron microscopy have been used to study the formation of the passivation layer and the passivation mechanism. (paper)

  3. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    Science.gov (United States)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  4. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: csorico@comunidad.unam.mx [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz-Boca del Río, Universidad Veracruzana, C.P. 91700 Veracruz (Mexico); Campos-Fernández, Linda; Alvarado-Salazar, Andres [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), C.P. 09340 México, D.F. (Mexico)

    2015-08-18

    Highlights: • Asparagine plays an important role to anti-inflammatory effect of peptides. • The electron-donor substituent groups favor the formation of the hydrogen bonds, which contribute in the structural stability of peptides. • Chemical reactivity and the physicochemical features are crucial in the biological functions of peptides. - Abstract: Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys–Asn–Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  5. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    Science.gov (United States)

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  6. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    Science.gov (United States)

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  7. Framework for reactive mass transport

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Reactive transport modeling is applicable for a range of porous materials. Here the modeling framework is focused on cement-based materials, where ion diffusion and migration are described by the Poisson-Nernst-Planck equation system. A two phase vapor/liquid flow model, with a sorption hysteresis...... description is coupled to the system. The mass transport is solved by using the finite element method where the chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained...

  8. Evaluation of the chemical reactivity in lignin precursors using the Fukui function.

    Science.gov (United States)

    Martinez, Carmen; Rivera, José L; Herrera, Rafael; Rico, José L; Flores, Nelly; Rutiaga, José G; López, Pablo

    2008-02-01

    The hydroxycinnamyl alcohols: p-coumarol, coniferol and sinapol are considered the basic units and precursors of lignins models. In this work, the specific reactivity of these molecules was studied. We investigate their intrinsic chemical reactivity in terms of the Fukui function, applying the principle of hard and soft acids and bases (HSAB) in the framework of the density functional theory (DFT). Comparisons of their nucleophilic, electrophilic and free radical reactivity show their most probably sites to form linkages among them. It is found that the most reactive sites, for reactions involving free radicals, are the carbons at the beta-position in the p-coumarol and sinapol molecules, whilst the regions around the carbon-oxygen bond of the phenoxyl group are the most reactive in coniferol.

  9. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  10. Deep reactive ion etching of silicon moulds for the fabrication of diamond x-ray focusing lenses

    Science.gov (United States)

    Malik, A. M.; Fox, O. J. L.; Alianelli, L.; Korsunsky, A. M.; Stevens, R.; Loader, I. M.; Wilson, M. C.; Pape, I.; Sawhney, K. J. S.; May, P. W.

    2013-12-01

    Diamond is a highly desirable material for use in x-ray optics and instrumentation. However, due to its extreme hardness and resistance to chemical attack, diamond is difficult to form into a structure suitable for x-ray lenses. Refractive lenses are capable of delivering x-ray beams with nanoscale resolution. A moulding technique for the fabrication of diamond lenses is reported. High-quality silicon moulds were made using photolithography and deep reactive ion etching. The study of the etch process conducted to achieve silicon moulds with vertical sidewalls and minimal surface roughness is discussed. Issues experienced when attempting to deposit diamond into a high-aspect-ratio mould by chemical vapour deposition are highlighted. Two generations of lenses have been successfully fabricated using this transfer-moulding approach with significant improvement in the quality and performance of the optics observed in the second iteration. Testing of the diamond x-ray optics on the Diamond Light Source Ltd synchrotron B16 beamline has yielded a line focus of sub-micrometre width.

  11. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    Science.gov (United States)

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  12. Knudsen and inverse Knudsen layer effect on tail ion distribution and fusion reactivity in inertial confinement fusion targets

    Science.gov (United States)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas-pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. It is found that while the fast ion distribution can be significantly depleted in the hot spot, leading to a reduction of the fusion reactivity in this region, a surplus of fast ions is present in the neighboring cold region. The presence of this fast ion surplus in the neighboring cold region is shown to lead to a partial recovery of the fusion yield lost in the hot spot.

  13. Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Valentina V. Utochnikova

    2012-01-01

    Full Text Available The new reactive chemical vapor deposition (RCVD method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm3 and carboxylic acid (HCarb orH2Carb′ and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz3 and o-phenoxybenzoate thin films, and Tb(bz3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz3/Ca/Al. Electroluminescence spectra of Tb(bz3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.

  14. The reactivity of ion-implanted SiC

    International Nuclear Information System (INIS)

    McHargue, C.J.; Lewis, M.B.; Williams, J.M.; Appleton, B.R.

    1985-01-01

    Implantation of chromium into single crystal or polycrystalline α-SiC produces a surface amorphous layer for displacement damage greater than about 0.2 displacements per atom at room temperature. The enhanced chemical reactivity of such specimens was studied by two methods: chemical etching rate and oxidation rate. The chemical etching rates in a saturated solution of 50% K 3 Fe(CN) 6 plus 50% KOH were measured. The etching rate for the amorphous layer was 2.4-3.7 times that of the polycrystalline samples and 3.0-4.1 times that of the single-crystal samples. Polycrystalline specimens were exposed to flowing oxygen for 1 h at 1300 0 C. Rutherford backscattering and the nuclear reaction 16 O(d,p) 17 O* were used to determine the amount of oxygen on the surface. The amount of oxygen (and the thickness of oxide) over the amorphous region was 1.67 times that over the crystalline region. The relative thicknesses of the oxide on the amorphous and crystalline regions were confirmed by measuring the sputtering time required to remove the oxygen signal in an Auger spectrometer. (Auth.)

  15. Unifying principles of irreversibility minimization for efficiency maximization in steady-flow chemically-reactive engines

    International Nuclear Information System (INIS)

    Ramakrishnan, Sankaran; Edwards, Christopher F.

    2014-01-01

    Systems research has led to the conception and development of various steady-flow, chemically-reactive, engine cycles for stationary power generation and propulsion. However, the question that remains unanswered is: What is the maximum-efficiency steady-flow chemically-reactive engine architecture permitted by physics? On the one hand the search for higher-efficiency cycles continues, often involving newer processes and devices (fuel cells, carbon separation, etc.); on the other hand the design parameters for existing cycles are continually optimized in response to improvements in device engineering. In this paper we establish that any variation in engine architecture—parametric change or process-sequence change—contributes to an efficiency increase via one of only two possible ways to minimize total irreversibility. These two principles help us unify our understanding from a large number of parametric analyses and cycle-optimization studies for any steady-flow chemically-reactive engine, and set a framework to systematically identify maximum-efficiency engine architectures. - Highlights: • A unified thermodynamic model to study chemically-reactive engine architectures is developed. • All parametric analyses of efficiency are unified by two irreversibility-minimization principles. • Variations in internal energy transfers yield a net work increase that is greater than engine irreversibility reduced. • Variations in external energy transfers yield a net work increase that is lesser than engine irreversibility reduced

  16. Encoding of Fundamental Chemical Entities of Organic Reactivity Interest using chemical ontology and XML.

    Science.gov (United States)

    Durairaj, Vijayasarathi; Punnaivanam, Sankar

    2015-09-01

    Fundamental chemical entities are identified in the context of organic reactivity and classified as appropriate concept classes namely ElectronEntity, AtomEntity, AtomGroupEntity, FunctionalGroupEntity and MolecularEntity. The entity classes and their subclasses are organized into a chemical ontology named "ChemEnt" for the purpose of assertion, restriction and modification of properties through entity relations. Individual instances of entity classes are defined and encoded as a library of chemical entities in XML. The instances of entity classes are distinguished with a unique notation and identification values in order to map them with the ontology definitions. A model GUI named Entity Table is created to view graphical representations of all the entity instances. The detection of chemical entities in chemical structures is achieved through suitable algorithms. The possibility of asserting properties to the entities at different levels and the mechanism of property flow within the hierarchical entity levels is outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  18. In-Situ Ion Source Cleaning: Review of Chemical Mechanisms and Evaluation Data at Production Fabs

    International Nuclear Information System (INIS)

    Kaim, R.; Bishop, S.; Byl, O.; Eldridge, D.; Marganski, P.; Mayer, J.; Sweeney, J.; Yedave, S.; Fuchs, D.; Spreitzer, S.; Vogel, J.; Dunn, J.; Lundquist, P.; Rolland, J.; Romig, T.; Newman, D.; Mitchell, M.; Ditzler, K.

    2008-01-01

    Since the concept of chemical in-situ ion implanter cleaning was introduced at IIT2006 [1], evaluations of the XeF 2 cleaning technology have taken place or are ongoing at more than 40 production fabs worldwide. Testing has been focused on assessing effects of cleaning in the source arc chamber and extraction regions. In this paper we describe use of the cleaning technology in a production environment and summarize evaluation data showing advantages of the technology for improving ion source life, reducing glitching, improving beam auto-tuning and avoiding species cross-contamination. More details of the evaluations are given in several separate papers submitted to this Conference. We have supplemented the fab production data with laboratory experiments designed to investigate the reactivity of XeF 2 and fundamental aspects of the source deposition and cleaning processes. These experiments are summarized here, and more details can be found in separate papers submitted to this Conference

  19. Reactivity of surface of metal oxide particles: from adsorption of ions to deposition of colloidal particles

    International Nuclear Information System (INIS)

    Lefevre, Gregory

    2010-01-01

    In this Accreditation to supervise research (HDR), the author proposes an overview of his research works in the field of chemistry. These works more particularly addressed the understanding of the surface reactivity of metal oxide particles and its implication on sorption and adherence processes. In a first part, he addresses the study of surface acidity-alkalinity: measurement of surface reactivity by acid-base titration, stability of metal oxides in suspension, effect of morphology on oxide-hydroxide reactivity. The second part addresses the study of sorption: reactivity of iron oxides with selenium species, sorption of sulphate ions on magnetite, attenuated total reflection infrared spectroscopy (ATR-IR). Adherence effects are addressed in the third part: development of an experimental device to study adherence in massive substrates, deposition of particles under turbulent flow. The last part presents a research project on the effect of temperature on ion sorption at solids/solutions interfaces, and on the adherence of metal oxide particles. The author gives his detailed curriculum, and indicates his various publications, teaching activities, research and administrative responsibilities

  20. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions.

    Science.gov (United States)

    Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning

    2016-12-01

    In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ( 1 H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chemical reactivity of analogous technetium(V) and rhenium(V) dioxo complexes

    International Nuclear Information System (INIS)

    Kremer, C.; Kremer, E.; Leon, A.

    1993-01-01

    All complexes of the series [MO 2 L 2 ] + (M = Tc, Re, L = ethylenediamine (en), 1,3-diaminopropane (1,3-dap)) have been synthesized and their chemical reactivities investigated. The following properties were studied: stability of the aqueous solutions at different pH values, substitution kinetics, lipophilicity and protein binding. The complexes show very similar reactivity in aqueous solution. From a radiopharmaceutical point of view, no significant difference in their in vivo behavior is expected. (author) 12 refs.; 1 fig.; 3 tabs

  2. Chemical atomization of graphite by H+ ions

    International Nuclear Information System (INIS)

    Busharov, I.P.; Gorbatov, E.A.; Gusev, V.M.; Guseva, M.I.; Martynenko, Yu.V.

    A simple model of the mechanism of chemical atomization is given, on whose basis a decrease in chemical atomization is qualitatively predicted for high temperatures. Mass spectrometric investigations of the atomization products cited, which found CH 4 and CH 3 molecules during the irradiation of graphite and H + ions thereby confirmed the presence of chemical atomization. A relationship of S and temperature of graphite T during irradiation was obtained which showed a decrease in the coefficient of atomization of a high temperature. (U.S.)

  3. Fabrication of antireflective nanostructures for crystalline silicon solar cells by reactive ion etching

    International Nuclear Information System (INIS)

    Lin, Hsin-Han; Chen, Wen-Hua; Wang, Chi-Jen; Hong, Franklin Chau-Nan

    2013-01-01

    In this study we have fabricated large-area (15 × 15 cm 2 ) subwavelength antireflection structure on poly-Si substrates to reduce their solar reflectivity. A reactive ion etching system was used to fabricate nanostructures on the poly-silicon surface. Reactive gases, composed of chlorine (Cl 2 ), sulfur hexafluoride (SF 6 ) and oxygen (O 2 ), were activated to fabricate nanoscale pyramids by RF plasma. The poly-Si substrates were etched in various gas compositions for 6–10 min to form nano-pyramids. The sizes of pyramids were about 200–300 nm in heights and about 100 nm in width. Besides the nanoscale features, the high pyramid density on the poly-Si surface is another important factor to reduce the reflectivity. Low-reflectivity surface was fabricated with reflectivity significantly reduced down to < 2% for photons in a wavelength range of 500–900 nm. - Highlights: ► Large-area (15 × 15 cm 2 ) antireflection structures fabricated on poly-Si substrates ► Si nano-pyramids produced by utilizing self-masked reactive ion etching process ► High density of nanoscale pyramids was formed on the entire substrate surface. ► Surface reflectivity below 2% was achieved in the wavelength range of 500–900 nm

  4. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    Science.gov (United States)

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  5. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    Science.gov (United States)

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  6. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Steefel, C.I.; Yabusaki, S.B.

    1994-11-01

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  7. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    Science.gov (United States)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  8. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Manojkumar, P.A., E-mail: manoj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chirayath, V.A.; Balamurugan, A.K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Raj, Baldev [National Institute of Advanced Studies, Bangalore 560 012 (India)

    2016-09-15

    Highlights: • Low energy nitrogen ion implantation in titanium was studied. • Chemical and defect states were analyzed using SIMS, XPS and PAS. • SIMS and depth resolved XPS data showed good agreement. • Depth resolved defect and chemical states information were revealed. • Formation of 3 layers of defect states proposed to fit PAS results. - Abstract: Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  9. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    EI-Naggar, I.M.; Abou-Mesalam, M.M.; El-Shorbagy, M.M.; Shady, S.A.

    2006-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium eerie nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic system's, respectively. The chemical composition of both chromium and cerium titanates was determined by X-ray fluorescence technique and based on the data obtained with other different techniques. A molecular formula for chromium and cerium titanates as Cr 2 Ti 12 O 27 . 13H 2 O and Ce 2 Ti 3 O 10 . 7.46H 2 O, respectively, was proposed. Thermal stabilities of both ion exchangers were investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared with the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were also investigated

  10. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Abou-Mesalam, M. M.; El-Shorbagy, M.M.; Shady, S.A.

    2005-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium ceric nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic systems, respectively. The chemical composition of both chromium and cerium titanates were determined by X-ray fluorescence technique and based on the data obtained with other different techniques. We can proposed molecular formula for chromium and cerium titanates as Cr 2 Ti 1 2O27. 13H 2 O and Ce 2 ThO10. 7.46 H 2 O, respectively. Thermal stability of both ion exchangers was investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared to the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were investigated

  11. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Fang, Chih-Yeu; Huang, Sheng-Yen; Wu, Chung-Chun; Hsu, Hui-Yu; Chou, Sheng-Ping; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2012-01-01

    Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can

  12. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Science.gov (United States)

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  14. The chemical reactivity and structure of collagen studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  15. The chemical reactivity and structure of collagen studied by neutron diffraction

    International Nuclear Information System (INIS)

    Wess, T.J.; Wess, L.; Miller, A.

    1994-01-01

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon

  16. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    International Nuclear Information System (INIS)

    Roozeboom, F; Kniknie, B; Lankhorst, A M; Winands, G; Knaapen, R; Smets, M; Poodt, P; Dingemans, G; Keuning, W; Kessels, W M M

    2012-01-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF 6 to form gaseous SiF x etch products, and 2) passivation with C 4 F 8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ∼20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C 4 F 8 passivation steps by ALD-based oxide (e.g. SiO 2 ) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.

  17. Folding two dimensional crystals by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-01-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not

  18. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.

    Science.gov (United States)

    Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E

    2010-08-01

    The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sibener, Steven J. [Univ. of Chicago, IL (United States). James Franck Inst. and Dept. of Chemistry

    2014-03-11

    This research program explored the efficacy of using molecular-level manipulation, imaging and scanning tunneling spectroscopy in conjunction with supersonic molecular beam gas-surface scattering to significantly enhance our understanding of chemical processes occurring on well-characterized interfaces. One program focus was on the spatially-resolved emergent behavior of complex reaction systems as a function of the local geometry and density of adsorbate-substrate systems under reaction conditions. Another focus was on elucidating the emergent electronic and related reactivity characteristics of intentionally constructed single and multicomponent atom- and nanoparticle-based materials. We also examined emergent chirality and self-organization in adsorbed molecular systems where collective interactions between adsorbates and the supporting interface lead to spatial symmetry breaking. In many of these studies we combined the advantages of scanning tunneling (STM) and atomic force (AFM) imaging, scanning tunneling local electronic spectroscopy (STS), and reactive supersonic molecular beams to elucidate precise details of interfacial reactivity that had not been observed by more traditional surface science methods. Using these methods, it was possible to examine, for example, the differential reactivity of molecules adsorbed at different bonding sites in conjunction with how reactivity is modified by the local configuration of nearby adsorbates. At the core of this effort was the goal of significantly extending our understanding of interfacial atomic-scale interactions to create, with intent, molecular assemblies and materials with advanced chemical and physical properties. This ambitious program addressed several key topics in DOE Grand Challenge Science, including emergent chemical and physical properties in condensed phase systems, novel uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon

  20. Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide

    Science.gov (United States)

    Dang, Liem X.; Schenter, Gregory K.

    2018-06-01

    Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.

  1. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  2. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  3. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    NARCIS (Netherlands)

    Scheeren, H.A.

    2003-01-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large

  4. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  5. RICE: a computer program for multicomponent chemically reactive flows at all speeds

    International Nuclear Information System (INIS)

    Rivard, W.C.; Farmer, O.A.; Butler, T.D.

    1974-11-01

    The fluid dynamics of chemically reactive mixtures are calculated at arbitrary flow speeds with the RICE program. The dynamics are governed by the two-dimensional, time-dependent Navier-Stokes equations together with the species transport equations and the mass-action rate equations for the chemical reactions. The mass and momentum equations for the mixture are solved implicitly by the ICE technique. The equations for total energy and species transport are solved explicitly while the chemical rate equations are solved implicitly with a time step that may be a submultiple of the hydrodynamic time step. Application is made to continuous wave HF chemical lasers to compute the supersonic mixing and chemical reactions that take place in the lasing cavity. (U.S.)

  6. Reactive chemically modified piezoelectric crystal detectors: A new class of high-selectivity sensors

    International Nuclear Information System (INIS)

    Fadeev, A.Yu.; Filatov, A.L.; Lisichkin, G.V.

    1994-01-01

    A great number of works have focused on the study of properties of modified piezoelectric quartz crystal detectors (PQCDs) coated with sorbing substrates and on applying sensors based on them for the analysis of diluted gas mixtures and solutions. This work offers a new class of gravemetric sensors characterized by a reversible chemical reaction that occurs on their surface. Silica films are proposed as a sorbing coating of quartz detectors, and a chemical modification of a surface is suggested for covalent fixation of the necessary compounds. PQCDs were chemically modified with reactive diene derivatives that can also act as dienophiles. Hexachlorocyclopentadiene (HCCPD, resonater I) and cyclopentadiene (CPD, resonator II) were fixed on a PQCD surface in several stages. After treatment with the resonaters, the PQCD in a CPD gas phase exhibited time dependent frequency shifts from 20-100 Hz. The results suggest that there is a reversible chemical reaction on the electrode surface of resonators I and II when they interact with CPD vapors. Therefore, PQCDs modified with reactive dienes were prepared for the first time and may be employed as selective sensors for CPD

  7. Chemical composition of waterfall-induced air ions: Spectrometry vs. simulations

    Energy Technology Data Exchange (ETDEWEB)

    Parts, T.-E.; Luts, A. [Tartu Univ. (Estonia). Dept. of Environmental Physics; Laakso, L.; Hirsikko, A.; Groenholm, T.; Kulmala, M. [Helsinki Univ. (Finland). Dept. of Physical Sciences

    2007-07-01

    Our measurements of ion size distributions near a waterfall provided new evidence for a waterfall-induced modification of air ion sizes. The ion size spectrum near a waterfall permanently differs from that in ordinary tropospheric air. In this paper we investigated the near-waterfall air ions chemical nature in detail. We carried out a simulation series of air small negative ion evolution, proposing that falling water, as a new environmental component, increases the concentration of OH{sup -} cluster ions. The produced OH{sup -} ions were employed as an extra input for our ion evolution model. The presence of additional OH{sup -} ions resulted in a decrease of typically model-provided NO{sub 3}{sup -} and/or HSO{sub 4}{sup -} cluster ion concentrations and an increase of the abundance of HCO{sub 3}{sup -} cluster ions. Near the waterfall the latter ions became dominant in our simulations. (orig.)

  8. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    2013 4. TITLE AND SUBTITLE Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials 5a...directions for future decontamination formulation approaches. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent... DECONTAMINANTS TO PROVIDE HAZARD MITIGATION OF CHEMICAL WARFARE AGENTS FROM MATERIALS 1. INTRODUCTION Decontamination of materials is the

  9. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  10. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  11. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  12. Dry fabrication of microdevices by the combination of focused ion beam and cryogenic deep reactive ion etching

    International Nuclear Information System (INIS)

    Chekurov, N; Tittonen, I; Grigoras, K; Sainiemi, L; Franssila, S; Peltonen, A

    2010-01-01

    In this paper, we demonstrate silicon microdevice fabrication by a combination of focused ion beam (FIB) and cryogenic deep reactive ion etching (DRIE). Applying FIB treatment only to a thin surface layer enables very high writing speed compared with FIB milling. The use of DRIE then defines the micro- and nanodevices utilizing the FIB-modified silicon as a mask. We demonstrate the ability to create patterns on highly 3D structures, which is extremely challenging by other nanofabrication methods. The alignment of optically made and FIB-defined patterns is also demonstrated. We also show that complete microelectromechanical systems (MEMS) can be fabricated by this method by presenting a double-ended tuning fork resonator as an example. Extremely short process time is achieved as the full fabrication cycle from mask design to electrical measurements can be completed during one working day.

  13. Targets for production of high-intensity radioactive ion-beams

    International Nuclear Information System (INIS)

    Hagebo, E.; Hoff, P.; Steffensen, K.

    1991-01-01

    The recent developments of target systems for production of high intensity radioactive ion-beams at the ISOLDE mass separators is described. Methods for chemically selective production through separation of molecular ions are outlined and the effects of the addition of reactive gases has been studied. Results and further possible applications in the light element region are discussed. (author) 10 refs.; 9 figs.; 1 tab

  14. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  15. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  16. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  17. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  18. Use of reactive gases with broad-beam radio frequency ion sources for industrial applications

    International Nuclear Information System (INIS)

    Schneider, St.; Jolly, T.W.; Kohlstedt, H.; Waser, R.

    2004-01-01

    Broad-beam ion sources are used for a number of important industrial etching and deposition applications, and the use of inductively coupled plasmas has greatly increased the feasibility of using beams of reactive gases, especially of chlorine and oxygen, but also of CO, CO 2 , CF 4 , CHF 3 , SF 6 , etc. In order to gain more understanding of the factors that affect the composition of beams of these gases, we have used a Hiden energy-dispersive quadrupole mass spectrometer to analyze the flux of ions and energetic particles produced by an Oxford Instruments 15 cm rf ion source. For all of the above gases, we have analyzed the effects of changing the operating conditions on the composition of the ion beam, and the fractional production of multiply charged ions; on the plasma potential (and the consequential divergence of the ion beam) and on the spread in energy of the ion beam. We discuss how these factors influence the correct use of the ion source in etching applications with these gases. It is important that the design of the ion source should be optimized for the process gases that are used. The source was originally optimized for use on argon. We discuss the effect of the design on the source's performance with the different gases, and we consider whether design changes would be appropriate for optimum performance on different gases

  19. Reactions of metal ions and their clusters in the gas phase using laser ionization: ion cyclotron resonance spectroscopy

    International Nuclear Information System (INIS)

    Freiser, B.S.

    1981-04-01

    Two subjects are discussed in this report: advances in proposed studies on metal ion chemistry and expansion of laboratory facilities. The development of a combined pulsed laser source-ion cyclotron resonance spectrometer has proven to be a convenient and powerful method for generating metal ions and for studying their subsequent chemistry in the gas phase. The main emphasis of this research has been on the application of metal ions as a selective chemical ionization reagents and progress in this area are discussed. The goal is to identify trends in reactivity i.e. mechanisms useful in interpreting the chemical ionization spectra of unknown compounds and to test for the functional group selectivity of the various metal ions. The feasibility of these goals have been demonstrated in extensive studies on Cu + with esters and ketones, on Fe + with ethers, ketones, and hydrocarbons, and on Ti + with hydrocarbons. In addition, preliminary results on sulfur containing compounds and on a variety of other metallic ions have been obtained. Laboratory facilities were expanded from one ion cyclotron resonance (ICR) spectrometer to two, plus a third instrument the Fourier Transform Ion Cyclotron Resonance (FTICR) spectrometer

  20. Feasibility Study for the Use of Green, Bio-Based, Efficient Reactive Sorbent Material to Neutralize Chemical Warfare Agents

    Science.gov (United States)

    2012-08-02

    REPORT Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents 14. ABSTRACT 16...way cellulose, lignin and hemicelluloses interact as well as whole wood dissolution occurs in ILs. The present project was conducted to 1. REPORT...Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents Report Title ABSTRACT Over the

  1. Modeling reactive geochemical transport of concentrated aqueous solutions in variably saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2004-01-28

    Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.

  2. Ultraviolet light photobiology of the protozoan Tetrahymena pyriformis and chemical reactivation of DNA damage

    International Nuclear Information System (INIS)

    Wheeler, J.S.

    1988-01-01

    The tunable dye laser was developed in order to perform UV-B and UV-C (254-320 nm) action spectra studies on several different organisms. Using the laser, action spectra studies have been performed for Escherichia coli, Saccharomyces, Chlamydomonas, Caenorhabditis elegans, Paramecium, and Tetrahymena pyriformis. Studies generally indicate increasing LD 50 values with increasing wavelength. Two notable findings were made: (1) The action spectra does not follow the DNA absorption spectra at 280, 290 and 295 nm; (2) The repair competent/repair defective sensitization factor does not remain constant throughout the wavelength region. In addition it was found that the repair defective strain of E. coli, Bs-1, showed an increase in survival with increasing UV irradiation, at certain dose levels. Further experiments were designed to better characterize the reactivation. Tetrahymena were exposed to UV-C and reactivated with methyl methanesulfonate (MMS) and 4-nitro quinoline oxide (4-NQO). In both cases survival was seen to increase after chemical exposure. Likewise, UV-C was found to reactivate chemical damage (MMS)

  3. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  4. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  5. Ultrahigh reactivity and grave nanotoxicity of copper nanoparticles

    International Nuclear Information System (INIS)

    Huan Meng; Zhen Chen; Chengcheng Zhang; Yun Wang; Yuliang Zhao

    2007-01-01

    Recently, it was reported that the toxicity of copper particles increases with the decrease of the particle size on a mass basis. To understand this phenomenon, inductively coupled plasma mass spectrometry (ICP-MS) techniques and in vitro chemical studies were carried out to explore how they produce toxicity in vivo. The results suggest that when the sizes of particles become small and down to a nanoscale, copper becomes extremely reactive in a simulative intracorporeal environment. The nanosized copper particles consume the hydrogen ions in stomach more quickly than micron ones. These processes further convert the copper nanoparticles into cupric ions whose toxicity is very high in vivo. (author)

  6. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    International Nuclear Information System (INIS)

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-01-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy

  7. Heavy ion measurement by chemical detectors

    International Nuclear Information System (INIS)

    Huebner, K.; Erzgraeber, G.; Eichhorn, K.

    1979-02-01

    In testing the applicability of the threshold system polyvinyl alcohol/methyl orange/chloral hydrate/sodium tetraborate to the quantitative detection of single particles, the chemical detector was irradiated with 4 He, 12 C, 18 O, 22 He ions of different LET. Detectors with 4 different borax concentrations (chloral hydrate concentration kept constant) have been irradiated. The dose causing the colour change increased linearly with the borax concentration. For equal borax concentrations this dose increases with increasing LET due to the decreasing G value of the HCl. The fluence ranges measurable with the various detector compositions are given. 4 He and 18 O ion ranges have been determined. The measured depth dose curves have been corrected because the dose is LET-dependent. The experimentally determined ranges are in good agreement with values calculated for the detector material

  8. Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP

    Science.gov (United States)

    Guo, Wenyan; Liu, Xiuli; Liu, Yurong; Gang, Yadong; He, Xiaobin; Jia, Yao; Yin, Fangfang; Li, Pei; Huang, Fei; Zhou, Hongfu; Wang, Xiaojun; Gong, Hui; Luo, Qingming; Xu, Fuqiang; Zeng, Shaoqun

    2017-01-01

    The pH-sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EGFP or EYFP is good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is an urgent need. Here a pH-sensitive red fluorescent protein, pHuji, is selected and verified to remain pH-sensitive in HM20 resin. We observe 183% fluorescence intensity of pHuji in resin-embeded mouse brain and 29.08-fold fluorescence intensity of reactivated pHuji compared to the quenched state. pHuji and EGFP can be quenched and chemically reactivated simultaneously in resin, thus enabling simultaneous two-color micro-optical sectioning tomography of resin-embedded mouse brain. This method may greatly facilitate the visualization of neuronal morphology and neural circuits to promote understanding of the structure and function of the brain. PMID:28717566

  9. The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching

    International Nuclear Information System (INIS)

    Chekurov, N; Grigoras, K; Franssila, S; Tittonen, I; Peltonen, A

    2009-01-01

    We show that gallium-ion-implanted silicon serves as an etch mask for fabrication of high aspect ratio nanostructures by cryogenic plasma etching (deep reactive ion etching). The speed of focused ion beam (FIB) patterning is greatly enhanced by the fact that only a thin approx. 30 nm surface layer needs to be modified to create a mask for the etching step. Etch selectivity between gallium-doped and undoped material is at least 1000:1, greatly decreasing the mask erosion problems. The resolution of the combined FIB-DRIE process is 20 lines μm -1 with the smallest masked feature size of 40 nm. The maximum achieved aspect ratio is 15:1 (e.g. 600 nm high pillars 40 nm in diameter).

  10. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    Science.gov (United States)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  11. Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

    Directory of Open Access Journals (Sweden)

    Zhengde Tan

    2013-01-01

    Full Text Available In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme has greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR models were developed to predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA and support vector machine (SVM techniques. Quantum chemical descriptors used for QSAR models were calculated from transition state species with structures C¹H3 - C²HR³• or •C¹H2 - C²H2R³ (formed from vinyl monomers C¹H²=C²HR³ + H•, using density functional theory (DFT, at the UB3LYP level of theory with 6-31G(d basis set. The optimum support vector regression (SVR model of the reactivity parameter u based on Gaussian radial basis function (RBF kernel (C = 10, ε = 10- 5 and γ = 1.0 produced root-mean-square (rms errors for the training, validation and prediction sets being 0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10- 4 and γ = 1.2 produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity parameters u and v in the U-V scheme has been demonstrated.

  12. Chemical reactivity of potential ferrocyanide precipitates in Hanford tanks with nitrates and nitrites

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Tingey, J.M.; Hallen, R.T.; Lilga, M.A.

    1992-01-01

    Ferrocyanide-bearing wastes were produced at the Hanford Site during the 1950s. Safe storage of these wastes has recently drawn increased attention. As a result of these concerns, the Pacific Northwest Laboratory was chartered to investigate the chemical reactivity and explosivity of the ferrocyanide-bearing wastes. We have investigated the thermal sensitivity of synthetic wastes and ferrocyanides and observed oxidation at 130 deg. C and explosions down to 295 deg. C. Coupled with thermodynamic calculations, these thermal studies have also shown a dependence of the reactivity on the synthetic waste composition, which is dependent on the solids settling behavior. (author)

  13. Ion implantation induced structural changes in reactively sputtered Cr-N layers on Si substrates

    International Nuclear Information System (INIS)

    Novakovic, M.; Popovic, M.; Perusko, D.; Milinovic, V.; Radovic, I.; Bibic, N.; Mitric, M.; Milosavljevic, M.

    2007-01-01

    This paper presents a study of the structure and composition of reactively sputtered Cr-N layers as a function of deposition parameters, and the effects of ion implantation on these structures. The layers were deposited on (1 0 0) Si substrates to a thickness of 240-280 nm, at different nitrogen partial pressure, and subsequently irradiated with 120 keV Ar ions. Structural characterisation of the samples was performed with Rutherford backscattering spectroscopy, transmission electron microscopy and X-ray diffraction analysis. We also measured their electrical resistivity with a four point probe. It was found that the layers grow in form of columnar structures, and their composition, Cr 2 N or CrN, strongly depends on the nitrogen partial pressure during deposition. Ion irradiation induces local micro-structural changes, formation of nano-particles and defects, which can be nicely correlated to the measured electrical resistivity

  14. Preparation of composite micro/nano structure on the silicon surface by reactive ion etching: Enhanced anti-reflective and hydrophobic properties

    Science.gov (United States)

    Zeng, Yu; Fan, Xiaoli; Chen, Jiajia; He, Siyu; Yi, Zao; Ye, Xin; Yi, Yougen

    2018-05-01

    A silicon substrate with micro-pyramid structure (black silicon) is prepared by wet chemical etching and then subjected to reactive ion etching (RIE) in the mixed gas condition of SF6, CHF3 and He. We systematically study the impacts of flow rates of SF6, CHF3 and He, the etching pressure and the etching time on the surface morphology and reflectivity through various characterizations. Meanwhile, we explore and obtain the optimal combination of parameters for the preparation of composite structure that match the RIE process based on the basis of micro-pyramid silicon substrate. The composite sample prepared under the optimum parameters exhibits excellent anti-reflective performance, hydrophobic, self-cleaning and anti-corrosive properties. Based on the above characteristics, the composite micro/nano structure can be applied to solar cells, photodetectors, LEDs, outdoor devices and other important fields.

  15. Opto-chemical response of Makrofol-KG to swift heavy ion irradiation

    Indian Academy of Sciences (India)

    In the present study, the effects of swift heavy ion beam irradiation on the structural, chemical and optical properties of Makrofol solid-state nuclear track detector (SSNTD) were investigated. Makrofol-KG films of 40 m thickness were irradiated with oxygen beam (8+) with fluences ranging between 1010 ion/cm2 and 1012 ...

  16. Metal ion reactive thin films using spray electrostatic LbL assembly.

    Science.gov (United States)

    Krogman, Kevin C; Lyon, Katharine F; Hammond, Paula T

    2008-11-20

    By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.

  17. Heavy ion measurements by use of chemical detectors

    International Nuclear Information System (INIS)

    Huebner, K.; Erzgraeber, G.; Eichhorn, K.

    1980-01-01

    In order to test whether the threshold system polyvinyl alcohol/methyl organe/chloral hydrate/sodium tetraborate permits quantitative detection of individual particles, the chemical detector was irradiated at the JINR U-200 cyclotron with 4 He, 12 C, 18 O, 22 Ne ions having different LET. Irradiations were performed with detectors of four different borax concentrations (the chloral hydrate concentration being constant). The colour change dose Dsub(u) increases linearly with increasing borax concentration and at constant borax concentration with increasing LET. Hence it follows that the G value of dehydrochlorination decreases with increasing LET. Fluence ranges measurable with detectors of different composition are given for the heavy ions studied. (author)

  18. Mask-free surface structuring of micro- and nanocrystalline diamond films by reactive ion plasma etching

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Babchenko, Oleg; Varga, Marián; Hruška, Karel; Kromka, Alexander

    2014-01-01

    Roč. 6, č. 7 (2014), s. 780-784 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP108/12/0996; GA MPO FR-TI2/736 Institutional support: RVO:68378271 Keywords : micro- and nanocrystalline diamond * capacitively coupled plasma * reactive ion etching * nanostructuring * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Chemical degradation and morphological instabilities during focused ion beam prototyping of polymers.

    Science.gov (United States)

    Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H

    2014-01-28

    Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.

  20. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    Science.gov (United States)

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  1. Thermal, chemical and spectral equilibration in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almási, Gábor András, E-mail: g.almasi@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); Wolf, György, E-mail: wolf.gyorgy@wigner.mta.hu [Wigner RCP, Budapest (Hungary)

    2015-11-15

    We have considered the equilibration in relativistic heavy ion collisions at energies 1–7 A GeV using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20–40 fm/c whose time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have shown that in the testparticle simulation of the Boltzmann equation the mass spectra of broad resonances follow instantaneously their in-medium spectral functions as expected from the Markovian approximation to the Kadanoff–Baym equations employed via the (local) gradient expansion.

  2. Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling

    International Nuclear Information System (INIS)

    Yekeler, Hulya; Yekeler, Meftuni

    2004-01-01

    The most commonly used collectors for sulfide minerals in the mining industry are the thiol collectors for the recovery of these minerals from their associated gangues by froth flotation. For this reason, a great deal of attention has been paid to understand the attachment mechanism of thiol collectors to metal sulfide surfaces. The density functional theory (DFT) calculations at the B3LYP/3-21G* and B3LYP/6-31++G** levels were employed to propose the flotation responses of these thiol collectors, namely, diethyl dithiocarbamate, ethyl dithiocarbamate, ethyl dithiocarbonate, ethyl trithiocarbonate and ethyl dithiophosphate ions, and to study the interaction energies of these collectors with Ag (+1) ion in connection to acanthite (Ag 2 S) mineral. The calculated interaction energies, ΔE, were interpreted in terms of the highest occupied molecular orbital (HOMO) energies of the isolated collector ions. The results show that the HOMOs are strongly localized to the sulfur atoms and the HOMO energies can be used as a reactivity descriptor for the flotation ability of the thiol collectors. Using the HOMO and ΔE energies, the reactivity order of the collectors is found to be (C 2 H 5 ) 2 NCS 2 - > C 2 H 5 NHCS 2 - > C 2 H 5 OCS 2 - > C 2 H 5 SCS 2 - > (C 2 H 5 O)(OH)PS 2 - . The theoretically obtained results are in good agreement with the experimental data reported

  3. Response of the ionosphere to the injection of chemically reactive vapors

    International Nuclear Information System (INIS)

    Bernhardt, P.A.

    1976-05-01

    As a gas released in the ionosphere expands, it is rapidly cooled. When the vapor becomes sufficiently tenuous, it is reheated by collisions with the ambient atmosphere, and its flow is then governed by diffusive expansion. As the injected gas becomes well mixed with the plasma, a hole is created by chemical processes. In the case of diatomic hydrogen release, depression of the electron concentrations is governed by the charge exchange reaction between oxygen ions and hydrogen, producing positive hydroxyl ions. Hydroxyl ions rapidly react with the electron gas to produce excited oxygen and hydrogen atoms. Enhanced airglow emissions result from the transition of the excited atoms to lower energy states. The electron temperature in the depleted region rises sharply and this rise causes a thermal expansion of the plasma and a further reduction in the local plasma concentration

  4. Experimental methods in radioactive ion-beam target/ion source development and characterization

    International Nuclear Information System (INIS)

    Welton, R.F.; Alton, G.D.; Cui, B.; Murray, S.N.

    1998-01-01

    We have developed off-line experimental techniques and apparatuses that permit direct measurement of effusive-flow delay times and ionization efficiencies for nearly any chemically reactive element in high-temperature target/ion sources (TIS) commonly used for on-line radioactive ion-beam (RIB) generation. The apparatuses include a hot Ta valve for effusive-flow delay-time measurements, a cooled molecular injection system for determination of ionization efficiencies, and a gas flow measurement/control system for introducing very low, well-defined molecular flows into the TIS. Measurements are performed on a test stand using molecular feed compounds containing stable complements of the radioactive nuclei of interest delivered to the TIS at flow rates commensurate with on-line RIB generation. In this article, the general techniques are described and effusive-flow delay times and ionization efficiency measurements are reported for fluorine in an electron-beam plasma target/ion source developed for RIB generation and operated in both positive- and negative-ion extraction modes. copyright 1998 American Institute of Physics

  5. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    models were used to describe the pollutant transport within the permeable reactive barrier. Based on the obtained results, the following can be concluded: 1. Synthetic zeolite X proposed as a reactive barrier material was successfully prepared and completely characterized using XRD, FTIR, EDX, and SEM techniques. 2. Sorption studies indicated the feasibility of using the prepared zeolite X as a reactive barrier material due to its high capacity, chemical stability and selectivity for the concerned heavy metals (Zn 2+ and Cd 2+ ions). 3. Transport properties of both zinc and cadmium ions through zeolite X packed column have been determined. The hydrodynamic dispersion coefficients needed for describe the migration of Zn 2+ and Cd 2+ ions were determined. 4. Retardation coefficients using linear and nonlinear isotherm models were utilized to determine the capability of the synthesized zeolite X to impede the movement of zinc and cadmium ions carried by the fluid. 5. Transport of contaminants in groundwater systems, which is based on the integration of advection dispersion equation using specific boundary conditions, provides a number of analytical solutions. Some of these solutions have been derived for one dimensional pulse contaminant input or a continuous input.

  6. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    Science.gov (United States)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2014-03-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  7. A Mononuclear Non-Heme Manganese(IV)-Oxo Complex Binding Redox-Inactive Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M.; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N.; Nam, Wonwoo [Ewha; (Purdue); (Osaka)

    2013-05-29

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal–oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)–oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)–oxo complex binding scandium ions. The Mn(IV)–oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)–oxo complex are markedly influenced by binding of Sc3+ ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C–H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)–oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal–oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  8. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    Science.gov (United States)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  9. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer

    1994-08-01

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  10. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  11. Chemical equilibrium relations used in the fireball model of relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Gupta, S.D.

    1978-01-01

    The fireball model of relativistic heavy-ion collision uses chemical equilibrium relations to predict cross sections for particle and composite productions. These relations are examined in a canonical ensemble model where chemical equilibrium is not explicitly invoked

  12. Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yekeler, Hulya; Yekeler, Meftuni

    2004-09-15

    The most commonly used collectors for sulfide minerals in the mining industry are the thiol collectors for the recovery of these minerals from their associated gangues by froth flotation. For this reason, a great deal of attention has been paid to understand the attachment mechanism of thiol collectors to metal sulfide surfaces. The density functional theory (DFT) calculations at the B3LYP/3-21G* and B3LYP/6-31++G** levels were employed to propose the flotation responses of these thiol collectors, namely, diethyl dithiocarbamate, ethyl dithiocarbamate, ethyl dithiocarbonate, ethyl trithiocarbonate and ethyl dithiophosphate ions, and to study the interaction energies of these collectors with Ag (+1) ion in connection to acanthite (Ag{sub 2}S) mineral. The calculated interaction energies, {delta}E, were interpreted in terms of the highest occupied molecular orbital (HOMO) energies of the isolated collector ions. The results show that the HOMOs are strongly localized to the sulfur atoms and the HOMO energies can be used as a reactivity descriptor for the flotation ability of the thiol collectors. Using the HOMO and {delta}E energies, the reactivity order of the collectors is found to be (C{sub 2}H{sub 5}){sub 2}NCS{sub 2}{sup -} > C{sub 2}H{sub 5}NHCS{sub 2}{sup -} > C{sub 2}H{sub 5}OCS{sub 2}{sup -} > C{sub 2}H{sub 5}SCS{sub 2}{sup -} > (C{sub 2}H{sub 5}O)(OH)PS{sub 2}{sup -}. The theoretically obtained results are in good agreement with the experimental data reported.

  13. Reactive Transport of Marcellus Shale Waters in Natural Aquifers: the Role of Mineralogical Compositions and Spatial Distribution Patterns

    Science.gov (United States)

    Cai, Z.; Wen, H.; Li, L.

    2017-12-01

    Accidental release of Marcellus Shale waters (MSW) can release high concentrations of chemicals that can deteriorate groundwater quality. It is important to understand the reactive transport and fate of chemicals from MSW. Natural aquifers typically have complex mineralogical compositions and are heterogeneous with large spatial variation in terms of physical and geochemical properties. To investigate the effects of mineralogical compositions, flow-through experiments and reactive transport modeling were carried out using 3 large columns (5 cm×50 cm, Quartz, Calcite, and Vermiculite). Results indicate calcite immobilizes heavy metals by precipitation and solid solution partitioning (coprecipitation). Vermiculite retards heavy metals through ion exchange. The sorbed chemicals however slowly release back to the groundwater. Na and Ca transport similarly to Br in Qtz and Cal columns however become sorbed in Vrm column during release through ion exchange by 27.8% and 46.5%, respectively and later slowly release back to aqueous phase. To understand the role of mineral spatial patterns, three 2D flow-cell (40 cm×12 cm×1 cm) experiments were carried out. All flow cells have the same clay mass within quartz matrix but different spatial patterns characterized by the relative length of the clay zone ( 0, ¼, ½) of the domain length (L). Results show that in the uniform column, ion exchange dominates and most Ba sorbs to the solid phase, to an extent Ba cannot precipitate out with SO4 as barite. In 1/2-Zone, however, most Ba precipitates as barite. In 1/4-Zone, both ion exchange and mineral precipitation occur. In general, the 1/2-Zone has the smallest ion exchange capacity for other species including Na, Ca, Mg, K and heavy metals (Mn, Cu, Zn, Cd and Pb) as well. Our flow cell experiment emphasizes the importance of mineral spatial patterns in regulating not only reaction rates but also the type of reactions in controlling the reactive transport of MSW chemicals. The

  14. The ion dependent change in the mechanism of charge storage of chemically preintercalated bilayered vanadium oxide electrodes

    Science.gov (United States)

    Clites, Mallory; Pomerantseva, Ekaterina

    2017-08-01

    Chemical pre-intercalation is a soft chemistry synthesis approach that allows for the insertion of inorganic ions into the interlayer space of layered battery electrode materials prior to electrochemical cycling. Previously, we have demonstrated that chemical pre-intercalation of Na+ ions into the structure of bilayered vanadium oxide (δ-V2O5) results in record high initial capacities above 350 mAh g-1 in Na-ion cells. This performance is attributed to the expanded interlayer spacing and predefined diffusion pathways achieved by the insertion of charge-carrying ions. However, the effect of chemical pre-intercalation of δ-V2O5 has not been studied for other ion-based systems beyond sodium. In this work, we report the effect of the chemically preintercalated alkali ion size on the mechanism of charge storage of δ- MxV2O5 (M = Li, Na, K) in Li-ion, Na-ion, and K-ion batteries, respectively. The interlayer spacing of the δ-MxV2O5 varied depending on inserted ion, with 11.1 Å achieved for Li-preintercalated δ-V2O5, 11.4 Å for Na-preintercalated δ- V2O5, and 9.6 Å for K-preintercalated δ-V2O5. Electrochemical performance of each material has been studied in its respective ion-based system (δ-LixV2O5 in Li-ion cells, δ-NaxV2O5 in Na-ion cells, and δ-KxV2O5 in K-ion cells). All materials demonstrated high initial capacities above 200 mAh g-1. However, the mechanism of charge storage differed depending on the charge-carrying ion, with Li-ion cells demonstrating predominantly pseudocapacitive behavior and Naion and K-ion cells demonstrating a significant portion of capacity from diffusion-limited intercalation processes. In this study, the combination of increased ionic radii of the charge-carrying ions and decreased synthesized interlayer spacing of the bilayered vanadium oxide phase correlates to an increase in the portion of capacity attributed diffusion-limited charge-storage processes.

  15. Change of chemical bond and wettability of polylacticacid implanted with high-flux carbon ion

    International Nuclear Information System (INIS)

    Zhang Jizhong; Kang Jiachen; Zhang Xiaoji; Zhou Hongyu

    2008-01-01

    Polylacticacid (PLA) was submitted to high-flux carbon ion implantation with energy of 40 keV. It was investigated to the effect of ion fluence (1 x 10 12 -1 x 10 15 ions/cm 2 ) on the properties of the polymer. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), wettability, and roughness were employed to study change of structure and properties of the as-implanted PLA samples. Six carbon bonds, that is, C, C-H, C-O-C, C-O, O-C-O, and >C=O, were observed on surfaces of the as-implanted PLA samples. The intensities of various chemical bonds changed with increasing ion fluence. AFM images displayed that there was irradiation damage and that it was related closely with ion fluence. At fluence as high as 1 x 10 15 ions/cm 2 surface-restructuring phenomenum took place on the surface of the PLA. Wettability was also affected by the variation on the fluence. With increasing ion fluence, the water contact angle of the as-implanted PLA samples changed gradually reaching a maximum of 76.5 deg. with 1 x 10 13 ions/cm 2 . The experimental results revealed that carbon ion fluence strongly affected surface chemical bond, morphology, wettability, and roughness of the PLA samples

  16. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  17. Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Moser, Trevor; Engelhard, Mark; Browning, Nigel D.; Laskin, Julia

    2016-11-07

    About 40 years ago, it was shown that tungsten carbide exhibits similar catalytic behavior to Pt for certain commercially relevant reactions, thereby suggesting the possibility of cheaper and earth-abundant substitutes for costly and rare precious metal catalysts. In this work, reactive magnetron sputtering of Ta in the presence of three model hydrocarbons (2-butanol, heptane, and m-xylene) combined with gas aggregation and ion soft landing was employed to prepare organic-inorganic hybrid nanoparticles (NPs) on surfaces for evaluation of catalytic activity and durability. The electro-catalytic behavior of the NPs supported on glassy carbon was evaluated in acidic aqueous solution by cyclic voltammetry. The Ta-heptane and Ta-xylene NPs were revealed to be active and robust toward promotion of the oxygen reduction reaction, an important process occurring at the cathode in fuel cells. In comparison, pure Ta and Ta-butanol NPs were essentially unreactive. Characterization techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were applied to probe how different sputtering conditions such as the flow rates of gases, sputtering current, and aggregation length affect the properties of the NPs. AFM images reveal the focused size of the NPs as well as their preferential binding along the step edges of graphite surfaces. In comparison, TEM images of the same NPs on carbon grids show that they bind randomly to the surface with some agglomeration but little coalescence. The TEM images also reveal morphologies with crystalline cores surrounded by amorphous regions for NPs formed in the presence of 2-butanol and heptane. In contrast, NPs formed in the presence of m-xylene are amorphous throughout. XPS spectra indicate that while the percentage of Ta, C, and O in the NPs varies depending on the sputtering conditions and hydrocarbon employed, the electron binding energies of the elements are similar

  18. pH-Specific structural speciation of the ternary V(V)-peroxido-betaine system: a chemical reactivity-structure correlation.

    Science.gov (United States)

    Gabriel, C; Kioseoglou, E; Venetis, J; Psycharis, V; Raptopoulou, C P; Terzis, A; Voyiatzis, G; Bertmer, M; Mateescu, C; Salifoglou, A

    2012-06-04

    Vanadium involvement in cellular processes requires deep understanding of the nature and properties of its soluble and bioavailable forms arising in aqueous speciations of binary and ternary systems. In an effort to understand the ternary vanadium-H(2)O(2)-ligand interactions relevant to that metal ion's biological role, synthetic efforts were launched involving the physiological ligands betaine (Me(3)N(+)CH(2)CO(2)(-)) and H(2)O(2). In a pH-specific fashion, V(2)O(5), betaine, and H(2)O(2) reacted and afforded three new, unusual, and unique compounds, consistent with the molecular formulation K(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·H(2)O (1), (NH(4))(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·0.75H(2)O (2), and {Na(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}(2)]}(n)·4nH(2)O (3). All complexes 1-3 were characterized by elemental analysis; UV/visible, FT-IR, Raman, and NMR spectroscopy in solution and the solid state; cyclic voltammetry; TGA-DTG; and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxido-betaine complexes containing [(V(V)═O)(O(2))(2)] units interacting through long V-O bonds. The two V(V) ions are bridged through the oxygen terminal of one of the peroxide groups bound to the vanadium centers. The betaine ligand binds only one of the two V(V) ions. In the case of the third complex 3, the two vanadium centers are not immediate neighbors, with Na(+) ions (a) acting as efficient oxygen anchors and through Na-O bonds holding the two vanadium ions in place and (b) providing for oxygen-containing ligand binding leading to a polymeric lattice. In 1 and 3, interesting 2D (honeycomb) and 1D (zigzag chains) topologies of potassium nine-coordinate polyhedra (1) and sodium octahedra (3), respectively, form. The collective physicochemical properties of the three ternary species 1-3 project the chemical role of the low molecular mass biosubstrate betaine in binding V

  19. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene

    Science.gov (United States)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-04-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. [Figure not available: see fulltext.

  20. Chemical Mass Shifts in a Digital Linear Ion Trap as Analytical Identity of o-, m-, and p-Xylene.

    Science.gov (United States)

    Sun, Lulu; Xue, Bing; Huang, Zhengxu; Cheng, Ping; Ma, Li; Ding, Li; Zhou, Zhen

    2018-07-01

    Chemical mass shifts between isomeric ions of o-, m-, and p-xylene were measured using a digital linear ion trap, and the directions and values of the shifts were found to be correlated to the collision cross sections of the isomers. Both forward and reverse scans were used and the chemical shifts for each pair of isomers in scans of opposite directions were in opposite signs. Using different voltage settings (namely the voltage dividing ratio-VDR) of the ion trap allows adding high order field components in the quadrupole field and results in larger chemical mass shifts. The differential chemical mass shift which combined the shifts from forward and reverse scans doubled the amount of chemical shift, e.g., 0.077 Th between o- and p-xylene, enough for identification of the type of isomer without using an additional ion mobility spectrometer. The feature of equal and opposite chemical mass shifts also allowed to null out the chemical mass shift by calculating the mean m/z value between the two opposite scans and remove or reduce the mass error caused by chemical mass shift. Graphical Abstract ᅟ.

  1. A Reactive-Ion Etch for Patterning Piezoelectric Thin Film

    Science.gov (United States)

    Yang, Eui-Hyeok; Wild, Larry

    2003-01-01

    Reactive-ion etching (RIE) under conditions described below has been found to be a suitable means for patterning piezoelectric thin films made from such materials as PbZr(1-x)Ti(x)O3 or Ba(x)Sr(1.x)TiO3. In the original application for which this particular RIE process was developed, PbZr(1-x)Ti(x)O3 films 0.5 microns thick are to be sandwiched between Pt electrode layers 0.1 microns thick and Ir electrode layers 0.1 microns thick to form piezoelectric capacitor structures. Such structures are typical of piezoelectric actuators in advanced microelectromechanical systems now under development or planned to be developed in the near future. RIE of PbZr(1-x)Ti(x)O3 is usually considered to involve two major subprocesses: an ion-assisted- etching reaction, and a sputtering subprocess that removes reactive byproducts. RIE is favored over other etching techniques because it offers a potential for a high degree of anisotropy, high-resolution pattern definition, and good process control. However, conventional RIE is not ideal for patterning PbZr(1-x)Ti(x)O3 films at a thickness as great as that in the original intended application. In order to realize the potential benefits mentioned above, it is necessary to optimize process conditions . in particular, the composition of the etching gas and the values of such other process parameters as radio-frequency power, gas pressure, gas-flow rate, and duration of the process. Guidelines for determining optimum conditions can be obtained from experimental determination of etch rates as functions of these parameters. Etch-gas mixtures of BCl3 and Cl2, some also including Ar, have been found to offer a high degree of selectivity as needed for patterning of PbZr(1-x)Ti(x)O3 films on top of Ir electrode layers in thin-film capacitor structures. The selectivity is characterized by a ratio of approx.10:1 (rate of etching PbZr(1-x)Ti(x)O3 divided by rate of etching Ir and IrO(x)). At the time of reporting the information for this article

  2. Photoluminescence of nc-Si:Er thin films obtained by physical and chemical vapour deposition techniques: The effects of microstructure and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, M.F., E-mail: fcerqueira@fisica.uminho.p [Departamento de Fisica, Universidade do Minho, Campus de Gualtar 4710-057 Braga (Portugal); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, Via Orabona n.4-70126 Bari (Italy); Stepikhova, M. [Institute for Physics of Microstructures RAS, 603600 Nizhnij Novgorod GSP-105 (Russian Federation); Alpuim, P.; Andres, G. [Departamento de Fisica, Universidade do Minho, Campus de Gualtar 4710-057 Braga (Portugal); Kozanecki, A. [Polish Academy of Sciences, Institute of Physics, PL-02668, Warsaw (Poland); Soares, M.J.; Peres, M. [Departamento de Fisica, Universidade de Aveiro, Campus de Santiago, 3700 Aveiro (Portugal)

    2009-08-31

    Erbium doped nanocrystalline silicon (nc-Si:Er) thin films were produced by reactive magnetron rf sputtering and by Er ion implantation into chemical vapor deposited Si films. The structure and chemical composition of films obtained by the two approaches were studied by micro-Raman scattering, spectroscopic ellipsometry and Rutherford backscattering techniques. Variation of deposition parameters was used to deposit films with different crystalline fraction and crystallite size. Photoluminescence measurements revealed a correlation between film microstructure and the Er{sup 3+} photoluminescence efficiency.

  3. Theoretical study of some aspects of the nucleo-bases reactivity: definition of new theoretical tools for the study of chemical reactivity

    International Nuclear Information System (INIS)

    Labet, V.

    2009-09-01

    In this work, three kinds of nucleo-base damages were studied from a theoretical point of view with quantum chemistry methods based on the density-functional theory: the spontaneous deamination of cytosine and its derivatives, the formation of tandem lesion induced by hydroxyl radicals in anaerobic medium and the formation of pyrimidic dimers under exposition to an UV radiation. The complementary use of quantitative static methods allowing the exploration of the potential energy surface of a chemical reaction, and of 'conceptual DFT' principles, leads to information concerning the mechanisms involved and to the rationalization of the differences in the nucleo-bases reactivity towards the formation of a same kind of damage. At the same time, a reflexion was undertaken on the asynchronous concerted mechanism concept, in terms of physical meaning of the transition state, respect of the Maximum Hardness Principle, and determination of the number of primitive processes involved. Finally, a new local reactivity index was developed, relevant to understand the reactivity of a molecular system in an excited state. (author)

  4. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    Science.gov (United States)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  5. A proposal for study of ion-beam induced chemical reactions using JAERI tandem accelerator

    International Nuclear Information System (INIS)

    1985-11-01

    Problems in ion-beam induced chemical reactions using JAERI Tandem Accelerator were discussed. Research philosophy, some proposed experiments which are based on measurements during ion-beam bombardment, and main features of the experimental apparatus are briefly described in this report. (author)

  6. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.

    2013-02-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.

  7. Formation of metal nanoparticles by short-distance sputter deposition in a reactive ion etching chamber

    International Nuclear Information System (INIS)

    Nie Min; Meng, Dennis Desheng; Sun Kai

    2009-01-01

    A new method is reported to form metal nanoparticles by sputter deposition inside a reactive ion etching chamber with a very short target-substrate distance. The distribution and morphology of nanoparticles are found to be affected by the distance, the ion concentration, and the sputtering time. Densely distributed nanoparticles of various compositions were fabricated on the substrates that were kept at a distance of 130 μm or smaller from the target. When the distance was increased to 510 μm, island structures were formed, indicating the tendency to form continuous thin film with longer distance. The observed trend for nanoparticle formation is opposite to the previously reported mechanism for the formation of nanoparticles by sputtering. A new mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results.

  8. Model of wet chemical etching of swift heavy ions tracks

    Science.gov (United States)

    Gorbunov, S. A.; Malakhov, A. I.; Rymzhanov, R. A.; Volkov, A. E.

    2017-10-01

    A model of wet chemical etching of tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime is presented. This model takes into account both possible etching modes: etching controlled by diffusion of etchant molecules to the etching front, and etching controlled by the rate of a reaction of an etchant with a material. Olivine ((Mg0.88Fe0.12)2SiO4) crystals were chosen as a system for modeling. Two mechanisms of chemical activation of olivine around the SHI trajectory are considered. The first mechanism is activation stimulated by structural transformations in a nanometric track core, while the second one results from neutralization of metallic atoms by generated electrons spreading over micrometric distances. Monte-Carlo simulations (TREKIS code) form the basis for the description of excitations of the electronic subsystem and the lattice of olivine in an SHI track at times up to 100 fs after the projectile passage. Molecular dynamics supplies the initial conditions for modeling of lattice relaxation for longer times. These simulations enable us to estimate the effects of the chemical activation of olivine governed by both mechanisms. The developed model was applied to describe chemical activation and the etching kinetics of tracks of Au 2.1 GeV ions in olivine. The estimated lengthwise etching rate (38 µm · h-1) is in reasonable agreement with that detected in the experiments (24 µm · h-1).

  9. Biosensor and chemical sensor probes for calcium and other metal ions

    Science.gov (United States)

    Vo-Dinh, Tuan; Viallet, Pierre

    1996-01-01

    The present invention relates to chemical sensor and biosensor probes for measuring low concentration of metals and metal ions in complex samples such as biological fluids, living cells, and environmental samples. More particularly the present invention relates to a gel-based Indo-1 and Fura-2 chemical sensor probes for the measurement of low concentrations of calcium, cadmium, magnesium and the like. Also disclosed is a detector device using the sensors of the present invention.

  10. Chemical potentials of π- and π+ in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gorenstejn, M.I.; Shin Nan Yang.

    1991-01-01

    We consider a chemical nonequilibrium model to describe the pion production in Ar+KCl and La+La collisions at initial energies E lab /A=(0.5-1.8) GeV/nucl. The excess of low energy π - is interpreted as the manifestation of positive chemical potential of π - at the thermal freeze out. We find that in collisions between nuclei with large atomic numbers the chemical potential of π + is smaller than that of π - . This leads to the prediction of a much less excess of low-energy π + , than as measured in the π - case, in heavy-ion collisions at bombarding energies in the region of 1 GeV/nucl. 17 refs.; 2 figs. (author)

  11. Use of a multi-species reactive transport model to simulate chloride ingress in mortar exposed to NaCl solution or sea-water

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; De Weerdt, K.; Johannesson, Björn

    2015-01-01

    Simulations of ion ingress in Portland cement mortar using a multi-species reactive mass transport model are compared with experimental test results. The model is an extended version of the Poisson–Nernst–Planck equations, accounting for chemical equilibrium. Saturated mortar samples were exposed...

  12. Analysis of abused drugs by selected ion monitoring: quantitative comparison of electron impact and chemical ionization

    International Nuclear Information System (INIS)

    Foltz, R.L.; Knowlton, D.A.; Lin, D.C.K.; Fentiman, A.F. Jr.

    1975-01-01

    A comparison was made of the relative sensitivities of electron impact and chemical ionization when used for selected ion monitoring analysis of commonly abused drugs. For most of the drugs examined chemical ionization using ammonia as the reactant gas gave the largest single m/e ion current response per unit weight of sample. However, if maximum sensitivity is desired it is important to evaluate electron impact and chemical ionization with respect to both maximum response and degree of interference from background and endogenous materials

  13. Etching radical controlled gas chopped deep reactive ion etching

    Science.gov (United States)

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  14. Investigation of reactive-ion-etch-induced damage of InP/InGaAs multiple quantum wells by photoluminescence

    DEFF Research Database (Denmark)

    Steffensen, O. M.; Birkedal, Dan; Hanberg, J.

    1995-01-01

    The effects of CH4/H2 reactive ion etching (RIE) on the optical properties of an InP/InGaAs multiple-quantum-well structure have been investigated by low-temperature photoluminescence (PL). The structure consisted of eight InGaAs quantum wells, lattice matched to InP, with nominal thicknesses of 0...

  15. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.

    Science.gov (United States)

    Li, Qiang-Gen; Xu, Ke; Ren, Yi

    2015-04-30

    In a kinetic experiment on the SN2 reaction of sodium p-nitrophenoxide with iodomethane in acetone-water mixed solvent, Humeres et al. (J. Org. Chem. 2001, 66, 1163) found that the reaction depends strongly on the medium, and the fastest rate constant was observed in pure acetone. The present work tries to explore why acetone can enhance the reactivity of the title reactions. Accordingly, we make a mechanistic study on the reactions of sodium p-nitrophenoxide with halomethanes (CH3X, X = Cl, Br, I) in acetone by using a supramolecular/continuum model at the PCM-MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level, in which the ion pair nucleophile is microsolvated by one to three acetone molecules. We compared the reactivity of the microsolvated ion pair nucleophiles with solvent-free ion pair and anionic ones. Our results clearly reveal that the microsolvated ion pair nucleophile is favorable for the SN2 reactions; meanwhile, the origin of the enhanced reactivity induced by microsolvation of the nucleophile is discussed in terms of the geometries of transition state (TS) structures and activation strain model, suggesting that lower deformation energies and stronger interaction energies between the deformed reactants in the TS lead to the lower overall reaction barriers for the SN2 reaction of microsolvated sodium p-nitrophenoxide toward halomethanes in acetone.

  16. Chemical consequences of nuclear transformations

    International Nuclear Information System (INIS)

    Collins, C.H.; Lancas, F.M.; Andrade, J.C. de; Collins, K.E.

    1979-01-01

    The recombination processes of chemical bonds in liquid phase, after being split by nuclear transformations, include hot and diffuse reactions. Both processes probably occur by different mechanisms. The direct substitution process as well as processes which involve atoms, ions or other fragments retained in 'cages' formed by surrounding molecules, are processes not sensitive to the presence of a sequestering agent. The diffuse reactions whose fragments escaped from the 'cage' involve reactions with any reactive species found in the medium. (Author) [pt

  17. Defect-engineered graphene chemical sensors with ultrahigh sensitivity.

    Science.gov (United States)

    Lee, Geonyeop; Yang, Gwangseok; Cho, Ara; Han, Jeong Woo; Kim, Jihyun

    2016-05-25

    We report defect-engineered graphene chemical sensors with ultrahigh sensitivity (e.g., 33% improvement in NO2 sensing and 614% improvement in NH3 sensing). A conventional reactive ion etching system was used to introduce the defects in a controlled manner. The sensitivity of graphene-based chemical sensors increased with increasing defect density until the vacancy-dominant region was reached. In addition, the mechanism of gas sensing was systematically investigated via experiments and density functional theory calculations, which indicated that the vacancy defect is a major contributing factor to the enhanced sensitivity. This study revealed that defect engineering in graphene has significant potential for fabricating ultra-sensitive graphene chemical sensors.

  18. CHMTRNS, Non-Equilibrium Chemical Transport Code

    International Nuclear Information System (INIS)

    Noorishad, J.; Carnahan, C.L.; Benson, L.V.

    1998-01-01

    1 - Description of program or function: CHMTRNS simulates solute transport for steady one-dimensional fluid flow by convection and diffusion or dispersion in a saturated porous medium based on the assumption of local chemical equilibrium. The chemical interactions included in the model are aqueous-phase complexation, solid-phase ion exchange of bare ions and complexes using the surface complexation model, and precipitation or dissolution of solids. The program can simulate the kinetic dissolution or precipitation for calcite and silica as well as irreversible dissolution of glass. Thermodynamic parameters are temperature dependent and are coupled to a companion heat transport simulator; thus, the effects of transient temperature conditions can be considered. Options for oxidation-reduction (redox) and C-13 fractionation as well as non-isothermal conditions are included. 2 - Method of solution: The governing equations for both reactive chemical and heat transport are discretized in time and space. For heat transport, the Crank-Nicolson approximation is used in conjunction with a LU decomposition and backward substitution solution procedure. To deal with the strong nonlinearity of the chemical transport equations, a generalized Newton-Raphson method is used

  19. Evaluation of a high-throughput peptide reactivity format assay for assessment of the skin sensitization potential of chemicals

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2016-03-01

    Full Text Available The direct peptide reactivity assay (DPRA is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium and high concentrations and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme and non-sensitizers with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF, cysteine- (Ac-RFAACAA and lysine- (Ac-RFAAKAA containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7% and glass (47.3% vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2,4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further

  20. Simultaneous measurements of reactive scalar and velocity in a planar liquid jet with a second-order chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoaki; Sakai, Yasuhiko; Nagata, Kouji; Terashima, Osamu [Nagoya University, Department of Mechanical Science and Engineering, Nagoya (Japan); Kubo, Takashi [Meijo University, Faculty of Science and Technology, Nagoya (Japan)

    2012-11-15

    This paper presents a new experimental approach for simultaneous measurements of velocity and concentration in a turbulent liquid flow with a chemical reaction. For the simultaneous measurements, we developed a combined probe consisting of an I-type hot-film probe and an optical fiber probe based on the light absorption spectrometric method. In a turbulent planar liquid jet with a second-order chemical reaction (A+B{yields}R), streamwise velocity and concentrations of all reactive species are measured by the combined probe. The turbulent mass fluxes of the reactive species are estimated from the simultaneous measurements. The results show that the influence of the chemical reaction on the turbulent mass flux of the reactant species near the jet exit is different from its influence in other regions, and the turbulent mass flux of the product species has a negative value near the jet exit and a positive value in other regions. (orig.)

  1. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    International Nuclear Information System (INIS)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  2. Analytic description of the chemical erosion of graphite by hydrogen ions

    International Nuclear Information System (INIS)

    Roth, J.; Garcia-Rosales, C.

    1996-01-01

    One main concern about the use of graphite as a plasma facing material is the enhanced erosion, under hydrogen bombardment due to hydrocarbon formation. In view of the lifetime evaluation of plasma exposed carbon components and of impurity production in present and future machines such as ITER, an analytical expression for the erosion yield by chemical sputtering for the relevant energies, temperatures and incident fluxes is of special importance. An extrapolation to fluxes and energies relevant for high density divertor plasmas has not been possible up to now on the basis of semiempirical fits to laboratory data. Starting from a short review of the existing empirical formulas, recent detailed investigations of the atomistic processes for the thermally activated hydrocarbon emission are described, which enable the formulation of an improved analytical description including the ion flux as a parameter. The chemical erosion of graphite by hydrogen bombardment results from two processes: the thermally activated hydrocarbon emission, Y therm , and a surface process at low energies and low temperatures resulting from the kinetic ejection of surface hydrocarbon complexes from collisional energy transfer, Y surf . The new analytic description can be fitted well to the existing data for ion beam erosion, and extrapolation to divertor relevant fluxes is possible. At high ion fluxes the maximum of chemical erosion is shifted to higher temperatures, where annealing of damaged structures leads to a stronger reduction of Y therm than previously estimated. There are no data on a possible flux dependence of Y surf , leaving still some uncertainty in extrapolation. (author). 46 refs, 10 figs, 1 tab

  3. Chemical reactivity of alkali lignin modified with laccase

    International Nuclear Information System (INIS)

    Sun, Yong; Qiu, Xueqing; Liu, Yunquan

    2013-01-01

    The modification of alkali lignin with laccase was investigated. The structural change of lignin was analyzed. The sulfonation reactivity was measured by the content of sulfonic group. The results showed the sulfonation reactivity increased to some extent under the condition of atmosphere pressure, but decreased under the condition of 0.3 MPa oxygen pressure. The analysis of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) showed the cleavage of various ether linkages and demethylation took place in the structure of lignin to certain extent during modification with laccase, which contributed to the improvement of sulfonation reactivity. Under the condition of 0.3 MPa oxygen pressure, the ratio of s/g (guaiacyl/syringyl) increased after modification, which reduced the sulfonation reactivity of lignin. Simultaneously partial polymerization reaction, such as 4-O-5′, β-5, 5-5 and other reaction in the aromatic ring decreased the activity sites of C 2 , C 5 and C 6 . Abundant polymerization reaction of α-O increased steric hindrance of C 2 and C 6 in aromatic ring, resulting in low sulfonation reactivity of lignin. -- Highlights: ► The modification of alkali lignin with laccase was investigated. ► The sulfonation reactivity increased under the condition of atmosphere pressure. ► More content of guaiacyl and hydroxy, the less content of methoxyl, syringyl can enhance the sulfonation reactivity of lignin. ► Partial moieties polymerized each other with α-O linkgages during treatment with laccase under oxygen pressure. ► The steric hindrance on C 2 and C 6 in aromatic ring resulted in low sulfonation reaction reactivity of lignin

  4. Influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with carcinogenic and anticoagulant effect of 17β-aminoestrogens

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: socc@puma2.zaragoza.unam.mx [Química Computacional, FES-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, Mexico City (Mexico); Raya, Angélica [Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional (IPN), Silao de la Victoria, Guanajuato (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz - Boca del Río, Universidad Veracruzana, Veracruz (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), Mexico City (Mexico)

    2014-06-25

    Highlights: • The aromatic A-ring of 17β-aminoestrogens contribute to its anticoagulant effect. • The electron-donor substituent groups favored the basicity of 17β-aminoestrogens. • The physicochemical properties are important in the carcinogenic effect of anticoagulant molecules. - Abstract: Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH and HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.

  5. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-01-01

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles

  6. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin, E-mail: mohajer@ut.ac.ir [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of)

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  7. A comparative study of changes in immunological reactivity during prolonged introduction of radioactive and chemical substances into the organism with drinking water

    International Nuclear Information System (INIS)

    Shubik, V.M.; Nevstrueva, M.A.; Kalnitskij, S.A.; Livshits, R.E.; Merkushev, G.N.; Pilshchik, E.M.; Ponomareva, T.V.

    1978-01-01

    A comparative study was conducted into the factors of non-specific protection and specific immunity, allergic and autoallergic reactivities during prolonged exposure of experimental animals to 6 different radioactive and 7 harmful chemical substances. Qualitative and quantitative peculiarities were found in the changes in immunological reactivity during the exposure of the organism to radionuclides and stable chemical compounds. Impairment of immunity plays an essential role in the course and the outcome of effects induced by chronic action of the substances examined. (author)

  8. Activating molecules, ions, and solid particles with acoustic cavitation

    International Nuclear Information System (INIS)

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.

    2014-01-01

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of micro-bubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sono-luminescence. In this manuscript, we describe the techniques allowing study of extreme intra-bubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sono-luminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the 'hot' particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultra-bright sono-luminescence of uranyl ions in acidic solutions varies with uranium concentration: sono-photoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sono-chemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sono-chemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sono-lysis of PuO 2 powder in pure water yields stable colloids of plutonium due to both effects. (authors)

  9. Silicon surface damage caused by reactive ion etching in fluorocarbon gas mixtures containing hydrogen

    International Nuclear Information System (INIS)

    Norstroem, H.; Blom, H.; Ostling, M.; Nylandsted Larsen, A.; Keinonen, J.; Berg, S.

    1991-01-01

    For selective etching of SiO 2 on silicon, gases or gas mixtures containing hydrogen are often used. Hydrogen from the glow discharge promotes the formation of a thin film polymer layer responsible for the selectivity of the etching process. The reactive ion etch (RIE) process is known to create damage in the silicon substrate. The influence of hydrogen on the damage and deactivation of dopants is investigated in the present work. The distribution of hydrogen in silicon, after different etching and annealing conditions have been studied. The influence of the RIE process on the charge carrier concentration in silicon has been investigated. Various analytical techniques like contact resistivity measurements, four point probe measurements, and Hall measurements have been used to determine the influence of the RIE process on the electrical properties of processed silicon wafers. The hydrogen profile in as-etched and post annealed wafers was determined by the 1 H( 15 N,αγ) 12 C nuclear reaction. The depth of the deactivated surface layer is discussed in terms of the impinging hydrogen ion energy, i.e., the possibility of H + ions to pick up an energy equal to the peak-to-peak voltage of the rf signal

  10. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  11. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2013-01-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed

  12. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  13. Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition

    Science.gov (United States)

    2017-09-30

    Report: Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer ...Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition Report Term: 0-Other Email: pcappillino... Layer Electroless Deposition (ALED, Figure 1) is the ability to tune growth mechanism, hence growth morphology, by altering conditions. In this

  14. Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater.

    Science.gov (United States)

    Raghu, S; Ahmed Basha, C

    2007-10-22

    This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.

  15. The Importance of Protons in Reactive Transport Modeling

    Science.gov (United States)

    McNeece, C. J.; Hesse, M. A.

    2014-12-01

    The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of

  16. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies

    International Nuclear Information System (INIS)

    Schowalter, Steven J.; Chen Kuang; Rellergert, Wade G.; Sullivan, Scott T.; Hudson, Eric R.

    2012-01-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  17. Controlling line-edge roughness and reactive ion etch lag in sub-150 nm features in borophosphosilicate glass

    International Nuclear Information System (INIS)

    Bhatnagar, Parijat; Panda, Siddhartha; Edleman, Nikki L.; Allen, Scott D.; Wise, Richard; Mahorowala, Arpan

    2007-01-01

    We have developed a reactive ion etch (RIE) process in borophosphosilicate glass (BPSG) for 150 nm line-and-space features, where line-edge roughness (LER) complemented with RIE lag becomes a major issue. Effect of flow rates and carbon-to-fluorine atomic ratio of fluorohydrocarbon gases was utilized to achieve acceptable process window allowing lower radio frequency powers therefore obtaining acceptable LER and RIE lag in the high-resolution features etched into BPSG

  18. Dielectric functions, chemical and atomic compositions of the near surface layers of implanted GaAs by In+ ions

    Science.gov (United States)

    Kulik, M.; Kołodyńska, D.; Bayramov, A.; Drozdziel, A.; Olejniczak, A.; Żuk, J.

    2018-06-01

    The surfaces of (100) GaAs were irradiated with In+ ions. The implanted samples were isobaric annealed at 800 °C and then of dielectric function, the surface atomic concentrations of atoms and also the chemical composition of the near surface layers in these implanted semiconductor samples were obtained. The following investigation methods were used: spectroscopic ellipsometry (SE), Rutherford backscattering spectrometry analyses (RBSA) and X-ray photoelectron spectroscopy (XPS) in the study of the above mentioned quantities, respectively. The change of the shape spectra of the dielectric functions at about 3.0 eV phonon energy, diffusion of In+ ions as well as chemical composition changes were observed after ion implantation and the thermal treatment. Due to displacement of Ga ions from GaAs by the In+ ions the new chemical compound InAs was formed. The relative amounts Ga2O3 and As2O3 ratio increase in the native oxide layers with the fluences increase after the thermal treatment of the samples. Additionally, it was noticed that the quantities of InO2 increase with the increasing values of the irradiated ions before thermal treatment.

  19. Chemical Bonding States of TiC Films before and after Hydrogen Ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiC films deposited by rf magnetron sputtering followed by Ar+ ion bombardment were irradiated with a hydrogen ion beam. X-ray photoelectron spectroscopy (XPS) was used for characterization of the chemical bonding states of C and Ti elements of the TiC films before and after hydrogen ion irradiation, in order to understand the effect of hydrogen ion irradiation on the films and to study the mechanism of hydrogen resistance of TiC films. Conclusions can be drawn that ion bombardment at moderate energy can cause preferential physical sputtering of carbon atoms from the surface of low atomic number (Z) material. This means that ion beam bombardment leads to the formation of a non-stoichiometric composition of TiC on the surface.TiC films prepared by ion beam mixing have the more excellent characteristic of hydrogen resistance. One important cause, in addition to TiC itself, is that there are many vacant sites in TiC created by ion beam mixing.These defects can easily trap hydrogen and effectively enhance the effect of hydrogen resistance.

  20. Obtaining of uranium tetrafluoride UF4 by electrodialysis reactive from uranium concentrates

    International Nuclear Information System (INIS)

    Munoz Lay, Danny Mauricio

    2014-01-01

    The generation of uranium fuels has always been a topic worldwide. The uranium fuel manufacturing base is made under very strict parameters of radiological and industrial safety, being a stage called 'nuclear fuel cycle'. In Chile, it is done constant research for fuels. This report focuses primarily on participating in such research; mainly in the production of uranium tetrafluoride (UF 4 ) .The tetrafluoride production is very crucial for the nuclear fuel industry. Its production varies from precipitation in stirred conditions to electrolysis in mercury. However, both processes has shortcomings either in performance and environmental pollution, which is why it is proposed a new method of production based on a friendly process to the environment and easier to operate, the reactive electrodialysis (RED). Electrodialysis is a hybrid reactive process of separation by membranes, cationic and / or anionic, namely, ionic species. In the process, ions are induced to move by an electric potential applied and separated by these membranes, a highly selective physical barrier which allows passage of ions with certain charge, and prevents the passage of oppositely charged ions. And in turn, it is reactive because it forces a chemical reaction, redox, to obtain uranium tetrafluoride (UF 4 ). The results of these experiments show that by reactive electrodialysis, NH 4 UF 5 deposits were obtained. However, calcinating the NH 4 UF 5 to 450 o C, it decomposes to obtain uranium tetrafluoride, UF 4 . The best working conditions were obtained with an electric current of 0.5 (A), 41 o C and a flow of 16 (ml / s) of the electrolyte. It was possible to obtain 5,995 (g) to 3 (h), giving a current efficiency of 71.42%. In turn, working at high temperatures and flow recirculation is possible to operate with a potential difference of 1.7 (V)

  1. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    CERN Multimedia

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  2. Computer tool to evaluate the cue reactivity of chemically dependent individuals.

    Science.gov (United States)

    Silva, Meire Luci da; Frère, Annie France; Oliveira, Henrique Jesus Quintino de; Martucci Neto, Helio; Scardovelli, Terigi Augusto

    2017-03-01

    Anxiety is one of the major influences on the dropout of relapse and treatment of substance abuse treatment. Chemically dependent individuals need (CDI) to be aware of their emotional state in situations of risk during their treatment. Many patients do not agree with the diagnosis of the therapist when considering them vulnerable to environmental stimuli related to drugs. This research presents a cue reactivity detection tool based on a device acquiring physiological signals connected to personal computer. Depending on the variations of the emotional state of the drug addict, alteration of the physiological signals will be detected by the computer tool (CT) which will modify the displayed virtual sets without intervention of the therapist. Developed in 3ds Max® software, the CT is composed of scenarios and objects that are in the habit of marijuana and cocaine dependent individual's daily life. The interaction with the environment is accomplished using a Human-Computer Interface (HCI) that converts incoming physiological signals indicating anxiety state into commands that change the scenes. Anxiety was characterized by the average variability from cardiac and respiratory rate of 30 volunteers submitted stress environment situations. To evaluate the effectiveness of cue reactivity a total of 50 volunteers who were marijuana, cocaine or both dependent were accompanied. Prior to CT, the results demonstrated a poor correlation between the therapists' predictions and those of the chemically dependent individuals. After exposure to the CT, there was a significant increase of 73% in awareness of the risks of relapse. We confirmed the hypothesis that the CT, controlled only by physiological signals, increases the perception of vulnerability to risk situations of individuals with dependence on marijuana, cocaine or both. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems

    Directory of Open Access Journals (Sweden)

    M. De Lucia

    2015-02-01

    Full Text Available Fully coupled, multi-phase reactive transport simulations of CO2 storage systems can be approximated by a simplified one-way coupling of hydrodynamics and reactive chemistry. The main characteristics of such systems, and hypotheses underlying the proposed alternative coupling, are (i that the presence of CO2 is the only driving force for chemical reactions and (ii that its migration in the reservoir is only marginally affected by immobilisation due to chemical reactions. In the simplified coupling, the exposure time to CO2 of each element of the hydrodynamic grid is estimated by non-reactive simulations and the reaction path of one single batch geochemical model is applied to each grid element during its exposure time. In heterogeneous settings, analytical scaling relationships provide the dependency of velocity and amount of reactions to porosity and gas saturation. The analysis of TOUGHREACT fully coupled reactive transport simulations of CO2 injection in saline aquifer, inspired to the Ketzin pilot site (Germany, both in homogeneous and heterogeneous settings, confirms that the reaction paths predicted by fully coupled simulations in every element of the grid show a high degree of self-similarity. A threshold value for the minimum concentration of dissolved CO2 considered chemically active is shown to mitigate the effects of the discrepancy between dissolved CO2 migration in non-reactive and fully coupled simulations. In real life, the optimal threshold value is unknown and has to be estimated, e.g. by means of 1-D or 2-D simulations, resulting in an uncertainty ultimately due to the process de-coupling. However, such uncertainty is more than acceptable given that the alternative coupling enables using grids of the order of millions of elements, profiting from much better description of heterogeneous reservoirs at a fraction of the calculation time of fully coupled models.

  4. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  5. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  6. Nondestructive Reactivation of Chemical Protective Garments

    National Research Council Canada - National Science Library

    Chang, Kuo

    1995-01-01

    .... Complete reactivation was achieved when the aqueous/ i-propanol/ iodine displacement method of Manes, which removed all but pure hydrocarbon oil soils from the current overgarment Type III foam...

  7. The properties of gas-phase multiply charged ions

    International Nuclear Information System (INIS)

    Newson, K.A.

    1999-01-01

    This thesis presents the results of a series of experiments investigating the reactivity of gas-phase molecular dications with various neutral collision partners, at collision energies between 3 and 13 eV in the laboratory frame, using a crossed-beam apparatus. The experiment involves the measurement of product ion intensities, which are determined by means of time-of-flight mass spectrometry. The experimental apparatus and methodology, together with the areas of theory important to ion chemistry, are described in the thesis. The product ions of greatest interest are those ions formed by bond-forming (chemical) reactivity. The relative intensities of such product ions, and those ions formed as a result of electron-transfer reactions, are, when recorded as a function of the collision energy, a powerful probe of the reaction mechanism. Additionally, where appropriate, the reactions are examined for isotope effects by using the isotopic analogue of the neutral collision partner. The results of the experiments indicate that no intermolecular isotope effects are present in the reactions of CF 2 2+ and CF 3 2+ with H 2 and D 2 neutral targets. In addition, the observed collision energy dependence is symptomatic of the absence of a barrier to reaction. These observations suggest that the reactions proceed via an impulsive direct reaction mechanism. Such a conclusion casts doubt on the applicability of the Landau-Zener model of H - /D - transfer reactivity. Other results presented in this thesis include the first reported observation of a bond-forming reaction between a molecular dication (CF2 2+ ) and a polyatomic neutral species (NH 3 ). Finally, the branching ratio of the products of bond-forming reactions between CF 2 2+ with HD indicates the operation of a strong intramolecular isotope effect, favouring the formation of the deuterated product. This observation points to a reaction mechanism in which the bond-formation is preceded by electron-transfer. (author)

  8. Parameters estimation for reactive transport: A way to test the validity of a reactive model

    Science.gov (United States)

    Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme

    The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.

  9. Chemical stability of reactive skin decontamination lotion (RSDL®).

    Science.gov (United States)

    Bogan, R; Maas, H J; Zimmermann, T

    2018-09-01

    Reactive Skin Decontamination Lotion (RSDL ® ) is used for the decontamination of Chemical Warfare Agents and Toxic Industrial Compounds after dermal exposure. It has to be stockpiled over a long period and is handled in all climatic zones. Therefore stability is an essential matter of concern. In this work we describe a study to the chemical stability of RSDL ® as basis for an estimation of shelf life. We analysed RSDL ® for the active ingredient 2,3-butandione monoxime (diacetylmonooxime, DAM), the putative degradation product dimethylglyoxime (DMG) and unknown degradation products by means of a reversed phase high pressure liquid chromatography (HPLC). Calculations were done according to the Arrhenius equation. Based on the temperature dependent rate constants, the time span was calculated, until defined threshold values for DAM and DMG subject to specification and valid regulations were exceeded. The calculated data were compared to the ones gathered from stockpiled samples and samples exposed during foreign mission. The decline of DAM followed first order kinetics, while formation of DMG could be described by zero order kinetics. The rate constants were distinctively temperature dependent. Calculated data were in good accordance to the measured ones from stockpile and mission. Based on a specified acceptable DAM-content of 90% and a valid threshold value of 0.1% (w/w) for the degradation product DMG, RSDL ® proved to be stable for at least four years if stored at the recommended conditions of 15°C-30°C. If continuously stored at higher temperatures shelf life will decrease markedly. Therefore RSDL ® is an object for risk orientated quality monitoring during storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chemical characterization of microparticles by laser ablation in an ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Dale, J.M.; Whitten, W.B.; Ramsey, J.M.

    1991-01-01

    We are developing a new technique for the chemical characterization of microparticles based upon the use of electrodynamic traps. The electrodynamic trap has achieved widespread use in the mass spectrometry community in the form of the ion trap mass spectrometer or quadrupole ion trap. Small macroscopic particles can be confined or levitated within the electrode structure of a three-dimensional quadrupole electrodynamic trap in the same way as fundamental charges or molecular ions by using a combination of ac and dc potentials. Our concept is to use the same electrode structure to perform both microparticle levitation and ion trapping/mass analysis. The microparticle will first be trapped and spatially stabilized within the trap for characterization by optical probes, i.e., absorption, fluorescence, or Raman spectroscopy. After the particle has been optically characterized, it is further characterized using mass spectrometry. Ions are generated from the particle surface using laser ablation or desorption. The characteristics of the applied voltages are changed to trap the ions formed by the laser with the ions subsequently mass analyzed. The work described in this paper focuses on the ability to perform laser desorption experiments on microparticles contained within the ion trap

  11. Dissociation mechanism of HNIW ions investigated by chemical ionization and electron impact mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rongjie; Xiao, Hemiao [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2006-04-15

    Chemical Ionization (CI) with Collision-Induced Dissociation (CID) spectroscopy and Electron Impacting (EI) with metastable Mass analyzed Ion Kinetic Energy (MIKE) spectroscopy have been applied to study ionic dissociations of Hexanitrohexaazaisowurtzitane (HNIW). Similarities and differences between EI/MIKE and CI/CID mass spectra of HNIW were analyzed. In EI mass spectra, the ions [HNIW-n NO{sub 2}]{sup +} (n=2-5), such as the ion at m/z 347, were less frequent (1-2% relative abundance), but in CI mass spectra, these ions were very abundant. For some ions of large molar mass from HNIW, their dissociations pathways from parent ions to daughter ions were built according to CID and MIKE spectra. Molecular ions of HNIW with a protonated nitro group at five-member ring seem more stable than at six-member ring. The HNIW ions losing five of six nitro groups are very stable based on CID spectra, which agrees with some research results for thermal decomposition of HNIW in literature. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. Sacrificial structures for deep reactive ion etching of high-aspect ratio kinoform silicon x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Michael-Lindhard, Jonas; Hübner, Jörg

    2015-01-01

    This article describes the realization of complex high-aspect ratio silicon structures with feature dimensions from 100 lm to 100nm by deep reactive ion etching using the Bosch process. As the exact shape of the sidewall profiles can be crucial for the proper functioning of a device, the authors...... of the sacrificial structures was accomplished by thermal oxidation and subsequent selective wet etching. The effects of the dimensions and relative placement of sacrificial walls and pillars on the etching result were determined through systematic experiments. The authors applied this process for exact sidewall...

  13. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    Science.gov (United States)

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  14. Reactive-ion etching of nylon fabric meshes using oxygen plasma for creating surface nanostructures

    International Nuclear Information System (INIS)

    Salapare, Hernando S.; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Graphical abstract: - Highlights: • Reactive-ion etching (RIE) is employed to nylon 6,6 fabrics to achieve surface texturing and improved wettability. • FTIR spectra of the treated samples exhibited decreased transmittance of amide and carboxylic acid groups due to etching. • Etching is enhanced for higher power plasma treatments and for samples with larger mesh sizes. • Decreased crystallinity was achieved after plasma treatment. • Higher power induced higher negative DC self-bias voltage on the samples that favored anisotropic and aggressive etching. - Abstract: A facile one-step oxygen plasma irradiation in reactive ion etching (RIE) configuration is employed to nylon 6,6 fabrics with different mesh sizes to achieve surface nanostructures and improved wettability for textile and filtration applications. To observe the effects of power and irradiation time on the samples, the experiments were performed using constant irradiation time in varying power and using constant power in varying irradiation times. Results showed improved wettability after the plasma treatment. The FTIR spectra of all the treated samples exhibited decreased transmittance of the amide and carboxylic acid groups due to surface etching. The changes in the surface chemistry are supported by the SEM data wherein etching and surface nanostructures were observed for the plasma-treated samples. The etching of the surfaces is enhanced for higher power plasma treatments. The thermal analysis showed that the plasma treatment resulted in decreased crystallinity. Surface chemistry showed that the effects of the plasma treatment on the samples have no significant difference for all the mesh sizes. However, surface morphology showed that the sizes of the surface cracks are the same for all the mesh sizes but samples with larger mesh sizes exhibited enhanced etching as compared to the samples with smaller mesh sizes. Higher power induced higher negative DC self-bias voltage on the samples that

  15. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse: Chapter 12

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  16. Effects of ion-neutral chemical reactions on dynamics of lightning-induced electric field

    International Nuclear Information System (INIS)

    Hiraki, Yasutaka

    2009-01-01

    Secondary lightning phenomena in the upper atmosphere called sprites attract interest from the viewpoint of atomic-molecular and plasma physics. Lightning-induced electric field accelerates the ionospheric electrons up to tens of electron-volts, inducing electrical breakdown as well as strong optical emissions, through electron impact ionization of molecules. A large-scale structure of sprites is constructed by collective dynamics of filamentary streamer discharges in a rarified gas, which in turn is controlled by the distribution of the background electric field. In this paper, we firstly reanalyze the relationship between quasi-static field formation and local ion chemistry with first-order perturbation techniques. Secondly, we investigate with a full ion chemical model the effects of electron attachment to oxygen molecules on its density in moderate cases of undervoltage lightning electric fields rather than the cases of intense ionization in streamers. We estimate the minimum values that are provided by the chemical balance with electron detachment from negative ions. We also investigate the recovery timescale of the electron density and find that the scale (≥1 s) is occasionally much larger than the interval of each lightning stroke (∼10 ms). We suggest that the subsequent sprite event as well as the field formation could be well affected by the ghost of the primary event. We discuss further the negative ion chemistry triggered by electron attachment in the nighttime mesosphere.

  17. Long-term degradation of chemical structures and mechanical properties in polyethylene induced by ion-beam irradiation

    International Nuclear Information System (INIS)

    Oka, T.; Hama, Y.

    2004-01-01

    The long-term degradation in polyethylene irradiated with ion beams was studied. We found the changes of the chemical structures and the mechanical properties with time storage. S-PE has a good resistance to ion-beam irradiation because the crystallinity and density were very low. (author)

  18. Multiple-height microstructure fabricated by deep reactive ion etching and soft resist masks combined with UV curing

    International Nuclear Information System (INIS)

    Sato, R; Sawada, T; Kumagai, S; Sasaki, M

    2014-01-01

    Multiple-height microstructures are realized by deep reactive ion etching and UV-cured photoresist used in the embedded mask process. Although the UV-cured photoresist is a soft mask, its material property becomes stable against resist thinner and UV exposure. A layered resist pattern can be realized by stacking normal photoresist on the UV-cured photoresist. The normal photoresist can be selectively removed by the flush exposure and developing after the first Si etching. This technique is applied to two MEMS devices

  19. Physical and chemical changes induced by 70 MeV carbon ions in polyvinylidene difluoride (PVDF) polymer

    International Nuclear Information System (INIS)

    Virk, H.S.; Chandi, P.S.; Srivastava, A.K.

    2001-01-01

    Physical and chemical changes induced by 70 MeV carbon ions ( 12 C 5+ ) have been investigated in bulk polyvinylidene fluoride (PVDF) polymer. The induced changes have been studied with respect to their optical, chemical and structural response using UV-visible, FTIR and XRD techniques. The ion fluences ranging from 2.5x10 11 to 9x10 13 ions cm -2 have been used to study the irradiation effects. It has been observed that at the fluence of 9x10 13 ions cm -2 the PVDF sample became brittle and practically it was not possible to handle it for any further measurements. The recorded UV-visible spectra show that the optical absorption increases with increasing fluence, indicating maximum absorption at 200 nm. An interesting feature of UV-visible spectra is that dips change into peaks and vice versa with increase of fluence. In the FTIR spectra, development of new peaks at 1714 and 3692 cm -1 along with disappearance of peaks at 2363 and 3025 cm -1 and shifting of peak at 2984-2974 cm -1 have been observed due to high energy irradiation, indicating the chemical changes induced by 12 C 5+ . The diffraction pattern of PVDF indicates that this polymer is semi-crystalline in nature; a large decrease in the diffraction intensity indicates decrease in crystallinity. Increase in crystallite size has also been observed due to heavy ion irradiation

  20. Ion-molecular reactions initiated by β-decay of tritium in tritiated compounds

    International Nuclear Information System (INIS)

    Akulov, G.P.

    1976-01-01

    Ion-molecular reactions initiated by β-decay of tritium and tritiated hydrocarbons have been systematized. The review describes the theoretical and experimental foundation of the radiochemical method of this important type of chemical interactions investigation. The reactions of the molecular ions of HeT + with methane, ethane, propane, butane and also with cycloalkanes from C 3 to C 6 are discussed. The reactions under consideration have been united into two groups: reactions involving HeT + ions and those involving carbonic ions. From the experimental results available, the conclusions have been drawn about the reactivity of these intermediate formations, about the mechanism of their interaction with organic substances, and also about the perspectives of using the radiochemical method in studies of ion-molecular reactions. The experimental results published before May 1974 are examined. The bibliography includes 162 references

  1. Reactive Imprint Lithography: Combined Topographical Patterning and Chemical Surface Functionalization of Polystyrene-block-poly(tert-butyl acrylate) Films

    NARCIS (Netherlands)

    Duvigneau, Joost; Cornelissen, Stijn; Bardajı´Valls, Nuria; Schönherr, Holger; Vancso, Gyula J.

    2009-01-01

    Here, reactive imprint lithography (RIL) is introduced as a new, one-step lithographic tool for the fabrication of large-area topographically patterned, chemically activated polymer platforms. Films of polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) are imprinted with PDMS master stamps at

  2. New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow

    Science.gov (United States)

    Zakeri, Ramin; Kamali Moghadam, Ramin; Mani, Mahmoud

    2017-04-01

    The modified quantum kinetic (MQK) chemical reaction model introduced by Zakeri et al. is developed for applicable cases in axisymmetric reactive rarefied gas flows using the direct simulation Monte Carlo (DSMC) method. Although, the MQK chemical model uses some modifications in the quantum kinetic (QK) method, it also employs the general soft sphere collision model and Stockmayer potential function to properly select the collision pairs in the DSMC algorithm and capture both the attraction and repulsion intermolecular forces in rarefied gas flows. For assessment of the presented model in the simulation of more complex and applicable reacting flows, first, the air dissociation is studied in a single cell for equilibrium and non-equilibrium conditions. The MQK results agree well with the analytical and experimental data and they accurately predict the characteristics of the rarefied flowfield with chemical reaction. To investigate accuracy of the MQK chemical model in the simulation of the axisymmetric flow, air dissociation is also assessed in an axial hypersonic flow around two geometries, the sphere as a benchmark case and the blunt body (STS-2) as an applicable test case. The computed results including the transient, rotational and vibrational temperatures, species concentration in the stagnation line, and also the heat flux and pressure coefficient on the surface are compared with those of the other chemical methods like the QK and total collision energy (TCE) models and available analytical and experimental data. Generally, the MQK chemical model properly simulates the chemical reactions and predicts flowfield characteristics more accurate rather than the typical QK model. Although in some cases, results of the MQK approaches match with those of the TCE method, the main point is that the MQK does not need any experimental data or unrealistic assumption of specular boundary condition as used in the TCE method. Another advantage of the MQK model is the

  3. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu V. [Department of Physics, Grambling State University, RWE Jones Drive, Carver Hall 81, Grambling, LA 71245 (United States)]. E-mail: naidusv@gram.edu; Harrell, J.W. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Lawson, Jeremy [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Nikles, David E. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Williams, John R. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Isaacs-Smith, Tamara [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2005-12-15

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 x 10{sup 16} ions/cm{sup 2} at 43 {sup o}C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 {sup o}C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 x 10{sup 7} erg/cc, and thermal stability factor of 130. A much higher 375 {sup o}C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  4. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    West, Hannah Elise [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  5. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-01-01

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets[I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas[2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study[3] has been

  6. New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching

    Directory of Open Access Journals (Sweden)

    Cong Chunxiao

    2009-01-01

    Full Text Available Abstract We report a low-cost and simple method for fabrication of nonspherical colloidal lithographic nanopatterns with a long-range order by preheating and oxygen reactive ion etching of monolayer and double-layer polystyrene spheres. This strategy allows excellent control of size and morphology of the colloidal particles and expands the applications of the colloidal patterns as templates for preparing ordered functional nanostructure arrays. For the first time, various unique nanostructures with long-range order, including network structures with tunable neck length and width, hexagonal-shaped, and rectangular-shaped arrays as well as size tunable nanohole arrays, were fabricated by this route. Promising potentials of such unique periodic nanostructures in various fields, such as photonic crystals, catalysts, templates for deposition, and masks for etching, are naturally expected.

  7. Physicochemical model for reactive sputtering of hot target

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, Viktor I., E-mail: vishapovalov@mail.ru; Karzin, Vitaliy V.; Bondarenko, Anastasia S.

    2017-02-05

    A physicochemical model for reactive magnetron sputtering of a metal target is described in this paper. The target temperature in the model is defined as a function of the ion current density. Synthesis of the coating occurs due to the surface chemical reaction. The law of mass action, the Langmuir isotherm and the Arrhenius equation for non-isothermal conditions were used for mathematical description of the reaction. The model takes into consideration thermal electron emission and evaporation of the target surface. The system of eight algebraic equations, describing the model, was solved for the tantalum target sputtered in the oxygen environment. It was established that the hysteresis effect disappears with the increase of the ion current density. - Highlights: • When model is applied for a cold target, hysteresis width is proportional to the ion current density. • Two types of processes of hot target sputtering are possible, depending on the current density: with and without the hysteresis. • Sputtering process is dominant at current densities less than 50 A/m{sup 2} and evaporation can be neglected. • For current densities over 50 A/m{sup 2} the hysteresis width reaches its maximum and the role of evaporation increases.

  8. Chemical Properties of Dialkyl Halonium Ions (R2Hal+) and Their Neutral Analogues, Methyl Carboranes, CH3-(CHB11Hal11), Where Hal = F, Cl.

    Science.gov (United States)

    Stoyanov, Evgenii S

    2017-04-20

    Chloronium cations in their salts (C n H 2n+1 ) 2 Cl + {CHB 11 Cl 11 - }, with n = 1 to 3 and exceptionally stable carborane anions, are stable at ambient and elevated temperatures. The temperature at which they decompose to carbocations with HCl elimination (below 150 °C) decreases with the increasing n from 1 to 3 because of increasing ionicity of C-Cl bonds in the C-Cl + -C bridge. At room temperature, the salts of cations with n ≥ 4 [starting from t-Bu 2 Cl + or (cyclo-C 5 H 11 ) 2 Cl + ] are unstable and decompose. With decreasing chloronium ion stability, their ability to interact with chloroalkanes to form oligomeric cations increases. It was shown indirectly that unstable salt of fluoronium ions (CH 3 ) 2 F + (CHB 11 F 11 - ) must exist at low temperatures. The proposed (CH 3 ) 2 F + cation is much more reactive than the corresponding chloronium, showing at room temperature chemical properties expected of (CH 3 ) 2 Cl + at elevated temperatures.

  9. Physical and Chemical Changes of Polystyrene Nanospheres Irradiated with Laser

    International Nuclear Information System (INIS)

    Mustafa, Mohd Ubaidillah; Juremi, Nor Rashidah Md.; Mohamad, Farizan; Wibawa, Pratama Jujur; Agam, Mohd Arif; Ali, Ahmad Hadi

    2011-01-01

    It has been reported that polymer resist such as PMMA (Poly(methyl methacrylate) which is a well known and commonly used polymer resist for fabrication of electronic devices can show zwitter characteristic due to over exposure to electron beam radiation. Overexposed PMMA tend to changes their molecular structure to either become negative or positive resist corresponded to electron beam irradiation doses. These characteristic was due to crosslinking and scissors of the PMMA molecular structures, but till now the understanding of crosslinking and scissors of the polymer resist molecular structure due to electron beam exposure were still unknown to researchers. Previously we have over exposed polystyrene nanospheres to various radiation sources, such as electron beam, solar radiation and laser, which is another compound that can act as polymer resist. We investigated the physical and chemical structures of the irradiated polystyrene nanospheres with FTIR analysis. It is found that the physical and chemical changes of the irradiated polystyrene were found to be corresponded with the radiation dosages. Later, combining Laser irradiation and Reactive Ion Etching manipulation, created a facile technique that we called as LARIEA NSL (Laser and Reactive Ion Etching Assisted Nanosphere Lithography) which can be a facile technique to fabricate controllable carbonaceous nanoparticles for applications such as lithographic mask, catalysts and heavy metal absorbers.

  10. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. Chemical analysis

    International Nuclear Information System (INIS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.

    2015-01-01

    This paper presents the first part of a theoretical and experimental work aiming at modeling the chemo-mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C_3S). Because of ion exchange processes, the volume change of the IER may cause internal pressures leading to the degradation of the material. In this study, a predictive modeling is developed for describing the chemical behavior of such material. It is based on thermodynamic equilibria to determine the evolution of the ion exchange processes, and the potential precipitation of portlandite in the composite. In parallel, a phenomenological study has been set up to understand chemical phenomena related to the swelling mechanisms. The model created has been finally implemented in a finite elements software; the simulation of a laboratory test has been performed and the results compared to experimental data. - Highlights: • Ion exchange theory to model the swelling behavior of Ion exchange resin. • Experimental phenomenon analysis about Chemo-mechanical interaction between IER and cement paste matrix. • Chemo-Transport modeling on a composite material made with IER embedded into cement paste matrix.

  11. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    Science.gov (United States)

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  12. Tuning the hydrophobicity of mica surfaces by hyperthermal Ar ion irradiation

    International Nuclear Information System (INIS)

    Keller, Adrian; Ogaki, Ryosuke; Bald, Ilko; Dong Mingdong; Kingshott, Peter; Fritzsche, Monika; Facsko, Stefan; Besenbacher, Flemming

    2011-01-01

    The hydrophobicity of surfaces has a strong influence on their interactions with biomolecules such as proteins. Therefore, for in vitro studies of bio-surface interactions model surfaces with tailored hydrophobicity are of utmost importance. Here, we present a method for tuning the hydrophobicity of atomically flat mica surfaces by hyperthermal Ar ion irradiation. Due to the sub-100 eV energies, only negligible roughening of the surface is observed at low ion fluences and also the chemical composition of the mica crystal remains almost undisturbed. However, the ion irradiation induces the preferential removal of the outermost layer of K + ions from the surface, leading to the exposure of the underlying aluminosilicate sheets which feature a large number of centers for C adsorption. The irradiated surface thus exhibits an enhanced chemical reactivity toward hydrocarbons, resulting in the adsorption of a thin hydrocarbon film from the environment. Aging these surfaces under ambient conditions leads to a continuous increase of their contact angle until a fully hydrophobic surface with a contact angle >80 deg. is obtained after a period of about 3 months. This method thus enables the fabrication of ultrasmooth biological model surfaces with precisely tailored hydrophobicity.

  13. Chemical Modeling of the Reactivity of Short-Lived Greenhouse Gases: A Model Inter-Comparison Prescribing a Well-Measured, Remote Troposphere

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-01-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating over the data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14,880 parcels along 180W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10% of parcels control 25-30% of the total reactivities), but do not fully agree on which parcels comprise the top 10%. Distinct differences in specific features occur, including the regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the 6 models tested here, 3 are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify 4, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in

  14. Chemical exchange between UF6 and UF6- ion in anhydrous hydrofluoric acid

    International Nuclear Information System (INIS)

    Chatelet, J.; Luce, M.; Plurien, P.; Rigny, P.

    1975-01-01

    The chemical exchange between UF 6 and the UF 6 - ion is of potential interest for the separation of U isotopes. In this paper, results concerning the value of the separation factor and the kinetics of the homogeneous exchange are given [fr

  15. Biodecolorization and biodegradation of Reactive Blue by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... Aspergillus sp. effectively decolorized Reactive Blue and other structurally different synthetic dyes. Agitation was found to be an important ... Few chemically different dyes such as Reactive Black (75%), Reactive Yellow (70%),. Reactive Red (33%) and ..... Degradation of azo dyes by the lignin degrading ...

  16. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Melanie J. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  17. The Stanford-U.S. Geological Survey SHRIMP ion microprobe--a tool for micro-scale chemical and isotopic analysis

    Science.gov (United States)

    Bacon, Charles R.; Grove, Marty; Vazquez, Jorge A.; Coble, Matthew A.

    2012-01-01

    Answers to many questions in Earth science require chemical analysis of minute volumes of minerals, volcanic glass, or biological materials. Secondary Ion Mass Spectrometry (SIMS) is an extremely sensitive analytical method in which a 5–30 micrometer diameter "primary" beam of charged particles (ions) is focused on a region of a solid specimen to sputter secondary ions from 1–5 nanograms of the sample under high vacuum. The elemental abundances and isotopic ratios of these secondary ions are determined with a mass spectrometer. These results can be used for geochronology to determine the age of a region within a crystal thousands to billions of years old or to precisely measure trace abundances of chemical elements at concentrations as low as parts per billion. A partnership of the U.S. Geological Survey and the Stanford University School of Earth Sciences operates a large SIMS instrument, the Sensitive High-Resolution Ion Microprobe with Reverse Geometry (SHRIMP–RG) on the Stanford campus.

  18. The formation and reactivity of the μ+ molecular ion NeMu+

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Senba, M.; Garner, D.M.; Arseneau, D.J.

    1983-06-01

    Evidence for the formation and reactivity of the positive muon molecular ion NeMu + at room temperature in a low pressure Ne moderator to which trace amounts of Xe, CH 4 , NH 3 or He have been added, is reported. A two component relaxation of the diamagnetic muon spin rotation (μSR) signal is seen upon the addition of trace amounts of Xe to Ne; a fast relaxing component with bimolecular rate constant (3.6+-0.6) x 10 -10 cc atom -1 s -1 is thought to be due to thermal muonium formation in a charge exchange process while the other slow relaxing component is attributed to a muon transfer reaction, as in proton transfer studies. With CH 4 or NH 3 added to Ne there is, at most, only a very slow relaxation seen, even though thermal muonium formation is expected, in analogy with Xe. These latter results may be due to very fast, possibly tunneling-assisted, muon transfer reactions, the first time that such processes have been at all characterized

  19. Deep reactive ion etching of auxetic structures: present capabilities and challenges

    International Nuclear Information System (INIS)

    Muslija, Alban; Díaz Lantada, Andrés

    2014-01-01

    Auxetic materials (or metamaterials) have negative Poisson ratios (NPR) and display the unexpected properties of lateral expansion when stretched, and equal and opposing densification when compressed. Such auxetic materials are being used more frequently in the development of novel products, especially in the fields of intelligent expandable actuators, shape-morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic materials and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study, we present a very promising approach for the development of auxetic materials and devices based on the use of deep reactive ion etching (DRIE). The process stands out for its precision and its potential applications to mass production. To our knowledge, it represents the first time this technology has been applied to the manufacture of auxetic materials with nanometric details. We take into account the present capabilities and challenges linked to the use of DRIE in the development of auxetic materials and auxetic-based devices. (technical note)

  20. Gas-phase reactions of glycine, alanine, valine and their N-methyl derivatives with the nitrosonium ion, NO+.

    Science.gov (United States)

    Freitas, M A; O'Hair, R A; Schmidt, J A; Tichy, S E; Plashko, B E; Williams, T D

    1996-10-01

    The gas-phase reactions of the nitrosonium ion, NO+ with the amino acids glycine, alanine and valine and their N-methyl derivatives were investigated under chemical ionization mass spectrometric (CIMS) conditions. Two products were observed in all cases: the formation of the iminium ion and the formation of an [M-H]+ ion. The latter product is consistent with a reaction channel involving hydride abstraction by NO+, and was confirmed by (i) examining the Ar+CI mass spectra of the same amino acids under similar source conditions and (ii) examining the unimolecular fragmentation reactions of the [M + H]+ ions of the N-nitroso-N-methyl derivatives of each of the amino acids in a tandem mass spectrometer. Further insights into the reaction of glycine with NO+ were obtained by performing ab initio calculations (at the MP2/6-31G* parallel HF/6-31G* level). These results indicate that four reactions are thermodynamically viable for glycine: (i) hydride abstraction; (ii) iminium ion formation (with concomitant loss of HONO and CO); (iii) diazonium ion formation; and (iv) diazonium ion formation followed by loss of N2. Possible reasons why reactions (iii) and (iv) are not observed are discussed, and comparisons with solution reactivity and the gas-phase reactivity of NO+ are also made.

  1. Chemical Identity of Interaction of Protein with Reactive Metabolite of Diosbulbin B In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2017-08-01

    Full Text Available Diosbulbin B (DIOB, a hepatotoxic furan-containing compound, is a primary ingredient in Dioscorea bulbifera L., a common herbal medicine. Metabolic activation is required for DIOB-induced liver injury. Protein covalent binding of an electrophilic reactive intermediate of DIOB is considered to be one of the key mechanisms of cytotoxicity. A bromine-based analytical technique was developed to characterize the chemical identity of interaction of protein with reactive intermediate of DIOB. Cysteine (Cys and lysine (Lys residues were found to react with the reactive intermediate to form three types of protein modification, including Cys adduction, Schiff’s base, and Cys/Lys crosslink. The crosslink showed time- and dose-dependence in animals given DIOB. Ketoconazole pretreatment decreased the formation of the crosslink derived from DIOB, whereas pretreatment with dexamethasone or buthionine sulfoximine increased such protein modification. These data revealed that the levels of hepatic protein adductions were proportional to the severity of hepatotoxicity of DIOB.

  2. Silicon germanium as a novel mask for silicon deep reactive ion etching

    KAUST Repository

    Serry, Mohamed Y.

    2013-10-01

    This paper reports on the use of p-type polycrystalline silicon germanium (poly-Si1-xGex) thin films as a new masking material for the cryogenic deep reactive ion etching (DRIE) of silicon. We investigated the etching behavior of various poly-Si1-xGex:B (01:800). Furthermore, the SiGe mask was etched in SF6/O2 plasma at temperatures ≥ - 80°C and at rates exceeding 8 μm/min (i.e., more than 37 times faster than SiO2 or SiN masks). Because of the chemical and thermodynamic stability of the SiGe film as well as the electronic properties of the mask, it was possible to deposit the proposed film at CMOS backend compatible temperatures. The paper also confirms that the mask can easily be dry-removed after the process with high etching-rate by controlling the ICP and RF power and the SF6 to O2 ratios, and without affecting the underlying silicon substrate. Using low ICP and RF power, elevated temperatures (i.e., > - 80°C), and an adjusted O2:SF6 ratio (i.e., ~6%), we were able to etch away the SiGe mask without adversely affecting the final profile. Ultimately, we were able to develop deep silicon- trenches with high aspect ratio etching straight profiles. © 1992-2012 IEEE.

  3. Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Shafaq, E-mail: sarif2005@gmail.com [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Saleemi, Farhat [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Rafique, M. Shahid [Department of Physics, University of Engineering & Technology, Lahore 54000 (Pakistan); Naab, Fabian; Toader, Ovidiu [Department of Nuclear Engineering and Radiological Sciences, Michigan Ion Beam Laboratory, University of Michigan, MI 48109-2104 (United States); Mahmood, Arshad; Aziz, Uzma [National Institute of Lasers & Optronics (NILOP), P.O. Nilore, Islamabad (Pakistan)

    2016-11-15

    Ion implantation is a versatile technique to tailor the surface properties of polymers in a controlled manner. In the present study, samples of poly (methyl methacrylate) (PMMA) have been implanted with 400 keV silver (Ag{sup +}) ion beam to various ion fluences ranging from 5 × 10{sup 13} to 5 × 10{sup 15} ions/cm{sup 2}. The effect of Ag{sup +} ion-induced disorder on morphological, chemical and optical properties of PMMA is analyzed using Atomic Force Microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–Vis) spectroscopy. Furthermore, the electrical conductivity of pristine and implanted PMMA is measured using four probe apparatus. The AFM images revealed the growth of nano-sized grainy structures and hillocks above the surface of implanted PMMA. The FTIR spectra confirmed the modifications in chemical structure of PMMA along with the formation of −C=C− carbon contents. The refractive index, extinction coefficient and photoconductivity of implanted PMMA have been found to increase as a function of ion fluence. Simultaneously, indirect optical band gap is reduced from 3.13 to 0.81 eV at a relatively high fluence (5 × 10{sup 15} ions/cm{sup 2}). A linear correlation has been established between the band gap and Urbach energies. Moreover, the electrical conductivity of Ag{sup +} implanted PMMA has increased from 2.14 × 10{sup −10} (pristine) to 9.6 × 10{sup −6} S/cm.

  4. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  5. Preparation and characterization of poly-pyrrole thin films functionalized by ion exchanger groups. Application to preparation of alpha sources

    International Nuclear Information System (INIS)

    Stephan, Olivier

    1995-01-01

    After having outlined that dosing methods still present problems related to chemical separations techniques used before radioactivity measurements, and to spectrometric methods, this research thesis proposes the study of a new method of fabrication of a radioactive source. This method comprises the fabrication of a chemically reactive thin film by electro-polymerization, and the incorporation of actinides in the deposit by ion exchange. In this case, the deposit thickness could be controlled and the material transfer chemical mechanisms could be predicted and controlled [fr

  6. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    . The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....

  7. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    Science.gov (United States)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}zz≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  8. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Koning, Anne; Kuhnle, Gunter G C; Nagy, Peter; Bianco, Christopher L; Pasch, Andreas; Wink, David A; Fukuto, Jon M; Jackson, Alan A; van Goor, Harry; Olson, Kenneth R; Feelisch, Martin

    2017-10-01

    Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.

  9. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    Science.gov (United States)

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  10. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    Science.gov (United States)

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  11. Ion beam induces nitridation of silicon

    International Nuclear Information System (INIS)

    Petravic, M.; Williams, J.S.; Conway, M.

    1998-01-01

    High dose ion bombardment of silicon with reactive species, such as oxygen and nitrogen, has attracted considerable interest due to possible applications of beam-induced chemical compounds with silicon. For example, high energy oxygen bombardment of Si is now routinely used to form buried oxide layers for device purposes, the so called SIMOX structures. On the other hand, Si nitrides, formed by low energy ( 100 keV) nitrogen beam bombardment of Si, are attractive as oxidation barriers or gate insulators, primarily due to the low diffusivity of many species in Si nitrides. However, little data exists on silicon nitride formation during bombardment and its angle dependence, in particular for N 2 + bombardment in the 10 keV range, which is of interest for analytical techniques such as SIMS. In SIMS, low energy oxygen ions are more commonly used as bombarding species, as oxygen provides stable ion yields and enhances the positive secondary ion yield. Therefore, a large body of data can be found in the literature on oxide formation during low energy oxygen bombardment. Nitrogen bombardment of Si may cause similar effects to oxygen bombardment, as nitrogen and oxygen have similar masses and ranges in Si, show similar sputtering effects and both have the ability to form chemical compounds with Si. In this work we explore this possibility in some detail. We compare oxide and nitride formation during oxygen and nitrogen ion bombardment of Si under similar conditions. Despite the expected similar behaviour, some large differences in compound formation were found. These differences are explained in terms of different atomic diffusivities in oxides and nitrides, film structural differences and thermodynamic properties. (author)

  12. Substrate Vibrations as Promoters of Chemical Reactivity on Metal Surfaces.

    Science.gov (United States)

    Campbell, Victoria L; Chen, Nan; Guo, Han; Jackson, Bret; Utz, Arthur L

    2015-12-17

    Studies exploring how vibrational energy (Evib) promotes chemical reactivity most often focus on molecular reagents, leaving the role of substrate atom motion in heterogeneous interfacial chemistry underexplored. This combined theoretical and experimental study of methane dissociation on Ni(111) shows that lattice atom motion modulates the reaction barrier height during each surface atom's vibrational period, which leads to a strong variation in the reaction probability (S0) with surface temperature (Tsurf). State-resolved beam-surface scattering studies at Tsurf = 90 K show a sharp threshold in S0 at translational energy (Etrans) = 42 kJ/mol. When Etrans decreases from 42 kJ/mol to 34 kJ/mol, S0 decreases 1000-fold at Tsurf = 90 K, but only 2-fold at Tsurf = 475 K. Results highlight the mechanism for this effect, provide benchmarks for DFT calculations, and suggest the potential importance of surface atom induced barrier height modulation in heterogeneously catalyzed reactions, particularly on structurally labile nanoscale particles and defect sites.

  13. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.

    Science.gov (United States)

    Usharani, Dandamudi; Janardanan, Deepa; Li, Chunsen; Shaik, Sason

    2013-02-19

    Over the past decades metalloenzymes and their synthetic models have emerged as an area of increasing research interest. The metalloenzymes and their synthetic models oxidize organic molecules using oxometal complexes (OMCs), especially oxoiron(IV)-based ones. Theoretical studies have helped researchers to characterize the active species and to resolve mechanistic issues. This activity has generated massive amounts of data on the relationship between the reactivity of OMCs and the transition metal's identity, oxidation state, ligand sphere, and spin state. Theoretical studies have also produced information on transition state (TS) structures, reaction intermediates, barriers, and rate-equilibrium relationships. For example, the experimental-theoretical interplay has revealed that nonheme enzymes carry out H-abstraction from strong C-H bonds using high-spin (S = 2) oxoiron(IV) species with four unpaired electrons on the iron center. However, other reagents with higher spin states and more unpaired electrons on the metal are not as reactive. Still other reagents carry out these transformations using lower spin states with fewer unpaired electrons on the metal. The TS structures for these reactions exhibit structural selectivity depending on the reactive spin states. The barriers and thermodynamic driving forces of the reactions also depend on the spin state. H-Abstraction is preferred over the thermodynamically more favorable concerted insertion into C-H bonds. Currently, there is no unified theoretical framework that explains the totality of these fascinating trends. This Account aims to unify this rich chemistry and understand the role of unpaired electrons on chemical reactivity. We show that during an oxidative step the d-orbital block of the transition metal is enriched by one electron through proton-coupled electron transfer (PCET). That single electron elicits variable exchange interactions on the metal, which in turn depend critically on the number of

  14. Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1996-01-01

    Safety assessments for radioactive waste repositories require a detailed knowledge of physical, chemical, hydrological, and geological processes for long time spans. In the past, individual models for hydraulics, transport, or geochemical processes were developed more or less separately to great sophistication for the individual processes. Such processes are especially important in the near field of a waste repository. Attempts have been made to couple at least two individual processes to get a more adequate description of geochemical systems. These models are called coupled codes; they couple predominantly a multicomponent transport model with a chemical reaction model. Here reactive transport is modeled by the sequentially coupled code MCOTAC that couples one-dimensional advective, dispersive, and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium. Transport, described by a random walk of multispecies particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term. The modular-structured code was applied to incongruent dissolution of hydrated silicate gels, to movement of multiple solid front systems, and to an artificial, numerically difficult heterogeneous redox problem. These applications show promising features with respect to applicability to relevant problems and possibilities of extensions

  15. Reactive ion beam etching for microcavity surface emitting laser fabrication: technology and damage characterization

    International Nuclear Information System (INIS)

    Matsutani, A.; Tadokoro, T.; Koyama, F.; Iga, K.

    1993-01-01

    Reactive ion beam etching (RIBE) is an effective dry etching technique for the fabrication of micro-sized surface emitting (SE) lasers and optoelectronic devices. In this chapter, some etching characteristics for GaAs, InP and GaInAsP with a Cl 2 gas using an RIBE system are discussed. Micro-sized circular mesas including GaInAsP/InP multilayers with vertical sidewalls were fabricated. RIBE-induced damage in InP substrates was estimated by C-V and PL measurement. In addition, the removal of the induced damage by the second RIBE with different conditions for the InP wafer was proposed. The sidewall damage is characterized by photoluminescence emitted from the etched sidewall of a GaInAsP/InP DH wafer. (orig.)

  16. Reactivity of Cu with poly(tetrafluoroethylene) and poly(vinyl chloride): Effect of pre- and post-metallization modification on the metal/polymer interface

    International Nuclear Information System (INIS)

    Perry, C.C.; Torres, J.; Carlo, S.R.; Fairbrother, D. Howard

    2002-01-01

    The reactivity of Cu with poly(tetrafluoroethylene) (PTFE) and poly(vinylchloride) (PVC) during thermal evaporation, as well as the effect of pre- and post-metallization Ar + ion and x-ray mediated surface modification treatments on the metal/polymer interface, have been studied using in situ x-ray photoelectron spectroscopy (XPS) and ex situ atomic force microscopy (AFM). During thermal evaporation, copper was unreactive on PTFE but reacted with PVC to form CuCl. Pretreatment of PTFE or PVC surfaces by Ar + ion or x-ray irradiation did not modify the chemical reactivity of the polymer surface during subsequent Cu deposition, although significant morphological changes were observed on PTFE by AFM. In contrast, post-metallization modification of the Cu/PTFE interface by Ar + ion or x-ray irradiation lead to the production of CuF 2 , and increased the yield of CuCl in the Cu/PVC system. In either the Cu/PTFE or Cu/PVC systems, the maximum concentration of copper halide formed and dependence upon treatment time was found to be similar for either Ar + ion or x-ray irradiation post-metallization treatment strategies, suggesting a common reaction mechanism

  17. Excessive sodium ions delivered into cells by nanodiamonds: implications for tumor therapy.

    Science.gov (United States)

    Zhu, Ying; Li, Wenxin; Zhang, Yu; Li, Jing; Liang, Le; Zhang, Xiangzhi; Chen, Nan; Sun, Yanhong; Chen, Wen; Tai, Renzhong; Fan, Chunhai; Huang, Qing

    2012-06-11

    Nanodiamonds (NDs) possess many excellent physical and chemical properties that make them attractive materials for applications in biomedicine. In this paper, the adsorption and delivery of a large amount of sodium ions into the cell interior by NDs in serum-free medium is demonstrated. The excess sodium ions inside the cells induce osmotic stresses followed by cell swelling and an increase in the intracellular levels of calcium and reactive oxygen species (ROS), which leads to severe cellular damage. In complete culture medium, however, serum proteins wrapped around the NDs effectively prevent the sodium ions from adsorbing onto the NDs, and thus the NDs show no cytotoxicity. This work is the first to elaborate on the correlation between the sodium ions adsorbed on the nanomaterials and their bio-effects. Excessive ions delivered into cells by NDs might have potential applications in tumor therapy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fuels and chemicals from equine-waste-derived tail gas reactive pyrolysis oil: technoeconomic analysis, environmental and exergetic life cycle assessment

    Science.gov (United States)

    Horse manure, whose improper disposal imposes considerable environmental costs, constitutes an apt feedstock for conversion to renewable fuels and chemicals when tail gas reactive pyrolysis (TGRP) is employed. TGRP is a modification of fast pyrolysis that recycles its non-condensable gases and produ...

  19. Covalent functionalization of graphene with reactive intermediates.

    Science.gov (United States)

    Park, Jaehyeung; Yan, Mingdi

    2013-01-15

    Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations

  20. Underlying role of mechanical rigidity and topological constraints in physical sputtering and reactive ion etching of amorphous materials

    Science.gov (United States)

    Bhattarai, Gyanendra; Dhungana, Shailesh; Nordell, Bradley J.; Caruso, Anthony N.; Paquette, Michelle M.; Lanford, William A.; King, Sean W.

    2018-05-01

    Analytical expressions describing ion-induced sputter or etch processes generally relate the sputter yield to the surface atomic binding energy (Usb) for the target material. While straightforward to measure for the crystalline elemental solids, Usb is more complicated to establish for amorphous and multielement materials due to composition-driven variations and incongruent sublimation. In this regard, we show that for amorphous multielement materials, the ion-driven yield can instead be better understood via a consideration of mechanical rigidity and network topology. We first demonstrate a direct relationship between Usb, bulk modulus, and ion sputter yield for the elements, and then subsequently prove our hypothesis for amorphous multielement compounds by demonstrating that the same relationships exist between the reactive ion etch (RIE) rate and nanoindentation Young's modulus for a series of a -Si Nx :H and a -Si OxCy :H thin films. The impact of network topology is further revealed via application of the Phillips-Thorpe theory of topological constraints, which directly relates the Young's modulus to the mean atomic coordination () for an amorphous solid. The combined analysis allows the trends and plateaus in the RIE rate to be ultimately reinterpreted in terms of the atomic structure of the target material through a consideration of . These findings establish the important underlying role of mechanical rigidity and network topology in ion-solid interactions and provide additional considerations for the design and optimization of radiation-hard materials in nuclear and outer space environments.

  1. Reactivity of nitriles

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of coordination nitriles in transition metal (Ru, Mo, W, Zr, Hf) complexes, namely: transformation of nitriles of the first coordination sphere into N-acyl-substituted amides, amidines, nitrile interaction; with water, alkalines, alcoholes, hydrogen, azide and cyanide ions is considered. Introduction of acetonitrile molecule to uranium (4)-carbon double bond is discussed

  2. Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses.

    Science.gov (United States)

    Massera, J; Petit, L; Cardinal, T; Videau, J J; Hupa, M; Hupa, L

    2013-06-01

    In this paper, we investigate the effect of SrO substitution for CaO in 50P₂O₅-10Na₂-(40-x)CaO-xSrO glass system (x from 0 to 40) on the thermal and structural properties and also on the glass reactivity in simulated body fluid (SBF) in order to find new glass candidates for biomedical glass fibers. The addition of SrO at the expense of CaO seems to restrain the leaching of phosphate ions in the solution limiting the reduction of the solution pH. We observed the formation of an apatite layer at the surface of the glasses when in contact with SBF. SrO and MgO were found in the apatite layer of the strontium ion-containing glasses, the concentration of which increases with an increase of SrO content. We think that it is the presence of MgO and SrO in the layer which limits the leaching of phosphate in the solution and thus the glass dissolution in SBF.

  3. Chemical characterization of agroforestry solid residues aiming its utilization as adsorbents for metals in water

    Directory of Open Access Journals (Sweden)

    Francisco H. M. Luzardo

    2015-01-01

    Full Text Available In this work, a study of the correlation between the functional groups present in the chemical structure of the fibers of coconut shells, cocoa and eucalyptus, and their adsorption capacity of Cd+2 and Cu+2 ions from water was performed. The content of soluble solids and reactive phenols in aqueous extracts were determined. The chemical functional groups present in the fibers were examined using the IR spectra. The adsorption capacity of the peels was determined using atomic absorption spectrophotometer. For Cd+2, a significant correlation between the adsorption capacity and some specific chemical functional groups present in the fiber was verified. The potential use of these peels, as adsorbent of Cd+2 ions, is based on the presence of OH functional groups such as aryl-OH, aryl-O-CH2 of phenol carboxylic acids, as well as carbonyl groups derived from carboxylic acid salts, in these fibers.

  4. Chemical characterization of microparticles by laser ablation in an ion trap mass spectrometer

    International Nuclear Information System (INIS)

    Dale, J.M.; Whitten, W.B.; Ramsey, J.M.

    1991-01-01

    We are developing a new technique for the chemical characterization of microparticles based upon the use of electrodynamic traps. The electrodynamic trap has achieved widespread use in the mass spectrometry community in the form of the ion trap mass spectrometer or quadrupole ion trap. Small macroscopic particles can be confined or leviated within the electrode structure of a three-dimensional quadrupole electrodynamic trap in the same way as fundamental charges or molecular ions by using a combination of ac and dc potentials. Our concept is to use the same electrode structure to perform both microparticle levitation and ion trapping/mass analysis. The microparticle will first be trapped and spatially stabilized within the trap for characterization by optical probes, i.e., absorption, fluorescence, or Raman spectroscopy. After the particle has been optically characterized, it is further characterized using mass spectrometry. Ions are generated from the particle surface using laser ablation or desorption. The characteristics of the applied voltages are changed to trap the ions formed by the laser with the ions subsequently mass analyzed. The work described in this paper focuses on the ability to perform laser desorption experiments on microparticles contained within the ion trap. Laser desorption has previously been demonstrated in ion trap devices by applying the sample to a probe which is inserted so as to place the sample at the surface of the ring electrode. Our technique requires the placement of a microparticle in the center of the trap. Our initial experiments have been performed on falling microparticles rather than levitated particles to eliminate voltage switching requirements when changing from particle to ion trapping modes

  5. Allergic contact dermatitis due to highly reactive halogenated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, F C; Ive, F A

    1983-11-01

    Ten cases of dermatitis in a fine organic chemicals plant are reported. These cases were all due to exposure to chemical compounds with reactive bromine or chlorine atoms. This type of chemical is always extremely irritant, but evidence is put forward to suggest that these cases were the result of allergic sensitization. Chemicals with reactive halogen atoms should always be handled with extreme care and patch testing should be approached with caution.

  6. Assessing Chemical Transformation of Reactive, Interfacial Thin Films Made of End-Tethered Poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) Chains

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Bethany [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Kite, Camille M. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Hopkins, Benjamin W. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Zetterberg, Anna [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Lokitz, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Ankner, John Francis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Kilbey, S. Michael [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering

    2017-01-24

    Designing thin films or surface scaffolds with an appropriate display of chemical functionality is useful for biomedical applications, sensing platforms, adhesives, and barrier coatings. Relationships between the structural characteristics of model thin films based on reactive poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) brushes and the amount and distribution of primary amines used to chemically functionalize the layer in situ are quantitatively detailed via neutron reflectometry and compared with results from ellipsometry. After functionalization, the PVDMA brush thickness increases as a result of the primary amines reacting with the azlactone rings. Both techniques show that the extent of functionalization by small-molecule amines depends on the size of the amine, the grafting density of brush chains and their molecular weight. However, constrained analysis of neutron reflectivity data predicated on that technique’s sensitivity to isotopic substitution and its ability to resolve structure at the nanoscale, shows that the extent of functionalization is not accurately represented by the average extent of functionalization determined from ellipsometric thickness: reactive modification is not uniform, even in modestly dense brushes, except when the penetrant is small. Additionally, there appears to be a loss of PVDMA chains during functionalization, attributed to chain scission resulting from additional stretching brought about by functionalization. These findings provide unprecedented insight into the alteration of surface properties by reactive modification and broadly support efforts to produce tailored surfaces in which properties such as friction, colloidal stability, adhesion, wettability, and biocompatibility can be modulated in situ by chemical modification.

  7. Methyl salicylate: a reactive chemical warfare agent surrogate to detect reaction with hypochlorite.

    Science.gov (United States)

    Salter, W Bruce; Owens, Jeffery R; Wander, Joseph D

    2011-11-01

    Methyl salicylate (MeS) has a rich history as an inert physical simulant for the chemical warfare agents sulfur mustard and soman, where it is used extensively for liquid- and vapor-permeation testing. Here we demonstrate possible utility of MeS as a reactivity simulant for chlorine-based decontaminants. In these experiments MeS was reacted with sodium hypochlorite varying stoichiometry, temperature, reaction time, and pH. No colored oxidation products were observed; however, chlorination of the aromatic ring occurred ortho (methyl 3-chlorosalicylate) and para (methyl 5-chlorosalicylate) to the position bearing the -OH group in both the mono- and disubstituted forms. The monosubstituted para product accumulated initially, and the ortho and 3,5-dichloro products formed over the next several hours. Yields from reactions conducted below pH 11 declined rapidly with decreasing pH. Reactions run at 40 °C produced predominantly para substitution, while those run at 0 °C produced lower yields of ortho- and para-substituted products. Reactions were also carried out on textile substrates of cotton, 50/50 nylon-cotton, and a meta aramid. The textile data broadly reproduced reaction times and stoichiometry observed in the liquid phase, but are complicated by physical and possibly chemical interactions with the fabric. These data indicate that, for hypochlorite-containing neutralizing agents operating at strongly alkaline pH, one can expect MeS to react stoichiometrically with the hypochlorite it encounters. This suggests utility of MeS in lieu of such highly hazardous surrogates as monochloroalkyl sulfides as a simulant for threat scenarios involving the stoichiometric decomposition of sulfur mustard. Specifically, the extent of coverage of the simulant on a fabric by the neutralizing agent can be directly measured. Similar reactivity toward other halogen oxidizing agents is likely but remains to be demonstrated.

  8. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs.

  9. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    International Nuclear Information System (INIS)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs

  10. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    DFT global chemical reactivity descriptors (chemical hardness, total energy, electronic chemical potential, and electrophilicity) are calculated for the isomers and used to predict their relative stability and reactivity. The chemical reactivity indices are found to be related to the bond angle defined by the cis carbonyls and the ...

  11. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  12. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  13. The effect of FR enhancement in reactive ion beam sputtered Bi, Gd, Al-substituted iron- garnets: Bi2O3 nanocomposite films

    OpenAIRE

    Berzhansky, V.; Shaposhnikov, A.; Karavainikov, A.; Prokopov, A.; Mikhailova, T.; Lukienko, I.; Kharchenko, Yu.; Miloslavskaya, O.; Kharchenko, N.

    2012-01-01

    The effect of considerable Faraday rotation (FR) and figure of merit (Q) enhancement in Bi, Gd, Al-substituted iron garnets: Bi2O3 nano-composite films produced by separate reactive ion beam sputtered Bi:YIG and Bi2O3 films was found. It reached threefold enhancement of the FR and twofold of the Q one on GGG substrates.

  14. Chemical modifications of polymer films induced by high energy heavy ions

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Sun Youmei; Liu Changlong; Liu Jie; Jin Yunfan

    2002-01-01

    Polymer films including polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC) were irradiated at room temperature with ions of 35 MeV/u 40 Ar, 25 MeV/u 84 Kr, 15.1 MeV/u 136 Xe and 11.4 MeV/u 238 U to fluences ranging from 9x10 9 to 5.5x10 12 ions/cm 2 . The radiation-induced chemical changes of the materials were investigated by Fourier-transform infrared (FTIR) and ultraviolet/visible spectroscopies. It is found that the absorbance in the ultraviolet and visible range induced by all irradiations follows a linear relationship with fluence. The radiation-induced absorbance normalized to one particle increases slowly with increasing of electronic energy loss below about 8 keV/nm followed by a sharp increase up to about 15 keV/nm above which saturation is reached. FTIR measurements reveal that the materials suffer serious degradation through bond breaking. The absorbance of the typical infrared bands decays exponentially with increase of ion fluence and the bond-disruption cross-section shows a sigmoid variation with electronic energy loss. In PET loss of crystallinity is attributed to the configuration transformation of the ethylene glycol residue from trans into the gauche. Alkyne end groups are induced in all the materials above certain electronic energy loss threshold, which is found to be about 0.8 keV/nm for PS and 0.4 keV/nm for PC. The production cross-section of alkyne end group increases with increasing of electronic energy loss and shows saturation at high electronic energy loss values. It is concluded that not only the physical processes but also the chemical processes of the energy deposition determine the modification of polymer

  15. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  16. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate

    Directory of Open Access Journals (Sweden)

    Dandan Men

    2018-02-01

    Full Text Available Two-dimensional (2D periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO2 nanopillar arrays decorated with Ag nanoparticles (NPs with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE, depositing Ag layer and annealing. For the prepared SiO2 nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO2 nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP and rhodamine 6G (R6G due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO2 nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density “hotspots” derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  17. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate.

    Science.gov (United States)

    Men, Dandan; Wu, Yingyi; Wang, Chu; Xiang, Junhuai; Yang, Ganlan; Wan, Changjun; Zhang, Honghua

    2018-02-04

    Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO₂ nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO₂ nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO₂ nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density "hotspots" derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  18. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-05-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25-30 % of the total reactivities), but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this work, we suggest that water vapor

  19. The influence of condensed tannin structure on rate of microbial mineralization and reactivity to chemical assays.

    Science.gov (United States)

    Norris, Charlotte E; Preston, Caroline M; Hogg, Karen E; Titus, Brian D

    2011-03-01

    We examined how tannin structure influences reactivity in tannin assays and carbon and nitrogen mineralization. Condensed tannins from the foliage of ten tree and shrub species and from pecan shells (Carya illinoensis) had different proportions of: (a) epicatechin (cis) and catechin (trans) isomers, (b) procyanidin (PC) and prodelphinidin (PD) monomers, and (c) different chain lengths. The response of each tannin to several widely used tannin assays was determined. Although there was some variation in response to proanthocyanidin (butanol/HCl) and Folin Ciocalteu assays, we did not deduce any predictable relationship between tannin structure and response to either assay. There was little variation in protein precipitation among the different tannins. To assess biological activity, six of the tannins were incubated with forest humus for 22 days. We determined that, while PC-based tannins remained at least partly extractable for the duration of the incubation, tannins with a high proportion of PD subunits rapidly became unextractable from soil. There was a positive correlation between net nitrogen mineralization and cis chemical structure. Carbon mineralization was enhanced initially by the addition of tannins to humus, but after 22 days, a negative correlation between the proportion of cis subunits and respiration was determined. Overall, we were not able to demonstrate consistent effects of structure on either microbial mineralization or reactivity to chemical assays; such relationships remain elusive.

  20. Some radiation chemical aspects of nuclear engineering

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Kabakchi, S.A.; Egorov, G.F.

    1988-01-01

    Some radiation chemical aspects of nuclear engineering are discussed (predominantly on the base of the works performed in the Soviet Union). The data on the influence of temperature within the range of 0-300 0 C on the yields of water radiolysis products are considered. The results obtained from the study of reactivity of actinide ions towards inorganic free radicals in acid aqueous solutions are summarized. The information on composition and properties of the products of radiolytic transformations of different extragents and diluents and on their influence on the behaviour of extraction systems during processing of irradiated nuclear fuel is presented. (author)

  1. Comparison of mass transfer coefficient approach and Nernst-Planck formulation in the reactive transport modeling of Co, Ni, and Ag removal by mixed-bed ion-exchange resins

    International Nuclear Information System (INIS)

    Bachet, Martin; Jauberty, Loic; De Windt, Laurent; Dieuleveult, Caroline de; Tevissen, Etienne

    2014-01-01

    Experiments performed under chemical and flow conditions representative of pressurized water reactors (PWR) primary fluid purification by ion exchange resins (Amberlite IRN9882) are modeled with the OPTIPUR code, considering 1D reactive transport in the mixed-bed column with convective/dispersive transport between beads and electro-diffusive transport within the boundary film around the beads. The effectiveness of the purification in these dilute conditions is highly related to film mass transfer restrictions, which are accounted for by adjustment of a common mass transfer coefficient (MTC) on the experimental initial leakage or modeling of species diffusion through the bead film by the Nernst-Planck equation. A detailed analysis of the modeling against experimental data shows that the Nernst-Planck approach with no adjustable parameters performs as well as, or better than, the MTC approach, particularly to simulate the chromatographic elution of silver by nickel and the subsequent enrichment of the solution in the former metal. (authors)

  2. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    International Nuclear Information System (INIS)

    Yang, Hongyu; Tang, Zhenghua; Wang, Likai; Zhou, Weijia; Li, Ligui; Zhang, Yongqing; Chen, Shaowei

    2016-01-01

    Highlights: • Apparent color change upon the addition of Hg"2"+ or As"3"+ ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg"2"+ ions. • The Hg"2"+ concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg"2"+ or As"3"+ ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg"2"+, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg"2"+ reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  3. AES, EELS and TRIM simulation method study of InP(100 subjected to Ar+, He+ and H+ ions bombardment.

    Directory of Open Access Journals (Sweden)

    Abidri B.

    2012-06-01

    Full Text Available Auger Electron Spectroscopy (AES and Electron Energy Loss Spectroscopy (EELS have been performed in order to investigate the InP(100 surface subjected to ions bombardment. The InP(100 surface is always contaminated by carbon and oxygen revealed by C-KLL and O-KLL AES spectra recorded just after introduction of the sample in the UHV spectrometer chamber. The usually cleaning process of the surface is the bombardment by argon ions. However, even at low energy of ions beam (300 eV indium clusters and phosphorus vacancies are usually formed on the surface. The aim of our study is to compare the behaviour of the surface when submitted to He+ or H+ ions bombardment. The helium ions accelerated at 500V voltage and for 45 mn allow removing contaminants but induces damaged and no stoichiometric surface. The proton ions were accelerated at low energy of 500 eV to bombard the InP surface at room temperature. The proton ions broke the In-P chemical bonds to induce the formation of In metal islands. Such a chemical reactivity between hydrogen and phosphorus led to form chemical species such as PH and PH3, which desorbed from the surface. The chemical susceptibly and the small size of H+ advantaged their diffusion into bulk. Since the experimental methods alone were not able to give us with accuracy the disturbed depth of the target by these ions. We associate to the AES and EELS spectroscopies, the TRIM (Transport and Range of Ions in Matter simulation method in order to show the mechanism of interaction between Ar+, He+ or H+ ions and InP and determine the disturbed depth of the target by argon, helium or proton ions.

  4. Reactivity of polychlorinated biphenyls in nucleophilic and electrophilic substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunova, Tatyana I., E-mail: gorbunova@ios.uran.ru [I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Kovalevskoy St., 22, Ekaterinburg 620990 (Russian Federation); Subbotina, Julia O. [Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira St., 19, Ekaterinburg 620002 (Russian Federation); Saloutin, Viktor I.; Chupakhin, Oleg N. [I. Ya. Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Kovalevskoy St., 22, Ekaterinburg 620990 (Russian Federation)

    2014-08-15

    Graphical abstract: - Highlights: • Quantum chemical calculations were carried out for PCBs congeners. • Calculated descriptors were used to explain the PCBs reactivity in S{sub N} and S{sub E} substitutions. • Obtained data were used to estimate the PCBs reactivity in the S{sub N} reactions. • Calculated descriptors were insufficient to explain the PCBs reactivity in the S{sub E} reactions. • New neutralization methods of the large-capacity PCBs were discussed. - Abstract: To explain the chemical reactivity of polychlorinated biphenyls in nucleophilic (S{sub N}) and electrophilic (S{sub E}) substitutions, quantum chemical calculations were carried out at the B3LYP/6-31G(d) level of the Density Functional Theory in gas phase. Carbon atomic charges in biphenyl structure were calculated by the Atoms-in-Molecules method. Chemical hardness and global electrophilicity index parameters were determined for congeners. A comparison of calculated descriptors and experimental data for congener reactivity in the S{sub N} and S{sub E} reactions was made. It is shown that interactions in the S{sub N} mechanism are reactions of the hard acid–hard base type, these are the most effective in case of highly chlorinated substrates. To explain the congener reactivity in the S{sub E} reactions, correct descriptors were not established. The obtained results can be used to carry out chemical transformations of the polychlorinated biphenyls in order to prepare them for microbiological destruction or preservation.

  5. A model of chemical etching of olivine in the vicinity of the trajectory of a swift heavy ion

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, S.A., E-mail: s.a.gorbunov@mail.ru [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53, 119991 Moscow (Russian Federation); Rymzhanov, R.A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Starkov, N.I. [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53, 119991 Moscow (Russian Federation); Volkov, A.E. [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53, 119991 Moscow (Russian Federation); Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); National Research Centre ‘Kurchatov Institute’, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Malakhov, A.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2015-12-15

    Searching of superheavy elements, the charge spectra of heavy nuclei in Galactic Cosmic Rays was investigated within the OLYMPIA experiment using the database of etched ion tracks in meteorite olivine. Etching results in the formation of hollow syringe-like channels with diameters of 1–10 μm along the trajectories of these swift heavy ions (SHI). According to the activated complex theory, the local chemical activity is determined by an increase of the specific Gibbs energy of the lattice stimulated by structure transformations, long-range elastic fields, and interatomic bonds breaking generated in the vicinity of the ion trajectory. To determine the dependencies of the Gibbs free energy increase in SHI tracks in olivine on the mass, energy and charge of a projectile, we apply a multiscale model of excitation and relaxation of materials in the vicinity of the SHI trajectory (SHI tracks). Effect of spreading of fast electrons from the ion trajectory causing neutralization of metallic atoms resulting in an increase of the chemical activity of olivine at long distances from the ion trajectory (up to 5 μm) is estimated and discussed.

  6. Technology and applications of broad-beam ion sources used in sputtering. Part II. Applications

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Kaufman, H.R.

    1982-01-01

    The developments in broad-beam ion source technology described in the companion paper (Part I) have stimulated a rapid expansion in applications to materials processing. These applications are reviewed here, beginning with a summary of sputtering mechanisms. Next, etching applications are described, including microfabrication and reactive ion beam etching. The developing area of surface layer applications is summarized, and related to the existing fields of oxidation and implantation. Next, deposition applications are reviewed, including ion-beam sputter deposition and the emerging technique of ion-assisted vapor deposition. Many of these applications have been stimulated by the development of high current ion sources operating in the energy range of tens of hundreds of eV. It is in this energy range that ion-activated chemical etching is efficient, self-limiting compound layers can be grown, and the physical properties of vapor-deposited films can be modified. In each of these areas, broad ion beam technology provides a link between other large area plasma processes and surface analytical techniques using ion beams

  7. Reactivity of two hydrate forms of europium(3) ethylenediaminetetraacetate in the processes of central ion substitution

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.

    1985-01-01

    Kinetics of central ion substitution in the system EuA - -Cu 2+ , where A 4- -ethylenediaminetetraacetate (pH 6.0, t=25-55 deg C), has been studied spectrophotometrically. It is shown, that the form EuA(H 2 O) 3 - is more reactive as compared with EuA(H 2 O) 2 - . It is found, that equilibrium constant of the process EuA(H 2 O) 3 - reversible EuA(H 2 O) 2 - (1) equals 1 at t=36.2 deg C. The values ΔH and ΔS of the process (1), constituting 13.0+-3.2 kJ/mol and 41.8+-5.5 J/molxdeg respectively, are calculated

  8. Ultraviolet Laser Damage Dependence on Contamination Concentration in Fused Silica Optics during Reactive Ion Etching Process

    Directory of Open Access Journals (Sweden)

    Laixi Sun

    2018-04-01

    Full Text Available The reactive ion etching (RIE process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique.

  9. An ion-neutral model to investigate chemical ionization mass spectrometry analysis of atmospheric molecules - application to a mixed reagent ion system for hydroperoxides and organic acids

    Science.gov (United States)

    Heikes, Brian G.; Treadaway, Victoria; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.

    2018-04-01

    An ion-neutral chemical kinetic model is described and used to simulate the negative ion chemistry occurring within a mixed-reagent ion chemical ionization mass spectrometer (CIMS). The model objective was the establishment of a theoretical basis to understand ambient pressure (variable sample flow and reagent ion carrier gas flow rates), water vapor, ozone and oxides of nitrogen effects on ion cluster sensitivities for hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HFo) and acetic acid (HAc). The model development started with established atmospheric ion chemistry mechanisms, thermodynamic data and reaction rate coefficients. The chemical mechanism was augmented with additional reactions and their reaction rate coefficients specific to the analytes. Some existing reaction rate coefficients were modified to enable the model to match laboratory and field campaign determinations of ion cluster sensitivities as functions of CIMS sample flow rate and ambient humidity. Relative trends in predicted and observed sensitivities are compared as instrument specific factors preclude a direct calculation of instrument sensitivity as a function of sample pressure and humidity. Predicted sensitivity trends and experimental sensitivity trends suggested the model captured the reagent ion and cluster chemistry and reproduced trends in ion cluster sensitivity with sample flow and humidity observed with a CIMS instrument developed for atmospheric peroxide measurements (PCIMSs). The model was further used to investigate the potential for isobaric compounds as interferences in the measurement of the above species. For ambient O3 mixing ratios more than 50 times those of H2O2, O3-(H2O) was predicted to be a significant isobaric interference to the measurement of H2O2 using O2-(H2O2) at m/z 66. O3 and NO give rise to species and cluster ions, CO3-(H2O) and NO3-(H2O), respectively, which interfere in the measurement of CH3OOH using O2-(CH3OOH) at m/z 80. The CO3-(H2O

  10. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    Science.gov (United States)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  11. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Newsom, H.C.

    1999-01-01

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted

  12. Biomass as biosorbent for molybdenum ions

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Santos, Jacinete L. dos; Damasceno, Marcos O.; Egute, Nayara dos S.; Moraes, Adeniane A.N.; Santos, Bruno Z.

    2013-01-01

    Biosorbents have been focused as renewable materials of low cost, and have been used for metal removal from the wastewater by adsorption phenomenon. Biosorbents are prepared of biomass, whose reactive sites in its chemical structure have affinity to bind to metal ions. In this work, performance of corn husk, sugarcane bagasse, coir, banana peel, fish scale, chitin and chitosan as biosorbents of molybdenum (VI) ions in aqueous medium was evaluated. The adsorption experiments were investigated in a batch system varying the pH solution from 0.5 to 12 and the contact time between the phases from 2 min to 70 min. 99 Mo radioisotope was used as radioactive tracer for analysis of molybdenum ions by gamma spectroscopy using a HPGe detector. Results revealed that acidity of the solution favored the adsorption of Mo (VI) ions on the all biosorbents. Adsorption values higher than 85% were found on sugarcane bagasse, coir, corn husk, chitin and chitosan at pH 2.0. Only the chitosan was dissolved at pH 0.5 and a gel was formed. The models of pseudo-second order and external film diffusion described the kinetics of adsorption of Mo ions on the coir. This work showed that the studied biomass has high potential to be used as biosorbent of molybdenum ions from acidic wastewater, and the kinetics of Mo adsorption on the coir suggested high-affinity adsorption governed by chemisorption. (author)

  13. Biomass as biosorbent for molybdenum ions

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Mitiko; Santos, Jacinete L. dos; Damasceno, Marcos O.; Egute, Nayara dos S.; Moraes, Adeniane A.N.; Santos, Bruno Z., E-mail: myamaura@ipen.br, E-mail: jlsantos@ipen.br, E-mail: molidam@ipen.br, E-mail: nayara.egute@usp.br, E-mail: adenianemrs@ig.com.br, E-mail: bzsantos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Biosorbents have been focused as renewable materials of low cost, and have been used for metal removal from the wastewater by adsorption phenomenon. Biosorbents are prepared of biomass, whose reactive sites in its chemical structure have affinity to bind to metal ions. In this work, performance of corn husk, sugarcane bagasse, coir, banana peel, fish scale, chitin and chitosan as biosorbents of molybdenum (VI) ions in aqueous medium was evaluated. The adsorption experiments were investigated in a batch system varying the pH solution from 0.5 to 12 and the contact time between the phases from 2 min to 70 min. {sup 99}Mo radioisotope was used as radioactive tracer for analysis of molybdenum ions by gamma spectroscopy using a HPGe detector. Results revealed that acidity of the solution favored the adsorption of Mo (VI) ions on the all biosorbents. Adsorption values higher than 85% were found on sugarcane bagasse, coir, corn husk, chitin and chitosan at pH 2.0. Only the chitosan was dissolved at pH 0.5 and a gel was formed. The models of pseudo-second order and external film diffusion described the kinetics of adsorption of Mo ions on the coir. This work showed that the studied biomass has high potential to be used as biosorbent of molybdenum ions from acidic wastewater, and the kinetics of Mo adsorption on the coir suggested high-affinity adsorption governed by chemisorption. (author)

  14. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  15. Deep reactive ion etching of fused silica using a single-coated soft mask layer for bio-analytical applications

    International Nuclear Information System (INIS)

    Ray, Tathagata; Zhu, Haixin; Meldrum, Deirdre R

    2010-01-01

    In this note, we present our results from process development and characterization of reactive ion etching (RIE) of fused silica using a single-coated soft masking layer (KMPR® 1025, Microchem Corporation, Newton, MA). The effects of a number of fluorine-radical-based gaseous chemistries, the gas flow rate, RF power and chamber pressure on the etch rate and etching selectivity of fused silica were studied using factorial experimental designs. RF power and pressure were found to be the most important factors in determining the etch rate. The highest fused silica etch rate obtained was about 933 Å min −1 by using SF 6 -based gas chemistry, and the highest etching selectivity between the fused silica and KMPR® 1025 was up to 1.2 using a combination of CF 4 , CHF 3 and Ar. Up to 30 µm deep microstructures have been successfully fabricated using the developed processes. The average area roughness (R a ) of the etched surface was measured and results showed it is comparable to the roughness obtained using a wet etching technique. Additionally, near-vertical sidewalls (with a taper angle up to 85°) have been obtained for the etched microstructures. The processes developed here can be applied to any application requiring fabrication of deep microstructures in fused silica with near-vertical sidewalls. To our knowledge, this is the first note on deep RIE of fused silica using a single-coated KMPR® 1025 masking layer and a non-ICP-based reactive ion etcher. (technical note)

  16. Effects of humidity on the quantitative determination of HCl, NOx, H2S, and NH3 using a three-stage filter pack with ion chromatography analysis

    International Nuclear Information System (INIS)

    Borek, T.T.; Wu, C.F.

    1993-01-01

    Low-level transuranic (TRU) waste to be stored underground at the Waste Isolation Pilot Plant (WIPP) has the potential to generate low levels of reactive gases such as HCl, NO x H 2 S, and NH 3 through radiological, biological, and chemical (corrosion) processes. Because of the low levels of gas expected to be produced (< 1 ppM), a method was developed which includes the simultaneous sampling of gases using chemically treated filter papers and analysis of the extracted ions by ion chromatography. To determine the effects of humidification on the collection and determination of reactive gases, a humidification system was added to the trace gas generator system to produce a relative humidity approximately equal to that in the Humid Test Bin. This humidification system consisted of gas washing bottles filled with saturated brine (NaCl) that has been shown to produce a relative humidity of approximately 75% in the temperature range of 68 degree F to 86 degree

  17. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Chemical Shuttle Additives in Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Mary

    2013-03-31

    than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  19. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    Science.gov (United States)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  20. The chemical reactivity of the Martian soil and implications for future missions

    Science.gov (United States)

    Zent, Aaron P.; Mckay, Christopher P.

    1994-01-01

    Possible interpretations of the results of the Viking Biology Experiments suggest that greater than 1 ppm of a thermally labile oxidant, perhaps H2O2, and about 10 ppm of a thermally stable oxidant are present in the martian soil. We reexamine these results and discuss implications for future missions, the search for organics on Mars, and the possible health and engineering effects for human exploration. We conclude that further characterization of the reactivity of the martian regolith materials is warrented-although if our present understanding is correct the oxidant does not pose a hazard to humans. There are difficulties in explaining the reactivity of the Martian soil by oxidants. Most bulk phase compounds that are capable of oxidizing H2O to O2 per the Gas Exchange Experiment (GEx) are thermally labile or unstable against reduction by atmospheric CO2. Models invoking trapped O2 or peroxynitrates (NOO2(-)) require an unlikely geologic history for the Viking Lander 2 site. Most suggested oxidants, including H2O2, are expected to decompose rapidly under martian UV. Nonetheless, we conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant. The GEx results may be due to catalytic decomposition of an unstable oxidizing material by H2O. We show that interfacial reaction sites covering less than 1% of the available soil surfaces could explain the Viking Biology Experiments results.

  1. The reactive metabolite target protein database (TPDB)--a web-accessible resource.

    Science.gov (United States)

    Hanzlik, Robert P; Koen, Yakov M; Theertham, Bhargav; Dong, Yinghua; Fang, Jianwen

    2007-03-16

    The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins. The Reactive Metabolite Target Protein Database (TPDB) is a comprehensive, curated, searchable, documented compilation of publicly available information on the protein targets of reactive metabolites of 18 well-studied chemicals and drugs of known toxicity. TPDB software enables i) string searches for author names and proteins names/synonyms, ii) more complex searches by selecting chemical compound, animal species, target tissue and protein names/synonyms from pull-down menus, and iii) commonality searches over multiple chemicals. Tabulated search results provide information, references and links to other databases. The TPDB is a unique on-line compilation of information on the covalent modification of cellular proteins by reactive metabolites of chemicals and drugs. Its comprehensiveness and searchability should facilitate the elucidation of mechanisms of reactive metabolite toxicity. The database is freely available at http://tpdb.medchem.ku.edu/tpdb.html.

  2. Nuclear chemical method for preparation of free carbenium ions and radiochemical investigation of reactions of these particles

    International Nuclear Information System (INIS)

    Nefedov, V.D.; Sinotova, E.N.; Toropova, M.A.

    1980-01-01

    Tritium nuclear transformation (β-decay) in the composition of the molecules of hydrocarbons, appearance of primary molecular ions and formation of free carbenium ion are the main items of nuclear-chemical method of preparation of free carbenium ions. The method permits to prepare carbenium ions present in free state, i.e. without counterion and without solvate sheath of variou nitial localization of the charge. The rate of carbenium ion generation is strictly definite and does not depend upon outer conditions. The method suggested permits to prepare carbenium ions in all phases, study their reactions with individual substances in gaseous, liquid and solid states. The study of ion-molecular reactions is carried out using radiochemical method. The analysis of the products is made using the method of gaseous radiochromatography. Development of preparation techniques of carbenium ions and their analogues, study of the reactions of these particles with different classes of compounds, investigation of the effect of different factors upon procedure of ion-molecular reactions are the main directions of the investigations

  3. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongyu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Tang, Zhenghua, E-mail: zhht@scut.edu.cn [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Wang, Likai; Zhou, Weijia; Li, Ligui [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhang, Yongqing [Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Chen, Shaowei, E-mail: shaowei@ucsc.edu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2016-08-15

    Highlights: • Apparent color change upon the addition of Hg{sup 2+} or As{sup 3+} ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg{sup 2+} ions. • The Hg{sup 2+} concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg{sup 2+} or As{sup 3+} ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg{sup 2+}, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg{sup 2+} reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  4. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  5. Application of Photocured Polymer Ion Selective Membranes for Solid-State Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Natalia Abramova

    2015-06-01

    Full Text Available Application of conducting polymers with additional functional groups for a solid contact formation and photocurable membranes as sensitive elements of solid-state chemical sensors is discussed. Problems associated with application of UV-curable polymers for sensors are analyzed. A method of sensor fabrication using copolymerized conductive layer and sensitive membrane is presented and the proof of concept is confirmed by two examples of solid-contact electrodes for Ca ions and pH.

  6. Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code

    Science.gov (United States)

    Marcolongo, Juan P.; Zeida, Ari; Semelak, Jonathan A.; Foglia, Nicolás O.; Morzan, Uriel N.; Estrin, Dario A.; González Lebrero, Mariano C.; Scherlis, Damián A.

    2018-03-01

    In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

  7. Multi-scale modelling of ions in solution: from atomistic descriptions to chemical engineering

    International Nuclear Information System (INIS)

    Molina, J.J.

    2011-01-01

    Ions in solution play a fundamental role in many physical, chemical, and biological processes. The PUREX process used in the nuclear industry to the treatment of spent nuclear fuels is considered as an example. For industrial applications these systems are usually described using simple analytical models which are fitted to reproduce the available experimental data. In this work, we propose a multi-scale coarse graining procedure to derive such models from atomistic descriptions. First, parameters for classical force-fields of ions in solution are extracted from ab-initio calculations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution functions measured in classical molecular dynamics simulations, allowing us to define an implicit solvent model of electrolytes. Finally, perturbation calculations are performed to define the best possible representation for these systems, in terms of charged hard-sphere models. Our final model is analytical and contains no free 'fitting' parameters. It shows good agreement with the exact results obtained from Monte-Carlo simulations for the thermodynamic and structural properties. Development of a similar model for the electrolyte viscosity, from information derived from atomistic descriptions, is also introduced. (author)

  8. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  9. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  10. Theoretical and Experimental Investigation of Pyridyl thiourea Derivatives As Ionophores For Cu(II) Ion Detection

    International Nuclear Information System (INIS)

    Wan Mohd Khairul; Mohd Faizuddin Abu Hasan; Adibah Izzati Daud; Adibah Izzati Daud; Hafiza Mohamed Zuki; Ku Halim Ku Bulat; Maisara Abdul Kadir

    2016-01-01

    Copper (II) ion chemical sensors based on pyridine-thiourea derivatives; N-pyridyl-N ' -(biphenyl-4-carbonyl)thiourea (L1), and N-pyridyl-N ' -(3,5-dimethy oxybenzoyl)thiourea (L2) were synthesised, characterised, and studied as ionophores in the form of thin-films PVC membranes. The ionophores exhibited good responses towards copper (II) ion over the concentration range of 2 x 10 -4 to 10 x 10 -4 M with a limit of detection 1.34 x 10 -5 to 1.48 x 10 -5 M. The proposed sensors L1 and L2 revealed good performance in term of reproducibility and regeneration of the ionophores with low relative standard deviation (RSD) values 4.17 % and 2.74 % respectively. Besides, quantum chemical calculation performed using Gaussian 09 program indicated the oxygen (O) atom from carbonyl moiety (C=O) was the most favourite reactive site and mainly responsible for ionophore Cu(II) interaction. The obtained data revealed pyridine-thiourea derivatives offered great potential as ionophore for the detection of Cu (II) ion. (author)

  11. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2015-01-01

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model

  12. Chemical uranium enrichment with ion exchanger

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Onitsuka, Hatsuki; Obanawa, Heiichiro

    1991-01-01

    The uranium enrichment by using ion-exchange has been studied and developed since 1972. The ion-exchange rate has been improved approx. 3000 times and the electron exchange reaction, which occurs with ion-exchange reaction, was also accelerated with catalyst. Flow disturbance in a ion-exchange column has been fully studied and the value of turbulence has been reduced to 150μm. These results allowed us to design a very fine separation column, in which about 10000 stages can be obtained even when the column is more than 1 m in diameter. In the course of the development, a self-regenerating reaction between the redox agents was discovered and incorporated into the process, and has resulted in a reduction of 70 % in the separation energy requirement. (author)

  13. Spatially-Resolved Ion Trajectory Measurements During Cl2 Reactive Ion Beam Etching and Ar Ion Beam Etching

    International Nuclear Information System (INIS)

    Vawter, G. Allen; Woodworth, Joseph R.; Zubrzycki, Walter J.

    1999-01-01

    The angle of ion incidence at the etched wafer location during RIBE and IBE using Cl 2 , Ar and O 2 ion beams has been characterized using an ion energy and angle analyzer. Effects of beam current and accelerator grid bias on beam divergence and the spatial uniformity of the spread of incident angles are measured. It is observed that increased total beam current can lead to reduced current density at the sample stage due to enhanced beam divergence at high currents. Results are related to preferred etch system design for uniform high-aspect-ratio etching across semiconductor wafers

  14. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    Science.gov (United States)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  15. Study of a new hybrid process combining slurry infiltration and Reactive Chemical Vapour Infiltration for the realisation of Ceramic Matrix Composites

    International Nuclear Information System (INIS)

    Ledain, Olivier

    2014-01-01

    Ceramic matrix composites were originally developed for aerospace,military aeronautics or energy applications thanks to their good properties at high temperature. They are generally made by Chemical Vapor Infiltration (CVI). A new short hybrid process combining fiber preform slurry impregnation of ceramic powders with an innovative Reactive CVI (RCVI) route is proposed to reduce the production time. This route is based on the combination of Reactive Chemical Vapour Deposition (RCVD), which is often used to deposit coatings on fibres, with the Chemical Vapor Infiltration (CVI).In RCVD, the absence of one element of the deposited carbide in the initial gas phase involves the consumption/conversion of the solid substrate. In this work, the RCVD growth and the associated consumption were studied with different parameters in the Ti-H-Cl-C chemical system. The study has been completed with the chemical products analysis, combining XRD, XPS and FTIR. Then, the partial conversion of sub-micrometer carbon powders into titanium carbide and the consolidation of green bodies by RCVI from H 2 /TiCl 4 gaseous infiltration were studied. The residual porosity and the final TiC content were measured in the bulk of the infiltrated powders by image analysis from scanning electron microscopy. Depending on temperature, few hundred micrometers-depth infiltrations are obtained.Finally, the results have been transposed to the RCVI into CMC-type pre-forms. Despite a minimal TiC content of 25% in the overall preform, the results shown a bad homogeneity of the infiltration and a poor cohesion of fibres with RCVI consolidated powder of their environment. (author) [fr

  16. Relativistic total energy and chemical potential of heavy atoms and positive ions

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1984-01-01

    The relativistic Thomas-Fermi theory, with a finite nucleus, is used to study the variation of the chemical potential μ with atomic number Z and number of electrons N (N <= Z). The difference between the total energy of positive ions and that of the corresponding neutral atom has been obtained. The scaling predictions are confirmed by numerical calculations. The first principles calculation of the relativistic Thomas-Fermi total energy of neutral atoms is also studied. (author)

  17. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  18. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    Directory of Open Access Journals (Sweden)

    M. J. Prather

    2018-05-01

    Full Text Available We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25–30 % of the total reactivities, but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this

  19. The surface chemical reactivity of particles and its impact on human health

    Science.gov (United States)

    Setyan, A.; Sauvain, J. J.; Riediker, M.; Guillemin, M.; Rossi, M. J.

    2017-12-01

    The chemical composition of the particle-air interface is the gateway to chemical reactions of gases with condensed phase particles. It is of prime importance to understand the reactivity of particles and their interaction with surrounding gases, biological membranes, and solid supports. We used a Knudsen flow reactor to quantify functional groups on the surface of a few selected particle types. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. Six probe gases have been selected for the identification and quantification of important functional groups: N(CH3)3 for the titration of acidic sites, NH2OH for the detection of carbonyl functions (aldehydes and ketones) and/or oxidized sites owing to its strong reducing properties, CF3COOH and HCl for basic sites of different strength, O3 and NO2 for oxidizable groups. We also studied the kinetics of the reactions between particles and probe gases (uptake coefficient γ0). We tested the surface chemical composition and oxidation states of laboratory-generated aerosols (3 amorphous carbons, 2 flame soots, 2 Diesel particles, 2 secondary organic aerosols [SOA], 4 multiwall carbon nanotubes [MWCNT], 3 TiO2, and 2 metal salts) and of aerosols sampled in several bus depots. The sampling of particles in the bus depots was accompanied by the collection of urine samples of mechanics working full-time in these bus depots, and the quantification of 8-hydroxy-2'-deoxyguanosine, a biomarker of oxidative stress. The increase in oxidative stress biomarker levels over a working day was correlated (pcellular antioxidants.

  20. The Atmospheric Tomography Mission (ATom): Comparing the Chemical Climatology of Reactive Species and Air Parcels from Measurements and Global Models

    Science.gov (United States)

    Prather, M. J.; Flynn, C.; Wennberg, P. O.; Kim, M. J.; Ryerson, T. B.; Hanisco, T. F.; Diskin, G. S.; Daube, B. C.; Commane, R.; McKain, K.; Apel, E. C.; Blake, N. J.; Blake, D. R.; Elkins, J. W.; Hall, S.; Steenrod, S.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Murray, L. T.; Mao, J.; Shindell, D. T.; Wofsy, S. C.

    2017-12-01

    The NASA Atmospheric Tomography Mission (ATom) is building a photochemical climatology of the remote troposphere based on objective sampling and profiling transects over the Pacific and Atlantic Oceans. These statistics provide direct tests of chemistry-climate models. The choice of species focuses on those controlling primary reactivity (a.k.a. oxidative state) of the troposphere, specifically chemical tendencies of O3 and CH4. These key species include, inter alia, O3, CH4, CO, C2H6, other alkanes, alkenes, aromatics, NOx, HNO3, HO2NO2, PAN, other organic nitrates, H2O, HCHO, H2O2, CH3OOH. Three of the four ATom deployments are now complete, and data from the first two (ATom-1 & -2) have been released as of this talk (see espoarchive.nasa.gov/archive/browse/atom). The statistical distributions of key species are presented as 1D and 2D probability densities (PDs) and we focus here on the tropical and mid-latitude regions of the Pacific during ATom-1 (Aug) and -2 (Feb). PDs are computed from ATom observations and 6 global chemistry models over the tropospheric depth (0-12 km) and longitudinal extent of the observations. All data are weighted to achieve equal mass-weighting by latitude regimes to account for spatial sampling biases. The models are used to calculate the reactivity in each ATom air parcel. Reweighting parcels with loss of CH4 or production of O3, for example, allows us to identify which air parcels are most influential, including assessment of the importance of fine pollution layers in the most remote troposphere. Another photochemical climatology developed from ATom, and used to test models, includes the effect of clouds on photolysis rates. The PDs and reactivity-weighted PDs reveal important seasonal differences and similarities between the two campaigns and also show which species may be most important in controlling reactivities. They clearly identify some very specific failings in the modeled climatologies and help us evaluate the chemical

  1. From Chemical Forces to Chemical Rates: A Historical/Philosophical Foundation for the Teaching of Chemical Equilibrium

    Science.gov (United States)

    Quilez, Juan

    2009-01-01

    With this paper, our main aim is to contribute to the realisation of the chemical reactivity concept, tracing the historical evolution of the concept of chemical affinity that eventually supported the concept of chemical equilibrium. We will concentrate on searching for the theoretical grounds of three key chemical equilibrium ideas: "incomplete…

  2. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup

  3. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.

    Science.gov (United States)

    Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R

    2006-04-15

    The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.

  4. Topological analysis (BCP) of vibrational spectroscopic studies, docking, RDG, DSSC, Fukui functions and chemical reactivity of 2-methylphenylacetic acid

    Science.gov (United States)

    Kavimani, M.; Balachandran, V.; Narayana, B.; Vanasundari, K.; Revathi, B.

    2018-02-01

    Experimental FT-IR and FT-Raman spectra of 2-methylphenylacetic acid (MPA) were recorded and theoretical values are also analyzed. The non-linear optical (NLO) properties were evaluated by determination of first (5.5053 × 10- 30 e.s.u.) and second hyper-polarizabilities (7.6833 × 10- 36 e.s.u.) of the title compound. The Multiwfn package is used to find the weak non-covalent interaction (Van der Wall interaction) and strong repulsion (steric effect) of the molecule and examined by reduced density gradient. The molecular electrostatic potential (MEP) analysis used to find the most reactive sites for the electrophilic and nucleophilic attack. The chemical activity (electronegativity, hardness, chemical softness and chemical potential) of the title compound was predicted with the help of HOMO-LUMO energy values. The natural bond orbital (NBO) has been analyzed the stability of the molecule arising from the hyper-conjugative interaction. DSSCs were discussed in structural modifications that improve the electron injection efficiency of the title compound (MPA). The Fukui functions are calculated in order to get information associated with the local reactivity properties of the title compound. The binding sites of the two receptors were reported by molecular docking field and active site bond distance is same 1.9 Å. The inhibitor of the title compound forms a stable complex with 1QYV and 2H1K proteins at the binding energies are - 5.38 and - 5.85 (Δ G in kcal/mol).

  5. Plasma diagnostics with electrostatic probes in the reactive low voltage ion plating process

    International Nuclear Information System (INIS)

    Lechleitner, T.; Huber, D.; Pulker, H.K.

    2002-01-01

    The analysis of cold plasmas, which are used in thin film coating techniques, is mainly important for the understanding of the correlation between the film properties and the plasma (or the process) parameters. With the knowledge of these correlations, one is able to optimise and eventually improve the coating processes for the production of films with certain desirable properties. The plasma for the reactive-low-voltage-ion-plating processes is a cold non-isothermal plasma produced by a low-pressure dc non-self sustained arc discharge, controlled by two main parameters, the arc current and the total gas pressure in the chamber. It was shown that the arc current is in a direct linear relation to the degree of ionization and the increase of the total gas pressure has a contrary effect. Besides, it was also demonstrated, that the usage of electrostatic probes for the plasma analysis od deposition processes is a powerful tool to complete the common plasma monitor measurements (energy analysing quadrupol mass spectrometer) and to improve the understanding of industrially used plasma. (nevyjel)

  6. Solvent extraction of some metal ions by dithiocarbamate types of chemically modified lipophilic chitosan

    International Nuclear Information System (INIS)

    Inoue, K.; Nakagawa, H.; Naganawa, H.; Tachimori, S.

    2001-01-01

    Chitosan is a basic polysaccharide containing primary amino groups with high reactivity. we prepared O,O'-decanoyl chitosan and dithiocarbamate O,O'-decanoyl chitosan; the former was soluble in chloroform and toluene, while latter was soluble not only these diluents but also in some aliphatic diluents such as hexane and kerosene which are employed in commercial scale solvent extraction. Solvent extraction by dithiocarbamate O,O'-decanoyl chitosan in kerosene was tested for some base metal ions from sulfuric acid solution. The sequence of selectivity for these metal ions was found to be as follows: Cu(II) >> Ni(II) > Cd(II) ∼ Fe(III) > Co(II) ∼ Zn(II). Copper(II) was quantitatively extracted at pH > 1 and quantitatively stripped with 2 M sulfuric acid solution. Solvent extraction of silver(I) and gold(III) from hydrochloric acid as well as lanthanides and americium(III) from nitrate solution were also tested. Americium was selectively extracted over trivalent lanthanides, suggesting a high possibility for the final treatment of high level radioactive wastes. (authors)

  7. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  8. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Ri [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Kwan-Young [Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Oh, Si Hyoung, E-mail: sho74@kist.re.kr [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2017-01-15

    Graphical abstract: Strategically-designed spinel-structured nano-scale surface layer, LiM{sub x}Mn{sup IV}{sub 1−x}O{sub 4}, featuring a high Li{sup +} ion conductivity and a good chemical stability was applied on Al-doped LiMn{sub 2}O{sub 4} spinel for the drastic improvement of the electrochemical performance at the elevated temperature as a promising cathode material for lithium rechargeable batteries. - Highlights: • Spinel-structured surface layer with a high Li-ion conductivity and a good chemical stability was prepared. • Simple wet process was developed to apply nano-scale surface layer on aluminum doped lithium manganese oxide spinel. • The properties of nano-scale surface layer were characterized by analytical tools including GITT, HR-TEM and XAS. • Materials with surface coating layer exhibit an excellent electrochemical performance at the elevated temperature. - Abstract: Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO{sub 4} and LiMg{sub 0.5}Mn{sub 1.5}O{sub 4} layers on the surface of LiAl{sub 0.1}Mn{sub 1.9}O{sub 4}. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  9. Chemical Reactivity and Spectroscopy Explored From QM/MM Molecular Dynamics Simulations Using the LIO Code

    Directory of Open Access Journals (Sweden)

    Juan P. Marcolongo

    2018-03-01

    Full Text Available In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU, that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

  10. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    Science.gov (United States)

    Scheeren, H. A.

    2003-09-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large natural sources, which are chloromethane (CH3Cl), dichloromethane (CH2Cl2), and trichloromethane (CHCl3), and tetrachloroethylene (C2Cl4) with mainly anthropogenic sources. The NMHC and chlorocarbons are present at relatively low quantities in our atmosphere (10-12 10-9 mol mol-1 of air). Nevertheless, they play a key role in atmospheric photochemistry. For example, the oxidation of NMHC plays a dominant role in the formation of ozone in the troposphere, while the photolysis of chlorocarbons contributes to enhanced ozone depletion in the stratosphere. In spite of their important role, however, their global source and sinks budgets are still poorly understood. Hence, this study aims at improving our understanding of the sources, distribution, and chemical role of reactive NMHC and chlorocarbons in the troposphere and lower stratosphere. To meet this aim, a comprehensive data set of selected C2 C7 NMHC and chlorocarbons has been analyzed, derived from six aircraft measurement campaigns with two different jet aircrafts (the Dutch TUD/NLR Cessna Citation PH-LAB, and the German DLR Falcon) conducted between 1995 and 2001 (STREAM 1995 and 1997 and 1998, LBA-CLAIRE 1998, INDOEX 1999, MINOS 2001). The NMHC and chlorocarbons have been detected by gas-chromatography (GC-FID/ECD) in pre-concentrated whole air samples collected in stainless steel canister on-board the measurement aircrafts. The measurement locations include tropical (Maldives/Indian Ocean and Surinam), midlatitude (Western Europe and Canada) and polar regions (Lapland/northern Sweden) between the equator to about 70ºN, covering different seasons and pollution levels in the troposphere and lower stratosphere. Of

  11. Identification of the chemical constituents of Chinese medicine Yi-Xin-Shu capsule by molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation.

    Science.gov (United States)

    Wang, Hong-ping; Chen, Chang; Liu, Yan; Yang, Hong-Jun; Wu, Hong-Wei; Xiao, Hong-Bin

    2015-11-01

    The incomplete identification of the chemical components of traditional Chinese medicinal formula has been one of the bottlenecks in the modernization of traditional Chinese medicine. Tandem mass spectrometry has been widely used for the identification of chemical substances. Current automatic tandem mass spectrometry acquisition, where precursor ions were selected according to their signal intensity, encounters a drawback in chemical substances identification when samples contain many overlapping signals. Compounds in minor or trace amounts could not be identified because most tandem mass spectrometry information was lost. Herein, a molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation method for complex Chinese medicine chemical constituent analysis was developed. The precursor ions were selected according to their two-dimensional characteristics of retention times and mass-to-charge ratio ranges from herbal compounds, so that all precursor ions from herbal compounds were included and more minor chemical constituents in Chinese medicine were identified. Compared to the conventional automatic tandem mass spectrometry setups, the approach is novel and can overcome the drawback for chemical substances identification. As an example, 276 compounds from the Chinese Medicine of Yi-Xin-Shu capsule were identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structure, reactivity, and biological properties of hidantoines

    International Nuclear Information System (INIS)

    Oliveira, Silvania Maria de; Silva, Joao Bosco Paraiso da; Hernandes, Marcelo Zaldini; Lima, Maria do Carmo Alves de; Galdino, Suely Lins; Pitta, Ivan da Rocha

    2008-01-01

    Hydantoin (imidazolidine-2,4-dione) is a 2,4-diketotetrahydroimidazole discovered by Baeyer in 1861. Thiohydantoins and derivatives were prepared, having chemical properties similar to the corresponding carbonyl compounds. Some biological activities (antimicrobial, anticonvulsant, schistosomicidal) are attributed to the chemical reactivity and consequent affinity of hydantoinic rings towards biomacromolecules. Therefore, knowledge about the chemistry of hydantoins has increased enormously. In this review, we present important aspects such as reactivity of hydantoins, acidity of hydantoins, spectroscopy and crystallographic properties, and biological activities of hydantoin and its derivatives. (author)

  13. Simulations of the dispersion of reactive pollutants in a street canyon, considering different chemical mechanisms and micromixing

    Science.gov (United States)

    Garmory, A.; Kim, I. S.; Britter, R. E.; Mastorakos, E.

    The Stochastic Fields (SF) or Field Monte Carlo method has been used to model the dispersion of reactive scalars in a street canyon, using a simple chemistry and the CBM-IV mechanism. SF is a Probability Density Function (PDF) method which allows both means and variances of the scalars to be calculated as well as considering the effect of segregation on reaction rates. It was found that the variance of reactive scalars such as NO 2 was very high in the mixing region at roof-top level with rms values of the order of the mean values. The effect of segregation on major species such as O 3 was found to be very small using either mechanism, however, some radical species in CBM-IV showed a significant difference. These were found to be the seven species with the fastest chemical timescales. The calculated photostationary state defect was also found to be in error when segregation is neglected.

  14. Industrial ion source technology

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1978-01-01

    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.

  15. Relationships between chemical compositions, microstructure, and corrosion properties in molybdenum ion implanted aluminum

    International Nuclear Information System (INIS)

    Kim, S.

    1986-01-01

    This thesis compares the corrosion properties of Al annealed after implantation with selected Mo concentrations to those of as-implanted Al with same Mo level and to pure Al. The principal results in this investigation are the improvement in the pitting corrosion resistance for Al implanted with Mo relative to pure Al in both the as-implanted and as-implanted-annealed state. The corrosion properties were related to the microstructures and chemical profiles in the surface-modified-regions. Potentiodynamic measurements indicate that stability of various species on the surface controls corrosion behavior in the Al-Mo system. Dual energy Mo implant procedure was used to produce a relatively thick ion implanted layer. The processing parameters were selected to produce specimen containing a continuous Al 12 Mo film with two different microstructures in the annealed material. The most improved pitting corrosion resistance was achieved in an as-implanted alloy which was implanted at 95 keV and then at 25 keV. This alloy was very resistant to pitting corrosion in a neutral aqueous solution containing 0.1 M chloride ion. Surface chemical analysis by Auger electron spectroscopy indicates that the role of Mo in inhibiting pitting corrosion is related to the formation of stable Mo oxide film

  16. Mutations induced by the action of metal ions in Pisum

    Energy Technology Data Exchange (ETDEWEB)

    von Rosen, G

    1957-01-01

    Simple metal ions may induce both radiomimetic effects and genuine gene mutations of the same type which occurs from ionizing radiation and from treatment with some chemical agencies as e.g., mustard gas. The main material during the experiments has been species of Pisum. The biochemical principle which lies behind these reactions is the complex-forming ability among those reactive bivalent metal elements. The author assumes that interruptions of the chelate formation in the cell synthesis form the real background to the observed activity of the metal ions. The possible role in the evolution of the plant- and animal kingdom and the probable value for plant-breeding of the mutation activity observed are suggested. A new field for mutation experiments may here be opened and the results must hitherto be judged as interesting and promising. 13 references, 7 figures, 4 tables.

  17. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    Science.gov (United States)

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  18. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    Science.gov (United States)

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman

  19. Mineralogy controls on reactive transport of Marcellus Shale waters.

    Science.gov (United States)

    Cai, Zhang; Wen, Hang; Komarneni, Sridhar; Li, Li

    2018-07-15

    Produced or flowback waters from Marcellus Shale gas extraction (MSWs) typically are highly saline and contain chemicals including trace metals, which pose significant concerns on water quality. The natural attenuation of MSW chemicals in groundwater is poorly understood due to the complex interactions between aquifer minerals and MSWs, limiting our capabilities to monitor and predict. Here we combine flow-through experiments and process-based reactive transport modeling to understand mechanisms and quantify the retention of MSW chemicals in a quartz (Qtz) column, a calcite-rich (Cal) column, and a clay-rich (Vrm, vermiculite) column. These columns were used to represent sand, carbonate, and clay-rich aquifers. Results show that the types and extent of water-rock interactions differ significantly across columns. Although it is generally known that clay-rich media retard chemicals and that quartz media minimize water-rock interactions, results here have revealed insights that differ from previous thoughts. We found that the reaction mechanisms are much more complex than merely sorption and mineral precipitation. In clay rich media, trace metals participate in both ion exchange and mineral precipitation. In fact, the majority of metals (~50-90%) is retained in the solid via mineral precipitation, which is surprising because we typically expect the dominance of sorption in clay-rich aquifers. In the Cal column, trace metals are retained not only through precipitation but also solid solution partitioning, leading to a total of 75-99% retention. Even in the Qtz column, trace metals are retained at unexpectedly high percentages (~20-70%) due to precipitation. The reactive transport model developed here quantitatively differentiates the relative importance of individual processes, and bridges a limited number of experiments to a wide range of natural conditions. This is particularly useful where relatively limited knowledge and data prevent the prediction of complex rock

  20. Vibrational deactivation on chemically reactive potential surfaces: An exact quantum study of a low barrier collinear model of H + FH, D + FD, H + FD and D + FH

    International Nuclear Information System (INIS)

    Schatz, G.C.; Kuppermann, A.

    1980-01-01

    We study vibrational deactivation processes on chemically reactive potential energy surfaces by examining accurate quantum mechanical transition probabilities and rate constants for the collinear H + FH(v), D + FD(v), H + FD(v), and D + FH(v) reactions. A low barrier (1.7 kcal/mole) potential surface is used in these calculations, and we find that for all four reactions, the reactive inelastic rate constants are larger than the nonreactive ones for the same initial and final vibrational states. However, the ratios of these reactive and nonreactive rate constants depend strongly on the vibrational quantum number v and the isotopic composition of the reagents. Nonreactive and reactive transition probabilities for multiquantum jump transitions are generally comparable to those for single quantum transitions. This vibrationally nonadiabatic behavior is a direct consequence of the severe distortion of the diatomic that occurs in a collision on a low barrier reactive surface, and can make chemically reactive atoms like H or D more efficient deactivators of HF or DF than nonreactive collision partners. Many conclusions are in at least qualitative agreement with those of Wilkin's three dimensional quasiclassical trajectory study on the same systems using a similar surface. We also present results for H + HF(v) collisions which show that for a higher barrier potential surface (33 rather than 1.7 kcal/mole), the deactivation process becomes similar in character to that for nonreactive partners, with v→v-1 processes dominating

  1. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor

    Science.gov (United States)

    Mines, Paul D.; Kaarsholm, Kamilla M. S.; Droumpali, Ariadni; Andersen, Henrik R.; Lee, Wontae; Hwang, Yuhoon

    2017-09-01

    Remediation of contaminated groundwater by nanoscale zero-valent iron (nZVI) is widely becoming a leading environmentally friendly solution throughout the globe. Since a wide range of various nZVI-containing materials have been developed for effective remediation, it is necessary to determine an appropriate way to terminate the reactivity of any nZVI-containing material for a practical experimental procedure. In this study, bimetallic Ni/Fe-NPs were prepared to enhance overall reduction kinetics owing to the catalytic reactivity of nickel on the surface of nZVI. We have tested several chemical strategies in order to terminate nZVI reactivity without altering the concentration of volatile compounds in the solution. The strategies include surface passivation in alkaline conditions by addition of carbonate, and consumption of nZVI by a reaction competitor. Four halogenated chemicals, trichloroethylene, 1,1,1-trichloroethane, atrazine, and 4-chlorophenol, were selected and tested as model groundwater contaminants. Addition of carbonate to passivate the nZVI surface was not effective for trichloroethylene. Nitrate and then bromate were applied to competitively consume nZVI by their faster reduction kinetics. Bromate proved to be more effective than nitrate, subsequently terminating nZVI reactivity for all four of the tested halogenated compounds. Furthermore, the suggested termination method using bromate was successfully applied to obtain trichloroethylene reduction kinetics. Herein, we report the simple and effective method to terminate the reactivity of nZVI by addition of a reducing reactivity competitor.

  2. Sheath-lens probe for negative ion detection in reactive plasmas

    International Nuclear Information System (INIS)

    Stamate, E.; Sugai, H.; Takai, O.; Ohe, K.

    2004-01-01

    A method that allows easy and inexpensive detection of negative ions is introduced. The method is based upon the electrostatic lens effect of the sheath layer evolving to a positively biased planar probe that focuses the negative charges to distinct regions on the surface. Trajectories of negative ions inside the sheath are obtained after computing the potential and electric field distribution by solving in three dimensions the nonlinear Poisson equation. The negative ions' flux to square and disk probes is developed in Ar/SF 6 and O 2 plasmas. The method allows negative ion detection with sensitivity higher than that of Langmuir probes

  3. Detection of methamphetamine in the presence of nicotine using in situ chemical derivatization and ion mobility spectrometry.

    Science.gov (United States)

    Ochoa, Mariela L; Harrington, Peter B

    2004-02-15

    The detection of methamphetamine in the presence of nicotine has been successfully accomplished using in situ chemical derivatization with propyl chloroformate as the derivatization reagent and ion mobility spectrometry (IMS). The rapid detection of methamphetamine is important for forensic scientists in order to establish a chain of evidence and link criminals to the crime scene. Nicotine is pervasive in clandestine drug laboratories from cigarette smoke residue. It has been demonstrated that nicotine obscures the methamphetamine peaks in ion mobility spectrometers due to their similar charge affinities and ion mobilities, which makes their detection a challenging task. As a consequence, false positive or negative responses may arise. In situ chemical derivatization poses as a sensitive, accurate, and reproducible alternative to remove the nicotine background when detecting nanogram amounts of methamphetamine. The derivatization agent was coated onto the sample disk, and the derivatization product corresponding to propyl methamphetamine carbamate was detected. In the present study, in situ chemical derivatization was demonstrated to be a feasible method to detect methamphetamine hydrochloride as the carbamate derivative, which was baseline-resolved from the nicotine peak. Alternating least squares (ALS) was used to model the datasets. A mixture containing both compounds revealed reduced mobilities of 1.61 cm(2)/V.s and 1.54 cm(2)/V.s for methamphetamine and nicotine, respectively. The reduced mobility of propyl methamphetamine carbamate was found at 1.35 cm(2)/V.s.

  4. The reactive metabolite target protein database (TPDB – a web-accessible resource

    Directory of Open Access Journals (Sweden)

    Dong Yinghua

    2007-03-01

    Full Text Available Abstract Background The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins. Description The Reactive Metabolite Target Protein Database (TPDB is a comprehensive, curated, searchable, documented compilation of publicly available information on the protein targets of reactive metabolites of 18 well-studied chemicals and drugs of known toxicity. TPDB software enables i string searches for author names and proteins names/synonyms, ii more complex searches by selecting chemical compound, animal species, target tissue and protein names/synonyms from pull-down menus, and iii commonality searches over multiple chemicals. Tabulated search results provide information, references and links to other databases. Conclusion The TPDB is a unique on-line compilation of information on the covalent modification of cellular proteins by reactive metabolites of chemicals and drugs. Its comprehensiveness and searchability should facilitate the elucidation of mechanisms of reactive metabolite toxicity. The database is freely available at http://tpdb.medchem.ku.edu/tpdb.html

  5. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 3. Relating Solution-Phase to Gas-Phase Structures.

    Science.gov (United States)

    Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J

    2018-06-01

    Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.

  6. Investigation of reactivity of inorganic free radicals relative to ferrocyanide- and octacyanomolybdate-ions in aqueous solutions by the method of pulse radiolysis

    International Nuclear Information System (INIS)

    Gogolev, A.V.; Fedoseev, A.M.; Makarov, I.F.; Pikaev, A.K.

    1989-01-01

    In aqueous solutions by the method of pulse radiolysis (dose per impulse-7.96-47.8 Gy, electron energy-5 MeV) the reactivity of Cl 2 - , Br 2 - , I 2 - , (SCN) 2 - , CO 3 - , SeO 3 - , SO 4 - radicals towards ferrocyanide ions and of Br 2 - , CO 3 - , SO 4 - radicals tawards octacyanomolybdate ions is studied. Linear dependence of rate constant logarithm of Cl 2 - , Br 2 - , I 2 - reactions with cyanide complexes on the difference of redox potentials of reacting particles ΔE 0 is obtained. Radicals containing oxygen react with cyanide complexes more rapidly than can be expected on the basis of ΔE 0 values. The effect of solution ionic strength, charge of reacting particles and radical nature on the reaction rate is discussed

  7. Optimization of time on CF_4/O_2 etchant for inductive couple plasma reactive ion etching of TiO_2 thin film

    International Nuclear Information System (INIS)

    Adzhri, R.; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M.; Arshad, M. K. Md.; Hashim, U.; Ayub, R. M.

    2016-01-01

    In this work, we investigate the optimum etching of titanium dioxide (TiO_2) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF_4/O_2 gases as plasma etchant with ratio of 3:1, three samples of TiO_2 thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF_4 gases with plasma enhancement by O_2 gas able to break the oxide bond of TiO_2 and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  8. Synthesis, characterisation and chemical reactivity of some new binuclear dioxouranium(VI) complexes derived from organic diazo compounds (Preprint No. CT-33)

    International Nuclear Information System (INIS)

    Pujar, M.A.; Pirgonde, B.R.

    1988-02-01

    A new series of binuclear dioxouranium(VI) complexes of polydentatate diazo compounds have been synthesised and characterised adequately by analysis, physio-chemical techniques and reactivity of these complexes. The location of bonding site of ligands, stability of complexes and status of U-O bond and probable structures of these complexes have been discussed. (author). 10 refs

  9. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  10. Comparison of Electrocoagulation and Chemical Coagulation Processes in Removing Reactive red 196 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2016-06-01

    Full Text Available Background: Conventional chemical coagulation is considered as an old method to dye and COD removal in textile effluent. Electrocoagulation (EC process is a robust method to achieve maximum removal. Methods: This study was designed to compare the result of operational parameters including optimum pH and coagulant concentration for chemical coagulation with ferric chloride and alum also, voltage, electrolysis time, initial pH, and conductivity for EC with iron electrodes to remove reactive red 196 (RR 196. Results: The outcomes show that ferric chloride and alum at optimum concentration were capable of removing dye and COD by 79.63 % and 84.83% and 53% and 55%, respectively. In contrast, EC process removed the dye and COD by 99.98% and 90.4%, respectively. Conclusion: The highest treatment efficiency was obtained by increasing the voltage, electrolysis time, pH and conductivity. Increase initial dye concentration reduces removal efficiency. Ultimately, it could be concluded that EC technology is an efficient procedure for handling of colored industrial wastewaters.

  11. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    Science.gov (United States)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  12. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  13. Relation between chemical properties in molten acetamide and water at 98 deg. C

    International Nuclear Information System (INIS)

    Petit, Nicole

    1972-01-01

    An attempt was made to establish the relation between the chemical properties of various cations in water and in molten acetamide at 98 deg. C. A solvent always possesses properties which have some effect on the reactivity of the solute. Various types of interactions (polar, electrostatic, Van der Waals forces, and hydrogen bonds) bind the solvent molecules to the dissolved molecules and ions. Interactions between the solute species and the solvent species are designated: solvation phenomena. In addition to solvation phenomena, another but less direct type of interaction occurs: the solvated ions find themselves in a sensibly continuous medium having a dielectric constant ε which can vary considerably. As the value of the dielectric constant decreases, the electrostatic interactions between the ions increase. The variation is such that these ions can only be considered free for values of ε > 40. This is the case for acetamide and water at 98 deg. C. The solvation of a chemical species belonging to an oxido-reducing system can only be effected by comparing the behavior of such a system with a reference system relatively insensitive to changes in the solvent. The reference system used was a ferrocene-ion/ferricinium couple. The solvation of a chemical species is characterized by a variable designated: the solvation activity coefficient. The chemical and electrochemical properties of various elements (alkali elements, alkaline earths, Cu, Zn, Cd, Hg, Pb, U, Al, Ce, and Eu) in neutral or acid media in acetamide were studied using various electrochemical techniques (principally polarography). These studies led to the establishment of a table of oxido-reducing potentials for molten acetamide. Comparisons with water at 98 deg. C indicate that the metallic cations are more solvated in acetamide than in water. The evaluation of solvation activity coefficients from polarographic measurements (E 1/2 , D M ) led to an approximate estimation of the differences in behavior

  14. Sub-micrometer-scale patterning on Zr-based metallic glass using focused ion beam irradiation and chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Kawasegi, Noritaka [Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Morita, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Yamada, Shigeru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Takano, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Oyama, Tatsuo [Department of Mechanical and Intellectual Systems Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ashida, Kiwamu [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Momota, Sadao [Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology, 185 Tosayamada, Kochi 782-8502 (Japan); Taniguchi, Jun [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Miyamoto, Iwao [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Ofune, Hitoshi [YKK Corporation, 200 Yoshida, Kurobe, Toyama 938-8601 (Japan)

    2007-09-19

    This report describes a method of sub-micrometer-scale rapid patterning on a Zr-based metallic glass surface using a combination of focused ion beam irradiation and wet chemical etching. We found that a Zr-based metallic glass surface irradiated with Ga{sup +} ions could be selectively etched; a concave structure with a width and depth of several tens to hundreds of nanometers rapidly formed in the irradiated area. Moreover, we determined that the etching was enhanced by the presence of Ga{sup +} ions rather than a change in the crystal structure, and the structure could be fabricated while the substrate remained amorphous. The shape of the structure was principally a function of the dose and the etch time.

  15. Chemical reactivities of some interstellar molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M S

    1980-01-01

    Work in the area of chemical evolution during the last 25 years has revealed the formation of a large number of biologically important molecules produced from simple starting materials under relatively simple experimental conditions. Much of this work has resulted from studies under atmospheres simulating that of the primitive earth or other planets. During the last decade, progress has also been made in the identification of chemical constituents of interstellar medium. A number of these molecules are the same as those identified in laboratory experiments. Even though the conditions of the laboratory experiments are vastly different from those of the cool, low-density interstellar medium, some of the similarities in composition are too obvious to go unnoticed. The present paper highlights some of the similarities in the composition of prebiotic molecules and those discovered in the interstellar medium. Also the chemical reactions which some of the common molecules e.g., NH3, HCN, H2CO, HC(triple bond)-C-CN etc. can undergo are surveyed.

  16. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    Science.gov (United States)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react

  18. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  19. Optimizing shape uniformity and increasing structure heights of deep reactive ion etched silicon x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Wright, Jonathan; Simons, Hugh

    2015-01-01

    Line-focusing compound silicon x-ray lenses with structure heights exceeding 300 μm were fabricated using deep reactive ion etching. To ensure profile uniformity over the full height, a new strategy was developed in which the perimeter of the structures was defined by trenches of constant width....... The remaining sacrificial material inside the lens cavities was removed by etching through the silicon wafer. Since the wafers become fragile after through-etching, they were then adhesively bonded to a carrier wafer. Individual chips were separated using laser micro machining and the 3D shape of fabricated...... analysis, where a slight bowing of the lens sidewalls and an insufficiently uniform apex region are identified as resolution-limiting factors. Despite these, the proposed fabrication route proved a viable approach for producing x-ray lenses with large structure heights and provides the means to improve...

  20. Simultaneous resolution of reactive radioactive decay, non-isothermal flow, and migration with application to the performance assessment for HLW repositories

    International Nuclear Information System (INIS)

    Juncosa, R.; Delgado, J.; Font, I.

    2010-01-01

    Radioactive decay is an important subject to take into account when studying the thermo-hydro-dynamic behavior of the buffer clay material used in the containment of radioactive waste. The modern concepts for the multibarrier design of a repository of high level waste in deep geologic formations consider that once canisters have failed, the buffer clay material must ensure the retention and/or delay of radionuclides within the time framework given in the assessment studies. Within the clay buffer, different chemical species are retarded/fixed according to several physicochemical processes (ion exchange, surface complexation, precipitation, matrix diffusion,..) but typical approaches do not consider the eventuality that radioactive species change their chemical nature (i.e. phase) thereby affecting their reactive behavior. The radioactive decay of an element takes place independently of the phase (aqueous, solid or gaseous) to which it belongs. This means that, in terms of radionuclide fixation, some geochemical processes will be effective scavengers (for instance mineral precipitation of crystal growth) while others will not (for instance ion exchange and/or sorption). In this contribution we present a reactive radioactive decay model of any number of chemical components including those that belong to decay series. The model, which is named FLOW-DECAY, also takes into account flow and isotopic migration and it has been applied considering a hypothetical model scenario provided by the project ENRESA 2000 and direct comparison with the results generated by the probabilistic code GoldSim. Results indicate that FLOW-DECAY may simulate the decay processes in a similar way that GoldSim, being the differences related to factors associated to code architecture. (orig.)

  1. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The goal of this task is to develop modified resorcinol-formaldehyde (R-F) resin to improve the chemical/oxidative stability of the resin. R-F resin is a regenerable organic ion-exchange resin that is selective for cesium ion in highly alkaline, high ionic-strength solutions. R-F resin tends to undergo chemical degradation, reducing its ability to remove cesium ion from waste solutions; the mechanistic details of these decomposition reactions are currently unknown. The approach used for this task is chemical modification of the resin structure, particularly the resorcinol ring unit of the polymer resin. This approach is based on prior characterization studies conducted at Pacific Northwest National Laboratory (PNNL) that indicated the facile chemical degradation of the resin is oxidation of the resorcinol ring to the para-quinone structure, with subsequent loss of ion-exchange sites for cesium ion. R-F resin represents an important alternative to current radiocesium remediation technology for tank wastes at both the Hanford and Savannah River sites, particularly if regenerable resins are needed.

  2. High temperature reactive ion etching of iridium thin films with aluminum mask in CF4/O2/Ar plasma

    Directory of Open Access Journals (Sweden)

    Chia-Pin Yeh

    2016-08-01

    Full Text Available Reactive ion etching (RIE technology for iridium with CF4/O2/Ar gas mixtures and aluminum mask at high temperatures up to 350 °C was developed. The influence of various process parameters such as gas mixing ratio and substrate temperature on the etch rate was studied in order to find optimal process conditions. The surface of the samples after etching was found to be clean under SEM inspection. It was also shown that the etch rate of iridium could be enhanced at higher process temperature and, at the same time, very high etching selectivity between aluminum etching mask and iridium could be achieved.

  3. Ab initio study of electron-ion structure factors in binary liquids with different types of chemical bonding

    International Nuclear Information System (INIS)

    Klevets, Ivan; Bryk, Taras

    2014-01-01

    Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed

  4. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    Science.gov (United States)

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  5. Flame Atmospheric Pressure Chemical Ionization Coupled with Negative Electrospray Ionization Mass Spectrometry for Ion Molecule Reactions.

    Science.gov (United States)

    Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie

    2017-07-01

    Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO 3 ) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO 3 -nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO 3 ) was produced in the flame. The HNO 3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO 3 showed the strongest affinity to histidine and formed (M histidine -H+HNO 3 ) - complex ions, whereas some amino acids did not react with HNO 3 at all. Reactions between HNO 3 and histidine residues in AI and AII resulted in the formation of dominant [M AI -H+(HNO 3 )] - and [M AII -H+(HNO 3 )] - ions. Results from analyses of AAs and insulin indicated that HNO 3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO 3 ) n ] 3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins. Graphical Abstract ᅟ.

  6. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms.

    Science.gov (United States)

    Judée, F; Simon, S; Bailly, C; Dufour, T

    2018-04-15

    Cold atmospheric plasmas are weakly ionized gases that can be generated in ambient air. They produce energetic species (e.g. electrons, metastables) as well as reactive oxygen species, reactive nitrogen species, UV radiations and local electric field. Their interaction with a liquid such as tap water can hence change its chemical composition. The resulting "plasma-activated liquid" can meet many applications, including medicine and agriculture. Consequently, a complete experimental set of analytical techniques dedicated to the characterization of long lifetime chemical species has been implemented to characterize tap water treated using cold atmospheric plasma process and intended to agronomy applications. For that purpose, colorimetry and acid titrations are performed, considering acid-base equilibria, pH and temperature variations induced during plasma activation. 16 species are quantified and monitored: hydroxide and hydronium ions, ammonia and ammonium ions, orthophosphates, carbonate ions, nitrite and nitrate ions and hydrogen peroxide. The related consumption/production mechanisms are discussed. In parallel, a chemical model of electrical conductivity based on Kohlrausch's law has been developed to simulate the electrical conductivity of the plasma-activated tap water (PATW). Comparing its predictions with experimental measurements leads to a narrow fitting, hence supporting the self-sufficiency of the experimental set, I.e. the fact that all long lifetime radicals of interest present in PATW are characterized. Finally, to evaluate the potential of cold atmospheric plasmas for agriculture applications, tap water has been daily plasma-treated to irrigate lentils seeds. Then, seedlings lengths have been measured and compared with untreated tap water, showing an increase as high as 34.0% and 128.4% after 3 days and 6 days of activation respectively. The interaction mechanisms between plasma and tap water are discussed as well as their positive synergy on

  7. Reactive intermediates in the gas phase generation and monitoring

    CERN Document Server

    Setser, D W

    2013-01-01

    Reactive Intermediates in the Gas Phase: Generation and Monitoring covers methods for reactive intermediates in the gas phase. The book discusses the generation and measurement of atom and radical concentrations in flow systems; the high temperature flow tubes, generation and measurement of refractory species; and the electronically excited long-lived states of atoms and diatomic molecules in flow systems. The text also describes the production and detection of reactive species with lasers in static systems; the production of small positive ions in a mass spectrometer; and the discharge-excite

  8. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    Science.gov (United States)

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Global Structural Flexibility of Metalloproteins Regulates Reactivity of Transition Metal Ion in the Protein Core: An Experimental Study Using Thiol-subtilisin as a Model Protein.

    Science.gov (United States)

    Matsuo, Takashi; Kono, Takamasa; Shobu, Isamu; Ishida, Masaya; Gonda, Katsuya; Hirota, Shun

    2018-02-21

    The functions of metal-containing proteins (metalloproteins) are determined by the reactivities of transition metal ions at their active sites. Because protein macromolecular structures have several molecular degrees of freedom, global structural flexibility may also regulate the properties of metalloproteins. However, the influence of this factor has not been fully delineated in mechanistic studies of metalloproteins. Accordingly, we have investigated the relationship between global protein flexibility and the characteristics of a transition metal ion in the protein core using thiol-subtilisin (tSTL) with a Cys-coordinated Cu 2+ ion as a model system. Although tSTL has two Ca 2+ -binding sites, the Ca 2+ -binding status hardly affects its secondary structure. Nevertheless, guanidinium-induced denaturation and amide H/D exchange indicated the increase in the structural flexibility of tSTL by the removal of bound Ca 2+ ions. Electron paramagnetic resonance and absorption spectral changes have revealed that the protein flexibility determines the characteristics of a Cu 2+ ion in tSTL. Therefore, global protein flexibility should be recognized as an important factor that regulates the properties of metalloproteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Directory of Open Access Journals (Sweden)

    Min-Chuan Wang

    2016-11-01

    Full Text Available The all-solid-state electrochromic device (ECD with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS and cathodic vacuum arc plasma (CVAP technology has been developed for smart electrochromic (EC glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (ΔT of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  11. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading.

    Science.gov (United States)

    Wang, XinJie; Wu, YanQing; Huang, FengLei

    2017-01-05

    A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    Science.gov (United States)

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  13. Ion-molecule reactions in alkynes

    International Nuclear Information System (INIS)

    Lifshitz, C.; Weiss, M.

    1980-01-01

    Fragment ions from 1,5-hexadiyne are trapped in an electron space charge and allowed to react with the neutral 1,5-hexadiyne present. The reactivities are similar to those of ions of the same elementary formulae in the benzene system. Secondary ions of major abundance observed are, in decreasing order of importance: C 10 H + 8 , C 9 H + 7 , C 12 H + 8 , C 12 H + 9 and C 7 H + 7 . In contrast to the benzene system, the ion C 12 H + 11 is of minor importance. (orig.)

  14. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    Science.gov (United States)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  15. Numerical simulations of heterogeneous chemical reactions coupled to fluid flow in varying thermal fields

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1991-11-01

    A numerical simulator of reactive chemical transport with coupling from precipitation-dissolution reactions to fluid flow, via changes of porosity and permeability, is applied to precipitation-dissolution of quartz and calcite in spatially and temporally variable fields of temperature. Significant effects on fluid flow are found in the quartz-silicic acid system in the presence of persistent, strong gradient of temperature. Transient heat flow in the quartz-silicic acid system and in a calcite-calcium ion-carbonato species system produces vanishingly small effects on fluid flow

  16. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance

    Science.gov (United States)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Jiang, Quanguo

    2018-04-01

    Two-dimensional Ti3C2 MXene nanosheets were functionalized with phenylsulfonic groups derived from in situ generated diazonium ions by the corresponding amine. During the functionalization process, the aryl groups were attached onto the MXene surfaces in the form of strong MXene-aryl (Tisbnd Osbnd C) linkages. Simultaneously, the intercalation of diazonium ions enabled Ti3C2 multi-layers to be delaminated into separate few-layer nanosheets via weak sonication with low energy. As a result of chemical functionalization for MXene Ti3C2, the dispersibility was greatly improved and the specific surface area increased significantly. The grafted functional groups are still stable up to at least 200 °C upon thermogravimetric analysis measurements. With diazonium ions intercalating and electroactive groups grafting between-in MXene layers, the chemically functionalized Ti3C2 electrodes exhibited an enhanced supercapacitive performance, which acquired a specific capacitance more than double that of pristine Ti3C2 samples and excellent cycling stability (91% capacity retention after 10,000 cycles at 3 A g-1). This feasible modification scheme can be also extended to functionalize other types of MXenes materials with this or other aryl diazonium ions as surface modifiers and intercalants, thus offering scope for full potential applications of the new 2D materials.

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. P K Chattaraj. Articles written in Journal of Chemical Sciences. Volume 115 Issue 3 June 2003 pp 195-218 Physical and Theoretical. Chemical reactivity of the compressed noble gas atoms and their reactivity dynamics during collisions with protons · P K Chattaraj B Maiti U ...

  18. Stresses and Temperature Stability of Dense Wavelength Division Multiplexing Filters Prepared by Reactive Ion-Assisted E-Gun Evaporation

    Science.gov (United States)

    Wei, Chao-Tsang; Shieh, Han-Ping D.

    2005-10-01

    In this paper, we report the in situ measurement of the temperature stability of narrow-band-pass filters on different types of substrate, for dense wavelength division multiplexing (DWDM) filters in optical-fiber transmission systems. The DWDM filters were designed as all-dielectric Fabry-Perot filters and fabricated by reactive ion-assisted deposition. Ta2O5 and SiO2 were used as high- and low-refractive-index layers, respectively, for constructing the DWDM filters. The accuracy and stability of the coating process were evaluated for fabricating the DWDM filters for the temperature stability of the center wavelength. The center wavelength shift was determined to be greatly dependent on the coefficient of thermal expansion of the substrate on which the filter is deposited.

  19. Temperature dependence of InN film deposition by an RF plasma-assisted reactive ion beam sputtering deposition technique

    International Nuclear Information System (INIS)

    Shinoda, Hiroyuki; Mutsukura, Nobuki

    2005-01-01

    Indium nitride (InN) films were deposited on Si(100) substrates using a radiofrequency (RF) plasma-assisted reactive ion beam sputtering deposition technique at various substrate temperatures. The X-ray diffraction patterns of the InN films suggest that the InN films deposited at substrate temperatures up to 370 deg C were cubic crystalline InN; and at 500 deg C, the InN film was hexagonal crystalline InN. In a scanning electron microscope image of the InN film surface, facets of cubic single-crystalline InN grains were clearly observed on the InN film deposited at 370 deg C. The inclusion of metallic indium appeared on the InN film deposited at 500 deg C

  20. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch.

    Science.gov (United States)

    Chakraborty, Anirban; Xiang, Mingming; Luo, Cheng

    2013-08-19

    In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles) on the inner surfaces of polystyrene (PS) microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE). Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  1. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    2013-08-01

    Full Text Available In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles on the inner surfaces of polystyrene (PS microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE. Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  2. Investigation on reactivity of iron nickel oxides in chemical looping dry reforming

    International Nuclear Information System (INIS)

    Huang, Zhen; He, Fang; Chen, Dezhen; Zhao, Kun; Wei, Guoqiang; Zheng, Anqing; Zhao, Zengli; Li, Haibin

    2016-01-01

    Iron nickel oxides as oxygen carriers were investigated to clarify the reaction mechanism of NiFe_2O_4 material during the chemical looping dry reforming (CLDR) process. The thermodynamic analysis showed that metallic Fe can be oxidized into Fe_3O_4 by CO_2, but metallic Ni cannot. The oxidizability of the four oxygen carriers was in the order of NiO > synthetic NiFe_2O_4 spinel > NiO-Fe_2O_3 mixed oxides > Fe_2O_3, and the reducibility sequence of their reduced products was synthetic NiFe_2O_4 spinel > NiO-Fe_2O_3 mixed oxides > Fe_2O_3 > NiO. The NiO showed the best oxidizability but it was easy to cause CH_4 cracking and its reduced product (Ni) did not recover lattice oxygen under CO_2 atmosphere. It only produced 74 mL CO for 1 g Fe_2O_3 during the CO_2 reforming because of its weak oxidizability. The Redox ability of synthetic NiFe_2O_4 was obvious higher than that of NiO-Fe_2O_3 mixed oxides due to the synergistic effect of metallic Fe-Ni in the spinel structure. 1 g synthetic NiFe_2O_4 can produce 238 mL CO, which was twice higher than that of 1 g NiO-Fe_2O_3 mixed oxides (111 mL). A part of Fe element was divorced from the NiFe_2O_4 spinel structure after one cycle, which was the major reason for degradation of reactivity of NiFe_2O_4 oxygen carrier. - Highlights: • A synergistic effect of Fe/Ni can improve the reactivity of oxygen carrier (OC). • The oxidizability sequence of four OCs is NiO > NiFe_2O_4 > mixed NiO + Fe_2O_3 > Fe_2O_3. • The reducibility sequence of four OCs is NiFe_2O_4 > mixed NiO + Fe_2O_3 > Fe_2O_3 > NiO. • The formation of Fe (Ni) alloy phase facilitates more CO_2 reduced into CO. • Part of Fe is divorced from the spinel structure, leading to the degeneration of OC reactivity.

  3. COMPARISON OF REACTIVITY OF SYNTHETIC AND BOVINE HYDROXYAPATITE IN VITRO UNDER DYNAMIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2014-03-01

    Full Text Available Hydroxyapatite materials prepared by two methods: synthetic (HA–S and bovine (HA-B granules were exposed to a longterm in vitro test under dynamic conditions. Testing cells, filled up to one fourth (¼V of their volume with the tested material, were exposed to continuous flow of simulated body fluid (SBF for 56 days. The objective of the experiment was to determine whether reactivity of the biomaterials (hydroxyapatites, prepared by different methods but identical in terms of their chemical and phase composition, in SBF were comparable. Analyses of the solutions proved that both materials were highly reactive from the very beginning of interaction with SBF (significant decrease of Ca2+ and (PO43- concentrations in the leachate. SEM/EDS images have shown that the surface of bovine HA-B was covered with a new hydroxyapatite (HAp phase in the first two weeks of the test while synthetic HA–S was covered after two weeks of the immersion in SBF. At the end of the test, day 56, both materials were completely covered with well developed porous HAp phase in form of nano-plates. A calculation of the rate of HAp formation from the concentration of (PO43- ions in SBF leachates confirmed that all removed ions were consumed for the formation of the HAp phase throughout the entire testing time for bovine HA–B and only during the second half of the testing time for synthetic HA–S.

  4. Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method

    International Nuclear Information System (INIS)

    Liu, Haowen; Le, Qi

    2016-01-01

    In this present work, chemical precipitation method was employed for preparing cerium oxide. XRD, SEM, TEM, TGA/DTA and BET were used to investigate the structure, shape and formation mechanism, respectively. No impurities were detected. It was found that alcohol had obvious effection on the growth of the final sample. The shape of the precursor was retained after calcined at 500 °C. This result led to the possibility of an easy scale up to a commercial process. EIS and charge–discharge tests were carried out by using the as-prepared CeO_2 as an anode material for lithium ion batteries. Specially, the initial discharge specific capacity of the rhombus CeO_2 was about 529 mAh g"−"1 and stabilized reversibly at about 374 mAh g"−"1 after 50 cycles. It showed a promising usage as anode materials in lithium ion battery. - Highlights: • Chemical precipitation method was employed for the synthesis of cerium oxide. • Alcohol has obvious effection on the growth of the final sample. • The rhombus CeO_2 showed the better electrochemical properties as anode of lithium ion batteries.

  5. Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haowen, E-mail: liuhwchem@hotmail.com; Le, Qi

    2016-06-05

    In this present work, chemical precipitation method was employed for preparing cerium oxide. XRD, SEM, TEM, TGA/DTA and BET were used to investigate the structure, shape and formation mechanism, respectively. No impurities were detected. It was found that alcohol had obvious effection on the growth of the final sample. The shape of the precursor was retained after calcined at 500 °C. This result led to the possibility of an easy scale up to a commercial process. EIS and charge–discharge tests were carried out by using the as-prepared CeO{sub 2} as an anode material for lithium ion batteries. Specially, the initial discharge specific capacity of the rhombus CeO{sub 2} was about 529 mAh g{sup −1} and stabilized reversibly at about 374 mAh g{sup −1} after 50 cycles. It showed a promising usage as anode materials in lithium ion battery. - Highlights: • Chemical precipitation method was employed for the synthesis of cerium oxide. • Alcohol has obvious effection on the growth of the final sample. • The rhombus CeO{sub 2} showed the better electrochemical properties as anode of lithium ion batteries.

  6. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    International Nuclear Information System (INIS)

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A.; Pedder, Randall E.; Taormina, Christopher R.

    2015-01-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H 3 O + , but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re + with O 2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re 2 2+ is found to charge transfer with O 2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba + , which is reacted with N 2 O to create BaO + , and we find a rate constant that agrees with the literature

  7. Abiotic pyrite reactivity versus nitrate, selenate and selenite using chemical and electrochemical methods

    International Nuclear Information System (INIS)

    Ignatiadis, I.; Betelu, S.; Gaucher, E.; Tournassat, C.; Chainet, F.

    2010-01-01

    Document available in extended abstract form only. This work is part of ReCosy European project (www.recosy.eu), whose main objectives are the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal and providing tools to apply the results to performance assessment/safety case. Redox is one of the main factor affecting speciation and mobility of redox-sensitive radionuclides. Thus, it is of a great importance to investigate the redox reactivity of the host radioactive waste formations, particularly when exposed to redox perturbations. Callovo-Oxfordian formation (COx), a clay rock known as an anoxic and reducing system, was selected in France as the most suitable location to store nuclear waste. Iron (II) sulfide, mostly constituted of pyrite (FeS 2 ), iron (II) carbonate, iron(II) bearing clays and organic matter are considered to account almost entirely for the total reducing capacity of the rock. We report here the redox reactivity of pyrite upon exposure to nitrate (N(V)), selenate (Se(VI)) and selenite (Se(IV)) that possibly occur in the nuclear storage. Both, chemical and electrochemical kinetic approaches were simultaneously conducted such as to (i) determine the kinetics parameters of the reactions and (ii) understand the kinetic mechanisms. In order to reach similar conditions that are encountered in the storage system, all experiments were realised in NaCl 0.1 M, near neutral pH solutions, and an abiotic glove box (O 2 less than 10 -8 M). Chemical approach has consisted to set in contact pyrite in grains with solutions containing respectively nitrate, selenate and selenite. Reactants and products chemical analyses, conducted at different contact times, allowed us to assess the kinetics of oxidant reduction. Electrochemical approach has consisted in the continuous or semi-continuous analysis of large surface pyrite electrodes immersed in solutions with or without oxidant (nitrate

  8. Transformation of alpha-tocopherol (vitamin E) and related chromanol model compounds into their phenoxonium ions by chemical oxidation with the nitrosonium cation.

    Science.gov (United States)

    Lee, Stephen B; Lin, Ching Yeh; Gill, Peter M W; Webster, Richard D

    2005-12-09

    [reaction: see text] Alpha-tocopherol (alpha-TOH), the main oil component making up vitamin E, and its nonnatural solid 6-hydroxy-2,2,5,7,8-pentamethylchroman and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid structurally related analogues were oxidized quantitatively with 2 mol equiv of NO+ SbF6(-) in CH3CN at 233 K to form phenoxonium cations (alpha-TO+ SbF6(-)) in a chemically reversible two-electron/one-proton process. Solution-phase infrared spectroscopy, 1H and 13C NMR spectroscopy, and corresponding theoretical calculations of the spectroscopic data using density-based and wave-function-based models support the identity of the remarkably stable phenoxonium cations. The presence of an oxygen atom in the para position to the hydroxyl group and the chromanol ring structure appear to be important factors in stabilization of the phenoxonium ions, which raises the interesting possibility that the cations play a crucial role in the mode of action of vitamin E in biological systems. Although the phenoxonium cations are reactive toward nucleophiles such as water, they may be moderately stable in the hydrophobic (lipophilic) environment where vitamin E is known to occur naturally.

  9. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  10. Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same

    Science.gov (United States)

    Gerald, II, Rex E.; Ruscic, Katarina J [Chicago, IL; Sears, Devin N [Spruce Grove, CA; Smith, Luis J [Natick, MA; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2012-02-21

    The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  11. Ion Internal Excitation and Co++ 2 Reactivity: Effect On The Titan, Mars and Venus Ionospheric Chemistry

    Science.gov (United States)

    Nicolas, C.; Zabka, J.; Thissen, R.; Dutuit, O.; Alcaraz, C.

    In planetary ionospheres, primary molecular and atomic photoions can be produced with substantial electronic and vibrational internal energy. In some cases, this is known to strongly affect both the rate constants and the branching ratio between the reac- tion products. A previous experimental study (Nicolas et al.) made at the Orsay syn- chrotron radiation facility has shown that many endothermic charge transfer reactions which were not considered in the ionospheric chemistry models of Mars, Venus and Earth have to be included because they are driven by electronic excitation of the parent ions. New measurements on two important reactions for Titan and Mars ionospheres, N+ + CH4 and O+ + CO2, will be presented. Branching ratios between products are very different when the parent atomic ions are prepared in their ground states, N+(3P) and O+(4S), or in their first electronic metastable states N+(1D) and O+(2D or P). 2 As the lifetime of these states are long enough, they survive during the mean time be- tween two collisions in the ionospheric conditions. So, the reactions of these excited states must be included in the ionospheric models. Absolute cross section measurements of the reactivity of stable doubly charged molec- ular ions CO++ and their implications for the Martian ionosphere will also be pre- 2 sented. The molecular dication CO++ production by VUV photoionisation and elec- 2 tron impact in the upper ionosphere of Mars is far from being negligible. However, to determine its concentration, it was necessary to evaluate the major loss channels of these ions. For this purpose, we measured the absolute reaction cross section of the sta- ble dications with CO2, the major neutral species of the Mars ionosphere. CO++ ions 2 were produced either by photoionisation or by electron impact, and a reaction cross section of 45 Å2 with 13CO2 was measured. The reaction leads to charge transfer or to collision induced dissociation. These results were integrated in a model

  12. Hydrogen determination in chemically delithiated lithium ion battery cathodes by prompt gamma activation analysis

    Science.gov (United States)

    Alvarez, Emilio, II

    2007-12-01

    Lithium ion batteries, due to their relatively high energy density, are now widely used as the power source for portable electronics. Commercial lithium ion cells currently employ layered LiCoO2 as a cathode but only 50% of its theoretical capacity can be utilized. The factors that cause the limitation are not fully established in the literature. With this perspective, prompt gamma-ray activation analysis (PGAA) has been employed to determine the hydrogen content in various oxide cathodes that have undergone chemical extraction of lithium (delithiation). The PGAA data is complemented by data obtained from atomic absorption spectroscopy (AAS), redox titration, thermogravimetric analysis (TGA), and mass spectroscopy to better understand the capacity limitations and failure mechanisms of lithium ion battery cathodes. As part of this work, the PGAA facility has been redesigned and reconstructed. The neutron and gamma-ray backgrounds have been reduced by more than an order of magnitude. Detection limits for elements have also been improved. Special attention was given to the experimental setup including potential sources of error and system calibration for the detection of hydrogen. Spectral interference with hydrogen arising from cobalt was identified and corrected for. Limits of detection as a function of cobalt mass present in a given sample are also discussed. The data indicates that while delithiated layered Li1- xCoO2, Li1-xNi 1/3Mn1/3Co1/3O2, and Li1- xNi0.5Mn0.5O2 take significant amounts of hydrogen into the lattice during deep extraction, orthorhombic Li 1-xMnO2, spinel Li1- xMn2O4, and olivine Li1- xFePO4 do not. Layered LiCoO2, LiNi 0.5Mn0.5O2, and LiNi1/3Mn1/3Co 1/3O2 have been further analyzed to assess their relative chemical instabilities while undergoing stepped chemical delithiation. Each system takes increasing amounts of protons at lower lithium contents. The differences are attributed to the relative chemical instabilities of the various cathodes

  13. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    Sudarjanto, Gatut; Keller-Lehmann, Beatrice; Keller, Jurg

    2006-01-01

    The integrated chemical-biological degradation combining advanced oxidation by UV/H 2 O 2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H 2 O 2 /L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  14. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    International Nuclear Information System (INIS)

    Joergensen, S.I.

    1985-01-01

    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  15. Wafer Surface Charge Reversal as a Method of Simplifying Nanosphere Lithography for Reactive Ion Etch Texturing of Solar Cells

    Directory of Open Access Journals (Sweden)

    Daniel Inns

    2007-01-01

    Full Text Available A simplified nanosphere lithography process has been developed which allows fast and low-waste maskings of Si surfaces for subsequent reactive ion etching (RIE texturing. Initially, a positive surface charge is applied to a wafer surface by dipping in a solution of aluminum nitrate. Dipping the positive-coated wafer into a solution of negatively charged silica beads (nanospheres results in the spheres becoming electrostatically attracted to the wafer surface. These nanospheres form an etch mask for RIE. After RIE texturing, the reflection of the surface is reduced as effectively as any other nanosphere lithography method, while this batch process used for masking is much faster, making it more industrially relevant.

  16. Reactivity of olefin and allyl ligands in π-complexes of metals

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    The data on reactivity of olefin and allyl ligands in transition metal (Ru, W) π-complexes, published up to 1984 are presented. Metal ion coordination of olefins causes their appreciable reactivity change. Transformations of π-olefin ligands into σ-alkyl ones, interaction of π-complexes with oxygen nucleophilic reagents, amines, halogenides and pseudohalogenides are considered

  17. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, A.; Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindugal-624622 (India); Subramanian, N. Sankara [Department of Physics, Thiagarajar College of Engineering, Madurai -625015, Tamilnadu (India); Loganathan, S. [Ion Plating, Titan Industries Ltd., Hosur - 635126, Tamilnadu (India)

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  18. The iodine reactivity

    International Nuclear Information System (INIS)

    2003-01-01

    The iodine is an important element because it has long life isotopes (such as iodine 129) and a great mobility in natural media. Iodine presents a complex chemistry because of its volatility and its strong redox reactivity. The S.E.C.R. works to better understand the reactivity of this element in different natural, industrial or biological environments. It plays a part in thermochemical sites as a possible way of hydrogen formation. This seminar gives some aspects relative to the chemical reactivity of iodine, since its thermochemistry in the I/S cycles to produce hydrogen to its reactivity in the natural medium and its potential radiological impact. This document includes 4 presentations transparencies) dealing with: the 129 I cycle rejected in the low radioactive gaseous and liquid effluents of the La Hague reprocessing plant (C. Frechou); a bibliographic review of iodine retention in soils (F. Bazer-Bachi); the hydrogen production and the iodine/sulfur thermochemical cycle (role of iodine in the process); and the direct characterization by electro-spray ionization mass spectroscopy of iodine fixation by fulvic acids (P. Reiller, B. Amekraz, C. Moulin, V. Moulin)

  19. Optical, structural, and chemical properties of CR-39 implanted with 5.2 MeV doubly charged carbon ions

    Science.gov (United States)

    Ali, Dilawar; Butt, M. Z.; Ishtiaq, Mohsin; Waqas Khaliq, M.; Bashir, Farooq

    2016-11-01

    Poly-allyl-diglycol-carbonate (CR-39) specimens were irradiated with 5.2 MeV doubly charged carbon ions using Pelletron accelerator. Ion dose was varied from 5 × 1013 to 5 × 1015 ions cm-2. Optical, structural, and chemical properties were investigated by UV-vis spectroscopy, x-ray diffractometer, and FTIR/Raman spectroscopy, respectively. It was found that optical absorption increases with increasing ion dose. Absorption edge shifts from UV region to visible region. The measured opacity values of pristine and ion implanted CR-39 range from 0.0519 to 4.7959 mm-1 following an exponential growth (9141%) with the increase in ion dose. The values of direct and indirect band gap energy decrease exponentially with an increase in ion dose by 59% and 71%, respectively. However, average refractive index in the visible region increases from 1.443 to 2.864 with an increase in ion dose, by 98%. A linear relation between band gap energy and crystallite size was observed. Both the number of carbon atoms in conjugation length and the number of carbon atoms per cluster increase linearly with the increase in ion dose. FTIR spectra showed that on C+2 ions irradiation, the intensity of all bands decreases gradually without appearance of any new band, indicating degradation of polymer after irradiation. Raman spectra revealed that the density of -CH2- group decreases on C+2 ions irradiation. However, the structure of CR-39 is completely destroyed on irradiation with ion dose 1 × 1015 and 5 × 1015 ions cm-2.

  20. Role of reactive species in the photocatalytic degradation of ...

    Indian Academy of Sciences (India)

    2017-12-06

    Dec 6, 2017 ... Nitrogen doping; photocatalysis; visible light active; reactive species; ... Of a variety of semiconductors, tungsten oxide (WO3) ... sodium chloride (NaCl, Chameleon reagent), sodium nitrate ..... Ammonium. No ion .... produced.

  1. Establishment and intra-/inter-laboratory validation of a standard protocol of reactive oxygen species assay for chemical photosafety evaluation.

    Science.gov (United States)

    Onoue, Satomi; Hosoi, Kazuhiro; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Matsuoka, Naoko; Nakamura, Kazuichi; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Seto, Yoshiki; Kato, Masashi; Yamada, Shizuo; Ohno, Yasuo; Kojima, Hajime

    2013-11-01

    A reactive oxygen species (ROS) assay was previously developed for photosafety evaluation of pharmaceuticals, and the present multi-center study aimed to establish and validate a standard protocol for ROS assay. In three participating laboratories, two standards and 42 coded chemicals, including 23 phototoxins and 19 nonphototoxic drugs/chemicals, were assessed by the ROS assay according to the standardized protocol. Most phototoxins tended to generate singlet oxygen and/or superoxide under UV-vis exposure, but nonphototoxic chemicals were less photoreactive. In the ROS assay on quinine (200 µm), a typical phototoxic drug, the intra- and inter-day precisions (coefficient of variation; CV) were found to be 1.5-7.4% and 1.7-9.3%, respectively. The inter-laboratory CV for quinine averaged 15.4% for singlet oxygen and 17.0% for superoxide. The ROS assay on 42 coded chemicals (200 µm) provided no false negative predictions upon previously defined criteria as compared with the in vitro/in vivo phototoxicity, although several false positives appeared. Outcomes from the validation study were indicative of satisfactory transferability, intra- and inter-laboratory variability, and predictive capacity of the ROS assay. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    Science.gov (United States)

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. On the origin of reactivity enhancement/suppression upon sequential ligation: [Re(CO){sub x}]{sup +}/CH{sub 4} (x=0-3) couples

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shaodong; Schlangen, Maria; Schwarz, Helmut [Institut fuer Chemie, Technische Universitaet Berlin (Germany); Li, Jilai [Institut fuer Chemie, Technische Universitaet Berlin (Germany); Institute of Theoretical Chemistry, Jilin University, Changchun (China)

    2017-03-06

    The thermal gas-phase reactions of rhenium carbonyl complexes [Re(CO){sub x}]{sup +} (x=0-3) with methane have been explored by using FT-ICR mass spectrometry complemented by high-level quantum chemical calculation. While it had been concluded in previous studies that addition of closed-shell ligands in general decreases the reactivity of metal ions, the current work provides an exception: the previously demonstrated inertness of atomic Re{sup +} towards methane is completely changed upon ligation with CO. Both [Re(CO)]{sup +} and [Re(CO){sub 2}]{sup +} bring about efficient dehydrogenation of the hydrocarbon under ambient conditions. However, addition of a third ligand to form [Re(CO){sub 3}]{sup +} completely quenches the reactivity. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Improvement of solvents for chemical decontamination: nickel ferrites removal

    International Nuclear Information System (INIS)

    Figueroa, Carlos A.; Morando, Pedro J.; Blesa, Miguel A.

    1999-01-01

    Carboxylic acids are usually included in commercial solvents for the chemical cleaning and decontamination of metal surfaces from the oxide layers grown and/or deposited from high temperature water by corrosive process. In particular oxalic acid is included in second path of AP-Citrox method. However, in some cases, their use shows low efficiency. This fact is attributed to the special passivity of the mixed oxides as nickel ferrites. This work reports a kinetic study of dissolution of a synthetic nickel ferrite (NiFe 2 O 4 ) confronted with simple oxides (NiO and Fe 2 O 3 ) in mineral acids and oxalic acid. The dissolution factor and reaction rate were determined in several conditions (reactive concentrations, pH and added ferrous ions). Experimental data of dissolution (with and without Fe(II) added) show a congruent kinetic regime. Pure nickel oxide (NiO) is rather resistant to the attack by oxalic acid solutions, and ferrous ions do not accelerate dissolution. In fact, nickel oxide dissolves better by oxidative attack that takes advantage of the higher lability of Ni 3+ . It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Our results point to use more reactive solvents in iron from mixed oxides and to the possibility of using one stage decontamination method. (author)

  5. Regioisomers of octanoic acid-containing structured triacylglycerols analyzed by tandem mass spectrometry using ammonia negative ion chemical ionization

    DEFF Research Database (Denmark)

    Kurvinen, J.P.; Mu, Huiling; Kallio, H.

    2001-01-01

    Tandem mass spectrometry based on ammonia negative ion chemical ionization and sample introduction via direct exposure probe was applied to analysis of regioisomeric structures of octanoic acid containing structured triacylglycerols (TAG) of type MML, MLM, MLL, and LML (M, medium-chain fatty acid...

  6. Influence of substrate pre-treatments by Xe{sup +} ion bombardment and plasma nitriding on the behavior of TiN coatings deposited by plasma reactive sputtering on 100Cr6 steel

    Energy Technology Data Exchange (ETDEWEB)

    Vales, S., E-mail: sandra.vales@usp.br [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Brito, P., E-mail: ppbrito@gmail.com [Pontifícia Universidade Católica de Minas Gerais (PUC-MG), Av. Dom José Gaspar 500, 30535-901 Belo Horizonte, MG (Brazil); Pineda, F.A.G., E-mail: pipe8219@gmail.com [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Ochoa, E.A., E-mail: abigail_ochoa@hotmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Droppa, R., E-mail: roosevelt.droppa@ufabc.edu.br [Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André, SP CEP 09210-580 (Brazil); Garcia, J., E-mail: jose.garcia@sandvik.com [Sandvik Coromant R& D, Lerkrogsvägen 19, SE-12680, Stockholm (Sweden); Morales, M., E-mail: monieriz@gmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Alvarez, F., E-mail: alvarez@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); and others

    2016-07-01

    In this paper the influence of pre-treating a 100Cr6 steel surface by Xe{sup +} ion bombardment and plasma nitriding at low temperature (380 °C) on the roughness, wear resistance and residual stresses of thin TiN coatings deposited by reactive IBAD was investigated. The Xe{sup +} ion bombardment was carried out using a 1.0 keV kinetic energy by a broad ion beam assistance deposition (IBAD, Kaufman cell). The results showed that in the studied experimental conditions the ion bombardment intensifies nitrogen diffusion by creating lattice imperfections, stress, and increasing roughness. In case of the combined pre-treatment with Xe{sup +} ion bombardment and subsequent plasma nitriding, the samples evolved relatively high average roughness and the wear volume increased in comparison to the substrates exposed to only nitriding or ion bombardment. - Highlights: • Effect of Xe ion bombardment and plasma nitriding on TiN coatings was investigated. • Xe ion bombardment with 1.0 KeV increases nitrogen retention in plasma nitriding. • 1.0 KeV ion impact energy causes sputtering, thus increasing surface roughness. • TiN coating wear is minimum after plasma nitriding due to lowest roughness.

  7. Reactivity of a Pt(100) cluster modified by adsorption of a nickel tetramer

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, E V; Lopez, M B [Centro de Investigaciones Fisicoquimicas, Teoricas y Aplicadas (CIFTA), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, (4700), Catamarca (Argentina); Castro, E A, E-mail: mblopez@fcasuser.unca.edu.a [INIFTA, CONICET, Universidad Nacional de la Plata, Diag. 113 y 64, Suc.4, C.C. 16, (1900), La Plata (Argentina)

    2009-05-01

    The aim of this paper is to report a study of the reactivity of Pt(100) cluster and the same system modified by a nickel tetramer towards the atomic hydrogen adsorption. This study was carried out in the framework of density functional theory which provides global and local indexes that can be used to characterize the reactivity. The analyzed reactivity descriptors were: chemical potential, chemical hardness, electrophilicity index and Fukui function. The results showed that the global reactivity descriptor predicts that the platinum cluster modified by nickel is more reactive than the pure platinum cluster and that the local Fukui function provides information about the most susceptible site to electrophilic attack in platinum cluster.

  8. Borylnitrenes: electrophilic reactive intermediates with high reactivity towards C-H bonds.

    Science.gov (United States)

    Bettinger, Holger F; Filthaus, Matthias

    2010-12-21

    Borylnitrenes (catBN 3a and pinBN 3b; cat = catecholato, pin = pinacolato) are reactive intermediates that show high tendency towards insertion into the C-H bonds of unactivated hydrocarbons. The present article summarizes the matrix isolation investigations that were aimed at identifying, characterizing and investigating the chemical behaviour of 3a by spectroscopic means, and of the experiments in solution and in the gas phase that were performed with 3b. Comparison with the reactivity reported for difluorovinylidene 1a in solid argon indicates that 3a shows by and large similar reactivity, but only after photochemical excitation. The derivative 3b inserts into the C-H bonds of hydrocarbon solvents in high yields and thus allows the formation of primary amines, secondary amines, or amides from "unreactive" hydrocarbons. It can also be used for generation of methylamine or methylamide from methane in the gas phase at room temperature. Remaining challenges in the chemistry of borylnitrenes are briefly summarized.

  9. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  10. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  11. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    Science.gov (United States)

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  12. Pulse radiolysis of water by energetic heavy ion

    International Nuclear Information System (INIS)

    Taguchi, M.; Sugo, Y.; Iwamatsu, K.; Yamaguchi, M.; Katsumura, Y.

    2011-01-01

    Complete text of publication follows. Water radiolysis is a fundamental process governing radiation effects in various aspects. Degree of water molecule decomposition depends on the type and LET (Linear Energy Transfer) value of radiations. However, the degradation of water molecules by α-particle has not been clearly understood. In this study, we aimed to clarify the reaction behavior of the groundwater induced by of α-particles from high-level radioactive waste (HLW) in the geological disposal environment. α-radiolysis of water was investigated by use of high energy helium ions accelerated by the AVF cyclotron in TIARA facility, JAEA/Takasaki. The pulsed He ion irradiation technique and online time resolved absorbance measurement system was investigated for direct observation of chemical reactions of transient species produced by irradiations. Hydroxyl (OH) radical is the most important species for reactions in aqueous samples because of its high reactivity and formation yield. NaCl was selected as a probe reagent for the OH radical produced by the irradiation with He ion, and dissolved in pure water. Because 50 MeV He ion has the penetration range at 1.5 mm in water, the sample cell has the thickness of 2 mm, and 50 μm glass windows on the top and bottom for preventing energy loss of the incident ions and measuring the absorbance. The transient absorbance was recorded for the aqueous NaCl solutions using semiconductor LASER diode at 375 nm as a probe light source. ClOH - was formed by the reaction of the OH radical with Cl - . The absorbance of ClOH - increased within the irradiation pulse width, and then decreased gradually. The formation yield of ClOH - which was estimated from the peak absorbance value, increased with the solute concentration. Precise analyses of chemical reactions occurred in track will be discussed at the presentation. This study is a part of the project on geological disposal funded by the Ministry of Economy, Trade and Industry, Japan

  13. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  14. Major reactive species of ambient volatile organic compounds (VOCs) and their sources in Beijing

    Institute of Scientific and Technical Information of China (English)

    SHAO; Min; FU; Linlin; LIU; Ying; LU; Sihua; ZHANG; Yuanhan

    2005-01-01

    Volatile organic compounds (VOCs) are important precursors of atmospheric chemical processes. As a whole mixture, the ambient VOCs show very strong chemical reactivity. Based on OH radical loss rates in the air, the chemical reactivity of VOCs in Beijing was calculated. The results revealed that alkenes, accounting for only about 15% in the mixing ratio of VOCs, provide nearly 75% of the reactivity of ambient VOCs and the C4 to C5 alkenes were the major reactive species among the alkenes. The study of emission characteristics of various VOCs sources indicated that these alkenes are mainly from vehicle exhaust and gasoline evaporation. The reduction of alkene species in these two sources will be effective in photochemical pollution control in Beijing.

  15. Effects of ions traces on the dissolution of bioceramics composed of hydroxyapatite and β-tricalcium phosphate

    Directory of Open Access Journals (Sweden)

    Mohamed Jamil

    2015-02-01

    Full Text Available The aim of this work is to study the effect of trace ions as Mg2+, Sr2+, (SiO44- and Al3+, brought by the raw material, on the dissolution of the calcium-phosphate bioceramics.  The precursor powders prepared by aqueous precipitation with molar ratio Ca / P = 1.630 ± 0.002, were calcined at 1100°C resulting in the formation of a mixture of hydroxyapatite (Ca10(PO46(OH2 and β-tricalcium phosphate (β-Ca3(PO42.  Two mixtures which differ by the content of trace ions were characterized for phase purity, chemical composition and morphology.  The dissolution tests were performed at 37 °C in acidic buffers solution at pH 4.8.  The results showed that the dissolution of calcium ions is more important in the presence of ions trace while the phosphor ions were not affected.  The dissolution and dissolution-reprecipitation observed of various ions trace can modify the surface properties of calcium phosphate bioceramics and therefore the properties of biological products, such as resorbtion and reactivity can be affected.

  16. Chemical composition of sublates (difficultly soluble substances) which form on interaction of polyvalent metal ions with potassium alkylcarboxylate

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Skryleva, T.L.; Sazonova, V.F.

    1996-01-01

    The pH value is considered for its effect on chemical composition of sublates which form on interaction of fatty acid collectors (potassium alkylcarboxylate) with polyvalent ions of Ni, An, Cu and Be. It is shown that interaction of these ions with fatty acid collectors in weakly acid, neutral and weakly alkaline solutions is accompanied by formation of medium soaps. Acid soaps are formed in more acid solutions, while in more alkaline-basic soaps. Domains of stability for medium soaps of Ni, Zn, Cu and Be are determined. 17 refs.; 4 figs

  17. Surface photovoltage studies of p-type AlGaN layers after reactive-ion etching

    Science.gov (United States)

    McNamara, J. D.; Phumisithikul, K. L.; Baski, A. A.; Marini, J.; Shahedipour-Sandvik, F.; Das, S.; Reshchikov, M. A.

    2016-10-01

    The surface photovoltage (SPV) technique was used to study the surface and electrical properties of Mg-doped, p-type AlxGa1-xN (0.06 GaN:Mg thin films and from the predictions of a thermionic model for the SPV behavior. In particular, the SPV of the p-AlGaN:Mg layers exhibited slower-than-expected transients under ultraviolet illumination and delayed restoration to the initial dark value. The slow transients and delayed restorations can be attributed to a defective surface region which interferes with normal thermionic processes. The top 45 nm of the p-AlGaN:Mg layer was etched using a reactive-ion etch which caused the SPV behavior to be substantially different. From this study, it can be concluded that a defective, near-surface region is inhibiting the change in positive surface charge by allowing tunneling or hopping conductivity of holes from the bulk to the surface, or by the trapping of electrons traveling to the surface by a high concentration of defects in the near-surface region. Etching removes the defective layer and reveals a region of presumably higher quality, as evidenced by substantial changes in the SPV behavior.

  18. The effect of reactive ion etch (RIE) process conditions on ReRAM device performance

    Science.gov (United States)

    Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.

    2017-09-01

    The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.

  19. Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure

    KAUST Repository

    Hu, Pan

    2016-03-11

    The fundamental relationship between structure and diradical character is important for the development of open-shell diradicaloid-based materials. In this work, we synthesized two structural isomers bearing a 2,6-naphthoquinodimethane or a 1,5-naphthoquinodimethane bridge and demonstrated that their diradical characters and chemical reactivity are quite different. The mesityl or pentafluorophenyl substituted octazethrene derivatives OZ-M/OZ-F and their isomer OZI-M (with mesityl substituents) were synthesized via an intramolecular Friedel-Crafts alkylation followed by oxidative dehydrogenation strategy from the key building blocks 4 and 11. Our detailed experimental and theoretical studies showed that both isomers have an open-shell singlet ground state with a remarkable diradical character (y0 = 0.35 and 0.34 for OZ-M and OZ-F, and y0 = 0.58 for OZI-M). Compounds OZ-M and OZ-F have good stability under the ambient environment while OZI-M has high reactivity and can be easily oxidized to a dioxo-product 15, which can be correlated to their different diradical characters. Additionally, we investigated the physical properties of OZ-M, OZ-F and 15.

  20. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  1. Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure

    KAUST Repository

    Hu, Pan; Lee, Sangsu; Park, Kyu Hyung; Das, Soumyajit; Herng, Tun Seng; Goncalves, Theo; Huang, Kuo-Wei; Ding, Jun; Kim, Dongho; Wu, Jishan

    2016-01-01

    The fundamental relationship between structure and diradical character is important for the development of open-shell diradicaloid-based materials. In this work, we synthesized two structural isomers bearing a 2,6-naphthoquinodimethane or a 1,5-naphthoquinodimethane bridge and demonstrated that their diradical characters and chemical reactivity are quite different. The mesityl or pentafluorophenyl substituted octazethrene derivatives OZ-M/OZ-F and their isomer OZI-M (with mesityl substituents) were synthesized via an intramolecular Friedel-Crafts alkylation followed by oxidative dehydrogenation strategy from the key building blocks 4 and 11. Our detailed experimental and theoretical studies showed that both isomers have an open-shell singlet ground state with a remarkable diradical character (y0 = 0.35 and 0.34 for OZ-M and OZ-F, and y0 = 0.58 for OZI-M). Compounds OZ-M and OZ-F have good stability under the ambient environment while OZI-M has high reactivity and can be easily oxidized to a dioxo-product 15, which can be correlated to their different diradical characters. Additionally, we investigated the physical properties of OZ-M, OZ-F and 15.

  2. Quick Look Report for Chemical Reactivity Modeling of Various Multi-Canister Overpack Breaches

    International Nuclear Information System (INIS)

    Bratton, Robert Lawrence

    2002-01-01

    This report makes observations or shows trends in the response and does not specifically provide conclusions or predict the onset of bulk uranium oxidation safety margins based on hole size. Comprehensive analysis will be provided in the future. The report should animate discussions about the results and what should be analyzed further in the final analysis. This report intends only to show the response of the breached multi-canister overpack (MCO) as a function of event time using the GOTH( ) SNF computer code. The response will be limited to physical quantities available on the exterior of the MCO. The GOTH( ) SNF model is approximate, because not all physical phenomenon was included in the model. Error estimates in the response are not possible at this time, because errors in the actual physical data are not known. Sensitivities in the results from variations in the physical data have not been pursued at this time, either. This effort was undertaken by the National Spent Nuclear Fuel Program to evaluate potential chemical reactivity issues of a degraded uranium metal spent nuclear fuel using the MCO fully loaded with Mark IV N-reactor fuel as the evaluation model. This configuration is proposed for handling in the Yucca Mountain Project (YMP) surface facility. Hanford is loading N-reactor fuel elements into the MCO for interim storage at the Hanford site with permanent disposal proposed at YMP. A portion of the N-reactor fuel inventory has suffered corrosion, exposing the uranium metal under the zircaloy cladding. Because of the sealed MCO, the local radiation field, and decay heat of the fuel, hydrogen production cannot be ruled out from the metal hydrates on the surface of the zircaloy cladding and exposed fuel. Because of the much greater surface area, the oxyhydroxide composition, and water of hydration in the uranium metal corrosion product, the corrosion product will be a significant water source that may equal the absorbed water on the zircaloy cladding

  3. Quick Look Report for Chemical Reactivity Modeling of Various Multi-Canister Overpack Breaches

    Energy Technology Data Exchange (ETDEWEB)

    Bratton, Robert Lawrence

    2002-04-01

    This report makes observations or shows trends in the response and does not specifically provide conclusions or predict the onset of bulk uranium oxidation safety margins based on hole size. Comprehensive analysis will be provided in the future. The report should animate discussions about the results and what should be analyzed further in the final analysis. This report intends only to show the response of the breached multi-canister overpack (MCO) as a function of event time using the GOTH_SNF computer code. The response will be limited to physical quantities available on the exterior of the MCO. The GOTH_SNF model is approximate, because not all physical phenomenon was included in the model. Error estimates in the response are not possible at this time, because errors in the actual physical data are not known. Sensitivities in the results from variations in the physical data have not been pursued at this time, either. This effort was undertaken by the National Spent Nuclear Fuel Program to evaluate potential chemical reactivity issues of a degraded uranium metal spent nuclear fuel using the MCO fully loaded with Mark IV N-reactor fuel as the evaluation model. This configuration is proposed for handling in the Yucca Mountain Project (YMP) surface facility. Hanford is loading N-reactor fuel elements into the MCO for interim storage at the Hanford site with permanent disposal proposed at YMP. A portion of the N-reactor fuel inventory has suffered corrosion, exposing the uranium metal under the zircaloy cladding. Because of the sealed MCO, the local radiation field, and decay heat of the fuel, hydrogen production cannot be ruled out from the metal hydrates on the surface of the zircaloy cladding and exposed fuel. Because of the much greater surface area, the oxyhydroxide composition, and water of hydration in the uranium metal corrosion product, the corrosion product will be a significant water source that may equal the absorbed water on the zircaloy cladding. A

  4. Method for the elucidation of the elemental composition of low molecular mass chemicals using exact masses of product ions and neutral losses: application to environmental chemicals measured by liquid chromatography with hybrid quadrupole/time-of-flight mass spectrometry.

    Science.gov (United States)

    Suzuki, Shigeru; Ishii, Tetsuko; Yasuhara, Akio; Sakai, Shinichi

    2005-01-01

    A method for elucidating the elemental compositions of low molecular weight chemicals, based primarily on mass measurements made using liquid chromatography (LC) with time-of-flight mass spectrometry (TOFMS) and quadrupole/time-of-flight mass spectrometry (LC/QTOFMS), was developed and tested for 113 chemicals of environmental interest with molecular masses up to approximately 400 Da. As the algorithm incorporating the method is not affected by differences in the instrument used, or by the ionization method and other ionization conditions, the method is useful not only for LC/TOFMS, but also for all kinds of mass spectra measured with higher accuracy and precision (uncertainties of a few mDa) employing all ionization methods and on-line separation techniques. The method involves calculating candidate compositions for intact ionized molecules (ionized forms of the sample molecule that have lost or gained no more than a proton, i.e., [M+H](+) or [M-H](-)) as well as for fragment ions and corresponding neutral losses, and eliminating those atomic compositions for the molecules that are inconsistent with the corresponding candidate compositions of fragment ions and neutral losses. Candidate compositions were calculated for the measured masses of the intact ionized molecules and of the fragment ions and corresponding neutral losses, using mass uncertainties of 2 and 5 mDa, respectively. Compositions proposed for the ionized molecule that did not correspond to the sum of the compositions of a candidate fragment ion and its corresponding neutral loss were discarded. One, 2-5, 6-10, 11-20, and >20 candidate compositions were found for 65%, 39%, 1%, 1%, and 0%, respectively, for the 124 ionized molecules formed from the 113 chemicals tested (both positive and negative ions were obtained from 11 of the chemicals). However, no candidate composition was found for 2% of the test cases (i.e., 3 chemicals), for each of which the measured mass of one of the product ions was in

  5. Cryogenic ion chemistry and spectroscopy.

    Science.gov (United States)

    Wolk, Arron B; Leavitt, Christopher M; Garand, Etienne; Johnson, Mark A

    2014-01-21

    The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to

  6. Measurements of total OH reactivity during PROPHET-AMOS 2016

    Science.gov (United States)

    Rickly, P.; Sakowski, J.; Bottorff, B.; Lew, M.; Stevens, P. S.; Sklaveniti, S.; Locoge, N.; Dusanter, S.

    2017-12-01

    As one of the main oxidant in the atmosphere, the hydroxyl radical (OH) initiates the oxidation of volatile organic compounds that can lead to the formation of ozone and secondary organic aerosols. Understanding both the sources and sinks of OH is therefore important to address issues related to air quality and climate change. Measurements of total OH reactivity can provide an important test of our understanding of the OH radical budget. Recent measurements of total reactivity in many environments have been greater than calculated based on the measured concentration of VOCs, suggesting that important OH sinks in these environments are not well characterized. Measurements of total OH reactivity were performed in a forested environment during the PROPHET - AMOS field campaign (Program for Research on Oxidants: PHotochemisty, Emissions, and Transport - Atmospheric Measurements of Oxidants in Summer) using the Comparative Reactivity Method (CRM) and the Total OH Loss Rate Method (TOHLM). The site is characterized by large emissions of isoprene and monoterpenes and low anthropogenic influence. Measurements of total OH reactivity using these two techniques agree to within their respective uncertainties, giving confidence in the measured OH reactivity. In addition, measurements of trace gases (VOCs, NOx, O3) were used to perform a comprehensive apportionment of OH sinks. These measurements are used in a chemical model using the Master Chemical Mechanism to calculate the expected OH reactivity. The results will be compared to previous measurements of total OH reactivity at this site.

  7. Use of a hand-portable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip A., E-mail: Smith.Philip.A@dol.gov [Uniformed Services University of the Health Sciences, Department of Preventive Medicine and Biometrics, 4301 Jones Bridge Road, Bethesda, MD, 20814 (United States); Lepage, Carmela R. Jackson [Defence R and D Canada - Suffield, Box 400, Station Main, Medicine Hat, Alberta, T1A 8K6 (Canada); Savage, Paul B. [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT, 84602 (United States); Bowerbank, Christopher R.; Lee, Edgar D. [Torion Technologies Inc., 796 East Utah Valley Drive, Suite 200, American Fork, UT, 84003 (United States); Lukacs, Michael J. [Defence R and D Canada - Suffield, Box 400, Station Main, Medicine Hat, Alberta, T1A 8K6 (Canada)

    2011-04-01

    The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H]{sup +}) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H]{sup +} ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d{sub 15} provided evidence that [M+H]{sup +} production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H]{sup +} ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.

  8. Use of a hand-portable gas chromatograph-toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX)

    International Nuclear Information System (INIS)

    Smith, Philip A.; Lepage, Carmela R. Jackson; Savage, Paul B.; Bowerbank, Christopher R.; Lee, Edgar D.; Lukacs, Michael J.

    2011-01-01

    The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H] + ) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H] + ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d 15 provided evidence that [M+H] + production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H] + ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.

  9. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    Science.gov (United States)

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  10. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns

    OpenAIRE

    Hartwig, Jan; Metternich, Jan B.; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V.

    2014-01-01

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  11. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    Science.gov (United States)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-12-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  12. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe 2007 intensive sampling period

    Directory of Open Access Journals (Sweden)

    R. Sander

    2013-12-01

    Full Text Available We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe field campaign at the Cape Verde Atmospheric Observatory (CVAO on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*. Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br and ion chromatography (SO42−, Cl−, Br−, NH4+, Na+, K+, Mg2+, and Ca2+. Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  13. Radiation-chemical behaviour of neptunium ions in nitric acid solutions in the presence of curium-244

    International Nuclear Information System (INIS)

    Frolova, L.M.; Frolov, A.A.; Vasil'ev, V.Ya.

    1984-01-01

    Radiation-chemical behaviour of neptunium ions in nitric acid solutions is studied under the action of intensive internal alpha-irradiation conditioned by curium nuclides. In 0.3-1.1 mol/l solutions of nitric acid radiation-chemical oxidation of neptunium (4) and reduction of neptunium (6) is obeyed to the first order law of reaction rate in respect to neptunium concentration. Effective constants of neptunium (4) oxidation rates and neptuniumi(6) reduction rates are not dependent on neptunium ion in1tial concentration and increase with a growth of a dose rate of alpha-irradiation of solution. In equilibrium only neptunium (5) and neptunium (6) are present in solutions with HNO 3 concentration less than 1 mol/l. In more concentrated solutions equilibrium between sexa-, penta- and tetravalent neptunium forms is established. Equilibrium concentrations of neptunium valent forms are not dependent on neptunium initial oxidation state under the same initial conditions (dose rate, neptunium concentration and acidity. It is shown form experimental data that under the action of alpha-irradiation neptunium (5) both is oxidated to neptunium (6) and is reduced to neptunium (4)

  14. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    Science.gov (United States)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  15. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  16. Ion implantation and fracture toughness of ceramics

    International Nuclear Information System (INIS)

    Clark, J.; Pollock, J.T.A.

    1985-01-01

    Ceramics generally lack toughness which is largely determined by the ceramic surface where stresses likely to cause failure are usually highest. Ion implantation has the capacity to improve the surface fracture toughness of ceramics. Significantly reduced ion size and reactivity restrictions exist compared with traditional methods of surface toughening. We are studying the effect of ion implantation on ceramic fracture toughness using indentation testing as the principal tool of analysis

  17. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Directory of Open Access Journals (Sweden)

    Pulikanti Guruprasad Reddy

    2017-08-01

    Full Text Available Helium (He ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR, MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ and sensitivity (E0 of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  18. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Science.gov (United States)

    Reddy, Pulikanti Guruprasad; Thakur, Neha; Lee, Chien-Lin; Chien, Sheng-Wei; Pradeep, Chullikkattil P.; Ghosh, Subrata; Tsai, Kuen-Yu; Gonsalves, Kenneth E.

    2017-08-01

    Helium (He) ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs) at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR), MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL) applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm) for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ) and sensitivity (E0) of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  19. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography

    Science.gov (United States)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.

    2017-08-01

    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  20. C-terminal peptide extension via gas-phase ion/ion reactions

    Science.gov (United States)

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  1. Chemical reactivity of cation-exchanged zeolites

    NARCIS (Netherlands)

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed

  2. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  3. Application of characteristic ion filtering with ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry for rapid detection and identification of chemical profiling in Eucommia ulmoides Oliv.

    Science.gov (United States)

    He, Mingzhen; Jia, Jia; Li, Junmao; Wu, Bei; Huang, Wenping; Liu, Mi; Li, Yan; Yang, Shilin; Ouyang, Hui; Feng, Yulin

    2018-06-15

    Efficient targeted identification of chemical constituents from traditional Chinese medicine is still a major challenge. In this study, we used a characteristic ion filtering strategy to characterize compounds of Eucommia ulmoides Oliv. by ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS). By using the ion filtering approach, target constituents of Eucommia ulmoides Oliv. were easily tentatively identified from the enormous LC/MS data set. The strategy consisted of the following three steps: 1) To establishing a characteristic ion database by diagnostic product ions or neutral loss fragments; 2) To evaluate the structural information of the compounds by high-resolution diagnostic characteristic ion filtering; 3) To confirm the different classes by chemical profiling according to their MS/MS spectra. In this study, characteristic ions are summarized as five major groups of compounds in Eucommia ulmoides Oliv. In total, 113 compounds were tentatively identified, including 23 potentially novel compounds. The results form a foundation for the quality control and chemical basis of Eucommia ulmoides Oliv. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Coupling between solute transport and chemical reactions models. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.

  5. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  6. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.

    Science.gov (United States)

    Domingo, Luis R

    2016-09-30

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  7. Hazards in the chemical laboratory

    International Nuclear Information System (INIS)

    Bretherick, L.

    1987-01-01

    The contents of this book are: Preface; Introduction; Health and Safety at Work Act 1974; Safety Planning and Management; Fire Protection; Reactive Chemical Hazards; Chemical Hazards and Toxicology; Health Care and First Aid; Hazardous Chemicals; Precautions against Radiations; and An American View

  8. Role of Chemical Reactivity and Transition State Modeling for Virtual Screening.

    Science.gov (United States)

    Karthikeyan, Muthukumarasamy; Vyas, Renu; Tambe, Sanjeev S; Radhamohan, Deepthi; Kulkarni, Bhaskar D

    2015-01-01

    Every drug discovery research program involves synthesis of a novel and potential drug molecule utilizing atom efficient, economical and environment friendly synthetic strategies. The current work focuses on the role of the reactivity based fingerprints of compounds as filters for virtual screening using a tool ChemScore. A reactant-like (RLS) and a product- like (PLS) score can be predicted for a given compound using the binary fingerprints derived from the numerous known organic reactions which capture the molecule-molecule interactions in the form of addition, substitution, rearrangement, elimination and isomerization reactions. The reaction fingerprints were applied to large databases in biology and chemistry, namely ChEMBL, KEGG, HMDB, DSSTox, and the Drug Bank database. A large network of 1113 synthetic reactions was constructed to visualize and ascertain the reactant product mappings in the chemical reaction space. The cumulative reaction fingerprints were computed for 4000 molecules belonging to 29 therapeutic classes of compounds, and these were found capable of discriminating between the cognition disorder related and anti-allergy compounds with reasonable accuracy of 75% and AUC 0.8. In this study, the transition state based fingerprints were also developed and used effectively for virtual screening in drug related databases. The methodology presented here provides an efficient handle for the rapid scoring of molecular libraries for virtual screening.

  9. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  10. Investigation of hydrogen content in chemically delithiated lithium-ion battery cathodes using prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Aghara, S.K.; Alvarez II, E.; Venkatraman, S.; Manthiram, A.

    2005-01-01

    Lithium-ion batteries are widely used as a power source for portable electronic devices. Currently, only 50-70% of the theoretical capacity of the layered oxide cathode (positive electrode) materials could be reversibly used. The reason for this limitation is not fully understood in the literature. Recent structural and chemical characterizations of chemically delithiated (charged) cathodes suggest that loss of oxygen from the lattice may play a role in this regard. However, during the chemical delithiation process any proton inserted from the solvent could adversely affect the oxygen content analysis data. The challenge in addressing this issue is to detect and determine precisely the proton content in the chemically delithiated samples. The prompt gamma-ray activation analysis (PGAA) facility at the Nuclear Engineering Teaching Laboratory (NETL) is used to determine the proton content in the layered oxide cathode LiNi 0.5 Mn 0.5 O 2 before and after chemical delithiation. The data are compared with those obtained with Fourier transform infrared (FTIR) spectroscopy, which can provide mainly qualitative analysis. The technique has proved to be promising for these compounds and will be applied to characterize several other chemically delithiated Li 1-x Co 1-y M y O 2 (M = Cr, Mn, Fe, Ni, Cu, Mg, and Al) cathodes. (author)

  11. Analyte-triggered luminescence of Eu{sup 3+} ions encapsulated in Nafion membranes -preparation of hybrid materials from in membrane chemical reactions-

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Sánchez, Rocío, E-mail: raguilar@ifuap.buap.mx [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Zelocualtecatl-Montiel, Iván [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Gálvez-Vázquez, María de Jesús [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico); Silva-González, Rutilo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico)

    2017-04-15

    The possibility to perform chemical reactions inside polymer materials opens a unique opportunity to control and prepare materials for diverse solid-state applications. Based on the affinity of Eu{sup 3+} ions for oxygen functionalities, in this work we report the luminescence enhancement of Eu{sup 3+} ions inserted in Nafion membranes (Naf/Eu{sup 3+}) by in-situ complexing to oxalate. The formation of a europium-oxalate type complex enhances Eu{sup 3+} luminescence emission, which could be exploited for the construction of devices for oxalate sensing and the fabrication of highly luminescent materials. Possible analytical applications of Naf/Eu{sup 3+} membranes were evaluated by fluorescence spectroscopy through the linear response with concentration. The complex formation was followed by infrared spectroscopy and SEM-EDS analysis. - Highlights: • Luminescence enhancement by complexation of Eu{sup 3+} ions to oxalate inside Nafion. • Performance of chemical reactions inside Nafion/polymer membranes. • An easy and novel method to prepare luminescent solid devices. • Possibility to develop luminescent sensors by analyte-triggered optical response.

  12. Reactive low temperature plasma ionization mass spectrometry for the determination of organic UV filters in personal care products.

    Science.gov (United States)

    Ding, Xuelu; Gerbig, Stefanie; Spengler, Bernhard; Schulz, Sabine

    2018-02-01

    Organic UV filters in personal care products (PCPs) have been persistently reported as a potential threat to human health. In order to guarantee consumers ' safety, the dose of these compounds in PCPs needs to be monitored. Here, a methodology based on reactive low temperature plasma ionization (LTP) mass spectrometry (MS) has been developed for the determination of common organic UV filters in PCPs including benzophenone-3, ethylhexyl dimethyl p-aminobenzoic acid, ethylhexyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, and ethylhexyl salicylate. The experiments were carried out in transmission geometry where the LTP ion source, samples loaded on a stainless steel mesh, and the MS inlet were aligned coaxially. Four chemicals, ammonia, ammonium formate, aniline, and methylamine were considered as reactive additives allowing reactions with the UV filters through different mechanisms. Methylamine-induced reactive LTP-MS showed the most prominent improvement on the detection of UV filter compounds. Compared to direct LTP-MS, the developed method improved the detection limits of UV filters more than 10 fold. Moreover, the method enabled fast semi-quantitative screening of UV filters in authentic PCPs. Concentrations of active ingredients in eight authentic PCPs as determined with reactive LTP-MS were found comparable to values offered by the cosmetic companies and corresponding HPLC data. The methodology provides high throughput analysis (70s per sample) and sensitive identification of organic UV filters. Lowest detectable concentrations ranged from 0.13µg/g for 4-methylbenzylidene camphor to 7.67µg/g for octocrylene in spiked cream. In addition, it shows the potential to be used as a screening tool for legal authentications of these chemicals in the future due to its semi-quantitative determination of UV filters in PCPs without tedious sample preparation and time-consuming chromatographic separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    Science.gov (United States)

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  14. Wiley guide to chemical incompatibilities

    National Research Council Canada - National Science Library

    Pohanish, Richard P; Greene, Stanley A

    2009-01-01

    .... A portable and easy-to-use reference on reactive substances commonly found in commerce, the Wiley Guide to Chemical Incompatibilities, Third Edition compiles hard-to-find data on over 11,000 chemical...

  15. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  16. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    Science.gov (United States)

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.

  17. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  18. Enhanced signal generation for use in the analysis of synthetic pyrethroids using chemical ionization tandem quadrupole ion trap mass spectrometry.

    Science.gov (United States)

    Sichilongo, Kwenga

    2004-12-01

    Synthetic pyrethroids fragment extensively under electron ionization (EI) conditions to give low mass ions, most of them with the same m/z ratios. This fragmentation is primarily due to the labile ester linkage found in these compounds. In this research we established the best gas chromatography (GC) conditions in the EI mode that served as a benchmark in the development of a chemical ionization (CI) protocol for ten selected synthetic pyrethroids. Based on proton affinity data, several reagent gases were evaluated in the positive CI ionization mode. Methanol was found to produce higher average ion counts relative to the other gases evaluated, which led to the development of an optimized method consisting of selective ejection chemical ionization (SECI) and MS/MS. Standard stainless steel ion trap electrodes produced significant degradation of chromatographic performance on late eluting compounds, which was attributed to electrode surface chemistry. A dramatic improvement in signal-to-noise (S/N) ratios was observed when the chromatographically inert Silcosteel coated electrodes were used. The resulting method, that has significant S/N ratio improvements resulting from a combination of septum programmable injections (SPI), optimized CI and inert Silcosteel-coated electrodes, was used to determine instrument detection limits.

  19. An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer

    Science.gov (United States)

    Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin

    2017-06-01

    Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.

  20. An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer

    International Nuclear Information System (INIS)

    Teo, Adrian J T; Li, Holden; Yoon, Yong-Jin; Tan, Say Hwa

    2017-01-01

    Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G −1 , and a highest recorded sensitivity of 44.1 mV G −1 . A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices. (technical note)

  1. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    International Nuclear Information System (INIS)

    Kundu, Samapti; Sain, Sumanta; Yoshio, Masaki; Kar, Tanusree; Gunawardhana, Nanda; Pradhan, Swapan Kumar

    2015-01-01

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials

  2. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Samapti; Sain, Sumanta [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Yoshio, Masaki [Advanced Research and Education Centre, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Kar, Tanusree [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); Gunawardhana, Nanda, E-mail: nandagunawardhana@pdn.ac.lk [International Research Centre, Senate Building, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Pradhan, Swapan Kumar, E-mail: skpradhan@phys.buruniv.ac.in [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2015-02-28

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials.

  3. Reactivity and morphology of vapor-deposited Al/polymer interfaces for organic semiconductor devices

    International Nuclear Information System (INIS)

    Demirkan, K.; Mathew, A.; Weiland, C.; Opila, R. L.; Reid, M.

    2008-01-01

    The chemistry and the morphology of metal-deposited organic semiconductor interfaces play a significant role in determining the performance and reliability of organic semiconductor devices. We investigated the aluminum metallization of poly(2-methoxy-5,2 ' -ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene, and ozone-treated polystyrene surfaces by chemical (x-ray and ultraviolet photoelectron spectroscopy) and microscopic [atomic force microscopy, scanning electron microscopy (SEM), focused ion beam (FIB)] analyses. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer; for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of aluminum with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Results showed a strong relationship between the surface reactivity and the condensation/sticking of the aluminum atoms on the surface. SEM analysis showed that, during the initial stages of the metallization, a significant clustering of aluminum takes place. FIB analysis showed that such clustering yields a notably porous structure. The chemical and the morphological properties of the vapor-deposited Al on organic semiconductor surfaces makes such electrical contacts more complicated. The possible effects of surface chemistry and interface morphology on the electrical properties and reliability of organic semiconductor devices are discussed in light of the experimental findings

  4. Practical use of chemical probes for reactive oxygen species produced in biological systems by {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Hee; Moon, Yu Ran; Chung, Byung Yeoup; Kim, Jae-Sung [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Lee, Kang-Soo [Crop Production and Technology Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Cho, Jae-Young [Bio-environmental Science Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jin-Hong [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: jhongkim@kaeri.re.kr

    2009-05-15

    Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during {gamma}-irradiation. The ethanol/{alpha}-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and 3,3'-diaminobenzidine (DAB) were structurally stable enough to detect {sup {center_dot}}OH and H{sub 2}O{sub 2}, increasingly generated by {gamma}-irradiation up to 1000 Gy. Interestingly, the production rate of H{sub 2}O{sub 2}, but not {sup {center_dot}}OH, during {gamma}-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify {sup {center_dot}}OH and H{sub 2}O{sub 2}, produced by {gamma}-irradiation up to 1000 Gy.

  5. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    Science.gov (United States)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  6. Scaffold Diversity from N-Acyliminium Ions

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas E

    2017-01-01

    N-Acyliminium ions are powerful reactive species for the formation of carbon-carbon and carbon-heteroatom bonds. Strategies relying on intramolecular reactions of N-acyliminium intermediates, also referred to as N-acyliminium ion cyclization reactions, have been employed for the construction...... of structurally diverse scaffolds, ranging from simple bicyclic skeletons to complex polycyclic systems and natural-product-like compounds. This review aims to provide an overview of cyclization reactions of N-acyliminium ions derived from various precursors for the assembly of structurally diverse scaffolds...

  7. Double-ion imprinted polymer @magnetic nanoparticles modified screen printed carbon electrode for simultaneous analysis of cerium and gadolinium ions

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Jauhari, Darshika

    2015-05-22

    Highlights: • Synthesis of a double-ion imprinted polymer for analysis of Ce(IV) and Gd(III). • Imprinted nano-beads were grown on MNPs-modified SPCE surface. • Voltammetric determination of both templates was carried out simultaneously. • Ultra-trace analysis with LOD (ng mL{sup −1}) 0.07 for Ce(IV) and 0.19 for Gd(III) is achieved. - Abstract: A typical, reproducible, and rugged screen printed carbon electrode, modified with dual-ion imprinted beads, was fabricated employing the “surface grafting from” approach. For this, the acyl chloride functionalized magnetic nanoparticles were first immobilized and chemically attached with a typical functional monomer (but-2-enedioic acid bis-[(2-amino-ethyl)-amide]) on the electrode surface. This was subsequently subjected to the thermal polymerization in the presence of template ions (Ce(IV) and Gd(III)), cross-linker (ethylene glycol dimethacrylate), initiator (AIBN), and multiwalled carbon nanotubes. The modified sensor was used for the simultaneous analysis of both template ions in aqueous, blood serum, and waste-water samples, using differential pulse anodic stripping voltammetry which revealed two oxidation peaks for respective templates with resolution as much as 950 mV, without any cross reactivity, interferences and false-positives. The detection limits realized by the proposed sensor, under optimized conditions, were found to be as low as 0.07 ng mL{sup −1} for Ce(IV) and 0.19 ng mL{sup −1} for Gd(III) (S/N = 3) that could eventually be helpful for lanthanide estimation at stringent levels.

  8. Double-ion imprinted polymer @magnetic nanoparticles modified screen printed carbon electrode for simultaneous analysis of cerium and gadolinium ions

    International Nuclear Information System (INIS)

    Prasad, Bhim Bali; Jauhari, Darshika

    2015-01-01

    Highlights: • Synthesis of a double-ion imprinted polymer for analysis of Ce(IV) and Gd(III). • Imprinted nano-beads were grown on MNPs-modified SPCE surface. • Voltammetric determination of both templates was carried out simultaneously. • Ultra-trace analysis with LOD (ng mL −1 ) 0.07 for Ce(IV) and 0.19 for Gd(III) is achieved. - Abstract: A typical, reproducible, and rugged screen printed carbon electrode, modified with dual-ion imprinted beads, was fabricated employing the “surface grafting from” approach. For this, the acyl chloride functionalized magnetic nanoparticles were first immobilized and chemically attached with a typical functional monomer (but-2-enedioic acid bis-[(2-amino-ethyl)-amide]) on the electrode surface. This was subsequently subjected to the thermal polymerization in the presence of template ions (Ce(IV) and Gd(III)), cross-linker (ethylene glycol dimethacrylate), initiator (AIBN), and multiwalled carbon nanotubes. The modified sensor was used for the simultaneous analysis of both template ions in aqueous, blood serum, and waste-water samples, using differential pulse anodic stripping voltammetry which revealed two oxidation peaks for respective templates with resolution as much as 950 mV, without any cross reactivity, interferences and false-positives. The detection limits realized by the proposed sensor, under optimized conditions, were found to be as low as 0.07 ng mL −1 for Ce(IV) and 0.19 ng mL −1 for Gd(III) (S/N = 3) that could eventually be helpful for lanthanide estimation at stringent levels

  9. Ab initio/GIAO-CCSD(T) study of structures, energies, and 13C NMR chemical shifts of C4H7(+) and C5H9(+) ions: relative stability and dynamic aspects of the cyclopropylcarbinyl vs bicyclobutonium ions.

    Science.gov (United States)

    Olah, George A; Surya Prakash, G K; Rasul, Golam

    2008-07-16

    The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).

  10. Effective Remediation of Lead Ions from Aqueous Solution by Chemically Carbonized Rubber Wood Sawdust: Equilibrium, Kinetics, and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2015-01-01

    Full Text Available Rubber wood sawdust was carbonized into charcoal by chemical treatment which was used for removal of lead ion from aqueous solution. The work involves batch experiments to investigate the pH effect, initial concentration of adsorbate, contact time, and adsorbent dose. Experimental data confirmed that the adsorption capacities increased with increasing inlet concentration and bed height and decreased with increasing flow rate. Adsorption results showed a maximum adsorption capacity of 37 mg/g at 308 K. Langmuir, Freundlich, and Temkin model adsorption isotherm models were applied to analyze the process where Temkin was found as a best fitted model for present study. Simultaneously kinetics of adsorption like pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were investigated. Thermodynamic parameters were used to analyze the adsorption experiment. Fourier transform infrared spectroscopy, scanning electron microscope, and energy dispersive X-ray spectroscopy confirmed the batch adsorption of lead ion onto chemically carbonized rubber wood sawdust.

  11. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry

    Directory of Open Access Journals (Sweden)

    Luis R. Domingo

    2016-09-01

    Full Text Available A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT, is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT, the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  12. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  13. Li+ solvation and kinetics of Li+-BF4-/PF6- ion pairs in ethylene carbonate. A molecular dynamics study with classical rate theories

    Science.gov (United States)

    Chang, Tsun-Mei; Dang, Liem X.

    2017-10-01

    Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li+ ions varied from 60 to 450 ps, depending on the correction method used. We found that the relaxation times changed significantly from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.

  14. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  15. Luminescent chemical waves in the Cu(II)-catalyzed oscillatory oxidation of SCN- ions with hydrogen peroxide.

    Science.gov (United States)

    Pekala, Katarzyna; Jurczakowski, Rafał; Lewera, Adam; Orlik, Marek

    2007-05-10

    The oscillatory oxidation of thiocyanate ions with hydrogen peroxide, catalyzed by Cu2+ ions in alkaline media, was so far observed as occurring simultaneously in the entire space of the batch or flow reactor. We performed this reaction for the first time in the thin-layer reactor and observed the spatiotemporal course of the above process, in the presence of luminol as the chemiluminescent indicator. A series of luminescent patterns periodically starting from the random reaction center and spreading throughout the entire solution layer was reported. For a batch-stirred system, the bursts of luminescence were found to correlate with the steep decreases of the oscillating Pt electrode potential. These novel results open possibilities for further experimental and theoretical investigations of those spatiotemporal patterns, including studies of the mechanism of this chemically complex process.

  16. Trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Suzuki, Sachiko; Wang, Wanjing; Kurata, Rie; Kida, Katsuya; Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Sagara, Akio; Yoshida, Naoaki

    2009-01-01

    The trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions was investigated by thermal desorption spectroscopy (TDS) and x-ray photoelectron spectroscopy (XPS). The D 2 TDS spectrum consisted of three desorption stages, namely desorption of deuterium trapped by intrinsic defects, ion-induced defects and carbon with the formation of the C-D bond. Although the deuterium retention trapped by intrinsic defects was almost constant, that by ion-induced defects increased as the ion fluence increased. The retention of deuterium with the formation of the C-D bond was saturated at an ion fluence of 0.5x10 22 D + m -2 , where the major process was changed from the sputtering of tungsten with the formation of a W-C mixture to the formation of a C-C layer, and deuterium retention as the C-D bond decreased. It was concluded that the C-C layer would enhance the chemical sputtering of carbon with deuterium with the formation of CD x and the chemical state of carbon would control the deuterium retention in tungsten under C + -D 2 + implantation.

  17. Optimization of time on CF{sub 4}/O{sub 2} etchant for inductive couple plasma reactive ion etching of TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); Arshad, M. K. Md., E-mail: mohd.khairuddin@unimap.edu.my; Hashim, U.; Ayub, R. M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia)

    2016-07-06

    In this work, we investigate the optimum etching of titanium dioxide (TiO{sub 2}) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF{sub 4}/O{sub 2} gases as plasma etchant with ratio of 3:1, three samples of TiO{sub 2} thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF{sub 4} gases with plasma enhancement by O{sub 2} gas able to break the oxide bond of TiO{sub 2} and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  18. Dynamics of Reactive Microbial Hotspots in Concentration Gradient.

    Science.gov (United States)

    Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.

    2017-12-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  19. Influence of both ion bombardment and chemical treatment processes on the electrical conductivity of PVC/poly aniline composites

    International Nuclear Information System (INIS)

    Gad, E.A.M.; Ashour, A.H.; Abdel-Hamid, H.M.; Sayed, W.M.

    1999-01-01

    In this article the changes in the electrical conductivity of PVC/poly aniline composites, as temperature consecutively increases, have been measured. The measurement were taken with correspondence to a control series of the composites under two processes:A. Composite samples bombarded with Ar + ions with fluence 2.44 x 10 13 beam ions /cm 2 ., sec 4 of 4 ke V beam energy where argon atoms can induce defects in the surface layer take place. Composite samples treated chemically with concentrated H 2 SO 4 as dopant which reacts with nitrogen atom in aniline. The measurements were also, done with the composites as the ratio of poly(aniline) stepped upward

  20. Comparison of Chemical and Physical-chemical Wastewater Discoloring Methods

    Directory of Open Access Journals (Sweden)

    Durašević, V.

    2007-11-01

    Full Text Available Today's chemical and physical-chemical wastewater discoloration methods do not completely meet demands regarding degree of discoloration. In this paper discoloration was performed using Fenton (FeSO4 . 7 H2O + H2O2 + H2SO4 and Fenton-like (FeCl3 . 6 H2O + H2O2 + HCOOH chemical methods and physical-chemical method of coagulation/flocculation (using poly-electrolyte (POEL combining anion active coagulant (modified poly-acrylamides and cationic flocculant (product of nitrogen compounds in combination with adsorption on activated carbon. Suitability of aforementioned methods was investigated on reactive and acid dyes, regarding their most common use in the textile industry. Also, investigations on dyes of different chromogen (anthraquinone, phthalocyanine, azo and xanthene were carried out in order to determine the importance of molecular spatial structure. Oxidative effect of Fenton and Fenton-like reagents resulted in decomposition of colored chromogen and high degree of discoloration. However, the problem is the inability of adding POEL in stechiometrical ratio (also present in physical-chemical methods, when the phenomenon of overdosing coagulants occurs in order to obtain a higher degree of discoloration, creating a potential danger of burdening water with POEL. Input and output water quality was controlled through spectrophotometric measurements and standard biological parameters. In addition, part of the investigations concerned industrial wastewaters obtained from dyeing cotton materials using reactive dye (C. I. Reactive Blue 19, a process that demands the use of vast amounts of electrolytes. Also, investigations of industrial wastewaters was labeled as a crucial step carried out in order to avoid serious misassumptions and false conclusions, which may arise if dyeing processes are only simulated in the laboratory.

  1. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    Science.gov (United States)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  2. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity

    International Nuclear Information System (INIS)

    Bouraoui, Zeineb; Jeguirim, Mejdi; Guizani, Chamseddine; Limousy, Lionel; Dupont, Capucine; Gadiou, Roger

    2015-01-01

    The present investigation aims to examine the influence of textural, structural and chemical properties of biomass chars on the CO 2 gasification rate. Various lignocellulosic biomass chars were prepared under the same conditions. Different analytical techniques were used to determine the char properties such as Scanning Electronic Microscopy, nitrogen adsorption manometry, Raman spectroscopy and X Ray Fluorescence. Gasification tests were carried out in a thermobalance under 20% CO 2 in nitrogen at 800 °C. Significant differences of the total average reactivity were observed with a factor of 2 between the prepared chars. Moreover, different behaviors of gasification rate profiles versus conversion were obtained. This difference of behavior appeared to be correlated with the biomass char properties. Hence, up to 70% of conversion, the gasification rate was shown to depend on the char external surface and the potassium content. At higher conversion ratio, a satisfactory correlation between the Catalytic Index and the average gasification rate was identified. The results highlight the importance of knowing both textural and structural properties and mineral contents of biomass chars to predict fuel reactivity during CO 2 gasification processes. Such behavior prediction is highly important in the gasifiers design for char conversion. - Highlights: • CO 2 gasification reactivity of various lignocellulosic chars were examined. • Chars properties affect strongly samples gasification behavior. • Initial gasification rate is affected by external surface, K content and D3/G ratio. • Gasification rate behavior depends on the Alkali index at high conversion

  3. A comparative study of the tail ion distribution with reduced Fokker-Planck models

    Science.gov (United States)

    McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua; Berk, H. L.

    2014-03-01

    A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas and pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. While a significant reduction of the fusion reactivity in the hot spot compared to the nominal Maxwellian case is present, this reduction is found to be partially recovered by an increase of the fusion reactivity in the neighboring cold region.

  4. In-medium Modifications of Hadron Masses and Chemical Freeze-out in Ultra-relativistic Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Florkowski, W.; Broniowski, W.

    1999-10-01

    We confront the hypothesis of chemical freeze-out in ultra-relativistic heavy-ion collisions with the hypothesis of large modifications of hadron masses in nuclear medium. We find that the thermal-model predictions for the ratios of particle multiplicities are sensitive to the values of in-medium hadronic masses. In particular, the π + /p ratio decreases by 35% when the masses of all hadrons (except for pseudo-Goldstone bosons) are scaled down by 30%. (author)

  5. Modeling of reactive chemical transport of leachates from a utility fly-ash disposal site

    International Nuclear Information System (INIS)

    Apps, J.A.; Zhu, M.; Kitanidis, P.K.; Freyberg, D.L.; Ronan, A.D.; Itakagi, S.

    1991-04-01

    Fly ash from fossil-fuel power plants is commonly slurried and pumped to disposal sites. The utility industry is interested in finding out whether any hazardous constituents might leach from the accumulated fly ash and contaminate ground and surface waters. To evaluate the significance of this problem, a representative site was selected for modeling. FASTCHEM, a computer code developed for the Electric Power Research Institute, was utilized for the simulation of the transport and fate of the fly-ash leachate. The chemical evolution of the leachate was modeled as it migrated along streamtubes defined by the flow model. The modeling predicts that most of the leachate seeps through the dam confining the ash pond. With the exception of ferrous, manganous, sulfate and small amounts of nickel ions, all other dissolved constituents are predicted to discharge at environmentally acceptable concentrations

  6. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

    Science.gov (United States)

    Hallopeau, Leopold; Bregiroux, Damien; Rousse, Gwenaëlle; Portehault, David; Stevens, Philippe; Toussaint, Gwenaëlle; Laberty-Robert, Christel

    2018-02-01

    Li1.3Al0.3Ti1.7(PO4)3 (LATP) materials are made of a three-dimensional framework of TiO6 octahedra and PO4 tetrahedra, which provides several positions for Li+ ions. The resulting high ionic conductivity is promising to yield electrolytes for all-solid-state Li-ion batteries. In order to elaborate dense ceramics, conventional sintering methods often use high temperature (≥1000 °C) with long dwelling times (several hours) to achieve high relative density (∼90%). In this work, an innovative synthesis and processing approach is proposed. A fast and easy processing technique called microwave-assisted reactive sintering is used to both synthesize and sinter LATP ceramics with suitable properties in one single step. Pure and crystalline LATP ceramics can be achieved in only 10 min at 890 °C starting from amorphous, compacted LATP's precursors powders. Despite a relative density of 88%, the ionic conductivity measured at ambient temperature (3.15 × 10-4 S cm-1) is among the best reported so far. The study of the activation energy for Li+ conduction confirms the high quality of the ceramic (purity and crystallinity) achieved by using this new approach, thus emphasizing its interest for making ion-conducting ceramics in a simple and fast way.

  7. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Hunt, D.F.; Sethi, S.K.

    1980-01-01

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables

  8. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  9. Effect of reactive and un-reactive substrates on photopolymerization of self-etching adhesives with different aggressiveness.

    Science.gov (United States)

    Zhang, Ying; Wang, Yong

    2013-01-01

    The study investigated the influence of reactive (enamel) and un-reactive (glass) substrates on photo-polymerization of self-etching adhesives. Two commercial adhesives Adper Prompt L-Pop (APLP, pH~0.8) and Adper Easy Bond (AEB, pH~2.5) were applied onto prepared enamel and glass substrates using the same protocol. Micro-Raman spectroscopy was employed to determine the degree of conversion (DC) and the involved mechanism. DC of APLP was dramatically enhanced from ~9.4% to ~82.0% as when changing from glass to enamel, while DC of AEB on both substrates showed no difference. The DC distributions along the adhesive layers of the APLP and AEB on enamel showed descending and constant trends, respectively. Spectral analysis disclosed that the difference in chemical reaction of the two adhesives with enamel might be associated with the results. The chemical reaction of the adhesives with enamel significantly improved the DC of the strong APLP, but not that of the mild AEB.

  10. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    International Nuclear Information System (INIS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Ikehara, Yuzuru; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O 2 /He or N 2 /He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation. (paper)

  11. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    Science.gov (United States)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  12. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-01

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  13. Gas-phase ion-molecule reactions and high-pressure mass spectrometer, 1

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo

    1977-01-01

    The reasons for the fact that the research in gas-phase ion-molecule reactions, to which wide interest is shown, have greatly contributed to the physical and chemical fields are that, first it is essential in understanding general phenomena concerning ions, second, it can furnish many unique informations in the dynamics of chemical reactions, and third, usefulness of '' chemical ionization'' methods has been established as its application to chemical analysis. In this review, the history and trend of studies and equipments in gas-phase ion-molecule reactions are surveyed. The survey includes the chemical ionization mass spectrometer for simultaneously measuring the positive and negative ions utilizing a quadrupole mass spectrometer presented by Hunt and others, flowing afterglow method derived from the flowing method which traces neutral chemical species mainly optically, ion cyclotron resonance mass spectrometer, trapped ion mass spectrometer and others. Number of reports referred to ion-molecule reactions issued during the last one year well exceeds the total number of reports concerning mass spectrometers presented before 1955. This truly shows how active the research and development are in this field. (Wakatsuki, Y.)

  14. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    International Nuclear Information System (INIS)

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg 2+ ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn 2+ ); and (3) by inducing reactive oxygen species (ROS). Hg 2+ causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn 2+ release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn 2+ or Hg 2+ . Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg 2+ -induced oxidation, because phosphatase activity is inhibited at concentrations of Hg 2+ that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  15. Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates.

    Science.gov (United States)

    Mathieu, Cécile; Duval, Romain; Xu, Ximing; Rodrigues-Lima, Fernando; Dupret, Jean-Marie

    2015-01-01

    Thiocarbamates are chemicals widely used as pesticides. Occupational exposure is associated with acute intoxication. Populations can be exposed through food and water. Moreover, certain thiocarbamates are used clinically. The widespread use of thiocarbamates raises many issues regarding their toxicological and pharmacological impact. Thiocarbamates and their metabolites can modify biological macromolecules functions, in particular enzymes, through modification of cysteine residues, chelation of metal ions or modulation of the oxidative stress. Loss of enzyme activity can lead to the disruption of metabolic pathways, and explain, at least in part, the effects of these pesticides. Additionally, their reactivity and ability to easily cross biological barrier confer them a great interest for development of clinical applications. Many advances in the study of thiocarbamates metabolism and reactivity have led to a better knowledge of biological effects of these compounds. However, more data are needed on the determination of targets and specificity. Only few data concerning the exposure to a cocktail of pesticides/chemicals are available, raising the need to evaluate the toxic side effects of representative pesticides mixtures. Moreover, the dithiocarbamate Disulfiram has shown great potential in therapeutic applications and leads to the development of pharmacological thiocarbamates derivatives, highly specific to their target and easily distributed.

  16. Development of Electrically Switched Ion Exchange Process for Selective Ion Separations

    International Nuclear Information System (INIS)

    Rassat, Scot D.; Sukamto, Johanes H.; Orth, Rick J.; Lilga, Michael A.; Hallen, Richard T.

    1999-01-01

    The electrically switched ion exchange (ESIX) process, being developed at Pacific Northwest National Laboratory, provides an alternative separation method to selectively remove ions from process and waste streams. In the ESIX process, in which an electroactive ion exchange film is deposited onto a high surface area electrode, uptake and elution are controlled directly by modulating the electrochemical potential of the film. This paper addresses engineering issues necessary to fully develop ESIX for specific industrial alkali cation separation challenges. The cycling and chemical stability and alkali cation selectivity of nickel hexacyanoferrate (NiHCF) electroactive films were investigated. The selectivity of NiHCF was determined using cyclic voltammetry and a quartz crystal microbalance to quantify ion uptake in the film. Separation factors indicated a high selectivity for cesium and a moderate selectivity for potassium in high sodium content solutions. A NiHCF film with improved redox cycling and chemical stability in a simulated pulp mill process stream, a targeted application for ESIX, was also prepared and tested

  17. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  18. Imaging of fullerene-like structures in CNx thin films by electron microscopy; sample preparation artefacts due to ion-beam milling

    International Nuclear Information System (INIS)

    Czigany, Zs.; Neidhardt, J.; Brunell, I.F.; Hultman, L.

    2003-01-01

    The microstructure of CN x thin films, deposited by reactive magnetron sputtering, was investigated by transmission electron microscopy (TEM) at 200 kV in plan-view and cross-sectional samples. Imaging artefacts arise in high-resolution TEM due to overlap of nm-sized fullerene-like features for specimen thickness above 5 nm. The thinnest and apparently artefact-free areas were obtained at the fracture edges of plan-view specimens floated-off from NaCl substrates. Cross-sectional samples were prepared by ion-beam milling at low energy to minimize sample preparation artefacts. The depth of the ion-bombardment-induced surface amorphization was determined by TEM cross sections of ion-milled fullerene-like CN x surfaces. The thickness of the damaged surface layer at 5 deg. grazing incidence was 13 and 10 nm at 3 and 0.8 keV, respectively, which is approximately three times larger than that observed on Si prepared under the same conditions. The shallowest damage depth, observed for 0.25 keV, was less than 1 nm. Chemical changes due to N loss and graphitization were also observed by X-ray photoelectron spectroscopy. As a consequence of chemical effects, sputtering rates of CN x films were similar to that of Si, which enables relatively fast ion-milling procedure compared to carbon compounds. No electron beam damage of fullerene-like CN x was observed at 200 kV

  19. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  20. Developments in broad-beam, ion-source technology and applications

    International Nuclear Information System (INIS)

    Kaufman, H.R.; Harper, J.M.E.; Cuomo, J.J.

    1982-01-01

    Recent advances in broad-beam, ion-source technology are summarized, including low-energy ion optics, improved extraction grid fabrication, a compact ion-source design and a gridless ion-source design. Recent applications have emphasized concepts such as stress modification of vapor deposited films, very low energy ion beams to minimize the physical sputtering portion in reactive etching, and the use of multiple sources and targets to sputter deposit alloys and compounds. A comprehensive critical review by the same authors appears concurrently, describing in detail the developments in broad-beam, ion-source technology 1 and the applications of these sources. 2