WorldWideScience

Sample records for chemically patterned surfaces

  1. Wetting films on chemically patterned surfaces.

    Science.gov (United States)

    Karakashev, Stoyan I; Stöckelhuber, Klaus W; Tsekov, Roumen

    2011-11-15

    The behavior of thin wetting films on chemically patterned surfaces was investigated. The patterning was performed by means of imprinting of micro-grid on methylated glass surface with UV-light (λ=184.8 nm). Thus imprinted image of the grid contained hydrophilic cells and hydrophobic bars on the glass surface. For this aim three different patterns of grids were utilized with small, medium and large size of cells. The experiment showed that the drainage of the wetting aqueous films was not affected by the type of surface patterning. However, after film rupturing in the cases of small and medium cells of the patterned grid the liquid from the wetting film underwent fast self-organization in form of regularly ordered droplets covering completely the cells of the grid. The droplets reduced significantly their size upon time due to evaporation. In the cases of the largest cell grid, a wet spot on the place of the imprinted grid was formed after film rupturing. This wet spot disassembled slowly in time. In addition, formation of a periodical zigzag three-phase contact line (TPCL) was observed. This is a first study from the planned series of studies on this topic. PMID:21875710

  2. Evaporation of elongated droplets on chemically stripe-patterned surfaces

    NARCIS (Netherlands)

    Jansen, H.P.; Zandvliet, H.J.W.; Kooij, E.S.

    2015-01-01

    We investigate the evaporation of elongated droplets on chemically striped patterned surfaces. Variation of elongation is achieved by depositing droplets on surfaces with varying ratios of hydrophobic and hydrophilic stripe widths. Elongated droplets evaporate faster than more spherical droplets. Bo

  3. Interaction of bacteria and a chemically patterned surface

    Science.gov (United States)

    Jalali, Maryam; Molaei, Mehdi; Sheng, Jian

    2012-11-01

    We are investigating the mechanisms involved in the interactions between bacteria and chemically patched oil-water interface. Using micro-fabrication and soft-lithography, we have engineered a chemically patterned solid surface to mimic the real interfacial environment. Arrays of 2D geometries whose characteristic size ranges from 10 μm to 100 μm are patterned onto a glass substrate and subsequently functionalized using Octadecyltrichlorosilane (OTS). The photoresist covering geometries is further removed after functionalization. Consequently, a chemically patterned surface with alternating hydrophobic and hydrophilic regions is produced as the substrate for microfluidics. The effects of this surface on bacteria attachment and detachment are evaluated in-situ. The growth rates of biofilm are quantified by measuring the morphology of bacterial colony. To elucidate hydrodynamic mechanism involved, bacteria swimming characteristics, such as swimming velocity, angle, tumbling frequency and dispersion, is measured within a microfluidics with a patterned substrate using 3D digital holographic microscopy. Comparative studies on smooth swimming and tumbling capable strains over such surfaces will also be presented. GoMRI.

  4. Guiding catalytically active particles with chemically patterned surfaces

    CERN Document Server

    Uspal, W E; Dietrich, S; Tasinkevych, M

    2016-01-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either "dock" at the chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governi...

  5. Orthogonal chemical functionalization of patterned gold on silica surfaces

    Directory of Open Access Journals (Sweden)

    Francisco Palazon

    2015-12-01

    Full Text Available Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica was demonstrated by X-ray photoelectron spectroscopy (XPS as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM. These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors is a major challenge.

  6. Integration of plasma-assisted surface chemical modification, soft lithography, and protein surface activation for single-cell patterning

    Science.gov (United States)

    Cheng, Q.; Komvopoulos, K.

    2010-07-01

    Surface patterning for single-cell culture was accomplished by combining plasma-assisted surface chemical modification, soft lithography, and protein-induced surface activation. Hydrophilic patterns were produced on Parylene C films deposited on glass substrates by oxygen plasma treatment through the windows of polydimethylsiloxane shadow masks. After incubation first with Pluronic F108 solution and then serum medium overnight, surface seeding with mesenchymal stem cells in serum medium resulted in single-cell patterning. The present method provides a means of surface patterning with direct implications in single-cell culture.

  7. Microscale chemical and electrostatic surface patterning of Dow Cyclotene by N 2 plasma

    Science.gov (United States)

    Yang, D.-Q.; Poulin, S.; Martinu, L.; Klemberg-Sapieha, J. E.; Zabeida, O.; Sacher, E.

    2005-04-01

    Using TEM grids as masks, we have chemically modified selected areas of the surface of Dow Cyclotene, a low permittivity polymer, by a N 2 plasma (chemical surface patterning), grafting a maximum of ˜3% N; this was verified by XPS (X-ray photoelectron spectroscopy) and TOF-S-SIMS (time-of-flight static secondary ion mass spectrometry) chemical imaging. Contact mode AFM (atomic force microscopy) studies of the modified surface morphology show unexpected, initially large, values of both etch depth and friction in the treated areas, which decrease on exposure to atmosphere; similar results were absent in tapping mode images. When Cu, which forms nanoclusters on Cyclotene, was deposited by evaporation onto freshly etched Cyclotene, the large etch depth and friction in the etched areas decreased to much lower values. The depth and friction differences occurring on surface modification, which were revealed through our use of patterning, are apparent, and are, in fact, caused by enhanced electrostatic interaction of the chemically modified surface with the AFM tip, as confirmed by the tapping mode data. Some of the electrostatic surface charge, introduced by the positively charged species chemically modifying the Cyclotene surface, is reduced by subsequent charge neutralization. XPS has shown this to be due to the oxidation of these surface charges on atmospheric exposure, initially ˜70%, to form alcohol, carbonyl and carboxylic acid groups. Contact mode AFM imaging of plasma-patterned surfaces is revealed as an excellent tool for the high-resolution characterization of such surfaces.

  8. [Distribution pattern of chemicals in surface waters as a reflexion of entry pattern--description of the problems].

    Science.gov (United States)

    Heinisch, E; Klein, S

    1990-05-01

    The distribution pattern of persistent substances made transparent chemically-analytically, in surface waters reflects--considering spatial-temporal limitations--an image of the input pattern. This permits in special cases repercussions on attributable (industrial enterprises, trade, plant production, pest control) or partly or completely anonymous (landfills, ancient deposits, contamination centres, traffic, atmospheric depositions) causative agents The classification of these information requires the knowledge of substance and substrate specifics, especially detailed information about production and/or application of the substances and so represents an interdisciplinary task. Assessing single substance analyses permits a comparison with limit values or literature data. The consideration of combinations of substances which belong together due to production, application and/or transformation may help to elucidate the input patterns. This differential-diagnostic method is presented by a first evaluation of analytical findings in surface waters of an industrialized town and its surroundings. PMID:2368451

  9. Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces

    KAUST Repository

    Xu, Xianmin

    2011-01-01

    Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.

  10. Fabrication of microcapsule arrays on chemically patterned surfaces via covalent linking

    Institute of Scientific and Technical Information of China (English)

    Jie YANG; Chang-you GAO

    2009-01-01

    A method for fabricating arrays ofmicrocapsules covalently immobilized onto chemically patterned substrates was developed. The core-shell microparticles with poly(allylamine hydrochloride) (PAH) as the outermost layer were obtained by layer-by-layer (LbL) assembly, which were further treated with glutaraldehyde to endow the particles with abundant aldehyde groups on their surfaces. The particles were then covalently coupled to the chemically patterned regions with amino groups created by microcontact printing (μCP). After dissolution of the core particles, arrays of the hollow microcapsules with unchanged structures were obtained. These arrays could stand rigorous environmental conditions of higher ionic strength, and lower and higher pH values. Thus, the technique could be possibly applied to exploiting chips of microcontainers or microreactors in sensing technology.

  11. Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces

    KAUST Repository

    Wu, Congmin

    2009-01-01

    Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier boundary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation. © 2010 Global-Science Press.

  12. A continuum model for the flow of thin liquid films over intermittently chemically patterned surfaces

    OpenAIRE

    Sprittles, J. E.; Shikhmurzaev, Y. D.

    2009-01-01

    It is known from both experiments and molecular dynamics simulations that chemically patterning a solid surface has an effect on the flow of an adjacent liquid. This fact is in stark contrast with predictions of classical fluid mechanics where the no-slip boundary condition is insensitive to the chemistry of the solid substrate. It has been shown that the influence on the flow caused by a steep change in the wettability of the solid substrate can be described in the framework of continuum mec...

  13. Pinning-depinning mechanism of the contact line during evaporation on chemically patterned surfaces: A lattice Boltzmann study

    CERN Document Server

    Li, Qing; Yan, H J

    2016-01-01

    In this paper, the pinning and depinning mechanism of the contact line during droplet evaporation on chemically stripe-patterned surfaces is numerically investigated using a thermal multiphase lattice Boltzmann (LB) model with liquid-vapor phase change. A local force balance in the context of diffuse interfaces is introduced to explain the equilibrium states of droplets on chemically patterned surfaces. It is shown that, when the contact line is pinned on a hydrophobic-hydrophilic boundary, different contact angles can be interpreted as the variation of the length of the contact line occupied by each component. The stick-slip-jump behavior of evaporating droplets on chemically patterned surfaces is well captured by the LB simulations. Particularly, a slow movement of the contact line is clearly observed during the stick (pinning) mode, which shows that the pinning of the contact line during droplet evaporation on chemically stripe-patterned surfaces is actually a dynamic pinning process and the dynamic equili...

  14. Fabrication of large-area arrays of hybrid nanostructures on polymer-derived chemically patterned surfaces

    Science.gov (United States)

    Liu, Xiaoying; Nepal, Dhriti; Biswas, Sushmita; Park, Kyoungweon; Vaia, Richard; Nealey, Paul; Air Force Research Laboratories Collaboration; University of Chicago Team

    2014-03-01

    The precise placement and assembly of nanoparticles (NPs) into large-area nanostructure arrays will allow for the design and implementation of advanced nanoscale devices for applications in fields such as quantum computing, optical sensing, superlenses, photocatalysis, photovoltaics, and non-linear optics. Our work is focused on using chemically nanopatterned surfaces to fabricate arrays of hybrid nanostructures with each component of the building block at well-defined positions. The precise chemical contrast patterns with densities and resolution of features created using standard tools of lithography, polymer self-assembly, and surface functionalization allow for control of position and interparticle spacing through selective surface-particle and particle-particle interactions. We have demonstrated the assembly of NPs, including metallic NPs and semiconductor quantum dots, into arrays of hybrid structures with various geometries, such as monomers, dimers, quatrefoils, stripes, and chains. We have developed protocols to fabricate NP arrays over a variety of substrates, which allows for the design and characterization of optical and electronic nanostructures and devices to meet the requirements of various technological applications.

  15. Chemical patterning in biointerface science

    Directory of Open Access Journals (Sweden)

    Ryosuke Ogaki

    2010-04-01

    Full Text Available Patterning of surfaces with different chemistries provides novel insights into how proteins, cells and tissues interact with materials. New materials, and the properties that their surfaces impart, are highly desirable for the next generation of implants, regenerative medicine and tissue engineering devices, and biosensors and drug delivery devices for disease diagnosis and treatment. Patterning is thus seen as a key technology driver for these materials. We provide an overview of state-of-the-art fabrication tools for creating chemical patterns over length scales ranging from millimeters to micrometers to nanometers. The importance of highly sensitive surface analytical tools in the development of new chemically patterned surfaces is highlighted.

  16. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications

    KAUST Repository

    Alias, Mohd Sharizal Bin

    2015-12-22

    The high optical gain and absorption of organic–inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption.

  17. Chemical Treatment of Low-k Dielectric Surfaces for Patterning of Thin Solid Films in Microelectronic Applications.

    Science.gov (United States)

    Guo, Lei; Qin, Xiangdong; Zaera, Francisco

    2016-03-01

    A protocol has been developed to selectively process low-k SiCOH dielectric substrates in order to activate or deactivate them toward the deposition of thin solid films by chemical (CVD or ALD) means. The original SiCOH surfaces are hydrophobic, an indication that they are alkyl- rather than silanol-terminated and that, consequently, they are fairly unreactive. However, the chemical-mechanical polishing (CMP) sometimes done during microelectronics fabrication renders them hydrophilic and reactive. It was shown here that silylation of the CMP-treated surfaces with any of a number of well-known silylation agents such as HMDS, ODTS, or OTS caps the reactive silanol surface groups and turns them back to being hydrophilic and unreactive. Further exposure of any of the passivated surfaces to a combination of ozone and UV radiation reinstates their hydrophilicity and chemical activity. Importantly, it was also demonstrated that all these changes could be induced without altering the original mechanical, optical, or electrical properties of the samples: atomic force microscopy (AFM) images show no increase in roughness, ellipsometry measurements yield the same values for the index of refraction and dielectric constant, and infrared absorption spectroscopy attests to the preservation of the organic fragments present in the original SiCOH samples. The chemical selectivity of the resulting surfaces was tested for the atomic layer deposition (ALD) of HfO2 films, which could be grown only on the UV/O3 treated substrates. PMID:26956428

  18. Directed self-assembly of colloidal particles onto the chemically anchoring patterned surface in a nematic liquid crystal

    Science.gov (United States)

    Li, Xiao; Armas-Pérez, Julio; Hernandez-Ortiz, Juan; de Pablo, Juan; Nealey, Paul

    The defects assisted assembly of colloidal particles works are more focused on the defects created in the bulk or the interface of nematic liquid crystal, which usually observe a group of particles spontaneously forming a chain or aggregating over the defects. The confining surface with specific 3D sculptured structures, such as pyramid or zig-zag grooves, offers the opportunity to isolate the trapped particles into certain position. Here, we explore a new method to direct self-assemble the colloidal particles through manipulating defects on the 2D geometry confined anchoring surface. Since the director of the preferred planar orientation of LCs could be manipulated by the pattern geometry and dimension, the topological defects could be engineered based on multi-stable orientation by designed 2D geometry pattern of different controllable direction at sub-micrometer dimension. We demonstrate that the designed one single middle straight stripe with disjoint two groups of straight stripe array on both side of the middle stripe as 45 angle of different orientation director could control the distortion of the disjoint gap space thus acting as defects template to trap the colloidal particles directed self-assembly at the designed positions. Through anchoring distribution on the pattern areas, geometry design of pattern, and also the external electric field applied on the system, those defects areas could be generate, erase, resume or even correct.

  19. Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups

    Science.gov (United States)

    Fenzke, Dieter; Hunger, Michael; Pfeifer, Harry

    A procedure is described which allows a separate determination of the proton-aluminum distance and of the chemical-shift anisotropy for the bridging OH groups of crystalline molecular sieves from their 'H MAS NMR sideband patterns. For the bridging OH groups which point into the 6-rings of the framework (line "c"), the 1H- 27Al distance could be determined to be 0.237 ± 0.004 and 0.234 ± 0.004 nm for molecular sieves of type H-Y and SAPO-5, respectively. In contrast, for the bridging OH groups of the 12-rings (line "b"), the corresponding distances are equal and distinctly larger, 0.248 ± 0.004 nm. Within the limits of error, the values of the chemical-shift anisotropy are equal (about 19 ± 2 ppm) except for line b of SAPO-5, which exhibits a much smaller value of 14.5 ± 2 ppm.

  20. Hybrid strategies for nanolithography and chemical patterning

    Science.gov (United States)

    Srinivasan, Charan

    chemically removing the parent and daughter structures selectively. This processing was also performed on silicon-on-insulator substrates and the metallic nanowires were used as a hard mask to transfer the pattern to the single crystalline silicon epilayer resulting in a quaternary generation structure of single-crystalline silicon nanowire field-effect transistors. Additionally, the proof of concept for patterning nanoscale pentacene TFTs utilizing molecular-rulers was demonstrated. For applications in sub-100-nm lithography, the limitations on the relative heights of parent and daughter structures were overcome and processes to integrate molecular-ruler nanolithography with existing complementary metal-oxide-semiconductor (CMOS) processing were developed. Pattern transfer to underlying SiO2 substrates has opened a new avenue of opportunities to apply these nanostructures in nanofluidics and in non-traditional lithography such as imprint lithography. Additionally, the molecular-ruler process has been shown to increase the spatial density of features created by high-resolution techniques such as electron-beam lithography. A limitation of photolithography is its inability to pattern chemical functionality on surfaces. To overcome this limitation, two techniques were developed to extend nanolithography beyond semiconductors and apply them to patterning of self-assembled monolayers. First, a novel bilayer resist was devised to protect and to pattern chemical functionality on surfaces by being able to withstand conditions necessary for both chemical self-assembly and photooxidation of the Au-S bond while not disrupting the preexisting SAM. In addition to photolithography, soft-lithographic approaches such as microcontact printing are often used to create chemical patterns. In this work, a technique for the creation of chemical patterns of inserted molecules with dilute coverages (≤10%) was implemented. As part of the research in chemical patterning, a method for characterizing

  1. Directional imbibition on a chemically patterned silicon micropillar array.

    Science.gov (United States)

    Jokinen, Ville

    2016-01-20

    Directional imbibition of oils (hexadecane, tetradecane, and dodecane) and water is demonstrated on a chemically patterned silicon micropillar array. Four different directional imbibition types are shown: unidirectional, two types of bidirectional and tridirectional imbibition. The surfaces consist of a silicon micropillar array with an overlaid surface chemistry pattern. This configuration leads to anisotropic wetting behaviour into various directions of the advancing meniscus. Due to the free energy landscape obtained, the advancing meniscus gets pinned in some directions (determined by the surface chemistry pattern) while it is free to move to the remaining directions. The conditions for directional imbibition and design criteria for the surfaces are derived and discussed. PMID:26576647

  2. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  3. Cell behaviour on chemically microstructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-03-03

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 {mu}m) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions.

  4. Process For Patterning Dispenser-Cathode Surfaces

    Science.gov (United States)

    Garner, Charles E.; Deininger, William D.

    1989-01-01

    Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.

  5. Pattern-fluid interpretation of chemical turbulence.

    Science.gov (United States)

    Scholz, Christian; Schröder-Turk, Gerd E; Mecke, Klaus

    2015-04-01

    The spontaneous formation of heterogeneous patterns is a hallmark of many nonlinear systems, from biological tissue to evolutionary population dynamics. The standard model for pattern formation in general, and for Turing patterns in chemical reaction-diffusion systems in particular, are deterministic nonlinear partial differential equations where an unstable homogeneous solution gives way to a stable heterogeneous pattern. However, these models fail to fully explain the experimental observation of turbulent patterns with spatio-temporal disorder in chemical systems. Here we introduce a pattern-fluid model as a general concept where turbulence is interpreted as a weakly interacting ensemble obtained by random superposition of stationary solutions to the underlying reaction-diffusion system. The transition from turbulent to stationary patterns is then interpreted as a condensation phenomenon, where the nonlinearity forces one single mode to dominate the ensemble. This model leads to better reproduction of the experimental concentration profiles for the "stationary phases" and reproduces the turbulent chemical patterns observed by Q. Ouyang and H. L. Swinney [Chaos 1, 411 (1991)]. PMID:25974562

  6. Chemical morphogenesis: turing patterns in an experimental chemical system.

    Science.gov (United States)

    Dulos, E; Boissonade, J; Perraud, J J; Rudovics, B; De Kepper, P

    1996-11-01

    Patterns resulting from the sole interplay between reaction and diffusion are probably involved in certain stages of morphogenesis in biological systems, as initially proposed by Alan Turing. Self-organization phenomena of this type can only develop in nonlinear systems (i.e. involving positive and negative feedback loops) maintained far from equilibrium. We present Turing patterns experimentally observed in a chemical system. An oscillating chemical reaction, the CIMA reaction, is operated in an open spatial reactor designed in order to obtain a pure reaction-diffusion system. The two types of Turing patterns observed, hexagonal arrays of spots and parallel stripes, are characterized by an intrinsic wavelength. We identify the origin of the necessary diffusivity between activator and inhibitor. We also describe a pattern growth mechanism by spot splitting that recalls cell division. PMID:8953211

  7. Surface Patterning Using Diazonium Ink Filled Nanopipette.

    Science.gov (United States)

    Zhou, Min; Yu, Yun; Blanchard, Pierre-Yves; Mirkin, Michael V

    2015-11-01

    Molecular grafting of diazonium is a widely employed surface modification technique. Local electrografting of this species is a promising approach to surface doping and related properties tailoring. The instability of diazonium cation complicates this process, so that this species was generated in situ in many reported studies. In this Article, we report the egress transfer of aryl diazonium cation across the liquid/liquid interface supported at the nanopipette tip that can be used for controlled delivery this species to the external aqueous phase for local substrate patterning. An aryl diazonium salt was prepared with weakly coordinating and lipophilic tetrakis(pentafluorophenyl)borate anion stable as a solid and soluble in low polarity media. The chemically stable solution of this salt in 1,2-dichloroethane can be used as "diazonium ink". The ink-filled nanopipette was employed as a tip in the scanning electrochemical microscope (SECM) for surface patterning with the spatial resolution controlled by the pipette orifice radius and a few nanometers film thickness. The submicrometer-size grafted spots produced on the HOPG surface were located and imaged with the atomic force microscope (AFM). PMID:26456795

  8. The chemical physics of surfaces

    CERN Document Server

    Morrison, Stanley Roy

    1990-01-01

    Even more importantly, some authors who have contributed substantially to an area may have been overlooked. For this I apologize. I have, however, not attempted to trace techniques or observa­ tions historically, so there is no implication (unless specified) that the authors referred to were or were not the originators of a given method or observation. I would like to acknowledge discussions with co-workers at SFU for input relative to their specialties, to acknowledge the help of students who have pointed out errors and difficulties in the earlier presentation, and to acknowledge the infinite patience of my wife Phyllis while I spent my sabbatical and more in libraries and punching computers. S. Roy Morrison 0 1 Contents Notation XV 1. Introduction 1 1. 1. Surface States and Surface Sites . 1 1. 1. 1. The Chemical versus Electronic Representation of the Surface. 1 1. 1. 2. The Surface State on the Band Diagram 4 1. 1. 3. The Fermi Energy in the Surface State Model. 6 1. 1. 4. Need for Both Surface...

  9. Hierarchy of adhesion forces in patterns of photoreactive surface layers

    Science.gov (United States)

    Hlawacek, Gregor; Shen, Quan; Teichert, Christian; Lex, Alexandra; Trimmel, Gregor; Kern, Wolfgang

    2009-01-01

    Precise control of surface properties including electrical characteristics, wettability, and friction is a prerequisite for manufacturing modern organic electronic devices. The successful combination of bottom up approaches for aligning and orienting the molecules and top down techniques to structure the substrate on the nano- and micrometer scale allows the cost efficient fabrication and integration of future organic light emitting diodes and organic thin film transistors. One possibility for the top down patterning of a surface is to utilize different surface free energies or wetting properties of a functional group. Here, we used friction force microscopy (FFM) to reveal chemical patterns inscribed by a photolithographic process into a photosensitive surface layer. FFM allowed the simultaneous visualization of at least three different chemical surface terminations. The underlying mechanism is related to changes in the chemical interaction between probe and film surface.

  10. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    Neeraj Kumar Kamal

    2012-05-01

    We describe a simple model mimicking diffusively coupled chemical micro-oscillators. We characterize the rich variety of dynamical states emerging from the model under variation of time delay in coupling, coupling strength and boundary conditions. The spatiotemporal patterns obtained include clustering, mixed dynamics, inhomogeneous steady states and amplitude death. Further, under delay in coupling, the model yields transitions from phase to antiphase oscillations, reminiscent of that observed in experiments [M Toiya et al, J. Chem. Lett. 1, 1241 (2010)].

  11. Invisible Surface Charge Pattern on Inorganic Electrets

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2013-01-01

    We propose an easy method to pattern the surface charge of ${\\rm SiO}_{2}$ electrets without patterning the dielectric layer. By eliminating the use of metal guard electrodes, both the charge efficiency and the surface charge stability in humid environments improve. We apply the concept to a vibr...

  12. Controlled Chemical Patterns with ThermoChemical NanoLithography (TCNL)

    Science.gov (United States)

    Carroll, Keith; Giordano, Anthony; Wang, Debin; Kodali, Vamsi; King, W. P.; Marder, S. R.; Riedo, E.; Curtis, J. E.

    2012-02-01

    Many research areas, both fundamental and applied, rely upon the ability to organize non-trivial assemblies of molecules on surfaces. In this work, we introduce a significant extension of ThermoChemical NanoLithography (TCNL), a high throughput chemical patterning technique that uses temperature-driven chemical reactions localized near the tip of a thermal cantilever. By combining a chemical kinetics based model with experiments, we have developed a protocol for varying the concentration of surface bound molecules. The result is an unprecedented ability to fabricate extremely complex patterns comprised of varying chemical concentrations, as demonstrated by sinusoidal patterns of amine groups with varying pitches (˜5-15 μm) and the replication of Leonardo da Vinci's Mona Lisa with dimensions of ˜30 x 40 μm^2. Programmed control of the chemical reaction rate should have widespread applications for a technique which has already been shown to nanopattern various substrates including graphene nanowires, piezoelectric crystals, and optoelectronic materials.

  13. Dimple Patterns in Buckling Surfaces

    Science.gov (United States)

    Breid, Derek; Crosby, Alfred

    2010-03-01

    Surface wrinkling has attracted considerable attention in recent years for its ability to generate micro- and nano- scale surface structures via non-lithographic pathways. Although the wrinkle morphology has been considered from an energetic viewpoint for stresses exceeding the critical bifurcation stress, the wrinkle morphology for stress near the critical value is far less understood, in part due to a lack of experimental results in this regime. Recent models for this regime predict the formation of a dimple-phase morphology when the stress is equibiaxial, transitioning to aligned ridges when the stress is anisotropic. Here, we present an experimental investigation into the formation of dimple arrays through the control of the applied stress as well as the geometric parameters of the wrinkling system. We demonstrate the ability to develop dimple arrays over extensive lateral length scales, as well as dimples on the surface of a microscale hemisphere, resulting in a `golf ball' hierarchical structure. These results shed light on the morphology in the near-critical wrinkle regime and provoke many open questions about the underlying materials mechanics in the development of wrinkle surface structures.

  14. Wetting study of patterned surfaces for superhydrophobicity

    International Nuclear Information System (INIS)

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. A number of studies have been carried out to produce artificial biomimetic roughness-induced hydrophobic surfaces. In general, both homogeneous and composite interfaces are possible on the produced surface. Silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values were fabricated. We show how static contact angles vary with different pitch values on the patterned silicon surfaces. Based on the experimental data and a numerical model, the trends are explained. We show that superhydrophobic surfaces have low hysteresis and tilt angle. Tribological properties play an important role in many applications requiring water-repellent properties. Therefore, it is important to study the adhesion and friction properties of these surfaces that mimic nature. An atomic/friction force microscope (AFM/FFM) is used for surface characterization and adhesion and friction measurements

  15. Nanostructured PDMS surfaces with patterned wettability

    OpenAIRE

    Hobæk, Thor Christian

    2011-01-01

    In this study, a surface with patterned wettability by means of surface structuring, rather than through modifying the surface chemistry, was developed. The device presented in this thesis was inspired by the Namib Desert Bettle, which collects water from the fog by having hydrophilic spots surrounded by hydrophobic wax-coated regions on its back. Besides water collection, controlling the wetting behaviour locally on the surface may find applications within droplet-based microfluidics, or fab...

  16. A note on circle patterns on surfaces

    OpenAIRE

    Guo, Ren

    2007-01-01

    In this paper we give two different proofs of Bobenko and Springborn's theorem of circle pattern: there exists a hyperbolic (or Euclidean) circle pattern with proscribed intersection angles and cone angles on a cellular decomposed surface up to isometry (or similarity).

  17. Gyral Folding Pattern Analysis via Surface Profiling

    OpenAIRE

    Li, Kaiming; Guo, Lei; Li, Gang; Nie, Jingxin; Faraco, Carlos; Zhao, Qun; Miller, Stephen; Liu, Tianming

    2009-01-01

    Human cortical folding pattern has been studied for decades. This paper proposes a gyrus scale folding pattern analysis technique via cortical surface profiling. Firstly, we sample the cortical surface into 2D profiles and model them using power function. This step provides both the flexibility of representing arbitrary shape by profiling and the compactness of representing shape by parametric modeling. Secondly, based on the estimated model parameters, we extract affine-invariant features on...

  18. Some unusual electronic patterns on graphite surface

    Indian Academy of Sciences (India)

    Shyam K Choudhury; Anjan K Gupta

    2008-02-01

    We report on the observation of some unusual electronic patterns on a graphite surface using scanning tunneling spectroscopy (STM). We attribute these patterns to different types of strain near the surface. One such pattern seen on a particular layer comprises of two-dimensional spatially varying super-lattice and one-dimensional fringes. This pattern is present in a finite region of a layer on the surface confined between two carbon fibers. We attribute this spatially varying super-lattice structure to the shear strain generated in the top layer due to the restraining fibers. We have also developed a model with the Moirµe rotation hypothesis that gives us a better insight into such large-scale spatially varying patterns. We have been able to model the above-observed pattern. We also report another pattern near a defect, which we attribute to the change in density of states due to the physical buckling of the top graphite layer. Part of this buckled layer is found to be buried under another layer and this region shows a reversed contrast and thus supporting our idea of buckling. We also performed tunneling spectroscopy measurements on various regions of these patterns which show significant variations in the density of states.

  19. Surface chemical studies of chemical vapour deposited diamond thin films

    International Nuclear Information System (INIS)

    Polycrystalime diamond grown by low pressure chemical vapour deposition (CVD) techniques has emerged in recent years as a new material with applications in such areas as optics, electronics, radiation detectors, chemical sensors and electrochemistry. A main aim of this thesis has been to advance current knowledge of the surface chemical properties of CVD diamond to underpin the development of our understanding of the properties and potential applications of this material. Cl2 is found to adsorb dissociatively on the clean, hydrogen-free diamond surface up to sub-monolayer coverage with a sticking probability of ∼1.2x10-3. Adsorption is a non-activated process, and the sticking probability and extent of coverage decreased with increasing temperature. This was shown to contrast with the behaviour found for the interaction of chlorine with the hydrogenated diamond surface where increased sticking probabilities and saturation surface coverages were observed, and where the reactivity also increased with temperature. Thermal desorption of atomic Cl occurred over a broad temperature range m both chemisorption systems, indicating the presence of more than one binding state. Atomic hydrogen was successful in efficiently etching the bound Cl from the surface. XeF2 was found to adsorb dissociatively onto the clean diamond surface to give up to monolayer coverages of F, which formed two distinct binding states. The first state, populated at low coverage, was predominantly covalent in character, while the second state, occurring at high surface coverages, had more ionic bonding character. Pre-hydrogenation of the diamond surface increased the reactive sticking probability observed, but decreased the extent of coverage by blocking reactive sites. The semi-ionic F was readily etched by atomic hydrogen, and underwent thermal desorption at temperatures as low as 300 deg C. The covalent form was more stable, being seemingly resistant to etching and persistent to high temperatures

  20. Sea surface temperature variability: patterns and mechanisms.

    Science.gov (United States)

    Deser, Clara; Alexander, Michael A; Xie, Shang-Ping; Phillips, Adam S

    2010-01-01

    Patterns of sea surface temperature (SST) variability on interannual and longer timescales result from a combination of atmospheric and oceanic processes. These SST anomaly patterns may be due to intrinsic modes of atmospheric circulation variability that imprint themselves upon the SST field mainly via surface energy fluxes. Examples include SST fluctuations in the Southern Ocean associated with the Southern Annular Mode, a tripolar pattern of SST anomalies in the North Atlantic associated with the North Atlantic Oscillation, and a pan-Pacific mode known as the Pacific Decadal Oscillation (with additional contributions from oceanic processes). They may also result from coupled ocean-atmosphere interactions, such as the El Niño-Southern Oscillation phenomenon in the tropical Indo-Pacific, the tropical Atlantic Niño, and the cross-equatorial meridional modes in the tropical Pacific and Atlantic. Finally, patterns of SST variability may arise from intrinsic oceanic modes, notably the Atlantic Multidecadal Oscillation. PMID:21141660

  1. Chemical tethering of motile bacteria to silicon surfaces

    OpenAIRE

    Bearinger, Jane P.; Dugan, Lawrence C.; Wu, Ligang; Hill, Haley; Christian, Allen T.; Hubbell, Jeffrey A.

    2009-01-01

    We chemically immobilized live, motile Escherichia coli on micrometer-scale, photocatalytically patterned silicon surfaces via amine- and carboxylic acid–based chemistries. Immobilization facilitated (i) controlled positioning; (ii) high resolution cell wall imaging via atomic force microscopy (AFM); and (iii) chemical analysis with time-of-flight-secondary ion mass spectrometry (ToF-SIMS). Spinning motion of tethered bacteria, captured with fast-acquisition video, proved microbe viability. W...

  2. Waves and Patterns in Chemical and Biological Media

    Science.gov (United States)

    Swinney, Harry L.; Krinsky, Valentin I.

    1991-12-01

    These 28 contributions by leading researchers - from such diverse disciplines as chemistry, biology, physics, mathematics, and physiology - describe recent experiments, numerical simulations, and theoretical analyses of the formation of spatial patterns in chemical and biological systems. Chemical patterns have been systematically studied since the field was established by Alan Turing's landmark 1952 paper, "The chemical basis for morphogenesis," yet only recently have new experimental techniques and numerical analyses of reaction-diffusion equations opened the way to understanding stationary and traveling wave patterns. This collection summarizes the exciting developments in this rapidly growing field. It shows that some biological patterns have been found to be strikingly similar to patterns found in simple, well-controlled laboratory chemical systems, that new chemical reactor designs make it possible to sustain chemical patterns and to study transitions between different kinds of patterns, and that nearly 40 years after Turing's paper, the patterns predicted by Turing have finally been observed in laboratory experiments. Harry L. Swinney is Sid Richardson Foundation Regents Chair, Department of Physics, and Director of the Center for Nonlinear Dynamics at the University of Texas at Austin. Valentin I. Krinsky is Head of the Autowave Laboratory, Institute of Biological Physics, Academy of Sciences, Pushchino, USSR. Chapters cover: Spiral, Ring, and Scroll Patterns: Experiments. Spiral, Ring, and Scroll Patterns: Theory and Simulations. Fronts and Turing Patterns. Waves and Patterns in Biological Systems.

  3. Potential energy surfaces for chemical reactions

    International Nuclear Information System (INIS)

    Research into potential energy surfaces for chemical reactions at Lawrence Berkeley Laboratory during 1976 is described. Topics covered include: the fuzzy interface between surface chemistry catalysis and organometallic chemistry; potential energy surfaces for elementary fluorine hydrogen reactions; structure, energetics, and reactivity of carbenes; and the theory of self-consistent electron pairs

  4. Shallow flows over surfaces of patterned wettability

    Science.gov (United States)

    Grivel, Morgane; Jeon, David; Gharib, Morteza

    2014-11-01

    Our previous work showed that surfaces with spatially patterned wetting properties induce passive displacements of shallow flows. Polycarbonate plates were patterned with hydrophobic and hydrophilic stripes, and a thin, rectangular water jet impinged on the patterned surface. We reported development of intriguing roller structures at the hydrophobic-hydrophilic interfaces. In our present work, we study the effect of varying the stripes' width, spacing, and orientation on the dynamics of these roller structures. Specifically, we are interested in the vortex generation and air entrainment by the rollers. We report quantitative results to this effect. We will also discuss potential uses of this technique for modifying contact line dynamics and bow waves near ships. This work is supported by the Office of Naval Research (Grant # ONR-N00014-11-1-0031) and by NSF-GRFP.

  5. Chemical Reactions at Surfaces. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  6. Laser Induced Surface Chemical Epitaxy

    Science.gov (United States)

    Stinespring, Charter D.; Freedman, Andrew

    1990-02-01

    Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) on GaAs(100) substrates under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 123 K to 473 K. Results indicate that extremely efficient conversion of admixtures of DMTe and DMCd to CdTe can be obtained using low power (5 - 10 mJ cm-2) 193 nm laser pulses at substrate temperatures of 123 K. Subsequent annealing at 473 K produces an epitaxial film.

  7. Mechanical and chemical decontamination of surfaces

    International Nuclear Information System (INIS)

    Decontamination does not mean more than a special technique of cleaning surfaces by methods well known in the industry. The main difference consists in the facts that more than just the visible dirt is to be removed and that radioactive contamination cannot be seen. Especially, intensive mechanical and chemical carry-off methods are applied to attack the surfaces. In order to minimize damages caused to the surfaces, the decontamination method is to adapt to the material and the required degree of decontamination. The various methods, their advantages and disadvantages are described, and the best known chemical solutions are shown. (orig./RW)

  8. Stability of patterns on thin curved surfaces

    Science.gov (United States)

    Nampoothiri, Sankaran

    2016-08-01

    We consider reaction-diffusion equations on a thin curved surface and obtain a set of effective reaction-diffusion (R-D) equations to O (ɛ2) , where ɛ is the surface thickness. We observe that the R-D systems on these curved surfaces can have space-dependent reaction kinetics. Further, we use linear stability analysis to study the Schnakenberg model on spherical and cylindrical geometries. The dependence of the steady state on the thickness is determined for both cases, and we find that a change in the thickness can stabilize the unstable modes, and vice versa. The combined effect of thickness and curvature can play an important role in the rearrangement of spatial patterns on thin curved surfaces.

  9. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to...... isolate low-frequency variability from time series of SST anomalies for the 1982-2006 period. The first derived trend pattern reflects a systematic decrease in SST during the 25-year period in the equatorial Pacific and an increase in most of the global ocean. The second trend pattern reflects mainly ENSO...... variability in the Pacific Ocean. The examination of the contribution of these low-frequency modes to the globally averaged SST fluctuations indicates that they are able to account for most (>90%) of the variability observed in global mean SST. Trend-EOFs perform better than conventional EOFs when the...

  10. Nanoscale Fluid Flows in the Vicinity of Patterned Surfaces

    Science.gov (United States)

    Cieplak, Marek; Koplik, Joel; Banavar, Jayanth R.

    2006-03-01

    Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nanochannels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.

  11. Patterning of dispenser cathode surfaces to a controlled porosity

    Science.gov (United States)

    Garner, Charles E.; Deininger, William D.; Gibson, John; Thomas, Richard

    1989-01-01

    A process to pattern slots approximately 1.25 microns in width into 25-micron-thick W films that have been deposited onto flat or concave surfaces is discussed. A 25-micron-thick W film with a high degree of (100) orientation is chemically vapor deposited (CVD) onto a flat or concave Mo mandrel. A 5-micron-thick Al film is deposited onto the CVD W, followed by 2 microns of photoresist. On concave cathodes, XeCl2 laser ablation or X-ray lithography is used to pattern the photoresist, whereas on flat cathodes deep UV lithography can be used. The patterned photoresist serves as the mask in a Cl ion-beam-assisted etching (IBAE) process to pattern the Al. An alternative process is to deposit Al2O3 films onto the W and pattern the Al2O3 using laser ablation. The W film is then patterned to 3-6-micron slot widths using IBAE + ClF3 with the patterned Al or Al2O3 as the mask. Finally, a sputter deposition step is required to close up the slots to approximately 1 micron. The process described is capable of patterning concave dispenser cathodes to a controlled and precise porosity.

  12. Excimer laser induced patterning of polymeric surfaces

    International Nuclear Information System (INIS)

    The micropatterning of a surface modified polyurethane is proposed in this paper. In previous work, we described the development and characterisation of a series segmented polyurethanes. These polymers are irradiated with UV excimer lasers (ArF: λ=193 nm and KrF: λ=248 nm excimer laser). After determining the ablation properties of the synthesised polymers, one of these polyurethanes is selected and treated with a new developed method to graft hydrophilic polyacrylamide onto the hydrophobic surface. This modification is observed with spectral reflectance IR, static contact angle measurements, scanning electron and atomic force microscopy. This substrate is treated with an UV excimer laser (ArF, 193 nm) for micropatterning. The grafted polyacrylamide layer shows no interference with the patterning procedure: the polyurethane keeps its good ablation properties in terms of no debris formation and cavities with high dimensional quality (sharp edges and low surface roughness), measured with atomic force microscopy. Also the modification with PEO-macromonomers is executed (AFM, attenuated total reflectance IR and scanning electron microscopy) and shows promising results for a successful usage towards the patterning procedure. This combination of surface modification and micropatterning with UV excimer lasers can be of value in the development of new biosensors

  13. Earth Surface Patterns in 200 Years (Invited)

    Science.gov (United States)

    Werner, B.

    2009-12-01

    What kinds of patterns will characterize Earth's surface in 200 years? This question is addressed using a complex systems dynamical framework for distinct levels of description in a hierarchy, in which time scale and spatial extent increase and number of variables decrease with level, and in which levels are connected nonlinearly to each other via self-organization and slaving and linearly to the external environment. Self-organized patterns linking the present to 200 years in the future must be described dynamically on a level with a time scale of centuries. Human-landscape coupling will play a prominent role in the formation of these patterns as population peaks and interactions become nonlinear over these time scales. Three related examples illustrate this approach. First, the response of human-occupied coastlines to rising sea level. Coastlines in wealthy regions develop a spatially varying boom and bust pattern, with response amplified by structures meant to delay the effects of sea level rise. Coastlines in economically disadvantaged regions experience a subdued response, with populations developing a culture of displacement that minimizes human-landscape interactions in a context of scarce resources. Second, the evolution of nation-state borders with degrading ecosystems, declining resource availability and increasing transportation costs. The maintenance of strong borders as selective filtration systems (goods, capital and people) is based on a cost-benefit analysis in which the economic benefits accruing from long distance, globalized resource exploitation are weighed against policing and infrastructure costs. As costs rise above benefits, borders fragment, with a transition to local barriers and conflicts, and mobile peoples moving to resources. Third, trends in urbanization and development of megacities under economic and environmental stress. The pattern of rapid growth of megacities through inward migration, with displaced people occupying high

  14. Surface electromyography pattern of human swallowing

    Directory of Open Access Journals (Sweden)

    Spadaro Alessandro

    2008-03-01

    Full Text Available Abstract Background The physiology of swallowing is characterized by a complex and coordinated activation of many stomatognathic, pharyngeal, and laryngeal muscles. Kinetics and electromyographic studies have widely investigated the pharyngeal and laryngeal pattern of deglutition in order to point out the differences between normal and dysphagic people. In the dental field, muscular activation during swallowing is believed to be the cause of malocclusion. Despite the clinical importance given to spontaneous swallowing, few physiologic works have studied stomatognathic muscular activation and mandibular movement during spontaneous saliva swallowing. The aim of our study was to investigate the activity patterns of the mandibular elevator muscles (masseter and anterior temporalis muscles, the submental muscles, and the neck muscles (sternocleidomastoid muscles in healthy people during spontaneous swallowing of saliva and to relate the muscular activities to mandibular movement. Methods The spontaneous swallowing of saliva of 111 healthy individuals was analyzed using surface electromyography (SEMG and a computerized kinesiography of mandibular movement. Results Fifty-seven of 111 patients swallowed without occlusal contact (SNOC and 54 individuals had occlusal contact (SOC. The sternocleidomastoid muscles showed a slight, but constant activation during swallowing. The SEMG of the submental and sternocleidomastoid muscles showed no differences between the two groups. The SEMG of the anterior temporalis and masseter muscles showed significant differences (p Conclusion The data suggest that there is not a single "normal" or "typical" pattern for spontaneous saliva swallowing. The polygraph seemed a valuable, simple, non-invasive and reliable tool to study the physiology of swallowing.

  15. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns.

    Science.gov (United States)

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S; Ma, Zhenqiang; Nealey, Paul F

    2016-01-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces. PMID:27528258

  16. Scattering and Chemical Investigations of Semiconductor Surfaces.

    Science.gov (United States)

    Wallace, Robert Milo

    1988-12-01

    This two-part thesis describes: (i) the design of an ion scattering system to examine the surface and near-surface region of semiconductors, and (ii) the chemical reaction channels of unsaturated hydrocarbons on the silicon (100) surface. Details on the design and construction of an ultrahigh vacuum, high-energy ion scattering system are presented. The use of MeV ion scattering to investigate surface and near -surface regions of materials is described and the combination of ion scattering with complimentary surface science techniques is stressed. The thermal activation of chemical bonds of the adsorbed unsaturated hydrocarbon molecules ethylene, propylene, and acetylene is investigated on the Si(100)-(2 times 11) surface with a goal of understanding the surface chemistry of Si-C formation. The use of precision dosing techniques, Low Energy Electron Diffraction, Auger Electron Spectroscopy, and Temperature Programmed Desorption in the investigation of the remaining carbonaceous species is described. Comparisons of the adsorption and desorption behavior of these molecules is made in terms of the carbon -carbon double and triple bonds (ethylene to acetylene) and the methyl functional group (ethylene to propylene). We find that the monolayer saturation coverage of these hydrocarbons is in very good agreement with the number of dimer sites on the surface estimated from scanning-tunneling microscopy, which suggests that the bonding of these hydrocarbons to the Si(100) surface is similar. It is also found that ethylene, in particular, does not provide an efficient Si-C reaction channel upon thermal activation, with nearly 100% of the ethylene molecules desorbing. In contrast, acetylene is found to be very efficient in SiC formation: >=q90% of the adsorbed acetylene thermally dissociates and eventually leads to SiC formation. Propylene has an efficiency of roughly 70% upon heating. Evidence for the diffusion of carbon into the bulk is seen at >=q850 K for propylene and

  17. Nanoscale fluid flows in the vicinity of patterned surfaces

    OpenAIRE

    Cieplak, Marek; Koplik, Joel; Banavar, Jayanth R.

    2006-01-01

    Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nano-channels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.

  18. Patterning liquids on inkjet-imprinted surfaces with highly adhesive superhydrophobicity

    Science.gov (United States)

    Bao, Bin; Sun, Jiazhen; Gao, Meng; Zhang, Xingye; Jiang, Lei; Song, Yanlin

    2016-05-01

    The rapidly increasing research interest in microfluidics, microreactors and solution-processable fabrication technologies requires the development of patterning techniques to obtain large-scale functional liquid arrays. To achieve this objective, photolithography, microcontact printing and mask-based UV irradiation have been utilized to physically or chemically pattern surfaces into templates where ordered arrays of liquid materials are constructed. However, these methods require elaborately fabricated templates or expensive vacuum-deposited masks that restrict their practical applications. Herein, we fabricate physically patterned superhydrophobic surfaces with high adhesion by modifying inkjet-imprinted surfaces through nanoparticle deposition, and utilize these surfaces as templates for liquid patterning. Various functional liquid materials are patterned into defined shapes through a simple dipping-withdrawing process. Moreover, functional material patterns such as photonic crystal patterns, arrays of inorganic nanoparticles and crystals are formed after solvent evaporation of the liquid droplets. Furthermore, chemical reactions can be carried out on the patterns. These surfaces demonstrate excellent performance in liquid patterning, which will find numerous applications in optoelectronic devices, lab-on-chip devices, microreactors, and related fields.The rapidly increasing research interest in microfluidics, microreactors and solution-processable fabrication technologies requires the development of patterning techniques to obtain large-scale functional liquid arrays. To achieve this objective, photolithography, microcontact printing and mask-based UV irradiation have been utilized to physically or chemically pattern surfaces into templates where ordered arrays of liquid materials are constructed. However, these methods require elaborately fabricated templates or expensive vacuum-deposited masks that restrict their practical applications. Herein, we fabricate

  19. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  20. Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces.

    Science.gov (United States)

    Pingle, Hitesh; Wang, Peng-Yuan; Thissen, Helmut; McArthur, Sally; Kingshott, Peter

    2015-01-01

    Biofilm formation on medical implants and subsequent infections are a global problem. A great deal of effort has focused on developing chemical contrasts based on micro- and nanopatterning for studying and controlling cells and bacteria at surfaces. It has been known that micro- and nanopatterns on surfaces can influence biomolecule adsorption, and subsequent cell and bacterial adhesion. However, less focus has been on precisely controlling patterns to study the initial bacterial attachment mechanisms and subsequently how the patterning influences the role played by biomolecular adsorption on biofilm formation. In this work, the authors have used colloidal self-assembly in a confined area to pattern surfaces with colloidal crystals and used them as masks during allylamine plasma polymer (AAMpp) deposition to generate highly ordered patterns from the micro- to the nanoscale. Polyethylene glycol (PEG)-aldehyde was grafted to the plasma regions via "cloud point" grafting to prevent the attachment of bacteria on the plasma patterned surface regions, thereby controlling the adhesive sites by choice of the colloidal crystal morphology. Pseudomonas aeruginosa was chosen to study the bacterial interactions with these chemically patterned surfaces. Scanning electron microscope, x-ray photoelectron spectroscopy (XPS), atomic force microscopy, and epifluorescence microscopy were used for pattern characterization, surface chemical analysis, and imaging of attached bacteria. The AAMpp influenced bacterial attachment because of the amine groups displaying a positive charge. XPS results confirm the successful grafting of PEG on the AAMpp surfaces. The results showed that PEG patterns can be used as a surface for bacterial patterning including investigating the role of biomolecular patterning on bacterial attachment. These types of patterns are easy to fabricate and could be useful in further applications in biomedical research. PMID:26634448

  1. Global patterns in lake surface temperature trends

    Science.gov (United States)

    O'Reilly, C.; Sharma, S.; Gray, D.; Hampton, S. E.; Read, J. S.; Rowley, R.; McIntyre, P. B.; Lenters, J. D.; Schneider, P.; Hook, S. J.

    2014-12-01

    Temperature profoundly affects dynamics in the water bodieson which human societies depend worldwide. Even relatively small water temperature changes can alter lake thermal structure with implications for water level, nutrient cycling, ecosystem productivity, and food web dynamics. As air temperature increases with climate change and human land use transforms watersheds, rising water temperatures have been reported for individual lakes or regions, but a global synthesis is lacking; such a synthesis is foundational for understanding the state of freshwater resources. We investigated global patterns in lake surface water temperatures between 1985 and 2009 using in-situ and satellite data from 236 lakes. We demonstrate that lakes are warming significantly around the globe, at an average rate of 0.34 °C per decade. The breadth of lakes in this study allowed examination of the diversity of drivers across global lakes, and highlighted the importance of ice cover in determining the suite of morphological and climate drivers for lake temperature dynamics. These empirical results are consistent with modeled predictions of climate change, taking into account the extent to which water warming can be modulated by local environmental conditions and thus defy simple correlations with air temperature. The water temperature changes we report have fundamental importance for thermal structure and ecosystem functioning in global water resources; recognition of the extent to which lakes are currently in transition should have broad implications for regional and global models as well as for management.

  2. Droplet impact behavior on heated micro-patterned surfaces

    Science.gov (United States)

    Zhang, Wenbin; Yu, Tongxu; Fan, Jing; Sun, Weijie; Cao, Zexian

    2016-03-01

    Impact behavior of droplets on a surface is an intriguing research topic, and its control should be very useful in diverse industrial applications. We investigated the impact behavior of water droplets on the textured and chemically treated surface of silicon and obtained the impact mode map on the parameter plane subtended by the Weber number (up to 85) and temperature (up to 320 °C). The patterns comprise of micropillars (14 μm in height) in square lattice with a lattice constant of 10 and 20 μm, and the surface was further made superhydrophobic by coating with graphene nanosheets. Six distinct impact modes are identified. It was found that the impact mode map can be dramatically altered by modifying the texture and chemistry of the surface, and the observations are well explained with regard to heat transfer, vapor/bubble generation and vapor flow beneath the droplet. Instability in the droplet arising from the mismatch between vapor generation rate and exhaust conditions is the dominant factor in determining the impact mode. Our results revealed more facts and features of the droplet impact phenomenon and can be very useful for target-oriented surface design towards precise control of droplet impact behavior on heated substrates.

  3. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  4. Patterning liquids on inkjet-imprinted surfaces with highly adhesive superhydrophobicity.

    Science.gov (United States)

    Bao, Bin; Sun, Jiazhen; Gao, Meng; Zhang, Xingye; Jiang, Lei; Song, Yanlin

    2016-05-01

    The rapidly increasing research interest in microfluidics, microreactors and solution-processable fabrication technologies requires the development of patterning techniques to obtain large-scale functional liquid arrays. To achieve this objective, photolithography, microcontact printing and mask-based UV irradiation have been utilized to physically or chemically pattern surfaces into templates where ordered arrays of liquid materials are constructed. However, these methods require elaborately fabricated templates or expensive vacuum-deposited masks that restrict their practical applications. Herein, we fabricate physically patterned superhydrophobic surfaces with high adhesion by modifying inkjet-imprinted surfaces through nanoparticle deposition, and utilize these surfaces as templates for liquid patterning. Various functional liquid materials are patterned into defined shapes through a simple dipping-withdrawing process. Moreover, functional material patterns such as photonic crystal patterns, arrays of inorganic nanoparticles and crystals are formed after solvent evaporation of the liquid droplets. Furthermore, chemical reactions can be carried out on the patterns. These surfaces demonstrate excellent performance in liquid patterning, which will find numerous applications in optoelectronic devices, lab-on-chip devices, microreactors, and related fields. PMID:27098655

  5. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  6. Accessible surface area from NMR chemical shifts

    International Nuclear Information System (INIS)

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation

  7. Chemical Pattern Formation in Far-From Systems.

    Science.gov (United States)

    Pearson, John Evan

    The diffusive instability was proposed as a mechanism for pattern formation in chemical systems, in the context of biological morphogenesis, by Alan Turing in 1952. The instability gives rise to a chemical pattern with an intrinsic "chemical wavelength" that is independent of the system size. Since 1952, the diffusive instability, or Turing bifurcation, has been invoked to explain pattern formation in a variety of fields. To date there has been no unambiguous observation of such an instability. Model studies of the instability are usually carried out on systems containing two variables. Such works do not address issues that are of fundamental importance in experimental studies. How does one go about finding Turing bifurcations in systems with many parameters and for which the chemical kinetics are only partially known? What is the chemical wavelength? Turing bifurcations cannot occur in systems with all diffusion coefficients exactly equal. How unequal must the diffusion coefficients be for a system to undergo a Turing bifurcation?. Reacting and diffusing systems obey a partial -differential equation which is a sum of a diffusion term and a reaction term. Dropping the diffusion term results in an ordinary differential equation describing the reaction kinetics in a well-mixed system. In this dissertation it is shown that, for systems with an arbitrary number of variables, Turing bifurcations can occur with diffusion coefficients arbitrarily close to equal, provided the corresponding well-mixed system is sufficiently close to a point of coalescence of Hopf and saddle-node bifurcations. Since the bifurcation set can be obtained directly from experiments, one does not need a detailed microscopic theory of the reaction kinetics. Similarly, the chemical wavelength can be estimated from experimental measurements without knowledge of the reaction kinetics.

  8. Surface functionalization and surface patterning based on UV-induced dopamine polymerization and disulfide exchange strategies

    OpenAIRE

    Du, Xin

    2015-01-01

    Surface functionalization methods are very important for modern science and technology in order to endow surfaces with various novel and unique properties. Examples include slippery property, antibacterial and antifouling properties, superhydrophobicity and superhydrophilicity, biocompativity and conductivity. As an important branch of surface functionalization, surface patterning has attracted a lot of attention. Patterned surfaces can find a wide range of applications in various fields s...

  9. Preparation of patterned surfaces and microspheres using radiation processing techniques

    International Nuclear Information System (INIS)

    The Biomaterials group of the Department of Radiation Chemistry uses radiation for synthesis and modification of polymers to create new biomaterials. In this report, the work carried out during the period of the Co-ordinated Research Programme and involving synthesis of functional microspheres and surface modifications is described, and future plans are identified. The main polymerization methods available to prepare such spheres are the nonaqueous dispersion polymerization, aqueous emulsion polymerization, seeded suspension polymerization and precipitation polymerization. Precipitation polymerization is unique from the point of view that it can lead to monodisperse microspheres without added surfactant or stabilizer. We are synthesizing them by a radiation initiated precipitation polymerization of a monomer (usually diethyleneglycol dimethacrylate) solution. We report the incorporation of carboxy (AAc) and epoxy (GMA) functionality by this method. The carboxy groups could provide bioadhesion, while the epoxy groups are sufficiently stable in aqueous solutions and react readily with a number of functional groups, thus enabling a covalent binding of a wide range of bioactive materials to the microspheres. Several techniques have been used to tailor the properties of polymer surfaces. These include surface functionalization by physical deposition/adsorption, chemical modifications, gamma-, electron- and ion irradiation, and glow discharge techniques. We used the method of surface oxidation by electron beam irradiation to prepare ELISA plates with improved sensitivity for early detection of tropical diseases. Micropatterning of small molecules, macromolecules and cells on matrix surfaces has a wide range of potential applications in molecular electronics, biosensing, diagnostics, tissue engineering and micromachining. To achieve this micropatterning several methods are in use such as photolithography, ion implantation, electron beam and ion beam irradiation

  10. Pattern formation of a thin film is characteristically sensitive to chemical stimuli

    International Nuclear Information System (INIS)

    The surface structure of a soy milk skin, as a simple artificial film, was found to be characteristically sensitive to chemical stimuli. The surface structure of the film was imaged by AFM and the shape and size of concavities on the film were analyzed to characterize the chemical response. This characteristic pattern formation of the soy milk skin is discussed in relation to the surface aggregation, electronic charge and solubility of soy protein molecules around the air/water interface. We believe that the investigation of such an artificial film prepared under nonequilibrium conditions could lead to the creation of a novel artificial film that can variously form the spatial structure to the chemical environment

  11. Surface wave patterns on acoustically levitated viscous liquid alloys

    Science.gov (United States)

    Hong, Z. Y.; Yan, N.; Geng, D. L.; Wei, B.

    2014-04-01

    We demonstrate two different kinds of surface wave patterns on viscous liquid alloys, which are melted and solidified under acoustic levitation condition. These patterns are consistent with the morphologies of standing capillary waves and ensembles of oscillons, respectively. The rapid solidification of two-dimensional liquid alloy surfaces may hold them down.

  12. Surface tension and dynamics of fingering patterns

    OpenAIRE

    Magdaleno, F. X.; Casademunt, J.

    1997-01-01

    We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension, which contains the physical fixed points of the regularized (non-zero surface tension) problem. New fixed points are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific features of the physics of finger competition are identified and quantitatively defined, which are absent in the zero surface tension case. This has dramatic consequences f...

  13. Temporal evolution of the chemical structure during the pattern transfer by ion-beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ha, N.-B.; Jeong, S.; Yu, S.; Ihm, H.-I.; Kim, J.-S.

    2015-01-01

    Highlights: • Chemical analyses of the individual nano structures simultaneously with the investigation of their morphological evolution were performed. • Degradation of the transferred pattern starts before the overlayer is fully removed. • The chemical analysis reveals the severe reduction of the sputter yield of the material forming the overlayer near the interface due to the compound formation, requesting caution in the practice of the pattern transfer. - Abstract: Ru films patterned by ion-beam sputtering (IBS) serve as sacrificial masks for the transfer of the patterns to Si(1 0 0) and metallic glass substrates by continued IBS. Under the same sputter condition, however, both bare substrates remain featureless. Chemical analyses of the individual nano structures simultaneously with the investigation of their morphological evolution reveal that the pattern transfer, despite its apparent success, suffers from premature degradation before the mask is fully removed by IBS. Moreover, the residue of the mask or Ru atoms stubbornly remains near the surface, resulting in unintended doping or alloying of both patterned substrates.

  14. Temporal evolution of the chemical structure during the pattern transfer by ion-beam sputtering

    International Nuclear Information System (INIS)

    Highlights: • Chemical analyses of the individual nano structures simultaneously with the investigation of their morphological evolution were performed. • Degradation of the transferred pattern starts before the overlayer is fully removed. • The chemical analysis reveals the severe reduction of the sputter yield of the material forming the overlayer near the interface due to the compound formation, requesting caution in the practice of the pattern transfer. - Abstract: Ru films patterned by ion-beam sputtering (IBS) serve as sacrificial masks for the transfer of the patterns to Si(1 0 0) and metallic glass substrates by continued IBS. Under the same sputter condition, however, both bare substrates remain featureless. Chemical analyses of the individual nano structures simultaneously with the investigation of their morphological evolution reveal that the pattern transfer, despite its apparent success, suffers from premature degradation before the mask is fully removed by IBS. Moreover, the residue of the mask or Ru atoms stubbornly remains near the surface, resulting in unintended doping or alloying of both patterned substrates

  15. Surface Functionalization for Protein and Cell Patterning

    Science.gov (United States)

    Colpo, Pascal; Ruiz, Ana; Ceriotti, Laura; Rossi, François

    The interaction of biological systems with synthetic material surfaces is an important issue for many biological applications such as implanted devices, tissue engineering, cell-based sensors and assays, and more generally biologic studies performed ex vivo. To ensure reliable outcomes, the main challenge resides in the ability to design and develop surfaces or artificial micro-environment that mimic 'natural environment' in interacting with biomolecules and cells without altering their function and phenotype. At this effect, microfabrication, surface chemistry and material science play a pivotal role in the design of advanced in-vitro systems for cell culture applications. In this chapter, we discuss and describe different techniques enabling the control of cell-surface interactions, including the description of some techniques for immobilization of ligands for controlling cell-surface interactions and some methodologies for the creation of well confined cell rich areas.

  16. Self-assembly structure formation on patterned InP surfaces

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Self-assembly of polystyrene spheres guided by patterned n-type InP substrates has been investigated. InP surfaces were patterned using a variety of methods including wet chemical etching,sputter coating,thermal evaporation,and photo lithography. The self-assembly of polystyrene spheres depended on the appearance of patterns and was affected by the deposition techniques (sputter coating and thermal evaporation) of Au micro-squares. SEM and AFM were used to characterize the surface morphologies.

  17. Chemically based mathematical model for development of cerebral cortical folding patterns.

    Directory of Open Access Journals (Sweden)

    Deborah A Striegel

    2009-09-01

    Full Text Available The mechanism for cortical folding pattern formation is not fully understood. Current models represent scenarios that describe pattern formation through local interactions, and one recent model is the intermediate progenitor model. The intermediate progenitor (IP model describes a local chemically driven scenario, where an increase in intermediate progenitor cells in the subventricular zone correlates to gyral formation. Here we present a mathematical model that uses features of the IP model and further captures global characteristics of cortical pattern formation. A prolate spheroidal surface is used to approximate the ventricular zone. Prolate spheroidal harmonics are applied to a Turing reaction-diffusion system, providing a chemically based framework for cortical folding. Our model reveals a direct correlation between pattern formation and the size and shape of the lateral ventricle. Additionally, placement and directionality of sulci and the relationship between domain scaling and cortical pattern elaboration are explained. The significance of this model is that it elucidates the consistency of cortical patterns among individuals within a species and addresses inter-species variability based on global characteristics and provides a critical piece to the puzzle of cortical pattern formation.

  18. Chemical surface tuning electrocatalysis of redox-active nanoparticles

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable immobili...

  19. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  20. Chemoselective Attachment of Biologically Active Proteins to Surfaces by Native Chemical Ligation

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C L; de Yoreo, J J; Coleman, M; Camarero, J A

    2003-11-22

    The present work describes our ongoing efforts towards the creation of micro and nanoscaled ordered arrays of protein covalently attached to site-specific chemical linkers patterned by different microlithographic techniques. We present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto silicon-based surfaces. We show that these modified thiols can be used for creating nano- and micrometric chemical patterns by using different lithographic techniques. We show that these patterns can react chemoselectively with proteins which have been recombinantly modified to contain complementary chemical groups at specific positions thus resulting in the oriented attachment of the protein to the surface.

  1. Biomolecule surface patterning may enhance membrane association

    CERN Document Server

    Pogodin, Sergey; Baulin, Vladimir A

    2012-01-01

    Under dehydration conditions, amphipathic Late Embryogenesis Abundant (LEA) proteins fold spontaneously from a random conformation into alpha-helical structures and this transition is promoted by the presence of membranes. To gain insight into the thermodynamics of membrane association we model the resulting alpha-helical structures as infinite rigid cylinders patterned with hydrophobic and hydrophilic stripes oriented parallel to their axis. Statistical thermodynamic calculations using Single Chain Mean Field (SCMF) theory show that the relative thickness of the stripes controls the free energy of interaction of the alpha-helices with a phospholipid bilayer, as does the bilayer structure and the depth of the equilibrium penetration of the cylinders into the bilayer. The results may suggest the optimal thickness of the stripes to mimic the association of such protein with membranes.

  2. Retarded condensate freezing propagation on superhydrophobic surfaces patterned with micropillars

    Science.gov (United States)

    Zhao, Yugang; Yang, Chun

    2016-02-01

    Previous studies have shown ice delay on nano-structured or hierarchical surfaces with nanoscale roughness. Here we report retarded condensate freezing on superhydrophobic silicon substrates fabricated with patterned micropillars of small aspect ratio. We further investigated the pillar size effects on freezing propagation. We found that the velocity of freezing propagation on the surface patterned with proper micropillars can be reduced by one order of magnitude, compared to that on the smooth untreated silicon surface. Additionally, we developed an analytical model to describe the condensate freezing propagation on a structured surface with micropillars and the model predictions were compared with our experimental results.

  3. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    submicron feature sizes, varying linearly in size with laser power and irradiation time. In Part II - “Nanoscale Biosensors” - Indium Arsenide (InAs) nanowires (NW) incorporated in field effect transistor (FET) devices provide a sensitive platform for detection of charged analyte species binding to the NW...... surface. A central limitation to this biosensor principle is the screening of analyte charge by mobile ions in electrolytes with physiological ionic strength. To overcome this problem, we propose to use as capture agents proteins which undergo large conformational changes. Using structure based protein...

  4. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates

    Science.gov (United States)

    Godin, Kyle; Kang, Kyungnam; Fu, Shichen; Yang, Eui-Hyeok

    2016-08-01

    We report a surface energy-controlled low-pressure chemical vapor deposition growth of WS2 monolayers on SiO2 using pre-growth oxygen plasma treatment of substrates, facilitating increased monolayer surface coverage and patterned growth without lithography. Oxygen plasma treatment of the substrate caused an increase in the average domain size of WS2 monolayers by 78%  ±  2% while having a slight reduction in nucleation density, which translates to increased monolayer surface coverage. This substrate effect on growth was exploited to grow patterned WS2 monolayers by patterned plasma treatment on patterned substrates and by patterned source material with resolutions less than 10 µm. Contact angle-based surface energy measurements revealed a dramatic increase in polar surface energy. A growth model was proposed with lowered activation energies for growth and increased surface diffusion length consistent with the range of results observed. WS2 samples grown with and without oxygen plasma were similar high quality monolayers verified through transmission electron microscopy, selected area electron diffraction, atomic force microscopy, Raman, and photoluminescence measurements. This technique enables the production of large-grain size, patterned WS2 without a post-growth lithography process, thereby providing clean surfaces for device applications.

  5. Chemically selective soft x-ray patterning of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Stover, H.D.; Hitchcock, A.P.; Tyliszczak, T.

    2007-06-19

    The chemically selective modification of polymer mixtures by monochromated soft X-rays has been explored using the high-brightness fine-focused 50 nm beam of a scanning transmission X-ray microscope. Four different polymer systems were examined: a polymethylmethacrylate (PMMA) polyacrylonitrile (PAN) bilayer film; a PMMA-blend-PAN microphase-separated film; a poly(MMA-co-AN) copolymer film; and a poly(ethyl cyanoacrylate) homopolymer film. A high level of chemically selective modification was achieved for the PMMA/PAN bilayer; in particular, irradiation at 288.45 eV selectively removed the carbonyl group from PMMA while irradiation at 286.80 eV selectively reduced the nitrile group of PAN, even when these irradiations were carried out at the same (x,y) position of the sample. In the last two homogeneous polymer systems, similar amounts of damage to the nitrile and carbonyl groups occurred during irradiation at either 286.80 or 288.45 eV. This is attributed to damage transfer between the C=N and C=O groups mediated by primary electrons, secondary electrons or radical/ionic processes, aided by their close spatial proximity. Although the overall thickness of the bilayer sample at 70 nm is smaller than the lateral line spreading of 100 nm, the interface between the layers appears to effectively block the transport of energy, and hence damage, between the two layers. The origins of the line spreading in homogeneous phases and possible origins of the damage blocking effect of the interface are discussed. To demonstrate chemically selective patterning, high-resolution multi-wavelength patterns were created in the PMMA/PAN bilayer system.

  6. Viable chemical approach for patterning nanoscale magnetoresistive random access memory

    International Nuclear Information System (INIS)

    A reactive ion etching process with alternating Cl2 and H2 exposures has been shown to chemically etch CoFe film that is an integral component in magnetoresistive random access memory (MRAM). Starting with systematic thermodynamic calculations assessing various chemistries and reaction pathways leading to the highest possible vapor pressure of the etch products reactions, the potential chemical combinations were verified by etch rate investigation and surface chemistry analysis in plasma treated CoFe films. An ∼20% enhancement in etch rate was observed with the alternating use of Cl2 and H2 plasmas, in comparison with the use of only Cl2 plasma. This chemical combination was effective in removing metal chloride layers, thus maintaining the desired magnetic properties of the CoFe films. Scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy showed visually and spectroscopically that the metal chloride layers generated by Cl2 plasma were eliminated with H2 plasma to yield a clean etch profile. This work suggests that the selected chemistries can be used to etch magnetic metal alloys with a smooth etch profile and this general strategy can be applied to design chemically based etch processes to enable the fabrication of highly integrated nanoscale MRAM devices

  7. Viable chemical approach for patterning nanoscale magnetoresistive random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeseung; Kim, Younghee; Chen, Jack Kun-Chieh; Chang, Jane P., E-mail: jpchang@seas.ucla.edu [Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-03-15

    A reactive ion etching process with alternating Cl{sub 2} and H{sub 2} exposures has been shown to chemically etch CoFe film that is an integral component in magnetoresistive random access memory (MRAM). Starting with systematic thermodynamic calculations assessing various chemistries and reaction pathways leading to the highest possible vapor pressure of the etch products reactions, the potential chemical combinations were verified by etch rate investigation and surface chemistry analysis in plasma treated CoFe films. An ∼20% enhancement in etch rate was observed with the alternating use of Cl{sub 2} and H{sub 2} plasmas, in comparison with the use of only Cl{sub 2} plasma. This chemical combination was effective in removing metal chloride layers, thus maintaining the desired magnetic properties of the CoFe films. Scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy showed visually and spectroscopically that the metal chloride layers generated by Cl{sub 2} plasma were eliminated with H{sub 2} plasma to yield a clean etch profile. This work suggests that the selected chemistries can be used to etch magnetic metal alloys with a smooth etch profile and this general strategy can be applied to design chemically based etch processes to enable the fabrication of highly integrated nanoscale MRAM devices.

  8. Surface chemical studies of chemical vapour deposited diamond thin films

    CERN Document Server

    Proffitt, S

    2001-01-01

    could not easily be correlated to the bulk film properties. It is suggested that electron emission arises from the graphite component of graphite- diamond grain boundaries that are present in the nanocrystalline films. species. The adsorbed O and Cl species are more strongly bound to the K layer than they are to the diamond substrate, so thermal desorption of K from the K/CI/diamond or K/O/diamond surface results also in the simultaneous loss ofO and Cl. The phosphorus precursor trisdimethylaminophosphine (TDMAP) has a negligible reactive sticking probability on the clean diamond surface. This can be increased by thermal cracking of the gas phase precursor by a heated filament, resulting in non-activated adsorption to produce an adlayer containing a mixture of surface-bound ligands and phosphorus containing species. The ligands were readily lost upon heating, leaving P, some of which was lost from the surface at higher temperatures. Pre-hydrogenation of the diamond surface inhibited the uptake of cracked TDMA...

  9. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  10. Facile stamp patterning method for superhydrophilic/superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Sungnam, E-mail: blueden@postech.ac.kr; Hwang, Woonbong, E-mail: whwang@postech.ac.kr [Department of Mechanical Engineering, POSTECH, Pohang 680-749 (Korea, Republic of)

    2015-11-16

    Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the width of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.

  11. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.

    Science.gov (United States)

    Tanvir Ahmmed, K M; Kietzig, Anne-Marie

    2016-06-14

    Hierarchical laser-patterned surfaces were tested for their drag reduction abilities. A tertiary level of surface roughness which supports stable Cassie wetting was achieved on the patterned copper samples by laser-scanning multiple times. The laser-fabricated micro/nano structures sustained the shear stress in liquid flow. A rheometer setup was used to measure the drag reduction abilities in term of slip lengths on eight different samples. A considerable increase in slip length (111% on a grate sample) was observed on these surfaces compared to the slip length predictions from the theoretical and the experimental models for the non-hierarchical surfaces. The increase in slip lengths was correlated to the secondary level of roughness observed on the patterned samples. The drag reduction abilities of three different arrangements of the surface features were also compared: posts in a square lattice, parallel grates, and posts in a hexagonal lattice. Although the latter facilitates a stable Cassie state, it nevertheless resulted in a lower normalized slip length compared to the other two arrangements at a similar solid fraction. Furthermore, we coated the laser-patterned surfaces with a silane to test the effect of surface chemistry on drag reduction. While the contact angles were surprisingly similar for both the non-silanized and the silanized samples, we observed higher slip lengths on the latter, which we were able to explain by measuring the respective penetration depths of the liquid-vapour interface between surface features. PMID:27146256

  12. Water Condensation on Zinc Surfaces Treated by Chemical Bath Deposition

    OpenAIRE

    Narhe, R.D. (Ramchandra D.); González-Viñas, W.; Beysens, D.A. (Daniel A.)

    2010-01-01

    Water condensation, a complex and challenging process, is investigated on a metallic (Zn) surface, regularly used as anticorrosive surface. The Zn surface is coated with hydroxide zinc carbonate by chemical bath deposition, a very simple, low-cost and easily applicable process. As the deposition time increases, the surface roughness augments and the contact angle with water can be varied from 75º to 150º , corresponding to changing the surface properties from hydrophobic to ultrahydrophobic a...

  13. Continuously Tunable Wettability by Using Surface Patterned Shape Memory Polymers with Giant Deformability.

    Science.gov (United States)

    Zhao, Lingyu; Zhao, Jun; Liu, Yayun; Guo, Yufeng; Zhang, Liangpei; Chen, Zhuo; Zhang, Hui; Zhang, Zhong

    2016-06-01

    Designing smart surfaces with tunable wettability has drawn much attention in recent years for academic research and practical applications. Most of the previous methods to achieve such surfaces demand some particular materials that inherently have special features or complicated structures which are usually not easy to obtain. A novel strategy to achieve such smart surfaces is proposed by using the surface patterned shape memory polymers of chemically crosslinked polycyclooctene which shows a giant deformability of up to ≈730% strain. The smart surfaces possess the ability to continuously tune the wettability by controlling the recovery temperature and/or time. Coating the modified titanium dioxide nanoparticles onto such surfaces renders the surface superhydrophobicity and expands the tunable range of contact angles (CAs). Theoretical calculations of the CAs at different strains via modified Cassie model well explain the tunable wettability behaviors of such smart surfaces. PMID:27167599

  14. Dominant patterns of winter Arctic surface wind variability

    Institute of Scientific and Technical Information of China (English)

    WU Bingyi; John Walsh; LIU Jiping; ZHANG Xiangdong

    2014-01-01

    Dominant statistical patterns of winter Arctic surface wind (WASW) variability and their impacts on Arctic sea ice motion are investigated using the complex vector empirical orthogonal function (CVEOF) method. The results indicate that the leading CVEOF of Arctic surface wind variability, which accounts for 33% of the covariance, is characterized by two different and alternating spatial patterns (WASWP1 and WASWP2). Both WASWP1 and WASWP2 show strong interannual and decadal variations, superposed on their declining trends over past decades. Atmospheric circulation anomalies associated with WASWP1 and WASWP2 exhibit, respectively, equivalent barotropic and some baroclinic characteristics, differing from the Arctic dipole anomaly and the seesaw structure anomaly between the Barents Sea and the Beaufort Sea. On decadal time scales, the decline trend of WASWP2 can be attributed to persistent warming of sea surface temperature in the Greenland—Barents—Kara seas from autumn to winter, relfecting the effect of the Arctic warming. The second CVEOF, which accounts for 18% of the covariance, also contains two different spatial patterns (WASWP3 and WASWP4). Their time evolutions are signiifcantly correlated with the North Atlantic Oscillation (NAO) index and the central Arctic Pattern, respectively, measured by the leading EOF of winter sea level pressure (SLP) north of 70°N. Thus, winter anomalous surface wind pattern associated with the NAO is not the most important surface wind pattern. WASWP3 and WASWP4 primarily relfect natural variability of winter surface wind and neither exhibits an apparent trend that differs from WASWP1 or WASWP2. These dominant surface wind patterns strongly inlfuence Arctic sea ice motion and sea ice exchange between the western and eastern Arctic. Furthermore, the Fram Strait sea ice volume lfux is only signiifcantly correlated with WASWP3. The results demonstrate that surface and geostrophic winds are not interchangeable in terms of

  15. Nanoscale patterning of Si surface using SPM scratching

    International Nuclear Information System (INIS)

    Nanolithography of Si surface using scanning probe microscopy (SPM) scratching with a diamond-coated tip was systematically investigated at a low force regime below 9 μN. The groove patterns with controlled width and depth could be achieved by adjusting the applied force, scan direction and the number of scan cycles. There was no effect of scan speed on the groove size. The minimum groove width of 10 nm was obtained on Si surfaces. Furthermore, more complex nanostructures such as line and space patterns of 30 nm pith and dot arrays of 2.6x1010 cm-2 density were realized. SPM scratching with a diamond-coated tip allows nanoscale patterning of Si surfaces to be performed simply

  16. Plasma-chemical surface engineering of wood

    Directory of Open Access Journals (Sweden)

    A. Sokołowska

    2009-12-01

    Full Text Available Purpose: Wood infiltrated with nano-silica hydrosol forms a “weak”, irregular composite of components bound with hydrogen bonds only. The purpose of this study was to investigate the influence of low-energy ions bombardment on the structure and properties of the surface of this composite. The aim of these investigations was to produce a shallow “buried” layer of a dense wood-ceramic composite on a wood surface .Design/methodology/approach: D.c. glow-discharge in N2/H2 (9:11 atmosphere under a pressure of 4hPa was the source of ions. A beech plate was placed on the cathode. The temperature of wood was 200°C. The material collected from the wood-silica composite surface was investigated with FTIR spectroscopy and SEM observations. The surface energy was determined with the use of contact angle measurements.Findings: The ions influenced silica only. The nano-particles underwent sintering changing its medium size twice and a small I.R. peak of N2 trapped in SiO2 suggest the possibility of silica nitriding. A buried, continual surface layer of sintered silica did not form. The surface energy of the “wood-silica” plate was slightly decreased after plasma treatment.Research limitations/implications: The results proved the possibility of plasma treatment of wood even in a d.c. glow-discharge under low pressure. Silica sintering, a difficult process which in a thermal way has to be carried out at a temperature of 1000°C, taking place in a plasma at a temperature of 200°C showed the very special nature of an influence of ions.Originality/value: The plasma surface treatment of wood in the d.c. glow-discharge (GD under reduced pressure has not been investigated. There are only publications about glow-dielectric-barrier-discharge (GDBD at atmospheric pressure applications for wood surface modification. The energy of ions in GDBD is much smaller than that of ions in GD and therefore the application of glow discharge under reduced pressure to

  17. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  18. Patterning of platinum (Pt) thin films by chemical wet etching in Aqua Regia

    International Nuclear Information System (INIS)

    The chemical and physical properties of platinum (Pt) make it a useful material for microelectromechanical systems and microfluidic applications such as lab-on-a-chip devices. Platinum thin-films are frequently employed in applications where electrodes with high chemical stability, low electrical resistance or a high melting point are needed. Due to its chemical inertness it is however also one of the most difficult metals to pattern. The gold standard for patterning is chlorine RIE etching, a capital-intensive process not available in all labs. Here we present simple fabrication protocols for wet etching Pt thin-films in hot Aqua Regia based on sputtered Ti/Pt/Cr and Cr/Pt/Cr metal multilayers. Chromium (Cr) or titanium (Ti) is used as an adhesion layer for the Pt. Cr is used as a hard masking layer during the Pt etch as it can be easily and accurately patterned with photoresist and withstands the Aqua Regia. The Cr pattern is transferred into the Pt and the Cr mask later removed. Only standard chemicals and cleanroom equipment/tools are required. Prior to the Aqua Regia etch any surface passivation on the Pt is needs to be removed. This is usually achieved by a quick dip in dilute hydrofluoric acid (HF). HF is usually also used for wet-etching the Ti adhesion layer. We avoid the use of HF for both steps by replacing the HF-dip with an argon (Ar) plasma treatment and etching the Ti layer with a hydrogen peroxide (H2O2) based etchant. (technical note)

  19. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.;

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts...... for subsequent polymer replication by injection moulding was analyzed. New tooling solutions to produce nano structured mould surfaces were investigated. Experiments based on three different chemical-based-batch techniques to establish surface nano (i.e. sub-μm) structures on large areas were performed. Three...... approaches were selected: (1) using Ø500 nm nano beads deposition for direct patterning of a 4” silicon wafer; (2) using Ø500 nm nano beads deposition as mask for 4” silicon wafer etching and subsequent nickel electroplating; (3) using the anodizing process to produce Ø500 nm structures on a 30x80 mm2...

  20. The patterns of energy use in the chemical industry

    International Nuclear Information System (INIS)

    This paper was sculpted from a report commissioned by the Department of Energy to assess the impact of proposed energy taxes on energy use by the US chemical industry. The discussion of energy taxes is eliminated here, however the broader discussion of the impact of energy prices on energy use is retained. The US chemical industry is currently the world leader by many important measures, such as technology contributions and employment. This leadership traces to a slate of advantages: science base, low cost energy, large market and economic/political stability. The focus of this paper is on the patterns of energy use: (1) There is an optimum economic trade of capital against energy. Industry optimizes this trade to lower its costs. For the large volume chemicals which dominate energy use, this tradable capital cost exceeds energy cost by a factor of 1.5. (2) The capital/energy trade follows clearly defined rules. The basic rules are rooted in thermodynamics. (3) An increase in energy prices would result in a drop in process energy use: a doubling of process energy prices would cut process energy use by approximately 1/3 but the capital cost would be in excess of $100 billion if driven into a short time span, such as 5 years. This is because of the long useful lifetime of capital facilities. (4) Process energy is about half the total energy use, with feedstock being the balance. Feedstock use is much less sensitive to price. Restated, the doubling of energy price will result in roughly a 1/6 reduction in total energy use. (5) Technology progress will also reduce energy use. This reduction is distinct from the impact of energy price. Technological progress will be at least as important in reducing energy use as will energy pricing, for the foreseeable future. (6) Technology progress can be sorted into two themes: (a) Learning curve improvements, which are almost inherent in the production process and the nature of competition; and (b) Breakthroughs that happen in a

  1. Templeting of Thin Films Induced by Dewetting on Patterned Surfaces

    OpenAIRE

    Kargupta, K.; Sharma, A.

    2001-01-01

    The instability, dynamics and morphological transitions of patterns in thin liquid films on periodic striped surfaces (consisting of alternating less and more wettable stripes) are investigated based on 3-D nonlinear simulations that account for the inter-site hydrodynamic and surface-energetic interactions. The film breakup is suppressed on some potentially destabilizing nonwettable sites when their spacing is below a characteristic lengthscale of the instability, the upper bound for which i...

  2. Structure of adsorbed monolayers. The surface chemical bond

    International Nuclear Information System (INIS)

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table

  3. Surface Chemical Functionalization based on Plasma Techniques

    OpenAIRE

    Ricciardi, Serena

    2012-01-01

    Biomaterials research has undergone a variety of evolutionary developments in recent years. In this perspective, bulk materials properties and biomechanics took relevance in view of the stringent mechanical and tribological demands of the bio-implants. However, such issues cannot be the sole determinants of clinical outcome. Interest in bulk properties has inevitably shifted to the important consideration of the surface with the interfacial phenomena, conditioning their performance. These eve...

  4. Assessment methods of injection moulded nano-patterned surfaces

    DEFF Research Database (Denmark)

    Menotti, S.; Bisacco, G.; Hansen, H. N.

    2014-01-01

    work two different methods for quantitative characterization of random nano-patterned surfaces were compared and assessed. One method is based on the estimation of the roughness amplitude parameters Sa and Sz (ISO 25178). The second method is based on pore and particle analysis using the watershed...

  5. Self-assembled monolayer-modified block copolymers for chemical surface nanopatterning

    International Nuclear Information System (INIS)

    Research highlights: → Self-organizing PS-b-PMMA creates striped nanostructure scaffolds. → These striped nanostructures can be selectively metalized and modified using light. → Metalized stripes can be decorated with SAMs to create functional substrates. → Nanostructured surfaces thus prepared exhibit controlled wetting and recognition. - Abstract: Thin-film poly(styrene-block-methyl methacrylate) diblock copolymer (PS-b-PMMA) is used to create chemically patterned surfaces via metal deposition combined with self-assembled monolayers (SAMs) and UV exposure. We use this method to produce surfaces that are chemically striped on the scale of a few tens of nanometers. Atomic force and transmission electron microscopies are used to verify the spatially localized organization of materials, and contact angle measurements confirm the chemical tunability of these scaffolds. These surfaces may be used for arraying nanoscale objects, such as nanoparticles or biological species, or for electronic, magnetic memory or photovoltaic applications.

  6. Simple and non-toxic fabrication of poly(vinyl alcohol)-patterned polymer surface for the formation of cell patterns

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Negative PVA patterns were formed on NPS substrates by selective ion irradiation. • The surface of PVA patterns was more hydrophilic than that of the NPS substrate. • Well-organized cell patterns were created on the PVA-patterned NPS substrates. • It can be due to the preferential adsorption of serum proteins on PVA patterns. - Abstract: In this study, a facile and non-toxic method for the formation of cell-adhesive poly(vinyl alcohol) (PVA) patterns on the surface of a non-biological polystyrene substrate (NPS) is developed to control cellular micro-organization. PVA thin films spin-coated onto the NPS are selectively irradiated with 150 keV H+ ions through a pattern mask and developed with deionized water to form negative-type PVA patterns. Well-defined stripe patterns of PVA with a width of 100 μm are created on the NPS at a higher fluence than 5 × 1015 ions/cm2, and their surface chemical compositions are changed by ion irradiation without any significant morphological change. Based on the results of the protein adsorption test and in vitro cell culture, cancer cells are preferentially adhered and proliferated onto the more hydrophilic PVA regions of the PVA-patterned NPS, resulting in well-defined cell patterns

  7. Simple and non-toxic fabrication of poly(vinyl alcohol)-patterned polymer surface for the formation of cell patterns

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In-Tae; Jin, Yu-Ran [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Oh, Min-Suk [POSCO Technical Research Laboratories, 699 Gumho-dong, Gwangyang, Jeonnam 545-090 (Korea, Republic of); Jung, Chan-Hee, E-mail: jch@kaeri.re.kr [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Choi, Jae-Hak, E-mail: jaehakchoi@cnu.ac.kr [Department of Polymer Science and Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-10-15

    Graphical abstract: - Highlights: • Negative PVA patterns were formed on NPS substrates by selective ion irradiation. • The surface of PVA patterns was more hydrophilic than that of the NPS substrate. • Well-organized cell patterns were created on the PVA-patterned NPS substrates. • It can be due to the preferential adsorption of serum proteins on PVA patterns. - Abstract: In this study, a facile and non-toxic method for the formation of cell-adhesive poly(vinyl alcohol) (PVA) patterns on the surface of a non-biological polystyrene substrate (NPS) is developed to control cellular micro-organization. PVA thin films spin-coated onto the NPS are selectively irradiated with 150 keV H{sup +} ions through a pattern mask and developed with deionized water to form negative-type PVA patterns. Well-defined stripe patterns of PVA with a width of 100 μm are created on the NPS at a higher fluence than 5 × 10{sup 15} ions/cm{sup 2}, and their surface chemical compositions are changed by ion irradiation without any significant morphological change. Based on the results of the protein adsorption test and in vitro cell culture, cancer cells are preferentially adhered and proliferated onto the more hydrophilic PVA regions of the PVA-patterned NPS, resulting in well-defined cell patterns.

  8. Local distribution of particles deposited on patterned surfaces

    NARCIS (Netherlands)

    Wali, Faisal; Knotter, D. Martin; Bearda, Twan; Mertens, Paul W.

    2009-01-01

    In many process steps of integrated circuits (IC’s) fabrication, silicon wafers are coming in contact with process liquids such as ultra pure water (UPW) and aqueous and non-aqueous chemical mixtures. During these process steps, liquid-borne particle contamination can deposit on the wafer surface. P

  9. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy.

    Science.gov (United States)

    Chembath, Manju; Balaraju, J N; Sujata, M

    2015-11-01

    The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in

  10. Solvent-mediated repair and patterning of surfaces by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, S; Chernov, A; De Yoreo, J

    2007-10-30

    A tip-based approach to shaping surfaces of soluble materials with nanometer-scale control is reported. The proposed method can be used, for example, to eliminate defects and inhomogeneities in surface shape, repair mechanical or laser-induced damage to surfaces, or perform 3D lithography on the length scale of an AFM tip. The phenomenon that enables smoothing and repair of surfaces is based on the transport of material from regions of high- to low-curvature within the solution meniscus formed in a solvent-containing atmosphere between the surface in question and an AFM tip scanned over the surface. Using in situ AFM measurements of the kinetics of surface remodeling on KDP (KH{sub 2}PO{sub 4}) crystals in humid air, we show that redistribution of solute material during relaxation of grooves and mounds is driven by a reduction in surface free energy as described by the Gibbs-Thomson law. We find that the perturbation from a flat interface evolves according to the diffusion equation where the effective diffusivity is determined by the product of the surface stiffness and the step kinetic coefficient. We also show that, surprisingly, if the tip is instead scanned over or kept stationary above an atomically flat area of the surface, a convex structure is formed with a diameter that is controlled by the dimensions of the meniscus, indicating that the presence of the tip and meniscus reduces the substrate chemical potential beneath that of the free surface. This allows one to create nanometer-scale 3D structures of arbitrary shape without the removal of substrate material or the use of extrinsic masks or chemical compounds. Potential applications of these tip-based phenomena are discussed.

  11. Optical measurements of chemically heterogeneous particulate surfaces

    Science.gov (United States)

    Zubko, Nataliya; Gritsevich, Maria; Zubko, Evgenij; Hakala, Teemu; Peltoniemi, Jouni I.

    2016-07-01

    We experimentally study light scattering by particulate surfaces consisting of two high-contrast materials. Using the Finnish Geodetic Institute field goniospectropolarimeter, reflectance and degree of linear polarization are measured in dark volcanic sand, bright salt (NaCl) and bright ferric sulfate (Fe2(SO4)3); and in mixtures of bright and dark components. We found that the light-scattering response monotonically changes with volume ratio of dark and bright components. In contrast to previous finding, we do not detect an enhancement of the negative polarization amplitude in two-component high-contrast mixtures. Two-component mixtures reveal an inverse correlation between maximum of their linear polarization and reflectance near backscattering, the so-called Umov effect. In log-log scales this inverse correlation takes a linear form for the dark and moderate-dark samples, while for the brightest samples there is a noticeable deviation from the linear trend.

  12. Laser processing of metallic biomaterials: An approach for surface patterning and wettability control

    Science.gov (United States)

    Razi, Sepehr; Mollabashi, Mahmoud; Madanipour, Khosro

    2015-12-01

    Q -switched Nd:YAG laser is used to manipulate the surface morphology and wettability characteristic of 316L stainless steel (SS) and titanium biomaterials. Water and glycerol are selected as wettability testing liquids and the sessile drop method is used for the contact angle measurements. Results indicate that on both of the metals, wettability toward water improves significantly after the laser treatment. Different analyses including the study of the surface morphology, free energy and oxidation are assessed in correlation with wettability. Beside the important role of the laser-induced surface patterns, the increase in the surface roughness, oxygen content and the polar component of the surface energy, are detected as the most important physical and chemical phenomena controlling the improvement in the wettability. However, all the processed hydrophilic surfaces that are exposed to air become hydrophobic over time. The time dependency of the surface wettability is related to the chemical activities on the treated surfaces and the reduction of oxygen/carbon (O/C) ratio on them. The behavior is further studied with investigating the effect of the keeping environment and changes of the components of the surface tension. Results show that the pulsed laser treatment is a versatile approach to create either hydrophobic or super hydrophilic surfaces for industrial and medical applications.

  13. Surface Chemical Properties of Colloids in Main Soils of China

    Institute of Scientific and Technical Information of China (English)

    MAYI-JIE; YUANCHAO-LIANG

    1991-01-01

    Surface chemical properties of soil colloids are the important factor affecting soil fertility and genesis.To provide scientific basis for soil genetic classification,promotion of soil fertility and reasonable fertilizqation,the specific surface area and electric charge of soil colloids in relation to clay minerals and organic matter are further discussed on the basis of the results obtained from the studies on surface chemical properties of soil colloids in five main soils of China.Results from the studies show that the effect of clay minerals and organic matter on the surface chemical properties of soil colloids is very complicated because the siloxane surface,hydrated oxide surface and organic matter surface do not exist separately,but they are always mixed together and influenced each other.The understanding of the relationship among clay minerals,organic matter and surface chemical properties of soil colloids depends upon further study of the relevant disciplines of soil science,especially the study on the mechanisms of organo-mineral complexes.

  14. 2011 Chemical Reactions at Surfaces Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Peter Stair

    2011-02-11

    The Gordon Research Conference on Chemical Reactions at Surfaces is dedicated to promoting and advancing the fundamental science of interfacial chemistry and physics by providing surface scientists with the foremost venue for presentation and discussion of research occurring at the frontiers of their fields.

  15. The frictional response of patterned soft polymer surfaces

    Science.gov (United States)

    Rand, Charles J.

    2008-10-01

    Friction plays an intricate role in our everyday lives, it is therefore critical to understand the underlying features of friction to better help control and manipulate the response anywhere two surfaces in contact move past each other by a sliding motion. Here we present results targeting a thorough understanding of soft material friction and how it can be manipulated with patterns. We found that the naturally occurring length scale or periodicity (lambda) of frictionally induced patterns, Schallamach waves, could be described using two materials properties (critical energy release rate Gc and complex modulus (E*), i.e. lambdainfinity Gc /E*). Following this, we evaluated the effect of a single defect at a sliding interface. Sliding over a defect can be used to model the sliding from one feature to another in a patterned surface. Defects decreased the sliding frictional force by as much as 80% sliding and this decrease was attributed to changes in tangential stiffness of the sliding interface. The frictional response of surface wrinkles, where multiple edges or defects are acting in concert, was also evaluated. Wrinkles were shown to decrease friction (F) and changes in contact area (A) could not describe this decrease. A tangential stiffness correction factor (fx) and changes in the critical energy release rate were used to describe this deviation (F infinity Gc *A*fx/ℓ, where ℓ is a materials defined length scale of dissipation). This scaling can be used to describe the friction of any topographically patterned surface including the Gecko's foot, where the feature size is smaller than ℓ and thus replaces ℓ, increasing the friction compared to a flat surface. Also, mechanically-induced surface defects were used to align osmotically driven surface wrinkles by creating stress discontinuities that convert the global biaxial stress state to local uniaxial stresses. Defect spacing was used to control the alignment process at the surface of the wrinkled rigid

  16. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    International Nuclear Information System (INIS)

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces

  17. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  18. Periodic surface pattern fabrication via biprism interference micro-machining

    Science.gov (United States)

    Saxena, Ishan; Liu, Jintao; Ehmann, Kornel; Cao, Jian

    2015-12-01

    A novel surface micro-texturing process is proposed that is capable of generating extremely scalable periodic patterns on a workpiece surface. The process, henceforth named as ‘biprism interference micro-machining’ utilizes a two-beam interference pattern generated by a Fresnel biprism placed coaxially in the path of a laser pulse to fabricate periodic micro-channels on aluminum surfaces. The channels were fabricated over an area of approximately 8 mm × 6 mm and with a periodicity of 9 and 21 μm, by using custom-built two-faceted biprisms with side angles of 4° and 1.5°, respectively. A beam propagation simulation was carried out to predict the intensity distribution and contrast of the intensity pattern of laser pulse at the workpiece surface. The entire process takes 1-8 laser pulses, thereby demonstrating ultra-fast speed and scalability. Also, the efficiency, precision and resolution of the process are higher than that of conventional mask-based and interference-based micro-machining.

  19. The reliance of insolation pattern on surface aspect

    International Nuclear Information System (INIS)

    The Sun's radiated energy is an important source in realizing the green technology concept construction. When interacting with the atmosphere and objects on the Earth's surface incoming solar radiation (insolation) will create insolation patterns that are ambiguous and as a result need to be investigated further. This paper explores the insolation pattern and ambiguities against topographic surfaces in the context of direct, diffuse, and reflectance irradiance. The topography is modeled from LiDAR data as Digital Surface Model (DSM) and Digital Terrain Model (DTM). The generated DSM and DTM were converted to Triangular Irregular Network (TIN) format within the Arc GIS environment before the insolation pattern could be visualized. The slope and aspect of the topography has an impact on the insolation which is the emphasis of this paper. The main outcome from the study is the insolation map and plots of relationship between the insolation and surface aspect. The findings from this study should contribute to the sustainable practices of green building technology

  20. Observation of adsorption behavior of biomolecules on ferroelectric crystal surfaces with polarization domain patterns

    Science.gov (United States)

    Nakayama, Tomoaki; Isobe, Akiko; Ogino, Toshio

    2016-08-01

    Lithium tantalate (LiTaO3) is one of the ferroelectric crystals that exhibit spontaneous polarization domain patterns on its surface. We observed the polarization-dependent adsorption of avidin molecules, which are positively charged in a buffer solution at pH 7.0, on LiTaO3 surfaces caused by electrostatic interaction at an electrostatic double layer using atomic force microscopy (AFM). Avidin adsorption in the buffer solution was confirmed by scratching the substrate surfaces using the AFM cantilever, and the adsorption patterns were found to depend on the avidin concentration. When KCl was added to the buffer solution to weaken the electrostatic double layer interaction between avidin molecules and LiTaO3 surfaces, adsorption domain patterns disappeared. From the comparison between the adsorption and chemically etched domain patterns, it was found that avidin molecule adsorption is enhanced on negatively polarized domains, indicating that surface polarization should be taken into account in observing biomolecule behaviors on ferroelectric crystals.

  1. Argon ion beam induced surface pattern formation on Si

    Energy Technology Data Exchange (ETDEWEB)

    Hofsäss, H.; Bobes, O.; Zhang, K. [2nd Institute of Physics, Faculty of Physics, University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-01-21

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 10{sup 18} ions/cm{sup 2}. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.

  2. Argon ion beam induced surface pattern formation on Si

    Science.gov (United States)

    Hofsäss, H.; Bobes, O.; Zhang, K.

    2016-01-01

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 1018 ions/cm2. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.

  3. Argon ion beam induced surface pattern formation on Si

    International Nuclear Information System (INIS)

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 1018 ions/cm2. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV

  4. Characterization of Surface Chemical States of a Thick Insulator: Chemical State Imaging on MgO Surface

    Science.gov (United States)

    Yi, Yeonjin; Cho, Sangwan; Noh, Myungkeun; Whang, Chung-Nam; Jeong, Kwangho; Shin, Hyun-Joon

    2005-02-01

    We report a surface characterization tool that can be effectively used to investigate the chemical state and subtle radiation damage on a thick insulator surface. It has been used to examine the MgO surface of a plasma display panel (PDP) consisting of a stack of insulator layers of approximately 51 μm thickness on a 2-mm-thick glass plate. The scanning photoelectron microscopy (SPEM) image of the insulating MgO surface was obtained by using the difference in Au 4f peak shift due to the surface charging at each pixel, where a Au adlayer of approximately 15 {\\AA} thickness was formed on the surface to overcome the serious charging shift of the peak position and the spectral deterioration in the photoelectron spectra. The observed contrast in the SPEM image reveals the chemical modification of the underlying MgO surface induced by the plasma discharge damage. The chemical state analysis of the MgO surface was carried out by comparing the Mg 2p, C 1s and O 1s photoemission spectra collected at each pixel of the SPEM image. We assigned four suboxide phases, MgO, MgCO3, Mg(OH)2 and Mg1+, on the initial MgO surface, where the Mg(OH)2 and Mg1+ phases vanished rapidly as the discharge-induced surface damage began.

  5. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo [Yale University

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3D-AFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  6. Mechanical response of wall-patterned GaAs surface

    International Nuclear Information System (INIS)

    Wall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 1-25 mN depending on the aspect ratio of the walls. A central plastic zone criterion is proposed in view of transmission electron microscopy images of indented walls and allows the prediction of the response deviation of a given wall if its width is known. The mechanical response of the different types of walls is further investigated in terms of stiffness, total penetration of indenter and apparent hardness, and is scanned in relation to the proximity of a wall side. Overall results show that contact stiffness remains almost unaffected by aspect ratio, while penetration drastically increases because of the free sides of the wall as compared to a flat surface (bulk substrate). The application of substrate patterning for optoelectronic devices is discussed in the perspective of eliminating residual dislocations appearing in mismatched structures

  7. Tailored frictional properties by Penrose inspired surfaces produced by direct laser interference patterning

    Science.gov (United States)

    Gachot, Carsten; Rosenkranz, Andreas; Buchheit, Roman; Souza, Nicolas; Mücklich, Frank

    2016-03-01

    In this work, periodic line-like and quasi-periodic Penrose-like patterns were produced on polyimide samples by direct laser inference patterning. The homogeneity and symmetry of the produced patterns were characterised with white light interferometry, light microscopy and. Fourier-transformation of the acquired images thus confirmed good quality of the Penrose-like pattern. Infrared spectroscopy was used to study the chemical changes after the laser treatment. No significant influences could be detected after irradiating the polyimide surfaces. Tribological experiments (polyimide substrate versus steel ball) under dry sliding conditions were performed using ball-on-disk tribometer in linear reciprocating sliding mode as a function of the relative alignment of the sliding direction with respect to the pattern orientation. The measured coefficient of friction strongly depends on the patterning. The periodic line-patterns with an orientation parallel to the sliding direction showed the highest COF of all samples. After a running-in of approximately 50 sliding cycles the Penrose-like patterns with a 0° orientation showed the lowest coefficient of friction.

  8. Spatio-Temporal Patterns of Surface Irradiance in the Himalaya

    Science.gov (United States)

    Dobreva, I. D.; Bishop, M. P.

    2014-12-01

    Climate-glacier dynamics in the Himalaya are complex. Research indicates extreme local variability in glacier fluctuations and the presence of regional trends. The glaciers in the Karakoram Himalaya depart from world trends of glacier recession, as many are advancing or surging. Nevertheless, glacier sensitivity to climate change has yet to be quantitatively assessed given numerous controlling factors. We attempt to address part of the problem by evaluating the role of topography in explaining variations in surface irradiance. Specifically, we developed a spectral-based topographic solar radiation model that accounts for multi-scale topographic effects. We evaluate surface irradiance simulations over a multitude of glaciers across the Karakoram and Nepalese Himalaya and examine spatio-temporal patterns to determine which alpine glaciers are more susceptible to radiation forcing. Simulation results reveal that many Nepalese glaciers characterized by rapid downwasting, retreat and expanding proglacial lakes, exhibit relatively high-magnitude daily irradiance patterns spatially focused over the terminus region, while other glacier surface areas received less short-wave irradiance. These results were found to be associated with basin-scale relief conditions and topographic shielding. Altitudinal variation in glacier surface irradiance was found to increase during the later portion of the ablation season, as changes in solar geometry produce more cast shadows that protect glaciers given extreme relief. Topographic effects on surface irradiance vary significantly from glacier to glacier, demonstrating the important role of glacier and mountain geodynamics on glacier sensitivity to climate change. Spatial and altitudinal patterns, coupled with information regarding supraglacial debris distribution, depth and ice-flow velocities, may potentially explain glacier sensitivity to climate change and the local variability of glacier fluctuations in the Himalaya.

  9. Surface modification of silica-coated zirconia by chemical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Christie Ying Kei, E-mail: yklung@graduate.hku.hk [Dental Materials Science, Faculty of Dentistry, University of Hong Kong (Hong Kong); Kukk, Edwin, E-mail: ekukk@utu.fi [Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences, University of Turku (Finland); Haegerth, Toni, E-mail: tjhage@utu.fi [Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences, University of Turku (Finland); Matinlinna, Jukka Pekka, E-mail: jpmat@hku.hk [Dental Materials Science, Faculty of Dentistry, University of Hong Kong (Hong Kong)

    2010-12-01

    Zirconia surface modification by various chemical treatments after silica coating by sandblasting was investigated in this study. The surface of silica-coated dental zirconia was hydroxylated by treatment with different acids at room temperature for 4 h, rinsed with deionized water and air-dried. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Shifts in binding energies for Zr 3d{sub 5/2} and Si 2p peaks were observed after treatment with acids, thereby showing a change in the chemical states of zirconium and silicon on the surface layer of silica-coated zirconia. The XPS analysis revealed that the silica-coated zirconia (SiO{sub 2}-ZrO{sub 2}) surfaces had changed to hydrous silica-coated zirconia (SiO{sub 2}-ZrO{sub 2}.nH{sub 2}O). One-way ANOVA analysis revealed there was significant difference in both surface roughness parameters of silica-coated zirconia after chemical treatments and the surface topography varied depending on the acid treatment.

  10. Application of surface plasmons to biological and chemical sensors

    International Nuclear Information System (INIS)

    Surface plasmons (SPs) are a collective normal mode of electrons localized at a metallic surface. It has been used for biological sensors since 1990s. This is because it has the following specific characters: (a) The resonance condition is sensitive to the surrounding dielectric constants (refractive indexes) and (b) Highly enhanced optical-electric-fields are produced adjacent to SPs. A brief introduction is given on the principle of the biological and chemical sensors based on SPs for the readers working in the fields other than SPs, followed by a review on the recent developments of the biological and chemical sensors. (author)

  11. Patterns on liquid surfaces cnoidal waves, compactons and scaling

    CERN Document Server

    Ludu, A; Ludu, Andrei; Draayer, Jerry P.

    1998-01-01

    Localized patterns and nonlinear oscillation formation on the bounded free surface of an ideal incompressible liquid are analytically investigated . Cnoidal modes, solitons and compactons, as traveling non-axially symmetric shapes are discused. A finite-difference differential generalized Korteweg-de Vries equation is shown to describe the three-dimensional motion of the fluid surface and the limit of long and shallow channels one reobtains the well known KdV equation. A tentative expansion formula for the representation of the general solution of a nonlinear equation, for given initial condition is introduced on a graphical-algebraic basis. The model is useful in multilayer fluid dynamics, cluster formation, and nuclear physics since, up to an overall scale, these systems display liquid free surface behavior.

  12. Doping level influence on chemical surface of diamond electrodes

    Science.gov (United States)

    Azevedo, A. F.; Baldan, M. R.; Ferreira, N. G.

    2013-04-01

    The modification of surface bond termination promoted by the doping level on diamond electrodes is analyzed. The films were prepared by hot filament chemical vapor deposition technique using the standard mixture of H2/CH4 with an extra H2 flux passing through a bubbler containing different concentrations of B2O3 dissolved in methanol. Diamond morphology and quality were characterized by scanning electron microscopy and Raman scattering spectroscopy techniques while the changes in film surfaces were analyzed by contact angle, cyclic voltammetry and synchrotron X-ray photoelectron spectroscopy (XPS). The boron-doped diamond (BDD) films hydrophobicity, reversibility, and work potential window characteristics were related to their physical properties and chemical surface, as a function of the doping level. From the Mott-Schottky plots (MSP) and XPS analyzes, for the lightly (1018 cm-3) and highly (1020 cm-3) BDD films, the relationship between the BDD electrochemical responses and their surface bond terminations is discussed.

  13. Surface-induced patterns from evaporating droplets of aqueous carbon nanotube dispersions

    KAUST Repository

    Zeng, Hongbo

    2011-06-07

    Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersion induces the well-known "coffee ring", while evaporation of a concave droplet (capillary meniscus) of the CNT dispersion in a wedge of two planar mica sheets or between two crossed-cylinder sheets induces a large area (>mm 2) of textured or patterned films characterized by different short- and long-range orientational and positional ordering of the CNTs. The resulting patterns appear to be determined by two competing or cooperative sedimentation mechanisms: (1) capillary forces between CNTs giving micrometer-sized filaments parallel to the boundary line of the evaporating droplet and (2) fingering instability at the boundary line of the evaporating droplet and subsequent pinning of CNTs on the surface giving micrometer-sized filaments of CNTs perpendicular to this boundary line. The interplay between substrate surface geometry and sedimentation mechanisms gives an extra control parameter for manipulating patterns of self-assembling nanoparticles at substrate surfaces. © 2011 American Chemical Society.

  14. Stability and break-up of thin liquid films on patterned and structured surfaces.

    Science.gov (United States)

    Ajaev, Vladimir S; Gatapova, Elizaveta Ya; Kabov, Oleg A

    2016-02-01

    Solid surfaces with chemical patterning or topographical structure have attracted attention due to many potential applications such as manufacture of flexible electronics, microfluidic devices, microscale cooling systems, as well as development of self-cleaning, antifogging, and antimicrobial surfaces. In many configurations involving patterned or structured surfaces, liquid films are in contact with such solid surfaces and the issue of film stability becomes important. Studies of stability in this context have been largely focused on specific applications and often not connected to each other. The purpose of the present review is to provide a unified view of the topic of stability and rupture of liquid films on patterned and structured surfaces, with particular focus on common mathematical methods, such as lubrication approximation for the liquid flow, bifurcation analysis, and Floquet theory, which can be used for a wide variety of problems. The physical mechanisms of the instability discussed include disjoining pressure, thermocapillarity, and classical hydrodynamic instability of gravity-driven flows. Motion of a contact line formed after the film rupture is also discussed, with emphasis on how the receding contact angle is expected to depend on the small-scale properties of the substrate. PMID:26792018

  15. Chemical treatment of zinc surface and its corrosion inhibition studies

    Indian Academy of Sciences (India)

    S K Rajappa; T V Venkatesha; B M Praveen

    2008-02-01

    The surface treatment of zinc and its corrosion inhibition was studied using a product (BTSC) formed in the reaction between benzaldehyde and thiosemicarbozide. The corrosion behaviour of chemically treated zinc surface was investigated in aqueous chloride–sulphate medium using galvanostatic polarization technique. Zinc samples treated in BTSC solution exhibited good corrosion resistance. The measured electrochemical data indicated a basic modification of the cathode reaction during corrosion of treated zinc. The corrosion protection may be explained on the basis of adsorption and formation of BTSC film on zinc surface. The film was binding strongly to the metal surface through nitrogen and sulphur atoms of the product. The formation of film on the zinc surface was established by surface analysis techniques such as scanning electron microscopy (SEM–EDS) and Fourier transform infrared spectroscopy (FTIR).

  16. The chemical composition of red giants in 47 Tucanae I: Fundamental parameters and chemical abundance patterns

    CERN Document Server

    Thygesen, A O; Andrievsky, S; Korotin, S; Yong, D; Zaggia, S; Ludwig, H -G; Collet, R; Asplund, M; D'Antona, F; Meléndez, J; D'Ercole, A

    2014-01-01

    Context: The study of chemical abundance patterns in globular clusters is of key importance to constrain the different candidates for intra-cluster pollution of light elements. Aims: We aim at deriving accurate abundances for a large range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D LTE atmospheric models together with a combination of equivalent width measurements, LTE, and NLTE synthesis we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al and Ba. We find a mean [Fe/H] = $-0.78\\pm0.07$ and $[\\alpha/{\\rm Fe}]=0.34\\pm0.03$ in...

  17. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  18. The influence of surface treatment on the implant roughness pattern

    Directory of Open Access Journals (Sweden)

    Marcio Borges Rosa

    2012-10-01

    Full Text Available An important parameter for the clinical success of dental implants is the formation of direct contact between the implant and surrounding bone, whose quality is directly influenced by the implant surface roughness. A screw-shaped design and a surface with an average roughness of Sa of 1-2 µm showed a better result. The combination of blasting and etching has been a commonly used surface treatment technique. The versatility of this type of treatment allows for a wide variation in the procedures in order to obtain the desired roughness. OBJECTIVES: To compare the roughness values and morphological characteristics of 04 brands of implants, using the same type of surface treatment. In addition, to compare the results among brands, in order to assess whether the type of treatment determines the values and the characteristics of implant surface roughness. MATERIAL AND METHODS: Three implants were purchased directly from each selected company in the market, i.e., 03 Brazilian companies (Biomet 3i of Brazil, Neodent and Titaniumfix and 01 Korean company (Oneplant. The quantitative or numerical characterization of the roughness was performed using an interferometer. The qualitative analysis of the surface topography obtained with the treatment was analyzed using scanning electron microscopy images. RESULTS: The evaluated implants showed a significant variation in roughness values: Sa for Oneplant was 1.01 µm; Titaniumfix reached 0.90 µm; implants from Neodent 0.67 µm, and Biomet 3i of Brazil 0.53 µm. Moreover, the SEM images showed very different patterns for the surfaces examined. CONCCLUSIONS: The surface treatment alone is not able to determine the roughness values and characteristics.

  19. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  20. Laser interrogation of surface agents (LISA) for chemical agent reconnaissance

    Science.gov (United States)

    Higdon, N. S.; Chyba, Thomas H.; Richter, Dale A.; Ponsardin, Patrick L.; Armstrong, Wayne T.; Lobb, C. T.; Kelly, Brian T.; Babnick, Robert D.; Sedlacek, Arthur J., III

    2002-06-01

    Laser Interrogation of Surface Agents (LISA) is a new technique which exploits Raman scattering to provide standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division is developing the LISA technology under a cost-sharing arrangement with the US Army Soldier and Biological Chemical Command for incorporation on the Army's future reconnaissance vehicles. A field-engineered prototype LISA-Recon system is being designed to demonstrate on-the- move measurements of chemical contaminants. In this article, we will describe the LISA technique, data form proof-of- concept measurements, the LISA-Recon design, and some of the future realizations envisioned for military sensing applications.

  1. Surface chemical states of barium zirconate titanate thin films prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.

  2. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  3. Transparent self-cleaning lubricant-infused surfaces made with large-area breath figure patterns

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Zhang, Liwen; Ran, Tong; Zhang, Deyuan

    2015-11-01

    Nepenthes pitcher inspired slippery lubricant-infused porous surfaces greatly impact the understanding of liquid-repellent surfaces construction and have attracted extensive attention in recent years due to their potential applications in self-cleaning, anti-fouling, anti-icing, etc. In this work, we have successfully fabricated transparent slippery lubricant-infused surfaces based on breath figure patterns (BFPs). Large-area BFPs with interconnected pores were initially formed on the glass substrate and then a suitable lubricant was added onto the surfaces. The interconnected pores in BFPs were able to hold the lubricant liquid in place and form a stable liquid/solid composite surface capable of repelling a variety of liquids. The liquid-repellent surfaces show extremely low critical sliding angles for various liquids, thus providing the surfaces with efficient self-cleaning property. It was also found that the liquid droplets' sliding behaviors on the surfaces were significantly influenced by the tilting angle of the substrate, liquid volume, liquid chemical properties, and pore sizes of the surfaces.

  4. Modulating surface stiffness of polydimethylsiloxane (PDMS) with kiloelectronvolt ion patterning

    Science.gov (United States)

    Liu, Boyin; Fu, Jing

    2015-06-01

    This study is to investigate the modulated surface properties of polydimethylsiloxane (PDMS) with kiloelectronvolt ions. By irradiating the PDMS surface with a focused ion beam (FIB, keV Ga+), nano/microscale patterns of controlled stiffness can be fabricated with ion fluence ranging from 0.1-20 pC µm-2. The following nanoindentation measurements with an atomic force microscope (AFM) revealed that Young’s modulus increased exponentially with the increase of ion fluence and reached 2 GPa. The stiffening was found to be less significant with irradiation at a higher ion incident angle and lower accelerating voltage. Raman spectroscopy results also confirmed that disordering caused by cross-linking and hydrogen release occurred on the target PDMS surface. By modelling and experimenting on PDMS-Si3N4 bilayer structures, the volume reduction ratios of PDMS with ion beam and electron beam irradiation were estimated. The proposed site specific modulating method and understanding of detailed governing mechanisms will allow the tuning of the PDMS surface with great accuracy and flexibility towards future applications in tissue engineering and microfabrication.

  5. Liquid Droplet Impact Dynamics on Micro-Patterned Superhydrophobic Surfaces

    CERN Document Server

    Clavijo, Cristian; Crockett, Julie

    2013-01-01

    The video exhibits experimental qualitative and quantitative results of water/glycerol (50%/50% by mass) droplet impact on two types of micro-patterned superhydrophobic surfaces. The two types of surfaces used were 80% cavity fraction ribs and posts with a periodic spacing of 40 {\\mu}m and 32 {\\mu}m, respectively. All surfaces were manufactured through photolithography. The impact Weber number is used as the dynamic parameter to compare splash and rebound behaviors between the two types of surfaces. While droplets exhibit similar dynamics at low Weber numbers, rebound jet speed (normalized by droplet impact speed) is notably higher on posts than ribs for all Weber numbers tested here (5 265. On posts, satellite droplets also follow a specific path but in a different orientation. Satellite droplets form in locations aligned with the post lattice structure. This behavior is observed for 600 < We < 750. Jet rebound exhibits an interesting phenomenon on ribs under certain conditions. Due to the uneven shear...

  6. Modulating surface stiffness of polydimethylsiloxane (PDMS) with kiloelectronvolt ion patterning

    International Nuclear Information System (INIS)

    This study is to investigate the modulated surface properties of polydimethylsiloxane (PDMS) with kiloelectronvolt ions. By irradiating the PDMS surface with a focused ion beam (FIB, keV Ga+), nano/microscale patterns of controlled stiffness can be fabricated with ion fluence ranging from 0.1–20 pC µm−2. The following nanoindentation measurements with an atomic force microscope (AFM) revealed that Young’s modulus increased exponentially with the increase of ion fluence and reached 2 GPa. The stiffening was found to be less significant with irradiation at a higher ion incident angle and lower accelerating voltage. Raman spectroscopy results also confirmed that disordering caused by cross-linking and hydrogen release occurred on the target PDMS surface. By modelling and experimenting on PDMS-Si3N4 bilayer structures, the volume reduction ratios of PDMS with ion beam and electron beam irradiation were estimated. The proposed site specific modulating method and understanding of detailed governing mechanisms will allow the tuning of the PDMS surface with great accuracy and flexibility towards future applications in tissue engineering and microfabrication. (paper)

  7. Chemical Abundance Patterns and the Early Environment of Dwarf Galaxies

    CERN Document Server

    Corlies, Lauren; Tumlinson, Jason; Bryan, Greg

    2013-01-01

    Recent observations suggest that abundance pattern differences exist between low metallicity stars in the Milky Way stellar halo and those in the dwarf satellite galaxies. This paper takes a first look at what role the early environment for pre-galactic star formation might have played in shaping these stellar populations. In particular, we consider whether differences in cross-pollution between the progenitors of the stellar halo and the satellites could help to explain the differences in abundance patterns. Using an N-body simulation, we find that the progenitor halos of the main halo are primarily clustered together at z=10 while the progenitors of the satellite galaxies remain on the outskirts of this cluster. Next, analytically modeled supernova-driven winds show that main halo progenitors cross-pollute each other more effectively while satellite galaxy progenitors remain more isolated. Thus, inhomogeneous cross-pollution as a result of different high-z spatial locations of each system's progenitors can ...

  8. Heat, Mass and Charge Transport, and Chemical Reactions at Surfaces

    Directory of Open Access Journals (Sweden)

    Signe Kjelstrup

    2005-03-01

    Full Text Available In this work we derive the excess entropy production rate for heat, mass and charge transport into, out of and across a surface, using as basic variables the excess densities proposed by Gibbs. With the help of these variables we define the surface as an autonomous system (i.e. a surface in local equilibrium and find its excess entropy production rate. This then determines the conjugate fluxes and forces. Equivalent forms of the entropy production rate are given. The forms contain finite differences of intensive variables into and across the surface as driving forces. The general form of the force-flux relations is given. The expressions for the fluxes serve as boundary conditions for integration across heterogeneous systems. Two examples are discussed in more detail. The first example is the practically important coupled transport of heat and mass into and through a liquid-vapor surface. The second example concerns phenomena at electrode surfaces: the coupled transport of heat, mass and charge and a chemical reaction. By assuming that the two sides of the surface can be described as resistances in series, we are able to reduce the number of unknown transport coefficients considerably. For both examples it is shown that the coupling coefficients for heat and mass flow are large at the surface, when the homogeneous phases have a large enthalpy difference. As a consequence it is not sufficient to use, for instance, Fourier’s law for transport of heat across surfaces.

  9. Nanocontact electrification: patterned surface charges affecting adhesion, transfer, and printing.

    Science.gov (United States)

    Cole, Jesse J; Barry, Chad R; Knuesel, Robert J; Wang, Xinyu; Jacobs, Heiko O

    2011-06-01

    Contact electrification creates an invisible mark, overlooked and often undetected by conventional surface spectroscopic measurements. It impacts our daily lives macroscopically during electrostatic discharge and is equally relevant on the nanoscale in areas such as soft lithography, transfer, and printing. This report describes a new conceptual approach to studying and utilizing contact electrification beyond prior surface force apparatus and point-contact implementations. Instead of a single point contact, our process studies nanocontact electrification that occurs between multiple nanocontacts of different sizes and shapes that can be formed using flexible materials, in particular, surface-functionalized poly(dimethylsiloxane) (PDMS) stamps and other common dielectrics (PMMA, SU-8, PS, PAA, and SiO(2)). Upon the formation of conformal contacts and forced delamination, contacted regions become charged, which is directly observed using Kelvin probe force microscopy revealing images of charge with sub-100-nm lateral resolution. The experiments reveal chemically driven interfacial proton exchange as the dominant charging mechanism for the materials that have been investigated so far. The recorded levels of uncompensated charges approach the theoretical limit that is set by the dielectric breakdown strength of the air gap that forms as the surfaces are delaminated. The macroscopic presence of the charges is recorded using force-distance curve measurements involving a balance and a micromanipulator to control the distance between the delaminated objects. Coulomb attraction between the delaminated surfaces reaches 150 N/m(2). At such a magnitude, the force finds many applications. We demonstrate the utility of printed charges in the fields of (i) nanoxerography and (ii) nanotransfer printing whereby the smallest objects are ∼10 nm in diameter and the largest objects are in the millimeter to centimeter range. The printed charges are also shown to affect the electronic

  10. Rapid chemical agent identification by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Lee, Yuan-Hsiang; Farquharson, Stuart

    2001-08-01

    Although the Chemical Weapons Convention prohibits the development, production, stockpiling, and use of chemical warfare agents (CWAs), the use of these agents persists due to their low cost, simplicity in manufacturing and ease of deployment. These attributes make these weapons especially attractive to low technology countries and terrorists. The military and the public at large require portable, fast, sensitive, and accurate analyzers to provide early warning of the use of chemical weapons. Traditional laboratory analyzers such as the combination of gas chromatography and mass spectroscopy, although sensitive and accurate, are large and require up to an hour per analysis. New, chemical specific analyzers, such as immunoassays and molecular recognition sensors, are portable, fast, and sensitive, but are plagued by false-positives (response to interferents). To overcome these limitations, we have been investigating the potential of surface-enhanced Raman spectroscopy (SERS) to identify and quantify chemical warfare agents in either the gas or liquid phase. The approach is based on the extreme sensitivity of SERS demonstrated by single molecule detection, a new SERS material that we have developed to allow reproducible and reversible measurements, and the molecular specific information provided by Raman spectroscopy. Here we present SER spectra of chemical agent simulants in both the liquid and gas phase, as well as CWA hydrolysis phase.

  11. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  12. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan;

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...... obtained by means of a single short and intensive carbon plasma deposition pulse. The deposited DLC coating was characterized by micro-Raman spectroscopy measurements. The DLC coating process gave rise to wide potential possibilities in micro-devices manufacturing productions....

  13. Surface modification on PMMA : PVDF polyblend: hardening under chemical environment

    Indian Academy of Sciences (India)

    R Bajpai; V Mishra; Pragyesh Agrawal; S C Datt

    2002-02-01

    The influence of chemical environment on polymers include the surface alteration as well as other deep modifications in surface layers. The surface hardening, as an effect of organic liquids on poly(methyl methacrylate): poly(vinylidene fluoride) (PMMA: PVDF), which is one of the few known miscible blends, has been detected using microhardness testing. Organic liquids like acetone, toluene, xylene and benzene were introduced on the surface of blend specimens for different durations. Vickers microhardness (v) was measured for treated and untreated specimens. The study reveals both hardening and plasticization of specimens at different exposure times. The degree of surface hardening is maximum under acetone treatment. All the specimens exhibit surface hardening at an exposure time of 1 h with all the four liquids. This feature is prominent with longer exposures for specimens with increasing content of PVDF. However, the degree of hardening decreases with the time of exposure in the respective environments. In general, acetone and toluene impart surface hardening, whereas, xylene and benzene soften the specimen. PMMA: PVDF (83 : 17) blend exhibits surface hardening under all the four treatments when compared with the respective untreated specimens.

  14. Passive standoff detection of chemical warfare agents on surfaces.

    Science.gov (United States)

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible. PMID:15540446

  15. Passive Standoff Detection of Chemical Warfare Agents on Surfaces

    Science.gov (United States)

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.

  16. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    Science.gov (United States)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  17. Surface nanosegregation of the chemical composition of complex oxides

    International Nuclear Information System (INIS)

    A brief review of theoretical and experimental studies in the field of surface nanosegregation of chemical composition of oxides SrTiO3, LiNbO3, LiTaO3, Gd2(MoO4)3, KNbO3, PbFe0.5Nb0.5O3, induced by temperature and other factors, is provided. Results of experimental studies of the relevant oxide monocrystals by the methods of electron spectrometry and model presentations suggest diffusion mechanism of segregation. It proved possible to predict the character of changes in surface composition of the oxides on the basis of the models considered

  18. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  19. Surface chemical modification for exceptional wear life of MEMS materials

    Directory of Open Access Journals (Sweden)

    R. Arvind Singh

    2011-12-01

    Full Text Available Micro-Electro-Mechanical-Systems (MEMS are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE nanolubricant on (i silicon coated with SU-8 thin films (500 nm and (ii MEMS process treated SU-8 thick films (50 μm. After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times. The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min, cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  20. Surface chemical modification for exceptional wear life of MEMS materials

    Science.gov (United States)

    Singh, R. Arvind; Satyanarayana, N.; Sinha, Sujeet Kumar

    2011-12-01

    Micro-Electro-Mechanical-Systems (MEMS) are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime) of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE) nanolubricant on (i) silicon coated with SU-8 thin films (500 nm) and (ii) MEMS process treated SU-8 thick films (50 μm). After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times). The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min), cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  1. Surface chemical modification of fullerene by mechanochemical treatment

    International Nuclear Information System (INIS)

    In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C60 after surface functionalization.

  2. Influence of surface coverage on the chemical desorption process

    CERN Document Server

    Marco, Minissale

    2014-01-01

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O$_2$) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80 $\\%$ at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-...

  3. The chemical composition of red giants in 47 Tucanae. I. Fundamental parameters and chemical abundance patterns

    Science.gov (United States)

    Thygesen, A. O.; Sbordone, L.; Andrievsky, S.; Korotin, S.; Yong, D.; Zaggia, S.; Ludwig, H.-G.; Collet, R.; Asplund, M.; Ventura, P.; D'Antona, F.; Meléndez, J.; D'Ercole, A.

    2014-12-01

    Context. The study of chemical abundance patterns in globular clusters is key importance to constraining the different candidates for intracluster pollution of light elements. Aims: We aim at deriving accurate abundances for a wide range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D local thermodynamic equilibrium (LTE) atmospheric models, together with a combination of equivalent width measurements, LTE, and NLTE synthesis, we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al, and Ba. We find a mean [Fe/H] = -0.78 ± 0.07 and [ α/ Fe ] = 0.34 ± 0.03 in good agreement with previous studies. The remaining elements show good agreement with the literature, but including NLTE for Al has a significant impact on the behavior of this key element. Conclusions: We confirm the presence of an Na-O anti-correlation in 47 Tucanae found by several other works. Our NLTE analysis of Al shifts the [Al/Fe] to lower values, indicating that this may be overestimated in earlier works. No evidence of an intrinsic variation is found in any of the remaining elements. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Programmes 084.B-0810 and 086.B-0237).Full Tables 2, 5, and 9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A108Appendix A is available in electronic form at http://www.aanda.org

  4. Chemical composition and surface charge properties of montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-wen; HU Min; HU Yue-hua

    2008-01-01

    The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe2O3 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe2O3 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(b0) of the montmofillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does c0sinβ with mass fractions of SiO2 and Fe2O3. And there is no specific relationship between bo and IEP of different montmori Uonites, but there is positive correlation between c0sinβ and IEP of different montmorillonite samples.

  5. Plasmon-mediated chemical surface functionalization at the nanoscale

    Science.gov (United States)

    Nguyen, Mai; Lamouri, Aazdine; Salameh, Chrystelle; Lévi, Georges; Grand, Johan; Boubekeur-Lecaque, Leïla; Mangeney, Claire; Félidj, Nordin

    2016-04-01

    Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing or nanooptics.Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing

  6. The Mechanism of Surface Chemical Kinetics of Dissolution of Minerals

    Institute of Scientific and Technical Information of China (English)

    谭凯旋; 张哲儒; 等

    1996-01-01

    This paper deals with the mechanism of dissolution reaction kinetics of minerals in aqueous solution based on the theory of surface chemistry.Surface chemical catalysis would lead to an obvous decrease in active energy of dissolution reaction of minerals.The dissolution rate of minerals is controlled by suface adsorption,surface exchange reaction and desorption,depending on pH of the solution and is directly proportional to δHn0+,When controlled by surface adsorption,i.e.,nθ=1,the dissolution rate will decrease with increasing pH;when controlled by surface exchane reaction,i.e.,nθ=0,the dissolution rate is independent of pH;when controlled by desorption,nθis a positive decimal between 0 and 1 in acidic solution and a negative decimal between-1 and 0 in alkaline solution.Dissolution of many minerals is controlled by surface adsorption and/or surface exchange reactions under acid conditions and by desorption under alkaline conditions.

  7. Surface Patterning of Ceramic Phosphor Plate for Light Extraction

    Science.gov (United States)

    Mao, An

    Light-Emitting Diodes (LEDs) are expected to replace traditional lighting sources in the near future due to their energy-efficiency, optical design flexibility and good reliability over traditional lighting sources. III-V nitride blue LEDs with powdered phosphors have been used commercially to get white emission. However, due to scattering losses, thermal issues as well as the surface reactivity with common encapsulants, LEDs fabricated with powdered phosphors have limitations in achieving high luminous efficacy, high chromatic stability and good color-rendering properties. Solid, non-scattering phosphors could avoid many of these limitations, but issues of light extraction and coupling of excitation radiation to the phosphor require development to insure efficient operation. Photonic crystal structures fabricated into or on non-scattering phosphors can be used to address these challenges. In this thesis, a lift-off process with bilayer resist system is developed to create nanopatterns. A photonic crystal structure is fabricated by low cost molecular transfer lithography (MxL) with bi-layer resist system on non-scattering phosphor plate used for white emission to increase the extraction efficiency. In Chapter 1, some basic background concepts which appear frequently in this thesis are introduced. These concepts include the Stokes shift and backscattering phenomenon for powder phosphors as well as non-scattering phosphors. In Chapter 2, a non-scattering single crystal phosphor with a patterned surface is proposed to replace the powdered phosphors used for color converted LEDs. A non-scattering phosphor YAG:Ce ceramic phosphor plate (CPP) patterned with TiO2 photonic crystal structure is selected for convenience to demonstrate the concept. The physical origin of light extraction of the proposed structure is discussed. The simulation principles and results are discussed in this chapter to find the optimized photonic crystal structure for light extraction. In Chapter 3

  8. Nanomechanical properties of a Ni nanodot-patterned surface

    International Nuclear Information System (INIS)

    Nanomechanical properties of a Ni nanodot-patterned surface (NDPS) on a Si substrate were investigated using nanoindentation. The Ni NDPS was fabricated by thermal evaporation of Ni through a porous anodized aluminum oxide template onto a Si substrate. Plan-view transmission electron microscopy and nanobeam diffraction were used to characterize the Ni nanodot crystal structure. Scanning electron microscopy and atomic force microscopy were used to characterize the morphology and deformation of the Ni nanodots before and after nanoindentation. The elastic modulus and hardness of the Ni nanodots were found to be 159 ± 22 and 7.7 ± 1.0 GPa, respectively. The critical shear stress for initiating plastic deformation in the Ni nanodot was estimated to be 8.3 ± 1.0 GPa, which is close to the theoretical shear strength of 7.6 GPa in dislocation-free single crystal Ni

  9. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    XIAO Rong-bo; OUYANG Zhi-yun; ZHENG Hua; LI Wei-feng; SCHIENKE Erich W; WANG Xiao-ke

    2007-01-01

    Land surface temperature (LST), which is heavily influenced by urban surface structures, is a significant parameter in urban environmental analysis. This study examined the effect impervious surfaces (IS) spatial patterns have on LST in Beijing, China. A classification and regression tree model (CART) was adopted to estimate IS as a continuous variable using Landsat images from two seasons combined with QuickBird. LST was retrieved from the Landsat Thematic Mapper (TM) image to examine the relationships between IS and LST. The results revealed that CART was capable of consistently predicting LST with acceptable accuracy (correlation coefficient of 0.94 and the average error of 8.59%). Spatial patterns of IS exhibited changing gradients across the various urban-rural transects, with LST values showing a concentric shape that increased as you moved from the outskirts towards the downtown areas.Transect analysis also indicated that the changes in both IS and LST patterns were similar at various resolution levels, which suggests a distinct linear relationship between them. Results of correlation analysis further showed that IS tended to be positively correlated with LST, and that the correlation coefficients increased from 0.807 to 0.925 with increases in IS pixel size. The findings identified in this study provide a theoretical basis for improving urban planning efforts to lessen urban temperatures and thus dampen urban heat island effects.

  10. Fabrication of superhydrophobic and oleophobic Al surfaces by chemical etching and surface fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hak-Jong; Shin, Ju-Hyeon; Choo, Soyoung; Ryu, Sang-Woo; Kim, Yang-Doo; Lee, Heon, E-mail: heonlee@korea.ac.kr

    2015-06-30

    Hierarchical Al surfaces were fabricated using three different kinds of alkaline-based chemical etching processes. The surface morphology changes to a needle-like microstructure or to nanoscale flakes on a microscale porous structure depending on the chemical solution used. These surfaces were characterized by field-emission scanning electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and contact angle measurements. After the hydrophobic treatment, the etched Al surface shows non-wetting properties, exhibiting a static contact angle over 150° and a dynamic contact angle less than 5° for deionized water. Oleophobic properties for diiodomethane and N,N-dimethylformamide are exhibited by all etched Al surfaces. - Highlights: • This research fabricated and analyzed the etched Al surface via a simple wet etching process. • The morphology of Al surface is changed according to the presence of Zn ions. • The wettability of Al surface is controlled by roughness and surface treatment. • Superhydrophobicity and superoleophobicity are achieved on the wet etched Al mesh.

  11. Molecular dynamics of immiscible fluids in chemically patterned nanochannels

    Science.gov (United States)

    Cieplak, Marek; Banavar, Jayanth R.

    2008-03-01

    Molecular dynamics simulations of chain molecules are used to elucidate physical phenomena involved in flows of dense immiscible fluids in nanochannels. We first consider a force driven flow in which the channel walls are homogeneous and wetting to one fluid and nonwetting to the other fluid. The coating of the walls by the wetting fluid provides a fluctuating surface that confines the flow of the nonwetting fluid. The resulting dissipation yields stationary Poiseuille-like flows in contrast to the accelerating nature of flow in the absence of the coating. We then consider walls consisting of patches whose wetting preferences to a fluid alternate along the walls. In the resulting flow, the immiscible components exhibit periodic structures in their velocity fields such that the crests are located at the wettability steps in contrast to the behavior of a single fluid for which the crest occurs in the wetting region. We demonstrate that for a single fluid, the modulated velocity field scales with the size of the chain molecules.

  12. CHEMICALLY MODIFIED ZEOLITES: SURFACES AND INTERACTION WITH Cs AND Co

    Directory of Open Access Journals (Sweden)

    Pavel Dillinger

    2007-06-01

    Full Text Available Inorganic exchangers, including zeolites, have interesting properties such as resistance to decomposition in the presence of ionizing radiation or to high temperatures, what make them applicable for the purification of low and middle polluted radioactive waste waters. The research was focused on model radioactive waste effluents and the investigated metals were cobalt (Co and cesium (Cs. The performance of natural zeolite of clinoptilolite type and zeolite chemically modified with NaOH solutions was determined by studying their surface and sorption properties using volumetric method and static radioindicator method. The measurements of zeolite´s surfaces showed the double increase of the specific surface along with an increase of mesopore’s diameter. The reason is the extraction of silicon from zeolite caused by NaOH solution what creates secondary mesoporous structure. The radioactive tracer technique was used to evaluate sorption properties of zeolites and the best sorbent was selected based on KD, μ, Γ and S values. The sorption abilities of natural and chemically modified zeolites for Cs uptake were comparable. The uptake of Co with natural zeolite was negligible and it increased up to 14 times for modified zeolites depending on the concentration of treated NaOH solution.

  13. Simple and non-toxic fabrication of poly(vinyl alcohol)-patterned polymer surface for the formation of cell patterns

    Science.gov (United States)

    Hwang, In-Tae; Jin, Yu-Ran; Oh, Min-Suk; Jung, Chan-Hee; Choi, Jae-Hak

    2014-10-01

    In this study, a facile and non-toxic method for the formation of cell-adhesive poly(vinyl alcohol) (PVA) patterns on the surface of a non-biological polystyrene substrate (NPS) is developed to control cellular micro-organization. PVA thin films spin-coated onto the NPS are selectively irradiated with 150 keV H+ ions through a pattern mask and developed with deionized water to form negative-type PVA patterns. Well-defined stripe patterns of PVA with a width of 100 μm are created on the NPS at a higher fluence than 5 × 1015 ions/cm2, and their surface chemical compositions are changed by ion irradiation without any significant morphological change. Based on the results of the protein adsorption test and in vitro cell culture, cancer cells are preferentially adhered and proliferated onto the more hydrophilic PVA regions of the PVA-patterned NPS, resulting in well-defined cell patterns.

  14. Physical and chemical modifications of surface properties lead to alterations in osteoblast behavior

    Science.gov (United States)

    Dorst, Kathryn Elizabeth

    Proper formation of the bone extracellular matrix (ECM), or osteoid, depends on the surface properties of pre-existing tissue and the aqueous chemical environment. Both of these factors greatly influence osteoblast migration, cytoskeletal organization, and calcium nodule production, important aspects when considering the biocompatibility of bone implants. By perturbing the physical and/or chemical micro-environment, it may be possible to elucidate effects on cellular function. To examine these factors, murine pre-osteoblasts (MC3T3-E1 subclones 4 and 24) were seeded on polydimethylsiloxane (PDMS) substrates containing "wide" micro-patterned ridges (20 mum width, 30 mum pitch, & 2 mum height), "narrow" micro-patterned ridges (2 mum width, 10 mum pitch, 2 mum height), no patterns (flat PDMS), and standard tissue culture (TC) polystyrene as a control. Zinc concentration was adjusted to mimic deficient (0.23 muM), serum-level (3.6 muM), and zinc-rich (50 muM) conditions. It was found that cells exhibited distinct anisotropic migration in serum-level zinc and zinc-deficient media on the wide PDMS patterns, however this was disrupted under zinc-rich conditions. Production of differentiation effectors, activated metalloproteinase-2 (MMP-2) and transforming growth factor - beta 1 (TGF-beta1), was increased with the addition of exogenous zinc. Early stage differentiation, via alkaline phosphatase, was modified by zinc levels on patterned polydimethylsiloxane (PDMS) surfaces, but not on flat PDMS or tissue culture polystyrene (TC). Late stage differentiation, visualized through calcium phosphate nodules, was markedly different at various zinc levels when the cells were cultured on TC substrates. This susceptibility to zinc content can lead to differences in bone mineral production on certain substrates if osteoblasts are not able to maintain and remodel bone effectively, a process vital to successful biomaterial integration.

  15. A 15-year climatology of wind pattern impacts on surface ozone in Houston, Texas

    Science.gov (United States)

    Souri, Amir Hossein; Choi, Yunsoo; Li, Xiangshang; Kotsakis, Alexander; Jiang, Xun

    2016-06-01

    Houston is recognized for its large petrochemical industrial facilities providing abundant radicals for tropospheric ozone formation. Fortunately, maximum daily 8-h average (MDA8) surface ozone concentrations have declined in Houston (- 0.6 ± 0.3 ppbv yr- 1) during the summers (i.e., May to September) of 2000 to 2014, possibly due to the reductions in precursor emissions by effective control policies. However, it is also possible that changes in meteorological variables have affected ozone concentrations. This study focused on the impact of long-term wind patterns which have the highest impact on ozone in Houston. The analysis of long-term wind patterns can benefit surface ozone studies by 1) providing wind patterns that distinctly changed ozone levels, 2) investigating the frequency of patterns and the respective changes and 3) estimating ozone trends in specific wind patterns that local emissions are mostly involved, thus separating emissions impacts from meteorology to some extent. To this end, the 900-hPa flow patterns in summers of 2000 to 2014 were clustered in seven classes (C1-C7) by deploying an unsupervised partitioning method. We confirm the characteristics of the clusters from a backward trajectory analysis, monitoring networks, and a regional chemical transport model simulation. The results indicate that Houston has experienced a statistically significant downward trend (- 0.6 ± 0.4 day yr- 1) of the cluster of weak easterly and northeasterly days (C4), when the highest fraction of ozone exceedances (MDA8 > 70 ppbv) occurred. This suggests that the reduction in ozone precursors was not the sole reason for the decrease in ozone exceedance days (- 1.5 ± 0.6 day yr- 1). Further, to examine the efficiency of control policies intended to reduce the amount of ozone, we estimated the trend of MDA8 ozone in C4 and C5 (weak winds) days when local emissions are primarily responsible for high ambient ozone levels. Both C4 and C5 show a large reduction in the

  16. The Chemical Origin of SEY at Technical Surfaces

    CERN Document Server

    Larciprete, R; Commisso, M; Flammini, R; Cimino, R

    2013-01-01

    The secondary emission yield (SEY) properties of colaminated Cu samples for LHC beam screens are correlated to the surface chemical composition determined by X-ray photoelectron spectroscopy. The surface of the "as received" samples is characterized by the presence of significant quantities of contaminating adsorbates and by the maximum of the SEY curve (dmax) being as high as 2.2. After extended electron scrubbing at kinetic energy of 10 and 500 eV, the dmax value drops to the ultimate values of 1.35 and 1.1, respectively. In both cases the surface oxidized phases are significantly reduced, whereas only in the sample scrubbed at 500 eV the formation of a graphitic-like C layer is observed. We find that the electron scrubbing of technical Cu surfaces can be described as occurring in two steps, where the first step consists in the electron induced desorption of weakly bound contaminants that occurs indifferently at 10 and at 500 eV and corresponds to a partial decrease of dmax, and the second step, activated b...

  17. Chemical agent detection by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.; Morrisey, Kevin; Christesen, Steven D.

    2004-03-01

    In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.

  18. Interfacial characterization and analytical applications of chemically-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  19. Genericity of confined chemical garden patterns with regard to changes in the reactants.

    Science.gov (United States)

    Haudin, Florence; Brasiliense, V; Cartwright, Julyan H E; Brau, Fabian; De Wit, A

    2015-05-21

    The growth of chemical gardens is studied experimentally in a horizontal confined geometry when a solution of metallic salt is injected into an alkaline solution at a fixed flow rate. Various precipitate patterns are observed-spirals, flowers, worms or filaments-depending on the reactant concentrations. In order to determine the relative importance of the chemical nature of the reactants and physical processes in the pattern selection, we compare the structures obtained by performing the same experiment using different pairs of reactants of varying concentrations with cations of calcium, cobalt, copper, and nickel, and anions of silicate and carbonate. We show that although the transition zones between different patterns are not sharply defined, the morphological phase diagrams are similar in the various cases. We deduce that the nature of the chemical reactants is not a key factor for the pattern selection in the confined chemical gardens studied here and that the observed morphologies are generic patterns for precipitates possessing a given level of cohesiveness when grown under certain flow conditions. PMID:25908388

  20. Structure and dynamics of minke whale surfacing patterns in the Gulf of St. Lawrence, Canada.

    Science.gov (United States)

    Christiansen, Fredrik; Lynas, Ned M; Lusseau, David; Tscherter, Ursula

    2015-01-01

    Animal behavioral patterns can help us understand physiological and ecological constraints on animals and its influence on fitness. The surfacing patterns of aquatic air-breathing mammals constitute a behavioral pattern that has evolved as a trade-off between the need to replenish oxygen stores at the surface and the need to conduct other activities underwater. This study aims to better understand the surfacing pattern of a marine top predator, the minke whale (Balaenoptera acutorostrata), by investigating how their dive duration and surfacing pattern changes across their activity range. Activities were classified into resting, traveling, surface feeding and foraging at depth. For each activity, we classified dives into short and long dives and then estimated the temporal dependence between dive types. We found that minke whales modified their surfacing pattern in an activity-specific manner, both by changing the expression of their dives (i.e. density distribution) and the temporal dependence (transition probability) between dive types. As the depth of the prey layer increased between activities, the surfacing pattern of foraging whales became increasingly structured, going from a pattern dominated by long dives, when feeding at the surface, to a pattern where isolated long dives were followed by an increasing number of breaths (i.e. short dives), when the whale was foraging at depth. A similar shift in surfacing pattern occurred when prey handling time (inferred from surface corralling maneuvers) increased for surface feeding whales. The surfacing pattern also differed between feeding and non-feeding whales. Resting whales did not structure their surfacing pattern, while traveling whales did, possibly as a way to minimize cost of transport. Our results also suggest that minke whales might balance their oxygen level over multiple, rather than single, dive cycles. PMID:25970425

  1. Structure and dynamics of minke whale surfacing patterns in the Gulf of St. Lawrence, Canada.

    Directory of Open Access Journals (Sweden)

    Fredrik Christiansen

    Full Text Available Animal behavioral patterns can help us understand physiological and ecological constraints on animals and its influence on fitness. The surfacing patterns of aquatic air-breathing mammals constitute a behavioral pattern that has evolved as a trade-off between the need to replenish oxygen stores at the surface and the need to conduct other activities underwater. This study aims to better understand the surfacing pattern of a marine top predator, the minke whale (Balaenoptera acutorostrata, by investigating how their dive duration and surfacing pattern changes across their activity range. Activities were classified into resting, traveling, surface feeding and foraging at depth. For each activity, we classified dives into short and long dives and then estimated the temporal dependence between dive types. We found that minke whales modified their surfacing pattern in an activity-specific manner, both by changing the expression of their dives (i.e. density distribution and the temporal dependence (transition probability between dive types. As the depth of the prey layer increased between activities, the surfacing pattern of foraging whales became increasingly structured, going from a pattern dominated by long dives, when feeding at the surface, to a pattern where isolated long dives were followed by an increasing number of breaths (i.e. short dives, when the whale was foraging at depth. A similar shift in surfacing pattern occurred when prey handling time (inferred from surface corralling maneuvers increased for surface feeding whales. The surfacing pattern also differed between feeding and non-feeding whales. Resting whales did not structure their surfacing pattern, while traveling whales did, possibly as a way to minimize cost of transport. Our results also suggest that minke whales might balance their oxygen level over multiple, rather than single, dive cycles.

  2. A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces

    International Nuclear Information System (INIS)

    Most products especially metallic surfaces require cleaning treatment to remove surface contaminations that remain after processing or usage. Lead fouling is a general problem which arises from lead fouling on the chromium surfaces of bores and other interior parts of systems which have interaction with metallic lead in high temperatures and pressures. In this study, a novel chemical solution was introduced as a cleaner reagent for removing metallic lead pollution, as a fouling metal, from chromium surfaces. The cleaner aqueous solution contains hydrogen peroxide (H2O2) as oxidizing agent of lead layer on the chromium surface and acetic acid (CH3COOH) as chelating agent of lead ions. The effect of some experimental parameters such as acetic acid concentration, hydrogen peroxide concentration and temperature of the cleaner solution during the operation on the efficiency of lead cleaning procedure was investigated. The results of scanning electron microscopy (SEM) showed that using this procedure, the lead pollution layer could be completely removed from real chromium surfaces without corrosion of the original surface. Finally, the optimum conditions for the complete and fast removing of lead pollution layer from chromium surfaces were proposed. The experimental results showed that at the optimum condition (acetic acid concentration 28% (V/V), hydrogen peroxide 8% (V/V) and temperature 35 deg. C), only 15-min time is needed for complete removal of 3 g fouling lead from a chromium surface.

  3. Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces.

    Science.gov (United States)

    Finlay, John A; Krishnan, Sitaraman; Callow, Maureen E; Callow, James A; Dong, Rong; Asgill, Nicola; Wong, Kaiming; Kramer, Edward J; Ober, Christopher K

    2008-01-15

    Various designs for coatings that resist the attachment of marine organisms are based on the concept of "ambiguous" surfaces that present both hydrophobic and hydrophilic functionalities as surface domains. In order to facilitate the optimal design of such surfaces, information is needed on the scale of the domains that the settling stages of marine organisms are able to distinguish. Previous experiments showed that Ulva zoospores settle (attach) in high numbers onto fluorinated monolayers compared to PEGylated monolayers. The main aim of the present study was to determine, when zoospores of the green alga Ulva are presented with a choice of fluorinated or PEGylated surfaces, what the minimum dimensions of the two types of surface are that zoospores can detect and consequently settle on. Silicon wafers were chemically modified to produce a pattern of squares containing alternating fluorinated and PEGylated stripes of different widths on either a uniform fluorinated or PEGylated background. Each 1 cm x 1 cm square contained stripes with widths of 500, 200, 100, 50, 20, 5, or 2 microm as well as an unpatterned square with a chemistry opposite that of the background. Spores were selective in choosing where to settle, settling at higher densities on fluorinated stripes compared to PEGylated stripes. However, the magnitude of response, and the consequences for settlement on patterned areas overall, was dependent on both the width of the stripes and the chemistry of the background. The data are discussed in relation to the ability of spores to "choose" favorable sites for settlement and the implications for the development of novel antifouling coatings. PMID:18081330

  4. Selective adhesion of intestinal epithelial cells on patterned films with amine functionalities formed by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Control of cell adhesion to surfaces is important to develop analytical tools in the areas of biomedical engineering. To control cell adhesiveness of the surface, we constructed a variety of plasma polymerized hexamethyldisiloxane (PPHMDSO) thin films deposited at the plasma power range of 10-100 W by plasma enhanced chemical vapor deposition (PECVD). The PPHMDSO film that was formed at 10 W was revealed to be resistant to cell adhesion. The resistance to cell adhesion is closely related to physicochemical properties of the film. Atomic force microscopic data show an increase in surface roughness from 0.52 nm to 0.74 nm with increasing plasma power. From Fourier transform infrared (FT-IR) absorption spectroscopy data, it was also determined that the methyl (-CH3) peak intensity increases with increasing plasma power, whereas the hydroxyl (-OH) peak decreases. X-ray photoelectron spectroscopy data reveal an increase in C-O bonding with increasing plasma power. These results suggest that C-O bonding and hydroxyl (-OH) and methyl (-CH3) functional groups play a critical part in cell adhesion. Furthermore, to enhance a diversity of film surface, we accumulated the patterned plasma polymerized ethylenediamine (PPEDA) thin film on the top of the PPHMDSO thin film. The PPEDA film is established to be strongly cell-adherent. This patterned two-layer film stacking method can be used to form the selectively limited cell-adhesive PPEDA spots over the adhesion-resistant surface.

  5. Detection of chemical residues in food oil via surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Sun, Kexi; Huang, Qing

    2016-05-01

    Highly ordered hexagonally patterned Ag-nanorod (Ag-NR) arrays for surface-enhanced Raman scattering (SERS) detection of unhealthy chemical residues in food oil was reported, which was obtained by sputtering Ag on the alumina nanotip arrays stuck out of conical-pore anodic aluminum oxide (AAO) templates. SERS measurements demonstrate that the as-fabricated large-scale Ag-nanostructures can serve as highly sensitive and reproducible SERS substrates for detection of trace amount of chemicals in oil with the lower detection limits of 2×10-6 M for thiram and 10-7 M for rhodamine B, showing the potential of application of SERS in rapid trace detection of pesticide residues and illegal additives in food oils.

  6. Oxygen plasma damage to blanket and patterned ultralow-κ surfaces

    International Nuclear Information System (INIS)

    Oxygen plasma damage to blanket and patterned ultralow-κ (ULK) dielectric surfaces was investigated by examining the effect of plasma species and dielectric materials. Blanket ULK films and patterned structures were treated by O2 plasma in a remote plasma chamber where the ions and radicals from the plasma source can be separately controlled to study their respective roles in the damage process. The plasma damage was characterized by angle resolved x-ray photoelectron spectroscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy. Studies of the angle dependence of oxygen plasma damage to blanket ULK films indicated that damage by ions was anisotropic while that by radicals was isotropic. Ions were found to play an important role in assisting carbon depletion by oxygen radicals on the blanket film surface. More plasma damage was observed with increasing porosity in ultralow-κ films. Probable reaction paths were proposed by analyzing the reaction by-products. Plasma damage to the sidewall of low-κ trenches was examined by electron energy loss (EELS) analysis. The depletion depth of carbon was found to be related to the penetration of radical species into the porous dielectric and the distribution at the sidewall and trench bottom was affected by the trench pattern geometry, i.e., the aspect ratio, which can be correlated with the electron potential distribution and subsequent trajectory of ions. Vapor silylation was applied for dielectric recovery of trench structure and the result was examined by EELS. The trimethylchlorosilane was found to be effective for recovery of the sidewall carbon loss. The recovery was better for loss induced by radical O2 than by hybrid O2 and the difference was attributed to the surface densification by ions limiting the mass transport of vapor chemicals.

  7. Pattern Dependency and Loading Effect of Pure-Boron-Layer Chemical-Vapor Deposition

    NARCIS (Netherlands)

    Mohammadi, V.; De Boer, W.B.; Scholtes, T.L.M.; Nanver, L.K.

    2012-01-01

    The pattern dependency of pure-boron (PureB) layer chemical-vapor Deposition (CVD) is studied with respect to the correlation between the deposition rate and features like loading effects, deposition parameters and deposition window sizes. It is shown experimentally that the oxide coverage ratio and

  8. Evaluation of chemical surface treatment methods for mitigation of PWSCC

    International Nuclear Information System (INIS)

    As part of its mission to propose innovative and safe technologies to mitigate Primary Water Stress Corrosion Cracking (PWSCC) in Pressurized Water Reactors (PWR), EPRI recently initiated a program to evaluate potential new chemical surface treatments that might delay the occurrence of PWSCC such that no failure of components would be observed during their lifetime. Among the initial screening of more than thirty technologies, seven were selected for a more detailed review. The selected technologies were: nickel and nickel alloy plating, organic inhibitors, chromium-based inhibitors, silicon carbide, titanium-based inhibitors, rare earth metal (REM)-based inhibitors and encapsulation. The conclusions of the review of these technologies were that two of them were worth pursuing, titanium-based and REM-based inhibitors, and that evaluating the radiological consequences of injecting these products in the primary system, as well as assessing their efficacy to mitigate PWSCC, should be prioritized as the next required steps in qualification for implementation. (authors)

  9. Cell adhesion over two distinct surfaces varied with chemical and mechanical properties

    International Nuclear Information System (INIS)

    Chitosan is widely recognized as a natural and proper scaffold material; however, as a base substrate, it shows little promotion effect for the growth of cultured fibroblast cells. In this study, chitosan in a film form was prepared and used as a cell-culturing matrix, followed by patterning the evaporated Au upon it. Micro-scale Au clusters of ∼ 150 μm in diameter and ∼ 20 nm in thickness were then patterned and adhered upon the chitosan matrix. Physical and chemical properties of Au/chitosan were characterized. In particular, nano-indentation with dynamic contact module was applied to measure the nano-hardness of the tailored surfaces on Au/chitosan. Fibroblast cells were thereafter cultured on Au/chitosan. Experimental results demonstrated that as compared with the chitosan matrix, Au clusters and their boundary area exhibited favorable to promote cell adhesion, spreading, and growth. As well, nano-hardness on the boundary area of Au/chitosan significantly enhanced, while the cultured fibroblast cells aggregated upon Au clusters and the boundary area. In combination with the possible chemical and mechanical changes resulted by the evaporation of Au clusters upon the chitosan matrix, a selectively-enhanced Au/chitosan to promote fibroblast cells proliferation was created. Such design is anticipated for enabling a surface for scaffold materials with the cell-guidable function.

  10. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  11. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Renguo [Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Zhang, Hedong, E-mail: zhang@is.nagoya-u.ac.jp [Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Komada, Suguru [Department of Micro-Nano System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Mitsuya, Yasunaga [Nagoya Industrial Science Research Institute, Noa Yotsuya Building 2F, 1-13, Yotsuya-Douri, Chikusa-ku, Nagoya 464-0819 (Japan); Fukuzawa, Kenji; Itoh, Shintaro [Department of Micro-Nano System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2014-11-30

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  12. Leidenfrost point reduction on micro-patterned metallic surface

    NARCIS (Netherlands)

    Arnaldo del Cerro, D.; Gomez Marin, A.; Romer, G.R.B.E.; Pathiraj, B.; Lohse, D.; Huis in 't Veld, A.J.

    2012-01-01

    Droplets are able to levitate when deposited over a hot surface exceeding a critical temperature. This is known as the Leidenfrost effect. This phenomenon occurs when the surface is heated above the so-called Leidenfrost point (LFP), above which the vapor film between the droplet and hot surface is

  13. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaoliang; Wang Xiu; Kong Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yi Gewen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Jia Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-15

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  14. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    Science.gov (United States)

    Zhang, Xiaoliang; Wang, Xiu; Kong, Wen; Yi, Gewen; Jia, Junhong

    2011-10-01

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  15. Structural and dynamical properties of water on chemically modified surfaces: The role of the instantaneous surface

    Science.gov (United States)

    Bekele, Selemon; Tsige, Mesfin

    Surfaces of polymers such as atactic polystyrene (aPS) represent very good model systems for amorphous material surfaces. Such polymer surfaces are usually modified either chemically or physically for a wide range of applications that include friction, lubrication and adhesion. It is thus quite important to understand the structural and dynamical properties of liquids that come in contact with them to achieve the desired functional properties. Using molecular dynamics (MD) simulations, we investigate the structural and dynamical properties of water molecules in a slab of water in contact with atactic polystyrene surfaces of varying polarity. We find that the density of water molecules and the number distribution of hydrogen bonds as a function of distance relative to an instantaneous surface exhibit a structure indicative of a layering of water molecules near the water/PS interface. For the dynamics, we use time correlation functions of hydrogen bonds and the incoherent structure function for the water molecules. Our results indicate that the polarity of the surface dramatically affects the dynamics of the interfacial water molecules with the dynamics slowing down with increasing polarity. This work was supported by NSF Grant DMR1410290.

  16. Electroless nickel plating on patterned catalytic surfaces by electron beam lithography

    International Nuclear Information System (INIS)

    Nickel-phosphorus (Ni-P) alloy thin films with high-resolution features were created on patterned palladium (Pd) catalytic surfaces by electroless plating. Pd catalyst underlayers were patterned by incorporating Pd nanoparticles with site selectivity into poly(methyl methacrylate) thin films by combining electron beam lithography and the reduction of palladium(II) bis(acetylacetonato) used as a precursor. The quality of the metallic surface patterns was evaluated in terms of the attainable pattern sizes and the deviation from the pre-designed patterns. Dense Ni-P lines with the width of about 150 nm could be obtained with good site selectivity

  17. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bjoern Petersen, Steffen; Kold di Gennaro, Ane; Neves-Petersen, Maria Teresa; Skovsen, Esben; Parracino, Antonietta

    2010-10-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demonstrate that, by shaping the pattern of the UV light used to induce molecular immobilization, one can control the pattern of immobilized molecules onto the surface. Using a single-aperture spatial mask, combined with the Fourier transforming property of a focusing lens, we show that submicrometer (0.7 {mu}m) resolved patterns of immobilized prostate-specific antigen biomolecules can be created. If a dual-aperture spatial mask is used, the results differ from the expected Fourier transform pattern of the mask. It appears as a superposition of two diffraction patterns produced by the two apertures, with a fine structured interference pattern superimposed.

  18. Physical and chemical characterization of surfaces of nitrogen implanted steels

    International Nuclear Information System (INIS)

    The studied steels are of industrial type (42CD4, 100C6, Z200C13). Very often, the low carbon steel XCO6 has been used as a reference material. The aim of the research is to understand and to explain the mechanisms of wear resistance to improvement. A good characterization of the implanted layer is thus necessary. It implies to establish the distribution profiles of the implanted ions to identify the chemical and structural state of the phases created during implantation as a function of various implantation parameters (dose, temperature). Temperature is the particularly parameter. Its influence is put in evidence both during implantation and during annealings under vacuum. Nitrogen distribution profiles are performed thanks to the non destructive 15N(p,αγ)12C nuclear reaction. The chemical state of the Fe-N phases formed by implantation is determined using first Electron Conversion Moessbauer Spectroscopy and secondly, as a complement, using grazing angle X ray diffraction. The detected compounds are ε-nitrides, ε-carbonitrides, (N) - martensite and α-Fe16N2 whose evolution is carefully followed versus temperature. The diffraction technique reveals a texture of the implanted layer. This preferentiel orientation is found to be temperature dependent but dose independent. The carbon presence at the surface is studied as a function of implantation conditions (vacuum, temperature, dose). Carbon profiling is obtained using α backscattering (12C(α,α') reaction at 5,7 MeV). Thus is achieved a complete characterization of the implanted zone whose evolution as a function of implantation parameters (especially temperature) is correlated with tribological results

  19. Performing chemical reactions in virtual capillary of surface tension-confined microfluidic devices

    Indian Academy of Sciences (India)

    Angshuman Nag; Biswa Ranjan Panda; Arun Chattopadhyay

    2005-10-01

    In this paper we report a new method of fabrication of surface tension-confined microfluidic devices on glass. We have also successfully carried out some well-known chemical reactions in these fluidic channels to demonstrate the usefulness of these wall-less microchannels. The confined flow path of liquid was achieved on the basis of extreme differences in hydrophobic and hydrophilic characters of the surface. The flow paths were fabricated by making parallel lines using permanent marker pen ink or other polymer on glass surfaces. Two mirror image patterned glass plates were then sandwiched one on top of the other, separated by a thin gap - created using a spacer. The aqueous liquid moves between the surfaces by capillary forces, confined to the hydrophilic areas without wetting the hydrophobic lines, achieving liquid confinement without physical side-walls. We have shown that the microfluidic devices designed in such a way can be very useful due to their simplicity and low fabrication cost. More importantly, we have also demonstrated that the minimum requirement of such a working device is a hydrophilic line surrounded by hydrophobic environment, two walls of which are constituted of air and the rest is made of a hydrophobic surface.

  20. Influence of some system parameters on silica surface patterns by sol-gel phase separation method

    International Nuclear Information System (INIS)

    We have studied the effect of different coating methods and precursor compositions on the size, surface density and shape of round surface structures prepared by phase separation-based surface patterning method with potential application in preparing superhydrophobic optically functional structural coatings. Increase in solvent polarity resulted in larger micro-and nanosize surface features. Variation in precursor concentration and extent of initial polymerization were shown to result in different surface densities and geometries of formed features. The effect of different surface patterns on wettability was evaluated by WCA measurements

  1. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    Science.gov (United States)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  2. THE EFFECTS OF PATTERNED SURFACES ON THE PHASE SEPARATION FOR DIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Lin-li He; Lin-xi Zhang

    2009-01-01

    The phase behaviors of symmetric diblock copolymer thin films confined between two hard, parallel and diversified patterned surfaces are investigated by three-dimensional dissipative particle dynamics (DPD) simulations. The induction of diversified patterned surfaces on phase separation of symmetric diblock copolymer films in snapshots, density profiles and concentration diagrams of the simulated systems are presented. The phase separations can be controlled by the patterned surfaces. In the meantime, the mean-square end-to-end distance of the confined polymer chains (R2) is also discussed. Surface-induced phase separation for diblock copolymers can help us to create novel and controlled nanostructured materials.

  3. Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area

    Science.gov (United States)

    Nie, Qin; Xu, Jianhua

    2015-06-01

    It is well known that urban impervious surface (IS) has a warming effect on urban land surface temperature (LST). However, the influence of an IS's structure, components, and spatial distribution on LST has rarely been quantitatively studied within strictly urban areas. Using ETM+ remote sensing images from the downtown area of Shanghai, China in 2010, this study characterized and quantified the influence of the IS spatial pattern on LST by selecting the percent cover of each IS cover feature and ten configuration metrics. The IS fraction was estimated by linear spectral mixture analysis (LSMA), and LST was retrieved using a mono-window algorithm. The results indicate that high fraction IS cover features account for the majority of the study area. The high fraction IS cover features are widely distributed and concentrated in groups, which is similar with that of high temperature zones. Both the percent composition and the configuration of IS cover features greatly affect the magnitude of LST, but the percent composition is a more important factor in determining LST than the configuration of those features. The significances and effects of the given configuration variables on LST vary greatly among IS cover features.

  4. Surface Cleaning or Activation?Control of Surface Condition Prior to Thermo-Chemical Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Brigitte Haase; Juan Dong; Jens Heinlein

    2004-01-01

    Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts' surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part's surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface's activity or passivity can be detected electrochemically, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.

  5. A TESSELLATION MODEL FOR CRACK PATTERNS ON SURFACES

    Directory of Open Access Journals (Sweden)

    Werner Nagel

    2011-05-01

    Full Text Available This paper presents a model of random tessellations that reflect several features of crack pattern. There are already several theoretical results derivedwhich indicate that thismodel can be an appropriate referencemodel. Some potential applications are presented in a tentative statistical study.

  6. Graphene-Assisted Chemical Etching of Silicon Using Anodic Aluminum Oxides as Patterning Templates.

    Science.gov (United States)

    Kim, Jungkil; Lee, Dae Hun; Kim, Ju Hwan; Choi, Suk-Ho

    2015-11-01

    We first report graphene-assisted chemical etching (GaCE) of silicon by using patterned graphene as an etching catalyst. Chemical-vapor-deposition-grown graphene transferred on a silicon substrate is patterned to a mesh with nanohole arrays by oxygen plasma etching using an anodic- aluminum-oxide etching mask. The prepared graphene mesh/silicon is immersed in a mixture solution of hydrofluoric acid and hydro peroxide with various molecular fractions at optimized temperatures. The silicon underneath graphene mesh is then selectively etched to form aligned nanopillar arrays. The morphology of the nanostructured silicon can be controlled to be smooth or porous depending on the etching conditions. The experimental results are systematically discussed based on possible mechanisms for GaCE of Si. PMID:26473800

  7. Immobilization of Polymer-Decorated Liquid Crystal Droplets on Chemically Tailored Surfaces

    Science.gov (United States)

    Kinsinger, Michael I.; Buck, Maren E.; Abbott, Nicholas L.; Lynn, David M.

    2010-01-01

    We demonstrate that the assembly of an amphiphilic polyamine on the interfaces of micrometer-sized droplets of a thermotropic liquid crystal (LC) dispersed in aqueous solutions can be used to facilitate the immobilization of LC droplets on chemically functionalized surfaces. Polymer 1 was designed to contain both hydrophobic (alkyl-functionalized) and hydrophilic (primary and tertiary amine-functionalized) side chain functionality. The assembly of this polymer at the interfaces of aqueous dispersions of LC droplets was achieved by spontaneous adsorption of polymer from aqueous solution. Polymer adsorption triggered transitions in the orientational ordering of the LCs, as observed by polarized light and bright-field microscopy. We demonstrate that the presence of polymer 1 on the interfaces of these droplets can be exploited to immobilize LC droplets on planar solid surfaces through covalent bond formation (e.g., for surfaces coated with polymer multilayers containing reactive azlactone functionality) or through electrostatic interactions (e.g., for surfaces coated with multilayers containing hydrolyzed azlactone functionality). Characterization of immobilized LC droplets by polarized, fluorescence, and laser scanning confocal microscopy revealed the general spherical shape of the polymer-coated LC droplets to be maintained after immobilization, and that immobilization led to additional ordering transitions within the droplets that was dependent on the nature of the surfaces with which they were in contact. Polymer 1-functionalized LC droplets were not immobilized on polymer multilayers treated with poly(ethylene imine) (PEI). We demonstrate that the ability to design surfaces that promote or prevent the immobilization of polymer-functionalized LC droplets can exploited to pattern the immobilization of LC droplets on surfaces. The results of this investigation provide the basis of an approach that could be used to tailor the properties of dispersed LC emulsions and

  8. Spatial Heterogeneity and Imperfect Mixing in Chemical Reactions: Visualization of Density-Driven Pattern Formation

    OpenAIRE

    2009-01-01

    Imperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the ...

  9. Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation

    OpenAIRE

    Di Carlo, Stefano; Squillero, Giovanni; Sanchez Sanchez, Edgar Ernesto; Scionti, Alberto; Tonda, ALBERTO PAOLO

    2011-01-01

    Artificial olfaction systems, which mimic human olfaction by using arrays of gas chemical sensors combined with pattern recognition methods, represent a potentially low-cost tool in many areas of industry such as perfumery, food and drink production, clinical diagnosis, health and safety, environmental monitoring and process control. However, successful applications of these systems are still largely limited to specialized laboratories. Sensor drift, i.e., the lack of a sensor's stability ove...

  10. Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment

    OpenAIRE

    Stefan Facsko; Adrian Keller

    2010-01-01

    Nanopatterning of solid surfaces by low-energy ion bombardment has received considerable interest in recent years. This interest was partially motivated by promising applications of nanopatterned substrates in the production of functional surfaces. Especially nanoscale ripple patterns on Si surfaces have attracted attention both from a fundamental and an application related point of view. This paper summarizes the theoretical basics of ion-induced pattern formation and compares the prediction...

  11. Enhanced biocompatibility for plasmid DNA on patterned TiO2 surfaces

    Science.gov (United States)

    Majumder, Subrata; Mishra, I.; Subudhi, U.; Varma, Shikha

    2013-08-01

    An enhanced biocompatibility from nanodot patterned TiO2 surfaces, fabricated by ion beam sputtering, has been observed here through its interaction with plasmid DNA. Investigations of the persistence length and the areal conformation of DNA show that the biocompatibility increases with ion fluence. Presence of nanostructures and increased surface roughness, in conjugation with higher oxygen vacancy sites that promote charge transfer from DNA moiety, are responsible for the increased hydrophilicity and biocompatibility of the patterned surfaces.

  12. On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces

    Directory of Open Access Journals (Sweden)

    H. G. Ouwersloot

    2011-07-01

    Full Text Available We have systematically studied the inability of boundary layer turbulence to efficiently mix reactive species. This creates regions where the species are accumulated in a correlated or anti-correlated way, thereby modifying the mean reactivity. Here, we quantify this modification by the intensity of segregation, IS, and analyse the driving mechanisms: heterogeneity of the surface moisture and heat fluxes, various background wind patterns and non-uniform isoprene emissions. For typical conditions in the Amazon rain forest, applying homogeneous surface forcings, the isoprene-OH reaction rate is altered by less than 10 %. This is substantially smaller than the previously assumed IS of 50 % in recent large-scale model analyses of tropical rain forest chemistry. Spatial heterogeneous surface emissions enhance the segregation of species, leading to alterations of the chemical reaction rates of up to 20 %. For these cases, spatial segregation is induced by heterogeneities of the surface properties: a cool and wet forested patch characterized by high isoprene emissions is alternated with a warm and dry patch that represents pasture with relatively low isoprene emissions. The intensities of segregation are enhanced when the background wind direction is parallel to the borders between the patches and reduced in case of a perpendicular wind direction. The effects of segregation on trace gas concentrations vary per species. For the highly reactive OH, the differences in concentration averaged over the boundary layer are less than 2 % compared to homogeneous surface conditions, while the isoprene concentration is increased by as much as 12 % due to the reduced chemical reaction rates. These processes take place at the sub-grid scale of chemistry transport models and therefore need to be parameterized.

  13. Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2010-01-01

    In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that...... these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....

  14. Development of international standards for surface analysis by ISO technical committee 201 on surface chemical analysis

    International Nuclear Information System (INIS)

    Full text: The International Organization for Standardization (ISO) established Technical Committee 201 on Surface Chemical Analysis in 1991 to develop documentary standards for surface analysis. ISO/TC 201 met first in 1992 and has met annually since. This committee now has eight subcommittees (Terminology, General Procedures, Data Management and Treatment, Depth Profiling, AES, SIMS, XPS, and Glow Discharge Spectroscopy (GDS)) and one working group (Total X-Ray Fluorescence Spectroscopy). Each subcommittee has one or more working groups to develop standards on particular topics. Australia has observer-member status on ISO/TC 201 and on all ISO/TC 201 subcommittees except GDS where it has participator-member status. I will outline the organization of ISO/TC 201 and summarize the standards that have been or are being developed. Copyright (1999) Australian X-ray Analytical Association Inc

  15. Electron Microscopy and Optical Characterization of Cadmium Sulphide Nanocrystals Deposited on the Patterned Surface of Diatom Biosilica

    Directory of Open Access Journals (Sweden)

    Timothy Gutu

    2009-01-01

    Full Text Available Intricately patterned biosilica obtained from the shell of unicellular algae called diatoms serve as novel templates for fabrication of optoelectronic nanostructures. In this study, the surface of diatom frustules that possessed hierarchical architecture ordered at the micro and nanoscale was coated with a nanostructured polycrystalline cadmium sulphide (CdS thin film using a chemical bath deposition technique. The CdS thin film was composed of spherical nanoparticles with a diameter of about 75 nm. The CdS nanoparticle thin film imparted new photoluminescent properties to the intricately patterned diatom nanostructure. The imparted photoluminescent properties were dependent on the CdS coverage onto the frustules surface. The intrinsic photoluminescent properties of the frustules were strongly quenched by the deposited CdS. The origin of PL spectra was discussed on the basis of the band theory and native defects.

  16. Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching

    International Nuclear Information System (INIS)

    The fabrication of long-range surface plasmon polaritons (LRSPPs) waveguides based on a thin Au stripe embedded in poly(methyl-methacrylate-glycidly-methacrylate) polymers was investigated. By patterning the photoresist, a wet chemical etching technique was used to avoid sharp pin-like and shark-fin-like structures on the edges of the Au stripe. The surface morphology of the Au film and polymer cladding were studied by atomic force microscopy (AFM), as well as by using the waveguide configuration of the Au stripe. AFM images proved the elimination of parasitic structures. A 2 cm long, 4 μm wide, and 25 nm thick Au stripe waveguide exhibited a propagation loss of approximately 4.3 dB cm−1 measured by the cut-back method and end-fire excitation of LRSPP mode guiding at 1550 nm. The demonstration of optical signal transmission indicates that the LRSPP waveguide fabricated by wet chemical etching is a potential solution to on-chip optical interconnections. (papers)

  17. Reactive monolayers for surface gradients and biomolecular patterned interfaces

    NARCIS (Netherlands)

    Nicosia, C.

    2013-01-01

    Self-assembled monolayers (SAMs) are an excellent platform to implement and develop interfacial reactions for the preparation of versatile materials of pivotal importance for the fabrication of, among others, biochips, sensors, catalysts, smart surfaces and electronic devices. The development of met

  18. Device for applying organic chemicals to lysimeter surfaces

    International Nuclear Information System (INIS)

    One of the aims of environmental research at the GSF Research Centre for the Environment and Health is to determine the behaviour of environmentally consequential chemicals in terrestrial ecosystems under as natural conditions as possible. The GSF lysimeter plant in Neuherberg permits studying the environmental behaviour of organic chemicals in different soils. Collaborators at GSF have developed a means of applying -14-marked substances in field lysimeters so as to be able to refind released chemicals, identify their conversion products and set up mass balances for the chemicals

  19. Simple growth patterns can create complex trajectories for the ontogeny of constitutive chemical defences in seaweeds.

    Directory of Open Access Journals (Sweden)

    Nicholas A Paul

    Full Text Available All of the theory and most of the data on the ecology and evolution of chemical defences derive from terrestrial plants, which have considerable capacity for internal movement of resources. In contrast, most macroalgae--seaweeds--have no or very limited capacity for resource translocation, meaning that trade-offs between growth and defence, for example, should be localised rather than systemic. This may change the predictions of chemical defence theories for seaweeds. We developed a model that mimicked the simple growth pattern of the red seaweed Asparagopsis armata which is composed of repeating clusters of somatic cells and cells which contain deterrent secondary chemicals (gland cells. To do this we created a distinct growth curve for the somatic cells and another for the gland cells using empirical data. The somatic growth function was linked to the growth function for defence via differential equations modelling, which effectively generated a trade-off between growth and defence as these neighbouring cells develop. By treating growth and defence as separate functions we were also able to model a trade-off in growth of 2-3% under most circumstances. However, we found contrasting evidence for this trade-off in the empirical relationships between growth and defence, depending on the light level under which the alga was cultured. After developing a model that incorporated both branching and cell division rates, we formally demonstrated that positive correlations between growth and defence are predicted in many circumstances and also that allocation costs, if they exist, will be constrained by the intrinsic growth patterns of the seaweed. Growth patterns could therefore explain contrasting evidence for cost of constitutive chemical defence in many studies, highlighting the need to consider the fundamental biology and ontogeny of organisms when assessing the allocation theories for defence.

  20. Chemically modified Si(111) surfaces simultaneously demonstrating hydrophilicity, resistance against oxidation, and low trap state densities

    Science.gov (United States)

    Brown, Elizabeth S.; Hlynchuk, Sofiya; Maldonado, Stephen

    2016-03-01

    Chemically modified Si(111) surfaces have been prepared through a series of wet chemical surface treatments that simultaneously show resistance towards surface oxidation, selective reactivity towards chemical reagents, and areal defect densities comparable to unannealed thermal oxides. Specifically, grazing angle attenuated total reflectance infrared and X-ray photoelectron (XP) spectroscopies were used to characterize allyl-, 3,4-methylenedioxybenzene-, or 4-[bis(trimethylsilyl)amino]phenyl-terminated surfaces and the subsequently hydroxylated surfaces. Hydroxylated surfaces were confirmed through reaction with 4-(trifluoromethyl)benzyl bromide and quantified by XP spectroscopy. Contact angle measurements indicated all surfaces remained hydrophilic, even after secondary backfilling with CH3sbnd groups. Surface recombination velocity measurements by way of microwave photoconductivity transients showed the relative defect-character of as-prepared and aged surfaces. The relative merits for each investigated surface type are discussed.

  1. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela

    2010-09-21

    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  2. Surface circulation and upwelling patterns around Sri Lanka

    OpenAIRE

    Vos, A; Pattiaratchi, C. B.; E. M. S. Wijeratne

    2013-01-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side. The region is characterised by bi-annually reversing monsoon winds resulting from seasonal differential heating and cooling of the continental land mass and the ocean. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and...

  3. Surface circulation and upwelling patterns around Sri Lanka

    OpenAIRE

    Vos, A; Pattiaratchi, C. B.; E. M. S. Wijeratne

    2014-01-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean, with the Arabian Sea on its western side and the Bay of Bengal on its eastern side, and experiences bi-annually reversing monsoon winds. Aggregations of blue whale (Balaenoptera musculus) have been observed along the southern coast of Sri Lanka during the northeast (NE) monsoon, when satellite imagery indicates lower productivity in the surface waters. This study explored elements o...

  4. Effect of the Chemical State of the Surface on the Relaxation of the Surface Shell Atoms in SiC and GaN Nanocrystals

    Science.gov (United States)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H. P.; Janik, J. F.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The effect of the chemical state of the surface of nanoparticles on the relaxation in the near-surface layer was examined using the concept of the apparent lattice parameter (alp) determined for different diffraction vectors Q. The apparent lattice parameter is a lattice parameter determined either from an individual Bragg reflection, or from a selected region of the diffraction pattern. At low diffraction vectors the Bragg peak positions are affected mainly by the structure of the near-surface layer, while at high Q-values only the interior of the nano-grain contributes to the diffraction pattern. Following the measurements on raw (as prepared) powders we investigated powders cleaned by annealing at 400C under vacuum, and the same powders wetted with water. Theoretical alp-Q plots showed that the structure of the surface layer depends on the sample treatment. Semi-quantitative analysis based on the comparison of the experimental and theoretical alp-Q plots was performed. Theoretical alp-Q relations were obtained from the diffraction patterns calculated for models of nanocrystals with a strained surface layer using the Debye functions.

  5. Estimating surface water concentrations of “down-the-drain” chemicals in China using a global model

    International Nuclear Information System (INIS)

    Predictions of surface water exposure to “down-the-drain” chemicals are presented which employ grid-based spatially-referenced data on average monthly runoff, population density, country-specific per capita domestic water and substance use rates and sewage treatment provision. Water and chemical load are routed through the landscape using flow directions derived from digital elevation data, accounting for in-stream chemical losses using simple first order kinetics. Although the spatial and temporal resolution of the model are relatively coarse, the model still has advantages over spatially inexplicit “unit-world” approaches, which apply arbitrary dilution factors, in terms of predicting the location of exposure hotspots and the statistical distribution of concentrations. The latter can be employed in probabilistic risk assessments. Here the model was applied to predict surface water exposure to “down-the-drain” chemicals in China for different levels of sewage treatment provision. Predicted spatial patterns of concentration were consistent with observed water quality classes for China. - Highlights: ► A global-scale model of “down-the-drain” chemical concentrations is presented. ► The model was used to predict spatial patterns of exposure in China. ► Predictions were consistent with observed water quality classes. ► The model can identify hotspots and statistical distributions of concentrations. - A global-scale model was used to predict spatial patterns of “down-the-drain” chemical concentrations in China. Predictions were consistent with observed water quality classes, demonstrating the potential value of the model.

  6. Surface and near-surface passivation, chemical reaction, and Schottky barrier formation at ZnO surfaces and interfaces

    International Nuclear Information System (INIS)

    Using a combination of depth-resolved cathodoluminescence spectroscopy, electronic transport, and surface science techniques, we have demonstrated the primary role of native defects within ZnO single crystals as well as native defects created by metallization on metal-ZnO Schottky barrier heights and their ideality factors. Native defects and impurities resident within the ZnO depletion region as well as defects extending into the bulk from the intimate metal-ZnO interface contribute to barrier thinning of, carrier hopping across, and tunneling through these Schottky barriers. Chemical reactions at clean ZnO-metal interfaces lead to metal-specific eutectic or oxide formation with pronounced transport effects. These results highlight the importance of bulk crystal quality, surface cleaning, metal interaction, and post-metallization annealing for controlling Schottky barriers

  7. Ion-Induced Nanoscale Ripple Patterns on Si Surfaces: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Stefan Facsko

    2010-10-01

    Full Text Available Nanopatterning of solid surfaces by low-energy ion bombardment has received considerable interest in recent years. This interest was partially motivated by promising applications of nanopatterned substrates in the production of functional surfaces. Especially nanoscale ripple patterns on Si surfaces have attracted attention both from a fundamental and an application related point of view. This paper summarizes the theoretical basics of ion-induced pattern formation and compares the predictions of various continuum models to experimental observations with special emphasis on the morphology development of Si surfaces during sub-keV ion sputtering.

  8. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces.

    Science.gov (United States)

    Yang, Meng; Ding, Yonghui; Ge, Xiang; Leng, Yang

    2015-11-01

    It is a great challenge to construct a persistent bacteria-resistant surface even though it has been demonstrated that several surface features might be used to control bacterial behavior, including surface topography. In this study, we develop micro-scale honeycomb-like patterns of different sizes (0.5-10 μm) as well as a flat area as the control on a single platform to evaluate the bacterial adhesion and growth. Bacteria strains, Escherichia coli and Staphylococcus aureus with two distinct shapes (rod and sphere) are cultured on the platforms, with the patterned surface-up and surface-down in the culture medium. The results demonstrate that the 1 μm patterns remarkably reduce bacterial adhesion and growth while suppressing bacterial colonization when compared to the flat surface. The selective adhesion of the bacterial cells on the patterns reveals that the bacterial adhesion is cooperatively mediated by maximizing the cell-substrate contact area and minimizing the cell deformation, from a thermodynamic point of view. Moreover, study of bacterial behaviors on the surface-up vs. surface-down samples shows that gravity does not apparently affect the spatial distribution of the adherent cells although it indeed facilitates bacterial adhesion. Furthermore, the experimental results suggest that two major factors, i.e. the availability of energetically favorable adhesion sites and the physical confinements, contribute to the anti-bacterial nature of the honeycomb-like patterns. PMID:26302067

  9. Propagation of Surface Wave Along a Thin Plasma Column and Its Radiation Pattern

    Institute of Scientific and Technical Information of China (English)

    WANG Zhijiang; ZHAO Guowei; XU Yuemin; LIANG Zhiwei; XU Jie

    2007-01-01

    Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.

  10. METHOD FOR FABRICATING NANOSCALE PATTERNS ON A SURFACE

    DEFF Research Database (Denmark)

    2000-01-01

    A novel method to fabricate nanoscale pits on Au(111) surfaces in contact with aqueous solution is claimed. The method uses in situ electrochemical scanning tunnelling microscopy with independent electrochemical substrate and tip potential control and very small bias voltages. This is significantly...... different from other documented methods, which mostly apply high and short voltage pulses.The most important advantages of the present method are that the high precision in aqueous environment so that nanoopatterns of the pits can be designed, and that the operations are simple and require no instrumental...

  11. Calculation of diffraction patterns on a spatial surface.

    Science.gov (United States)

    Li, Junchang; Li, Chongguang; Delmas, Agnès

    2007-07-01

    An approximated formulation of the Fresnel function is put forward and is used in the approximate evaluation of the Fresnel diffraction integral. By comparing the approximate formulation with the experimental measurements and calculations in the fast Fourier transform (FFT) method of the diffraction integral, we demonstrate that the proposed method is sufficiently accurate for calculating the Fresnel diffraction. For the diffraction field calculation on a spatial surface, the calculation speed of this method is usually higher than that of the FFT method. PMID:17728818

  12. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid;

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a...... monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of...

  13. Chemical properties of surface peat on forest land in Estonia

    Directory of Open Access Journals (Sweden)

    R. Kõlli

    2010-10-01

    Full Text Available The chemical properties of surface peat cover (SPC were studied in the context of Estonian pedoecological conditions. SPC comprises the superficial layers of fens (Group 1 and transitional bogs (Group 2, together with slightly acid peaty mull / strongly acid peaty moder (Group 3 and very strongly acid peaty mor (Group 4 layers overlying mineral soils. Thus, it spans organic soils, namely Histosols (Groups 1 and 2; together with Histic Gleysols (Group 3 and Histic Podzols (Group 4, which are developmentally intermediate between organic and mineral soils. Moderately acid eutrophic (Group 1 and very strongly acid mesotrophic (Group 2 peats (forest litter layers excluded were uniformly characterised up to 40 cm depth; whereas for Groups 3 and 4 we examined the full thickness of available peat layers, which ranged from 10 to 30 cm. The results show that Al, K and heavy metal contents are significantly higher and organic carbon content is lower in Histic Soils (3, 4 than in Histosols (1, 2. The amounts of Ca, Mg, Mn and Fe are significantly higher and C:N ratio, exchangeable acidity and content of free H+ lower in less acidic (1, 3 than in more acidic (2, 4 soil types. The total concentration of elements (excluding heavy metals extracted by nitro-hydrochloric acid (aqua regia is considerably higher in less acidic soils, at 28–45 g kg-1 (1, 3 versus 10–12 g kg-1 (2, 4; and mean contents of individual elements decrease in the order Ca(51% > Fe(20% > S(10% ≥ Al(10% > Mg(3% ≥ P(3% > K(2% > Mn(1% > Na(<1%. The most abundant heavy metals are Pb (12–33 mg kg-1, Zn (7–41 mg kg-1, Cu (3–12 mg kg-1, Cr (2–23 mg kg-1 and Ni (2–8 mg kg-1; Cd and Hg contents are very low, ranging from 0.2 to 0.5 mg kg-1. The dominant exchangeable basic cations are Ca2+ (78–93% and Mg2+ (7–15%, and the peat contains much smaller amounts of K+ (1–6% and Na+ (<2%. The total exchangeable acidic cations (1–14 cmol kg-1 are dominated by H+ (51–83% and Al3

  14. Materials for single-etch double patterning process: surface curing agent and thermal cure resist

    Science.gov (United States)

    Bae, Young C.; Liu, Yi; Cardolaccia, Thomas; McDermott, John C.; Trefonas, Peter; Spizuoco, Ken; Reilly, Michael; Pikon, Amandine; Joesten, Lori; Zhang, Gary G.; Barclay, George G.; Simon, Julia; Gaurigan, Stéphanie

    2009-03-01

    Two different pattern curing techniques were developed to stabilize first lithographic images for the single-etch double patterning process. The first method uses a surface curing agent (SCA) that is coated on top of the patterned surface to form a protective coating layer during the curing bake process. It was found that the surface curing process with SCA offers minimum CD changes before and after the double patterning process. Virtually no CD change was observed with the first lithographic images at various curing bake temperatures ranging from 120 ~160°C indicating the curing reaction is limited on the patterned surface. The second method uses a thermal cure resist (TCR) that is a special 193nm photoresist with a crosslinkable functional group to form an insoluble network upon heating at higher temperature. A single-step curing process of the first lithographic images was achieved using TCR by baking the patterned images at 180°C for 60sec. A cross-line contact hole double patterning method was used to evaluate these two different curing techniques and both SCA and TCR successfully demonstrated their capability to print 45nm contact holes with excellent CD uniformity in immersion lithography (1.35NA) with a 45nm half pitch mask. It was also confirmed that both SCA and TCR can be extended to the top-coat free immersion double patterning process using an embedded barrier layer technique.

  15. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    Science.gov (United States)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-11-01

    For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave-convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant film even showed a larger water contact angle and lower friction and depletion than the full UV-irradiated film. These indicate that UV-patterning of nanometer-thick lubricant films with a minimized linewidth has a better surface functionalization effect than full UV irradiation. Enhancement of the surface functionalization effect may be attributed to a

  16. Engineered antifouling microtopographies: surface pattern effects on cell distribution.

    Science.gov (United States)

    Decker, Joseph T; Sheats, Julian T; Brennan, Anthony B

    2014-12-23

    Microtopography has been observed to lead to altered attachment behavior for marine fouling organisms; however, quantification of this phenomenon is lacking in the scientific literature. Here, we present quantitative measurement of the disruption of normal attachment behavior of the fouling algae Ulva linza by antifouling microtopographies. The distribution of the diatom Navicula incerta was shown to be unaffected by the presence of topography. The radial distribution function was calculated for both individual zoospores and cells as well as aggregates of zoospores from attachment data for a variety topographic configurations and at a number of different attachment densities. Additionally, the screening distance and maximum values were mapped according to the location of zoospore aggregates within a single unit cell. We found that engineered topographies decreased the distance between spore aggregates compared to that for a smooth control surface; however, the distributions for individual spores were unchanged. We also found that the local attachment site geometry affected the screening distance for aggregates of zoospores, with certain geometries decreasing screening distance and others having no measurable effect. The distribution mapping techniques developed and explored in this article have yielded important insight into the design parameters for antifouling microtopographies that can be implemented in the next generation of antifouling surfaces. PMID:25420235

  17. Surface Water Pollution in the Yangtze River Delta:Patterns and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On the basis of field investigations, observations and experimental data combined with environmental monitoring information, the status and the spatial and temporal patterns of surface water pollution over the past ten years in the Yangtze River Delta have been assessed. The water quality of large rivers is still very good but most of the medium-sized and small rivers have been very seriously polluted. The appearance of black and odorous conditions in rivers in the urban areas has increased due to serious pollution by organic matter with consequent high oxygen demand. Annual increases in N and P concentrations in lakes have accelerated eutrophication. The water quality of rivers in small towns is rapidly deteriorating. The main sources of surface water pollution include industrial and domestic sewage, animal manures, chemical fertilizers in farmland, and polluted sediments in rivers and lakes.Countermeasures against these sources of pollution are presented. Regional laws and regulations for protection of surface waters and their enforcement are urgently required. A regional water environmental management agency should be established. The construction of sewage treatment plants of varying capacity must be accelerated to increase the proportion of sewage treated and to improve the quality of treated effluent. Animal wastes must be recycled effectively and efficiently, and the application rates of fertilizers and manures must be balanced with crop nutrient requirements to prevent diffuse pollution from agriculture.The comprehensive rehabilitation of medium-sized and small rivers should be intensified, and the delimitation and protection of the areas used as sources of drinking water should be strengthened.

  18. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per;

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X...... are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results...

  19. Surface circulation and upwelling patterns around Sri Lanka

    Science.gov (United States)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2014-10-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean, with the Arabian Sea on its western side and the Bay of Bengal on its eastern side, and experiences bi-annually reversing monsoon winds. Aggregations of blue whale (Balaenoptera musculus) have been observed along the southern coast of Sri Lanka during the northeast (NE) monsoon, when satellite imagery indicates lower productivity in the surface waters. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and numerical simulations using the Regional Ocean Modelling System (ROMS). The model was run for 3 years to examine the seasonal and shorter-term (~10 days) variability. The results reproduced correctly the reversing current system, between the Equator and Sri Lanka, in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the southwest (SW) monsoon transporting 11.5 Sv (mean over 2010-2012) and the westward flowing Northeast Monsoon Current (NMC) transporting 9.6 Sv during the NE monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the southern coast. During the SW monsoon, the island deflects the eastward flowing SMC southward, whilst along the eastern coast, the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the southern coast, resulting from southward flow converging along the southern coast and subsequent divergence associated with the offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the

  20. Surface chemical composition analysis of heat-treated bamboo

    Science.gov (United States)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-05-01

    In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  1. Extreme ultraviolet mask substrate surface roughness effects on lithography patterning

    Energy Technology Data Exchange (ETDEWEB)

    George, Simi; Naulleau, Patrick; Salmassi, Farhad; Mochi, Iacopo; Gullikson, Eric; Goldberg, Kenneth; Anderson, Erik

    2010-06-21

    In extreme ultraviolet lithography exposure systems, mask substrate roughness induced scatter contributes to LER at the image plane. In this paper, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programmed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. We find that the roughness measurements by top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. We suggest at wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects.

  2. Pattern of Morbidity and Mortality in Kurdistan / Iraq with an Emphasis on Exposure to Chemical Weapon

    International Nuclear Information System (INIS)

    A cross-sectional survey was carried out in kurdistan -Iraq during the period 2000-2001 to determine patterns of morbidity and mortality among kurdistan population with special emphasis on those exposed to bombs and shell injuries and chemical weapons. Kurdistan was divided in to 300 sectors; from each sector, one household was selected randomly. The total study samples were 6805 including number of the household who have died since 1935. They have a male: female ratio of 1.03:1. An interview was carried out using a special questionnaire form. The mean age of the sample was 51.5 ± 0.6 years (51.1 ± 0.75 for males and 52.9 ± 0.97 for females ) 1.5% and 2.8% of surveyed population have been exposed to non - chemical weapons (bomb and shells ) or chemical weapons , respectively; 0.23% of the alive population had cancer at the time of the study. 12.6% in the study sample were complaining from respiratory disease and 6.5 had a history of miscarriage and stillbirth. Both complaints might be attributed to expose to chemical weapons. 869 (12.5 %) of the study have died since 1935, 68.4% of them have died during the period 1980 - 1999. 3 % of all deaths were due to exposure to shells or chemical weapons; 7.9 % were lost in Al - anfal campaign in 1980s of the last century. 8.5 % of all death were due to cancer probably due to exposure to chemical weapons. (author)

  3. Nanowell-patterned TiO{sub 2} microcantilevers for calorimetric chemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongkyu, E-mail: dongkyu@ualberta.ca; Chae, Inseok; Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Kim, Seonghwan [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Jeon, Sangmin [Department of Chemical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2014-04-07

    A sensitive calorimetric sensor using a TiO{sub 2} microcantilever with nanowells patterned on one of its sides is described. This single material cantilever is sensitive to temperature change without relying on the metal deposition-based bimetallic effect. The thermomechanical sensitivity originates from the structure dependent variations in both the elastic modulus and thermal expansion coefficient due to the presence of ordered nanowells. These cantilever beams offer an alternate and efficient chemical sensing route for vapor phase analytes using photothermal spectroscopy. Selective and sensitive detection of organophosphorus compounds, as well as their photocatalytic decomposition under ultraviolet light exposure are demonstrated.

  4. Patterns of chemical use and exposure control in the Semiconductor Health Study.

    Science.gov (United States)

    Hallock, M F; Hammond, S K; Hines, C J; Woskie, S R; Schenker, M B

    1995-12-01

    Information on chemical use and exposure control between 1986 and 1990 was collected from 14 companies participating in the Semiconductor Health Study. Questionnaires and site visits provided data used to develop exposure categories for three epidemiological studies: prospective, historical, and cross-sectional. Patterns of use of target chemicals were compiled for 82 silicon-wafer fabrication rooms (fabs), including 47 from which subjects were selected for study. Chemical use was examined by operation, year, and epidemiological component. Target agents for epidemiological analyses were present in more than 50% of fabs. Use of these agents was fairly constant from 1986 to 1990, except for a moderate increase in use of propylene glycol monomethyl ether acetate, a solvent being substituted for ethylene-based glycol ethers (EGE) in photoresists. The distribution of personal protective equipment, engineering controls, and other factors potentially affecting employee exposure was also examined. Controls designed to manage processes or high acute toxicity were present in most fabs; their prevalence remained unchanged from 1986 through 1990. Controls designed to reduce exposures to chemicals with low acute toxicity were less widely distributed; their prevalence increased moderately from 1986 to 1990. PMID:8588557

  5. Temporal variability of remotely sensed suspended sediment and sea surface temperature patterns in Mobile Bay, Alabama

    Science.gov (United States)

    Rucker, J.B.; Stumpf, R.P.; Schroeder, W.W.

    1990-01-01

    Distribution patterns of suspended sediments and sea surface temperatures in, Mobile Bay were derived from algorithms using digital data from the visible, near infrared, and infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-TIROS-N satellite. Closely spaced AVHRR scenes for January 20, 24, and 29, 1982, were compared with available environmental information taken during the same period. A complex interaction between river discharge, winds, and astronomical tides controlled the distribution patterns of suspended sediments. These same variables, coupled with air temperatures, also governed the distribution patterns of sea surface temperatures. ?? 1990 Estuarine Research Federation.

  6. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    Science.gov (United States)

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  7. Surface circulation and upwelling patterns around Sri Lanka

    Directory of Open Access Journals (Sweden)

    A. de Vos

    2013-09-01

    Full Text Available Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side. The region is characterised by bi-annually reversing monsoon winds resulting from seasonal differential heating and cooling of the continental land mass and the ocean. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and the Regional Ocean Modelling System (ROMS configured to the study region and forced with ECMWF interim data. The model was run for 2 yr to examine the seasonal and shorter term (∼10 days variability. The results confirmed the presence of the reversing current system in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC during the Southwest (SW monsoon transporting 11.5 Sv and the westward flowing Northeast Monsoon Current (NMC transporting 9.5 Sv during the Northeast (NE monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the Island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the south coast. During the SW monsoon the Island deflects the eastward flowing SMC southward whilst along the east coast the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the south coast and is shown to be due to flow convergence and divergence associated with offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the upwelling centre was dependent on the relative strengths of wind driven flow along the east and west coasts: during the SW (NE monsoon the flow

  8. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  9. Spontaneous Pattern Formation of Surface Nanodroplets from Competitive Growth

    Science.gov (United States)

    Lohse, Detlef; Peng, Shuhua; Zhang, Xuehua

    Nanoscale droplets on a substrate are of great interest because of their relevance for droplet-based technologies for light manipulation, lab-on-chip devices, miniaturised reactors, encapsulation and many others. In this work, we establish a basic principle for the symmetrical arrangement of surface nanodroplets during their growth under simple flow conditions. In our model system, nanodroplets nucleate at the rim of spherical cap microstructures on a substrate, due to a pulse of oversaturation is supplied by a solvent exchange process. We find that, while growing at the rim of the microcap, the nanodroplets self-organise into highly symmetric arrangements, with respect to position, size, and mutual distance. The angle between the neighbouring droplets is four times the ratio between the base radii of the droplets and the spherical caps. We show and explain how the nanodroplets acquire the symmetrical spatial arrangement during their competitive growth and why and how the competition enhances the overall growth rate of the nucle- ated nanodroplets. This mechanism behind the nanodroplet self-organisation promises a simple approach for the location control of droplets with a volume down to attoliters.

  10. Chemical imaging of surfaces with the scanning electrochemical microscope.

    Science.gov (United States)

    Bard, A J; Fan, F R; Pierce, D T; Unwin, P R; Wipf, D O; Zhou, F

    1991-10-01

    Scanning electrochemical microscopy is a scanning probe technique that is based on faradaic current changes as a small electrode is moved across the surface of a sample. The images obtained depend on the sample topography and surface reactivity. The response of the scanning electrochemical microscope is sensitive to the presence of conducting and electroactive species, which makes it useful for imaging heterogeneous surfaces. The principles and instrumentation used to obtain images and surface reaction-kinetic information are discussed, and examples of applications to the study of electrodes, minerals, and biological samples are given. PMID:17739954

  11. Effects of aluminium surface morphology and chemical modification on wettability

    Science.gov (United States)

    Rahimi, M.; Fojan, P.; Gurevich, L.; Afshari, A.

    2014-03-01

    Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie-Baxter to Wenzel regime upon changing the surface roughness was also observed.

  12. Surfactant driven self-organized surface patterns by ion beam erosion

    International Nuclear Information System (INIS)

    Self-organized pattern formation on surfaces by ion beam erosion and driven by metal surfactant atoms is discussed. Si substrates were irradiated with 5 keV Xe ions at normal incidence and ion fluences up to 5.1017 Xe+/cm2 under continuous deposition of surfactant atoms. In the absence of surfactants uniform flat surfaces are obtained. With surfactants pronounced patterns like dots, combinations of dots and ripples as well as ripples with about 100 nm wavelength are generated. The surfactant coverage and deposition direction determine the pattern type and the pattern orientation, respectively. A critical steady-state coverage for onset of dot formation and onset of ripple formation is between about 1015 and 5.1015 atoms/cm2. With increasing ion fluence the pattern contrast increases but the pattern type remains unchanged. The surface region consists of a thin amorphous metal silicide layer with high metal concentration in the ripple and dot regions. Pattern formation is explained by ion induced diffusion and phase separation of the initially flat amorphous silicide layer and subsequent ion beam erosion with composition dependent sputter yield. Directed deposition of metal surfactant causes preferential deposition and shadowing and determines the final pattern orientation and morphology. First results on the dynamic behaviour of the ripples are presented.

  13. Discrimination of surface tracking patterns of gamma irradiated polymers using fractals

    Indian Academy of Sciences (India)

    V Rajini; K Udaya Kumar

    2006-06-01

    The purpose of this paper is to evaluate the radiation resistance of gamma irradiated ethylene propylene diene monomer (EPDM) and to identify the pattern discriminating abilities of the surface tracking patterns. Simple objects can be described by the ideal shape primitives such as cubes, cones and cylinders. But most of the natural objects are so complex that cannot be described in terms of simple primitives. Fractals have been very successfully used to address the problem of modeling and to provide a description of naturally occurring phenomena and shapes, wherein conventional and existing mathematical models were found to be inadequate. The geometrical patterns of dielectric breakdown like electrical trees, surface discharges, and lightning are known to be of fractal in nature. These fractal patterns can be analysed numerically using fractal dimensions and lacunarity. Surface tracking occurring in HV insulation systems is a very complex phenomenon and more so are the shapes of tracking patterns. It has been fairly well established that the shapes and the underlying parameters causing tracking have a 1 : 1 correspondence and therefore, methods to describe and quantify these patterns must be explored. This paper reports preliminary results of such a study wherein 2- tracking patterns of gamma irradiated ethylene propylene diene monomer were analysed and found to possess fairly reasonable pattern discriminating abilities. This approach appears promising and further research is essential before any long-term predictions can be made.

  14. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Gennaro, Ane Kold Di; Neves Petersen, Teresa;

    2010-01-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demons...

  15. Theoretical simulation of Kelvin probe force microscopy for Si surfaces by taking account of chemical forces

    International Nuclear Information System (INIS)

    A new method of theoretical simulation for Kelvin probe force microscopy (KPFM) imaging on semiconductor or metal samples is proposed. The method is based on a partitioned real space (PR) density functional based tight binding (DFTB) calculation of the electronic states to determine the multi-pole electro-static force, which is augmented with the chemical force obtained by a perturbation treatment of the orbital hybridization. With the PR-DFTB method, the change of the total energy is calculated together with the induced charge distribution in the tip and the sample by their approach under an applied bias voltage, and the KPFM images, namely the patterns of local contact potential difference (LCPD) distribution, are obtained with the minimum condition of the interaction force. However, since the interaction force is due to electro-static multi-poles, the spatial resolution of the KPFM images obtained by PR-DFTB is limited to the nano-scale range and an atom-scale resolution cannot be attained. By introducing an additional chemical force, i.e., the force due to the orbital hybridization, we succeeded in reproducing atom-scale resolution of KPFM images. Case studies are performed for clean and impurity embedded Si surfaces with Si tip models. (paper)

  16. Characterization and the Pattern of Surfaces of Sealant with nano size Composite Materials

    International Nuclear Information System (INIS)

    Nano composite sealant is low viscosity, room temperature cured, opaque and flowable nature. They have variety of uses such as potting, pressure sealant and shock resistant. Most important factor influencing use of fillers in polymer composites is their ability to effectively transfer the applied load in the matrix. The effective utilization of fillers in composites for structural applications depends strongly on the ability to disperse the nano fillers homogeneously in the matrix without damaging them. R-Belite supper epoxy adhesive (RBSEA) were formulated with different nano fillers (KCl, Al2O3, ZrO2, SiO2, ZrO2) at room temperature. The composite were prepared with the 0.02 to 0.10 weight ratios to promote the nucleation of the nanoparticles in the applied sealant. Two main problems which arise in improving the properties are poor dispersion of the fillers in the composite and weak bonding between nano fillers and the matrix. These problems are solved by mechanical and chemical means. It was observed that mechanical properties like tensile strength, elongation hardness etc and thermal properties were also improved with incorporation of nanofillers in the working applied polymer matrix. The dispersion of nano fillers in polymer matrix is studied by Scanning electron microscopy (SEM). The results confirm the presence of nanomaterial in RBSEA/fillers nanocomposites. SEM is also used to characterize the pattern of surfaces with nano size composite materials.

  17. Alignment of liquid crystals : on geometrically and chemically modified surfaces

    NARCIS (Netherlands)

    Zhang, Jing

    2013-01-01

    This thesis consists of two main parts. The first part describes a new model to explain the complex role of surface materials and surface geometry in the liquid crystal (LC) alignment, which has been a subject of intensive debate over the last 40 years. The second part presents a potentially cost ef

  18. Surface chemical and morphological properties of mechanical pulps, fibers and fines

    OpenAIRE

    Kangas, Heli

    2007-01-01

    The aim of this work was to study the surface chemical and morphological properties of different mechanical pulps with special focus on the effects of refining, bleaching and enzymatic modification on the surface properties of the isolated pulp fractions, namely fibers, fibrillar fines and flake-like fines. Special emphasis was placed on evaluating the suitability of time-of-flight secondary ion mass spectroscopy (ToF-SIMS) for studying the surface chemical properties of pulps and pulp fracti...

  19. Mathematical model on surface reaction diffusion in the presence of front chemical reaction

    OpenAIRE

    Permikin, D. V.; Zverev, V. S.

    2013-01-01

    The article discusses a mathematical model of solid-phase diffusion over substance surface accompanied a frontal chemical reaction. The purpose of our article is to describe the concentration distribution and surface reacted layer growth. The model is a system parabolic equations, complicated with the presence of mobile front. It takes account of diffusive fluxes redistribution, sublimation from the surface, chemical reaction reversibility. The asymptotic approximation of the obtained nonline...

  20. Chemical surface modification of poly(p-xylylene) thin films.

    Science.gov (United States)

    Herrera-Alonso, Margarita; McCarthy, Thomas J

    2004-10-12

    Electrophilic aromatic substitution reactions were studied at poly(p-xylylene) (PPX) film surface-reaction medium interfaces. The extent of the reactions (depth of penetration and degree of substitution) was determined by the interaction of the polymer with the reaction solution. Reaction with chlorosulfonic acid to produce sulfonyl chloride and sulfone functionalities occurred readily in the bulk of PPX, and yields were sensitive to time and temperature. Confinement of this reaction to the PPX surface was achieved by controlling the concentration of the acid. Functionalization of PPX with N-methylol-2-chloroacetamide in sulfuric acid to produce the chloroamidomethylated derivative occurred in high yield and was confined to the surface region of PPX. Hydrolysis of the amide to generate aminomethylated PPX was assessed by XPS and a derivatization reaction. Friedel-Crafts type chemistry (acylation and alkylation reactions) also produced functionalized surfaces, but with lower degrees of substitution than the other two reactions and was strictly surface-confined. PMID:15461504

  1. Morphologies of diblock copolymer confined in a slit with patterned surfaces studied by dissipative particle dynamics

    Institute of Scientific and Technical Information of China (English)

    FENG Jian; HUANG Yongmin; LIU Honglai; HU Ying

    2007-01-01

    Diblock copolymers with ordered mesophase structures have been used as templates for nano-fabrication.Unfortunately,the ordered structure only exists at micrometerscale areas,which precludes its use in many advanced applications.To overcome this disadvantage,the diblock copolymer confined in a restricted system with a patterned surface is proved to be an effective means to prohibit the formation of defects and obtain perfect ordered domains.In this work,the morphologies of a thin film of diblock copolymer confined between patterned and neutral surfaces were studied by dissipative particle dynamics.It is shown that the morphology of the symmetric diblock copolymer is affected by the ratio of the pattern period on the surface to the lamellar period of the symmetric diblock copolymer and by the repulsion parameters between blocks and wall particles.To eliminate the defects in the lamellar phase,the pattern period on the surface must match the lamellar period.The difference in the interface energy of different compartments of the pattern should increase with increasing film thickness.The pattern period on the surface has a scaling relationship with the chain length,which is the same as that between the lamellar period and the chain length.The lamellar period is also affected by the polydispersity of the symmetric diblock copolymer.The total period is the average of the period of each component multiplied by the weight of its volume ratio.The morphologies of asymmetric diblock copolymers are also affected by the pattern on the surface,especially when the matching period of the asymmetric diblock copolymer is equal to the pattern period,which is approximately equal to the lamellar period of a symmetric diblock copolymer with the same chain length.

  2. [Soil physical and chemical characteristics under different vegetation restoration patterns in China south subtropical area].

    Science.gov (United States)

    Kang, Bing; Liu, Shi-rong; Cai, Dao-xiong; Lu, Li-hua; He, Ri-ming; Gao, Yan-xia; Di, Wei-zhi

    2010-10-01

    This paper studied the change of soil physical and chemical properties under eleven vegetation restoration patterns (1 kind of secondary forest, 2 kinds of pure coniferous plantations, 5 kinds of evergreen broad-leaved plantations, 2 kinds of conifer and broad-leaved mixed plantations, and 1 kind of shrub) typical in Daqingshan of Guangxi. Obvious differences were observed in the soil physical and chemical properties under different vegetation restoration patterns. The soil physical properties were better in secondary forest but poorer in pure conifer plantations. Conifer and broad-leaved mixed plantations had lower soil bulk density, and their soil total porosity and water-holding capacity were higher than those in pure plantations. There were no significant differences in the soil porosity among the 5 evergreen broad-leaved plantations. Except that of soil total K, the contents of soil nutrients in secondary forest were higher than those in plantations, and the soil C/N ratio and pH value were relatively lower. Comparing with shrub, the 9 plantations had an obvious change in their soil nutrient contents, e. g. , the increase of soil total N and available K. The 2 pure coniferous plantations had lower soil nutrient contents, but after mixed planted with evergreen broad-leaved trees, their soil nutrient contents increased markedly, and the soil C/N ratio decreased. PMID:21328932

  3. Chemical and structural investigation of high-resolution patterning with HafSO(x).

    Science.gov (United States)

    Oleksak, Richard P; Ruther, Rose E; Luo, Feixiang; Fairley, Kurtis C; Decker, Shawn R; Stickle, William F; Johnson, Darren W; Garfunkel, Eric L; Herman, Gregory S; Keszler, Douglas A

    2014-02-26

    High-resolution transmission electron microscopy (TEM) imaging and energy-dispersive X-ray spectroscopy (EDS) chemical mapping have been used to examine key processing steps that enable sub-20-nm lithographic patterning of the material Hf(OH)4-2x-2y(O2)x(SO4)y·qH2O (HafSOx). Results reveal that blanket films are smooth and chemically homogeneous. Upon exposure with an electron beam, the films become insoluble in aqueous tetramethylammonium hydroxide [TMAH(aq)]. The mobility of sulfate in the exposed films, however, remains high, because it is readily exchanged with hydroxide from the TMAH(aq) solution. Annealing the films after soaking in TMAH(aq) results in the formation of a dense hafnium hydroxide oxide material that can be converted to crystalline HfO2 with a high electron-beam dose. A series of 9 nm lines is written with variable spacing to investigate the cross-sectional shape of the patterned lines and the residual material found between them. PMID:24502280

  4. High energy ion irradiation induced surface patterning on a SiO{sub 2} glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.K., E-mail: sachin@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Ganesan, K.; Gangopadhyay, P.; Panigrahi, B.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Nair, K.G.M. [Inter-University Consortium, Kalpakkam 603102 (India); Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2014-11-01

    Experimental results about formation of self-organized surface patterns on a silica glass substrate due to irradiations with high energy Au ions at various angles of incidences have been reported in this paper. Pattern formations are found to vary significantly from theoretical predictions. Orientation, growth of ripples and ripple characteristics observed here do not conform to established results of low energy heavy-ion irradiation studies. High energy Au ion-induced effects (e.g., surface stress, mass redistribution and surface current) have been suitably invoked to explain observed phenomena.

  5. High energy ion irradiation induced surface patterning on a SiO2 glass substrate

    International Nuclear Information System (INIS)

    Experimental results about formation of self-organized surface patterns on a silica glass substrate due to irradiations with high energy Au ions at various angles of incidences have been reported in this paper. Pattern formations are found to vary significantly from theoretical predictions. Orientation, growth of ripples and ripple characteristics observed here do not conform to established results of low energy heavy-ion irradiation studies. High energy Au ion-induced effects (e.g., surface stress, mass redistribution and surface current) have been suitably invoked to explain observed phenomena

  6. Nanoporous silicon-based surface patterns fabricated by UV laser interference techniques for biological applications

    Science.gov (United States)

    Recio-Sánchez, G.; Peláez, R. J.; Vega, F.; Martín-Palma, R. J.

    2016-06-01

    The fabrication of selectively functionalized micropatterns based on nanostructured porous silicon (nanoPS) by phase mask ultraviolet laser interference is presented here. This single-step process constitutes a flexible method for the fabrication of surface patterns with tailored properties. These surface patterns consist of alternate regions of almost untransformed nanoPS and areas where nanoPS is transformed into Si nanoparticles (Si NPs) as a result of the laser irradiation process. The size of the transformed areas as well as the diameter of the Si NPs can be straightforwardly tailored by controlling the main fabrications parameters including the porosity of the nanoPS layers, the laser interference period areas, and laser fluence. The surface patterns have been found to be appropriate candidates for the development of selectively-functionalized surfaces for biological applications mainly due to the biocompatibility of the untransformed nanoPS regions.

  7. Fabrication of superhydrophobic surfaces on flexible fluorinated foils by using dual-scale patterning

    International Nuclear Information System (INIS)

    This paper investigates the interest of combining NanoImprint Lithography with plasma treatment in order to easily create dual-scale superhydrophobic surfaces on flexible fluorinated foils. The studies were led on FEP and PCTFE materials with conditions compatible with standard NIL equipments. Different pattern geometries, densities and aspect ratio have been investigated and we show that patterning at a nanometer scale improves hydrophobic behaviour compared to microstructuration. Water-contact angle (WCA) of 154° (and water contact angle hysteresis of 11 ± 2°) were measured, which corresponds to a superhydrophobic surface. However, patterning large surfaces at nanoscale with a high aspect ratio is more difficult to achieve and limits the use of such a process for industrial applications. So, we have decided to induce a nanopatterning on microstructures previously printed using plasma etching. This plasma roughening leads to a highly superhydrophobic surface and WCA values as high as 170°. (papers)

  8. Can large scale surface circulation changes modulate the sea surface warming pattern in the Tropical Indian Ocean?

    Science.gov (United States)

    Rahul, S.; Gnanaseelan, C.

    2016-06-01

    The increased rate of Tropical Indian Ocean (TIO) surface warming has gained a lot of attention in the recent years mainly due to its regional climatic impacts. The processes associated with this increased surface warming is highly complex and none of the mechanisms in the past studies could comprehend the important features associated with this warming such as the negative trends in surface net heat fluxes and the decreasing temperature trends at thermocline level. In this work we studied a previously unexplored aspect, the changes in large scale surface circulation pattern modulating the surface warming pattern over TIO. We use ocean reanalysis datasets and a suit of Ocean General Circulation Model (OGCM) experiments to address this problem. Both reanalysis and OGCM reveal strengthening large scale surface circulation pattern in the recent years. The most striking feature is the intensification of cyclonic gyre circulation around the thermocline ridge in the southwestern TIO. The surface circulation change in TIO is mainly associated with the surface wind changes and the geostrophic response to sea surface height decrease in the western/southwestern TIO. The surface wind trends closely correspond to SST warming pattern. The strengthening mean westerlies over the equatorial region are conducive to convergence in the central and divergence in the western equatorial Indian Ocean (IO) resulting central warming and western cooling. The resulting east west SST gradient further enhances the equatorial westerlies. This positive feedback mechanism supports strengthening of the observed SST trends in the equatorial Indian Ocean. The cooling induced by the enhanced upwelling in the west is compensated to a large extent by warming due to reduction in mixed layer depth, thereby keeping the surface temperature trends in the west to weak positive values. The OGCM experiments showed that the wind induced circulation changes redistribute the excess heat received in the western

  9. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Science.gov (United States)

    Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2016-03-08

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  10. Metastable states and activated dynamics in thin-film adhesion to patterned surfaces

    OpenAIRE

    Lindström, Stefan B.; Johansson, Lars; Karlsson, Nils R.

    2014-01-01

    We consider adhesion due to London–van der Waals attraction between a thin film and a patterned surface with nanometer asperities. Depending on the surface topography and the stiffness of the film, three regimes of adhesion are identified: complete contact adhesion, partial contact adhesion, and glassy adhesion. For complete contact adhesion, the film conforms to the undulations of the surface, whereas for partial contact and glassy adhesion, the adhesive interface breaks down into microscopi...

  11. Surface quality of foundry pattern manufactured by FDM method - rapid prototyping

    Directory of Open Access Journals (Sweden)

    A. Hanus

    2011-01-01

    Full Text Available The goal of this paper was to verify the possibilities of using 3D models produced by means of the FDM technology for actual foundryproduction. Experimental models were produced using Dimension sst 768 3D printer. Two types of castings (type I - simple plates, type II- jewellery were cast in plaster moulds. The models were burnt out at 500 °C. The goal of the experiment was to verify the effect ofmodifications upon surface quality of the resulting casting. The ABS model was tested with unmodified surface, chemically treatedsurface, blasted surface and blasted and etched surface together. The results of the experiment have confirmed the assumed effect of bothmechanical and chemical modifications of the model surface on casting surface quality.

  12. Microscopic observation of pattern attack by aggressive ions on finished surface of aluminium alloy sacrificial anode

    International Nuclear Information System (INIS)

    This paper presents the results of a microscopic observation on submerged finished surface of aluminium alloy sacrificial anode. Experimental tests were carried out on polished surface aluminium anode exposed to seawater containing aggressive ions in order to observe of pattern corrosion attack on corroding surface of anode. Results have shown, at least under the present testing condition, that surface of sacrificial anode were attack by an aggressive ion such as chloride along grain boundaries. In addition, results of microanalysis showed that the corrosion products on surface of aluminium alloy have Al, Zn and O element for all sample and within the pit was consists of Al, Zn, O and Cl element. (author)

  13. Pool boiling thermal transport through micro-patterned metal superhydrophobic surfaces

    Science.gov (United States)

    Searle, Matthew; Maynes, Daniel; Crockett, Julie

    2015-11-01

    Pool boiling thermal transport through horizontal superhydrophobic surfaces decorated with rib and post micro-patterns was explored experimentally. The pool consisted of a water reservoir heated from below by electric heaters embedded in an aluminum block. A test surface was located at the bottom of the pool and fixed to the block. Instrumentation allowed simultaneous measurement of heat flux through the test surface, test surface temperature, and pool water temperature. From these measurements, heat flux as a function of excess temperature (the difference between the test surface temperature and the water saturation temperature) was determined for each surface. Surface geometry was characterized by the cavity fraction (the ratio of projected cavity area to surface area on the test surface), distance between features, and microscale pattern geometry. The transition from nucleate to pool boiling was observed to occur at much lower excess temperatures for superhydrophobic surfaces than for hydrophobic surfaces, with greater deviation for larger cavity fraction. Heat flux versus excess temperature relationships are presented while exploring the influence of superhydrophobic surface microstructure on the thermal transport. NSF CBET-1235881.

  14. Chemical and Molecular Characterization of Biofilm on Metal Surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.

    and Molecular Characterization of Biofilm on Metal Surfaces Narayan B Bhosle Marine Corrosion and Material Research Division, National Institute of Oceanography,Dona Paula 403004, Goa, India Sonak and Bhosle, 1995). As compared to this a few researchers have... to assess development of conditioning film and biofilm on metal surfaces (Bhosle et al., 1989; Bhosle et al., 1990; Sonak and Bhosle, 1995; Bhosle and Wagh, 1997, D?Souza and Bhosle, 2003). This chapter is a compilation of relevant information...

  15. Chemical state of real surface of A2B6 type compounds

    International Nuclear Information System (INIS)

    Investigation results for chemical composition of real surface of zinc and cadmium chalcogenides (ZnSe, ZnTe, CdSe, CdTe) are generalized. Effect of impurities and oxide phase on adsorption and charging is considered. Determinating role of water in surface charging is shown. It is found that surface active centers are not screened by oxide phase

  16. Chemical characteristics of surface colour of birch veneer (Betula pendula)

    OpenAIRE

    Yamamoto, Akio

    2015-01-01

    Julkaistu vain painettuna, saatavuus katso Bibid. Published only in printed form, availability see Bibid This thesis investigates the discoloration of veneer produced from silver birch (Betula pendula) logs by means of biochemical and chemical analyses on the veneer and sap obtained from wood which was soaked at varying temperatures (20-70 ˚C). Drastic colour development was confirmed from the sap squeezed from green birch wood. The results from biochemical tests on the sap by sodium dodec...

  17. Chemically-induced Jahn-Teller ordering on manganite surfaces

    Science.gov (United States)

    Gai, Zheng; Lin, Wenzhi; Burton, J. D.; Tsymbal, Evgeny Y.; Fuchigami, K.; Shen, Jian; Snijders, P. C.; Ward, T. Z.; Jesse, Stephen; Kalinin, Sergei V.; Baddorf, A. P.

    2014-03-01

    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields, and establish their coupling to electronic properties. Here we demonstrate that measuring the sub 30 pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunneling microscopy (STM) allows the physical order parameter fields to be visualized in real space on the single atom level. Here, this local crystallographic analysis is applied to the in-situ grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistry-induced stabilization of ordered Jahn-Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level. Research was supported by MSED and CNMS, which are sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy.

  18. Fabrication of superhydrophobic vanadium pentoxide nanowires surface by chemical modification

    International Nuclear Information System (INIS)

    Vanadium pentoxide (V2O5) nanowires have been synthesized on Au-coated Si substrates by a physical vapor deposition process. The synthesized nanowires are randomly oriented with a diameter around 40-200 nm and length of several micrometers. The crystalline structure of the nanowires analyzed by using X-ray diffraction and Raman spectroscopy corresponds to single crystalline orthorhombic V2O5 phase with [0 0 1] growth orientation. The transmission electron microscopy and energy-dispersive X-ray analysis suggests a possible vapor-solid (VS) growth mechanism for the V2O5 nanowires. A self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) was deposited on the V2O5 nanowires to obtain superhydrophobic V2O5 nanowire surfaces with water contact angle (CA) of 157.5°. The superhydrophobic behavior is attributed to the high surface roughness provided by the nanowire surface and low surface energy due to SAM layer deposition. The impact dynamics of water droplets impinging on the superhydrophobic surface is also investigated.

  19. AFM imaging and analysis of local mechanical properties for detection of surface pattern of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, Petr, E-mail: petr.knotek@upce.cz [University of Pardubice, Faculty of Chemical Technology, Joint Laboratory of Solid State Chemistry of IMC ASCR and University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); Chanova, Eliska; Rypacek, Frantisek [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho sq. 2, 162 06 Prague (Czech Republic)

    2013-05-01

    In this work we evaluate the applicability of different atomic force microscopy (AFM) modes, such as Phase Shift Imaging, Atomic Force Acoustic Microscopy (AFAM) and Force Spectroscopy, for mapping of the distribution pattern of low-molecular-weight biomimetic groups on polymer biomaterial surfaces. Patterns with either random or clustered spatial distribution of bioactive peptide group derived from fibronectin were prepared by surface deposition of functional block copolymer nano-colloids and grafted with RGDS peptide containing the sequence of amino acids arginine–glycine–aspartic acid–serine (conventionally labeled as RGDS) and carrying biotin as a tag. The biotin-tagged peptides were labeled with 40 nm streptavidin-modified Au nanospheres. The peptide molecules were localized through the detection of bound Au nanospheres by AFM, and thus, the surface distribution of peptides was revealed. AFM techniques capable of monitoring local mechanical properties of the surface were proved to be the most efficient for identification of Au nano-markers. The efficiency was successfully demonstrated on two different patterns, i.e. random and clustered distribution of RGDS peptides on structured surface of the polymer biomaterial. Highlights: ► Bioactive peptides for cell adhesion on PLA-b-PEO biomimetic surface were visualized. ► The biotin-tagged RGDS peptides were labeled with streptavidin-Au nanospheres. ► The RGDS pattern was detected using different atomic force microscopy (AFM) modes. ► Phase Shift Image was proved to be suitable method for studying peptide distribution.

  20. The influence of the circulation on surface temperature and precipitation patterns over Europe

    Directory of Open Access Journals (Sweden)

    P. D. Jones

    2009-06-01

    Full Text Available The atmospheric circulation clearly has an important influence on variations in surface temperature and precipitation. In this study we illustrate the spatial patterns of variation that occur for the principal circulation patterns across Europe in the standard four seasons. We use an existing classification scheme of surface pressure patterns, with the aim of considering whether the patterns of influence of specific weather types have changed over the course of the 20th century. We consider whether the long-term warming across Europe is associated with more favourable weather types or related to warming within some of the weather types. The results indicate that the latter is occurring, but not all circulation types show warming. The study also illustrates that certain circulation types can lead to marked differences in temperature and/or precipitation for relatively closely positioned sites when the sites are located in areas of high relief or near coasts.

  1. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.;

    2005-01-01

    In this paper we present density functional theory (DFT) investigations of the physical, chemical and electronic structure properties of several close-packed surfaces of early transition metal carbides, including beta-Mo2C(0 0 0 1), and the (1 1 1) surfaces of TiC, VC, NbC, and TaC. The results are...... closest-packed pure metal surfaces, due to the tensile strain induced in the carbide surfaces upon incorporation of carbon into the lattice. Hydrogen atoms were found to adsorb more weakly on carbide surfaces than on the corresponding closest-packed pure metal surfaces only when there were surface carbon...

  2. Physico-chemical characterisation of surface modified particles for inhalation.

    Science.gov (United States)

    Stank, Katharina; Steckel, Hartwig

    2013-05-01

    Surface modification of drugs for inhalation is a possibility to influence interparticulate forces. This can be necessary to achieve a sufficient aerosolisation during powder inhalation as the cohesiveness of the micronised drug can be reduced. In addition, the interaction with propellants in pressurised metered dose inhaler can be changed. This can be used to improve the physical stability of the suspension based formulations. A dry particle coating process was used for the alteration of particle surfaces. The blending of micronised salbutamol sulphate (SBS) with different concentrations of magnesium stearate (Mgst) or glycerol monostearate (GMS) was followed by co-milling with an air jet mill. The powder properties were characterised by SEM, EDX, laser diffraction, BET and inverse gas chromatography. Physical mixtures generated by Turbula blending were compared to co-milled samples. A slight particle size reduction was determined. The Mgst deposition on SBS particles was detected by EDX measurements. The dispersive surface energy of SBS is lowered and the energy distribution is more homogenous for the co-milled samples. This study proves the application of co-milling for surface modification in the inhalation area. PMID:23518364

  3. Surface chemical structure of titania-silica nanocomposite powder

    Institute of Scientific and Technical Information of China (English)

    WANG LuYan; SUN YanPing; XU BingShe

    2008-01-01

    Titania-silica (TS) nanocomposite powder with three different composite structures, containing 10-30 mol% SiO2 in each structure, have been prepared by sol-gel processes. The surface characteristics of these titania-silica samples have been investigated by X-ray photo-emission spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). The study for all TS oxides annealed at 773 and 1173 K showed: an abnormal surface enrichment in Si increased with increasing annealing tem-perature; the Ti3+, Ti2+, Si3+ and Si2+ oxides coexisted with Ti4+ and Si4+ oxides, and the contents of these TilSi suboxides increased with increasing SiO2 content and annealing temperature; there was a layer rich in O on the topmost surface and the excess O could be attributed to the chem-adsorption of H2O; different composite structures could lead to different contents of Ti/Si suboxides. These results indi-cated that the surface of TS oxide powder derived by sol-gel process was a double layer with enriched O first and then SiOx/TiOy(x, y<2). Ti/Si suboxides could result from the thermal diffusion of Ti4+ and Si4+, which might be induced by the strong interaction between Ti4+ and Si4+.

  4. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential

    Directory of Open Access Journals (Sweden)

    Simons Janet

    2011-01-01

    Full Text Available Abstract Thiol self-assembled monolayers (SAMs are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM and Kelvin probe force microscopy (KPFM. We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV, revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution.

  5. Methods of remote surface chemical analysis for asteroid missions

    International Nuclear Information System (INIS)

    Different remote sensing methods are discussed which can be applied to investigate the chemical composition of minor bodies of the Solar System. The secondary-ion method, remote laser mass-analysis and electron beam induced X-ray emission analysis are treated in detail. Relative advantages of these techniques are analyzed. The physical limitation of the methods: effects of solar magnetic field and solar wind on the secondary-ion and laser methods and the effect of electrostatic potential of the space apparatus on the ion and electron beam methods are described. First laboratory results of remote laser method are given. (D.Gy.)

  6. Spatial validation of large scale land surface models against monthly land surface temperature patterns using innovative performance metrics.

    Science.gov (United States)

    Koch, Julian; Siemann, Amanda; Stisen, Simon; Sheffield, Justin

    2016-04-01

    Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. This study features two innovative spatial performance metrics, namely EOF- and connectivity-analysis, to validate predicted LST patterns by three LSMs (Mosaic, Noah, VIC) over the contiguous USA. The LST validation dataset is derived from global High-Resolution-Infrared-Radiometric-Sounder (HIRS) retrievals for a 30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality, and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly driven by air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings.

  7. Light mediated emergence of surface patterns in azopolymers at low temperatures

    CERN Document Server

    Teboul, V; Tajalli, P; Ahmadi-Kandjani, S; Tajalli, H; Zielinska, S; Ortyl, E

    2015-01-01

    Polymer thin films doped with azobenzene molecules do have the ability to organize themselves in spontaneous surface relief gratings (SRG) under irradiation with a single polarized beam. To shed some light in this still unexplained phenomenon, we use a new method that permits us to access experimentally the very first steps of the pattern formation process. Decreasing the temperature, we slow down the formation and organization of patterns, due to the large increase of the viscosity and relaxation time of the azopolymer. As a result decreasing the temperature allows us to access and study much shorter time scales,in the physical mechanisms underlying the pattern formation, than previously reported. We find that the patterns organize themselves in sub-structures which size increase with the temperature, following the diffusion coefficient evolution of the material. That result suggests that the pattern formation and organization is mainly governed by diffusive processes, in agreement with some theories of the ...

  8. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers

    Science.gov (United States)

    Liu, Shaohua; Gordiichuk, Pavlo; Wu, Zhong-Shuai; Liu, Zhaoyang; Wei, Wei; Wagner, Manfred; Mohamed-Noriega, Nasser; Wu, Dongqing; Mai, Yiyong; Herrmann, Andreas; Müllen, Klaus; Feng, Xinliang

    2015-11-01

    The ability to pattern functional moieties with well-defined architectures is highly important in material science, nanotechnology and bioengineering. Although two-dimensional surfaces can serve as attractive platforms, direct patterning them in solution with regular arrays remains a major challenge. Here we develop a versatile route to pattern two-dimensional free-standing surfaces in a controlled manner assisted by monomicelle close-packing assembly of block copolymers, which is unambiguously revealed by direct visual observation. This strategy allows for bottom-up patterning of polypyrrole and polyaniline with adjustable mesopores on various functional free-standing surfaces, including two-dimensional graphene, molybdenum sulfide, titania nanosheets and even on one-dimensional carbon nanotubes. As exemplified by graphene oxide-based mesoporous polypyrrole nanosheets, the unique sandwich structure with adjustable pore sizes (5-20 nm) and thickness (35-45 nm) as well as enlarged specific surface area (85 m2 g-1) provides excellent specific capacitance and rate performance for supercapacitors. Therefore, this approach will shed light on developing solution-based soft patterning of given interfaces towards bespoke functions.

  9. Seasonal Predictability of the East Atlantic Pattern from Sea Surface Temperatures

    OpenAIRE

    Iglesias, Isabel; María N Lorenzo; Taboada, Juan J.

    2014-01-01

    This study analyzes the influence of sea surface temperatures (SSTs) on the second mode of atmospheric variability in the north Atlantic/European sector, namely the East-Atlantic (EA) pattern, for the period 1950–2012. For this purpose, lead-lag relationships between SSTs and the EA pattern, ranging from 0 to 3 seasons, were assessed. As a main result, anomalies of the EA pattern in boreal summer and autumn are significantly related to SST anomalies in the Indo-Pacific Ocean during the preced...

  10. Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces

    Science.gov (United States)

    Seghir, Rian; Arscott, Steve

    2015-10-01

    Exploiting pattern formation - such as that observed in nature - in the context of micro/nanotechnology could have great benefits if coupled with the traditional top-down lithographic approach. Here, we demonstrate an original and simple method to produce unique, localized and controllable self-organised patterns on elastomeric films. A thin, brittle silica-like crust is formed on the surface of polydimethylsiloxane (PDMS) using oxygen plasma. This crust is subsequently cracked via the deposition of a thin metal film - having residual tensile stress. The density of the mud-crack patterns depends on the plasma dose and on the metal thickness. The mud-crack patterning can be controlled depending on the thickness and shape of the metallization - ultimately leading to regularly spaced cracks and/or metal mesa structures. Such patterning of the cracks indicates a level of self-organization in the structuring and layout of the features - arrived at simply by imposing metallization boundaries in proximity to each other, separated by a distance of the order of the critical dimension of the pattern size apparent in the large surface mud-crack patterns.

  11. Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser

    International Nuclear Information System (INIS)

    Highlights: ► We fabricated different micro-patterns (grooves, ripples, holes and nanoparticles) on NiTi alloy surfaces to improve the biocompatibility. ► The new method of femtosecond laser (FSL) machining technique was used to obtain the novel micro-patterns, and the authors explored the mechanism of the FSL machining process. ► We the surface characteristics of NiTi surfaces before and after the FSL treatment, and evaluated the influence of FSL treatment on biocompatibility of NiTi alloys. - Abstract: Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser (FSL) was studied in this work. The surface characteristics of the laser treated NiTi alloys were investigated by scanning electron microscopy (SEM), atom force microscopy (AFM), X-ray diffractometry (XRD) and X-ray photoelectron spectrum (XPS). The biocompatibility was evaluated by in vitro cell culture test. The results showed that, grooves, ripples, which covered by nanoparticles were formed on the sample surfaces, and the Ni/Ti ratio on the alloy surface increased with increasing laser energy. The crystal structure was not changed by laser treatment. However, the cell culture test proved that the micro-patterns induced by FSL were beneficial to improve the biocompatibility of NiTi alloys: the growth of osteoblasts oriented along the grooves, a large amount of synapses and filopodias were formed due to the ripples, holes and nanoparticles on the alloy surface, and the proliferation rate and alkaline phosphatase (ALP) content of cells were increased after FSL treatment. However, due to the toxicity of Ni ions on cell growth, the NiTi alloy surface should not be treated by laser fluence of more than 3.82 J/cm2 to obtain the ideal biocompatibility.

  12. Symmetry plays a key role in the erasing of patterned surface features

    International Nuclear Information System (INIS)

    We report on how the relaxation of patterns prepared on a thin film can be controlled by manipulating the symmetry of the initial shape. The validity of a lubrication theory for the capillary-driven relaxation of surface profiles is verified by atomic force microscopy measurements, performed on films that were patterned using focused laser spike annealing. In particular, we observe that the shape of the surface profile at late times is entirely determined by the initial symmetry of the perturbation, in agreement with the theory. The results have relevance in the dynamical control of topographic perturbations for nanolithography and high density memory storage

  13. Symmetry plays a key role in the erasing of patterned surface features

    Energy Technology Data Exchange (ETDEWEB)

    Benzaquen, Michael; Salez, Thomas; Raphaël, Elie [Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI ParisTech, PSL Research University, 75005 Paris (France); Ilton, Mark; Massa, Michael V.; Fowler, Paul [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Dalnoki-Veress, Kari, E-mail: dalnoki@mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI ParisTech, PSL Research University, 75005 Paris (France)

    2015-08-03

    We report on how the relaxation of patterns prepared on a thin film can be controlled by manipulating the symmetry of the initial shape. The validity of a lubrication theory for the capillary-driven relaxation of surface profiles is verified by atomic force microscopy measurements, performed on films that were patterned using focused laser spike annealing. In particular, we observe that the shape of the surface profile at late times is entirely determined by the initial symmetry of the perturbation, in agreement with the theory. The results have relevance in the dynamical control of topographic perturbations for nanolithography and high density memory storage.

  14. Surface patterning by ion bombardment: predictions of large-scale atomistic simulations

    International Nuclear Information System (INIS)

    Despite of intense studies in recent years, atomistic understanding of surface evolution during ion irradiation is still under discussion. Continuum models, like the Bradley and Harper theory, cannot explain microscopic processes during ion irradiation. So far, atomistic simulations could not describe pattern dynamics on spatiotemporal scales of experiments. We present a novel program package that unifies the simulation of collision cascades with kinetic Monte-Carlo simulations. The 3D atom relocations were calculated in the Binary Collision Approximation (BCA), whereas the thermally activated relaxation of energetically unstable atomic configurations as well as diffusive processes were simulated by a very efficient bit-coded kinetic 3D Monte Carlo code. Our studies show that: (i) bulk defects continuously created within the collision cascade are responsible for local surface topography fluctuations and induce surface mass currents. These currents smooth the surface from normal incidence up to θ=40 , whereas at θ>40 ripple patterns appear; (ii) sputtering is not the dominant driving force for the ripple formation at non-grazing incidence angles. Surface patterning is caused by processes like bulk and surface defect migration, recombination, bulk and surface diffusion and ion induced diffusion.

  15. Relationship Between Landcover Pattern and Surface Net Radiation in AN Coastal City

    Science.gov (United States)

    Zhao, X.; Liu, L.; Liu, X.; Zhao, Y.

    2016-06-01

    Taking Xiamen city as the study area this research first retrieved surface net radiation using meteorological data and Landsat 5 TM images of the four seasons in the year 2009. Meanwhile the 65 different landscape metrics of each analysis unit were acquired using landscape analysis method. Then the most effective landscape metrics affecting surface net radiation were determined by correlation analysis, partial correlation analysis, stepwise regression method, etc. At both class and landscape levels, this paper comprehensively analyzed the temporal and spatial variations of the surface net radiation as well as the effects of land cover pattern on it in Xiamen from a multi-seasonal perspective. The results showed that the spatial composition of land cover pattern shows significant influence on surface net radiation while the spatial allocation of land cover pattern does not. The proportions of bare land and forest land are effective and important factors which affect the changes of surface net radiation all the year round. Moreover, the proportion of forest land is more capable for explaining surface net radiation than the proportion of bare land. So the proportion of forest land is the most important and continuously effective factor which affects and explains the cross-seasonal differences of surface net radiation. This study is helpful in exploring the formation and evolution mechanism of urban heat island. It also gave theoretical hints and realistic guidance for urban planning and sustainable development.

  16. Microscopy and surface chemical investigations of dyed cellulose textiles

    OpenAIRE

    Chettra, Satinderjeet Kaur

    2006-01-01

    Cotton is a vital material for the textile industry, providing the fundamental raw component for the manufacture of numerous and varied garments. It has been thoroughly characterised both in terms of its constitution; behaviour under a variety of environmental and manufacturing conditions; and several mechanisms by which it takes up dyestuffs. Recently the availability of a range of high-performance surface analysis tools has allowed researchers to begin to assess the contribution of the surf...

  17. Modelling the spectro-photometric and chemical evolution of Low Surface Brightness spiral galaxies

    OpenAIRE

    Hoek, L. B. van den; de Blok, W J G

    1995-01-01

    We investigate the star formation history and chemical evolution of Low Surface Brightness (LSB) spiral galaxies by means of their observed spectro-photometric and chemical properties. We present preliminary results for Johnson-Cousins UBVRI magnitudes and stellar [O/H] abundance ratios using a galactic chemical evolution model incorporating a detailed metallicity dependent set of stellar input data covering all relevant stages of stellar evolution. Comparison of our model results with observ...

  18. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    OpenAIRE

    GAITAN-FONSECA, Cesar; COLLART-DUTILLEUL, Pierre-Yves; SEMETEY, Vincent; Olivier ROMIEU; Roel CRUZ; Flores, Hector; Frederic CUISINIER; Elias PEREZ; POZOS-GUILLEN, Amaury

    2013-01-01

    Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS). Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angl...

  19. Research on the pattern of solid-liquid two-phase distribution in chemical process pump

    International Nuclear Information System (INIS)

    In order to explore the pattern of solid-liquid two-phase flow distribution in first stage of double-suction impeller and the double volute channel of the HD type petrol-chemical process pump, the flow field in double-suction impeller and double volute is simulated with the CFD software, by taking the Reynolds Averaged Navier Stokes equations as its governing equations, and the standard k-ε model for turbulence, derives the pattern of solid particle concentration distribution in the impeller and double volute channel under different initial particle concentrations and different particle diameters. The results show that in the double-suction impeller, solid phase distribution changes a lot along with the increase of initial particle concentration; the concentration near the back side is higher than the face side. Solid particles have the motion trend to the back side of blade in double-suction impeller along with the increase of particle diameters. In double volute channel, solid phase concentration distribution is uneven and solid particle concentration is relatively higher from section 1 to section 8. In the diffusion section, concentration is high in lateral side and low in medial side, the solid particles have the motion trend to the lateral side and the solid particle concentration is relatively higher.

  20. Scanning microwave microscope imaging of micro-patterned monolayer graphene grown by chemical vapor deposition

    Science.gov (United States)

    Myers, J.; Mou, S.; Chen, K.-H.; Zhuang, Y.

    2016-02-01

    Characterization of micro-patterned chemical vapor deposited monolayer graphene using a scanning microwave microscope has been presented. Monolayer graphene sheets deposited on a copper substrate were transferred to a variety of substrates and micro-patterned into a periodic array of parallel lines. The measured complex reflection coefficients exhibit a strong dependency on the operating frequency and on the samples' electrical conductivity and permittivity. The experiments show an extremely high sensitivity by detecting image contrast between single and double layer graphene sheets. Correlating the images recorded at the half- and quarter-wavelength resonant frequencies shows that the relative permittivity of the single layer graphene sheet is above 105. The results are in good agreement with the three dimensional numerical electromagnetic simulations. This method may be instrumental for a comprehensive understanding of the scanning microwave microscope image contrast and provide a unique technique to estimate the local electrical properties with nano-meter scale spatial resolution of two dimensional materials at radio frequency.

  1. Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices

    Science.gov (United States)

    Chang, Tien-Li; Chen, Zhao-Chi

    2015-12-01

    The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm2. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.

  2. How to guide lubricants - Tailored laser surface patterns on stainless steel

    Science.gov (United States)

    Grützmacher, Philipp G.; Rosenkranz, Andreas; Gachot, Carsten

    2016-05-01

    In this experimental study, periodic line-like structures with different periodicities (5, 10, 19, and 300 μm) and structural depths (approximately 1 and 4 μm) were fabricated on stainless steel samples (AISI-304) by short-pulse laser interference and ultrashort-pulse laser patterning. A detailed characterization of the resulting surface topography was performed by white light interferometry and scanning electron microscopy. The spreading dynamics of additive-free synthetic polyalphaolefine oil on a polished reference sample are compared to laser patterned surfaces. These studies are conducted using a newly developed test rig, which allowed for controlled temperature gradients and a precise recording of the spreading dynamics of lubricants on sample surfaces. It could be demonstrated that the spreading velocity parallel to the surface pattern is higher for all samples which can be explained by increased capillary forces and liquid pinning induced by the surface patterning. Furthermore, a decline of the spreading velocity over time for all samples and orientations is clearly visible which can be traced back to a viscosity increase induced by the temperature gradient and a reduced droplet volume. For parallel orientation, the experimental findings are in good agreement with the Lucas-Washburn equation and established models.

  3. Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, L., E-mail: l.bischoff@hzdr.de; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.

    2014-08-15

    Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10–30 keV per atom. In the intermediate temperature range of 100–200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.

  4. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    Science.gov (United States)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  5. Integrated biological chemical approach for the identification of polyaromatic mutagens in surface waters

    OpenAIRE

    GALLAMPOIS Christine

    2012-01-01

    Surface waters are essential for human life, to supply of drinking water and as an important resource for agricultural, industrial and recreational activities. However, tonnes of pollutants enter these surface waters every year. Amongst the substances discharged into the environment, a large number are known to be mutagenic. Effect-directed analysis (EDA) is a tool to identify chemicals responsible for the observed toxic effects. It is based on a combination of chemical and biological analysi...

  6. Estimated Chemical Warfare Agent Surface Clearance Goals for Remediation Pre-Planning

    Energy Technology Data Exchange (ETDEWEB)

    Dolislager, Frederick [University of Tennessee, Knoxville (UTK); Bansleben, Dr. Donald [U.S. Department of Homeland Security; Watson, Annetta Paule [ORNL

    2010-01-01

    Health-based surface clearance goals, in units of mg/cm2, have been developed for the persistent chemical warfare agents sulfur mustard (HD) and nerve agent VX as well as their principal degradation products. Selection of model parameters and critical receptor (toddler child) allow calculation of surface residue estimates protective for the toddler child, the general population and adult employees of a facilty that has undergone chemical warfare agent attack.

  7. Resist surface crosslinking using amine-based reactive rinses to mitagate pattern collapse in thin film lithography

    Science.gov (United States)

    Yeh, Wei-Ming; Lawson, Richard A.; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    As the semiconductor industry continues to push to smaller critical dimensions, pattern collapse during lithographic processing caused by unbalanced capillary forces during the final rinse and drying process has become an important problem that can limit the practical resolution of a resist material to feature sizes larger than its intrinsic resolution limit. One of the primary modes of pattern collapse is via elastoplastic pattern deformation which is strongly related to the mechanical properties of the resist. One approach to mitigating such collapse problems is to enhance the mechanical properties of the resist features. Since such modification of resist physical properties for pattern collapse purposes is difficult to achieve through modified formulation of the resist itself (i.e. due to the complex set of requirements that a resist must satisfy and the complex set of physical and chemical phenomena that underlie the imaging processing itself), we have pursued an alternative strategy for improving the resist mechanical properties after features are developed in the film but before they are rinsed and dried. The family of techniques being developed in this work function through the use of aqueous compatible reactive rinse solutions that can be applied to developed resist features while they are wet during normal rinse processing on a track system. By applying these techniques during the rinse process, the resist features can be strengthened before they are subjected to significant capillary forces during the final drying step. In this work, the use of diamine compounds to reactively crosslink the surface of resists containing carboxylic acid groups through formation of amide bonds using carbodiimide chemistry has been explored. One advantage of this approach is that it is an aqueous process that should be easily compatible with high volume, track-based lithographic processes. Contact angle studies and x-ray photoelectron spectroscopy (XPS) were used to

  8. Controllable synthesis of CuS-P(AM-co-MAA) composite microspheres with patterned surface structures.

    Science.gov (United States)

    Zhang, Ying; Liu, Huijin; Zhao, Ya; Fang, Yu

    2008-09-15

    Copper sulfide-poly(acrylamide-co-methacrylic acid) (CuS-P(AM-co-MAA)) composite microspheres with patterned surface structures have been synthesized in a controllable manner by means of the polymer microgel template method. The formation of CuS particles can be regulated by controlling the decomposition of thioacetamide (TAA) in acidic solution. Compared with the microgel template, the surface morphologies of the composite microspheres are characterized by compact and creased textures. The surface morphology of the composite microspheres has been found to be mainly influenced by the amount of copper sulfide precipitated and hence by the rate of H(2)S gas generation. This study might provide a potential route for controlling the synthesis of various metal sulfide-polymer composites with patterned surface structures. PMID:18649893

  9. Partial discharge patterns and surface deterioration in voids in filled and unfilled epoxy

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens

    Results are presented from analyses of pulses from partial discharges (PDs) in single spherical voids in filled and unfilled epoxy plastic and related to the observed surface deterioration. The filler types used were dolomite, alumina, and silica. Long-time aging tests including pulse phase....../height analyses were performed over a period of 2400 h and showed very characteristic discharge patterns for each material combination. A unique behavior with regard to changes of pulse repetition rate and maximum apparent charge was observed for PD in alumina- and silica-filled epoxy. The void surfaces were...... investigated by scanning electron microscopy for voids exposed to PD as well as voids without discharges. Different kinds of surface deterioration were found. An attempt was made to establish a relationship between aging phenomena as exhibited by void surface changes and discharge patterns...

  10. Influence of pH on Chemical Forms of Phosphate Adfsorbed on Gothite Surfaces

    Institute of Scientific and Technical Information of China (English)

    LIUFAN; WANGDIAN-FEN; 等

    1995-01-01

    Chemical forms of the phosphate adsorbed on goethite surfaces and characteristics of the coordinate groups which exchange with P on goethite surfaces in solutions with different pll values were investigated.Results showed that the chemical forms of P on goethite surfaces changed from the dominance of monodentate corrdination to that of bidentate one with increasing pH of the solution.By influencing types of phosphate ions in solutions,pH affected the chemical forms of P on goethite surfaces,The amount of OH- displaced by phosphae on goethite surfaces was the most at pH 7.0,the second at pH 9.0,and the least at pH 4.5.

  11. Laser and chemical surface modifications of titanium grade 2 for medical application

    International Nuclear Information System (INIS)

    Highlights: • DLIL technique and etching were used for functionalization of Ti grade 2 surface. • Modification was performed on semi-finished flat and curved Ti surfaces. • Modification results in periodic multimodal (micro and nano-size) Ti topography. - Abstract: The article presents combined, chemical and physical approach to titanium surface functionalization designed for biomedical applications. The topography modification has been obtained by employing the double laser beam interference technique and chemical etching. In the outcome, clean and smooth Ti surface as well as periodic striated topography with the roughness range from nano- to micrometers were created. The obtained structures were characterized in terms of shape, roughness, chemical composition, mechanical properties and microstructures. In order to achieve all information, numerous of research methods have been used: scanning electron microscopy, atomic force microscopy, optical profilometry and microhardness measurements. Demonstrated methodology can be used as an effective tool for manufacturing controlled surface structures improving the bone–implants interactions

  12. Laser and chemical surface modifications of titanium grade 2 for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Kwaśniak, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Pura, J., E-mail: jaroslawpura@gmail.com [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Zwolińska, M.; Wieciński, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Skarżyński, H.; Olszewski, L. [Institute of Physiology and Pathology of Hearing, Warsaw (Poland); World Hearing Center, Kajetany (Poland); Marczak, J. [Military University of Technology, Institute of Optoelectronics, Warsaw (Poland); Garbacz, H.; Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland)

    2015-05-01

    Highlights: • DLIL technique and etching were used for functionalization of Ti grade 2 surface. • Modification was performed on semi-finished flat and curved Ti surfaces. • Modification results in periodic multimodal (micro and nano-size) Ti topography. - Abstract: The article presents combined, chemical and physical approach to titanium surface functionalization designed for biomedical applications. The topography modification has been obtained by employing the double laser beam interference technique and chemical etching. In the outcome, clean and smooth Ti surface as well as periodic striated topography with the roughness range from nano- to micrometers were created. The obtained structures were characterized in terms of shape, roughness, chemical composition, mechanical properties and microstructures. In order to achieve all information, numerous of research methods have been used: scanning electron microscopy, atomic force microscopy, optical profilometry and microhardness measurements. Demonstrated methodology can be used as an effective tool for manufacturing controlled surface structures improving the bone–implants interactions.

  13. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    Science.gov (United States)

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. PMID:27311789

  14. Long-range standoff detection of chemical, biological, and explosive hazards on surfaces

    Science.gov (United States)

    Fountain, Augustus Way, III; Guicheteau, Jason A.; Pearman, William F.; Chyba, Thomas H.; Christesen, Steven D.

    2010-04-01

    Fielded surface detection systems rely on contact with either the liquid contamination itself or the associated chemical vapor above the contaminated surface and do not provide a standoff or remote detection capability. Conversely, standoff chemical vapor sensing techniques have not shown efficacy in detecting those contaminants as liquids or solids on surfaces. There are a number of optical or spectroscopic techniques that could be applied to this problem of standoff chemical detection on surfaces. The three techniques that have received the most interest and development are laser induced breakdown spectroscopy (LIBS), fluorescence, and Raman spectroscopy. Details will be presented on the development of these techniques and their applicability to detecting CBRNE contamination on surfaces.

  15. Long range standoff detection of chemical and explosive hazards on surfaces

    Science.gov (United States)

    Fountain, Augustus Way, III; Christesen, Steven D.; Guicheteau, Jason A.; Pearman, William F.; Chyba, Tom

    2009-09-01

    Fielded surface detection systems rely on contact with either the liquid contamination itself or the associated chemical vapor above the contaminated surface and do not provide a standoff or remote detection capability. Conversely, standoff chemical vapor sensing techniques have not shown efficacy in detecting those contaminants as liquids or solids on surfaces. There are a number of optical or spectroscopic techniques that could be applied to this problem of standoff chemical detection on surfaces. The three techniques that have received the most interest and development are laser induced breakdown spectroscopy (LIBS), fluorescence, and Raman spectroscopy. Details will be presented on the development of these techniques and their applicability to detecting CBRNE contamination on surfaces.

  16. Enhanced Permeation of a Hydrophobic Fluid through Particles with Hydrophobic and Hydrophilic Patterned Surfaces

    OpenAIRE

    Renliang Zhang; Yousheng Xu; Binghai Wen; Nan Sheng; Haiping Fang

    2014-01-01

    The wetting properties of solid surfaces are significant in oil/gas and liquid displacement processes. It is difficult for hydrophobic fluids to permeate channels filled with hydrophilic particles and an aqueous phase, and this is thought to be the primary cause of low yields in low permeability reservoir operations. Using three-dimensional lattice Boltzmann simulations, we show that particles with hydrophobic and hydrophilic patterned surfaces can greatly improve hydrophobic fluid permeation...

  17. Two-dimensional open microfluidic devices by tuning the wettability on patterned superhydrophobic polymeric surface

    OpenAIRE

    Oliveira, Nuno M.; Neto, Ana I.; Song, Wenlong; Mano, J.F

    2010-01-01

    We present a simple and economical method to produce a potential open microfluidic polymeric device. Biomimetic superhydrophobic surfaces were prepared on polystyrene using a phase separation methodology. Patterned two-dimensional channels were imprinted on the superhydrophobic substrates by exposing the surface to plasma or UV–ozone radiation. The wettability of the channels could be precisely controlled between the superhydrophobic and superhydrophilic states by changing the exposure time. ...

  18. Coccolith distribution patterns in South Atlantic and Southern Ocean surface sediments in relation to environmental gradients

    DEFF Research Database (Denmark)

    Boeckel, B.; Baumann, K.-H.; Henrich, R.;

    2006-01-01

    In this study, the coccolith compositions of 213 surface sediment samples from the South Atlantic and Southern Ocean were analysed with respect to the environmental parameters of the overlying surface waters. From this data set, the abundance patterns of the main species and their ecological...... seems to be associated with high temperatures and salinities under low-nutrient conditions. Based on the relative abundances of Calcidiscus leptoporus, F. profunda, Gladiolithus flabellatus, Helicosphaera spp., Umbilicosphaera foliosa, Umbilicosphaera sibogae and a group of subordinate subtropical...

  19. An overview of the spatial patterns of land surface processes over arid and semiarid regions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions have been investigated based on the ordinary Kriging interpolation approach. Generally, for the radiation processes, downward and upward short-wave radiation have a uniformly increasing trend with latitude, but the spatial patterns of long-wave radiation present notable regional differences: both upward and downward long-wave radiation increase with latitude in the west of North China, while in the east they vary inversely with latitude, suggesting surface temperature and clouds respectively have feedbacks to the long-wave radiation in the west and east of North China. The surface net radiation basically has a negative latitudinal trend. Long-wave radiation budget plays an important role in the spatial pattern of surface net radiation, particularly in the east of North China, although short-wave radiation budget largely determines the magnitude of surface net radiation. For the energy processes, latent and sensible heat flux varies conversely with latitude: more available land surface energy is consumed by evaporating soil water at lower latitudes while more is used for heating the atmosphere at higher latitudes. A soil heat flux maximum and minimum are found in Loess Plateau and Qinghai Plateau respectively, and a maximum is seen in the northeast China.

  20. Self-Assembly of Gold Nanoparticles on Nanometre-Patterned Surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Jun; YANG Jing-Hai; LI Wei; ZHANG Yu; XU Ling; XU Jun; HUANG Xin-Fan; CHEN Kun-Ji

    2005-01-01

    @@ The self-assembly processes of gold nanoparticles on nanometre-step-patterned Si surface and polished Si surface are investigated by the convective self-assembly method. The convective self-assembly method is used to deposit the colloids dispersed in benzene onto the substrates. The SEM results show that the configurations of the gold arrays depend on the surface morphology of the substrates. On the nanometre-step-patterned Si surface, the nanoparticles self assemble into parallel lines, and the distance between the neighbouring lines is around 35nm.On the polished Si surface the nanoparticles form compact domains. In each domain the particles are closepacked in a two-dimensional hexagonal superlattice and are separated by uniform distances. The analysis shows that on the nanometre-step-patterned Si surface, the steps play critical roles in the self-assembly process of gold nanoparticles. The capillary force from the steps drives the particles to lines along the steps. Therefore, the particles tend to self-assemble into one-dimensional line structures when the solvent evaporates. For the polished Si substrate there isa little difference that the particles form two-dimensional hexagonal superlattices without the directional confinement.

  1. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany

    International Nuclear Information System (INIS)

    This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0-5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by

  2. Laser micro/nano patterning of hydrophobic surface by contact particle lens array

    International Nuclear Information System (INIS)

    Direct laser surface micro/nanopatterning by using Contact Particle Lens Array (CPLA) has been widely utilized. The method involves laser scanning of a monolayer of transparent particles arranged on the substrate to be patterned. Despite the different techniques available for CPLA deposition; the particles monolayer can only be formed on hydrophilic surfaces, which restrict the range of substrates that could be patterned by this method. In this study, a technique for patterning of hydrophobic surfaces by using CPLA has been proposed. In the proposed technique, monolayer of CPLA is formed on a hydrophilic substrate and then transported to a hydrophobic substrate by using a flexible sticky plastic. The transported CPLA is then scanned by a laser for patterning the hydrophobic substrate. The plastic pre-selected for this work was transparent to the laser. Experimental investigations were carried out to generate bumps and bowl shaped patterns using transported particles. Features smaller than the diffraction limit have been generated. The optical near field and associated temperatures around the particles were numerically simulated with a coupled electromagnetic and thermal modelling technique.

  3. Laser micro/nano patterning of hydrophobic surface by contact particle lens array

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ashfaq, E-mail: Ashfaq.Khan@postgrad.manchester.ac.uk [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M60 1QD (United Kingdom); Wang Zengbo; Sheikh, Mohammad A.; Whitehead, David J.; Li Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M60 1QD (United Kingdom)

    2011-11-01

    Direct laser surface micro/nanopatterning by using Contact Particle Lens Array (CPLA) has been widely utilized. The method involves laser scanning of a monolayer of transparent particles arranged on the substrate to be patterned. Despite the different techniques available for CPLA deposition; the particles monolayer can only be formed on hydrophilic surfaces, which restrict the range of substrates that could be patterned by this method. In this study, a technique for patterning of hydrophobic surfaces by using CPLA has been proposed. In the proposed technique, monolayer of CPLA is formed on a hydrophilic substrate and then transported to a hydrophobic substrate by using a flexible sticky plastic. The transported CPLA is then scanned by a laser for patterning the hydrophobic substrate. The plastic pre-selected for this work was transparent to the laser. Experimental investigations were carried out to generate bumps and bowl shaped patterns using transported particles. Features smaller than the diffraction limit have been generated. The optical near field and associated temperatures around the particles were numerically simulated with a coupled electromagnetic and thermal modelling technique.

  4. Self-organized surface patterns on Si by sputter erosion with molybdenum surfactants

    International Nuclear Information System (INIS)

    We report on the self-organized pattern formation on Si surfaces driven by Mo surfactant atoms. Si substrates were irradiated with 5 keV Xe ions at normal and near normal ion incidence and fluences up to 5.1017 Xe+/cm2 under continuous deposition of Mo surfactant atoms. In the absence of Mo deposition uniform flat surfaces are obtained. With Mo surfactants pronounced patterns like dots, combinations of dots and ripples as well as ripples with about 100 nm wavelength and up to 12 nm in height are generated. The patterns are analyzed with atomic force microscopy, Rutherford backscattering and transmission electron microscopy. We analyze the critical Mo steady-state coverage for onset of dot formation and onset of ripple formation and the evolution of the pattern contrast with increasing ion fluence. Pattern formation is explained by ion induced diffusion and phase separation of an initially flat amorphous MoxSi layer and subsequent ion beam erosion with composition dependent sputter yield. Directed deposition of Mo causes preferential deposition and shadowing and determines the final pattern orientation and morphology.

  5. Guided self-assembly of block-copolymer for CMOS technology: a comparative study between grapho-epitaxy and surface chemical modification

    Science.gov (United States)

    Oria, Lorea; Ruiz de Luzuriaga, Alaitz; Chevalier, Xavier; Alduncin, Juan A.; Mecerreyes, David; Tiron, Raluca; Gaugiran, Stephanie; Perez-Murano, Francesc

    2011-04-01

    Recent progress in Block Copolymer lithography has shown that guided self-assembly is a viable alternative for pushing forward the resolution limits of optical lithography. The main two self assembly methods considered so far have been the surface chemical modification, which is based on the chemical modification of a brush grafted to the silicon, and the grapho-epitaxy, which is based on creating topographic patterns on the surface. We have tested these two approaches for the 22 nm node and beyond CMOS technology, using PS-PMMA block copolymers synthesized by RAFT (Reversible Addition-Fragmentation Chain Transfer) polymerization.

  6. The Design of Simple Bacterial Microarrays: Development towards Immobilizing Single Living Bacteria on Predefined Micro-Sized Spots on Patterned Surfaces.

    Directory of Open Access Journals (Sweden)

    Nina Bjørk Arnfinnsdottir

    Full Text Available In this paper we demonstrate a procedure for preparing bacterial arrays that is fast, easy, and applicable in a standard molecular biology laboratory. Microcontact printing is used to deposit chemicals promoting bacterial adherence in predefined positions on glass surfaces coated with polymers known for their resistance to bacterial adhesion. Highly ordered arrays of immobilized bacteria were obtained using microcontact printed islands of polydopamine (PD on glass surfaces coated with the antiadhesive polymer polyethylene glycol (PEG. On such PEG-coated glass surfaces, bacteria were attached to 97 to 100% of the PD islands, 21 to 62% of which were occupied by a single bacterium. A viability test revealed that 99% of the bacteria were alive following immobilization onto patterned surfaces. Time series imaging of bacteria on such arrays revealed that the attached bacteria both divided and expressed green fluorescent protein, both of which indicates that this method of patterning of bacteria is a suitable method for single-cell analysis.

  7. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano;

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order to...

  8. Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface

    DEFF Research Database (Denmark)

    Kleissl, K.; Georgakis, C.T.

    In this paper, the aerodynamics of bridge cables with helical fillets and a pattern-indented surface are examined. To this end, an extensive wind-tunnel test campaign was undertaken to measure the static force coefficients about the critical Reynolds number region, with varying relative cable...

  9. Sliding droplets on hydrophilic/superhydrophobic patterned surfaces for liquid deposition

    Science.gov (United States)

    Chang, Bo; Zhou, Quan; Ras, Robin H. A.; Shah, Ali; Wu, Zhigang; Hjort, Klas

    2016-04-01

    A facile gravity-induced sliding droplets method is reported for deposition of nanoliter sized droplets on hydrophilic/superhydrophobic patterned surface. The deposition process is parallel where multiple different liquids can be deposited simultaneously. The process is also high-throughput, having a great potential to be scaled up by increasing the size of the substrate.

  10. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Kwapiszewski, Radoslaw; Jensen, Thomas Glasdam; Kutter, Jörg Peter

    2013-01-01

    ! 17 SH nm"2. Biotin alkyne was patterned directly inside thiol–ene microchannels prior to conjugation with fluorescently labelled streptavidin. The surface bound conjugates were detected by evanescent waveinduced fluorescence (EWIF), demonstrating the success of the grafting procedure and its...

  11. Ordered rippling of polymer surfaces by nanolithography: influence of scan pattern and boundary effects

    International Nuclear Information System (INIS)

    We demonstrate how AFM nanolithography, with a proper choice of scan pattern, can induce an exceptionally ordered alignment of ripples on the surface of polymer films on the first scan. By analogy with the manipulation of nanoparticles, the orientation of the ripples is determined by the material flow, which is ultimately fixed by the direction of motion of the probing tip. This makes a raster scan pattern the best choice for orienting the ripples, as opposed to the zigzag scan pattern commonly adopted by most AFM setups. Our hypothesis is substantiated by a series of measurements on a solvent-enriched ultrathin film of PET, which allowed ripple formation on the first scan. We also show how the ripple orientation is significantly modified by the boundary conditions appearing when nanolithography is performed on circular, triangular and L-shaped areas on the polymer surface. (paper)

  12. The influence of projectile ion induced chemistry on surface pattern formation

    Science.gov (United States)

    Karmakar, Prasanta; Satpati, Biswarup

    2016-07-01

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  13. Surface of Lactic Acid Bacteria: Relationships between Chemical Composition and Physicochemical Properties

    OpenAIRE

    Boonaert, C J; Rouxhet, Paul

    2000-01-01

    The surface chemical composition and physicochemical properties (hydrophobicity and zeta potential) of two lactic acid bacteria, Lactococcus lactis subsp. lactis bv. diacetilactis and Lactobacillus helveticus, have been investigated using cells harvested in exponential or stationary growth phase. The surface composition determined by X-ray photoelectron spectroscopy (XPS) was converted into a molecular composition in terms of proteins, polysaccharides, and hydrocarbonlike compounds. The conce...

  14. Chemically-Tailored Surfaces of Silica Gel and Alumina Examined Using Color

    Science.gov (United States)

    Taralp, Alpay; Buyukbayram, Gulen; Armagan, Onsel; Yalcin, Ender

    2004-01-01

    Color is used for studying the chemically-tailored surfaces of silica gel and alumina. When this technique of using color was applied by the students, they were able to grasp the principles of surface engineering and acquire an appreciation of its merits and at the same time they were able to learn the fundamentals of aldehyde chemistry,…

  15. Chemical composition and the nature of the surface of type A3B5 compounds

    International Nuclear Information System (INIS)

    The results of studies in admixture and phase compositions, nature of the surface active centers of semiconductor compounds InB5+ (B = Sb, As, P) are analyzed. Changes in chemical composition, acid-basic properties, activity of the InB5+ compounds real surface during thermal processing and mechanochemical activation are traced on the basis of the performed studies

  16. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: Pasting behavior and surface morphology

    NARCIS (Netherlands)

    Huang, J.; Chen Zenghong,; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, H.A.

    2014-01-01

    o understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated, or

  17. Transport anisotropy of LaAlO3/SrTiO3 interfaces on chemically patterned SrTiO3

    International Nuclear Information System (INIS)

    A few years ago high mobility electronic transport was found at the interface between the wide bandgap insulators SrTiO3 and LaAlO3. This conductive layer is confined to a few unit cells around the interface and it appears when LaAlO3 layers with thickness above 3-4 unit cells are grown on SrTiO3. It is known that TiO2/LaO interfaces are conductive, while SrO/AlO2 interfaces are insulating. Here we exploited this way to control the interface properties to produce large scale functional nanostructures. TiO2/AlO-SrO/LaO2 modulated interfaces have been prepared using thermally treated SrTiO3 surfaces with self-organized patterned chemical termination. The interface transport properties are found to be controlled according to these interface patterns. While the influence of the interface topology, e.g. terrace steps, is negligible, a strong transport anisotropy is observed when large-scale well oriented chemical patterns are realized. Our results show that bottom-up engineering of the interface chemical composition is a suitable strategy to influence the transport properties on large scales.

  18. Surface reactivity and layer analysis of chemisorbed reaction films in the surface-chemical environment of alkyl octadecenoates

    Indian Academy of Sciences (India)

    R B Choudhary; O N Anand; O S Tyagi

    2009-05-01

    Studies on surface reactivity of substrate iron (Fe-particles) were made in the tribo-chemical environment of alkyl octadecenoates. Two alkyl octadecenoates namely ethyl octadecenoate and methyl 12-hydroxy octadecenoate, slightly different in their chemical nature, were taken for preparing the chemisorbed reaction films (CRF) at the temperature 100 ± 5°C. The reaction products collected in the composite (amorphous) phase were isolated into three different solvent-soluble fractions (sub-layer films) using polar solvents of increasing polar strength. The FTIR analysis of these films showed that these were primarily organic in nature and were composed of alkyl and/or aryl hydroxy ethers, unsaturated hydroxy ketones, and aromatic structures chemically linked with iron surface. These reaction films also contained large amount of iron (Fe). Further, these film fractions also showed varying thermal behaviour during thermal decomposition in the temperature range of 50-800°C when thermally evaluated in the nitrogen environment.

  19. GaN nanowire arrays by a patterned metal-assisted chemical etching

    Science.gov (United States)

    Wang, K. C.; Yuan, G. D.; Wu, R. W.; Lu, H. X.; Liu, Z. Q.; Wei, T. B.; Wang, J. X.; Li, J. M.; Zhang, W. J.

    2016-04-01

    We developed an one-step and two-step metal-assisted chemical etching method to produce self-organized GaN nanowire arrays. In one-step approach, GaN nanowire arrays are synthesized uniformly on GaN thin film surface. However, in a two-step etching processes, GaN nanowires are formed only in metal uncovered regions, and GaN regions with metal-covering show nano-porous sidewalls. We propose that nanowires and porous nanostructures are tuned by sufficient and limited etch rate, respectively. PL spectra shows a red-shift of band edge emission in GaN nanostructures. The formation mechanism of nanowires was illustrated by two separated electrochemical reactions occur simultaneously. The function of metals and UV light was illustrated by the scheme of potential relationship between energy bands in Si, GaN and standard hydrogen electrode potential of solution and metals.

  20. Biological functionalization and patterning of porous silicon prepared by Pt-assisted chemical etching

    International Nuclear Information System (INIS)

    Porous silicon fabricated via Pt-assisted chemical etching of p-type Si (1 0 0) in 1:1:1 EtOH/HF/H2O2 solution possesses a longer durability in air and in aqueous media than anodized one, which is advantageous for biomedical applications. Its surface SiHx (x = 1 and 2) species can react with 10-undecylenic acid completely under microwave irradiation, and subsequent derivatizations of the end carboxylic acid result in affinity capture of proteins. We applied two approaches to produce protein microarrays: photolithography and spotting. The former provides a homogeneous microarray with a very low fluorescence background, while the latter presents an inhomogeneous microarray with a high noise background.

  1. Physicochemical properties, morphological and X-ray pattern of chemically modified white sorghum starch. (Bicolor-Moench)

    OpenAIRE

    Olayinka, O. O.; Adebowale, K. O.; Olu-Owolabi, I. B.

    2011-01-01

    Starch isolated from white sorghum was subjected to chemical modifications like oxidation, acetylation and acid thinning. Proximate composition of these, such as crude protein, crude fat, moisture content and ash content were studied. Wide angle X-ray diffractograms showed typical ‘A’ pattern characteristic of cereal starches, but significant differences were observed between the X-ray pattern of native and modified starches. Scanning electron microscopy revealed round and polygonal shapes fo...

  2. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  3. Chemical composition of the lunar surface from neutron leakage fluxes

    International Nuclear Information System (INIS)

    The neutron leakage fluxes from the lunar surface are calculated by Monte Carlo transport code based on Geant4. The integral fluxes of fast neutrons, epi-thermal neutrons and thermal neutrons are analyzed. Numerical results for 20 kinds of lunar soils and 7 minerals show that the fast neutron fluxes are linearly related to the average atomic mass numbers of the lunar materials used in simulations. Meanwhile, the average atomic mass numbers are strongly modulated by the abundances of iron (Fe) and titanium (Ti), and a linear relationship between the average atomic mass numbers and the abundances of Fe and Ti is found. Furthermore, the results show that the ratios of epi-thermal to thermal fluxes for lunar soils are linearly related to the macroscopic absorption cross sections of lunar materials, and that the macroscopic absorption cross sections monotonically increase with the abundances of Fe and Ti by a simple function. Then we reach the conclusion that the neutron fluxes can provide the information about the Fe and Ti contents. (authors)

  4. Electronic and Chemical Properties of a Surface-Terminated Screw Dislocation in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Mckenna, Keith P.

    2013-12-18

    Dislocations represent an important and ubiquitous class of topological defect found at the surfaces of metal oxide materials. They are thought to influence processes as diverse as crystal growth, corrosion, charge trapping, luminescence, molecular adsorption and catalytic activity, however, their electronic and chemical properties remain poorly understood. Here, through a detailed first principles investigation into the properties of a surface terminated screw dislocation in MgO we provide atomistic insight into these issues. We show that surface dislocations can exhibit intriguing electron trapping properties which are important for understanding the chemical and electronic characteristics of oxide surfaces. The results presented in this article taken together with recent experimental reports show that surface dislocations can be equally as important as more commonly considered surface defects, such as steps, kinks and vacanies, but are now just beginning to be understood.

  5. Effect of Gravity on the Configuration of Droplets on Two-Dimensional Physically Patterned Surfaces.

    Science.gov (United States)

    Bell, Michael S; Fichthorn, Kristen A; Borhan, Ali

    2016-04-26

    Wetting of solid surfaces is important for many potential applications, including the design of low-drag and antifouling/self-cleaning surfaces, and it is usually quantified by the contact angle and by contact angle hysteresis. Both the chemistry and the physical patterning of the surface are known to affect the contact angle. In studying the wetting of such surfaces, most models focus on the small Bond number (Bo) limit in which the effect of gravity is negligible, which simplifies free energy calculations. In this work, we employ a thermodynamic model for surfaces patterned with two-dimensional asperities, which remains applicable for nonzero Bo. We employ two versions of the model: one in which we require the liquid-vapor interface to remain a circular cap, and another in which we allow the liquid-vapor interface to deform. We find that the effects of gravity are twofold. First, drops with larger Bo tend to flatten and spread across the surface relative to the same size drops with Bo = 0. Second, gravity makes it more favorable for drops to penetrate surface asperities compared to the case of Bo = 0, which also tends to lower the contact angles. The main effect of droplet deformation is to produce larger contact angles for the same wetting configuration. Finally, we compare our model predictions with relevant experimental observations. We find very close agreement with the experiments, thereby validating our theoretical model. PMID:27030888

  6. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.

    Science.gov (United States)

    Li, Chun-Yi; Liao, Ying-Chih

    2016-05-11

    In this study, a plasma surface modification with printing process was developed to fabricate printed flexible conductor patterns or devices directly on polydimethylsiloxane (PDMS) surface. An atmospheric plasma treatment was first used to oxidize the PDMS surface and create a hydrophilic silica surface layer, which was confirmed with photoelectron spectra. The plasma operating parameters, such as gas types and plasma powers, were optimized to obtain surface silica layers with the longest lifetime. Conductive paste with epoxy resin was screen-printed on the plasma-treated PDMS surface to fabricate flexible conductive tracks. As a result of the strong binding forces between epoxy resin and the silica surface layer, the printed patterns showed great adhesion on PDMS and were undamaged after several stringent adhesion tests. The printed conductive tracks showed strong mechanical stability and exhibited great electric conductivity under bending, twisting, and stretching conditions. Finally, a printed pressure sensor with good sensitivity and a fast response time was fabricated to demonstrate the capability of this method for the realization of printed electronic devices. PMID:27082455

  7. Partial discharge patterns related to surface deterioration in voids in epoxy

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens

    Results are presented from an investigation of the relationship between changes in partial discharge patterns and the surface deterioration process taking place in small naturally formed spherical voids in epoxy plastic. The voids were exposed to a moderate electric stress above inception level......, where partial discharges were present for more than 1500 h. Two types of electrical tree growth were found, the bush like tree and a single channel-like tree, which led to very different partial discharge patterns. It is concluded that the formation of crystals on a void surface leads to an immediate...... and easy-to-detect increase in the partial discharge activity with subsequent severe surface deterioration (deep pit formations) in the vicinity of the crystal. However, the partial discharge signal from a specimen with a black channel-like tree structure did not give any indication of channel growth...

  8. Surface-enhanced Raman scattering of patterned copper nanostructure electrolessly plated on arrayed nanoporous silicon pillars

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen; Shan Wenwen; Ling Hong; Wang Yusheng [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Cao Yanxia [College of Materials Engineering, Zhengzhou University, Zhengzhou 450052, People' s Republic of China (China); Li Xinjian, E-mail: gingerwfj@yahoo.com.c [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2010-10-20

    A new synthesized composite structure, a patterned copper/silicon nanoporous pillar array (Cu/Si-NPA) made by depositing Cu on Si-NPA using an immersion plating method, can be used as a surface-enhanced Raman scattering (SERS) substrate. Its surface component and morphology were analyzed by x-ray diffraction and field-emission scanning electron microscopy, respectively. It was found that the surface was Cu with two kinds of crystal structures: a continuous film composed of Cu nanocrystallites covering the Si-NPA, and a quasi-regular, interconnected network composed of loop-chains of Cu crystallites, with the size in the range of several tens of nanometer to 300 nm, surrounding the porous Si pillars. The composite structure is strongly SERS active using rhodamine 6G as probe molecules, which is mainly due to the patterned hierarchical Cu structure.

  9. Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning.

    Science.gov (United States)

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J; Lu, Haidong; Lee, Jung-Woo; Zhou, Hua; Chang, Wansoo; Mahanthappa, Mahesh K; Tsymbal, Evgeny Y; Gruverman, Alexei; Eom, Chang-Beom

    2016-04-13

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectric phase in BTO tunnel junctions. We conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications. PMID:26901570

  10. Size Evolution of Ordered SiGe Islands Grown by Surface Thermal Diffusion on Pit-Patterned Si(100 Surface

    Directory of Open Access Journals (Sweden)

    Bollani Monica

    2010-01-01

    Full Text Available Abstract The ordered growth of self-assembled SiGe islands by surface thermal diffusion in ultra high vacuum from a lithographically etched Ge stripe on pit-patterned Si(100 surface has been experimentally investigated. The total surface coverage of Ge strongly depends on the distance from the source stripe, as quantitatively verified by Scanning Auger Microscopy. The size distribution of the islands as a function of the Ge coverage has been studied by coupling atomic force microscopy scans with Auger spectro-microscopy data. Our observations are consistent with a physical scenario where island positioning is essentially driven by energetic factors, which predominate with respect to the local kinetics of diffusion, and the growth evolution mainly depends on the local density of Ge atoms.

  11. Modelling Chemical Patterns of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in the Iberian Peninsula

    Science.gov (United States)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2013-04-01

    Semi-volatile organic compounds (SVOCs) such as PBDEs, PCBs, organochlorine pesticides (OCPs) or PAHs, are widespread and generated in a multitude of anthropogenic (and natural for PAHs) processes and although they are found in the environment at low concentrations, possess an extraordinary carcinogenic capacity (Baussant et al., 2001) and high ecotoxicity due to their persistence in different matrices (air, soil, water, living organisms). In particular, PAHs are originated by combustion processes or release from fossil fuels and can be transported in the atmosphere over long distances in gaseous or particulate matter (Baek et al., 1991). The establishment of strategies for sampling and chemical transport modelling of SVOCs in the atmosphere aiming the definition and validation of the spatial, temporal and chemical transport patterns of contaminants can be achieved by an integrated system of third-generation models that represent the current state of knowledge in air quality modelling and experimental data collected in field campaigns. This has implications in the fields of meteorology, atmospheric chemistry and even climate change. In this case, an extensive database already obtained on levels of atmospheric PAHs from biomonitoring schemes in the Iberian Peninsula fuelled the establishment of the first models of behaviour for PAHs. The modelling system WRF+CHIMERE was implemented with high spatial and temporal resolution to the Iberian Peninsula in this first task (9 km for the Iberian Peninsula, 3 km to Portugal, 1 hour), using PAHs atmospheric levels collected over a year-long sampling scheme comprising 4 campaigns (one per season) in over 30 sites. Daily information on meteorological parameters such as air temperature, humidity, rainfall or wind speed and direction was collected from the weather stations closest to the sampling sites. Diagnosis and forecasts of these meteorological variables using MM5 or WRF were used to feed a chemistry transport model

  12. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition

    OpenAIRE

    Friel, I.; Clewes, S L; Dhillon, H. K.; Perkins, N.; Twitchen, D. J.; Scarsbrook, G. A.

    2009-01-01

    In order to improve the performance of existing technologies based on single crystal diamond grown by chemical vapour deposition (CVD), and to open up new technologies in fields such as quantum computing or solid state and semiconductor disc lasers, control over surface and bulk crystalline quality is of great importance. Inductively coupled plasma (ICP) etching using an Ar/Cl gas mixture is demonstrated to remove sub-surface damage of mechanically processed surfaces, whilst maintaining macro...

  13. Compatibility between base concrete made with different chemical admixtures and surface hardener

    OpenAIRE

    Pinheiro-Alves, M.ª Teresa; Sequeira, Ana Rita; Bettencourt Ribeiro, António

    2012-01-01

    Many cases of cracking and detachment of the concrete surface have appeared in concrete floors where surface hardeners were used in Portugal. The main causes for cracking and delamination of trowelled concrete pavements are several and it is essential to control bleeding and the time available to perform the finishing operations. Several base concretes were made with different chemical admixtures and one type of surface hardeners. The purpose of this study was evaluating the influence of the ...

  14. Effect of surface properties of fibres on some paper properties of mechanical and chemical pulp

    OpenAIRE

    Koljonen, Krista

    2004-01-01

    The overall goal of the thesis was to find correlations between the surface precipitates of pulps and selected strength properties of paper sheets. Special attention was paid to the surface lignin and extractives of fibres. The main surface-characterising techniques employed were electron spectroscopy for chemical analysis (ESCA), atomic force microscopy (AFM) and the polyelectrolyte titration method. In addition, a Wilhelmy balance for single fibres, time-of-flight secondary ion mass spectro...

  15. The Chemical Forms of Mercury in Aged and Fresh Dental Amalgam Surfaces

    OpenAIRE

    George, Graham N.; Singh, Satya P.; Hoover, Jay; Pickering, Ingrid J.

    2009-01-01

    Mercury-containing dental amalgam is known to be a source of human exposure to mercury. We have explored the use of electron-yield Hg LIII X-ray absorption spectroscopy to characterize the chemical nature of dental amalgam surfaces. We find that the method is practical, and that it shows extensive mercury depletion in the surface of the aged amalgam with significant differences between old and fresh amalgam surfaces. Whereas the fresh amalgam gives spectra that are typical of metallic mercury...

  16. Exploring consumer exposure pathways and patterns of use for chemicals in the environment

    OpenAIRE

    Dionisio, Kathie L; Frame, Alicia M; Goldsmith, Michael-Rock; Wambaugh, John F; Liddell, Alan; Cathey, Tommy; Smith, Doris; Vail, James; Ernstoff, Alexi; Fantke, Peter; Jolliet, Olivier; Judson, Richard S.

    2015-01-01

    Humans are exposed to thousands of chemicals in the workplace, home, and via air, water, food, and soil. A major challenge in estimating chemical exposures is to understand which chemicals are present in these media and microenvironments. Here we describe the Chemical/Product Categories Database (CPCat), a new, publically available (http://actor.epa.gov/cpcat) database of information on chemicals mapped to “use categories” describing the usage or function of the chemical. CPCat was created by...

  17. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  18. Topological and chemical investigation on super-hydrophobicity of PTFE surface caused by ion irradiation

    International Nuclear Information System (INIS)

    Super-hydrophobic PTFE surfaces were obtained by irradiation of 200 keV Xe+ ion with the fluence of 6.2x1013 ions/cm2. The contact angle of water on such surface is as large as 161±3o. SEM and XPS were used to investigate how the topological and chemical changes affect the wettability of the irradiated surface. Needle like structures at nanometer scale caused by irradiation are considered to be the reason of the super-hydrophobicity. The formation of oxygen containing group and defluorination effect on the treated surface are inferred to have negative contribution to the hydrophobic optimization of PTFE surface

  19. Regional-to-Urban Enviro-HIRLAM Downscaling for Meteorological and Chemical Patterns over Chinese Megacities

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Gonzalez-Aparicio, Iratxe; Amstrup, Bjarne; Baklanov, Alexander; Yang, Xiaohua; Nielsen, Kristian

    2015-04-01

    Due to strong economic growth in the past decades, air pollution became a serious problem in megacities and major industrial agglomerations of China. So, information on air quality in these urbanized areas is important for population. In particular, the metropolitan areas of Shanghai, Beijing, and Pearl River Delta are well known as main regions with serious air pollution issues. One of the aims of the EU FP7 MarcoPolo project is to improve existing regional-meso-urban/city scale air quality forecasts using improved emission inventories and to validate modelling results using satellite and ground-based measurements. The Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) adapted for the Shanghai region of China is applied for forecasting. The model is urbanized using the Building Effects Parameterization module, which describes different types of urban districts such as industrial commercial, city center, high density and residential with its own characteristics. For sensitivity studies, the model was run in downscaling chain from regional-to-urban scales at subsequent horizontal resolutions of 15-5-2.5 km for selected dates with elevated pollution levels and unfavorable meteorological conditions. For these dates, the effects of urbanization are analyzed for atmospheric transport, dispersion, deposition, and chemical transformations. The evaluation of formation and development of meteorological and chemical/aerosol patterns due to influence of the urban areas is performed. The impact of selected (in a model domain) megacities of China is estimated on regional-to-urban scales, as well as relationship between air pollution and meteorology are studied.

  20. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of...... two laser beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  1. UV lithography-based protein patterning on silicon: Towards the integration of bioactive surfaces and CMOS electronics

    International Nuclear Information System (INIS)

    A simple and fast methodology for protein patterning on silicon substrates is presented, providing an insight into possible issues related to the interaction between biological and microelectronic technologies. The method makes use of standard photoresist lithography and is oriented towards the implementation of biosensors containing Complementary Metal-Oxide-Semiconductor (CMOS) conditioning circuitry. Silicon surfaces with photoresist patterns were prepared and hydroxylated by means of resist- and CMOS backend-compatible solutions. Subsequent aminosilane deposition and resist lift-off in organic solvents resulted into well-controlled amino-terminated geometries. The discussion is focused on resist- and CMOS-compatibility problems related to the used chemicals. Some samples underwent gold nanoparticle (Au NP) labeling and Scanning Electron Microscopy (SEM) observation, in order to investigate the quality of the silane layer. Antibodies were immobilized on other samples, which were subsequently exposed to a fluorescently labeled antigen. Fluorescence microscopy observation showed that this method provides spatially selective immobilization of protein layers onto APTES-patterned silicon samples, while preserving protein reactivity inside the desired areas and low non-specific adsorption elsewhere. Strong covalent biomolecule binding was achieved, giving stable protein layers, which allows stringent binding conditions and a good binding specificity, really useful for biosensing.

  2. UV lithography-based protein patterning on silicon: Towards the integration of bioactive surfaces and CMOS electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lenci, S., E-mail: silvia.lenci@iet.unipi.it [Dipartimento di Ingegneria dell' Informazione, via G.Caruso 16, Pisa I-56122 (Italy); Tedeschi, L. [Istituto di Fisiologia Clinica - CNR, via G. Moruzzi 1, Pisa I-56124 (Italy); Pieri, F. [Dipartimento di Ingegneria dell' Informazione, via G.Caruso 16, Pisa I-56122 (Italy); Domenici, C. [Istituto di Fisiologia Clinica - CNR, via G. Moruzzi 1, Pisa I-56124 (Italy)

    2011-08-01

    A simple and fast methodology for protein patterning on silicon substrates is presented, providing an insight into possible issues related to the interaction between biological and microelectronic technologies. The method makes use of standard photoresist lithography and is oriented towards the implementation of biosensors containing Complementary Metal-Oxide-Semiconductor (CMOS) conditioning circuitry. Silicon surfaces with photoresist patterns were prepared and hydroxylated by means of resist- and CMOS backend-compatible solutions. Subsequent aminosilane deposition and resist lift-off in organic solvents resulted into well-controlled amino-terminated geometries. The discussion is focused on resist- and CMOS-compatibility problems related to the used chemicals. Some samples underwent gold nanoparticle (Au NP) labeling and Scanning Electron Microscopy (SEM) observation, in order to investigate the quality of the silane layer. Antibodies were immobilized on other samples, which were subsequently exposed to a fluorescently labeled antigen. Fluorescence microscopy observation showed that this method provides spatially selective immobilization of protein layers onto APTES-patterned silicon samples, while preserving protein reactivity inside the desired areas and low non-specific adsorption elsewhere. Strong covalent biomolecule binding was achieved, giving stable protein layers, which allows stringent binding conditions and a good binding specificity, really useful for biosensing.

  3. Micro checkerboard patterned polymeric surface with discrete rigidity for studying cell migration

    International Nuclear Information System (INIS)

    The control of cell migration has an important role in processes ranging from developmental morphogenesis to the pathogenesis. In this study, we describe a novel approach to develop a micro-checkerboard patterned polymeric flat surface with discrete surface stiffness. This platform as a culture substrate allows us to explore the mechanism of durotaxis, referred to as the directed cell movement via the gradient of surface stiffness. The flat surface with different rigidity was achieved in two stages of fabrication. First, polydimethylsiloxane (PDMS) was pressed and cured on a glass substrate with trenches of varying depths in a checkerboard arrangement, and then, a thin PDMS layer was spin coated on the previous pattern to make the flat surface. The stiff region is defined by a thin layer (2.5 µm) of PDMS and the soft region is defined by a thick one (7.5 µm). To investigate the migratory cell behavior, the NIH 3T3 cell was cultured. The result demonstrates that a single cell showed clearly a migratory cell behavior toward the stiffer regions driven by the difference of effective surface stiffness. At high cell density, the effect of cell migration on effective surface stiffness decreased with increasing cell–cell interactions. However, cell migration was still dominated by difference of effective surface stiffness while fluctuating at the boundary between the stiff and soft regions. This approach enables us to control the mechanical and topological properties of surface. The developed platform will also offer a useful tool to study cell–substrate interaction mediated by surface stiffness (e.g. mechanotransduction). (paper)

  4. Micro checkerboard patterned polymeric surface with discrete rigidity for studying cell migration

    Science.gov (United States)

    Hong, Juhee; Lee, Sujin; Park, Sukho; Lee, Junghoon

    2015-04-01

    The control of cell migration has an important role in processes ranging from developmental morphogenesis to the pathogenesis. In this study, we describe a novel approach to develop a micro-checkerboard patterned polymeric flat surface with discrete surface stiffness. This platform as a culture substrate allows us to explore the mechanism of durotaxis, referred to as the directed cell movement via the gradient of surface stiffness. The flat surface with different rigidity was achieved in two stages of fabrication. First, polydimethylsiloxane (PDMS) was pressed and cured on a glass substrate with trenches of varying depths in a checkerboard arrangement, and then, a thin PDMS layer was spin coated on the previous pattern to make the flat surface. The stiff region is defined by a thin layer (2.5 µm) of PDMS and the soft region is defined by a thick one (7.5 µm). To investigate the migratory cell behavior, the NIH 3T3 cell was cultured. The result demonstrates that a single cell showed clearly a migratory cell behavior toward the stiffer regions driven by the difference of effective surface stiffness. At high cell density, the effect of cell migration on effective surface stiffness decreased with increasing cell-cell interactions. However, cell migration was still dominated by difference of effective surface stiffness while fluctuating at the boundary between the stiff and soft regions. This approach enables us to control the mechanical and topological properties of surface. The developed platform will also offer a useful tool to study cell-substrate interaction mediated by surface stiffness (e.g. mechanotransduction).

  5. Realization of diverse displays for multiple color patterns on metal surfaces

    International Nuclear Information System (INIS)

    Highlights: • We have demonstrated that the combined influence of incident white light angle and the ripples orientation on the diversity of structural colors. • Our investigation revealed that multi-patterns constituted by ripples with different orientations could be precisely designed on metal surfaces. • The diverse display for the desired ones can be realized by exquisitely varying the incident light angle and rotating sample angle. - Abstract: Enhanced colors can be formed when white light is irradiated on the surface ripples induced by femtosecond laser. In this paper, we have demonstrated the ability to display the diverse colors by simultaneously adjusting the incident white light angle and the ripples orientation. Furthermore, our investigation revealed that multi-patterns constituted by ripples with different orientations could be designed on metal surfaces. The diverse display for the desired ones can be realized by exquisitely varying the incident light angle and rotating sample angle. More interestingly, it is found that, although the same patterns could be displayed under different conditions, the colors might be different. These findings can provide a novel method to carry and identify high quantity of information, which may find potential applications in the fields of information storage, identifying codes and anti-counterfeiting patterns

  6. Effective Medium Theory for Drag Reducing Micro-patterned Surfaces in Turbulent Flows

    CERN Document Server

    Battiato, Ilenia

    2013-01-01

    Inspired by the lotus effect, many studies in the last decade have focused on micro- and nano-patterned surfaces. They revealed that patterns at the micro-scale combined with high contact angles can significantly reduce skin drag. However, the mechanisms and parameters that control drag reduction, e.g. Reynolds number and pattern geometry, are still unclear. We propose an effective medium representation of the micro-features, that treats the latter as a porous medium, and provides a framework to model flow over patterned surfaces in both Cassie and Wenzel states. Our key result is a closed-form expression for the skin friction coefficient in terms of frictional Reynolds (or K\\'arm\\'an) number in turbulent regime, the viscosity ratio between the fluid in and above the features, and their geometrical properties. We apply the proposed model to turbulent flows over superhydrophobic ridged surfaces. The model predictions agree with laboratory experiments for Reynolds numbers ranging from 3000 to 10000.

  7. Fabrication and characterization of indium sulfide thin films deposited on SAMs modified substrates surfaces by chemical bath deposition

    International Nuclear Information System (INIS)

    In an effort to explore the optoelectronic properties of nanostructured indium sulfide (In2S3) thin films for a wide range of applications, the In2S3 thin films were successfully deposited on the APTS layers (-NH2-terminated) modified ITO glass substrates using the chemical bath deposition technique. The surface morphology, structure and composition of the resultant In2S3 thin films were characterized by FESEM, XRD, and XPS, respectively. Also, the correlations between the optical properties, photocurrent response and the thickness of thin films were established. According to the different deposition mechanisms on the varying SAMs terminational groups, the positive and negative micropatterned In2S3 thin films were successfully fabricated on modified Si substrates surface combining with the ultraviolet lithography process. This offers an attractive opportunity to fabricate patterned In2S3 thin films for controlling the spatial positioning of functional materials in microsystems.

  8. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A. [Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain); Palomares, Francisco J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain)

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative

  9. Study on patterns and chemical features of NO effect on marine phytoplankton growth

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengbin; LIN Cai; LIU Chunying; XING Lei; WU Zhenzhen; SUN Feng

    2005-01-01

    This article discusses the patterns of NO effect on marine phytoplankton growth from chemical perspective.The experimental results of four algae, which are Platymonas halgolandica var.tsingtaoensis, Platymonas subcordiformis, Skeletonema costatum and Nitzschia closterium farma minutissima, are as follows: (i) In f/2 medium or f/50 medium, the growth of these four algae was obviously promoted or inhibited when nitric oxide of different concentrations was added once or twice each day during the cultivation; (ii) The NO effects on the growth of marine phytoplankton are in normal distribution.Different phytoplankton has different optimum NO concentration, which is consistent with the influence of NO on the growth of high plants; (iii) The effect of NO on Platymonas halgolandica var.tsingtaoensi, which is a food alga, is different from that on the red tide algae Skeletonema costatum and Nitzschia closterium farma minutissima.The authors put forward a new opinion that every alga has its own NO threshold concentration.All the above results may provide new clues to understand the formation of red tide.

  10. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    Science.gov (United States)

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (sucralose yielded poor correlations with NDMA FP (R(2) sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53). PMID:25481075

  11. One dimensional surface profilometry by analyzing the Fresnel diffraction pattern from a step

    CERN Document Server

    Osanloo, Soghra

    2013-01-01

    When a coherent quasi-monochromatic light is reflected from a step, a diffraction pattern is formed that can be described by Fresnel-Kirchhoff integral and visibility of the fringes depends on the height of the step. In this paper, it is shown that the Fresnel diffraction from a step can be described by an interference-like formula. A relationship is derived between the visibility of the diffraction pattern from 1D step and the step height. Finally, a novel method is presented for 1D surface testing. The theoretical and experimental results are presented.

  12. One dimensional surface profilometry by analyzing the Fresnel diffraction pattern from a step

    OpenAIRE

    Osanloo, Soghra; Darudi, Ahmad

    2013-01-01

    When a coherent quasi-monochromatic light is reflected from a step, a diffraction pattern is formed that can be described by Fresnel-Kirchhoff integral and visibility of the fringes depends on the height of the step. In this paper, it is shown that the Fresnel diffraction from a step can be described by an interference-like formula. A relationship is derived between the visibility of the diffraction pattern from 1D step and the step height. Finally, a novel method is presented for 1D surface ...

  13. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    Science.gov (United States)

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-10-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  14. Groundwater-Surface Water Interactions along a Lake Shore: Spatial Patterns and Temporal Dynamics

    Science.gov (United States)

    Blume, T.; Tecklenburg, C.; Krause, S.; Lewandowski, J.

    2012-12-01

    In this study the spatial and temporal variability of groundwater-surface water interactions along a lake shore is investigated by combining different experimental methods. Study area is Lake Hinnensee, situated in the lake district north of Berlin in Germany. The lake is a seepage lake with no surface inflows or outflows. To investigate the spatial patterns of groundwater surface water interactions as well as their temporal dynamics we applied a number of different techniques: snapshots of spatial patterns were determined by gridded measurements of temperature profiles in the lake sediment as well as with distributed temperature sensing (DTS), using a fiber optic cable placed at the sediment surface. The spatial resolution of measurements adequate for pattern detection was determined by comparing experimental designs at various spatial scales and resolutions. Continuous time series of water levels and temperature time series in piezometer transects at different locations along the lake shore give insight into both spatial variability and temporal dynamics of vertical hydraulic gradients and heat transport. Exfiltration rates of groundwater into the lake were estimated with 3 different approaches. The experimental methodologies were evaluated in a "cost-benefit" analysis, comparing effort with scientific benefit. The results show that groundwater exfiltration into the lake is to some extent variable in time and is highly variable in space: there is a strong gradient perpendicular to the lake shore as well as high heterogeneity along the lake shore.

  15. The Regional Patterns of Chemical Composition in the Otolith Core of Larval Fish

    Science.gov (United States)

    Chang, M. Y.; Geffen, A. J.; Nash, R. D. M.; Clemmesen, C.

    2012-04-01

    The elemental composition of fish otoliths can record the environmental information because once a trace element is deposited in the otolith; it presents a permanent record of the environmental conditions experienced by the fish at a particular time. The elemental signature of the otolith nucleus, the area lying within the first annual growth ring, is likely to be characteristic of the nursery areas of the species, and could be used as biological tracer for tracking origin and dispersal. However, ocean acidification may alter otolith growth and element incorporation, and it is important to establish baseline information about the sources of variation - both biotic and abiotic. The objectives of this study, as part of the wider CalMarO network, is to examine the regional differences in the otolith cores of selected fish species, contrast these differences with those measured between these same species in areas where their larvae co-exist and to find out the maternal effect to the chemical composition during the first forming of otoliths. The laboratory and field experiments were included to produce otolith material reflecting the maternal and regional patterns. Otolith composition was measured using laser-ablation ICPMS. For clarifying the regional patterns, juveniles from six locations and seven spawning groups along the west of the British Isles and larvae from the North Sea were sampled to distinguish the origin of spawning herring. There are three main nursery-ground groups, the Irish Sea, Scottish sea lochs and the Minch, contributing to the spawning herring in the west of the British Isles according to the otolith elemental composition data. However, the spawning origin of the North Sea herring larvae was still unclear. The otolith concentrations of Li, Na, Mg, Mn, Cu, Ru and Sr were significantly different among nursery-ground populations. Together with length-at-age data, at least two nursery-ground groups contributed to each spawning population. The

  16. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Daniel F.; Urata, Chihiro; Masheder, Benjamin; Dunderdale, Gary J.; Hozumi, Atsushi, E-mail: a.hozumi@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560 (Japan); Yagihashi, Makoto [Nagoya Municipal Industrial Research Institute, Rokuban, Atsuta-ku, Nagoya 456-0058 (Japan)

    2014-05-01

    A fluorinated and hydrophobic ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyl)triethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  17. Surface Patterning: Controlling Fluid Flow Through Dolphin and Shark Skin Biomimicry

    Science.gov (United States)

    Gamble, Lawren; Lang, Amy; Bradshaw, Michael; McVay, Eric

    2013-11-01

    Dolphin skin is characterized by circumferential ridges, perpendicular to fluid flow, present from the crest of the head until the tail fluke. When observing a cross section of skin, the ridges have a sinusoidal pattern. Sinusoidal grooves have been proven to induce vortices in the cavities that can help control flow separation which can reduce pressure drag. Shark skin, however, is patterned with flexible scales that bristle up to 50 degrees with reversed flow. Both dolphin ridges and shark scales are thought to help control fluid flow and increase swimming efficiency by delaying the separation of the boundary layer. This study investigates how flow characteristics can be altered with bio-inspired surface patterning. A NACA 4412 hydrofoil was entirely patterned with transverse sinusoidal grooves, inspired by dolphin skin but scaled so the cavities on the model have the same Reynolds number as the cavities on a swimming shark. Static tests were conducted at a Reynolds number of approximately 100,000 and at varying angles of attack. The results were compared to the smooth hydrofoil case. The flow data was quantified using Digital Particle Image Velocimetry (DPIV). The results of this study demonstrated that the patterned hydrofoil experienced greater separation than the smooth hydrofoil. It is hypothesize that this could be remediated if the pattern was placed only after the maximum thickness of the hydrofoil. Funding through NSF REU grant 1062611 is gratefully acknowledged.

  18. Relationship between the surface chemical composition of implants and contact with the substrate.

    Science.gov (United States)

    Lima da Costa Valente, Mariana; Shimano, Antonio Carlos; Marcantonio Junior, Elcio; Reis, Andréa Candido Dos

    2015-02-01

    The purpose of the study was to use scanning electron microscopy and energy dispersive x-ray spectrometry to assess possible morphologic and chemical changes after performing double-insertion and pullout tests of implants of different shapes and surface treatments. Four different types of implants were used-cylindrical machined-surface implants, cylindrical double-surface-treated porous implants, cylindrical surface-treated porous implants, and tapered surface-treated porous implants-representing a total of 32 screws. The implants were inserted into synthetic bone femurs, totaling 8 samples, before performing each insertion with standardized torque. After each pullout the implants were analyzed by scanning electron microscopy and energy dispersive x-ray spectrometry using a universal testing machine and magnified 35 times. No structural changes were detected on morphological surface characterization, only substrate accumulation. As for composition, there were concentration differences in the titanium, oxygen, and carbon elements. Implants with surface acid treatment undergo greater superficial changes in chemical composition than machined implants, that is, the greater the contact area of the implant with the substrate, the greater the oxide layer change. In addition, prior manipulation can alter the chemical composition of implants, typically to a greater degree in surface-treated implants. PMID:23339297

  19. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C12-hydrocarbon SAM, C11-perfluorohydrocarbon SAM, and C11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C2H5O+, CD5+) and about 10 - 102 times lower for radical ions (like ethanol and benzene molecular ions, CD4+). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy transformed into the

  20. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  1. Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ruijin, E-mail: rjliao_lucky@163.com [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Zuo, Zhiping; Guo, Chao [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Yuan, Yuan [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Zhuang, Aoyun [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China)

    2014-10-30

    Highlights: • The micro/nano binary structured aluminum surface with superhydrophobicity was fabricated by continuous chemical etching. • The static and dynamic icing process were systematically investigated using a self-made device and artificial climate laboratory. • The cold water on as-prepared aluminum surface can aggregate into large droplets and subsequently roll off before freezing. • The as-prepared aluminum surface can reduce the freezing area as well as ice accumulation in glaze ice. • The as-prepared superhydrophobic surface has long-term stability and mechanical stability. - Abstract: Aluminum is extensively used metals in transmission lines, and the accumulation of ice on aluminum may inflict serious damage such as tower collapse and power failure. In this study, micro/nanostructured aluminum surface was fabricated using a continuous chemical etching method. The static and dynamic anti-icing behaviors of the as-prepared aluminum surface in different conditions were systematically investigated with a self-made device and artificial climate laboratory. Results showed that the as-prepared surface can mitigate freezing in glaze ice. Only several isolated ice points formed on the surface in glaze ice after 50 min. Due to the superhydrophobicity of the as-prepared aluminum surface, cold water sprayed on the surface aggregated into large drops and rolled off the surface before freezing, thus protecting the surface against excessive ice accumulation. The surface morphology and crystal structure of the samples were also characterized by scanning electron microscopy/energy-dispersive spectrometry and X-ray diffraction. This study offers insight into understanding the anti-icing behavior of the superhydrophobic aluminum surface and may favor the application of structured aluminum surface in power transmission lines against ice accumulation.

  2. Chemically Compatible Sacrificial Layer-Assisted Lift-Off Patterning Method for Fabrication of Organic Light-Emitting Displays

    Science.gov (United States)

    Choi, Wonsuk; Kim, Min-Hoi; Lee, Sin-Doo

    2011-08-01

    We developed a generic platform to pattern combinatorial functional layers composed of different classes of organic materials using a repetitive lift-off method based on a chemically compatible sacrificial layer (SL) for organic light-emitting diodes (OLEDs). The essential features come from the chemically compatible SL of a fluorous-polymer that can be generated by laser-inscription or transfer-printing. The precise registration of lateral patterns of different materials was achieved on a single substrate through a series of SL-assisted lift-off processes. The chemical compatibility of the SL and the stability of the light-emitting characteristics were shown in a fluorous-solvent treated monochrome OLEDs.

  3. Light intensity distribution calculation of curved surface diffraction patterns applied in ICF

    International Nuclear Information System (INIS)

    Conventional numerical methods of diffractive calculation are usually for the plane, and they are infeasible when the diffraction field applied in ICF is curved surface. In this paper, a method based on the idea of layering calculation, combining the algorithm of fast Fourier transform (FFT) with the technology of numerical fitting, has been proposed to calculate the light intensity distribution on the curved observation surface. This method can be applied to the surface with arbitrary shape, and it has comparatively high accuracy at fast calculation speed. The computation results show that the accuracy is improved as the layer number increases, and thus the method can effectively realize the light intensity distribution calculation of curved surface diffraction patterns applied in ICF. (authors)

  4. Surface salinity fields in the Arctic Ocean and statistical approaches to predicting anomalies and patterns

    CERN Document Server

    Chernyavskaya, Ekaterina A; Golden, Kenneth M; Timokhov, Leonid A

    2014-01-01

    Significant salinity anomalies have been observed in the Arctic Ocean surface layer during the last decade. Using gridded data of winter salinity in the upper 50 m layer of the Arctic Ocean for the period 1950-1993 and 2007-2012, we investigated the inter-annual variability of the salinity fields, attempted to identify patterns and anomalies, and developed a statistical model for the prediction of surface layer salinity. The statistical model is based on linear regression equations linking the principal components with environmental factors, such as atmospheric circulation, river runoff, ice processes, and water exchange with neighboring oceans. Using this model, we obtained prognostic fields of the surface layer salinity for the winter period 2013-2014. The prognostic fields demonstrated the same tendencies of surface layer freshening that were observed previously. A phase portrait analysis involving the first two principal components exhibits a dramatic shift in behavior of the 2007-2012 data in comparison ...

  5. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    Science.gov (United States)

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  6. Patterning and characterization of surfaces with organic and biological molecules by the scanning electrochemical microscope.

    Science.gov (United States)

    Turyan, I; Matsue, T; Mandler, D

    2000-08-01

    A novel approach for micropatterning of surfaces with organic and biological microstructures using the scanning electrochemical microscope (SECM) is described. The approach is based on the introduction of the spatial resolution by local deposition of gold particles followed by monolayer formation and functionalization. Specifically, gold patterns were deposited locally on silicon wafers with the SECM as a result of the controlled anodic dissolution of a gold microelectrode. The gold patterns were further used as microsubstrates for assembling cystamine monolayers to which either fluoresceine isothiocyanate (FIT) or glucose oxidase (GOD) were covalently attached. Characterization of the organic monolayers, as well as the biological activity of the enzyme patterns, was carried out by fluorescence microscopy and the SECM, respectively. PMID:10952523

  7. Seasonal predictability of the East Atlantic pattern from sea surface temperatures.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    Full Text Available This study analyzes the influence of sea surface temperatures (SSTs on the second mode of atmospheric variability in the north Atlantic/European sector, namely the East-Atlantic (EA pattern, for the period 1950-2012. For this purpose, lead-lag relationships between SSTs and the EA pattern, ranging from 0 to 3 seasons, were assessed. As a main result, anomalies of the EA pattern in boreal summer and autumn are significantly related to SST anomalies in the Indo-Pacific Ocean during the preceding seasons. A statistical forecasting scheme based on multiple linear regression was used to hindcast the EA-anomalies with a lead-time of 1 to 2 months. The results of a one-year-out cross-validation approach indicate that the phases of the EA in summer and autumn can be properly hindcast.

  8. Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface

    Science.gov (United States)

    Parisen Toldin, Francesco; Tröndle, Matthias; Dietrich, S.

    2015-06-01

    Recent experimental realizations of the critical Casimir effect have been implemented by monitoring colloidal particles immersed in a binary liquid mixture near demixing and exposed to a chemically structured substrate. In particular, critical Casimir forces have been measured for surfaces consisting of stripes with periodically alternating adsorption preferences, forming chemical steps between them. Motivated by these experiments, we analyze the contribution of such chemical steps to the critical Casimir force for the film geometry and within the Ising universality class. By means of Monte Carlo simulations, mean-field theory and finite-size scaling analysis we determine the universal scaling function associated with the contribution to the critical Casimir force due to individual, isolated chemical steps facing a surface with homogeneous adsorption preference or with Dirichlet boundary condition. In line with previous findings, these results allow one to compute the critical Casimir force for the film geometry and in the presence of arbitrarily shaped, but wide stripes. In this latter limit the force decomposes into a sum of the contributions due to the two homogeneous parts of the surface and due to the chemical steps between the stripes. We assess this decomposition by comparing the resulting sum with actual simulation data for the critical Casimir force in the presence of a chemically striped substrate.

  9. Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup

    International Nuclear Information System (INIS)

    A new approach for the generation of large-area periodic surface structures on different materials, like polymers and semiconductors, by direct laser ablation is presented. The surfaces were illuminated with the interference pattern emerging in close proximity behind a laser irradiated phase mask. In the experiments, nanosecond and picosecond laser pulses at 248 nm were applied. To prevent contamination or damage of the phase mask caused by the ablated material, the mask is protected by a thin water film or a thin quartz plate. In addition we present a technique to eliminate a lateral variation of the generated structures due to insufficient alignment precision of the workpiece.

  10. Chemical profiles of body surfaces and nests from six Bornean stingless bee species.

    Science.gov (United States)

    Leonhardt, Sara Diana; Blüthgen, Nico; Schmitt, Thomas

    2011-01-01

    Stingless bees (Apidae: Meliponini) are the most diverse group of Apid bees and represent common pollinators in tropical ecosystems. Like honeybees they live in large eusocial colonies and rely on complex chemical recognition and communication systems. In contrast to honeybees, their ecology and especially their chemical ecology have received only little attention, particularly in the Old World. We previously have analyzed the chemical profiles of six paleotropical stingless bee species from Borneo and revealed the presence of species-specific cuticular terpenes- an environmentally derived compound class so far unique among social insects. Here, we compared the bees' surface profiles to the chemistry of their nest material. Terpenes, alkanes, and alkenes were the dominant compound groups on both body surfaces and nest material. However, bee profiles and nests strongly differed in their chemical composition. Body surfaces thus did not merely mirror nests, rendering a passive compound transfer from nests to bees unlikely. The difference between nests and bees was particularly pronounced when all resin-derived compounds (terpenes) were excluded and only genetically determined compounds were considered. When terpenes were included, bee profiles and nest material still differed, because whole groups of terpenes (e.g., sesquiterpenes) were found in nest material of some species, but missing in their chemical profile, indicating that bees are able to influence the terpene composition both in their nests and on their surfaces. PMID:21165680

  11. Superhydrophobic Surface by Replication of Laser Micromachined Pattern in Epoxy/Alumina Nanoparticle Composite

    Directory of Open Access Journals (Sweden)

    Maciej Psarski

    2014-01-01

    Full Text Available Superhydrophobic surfaces were obtained by superposition of microstructure—defined by replication of laser micromachined masters, with nanostructure—created by durable epoxy/γ-Al2O3 nanoparticle composite, used for replication. Hierarchical surface topography thus obtained consisted of hexagonally spaced microcavities and nanoparticle agglomerates, exposed on the replica surface by radio frequency (RF air plasma etching. Surface topography was further enhanced by rims around the microcavity edges, resulting from nanosecond laser micromachining defects in aluminum masters. Subsequent wet chemical hydrophobization with 1H,1H,2H,2H-perfluorotetradecyltriethoxysilane (PFTDTES provided superhydrophobic behavior in replicas with a microcavity spacing of 30 μm, as indicated by a water contact angle of 160° and a sliding angle of 8°. The preparation method is relatively simple, inexpensive, and potentially scalable.

  12. Nanoscale pattern formation at surfaces under ion-beam sputtering: A perspective from continuum models

    International Nuclear Information System (INIS)

    Although reports on surface nanostructuring of solid targets by low to medium energy ion irradiation date back to the 1960s, only with the advent of high resolution tools for surface/interface characterization has the high potential of this procedure been recognized as a method for efficient production of surface patterns. Such morphologies are made up of periodic arrangements of nanometric sized features, like ripples and dots, with interest for technological applications due to their electronic, magnetic, and optical properties. Thus, roughly for the last ten years large efforts have been directed towards harnessing this nanofabrication technique. However, and particularly in view of recent experimental developments, we can say that the basic mechanisms controlling these pattern formation processes remain poorly understood. The lack of nanostructuring at low angles of incidence on some pure monoelemental targets, the role of impurities in the surface dynamics and other recent observations are challenging the classic view on the phenomenon as the mere interplay between the curvature dependence of the sputtering yield and surface diffusion. We review the main attempts at a theoretical (continuum) description of these systems, with emphasis on recent developments. Strong hints already exist that the nature of the morphological instability has to be rethought as originating in the material flow that is induced by the ion beam.

  13. Enhancing Liquid Micro-volume Mixing with Wettability-Patterned Surfaces

    Science.gov (United States)

    Morrissette, Jared; Sinha Mahapatraa, Pallab; Ganguly, Ranjan; Megaridis, Constantine; Uic-Mnftl Team

    2015-11-01

    Self-driven surface micromixers (SDSM) based on patterned wettability technology provide an elegant solution for low-cost point-of-care (POC) devices and lab-on-a-chip (LOC) applications. Our SDSMs are fabricated by strategically patterning three wettable wedge-shaped tracks onto a non-wettable surface. Current state-of-the-art micromixers require energy, however, our SDSMs utilize the inherent surface energy of liquids, coupled with wettability contrast to efficiently mix small amounts of liquids (e.g. droplets). Transport and mixing of the SDSMs is accomplished by means of Laplace pressure-driven flow and several mixing approaches, such as splitting-recombining, stretching-folding, and transversal vortices. Mixing is initiated when separate liquid micro-volumes are transported along respective, juxtaposed wettable tracks. As the liquid micro-volumes coalesce, subsequent mixing occurs during transport of the combined volume over a third separate wettable track that also features a non-wettable ``island.'' The two-dimensional island disrupts the flow of liquids, in a similar manner a three-dimensional obstacle would, thus generating the aforementioned mixing enhancement. Several SDSMs, each having different island geometries, were investigated, giving rise to a greater understanding of efficient mixing on surfaces. The study offers a design basis for developing a low-cost surface microfluidic mixing device on various substrates.

  14. The evaporation and wetting dynamics of sessile water droplets on submicron-scale patterned silicon hydrophobic surfaces

    International Nuclear Information System (INIS)

    The evaporation characteristics of 1 µl sessile water droplets on hydrophobic surfaces are experimentally examined. The proposed hydrophobic surfaces are composed of submicron diameter and 4.2 µm height silicon post arrays. A digital image analysis algorithm was developed to obtain time-dependent contact angles, contact diameters, and center heights for both non-patterned polydimethylsiloxane (PDMS) surfaces and patterned post array surfaces, which have the same hydrophobic contact angles. While the contact angles exhibit three distinct stages during evaporation in the non-patterned surface case, those in the patterned silicon post array surface case decrease linearly. In the case of post array hydrophobic surfaces, the initial contact diameter remains unchanged until the portion of the droplet above the posts completely dries out. The edge shrinking velocity of the droplet shows nonlinear characteristics, and the velocity magnitude increases rapidly near the last stage of evaporation.

  15. Estimating the sensitivity of regional dust sources to sea surface temperature patterns

    Science.gov (United States)

    Hoffman, Alexis L.; Forest, Chris E.; Li, Wei

    2014-09-01

    Exploring the impact of sea surface temperature (SST) anomaly patterns on local climate in major dust source regions helps clarify our understanding of variability in the global dust cycle. In contrast to previous work, this research focuses explicitly on the influence of SST anomalies on dust emissions and attempts to explain the mechanisms by which SST anomalies affect seasonal dust emissions. This study investigates the seasonal sensitivity of mineral aerosol emissions to SST anomaly patterns from the Bodele Depression, West Africa, Sahel, Kalahari Desert, Arabian Desert, and Lake Eyre basin. The global teleconnection operator, which relates regional climate responses to SST anomaly patterns, is estimated for relevant variables in an ensemble of the National Center for Atmospheric Research Community Atmosphere Model version 5 forced by randomly perturbed climatological SST fields. Variability in dust emissions from major dust sources is linked to tropical SST anomalies, particularly in the Indian and western Pacific Oceans. Teleconnections excited by remote SST anomalies typically impact dust emissions via changes in near-surface wind speeds and friction velocity. However, SST-driven impacts on the threshold friction velocity can be of the same order of magnitude as changes in the friction velocity, suggesting the impact of SST anomalies on precipitation and soil moisture is also significant. Identifying SST anomaly patterns as a component of internal variability in regional dust emissions helps characterize human influences on the dust cycle as well as improve predictions of climate, nutrient cycles, and human environments.

  16. [Testing Research of Transient Temperature Distribution for the Barrel Surface by Speckle Pattern Interferometry].

    Science.gov (United States)

    Lang, Wen-jie; Chen, Guo-guang; Tian, Xiao-li; Xin, Chang-fan

    2016-02-01

    There are some problems in the traditional transient temperature test equipment. The thermal inertia is great, and can only be a single point of detection. To be able to achieve real-time monitoring for transient temperature distribution change of the gun body surface, the test system for transient temperature distribution was designed based on Speckle Pattern Interferometry (SPI) and spectroscopy. In the system, transient temperature change of the barrel led to slight deformation, and it was converted into speckle interference fringes by SPI technology. Spectral distribution function was obtained by the interference fringes by the Fourier transform, so the information of interference fringe deformation was incorporated into the frequency domain. The data of temperature distribution can be inverted on any sampling time by spectral distribution function. In experiments, the ZX-FB1 fiber optic thermometer was used to test transient temperature on a single point as the standard value. The center wavelength of the laser was 555 nm, and the speckle pattern interference fringes were collected by area array CCD. Image Recognition-Speckle Pattern Interferometry (IR-SPI) and Fourier Transform-Speckle Pattern Interferometry (FT-SPI) were used in experiments, the calculation of transient temperature was completed through two methods. Experimental results are that both methods can achieve transient temperature detection. But the FT-SPI is higher in terms of accuracy, and it can effectively overcome the gross error caused by the surface defects, paint wear and other similar problems. PMID:27209730

  17. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers

    Institute of Scientific and Technical Information of China (English)

    Li-hua TENG; Tian-di TANG

    2008-01-01

    In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.

  18. Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Suter, Jonathan D.; Bernacki, Bruce E.; Johnson, Timothy J.

    2012-09-01

    Reliable active and passive hyperspectral imaging and detection of explosives and solid-phase chemical residue on surfaces remains a challenge and an active area of research and development. Both methods rely on reference libraries for material identification, but in many cases the reference spectra do not sufficiently resemble those instrumental signals scattered from real-world objects. We describe a physics-based model using the dispersive complex dielectric constant to explain what is often thought of as anomalous behavior of scattered or non-specular signatures encountered in active and passive sensing of explosives or chemicals on surfaces and show modeling and experimental results for RDX.

  19. Partial discharge patterns related to surface deterioration in voids in epoxy

    OpenAIRE

    Holbøll, Joachim; Henriksen, Mogens

    1990-01-01

    Results are presented from an investigation of the relationship between changes in partial discharge patterns and the surface deterioration process taking place in small naturally formed spherical voids in epoxy plastic. The voids were exposed to a moderate electric stress above inception level, where partial discharges were present for more than 1500 h. Two types of electrical tree growth were found, the bush like tree and a single channel-like tree, which led to very different partial disch...

  20. First thoughts on surface tonal patterns in Amawaka, a Panoan language of Peru and Brazil

    OpenAIRE

    2014-01-01

    Amawaka ([ɑmɨ̃ˈwɐkɑ]) is a highly endangered and underdocumented tonal language of the Headwaters (Fleck 2011) subgroup of the Panoan family in the Southwest Amazon Basin, spoken by approximately 200 people. Undocumented phonetic and phonological phenomena of Amawaka include its tonal structure, both in terms of surface realizations and the patterns underlying these realizations. Original audiovisual data from the author’s fieldwork in various Amawaka communities at the Peru-Brazil border wil...

  1. Nanostripe patterning of glass surface by nanoimprint using self-organized oxide mold

    International Nuclear Information System (INIS)

    We investigated nanoscale surface modifications of silicate glass plates by applying a thermal nanoimprint technique, in which self-organized nanopattern molds of sapphire (α-Al2O3 single crystal) wafer were used. Nanopatterns of the sapphire mold exhibited regularly arranged straight atomic-steps with a uniform height of 0.2 nm and atomically flat terraces about 80 nm in width. We succeeded in forming subnanometer-stepped surfaces of glass. By pressing the glass plate over the mold and then slowly cooling (3 oC/min), a three-dimensional nanostriped pattern (periodic distance of 60-85 nm and peak-to-valley height of 8 nm) was obtained on the glass plate. Softening behavior of the nanopatterned glass morphology was observed at temperatures about 20 deg. C lower than the glass transition temperature of the bulk glass. The Vickers hardness of the nanostriped glass was estimated to be higher than that of non-patterned glass, and the surface of the nanostriped glass was more hydrophobic than that of non-patterned glass.

  2. Wetting transitions on patterned surfaces with diffuse interaction potentials embedded in a Young-Laplace formulation

    Science.gov (United States)

    Pashos, G.; Kokkoris, G.; Papathanasiou, A. G.; Boudouvis, A. G.

    2016-01-01

    The Minimum Energy Paths (MEPs) of wetting transitions on pillared surfaces are computed with the Young-Laplace equation, augmented with a pressure term that accounts for liquid-solid interactions. The interactions are smoothed over a short range from the solid phase, therefore facilitating the numerical solution of problems concerning wetting on complex surface patterns. The patterns may include abrupt geometric features, e.g., arrays of rectangular pillars, where the application of the unmodified Young-Laplace is not practical. The MEPs are obtained by coupling the augmented Young-Laplace with the modified string method from which the energy barriers of wetting transitions are eventually extracted. We demonstrate the method on a wetting transition that is associated with the breakdown of superhydrophobic behavior, i.e., the transition from the Cassie-Baxter state to the Wenzel state, taking place on a superhydrophobic pillared surface. The computed energy barriers quantify the resistance of the system to these transitions and therefore, they can be used to evaluate superhydrophobic performance or provide guidelines for optimal pattern design.

  3. COSMO-RSC: Second-Order Quasi-Chemical Theory Recovering Local Surface Correlation Effects.

    Science.gov (United States)

    Klamt, A

    2016-03-31

    The conductor-like screening model for realistic solvation (COSMO-RS) was introduced 20 years ago and meanwhile has become an important tool for the prediction of fluid phase equilibrium properties. Starting from quantum chemical information about the surface polarity of solutes and solvents, it solves the statistical thermodynamics of molecules in liquid phases by the very efficient approximation of independently pairwise interacting surfaces, which meanwhile was shown to be equivalent to Guggenheim's quasi-chemical theory. One of the basic limitations of COSMO-RS, as of any quasi-chemical model, is the neglect of neighbor information, i.e., of local correlations of surface types on the molecular surface. In this paper we present the completely novel concept of using the first-order COSMO-RS contact probabilities for the construction of local surface correlation functions. These are fed as an entropic correction for the pair interactions into a second COSMO-RS self-consistency loop, which yields new contact probabilities, enthalpies, free energies and activity coefficients recovering much of the originally lost neighbor effects. By a novel analytic correction for concentration dependent interactions, the resulting activity coefficients remain exactly Gibbs-Duhem consistent. The theory is demonstrated on the example of a lattice Monte Carlo fluid of dimerizing pseudomolecules. In this showcase the strong deviations of the lattice Monte Carlo fluid from quasi-chemical theory are almost perfectly reproduced by COSMO-RSC. PMID:26963690

  4. Chemical factor patterns and leachability of incinerator and industrial stack solids

    International Nuclear Information System (INIS)

    The research being done under the IAEA Solid Wastes CRP is one part of a research program which is directed to study the environmental behaviour of selected inorganic components, their accumulation in the human body and environmental health assessment. Specimens selected for study include solid waste residues from industry, from municipal garbage, sewage and hospital incinerators nearby contaminated soil and surface deposits, water and sediments, atmospheric wet deposition, airborne particulate matter and emission stack fly ash, laboratory animal tissues, wild life specimens, and human scalp hair. The overall objectives include: (i) characterization of pollution sources through trace elements concentration patterns (or 'factors'), (ii) identification of toxic elements which are concentrated in solid wastes, aerosols or human tissues (iii) attempts to estimate pollution source contributions to the general environment, (iv) consideration of the bioavailability of selected elements of environmental health significance and (v) selection of suitable bioindicators of environmental pollution. (For the purpose of this solid wastes RCM only those experiments concerned with wastes and aerosols are presented). (author). 5 refs, 5 tabs

  5. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  6. The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties

    Science.gov (United States)

    Gold, T.; Bilson, E.; Baron, R. L.

    1976-01-01

    The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil.

  7. Evaluation of carbon fiber surface treated by chemical and cold plasma processes

    Directory of Open Access Journals (Sweden)

    Liliana Burakowski Nohara

    2005-09-01

    Full Text Available Sized PAN-based carbon fibers were treated with hydrochloric and nitric acids, as well as argon and oxygen cold plasmas, and the changes on their surfaces evaluated. The physicochemical properties and morphological changes were investigated by atomic force microscopy (AFM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, tensile strength tests and Raman spectroscopy. The nitric acid treatment was found to cause the most significant chemical changes on the carbon fiber surface, introducing the largest number of chemical groups and augmenting the roughness. The oxygen plasma treatments caused ablation of the carbon fiber surface, removing carbon atoms such as CO and CO2 molecules. In addition, the argon plasma treatment eliminated defects on the fiber surface, reducing the size of critical flaws and thus increasing the fiber's tensile strength.

  8. Negative-tone block copolymer lithography by in situ surface chemical modification.

    Science.gov (United States)

    Kim, Bong Hoon; Byeon, Kyeong-Jae; Kim, Ju Young; Kim, Jinseung; Jin, Hyeong Min; Cho, Joong-Yeon; Jeong, Seong-Jun; Shin, Jonghwa; Lee, Heon; Kim, Sang Ouk

    2014-10-29

    Negative-tone block copolymer (BCP) lithography based on in situ surface chemical modification is introduced as a highly efficient, versatile self-assembled nanopatterning. BCP blends films consisting of end-functionalized low molecular weight poly(styrene-ran-methyl methacrylate) and polystyrene-block-Poly(methyl methacylate) can produce surface vertical BCP nanodomains on various substrates without prior surface chemical treatment. Simple oxygen plasma treatment is employed to activate surface functional group formation at various substrates, where the end-functionalized polymers can be covalently bonded during the thermal annealing of BCP thin films. The covalently bonded brush layer mediates neutral interfacial condition for vertical BCP nanodomain alignment. This straightforward approach for high aspect ratio, vertical self-assembled nanodomain formation facilitates single step, site-specific BCP nanopatterning widely useful for various substrates. Moreover, this approach is compatible with directed self-assembly approaches to produce device oriented laterally ordered nanopatterns. PMID:24912807

  9. Exploring consumer exposure pathways and patterns of use for chemicals in the environment

    DEFF Research Database (Denmark)

    Dionisio, Kathie L.; Frame, Alicia M.; Goldsmith, Michael-Rock;

    2015-01-01

    (CPCat), a new, publically available (http://actor.epa.gov/cpcat) database of information on chemicals mapped to “use categories” describing the usage or function of the chemical. CPCat was created by combining multiple and diverse sources of data on consumer- and industrial-process based chemical uses...

  10. Comprehensive investigation of the corrosion and surface chemical effects of the decontamination technologies

    International Nuclear Information System (INIS)

    Decontamination technologies are mainly developed to reduce the collective dose of the maintenance personnel at NPPs. The highest efficiency (i.e., the highest DF values) available without detrimental modification of the treated surface of structural material is the most important goal in the course of the application of a decontamination technology. A so-called 'soft' chemical decontamination technology has been developed - supported by the Paks Nuclear Power Plant - at the Institute of Radiochemistry and Radioecology of the University of Pannonia. The novel base technology can be effectively applied for the decontamination of the heat exchanger tubes of steam generators. In addition, by optimizing the main technological parameters (temperature, concentration of the liquid chemicals, flow rates, contact time, etc.) it can be utilized for specific applications such as decontamination of some dismountable devices and separable equipment or the total decontamination prior to plant dismantling (decommissioning) in the future. The aim of this work is to compare the efficiency, corrosion and surface chemical effects of some improved versions of the novel base-technology elaborated for decontamination of austenitic stainless steel surfaces. The experiments have been performed at laboratory conditions in decontamination model systems. The applied methods: γ-spectrometry, ICP-OES, voltammetry and SEM-EDX. The experimental results revealed that the efficiency of the base-technology mainly depends on the surface features of the stainless steel samples such as the chemical composition and thickness of the oxide layer, the nature (quantity, morphology and chemical composition) of the crystalline deposits. It has been documented that the improved version of the base-technology are suitable for the decontamination of both steel surfaces covered by chemically resistant large Cr-content crystals and that having compact oxide-layers (up to a thickness of 10

  11. Vegetation of stormwater basins : flora inventory and physico-chemical characterization of vegetated surface

    OpenAIRE

    Saulais, Muriel

    2011-01-01

    Urban stormwater basins surfaces can be highly contaminated and can be spontaneously or intentionaly vegetated. The aim of this work is to better characterize the role of the vegetation on heavy metal (Zn, Cd, Cu) mobility. Firstly, vegetation inventory has pointed out the high species diversity in these devices (from ruderal vegetation to wetland plants). Then, a physico-chemical characterization of surface samples vegetated by dominant species has been carried out. We have shown that carbon...

  12. Effect of treatment temperature on surface wettability of methylcyclosiloxane layer formed by chemical vapor deposition

    Science.gov (United States)

    Ishizaki, Takahiro; Sasagawa, Keisuke; Furukawa, Takuya; Kumagai, Sou; Yamamoto, Erina; Chiba, Satoshi; Kamiyama, Naosumi; Kiguchi, Takayoshi

    2016-08-01

    The surface wettability of the native Si oxide surfaces were tuned by chemical adsorption of 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) molecules through thermal CVD method at different temperature. Water contact angle measurements revealed that the water contact angles of the TMCTS-modified Si oxide surfaces at the temperature of 333-373 K were found to be in the range of 92 ± 2-102 ± 2°. The advancing and receding water contact angle of the surface prepared at 333 K were found to be 97 ± 2/92 ± 2°, showing low contact angle hysteresis surface. The water contact angles of the surfaces prepared at the temperature of 373-413 K increased with an increase in the treatment temperature. When the treatment temperature was more than 423 K, the water contact angles of TMCTS-modified surfaces were found to become more than 150°, showing superhydrophobic surface. AFM study revealed that the surface roughness of the TMCTS-modified surface increased with an increase in the treatment temperature. This geometric morphology enhanced the surface hydrophobicity. The surface roughness could be fabricated due to the hydrolysis/condensation reactions in the gas phase during CVD process. The effect of the treatment temperature on the reactivity of the TMCTS molecules were also investigated using a thermogravimetric analyzer.

  13. Stress relief patterns of hydrogenated amorphous carbon films grown by dc-pulse plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Hydrogenated amorphous carbon films were prepared on Si (1 0 0) substrates by dc-pulse plasma chemical vapor deposition. The nature of the deposited films was characterized by Raman spectra and the stress relief patterns were observed by scanning electron microscope. Besides the well-known sinusoidal type and flower type patterns, etc., two different stress relief patterns, ring type and peg-top shape with exiguous tine on the top, were observed. The ring type in this paper was a clear ridge-cracked buckle and unusual. Two competing buckle delamination morphologies ring and sinusoidal buckling coexist. The ridge-cracked buckle in ring type was narrower than the sinusoidal buckling. Meanwhile peg-top shape with exiguous tine on the top in this paper was unusual. These different patterns supported the approach in which the stress relief forms have been analyzed using the theory of plate buckling.

  14. Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment

    Science.gov (United States)

    Vautard, F.; Ozcan, S.; Paulauskas, F.; Spruiell, J. E.; Meyer, H.; Lance, M. J.

    2012-11-01

    Carbon fibers made of textile and aerospace grade polyacrylonitrile precursor fibers were surface treated by a continuous gas phase thermochemical treatment. The surface chemistry generated by the surface treatment was characterized by X-ray photoelectron spectroscopy. The surface and the average entire microstructure of the fibers were characterized by Raman spectroscopy and X-ray diffraction, respectively. Depending on the grade of the precursor, the final surface concentration of oxygen was comprised between 14% and 24%, whereas the typical commercial electrochemical surface treatments led to concentrations of around 8% with the same fibers. The final concentration of oxygen was directly correlated to the size of the crystallites which was a function of the grade of the polyacrylonitrile precursor and to the corresponding surface microstructure. The thermochemical surface treatment enabled a better control of the nature of the oxygen-containing functionalities as well. Whatever the grade of the precursor, desired hydroxyl groups and carboxylic acid functionalities were preferably generated, which is observed to be difficult with electrochemical surface treatments.

  15. Patterning highly ordered arrays of complex nanofeatures through EUV directed polarity switching of non chemically amplified photoresist

    Science.gov (United States)

    Ghosh, Subrata; Satyanarayana, V. S. V.; Pramanick, Bulti; Sharma, Satinder K.; Pradeep, Chullikkattil P.; Morales-Reyes, Israel; Batina, Nikola; Gonsalves, Kenneth E.

    2016-03-01

    Given the importance of complex nanofeatures in the filed of micro-/nanoelectronics particularly in the area of high-density magnetic recording, photonic crystals, information storage, micro-lens arrays, tissue engineering and catalysis, the present work demonstrates the development of new methodology for patterning complex nanofeatures using a recently developed non-chemically amplified photoresist (n-CARs) poly(4-(methacryloyloxy)phenyl)dimethylsulfoniumtriflate) (polyMAPDST) with the help of extreme ultraviolet lithography (EUVL) as patterning tool. The photosensitivity of polyMAPDST is mainly due to the presence of radiation sensitive trifluoromethanesulfonate unit (triflate group) which undergoes photodegradation upon exposure with EUV photons, and thus brings in polarity change in the polymer structure. Integration of such radiation sensitive unit into polymer network avoids the need of chemical amplification which is otherwise needed for polarity switching in the case of chemically amplified photoresists (CARs). Indeed, we successfully patterned highly ordered wide-raging dense nanofeatures that include nanodots, nanowaves, nanoboats, star-elbow etc. All these developed nanopatterns have been well characterized by FESEM and AFM techniques. Finally, the potential of polyMAPDST has been established by successful transfer of patterns into silicon substrate through adaptation of compatible etch recipes.

  16. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  17. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Science.gov (United States)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  18. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    International Nuclear Information System (INIS)

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH2), carboxyl (-COOH) and methyl (-CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH2) can absorb more proteins than these modified with more hydrophobic functional group (-CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH2 modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  19. Inspired superhydrophobic surfaces by a double-metal-assisted chemical etching route

    International Nuclear Information System (INIS)

    Graphical abstract: A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces, showing a good superhydrophobicity with the contact angle of about 170°, and the sliding angle of about 0°. Meanwhile, the potential formation mechanism about it is also presented. Highlights: ► A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces. ► The obtained surfaces show good superhydrophobicity with a high contact angle and low sliding angle. ► The color of the etched substrate dark brown or black and it is so-called black silicon. -- Abstract: Silicon substrates treated by metal-assisted chemical etching have been studied for many years since they could be employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors and detectors. However, to the best of our knowledge, the chemical etching treatment on the same silicon substrate with the assistance of two or more kinds of metals has not been reported. In this paper, we mainly focus on the etching time and finally obtain a series of superhydrophobic silicon surfaces with novel etching structures through two successive etching processes of Cu-assisted and Ag-assisted chemical etching. It is shown that large-scale homogeneous but locally irregular wire-like structures are obtained, and the superhydrophobic surfaces with low hysteresis are prepared after the modifications with low surface energy materials. It is worth noting that the final silicon substrates not only possess high static contact angle and low hysteresis angle, but also show a black color, indicating that the superhydrophobic silicon substrate has an extremely low reflectance in a certain range of wavelengths. In our future work, we will go a step further to discuss the effect of temperature, the size of Cu nanoparticles and solution concentration on the final topography and superhydrophobicity.

  20. Liquid-vapor transition on patterned solid surfaces in a shear flow.

    Science.gov (United States)

    Yao, Wenqi; Ren, Weiqing

    2015-12-28

    Liquids on a solid surface patterned with microstructures can exhibit the Cassie-Baxter (Cassie) state and the wetted Wenzel state. The transitions between the two states and the effects of surface topography, surface chemistry as well as the geometry of the microstructures on the transitions have been extensively studied in earlier work. However, most of these work focused on the study of the free energy landscape and the energy barriers. In the current work, we consider the transitions in the presence of a shear flow. We compute the minimum action path between the Wenzel and Cassie states using the minimum action method [W. E, W. Ren, and E. Vanden-Eijnden, Commun. Pure Appl. Math. 57, 637 (2004)]. Numerical results are obtained for transitions on a surface patterned with straight pillars. It is found that the shear flow facilitates the transition from the Wenzel state to the Cassie state, while it inhibits the transition backwards. The Wenzel state becomes unstable when the shear rate reaches a certain critical value. Two different scenarios for the Wenzel-Cassie transition are observed. At low shear rate, the transition happens via nucleation of the vapor phase at the bottom of the groove followed by its growth. At high shear rate, in contrary, the nucleation of the vapor phase occurs at the top corner of a pillar. The vapor phase grows in the direction of the flow, and the system goes through an intermediate metastable state before reaching the Cassie state. PMID:26723696

  1. Spin-patterned plasmonics: towards optical access to topological-insulator surface states.

    Science.gov (United States)

    Spektor, Grisha; David, Asaf; Bartal, Guy; Orenstein, Meir; Hayat, Alex

    2015-12-14

    Topological insulators (TI) are new phases of matter with topologically protected surface states (SS) possessing novel physical properties such as spin-momentum locking. Coupling optical angular momentum to the SS is of interest for both fundamental understanding and applications in future spintronic devices. However, due to the nanoscale thickness of the surface states, the light matter interaction is dominated by the bulk. Here we propose and experimentally demonstrate a plasmonic cavity enabling both nanoscale light confinement and control of surface plasmon-polariton (SPP) spin angular momentum (AM)--towards coupling to topological-insulator SS. The resulting SPP field components within the cavity are arranged in a chess-board-like pattern. Each chess-board square exhibits approximately a uniform circular polarization (spin AM) of the local in-plane field interleaved by out-of-plane field vortices (orbital AM). As the first step, we demonstrate the predicted pattern experimentally by near-field measurements on a gold-air interface, with excellent agreement to our theory. Our results pave the way towards efficient optical access to topological-insulator surface states using plasmonics. PMID:26699065

  2. UV Direct Laser Interference Patterning of polyurethane substrates as tool for tuning its surface wettability

    Science.gov (United States)

    Estevam-Alves, Regina; Günther, Denise; Dani, Sophie; Eckhardt, Sebastian; Roch, Teja; Mendonca, Cleber R.; Cestari, Ismar N.; Lasagni, Andrés F.

    2016-06-01

    Direct Laser Interference Patterning (DLIP) is a versatile tool for the fabrication of micro and sub-micropatterns on different materials. In this work, DLIP was used to produce periodic surface structures on polyurethane (PU) substrates with spatial periods ranging from 0.5 to 5.0 μm. The influence of the laser energy density on the quality and topographical characteristics of the produced micropatterns was investigated. To characterize the surface topography of the produced structures, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Confocal Microscopy (CFM) were utilized. It was found that high quality and defect free periodic line-like patterns with spatial periods down to 500 nm could be fabricated, with structure depths between 0.88 up to 1.25 μm for spatial periods larger than 2.0 μm and up to 270 nm for spatial periods between 500 nm and 1.0 μm. Measurements of the contact angle of water on the treated surface allowed to identify an anisotropic wetting behavior depending mainly on the spatial period and filling factor of the structured surfaces.

  3. Coupling frontal photopolymerization and surface instabilities for a novel 3D patterning technology

    Science.gov (United States)

    Vitale, Alessandra; Hennessy, Matthew; Matar, Omar; Douglas, Jack; Cabral, João

    2015-03-01

    Patterning of soft matter provides an exceptional route for the generation of micro/nanostructured and functional surfaces. We describe a new 3D fabrication process based on coupling frontal photopolymerization (FPP) with precisely controlled, yet spontaneous, interfacial wrinkling. FPP is a complex spatio-temporal process that can lead to well-defined propagating fronts of network formation, both stable and unstable. We investigate this process focusing on the interfacial monomer-to-polymer conversion profile and its wave propagation. A simple coarse-grained model is found to describe remarkably well the planar frontal logarithmic kinetics, capturing the effects of UV light exposure time (or dose) and temperature, as well as the front position. In defined conditions, surface instabilities are introduced and interfere with wave planarity, resulting in the formation of ``minimal'' surfaces with complex 3D geometries. Building on this understanding on the propagation of wavefronts of network formation during photopolymerization, we demonstrate the design and fabrication of 3D patterned polymer materials with tunable shapes with optical and surface functionality.

  4. Electrical and chemical passivation of SiC surfaces by halogen termination

    Energy Technology Data Exchange (ETDEWEB)

    Schoell, Sebastian; Hoeb, Marco; Auernhammer, Marianne; Howgate, John; Brandt, Martin S.; Stutzmann, Martin; Sharp, Ian D. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    Despite the technological maturity of SiC, few methods of chemical and electronic passivation of its surfaces are available. Treatment of SiC with HF yields OH-terminated surfaces with high defect densities. Here, we demonstrate plasma processing methods which yield F- and Cl-terminated (0001) 6H-SiC surfaces. X-ray photoelectron spectroscopy (XPS) reveals a significant reduction of oxygen, and corresponding increase of F- or Cl-core level intensities, following halogen termination. XPS core level shifts are consistent with surface photovoltage (SPV) measurements which show approximately flat band surface potentials (<50 meV). Temperature programmed desorption (TPD) was performed and exhibited sharp peaks above 600 C, indicating covalent surface termination rather than sub-surface incorporation of F and Cl. Measurements of both XPS and SPV as a function of ambient exposure time reveal slow oxidation with the magnitude of surface band bending increasing with time constants of approximately 40 hrs. Thus, halogen termination of SiC provides a practical method for both electronic and chemical passivation which has the potential to improve existing technological processes. Furthermore, this work offers the possibility for formation of self-assembled organic monolayers based on fluorine and chlorine chemistry.

  5. Effective reactive surface area: An anisotropic property of physically and chemically heterogeneous porous media

    International Nuclear Information System (INIS)

    Although transport calculations are often formulated in terms of mass-based isotropic distribution coefficients, it is the abundance of reactive surface areas of subsurface materials that controls contaminant adsorption. In water-saturated homogeneous systems devoid of advective fluxes (e.g., batch experiments), the available reactive surface area is similar to the total surface area (as measured by conventional methods such as BET gas adsorption). However, in physically and chemically heterogeneous systems with advective fluxes, the effective reactive surface area (i.e., the surface area that a packet of advecting water interacts with) is smaller than the laboratory measured surface area and is a complex function of advective velocity and the correlation structures of the physical and chemical heterogeneities. Theoretical derivations for an important but simple type of heterogeneity (fine-scale horizontal layering) suggest that the effective reactive surface area is an anisotropic property of the medium and is inversely correlated with the anisotropy in hydraulic conductivity. The implications of reactive transport anisotropy include the concept that the retardation factor should be treated as a directional property rather than being treated as a constant. Furthermore, because of the inverse relationship between effective reactive surface area and hydraulic conductivity, batch adsorption experiments tend to overestimate the retention of contaminants relative to intact natural materials

  6. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures

    Science.gov (United States)

    Marshall, Gareth J.; Thompson, David W. J.

    2016-04-01

    We investigate the impact that the four principal large-scale patterns of Southern Hemisphere (SH) atmospheric circulation variability have on Antarctic surface air temperature (SAT): (1) the southern baroclinic annular mode (BAM), which is associated with variations in extratropical storm amplitude; (2) the Southern Annular Mode (SAM), associated with latitudinal shifts in the midlatitude jet; and (3) the two Pacific-South American patterns (PSA1 and PSA2), which are characterized by wave trains originating in the tropical Pacific that extend across the SH extratropics. A key aspect is the use of 35 years of daily observations and reanalysis data, which affords a sufficiently large sample size to assess the signatures of the circulation patterns in both the mean and variability of daily mean SAT anomalies. The BAM exerts the weakest influence on Antarctic SAT, albeit it is still important over select regions. Consistent with previous studies, the SAM is shown to influence SAT across most of the continent throughout the year. The PSA1 also affects SAT across almost all of Antarctica. Regionally, both PSA patterns can exert a greater impact on SAT than the SAM but also have a significantly weaker influence during summer, reflecting the seasonality of the SH response to El Niño-Southern Oscillation. The SAM and PSA patterns have distinct signatures in daily SAT variance that are physically consistent with their signatures in extratropical dynamic variability. The broad-scale climate linkages identified here provide benchmarks for interpreting the Antarctic climate response to future changes in tropical sea surface temperatures, ozone recovery, and greenhouse gas increases.

  7. Heterogeneous surface displacement pattern at the Hatchobaru geothermal field inferred from SAR interferometry time-series

    Science.gov (United States)

    Ishitsuka, Kazuya; Tsuji, Takeshi; Matsuoka, Toshifumi; Nishijima, Jun; Fujimitsu, Yasuhiro

    2016-02-01

    We estimated surface displacements using persistent scatterer SAR interferometry (PS-InSAR) around the Hatchobaru geothermal field, Japan, from 18 ALOS/PALSAR images acquired from July 2007 to December 2010. Generally, geothermal fields, covered with natural targets such as rocky terrain and vegetation, have been one of the difficult targets for PS-InSAR analysis. However, we applied space adaptive filtering to increase the number of pixels for measuring surface displacement. The results of our analysis demonstrate ground subsidence with decaying velocity over the observation period around the geothermal field. The spatial pattern of ground subsidence includes sharp boundaries of subsidence that can be interpreted as fault traces. We demonstrated the usefulness of PS-InSAR analysis with the space adaptive filtering to estimate surface displacements with high spatial resolution and high spatial density around a geothermal field.

  8. A reaction diffusion model of pattern formation in clustering of adatoms on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Trilochan Bagarti

    2012-12-01

    Full Text Available We study a reaction diffusion model which describes the formation of patterns on surfaces having defects. Through this model, the primary goal is to study the growth process of Ge on Si surface. We consider a two species reaction diffusion process where the reacting species are assumed to diffuse on the two dimensional surface with first order interconversion reaction occuring at various defect sites which we call reaction centers. Two models of defects, namely a ring defect and a point defect are considered separately. As reaction centers are assumed to be strongly localized in space, the proposed reaction-diffusion model is found to be exactly solvable. We use Green's function method to study the dynamics of reaction diffusion processes. Further we explore this model through Monte Carlo (MC simulations to study the growth processes in the presence of a large number of defects. The first passage time statistics has been studied numerically.

  9. CO2 laser scribe of chemically strengthened glass with high surface compressive stress

    Science.gov (United States)

    Li, Xinghua; Vaddi, Butchi R.

    2011-03-01

    Chemically strengthened glass is finding increasing use in handheld, IT and TV cover glass applications. Chemically strengthened glass, particularly with high (>600MPa) compressive stress (CS) and deeper depth of layer (DOL), enable to retain higher strength after damage than non-strengthened glass when its surface is abraded. Corning Gorilla® Glass has particularly proven to be advantageous over competition in this attribute. However, due to high compressive stress (CS) and Central Tension (CT) cutting ion-exchanged glass is extremely difficult and often unmanageable where ever the applications require dicing the chemically strengthened mother glass into smaller parts. We at Corning have developed a CO2 laser scribe and break method (LSB) to separate a single chemically strengthened glass sheet into plurality of devices. Furthermore, CO2 laser scribe and break method enables debris-free separation of glass with high edge strength due to its mirror-like edge finish. We have investigated laser scribe and break of chemically strengthened glass with surface compressive stress greater than 600 MPa. In this paper we present the results of CO2 scribe and break method and underlying laser scribing mechanisms. We demonstrated cross-scribe repetitively on GEN 2 size chemically strengthened glass substrates. Specimens for edge strength measurements of different thickness and CS/DOL glass were prepared using the laser scribe and break technique. The specimens were tested using the standard 4-point bend method and the results are presented.

  10. A Combinatorial Library of Micro-Topographies and Chemical Compositions for Tailored Surface Wettability

    DEFF Research Database (Denmark)

    Kolind, Kristian; Bennetsen, Dines Tilsted; Arpanaei, Ayyoob; Duch, Mogens R.; Lovmand, Jette; Besenbacher, Flemming; Kingshott, Peter; Foss, Morten

    2011-01-01

    chemical modifications with 1H, 1H, 2H, 2H perfluoroethyltriethoxy-silane (PFS) and n-octadecyltriethoxysilane (ODS) on standard silicon wafers it was possible to include both superhydrophobic and very hydrophilic pad arrays in the same screening platform. Surfaces modified with PFS were more hydrophobic...

  11. AFM assessment of the surface nano/microstructure on chemically damaged historical and model glasses

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, Noemi [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Kowal, Andrzej [Institute of Catalysis and Surface Chemistry, PAN, ul. Niezapominajek 8, 30239 Cracow (Poland); Rincon, Jesus-Maria [Instituto Eduardo Torroja de Ciencias de la Construccion, CSIC, C. Serrano Galvache s/n, 28033 Madrid (Spain); Villegas, Maria-Angeles, E-mail: mariangeles.villegas@cchs.csic.es [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C. Albasanz, 26-28, 28037 Madrid (Spain)

    2010-01-15

    Surface chemical damage on selected historical glasses from 13th to 19th centuries was evaluated by means of atomic force microscopy (AFM). Nano- and microstructure, roughness and topography of ancient glass samples have been compared with those of model glasses prepared by conventional melting at the laboratory with similar compositions to those most frequently found in historical glass pieces. The results obtained allow discussing the chemical degradation mechanisms in terms of the acid and/or basic chemical attack carried out by the combination of gaseous pollutants and environmental humidity. Even though deep corrosion features escape to the observation order of magnitude of the AF microscope used, the AFM technique proves to be quite useful for the study and evaluation of the most common surface pathologies of historical glasses with different compositions once submitted to natural weathering.

  12. Surface-enhanced Raman scattering (SERS) detection for chemical and biological agents

    Science.gov (United States)

    Yan, Fei; Stokes, David L.; Wabuyele, Musundi B.; Griffin, Guy D.; Vass, Arpad A.; Vo-Dinh, Tuan

    2004-07-01

    Surface-enhanced Raman scattering (SERS) spectra of chemical agent simulants such as dimethyl methylphonate (DMMP), pinacolyl methylphosphonate (PMP), diethyl phosphoramidate (DEPA), and 2-chloroethyl ethylsulfide (CEES), and biological agent simulants such as bacillus globigii (BG), erwinia herbicola (EH), and bacillus thuringiensis (BT) were obtained from silver oxide film-deposited substrates. Thin AgO films ranging in thickness from 50 nm to 250 nm were produced by chemical bath deposition onto glass slides. Further Raman intensity enhancements were noticed in UV irradiated surfaces due to photo-induced Ag nanocluster formation, which may provide a possible route to producing highly useful plasmonic sensors for the detection of chemical and biological agents upon visible light illumination.

  13. Analysis of soluble chemical transfer from soil to surface runoff and incomplete mixing parameter identification

    Directory of Open Access Journals (Sweden)

    Ju-xiu Tong

    2015-07-01

    Full Text Available A two-layer mathematical model proposed by Tong et al. (2010 was used to predict soluble chemical transfer from soil into surface runoff with ponded water on the soil surface. Infiltration-related incomplete mixing parameter and runoff-related incomplete mixing parameter in the analytical solution of the Tong et al. (2010 model were assumed to be constant. In this study, different laboratory experimental data of soluble chemical concentration in surface runoff from initially unsaturated and saturated soils were used to identify the variables and based on the analytical solution of the model. The values of and without occurrence of surface runoff were constant and equal to their values at the moment when the surface runoff started. It was determined from the results that decreases with the increase of the ponded water depth, and when the initial volumetric water content is closer to the saturated water content, there is less variation of parameter after the occurrence of surface runoff. As infiltration increases, the soluble chemical concentration in surface runoff decreases. The values of parameter range from 0 to 1 for the fine loam and sand under the controlled infiltration conditions, while it can increase to a very large value, greater than 1, for the sand under the restrained infiltration conditions, and the analytical solution of the model is not valid for experimental soil without any infiltration if is expected to be less than or equal to 1. The soluble chemical concentrations predicted from the model with variable incomplete mixing parameters and are more accurate than with from constant and values.

  14. Evaluation of an X-ray-excited optical microscope for chemical imaging of metal and other surfaces.

    Science.gov (United States)

    Sabbe, Pieter-Jan; Dowsett, Mark; Hand, Matthew; Grayburn, Rosie; Thompson, Paul; Bras, Wim; Adriaens, Annemie

    2014-12-01

    The application of a modular system for the nondestructive chemical imaging of metal and other surfaces is described using heritage metals as an example. The custom-built X-ray-excited optical luminescence (XEOL) microscope, XEOM 1, images the chemical state and short-range atomic order of the top 200 nm of both amorphous and crystalline surfaces. A broad X-ray beam is used to illuminate large areas (up to 4 mm(2)) of the sample, and the resulting XEOL emission is collected simultaneously for each pixel by a charge-coupled device sensor to form an image. The input X-ray energy is incremented across a range typical for the X-ray absorption near-edge structure (XANES) and an image collected for each increment. The use of large-footprint beams combined with parallel detection allows the power density to be kept low and facilitates complete nondestructive XANES mapping on a reasonable time scale. In this study the microscope was evaluated by imaging copper surfaces with well-defined patterns of different corrosion products (cuprite Cu2O and nantokite CuCl). The images obtained show chemical contrast, and filtering the XEOL light allowed different corrosion products to be imaged separately. Absorption spectra extracted from software-selected regions of interest exhibit characteristic XANES fingerprints for the compounds present. Moreover, when the X-ray absorption edge positions were extracted from each spectrum, an oxidation state map of the sample could be compiled. The results show that this method allows one to obtain nondestructive and noninvasive information at the micrometer scale while using full-field imaging. PMID:25375864

  15. Descriptions of surface chemical reactions using a neural network representation of the potential-energy surface

    Science.gov (United States)

    Lorenz, Sönke; Scheffler, Matthias; Gross, Axel

    2006-03-01

    A neural network (NN) approach is proposed for the representation of six-dimensional ab initio potential-energy surfaces (PES) for the dissociation of a diatomic molecule at surfaces. We report tests of NN representations that are fitted to six-dimensional analytical PESs for H2 dissociation on the clean and the sulfur covered Pd(100) surfaces. For the present study we use high-dimensional analytical PESs as the basis for the NN training, as this enables us to investigate the influence of phase space sampling on adsorption rates in great detail. We note, however, that these analytical PESs were obtained from detailed density functional theory calculations. When information about the PES is collected only from a few high-symmetric adsorption sites, we find that the obtained adsorption probabilities are not reliable. Thus, intermediate configurations need to be considered as well. However, it is not necessary to map out complete elbow plots above nonsymmetric sites. Our study suggests that only a few additional energies need to be considered in the region of activated systems where the molecular bond breaks. With this understanding, the required number of NN training energies for obtaining a high-quality PES that provides a reliable description of the dissociation and adsorption dynamics is orders of magnitude smaller than the number of total-energy calculations needed in traditional ab initio on the fly molecular dynamics. Our analysis also demonstrates the importance of a reliable, high-dimensional PES to describe reaction rates for dissociative adsorption of molecules at surfaces.

  16. Geometrical Considerations for Piezoresistive Microcantilever Response to Surface Stress during Chemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Loui, A; Goericke, F; Ratto, T; Lee, J; Hart, B; King, W

    2008-04-25

    We have designed, fabricated, and tested five piezoresistive cantilever configurations to investigate the effect of shape and piezoresistor placement on the sensitivity of microcantilevers under either point loading and surface stress loading. The experimental study reveals that: (1) high aspect ratio cantilevers that are much longer than they are wide are optimal for point-loading applications such as microscopy and force measurements; (2) low aspect ratio cantilevers that are short and wide are optimal for surface stress loading scenarios such as those that occur in biological and chemical sensor applications. The sensitivity data for both point loads and surface stress are consistent with previously developed finite-element models.

  17. Preparation of Dispersed Platinum Nanoparticles on a Carbon Nanostructured Surface Using Supercritical Fluid Chemical Deposition

    Directory of Open Access Journals (Sweden)

    Mineo Hiramatsu

    2010-03-01

    Full Text Available We have developed a method of forming platinum (Pt nanoparticles using a metal organic chemical fluid deposition (MOCFD process employing a supercritical fluid (SCF, and have demonstrated the synthesis of dispersed Pt nanoparticles on the surfaces of carbon nanowalls (CNWs, two-dimensional carbon nanostructures, and carbon nanotubes (CNTs. By using SCF-MOCFD with supercritical carbon dioxide as a solvent of metal-organic compounds, highly dispersed Pt nanoparticles of 2 nm diameter were deposited on the entire surface of CNWs and CNTs. The SCF-MOCFD process proved to be effective for the synthesis of Pt nanoparticles on the entire surface of intricate carbon nanostructures with narrow interspaces.

  18. Fractal pattern formation in thermal grooving at grain boundaries in Ag films on Si(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roy, A. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Sundaravel, B. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Batabyal, R. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Dev, B.N., E-mail: msbnd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2012-05-31

    Growth of Ag films on Br- and H-passivated Si(111) surfaces and the annealing behaviour have been investigated by Rutherford backscattering spectrometry, scanning electron microscopy and photoemission electron microscopy techniques. Upon annealing the phenomenon of thermal grooving was observed in the Ag films. Depending on the annealing temperature, at an intermediate annealing time Ag depletion (evaporation) from the grain boundaries produces fractal patterns of Ag-depleted regions. Continued annealing eventually produces a percolated network of Ag-depleted regions (thermal grooves) along the grain boundaries and isolated Ag grains appear as the depth of the grooves reaches the substrate. For the fractal structures produced by thermal grooving, the fractal dimension has been estimated to be 1.60 {+-} 0.04. Observation of a fractal pattern in thermal grooving was not hitherto reported. A thorough analysis of the experimental results has been carried out in the context of current theories. These theories are inadequate to describe the experimental results. - Highlights: Black-Right-Pointing-Pointer Thermal grooving in Ag films grown on Si(111) surfaces has been investigated. Black-Right-Pointing-Pointer At appropriate temperatures short annealing shows partly depleted grain boundaries. Black-Right-Pointing-Pointer Depleted grain boundaries reveal a fractal pattern with a fractal dimension of 1.60. Black-Right-Pointing-Pointer Long annealing produces percolated Ag-depleted regions with isolated Ag grains. Black-Right-Pointing-Pointer A thorough analysis shows that current theories are unable to explain the results.

  19. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Science.gov (United States)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-12-01

    A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface with HPDLCs. The Col-immobilized titanium surface could be used for forming ligament-like tissues around titanium dental implants.

  20. Collective and convective effects compete in patterns of dissolving surface droplets.

    Science.gov (United States)

    Laghezza, Gianluca; Dietrich, Erik; Yeomans, Julia M; Ledesma-Aguilar, Rodrigo; Kooij, E Stefan; Zandvliet, Harold J W; Lohse, Detlef

    2016-06-29

    The effects of neighboring droplets on the dissolution of a sessile droplet, i.e. collective effects, are investigated both experimentally and numerically. On the experimental side small approximately 20 nL mono-disperse surface droplets arranged in an ordered pattern were dissolved and their size evolution is studied optically. The droplet dissolution time was studied for various droplet patterns. On the numerical side, lattice-Boltzmann simulations were performed. Both simulations and experiments show that the dissolution time of a droplet placed in the center of a pattern can increase by as much as 60% as compared to a single, isolated droplet, due to the shielding effect of the neighboring droplets. However, the experiments also show that neighboring droplets enhance the buoyancy driven convective flow of the bulk, increasing the mass exchange and counteracting collective effects. We show that this enhanced convection can reduce the dissolution time of droplets at the edges of the pattern to values below that of a single, isolated droplet. PMID:27270609

  1. Nanosecond pulsed laser induced self-organized nano-dots patterns on GaSb surface

    International Nuclear Information System (INIS)

    We report a technique for formation of two-dimensional (2D) nanodot (ND) patterns on gaillium antimoide (GaSb) using a nanosecond pulsed laser irradiation with 532 nm wavelength. The patterns have formed because of the interference and the self-organization under energy deposition of the laser irradiation, which induced the growth of NDs on the local area. The NDs are grown and shrunken in the pattern by energy depositions. In the laser irradiation with average laser energy density of 35 mJ cm−2, large and small NDs are formed on GaSb surface. The large NDs have grown average diameter from 160 to 200 nm with increase of laser pulses, and the small NDs have shrunken average diameter from 75 to 30 nm. The critical dot size is required about 107 nm for growth of the NDs in the patterns. Nanosecond pulsed laser irradiation can control the self-organized ND size on GaSb in air as a function of the laser pulses.

  2. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    HOSSAIN, A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices for gamma spectroscopy. Sample preparation and results are discussed. The researachers demonstrated various bulk defects (e.g., dislocations and sub-grain boundaries) and surface defects, and examined their effects on the performance of detectors. A comparison study was made between two chemical etchants to produce non-conductive smooth surfaces. A mixture of bromine and hydrogen peroxide proved more effective than conventional bromine etchant. Both energy resolution and detection efficiency of CZT planar detectors were noticeably increased after processing the detector crystals using improved chemical etchant and processing methods.

  3. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  4. Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

    Directory of Open Access Journals (Sweden)

    Zitao Zhou

    2015-07-01

    Full Text Available Zinc oxide nanoparticles (ZnO NPs are widely used in a variety of products, thus understanding their health and environmental impacts is necessary to appropriately manage their risks. To keep pace with the rapid increase in products utilizing engineered ZnO NPs, rapid in silico toxicity test methods based on knowledge of comprehensive in vivo and in vitro toxic responses are beneficial in determining potential nanoparticle impacts. To achieve or enhance their desired function, chemical modifications are often performed on the NPs surface; however, the roles of these alterations play in determining the toxicity of ZnO NPs are still not well understood. As such, we investigated the toxicity of 17 diverse ZnO NPs varying in both size and surface chemistry to developing zebrafish (exposure concentrations ranging from 0.016 to 250 mg/L. Despite assessing a suite of 19 different developmental, behavioural and morphological endpoints in addition to mortality in this study, mortality was the most common endpoint observed for all of the ZnO NP types tested. ZnO NPs with surface chemical modification, regardless of the type, resulted in mortality at 24 hours post-fertilization (hpf while uncoated particles did not induce significant mortality until 120 hpf. Using eight intrinsic chemical properties that relate to the outermost surface chemistry of the engineered ZnO nanoparticles, the highly dimensional toxicity data were converted to a 2-dimensional data set through principal component analysis (PCA. Euclidean distance was used to partition different NPs into several groups based on converted data (score which were directly related to changes in the outermost surface chemistry. Kriging estimations were then used to develop a contour map based on mortality data as a response. This study illustrates how the intrinsic properties of NPs, including surface chemical modifications and capping agents, are useful to separate and identify ZnO NP toxicity to

  5. Chemically prepared well-ordered InP(0 0 1) surfaces

    Science.gov (United States)

    Tereshchenko, O. E.; Paget, D.; Chiaradia, P.; Placidi, E.; Bonnet, J. E.; Wiame, F.; Taleb-Ibrahimi, A.

    2006-08-01

    In the present work HCl-isopropanol treated and vacuum annealed InP(0 0 1) surfaces were studied by means of low-energy electron diffraction (LEED), soft X-ray photoemission (SXPS), and reflectance anisotropy (RAS) spectroscopies. The treatment removes the natural oxide and leaves on the surface a physisorbed overlayer containing InCl x and phosphorus. Annealing at 230 °C induces desorption of InCl x overlayer and reveals a P-rich (2 × 1) surface. Subsequent annealing at higher temperature induces In-rich (2 × 4) surface. The structural properties of chemically prepared InP(0 0 1) surfaces were found to be similar to those obtained by decapping of As/P-capped epitaxial layers.

  6. Surface Patterning of PEDOT:PSS by Photolithography for Organic Electronic Devices

    Directory of Open Access Journals (Sweden)

    Shihong Ouyang

    2015-01-01

    Full Text Available Along with the development of organic electronics, conductive polymer of PEDOT:PSS has been attracting more and more attention because they possess various novel electrical, optical, and mechanical properties, which render them useful in modern organic optoelectronic devices. Due to its organic nature, it is lightweight and can be fabricated into flexible devices. For better device processing and integrating, it is essential to tune their surface morphologies, and photolithography is the best choice at present. In this paper, current PEDOT:PSS patterning approaches using photolithography are reviewed, and some of our works are also briefly introduced. Appropriate photolithographic patterning process for PEDOT:PSS will enable its application in future organic electronics.

  7. Simulation Study of Heat Flux Deposition Pattern on the Surface of HT-7 Toroidal Limiters

    Institute of Scientific and Technical Information of China (English)

    GAO Feng; CHEN Junling; LI Jiangang; DING Rui

    2008-01-01

    The heat flux deposition pattern on the toroidal limiters installed in HT-7 was simulated with ANSYS code. The simulation model was established with the ripple of the magnetic field. The heat deposition pattern and temperature distribution on the surface of the toroidal limiters were obtained. A comparison of the results obtained with and without the shaped tiles, used to reduce the heat flux on the leading edge of the limiters, was made. The maximum heat load allowed at the leading edge was about 1.8 MW/m2 because of the poor power removing capacity on the ends of the limiters. This approach can also be applied to other devices with a limiter configuration in a circular cross-section shape.

  8. Laser Patterning Pretreatment before Thermal Spraying: A Technique to Adapt and Control the Surface Topography to Thermomechanical Loading and Materials

    Science.gov (United States)

    Kromer, Robin; Costil, Sophie; Cormier, Jonathan; Berthe, Laurent; Peyre, Patrice; Courapied, Damien

    2016-02-01

    Coating characteristics are highly dependent on substrate preparation and spray parameters. Hence, the surface must be adapted mechanically and physicochemically to favor coating-substrate adhesion. Conventional surface preparation methods such as grit blasting are limited by surface embrittlement and produce large plastic deformations throughout the surface, resulting in compressive stress and potential cracks. Among all such methods, laser patterning is suitable to prepare the surface of sensitive materials. No embedded grit particles can be observed, and high-quality coatings are obtained. Finally, laser surface patterning adapts the impacted surface, creating large anchoring area. Optimized surface topographies can then be elaborated according to the material as well as the application. The objective of this study is to compare the adhesive bond strength between two surface preparation methods, namely grit blasting and laser surface patterning, for two material couples used in aerospace applications: 2017 aluminum alloy and AISI 304L stainless steel coated with NiAl and YSZ, respectively. Laser patterning significantly increases adherence values for similar contact area due to mixed-mode (cohesive and adhesive) failure. The coating is locked in the pattern.

  9. GIS technology in regional recognition of the distribution pattern of multifloral honey: The chemical traits in Serbia

    OpenAIRE

    Radović D.I.; Lazarević Kristina B.; Trifković Jelena Đ.; Andrić F.Lj.; Tešić Ž.Lj.; Anđelković I.B.; Nedić N.M.; Stanimirović Z.; Stevanović Jevrosima; Ćurčić B.P.M.; Milojković-Opsenica Dušanka M.

    2014-01-01

    GIS is a computer-based system to input, store, manipulate, analyze and output spatially referenced data. There is a huge range application of GIS that generally sets out to fulfill: mapping, measurement, monitoring, modeling and management. In this study, GIS technology was used for the regional recognition of origin and distribution patterns of multifloral honey chemical traits in Serbia. This included organizing and analyzing the spatial and attributive ...

  10. Ge interactions on HfO2 surfaces and kinetically driven patterning of Ge nanocrystals on HfO2

    International Nuclear Information System (INIS)

    Germanium interactions are studied on HfO2 surfaces, which are prepared through physical vapor deposition (PVD) and by atomic layer deposition. X-ray photoelectron spectroscopy and temperature-programed desorption are used to follow the reactions of germanium on HfO2. Germanium chemical vapor deposition at 870 K on HfO2 produces a GeOx adhesion layer, followed by growth of semiconducting Ge0. PVD of 0.7 ML Ge (accomplished by thermally cracking GeH4 over a hot filament) also produces an initial GeOx layer, which is stable up to 800 K. PVD above 2.0 ML deposits semiconducting Ge0. Temperature programed desorption experiments of ∼1.0 ML Ge from HfO2 at 400-1100 K show GeH4 desorption below 600 K and GeO desorption above 850 K. These results are compared to Ge on SiO2 where GeO desorption is seen at 550 K. Exploiting the different reactivity of Ge on HfO2 and SiO2 allows a kinetically driven patterning scheme for high-density Ge nanoparticle growth on HfO2 surfaces that is demonstrated

  11. Effect of Stereochemistry on Directed Self-Assembly of Poly(styrene-b-lactide) Films on Chemical Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Liu, Yadong; Wan, Lei; Li, Zhaolei; Suh, Hyoseon; Ren, Jiaxing; Ocola, Leonidas E.; Hu, Wenbing; Ji, Shengxiang; Nealey, Paul F.

    2016-03-15

    We demonstrated here for the first time that the stereochemistry of polylactide (PLA) blocks affected the assembly behaviors of PS-b-PLA on chemical patterns. Two PS-b-PLA block copolymers, where the PLA block is either racemic (PDLLA) or left-handed (PLLA), were synthesized and directed to assemble on chemical patterns with a wide range of L-s/L-o. PS-b-PDLLA was stretched up to 70% on chemical patterns, while PS-b-PLLA was only stretched by 20%. The assembly behavior of PS-b-PDLLA was different from AB diblock copolymer, but similar to that of ABA triblock copolymer. The high stretchability might be attributed to the formation of stereocomplexes in PDLLA blocks. Compared to ABA triblock copolymers, stereocomplexed diblock copolymers have much faster assembly kinetics. This observation provides a new concept to achieve large process windows by the introduction of specific interactions, for example, H-bonding, supramolecular interaction, and sterecomplexation, between polymer chains.

  12. Association between chemical pattern in breast milk and congenital cryptorchidism: modelling of complex human exposures

    DEFF Research Database (Denmark)

    Krysiak-Baltyn, Konrad; Toppari, J.; Skakkebaek, N. E.;

    2012-01-01

    been too rapid to be explained by genetics alone. To study the association between complex chemical exposures of humans and congenital cryptorchidism, the most common malformation of the male genitalia, we measured 121 environmental chemicals with suspected or known endocrine disrupting properties in...

  13. Seasonal and latitudinal patterns of pelagic community metabolism in surface waters of the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    S. Agusti

    2012-01-01

    Full Text Available Temporal and spatial patterns in the variability of the pelagic metabolism at the surface of the Atlantic Ocean were analyzed in a series of four oceanographic cruises (LATITUDE 1, 2, 3 and 4. The cruises crossed the oligotrophic waters of North and South subtropical gyres and this explained the low values of both gross primary production (GPP and community respiration (R found. Net community production (NCP, the balance between production and consumption, was strongly related to the variability in R rates (R2=0.72, P<0.0001. NCP was net heterotrophic in 83 % of the data, but showed strong temporal and spatial patterns. At the inter-tropical zone, around 10°–12° N and 10°–12° S, a large variability was observed with values of NCP oscillating from net heterotrophic to net autotrophic seasonally. This variability implied NCP to be net autotrophic in boreal fall and austral spring, and net heterotrophic in boreal spring and austral fall, in the areas around the boundaries of the inter-tropical zone. The variability observed concur with the seasonal climatic and oceanographic regimes of the inter-tropical area, whith documented seasonal changes of the North and South Atlantic equatorial currents system, the Guinea Dome, and the Benguela current. When considering the season of the data obtained, significant differences between spring and fall were found for the surface Atlantic, with water temperature and respiration increasing in autumn, showing a net heterotrophic metabolism, and with temperature and respiration decreasing in spring, where NCP were closer to the metabolic balance. In contrast, no seasonal differences were found for GPP and chlorophyll-a concentration. The results showed new spatial and temporal patterns in the pelagic metabolic balance of the surface Atlantic Ocean with consequences for the carbon flux.

  14. Stress balance in nano-patterned N/Cu(001) surfaces

    OpenAIRE

    S. Hong; Rahman, T. S.; Ciftlikli, E. Z.; Hinch, B. J.

    2011-01-01

    We employ helium atom scattering (HAS) and density functional theory (DFT) based on the ultrasoft pseudopotential scheme and the plane-wave basis set to investigate the strain and stress balance in nano-patterned N/Cu(001) surfaces. HAS shows that, with increasing N coverage (and decreasing stripe widths), the stress-relief-driven lateral expansion of the averaged lattice parameter within finite-sized N-containing patches reduces from 3.5% to 1.8% and that, beyond a critical exposure, the lat...

  15. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    International Nuclear Information System (INIS)

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding

  16. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Antonio, E-mail: antonio.hurtado@strath.ac.uk [Institute of Photonics, SUPA Department of Physics, University of Strathclyde, TIC Centre, 99 George Street, Glasgow G1 1RD (United Kingdom); Javaloyes, Julien [Departament de Fisica, Universitat de les Illes Balears, c/Valldemossa km 7.5, 07122 Mallorca (Spain)

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  17. Patterns of distribution of phosphomono-esterases on surfaces of demineralized bone

    DEFF Research Database (Denmark)

    Kirkeby, S; Vilmann, H

    1979-01-01

    comparable to that obtained by using undecalcified sections. Na2 EDTA creates, on the other hand, poor preservation of alkaline phosphatase probably due to the fact that this chelate contrary to the other chelates removes the essential metal from the protein, leaving an unstable enzyme molecule which...... undergoes denaturation. Decalcification over longer periods (15 days) does not influence the pattern of distribution of acid phosphatase, whereas the alkaline phosphatase reaction becomes depressed in certain surface areas. The significance of this differential distribution is discussed. It might be an...

  18. A substrate-independent lift-off approach for patterning functional surfaces.

    Science.gov (United States)

    Brown, P S; Wood, T J; Schofield, W C E; Badyal, J P S

    2011-04-01

    A lift-off method for creating multifunctional patterned surfaces has been devised. It entails consecutive pulsed plasmachemical deposition of a reactive bottom layer and a protective top release layer. By way of example, a bottom/top layer combination comprising pulsed plasma deposited poly(glycidyl methacrylate)/poly(pentafluorostyrene) has been shown to display selective adhesive lift-off of the latter. Application of a prepatterned adhesive template yields well-defined arrays of reactive epoxide functionality surrounded by a passive fluoropolymer background or vice versa. PMID:21417398

  19. Surface chemical changes of CaTiO3:Pr3+ upon electron beam irradiation

    International Nuclear Information System (INIS)

    Surface chemical changes of CaTiO3:Pr3+ phosphor material and their effect on the red emission intensity of the 1D2→3H4 transition of Pr3+, upon electron beam irradiation are presented. Red emission at 613 nm was obtained upon probing the surface with a 2 keV electron beam. The surface chemical changes and Pr3+ red emission were monitored using an Auger Electron Spectroscopy (AES) and Cathodoluminescence (CL) spectrometer, respectively. The CL intensity decreased with a decrease in O on the surface at 1×10−8 Torr base pressure and decreased with an increase in O on the surface at 1×10−6 Torr O2. The X-ray Photoelectron Spectroscopy (XPS) revealed that CL degradation at 1×10−6 Torr O2 is due to the formation of CaO and CaOx as well as TiO2/Ti2O3 non-luminescent species on the surface.

  20. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-01-01

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales. PMID:24670975

  1. Models of Gas-phase and Surface Chemistry for Plasma Enhanced Chemical Vapor Deposition

    Science.gov (United States)

    Meeks, Ellen

    1996-10-01

    Plasma enhanced chemical vapor deposition for inter-metal-layer gap-fill processes are increasingly important in semiconductor device manufacture, as the devices include increasing numbers of metal layers with decreasing linewidth and spacing. Optimization of these processes requires knowledge of the microscopic consequences of variations in reactor operating conditions. Topographical simulation can address the gap-fill performance of a depositing film, but the predictive capabiliities are limited by the ability of the model user to accurately supply ion and radical fluxes at a gas/surface interface. Critical to determining this information are the chemical kinetics between gas-phase species and the deposition surfaces. Recent improvements and extensions to the CHEMKIN and Surface CHEMKIN software allow general inclusion of detailed chemical mechanisms in plasma simulations and in models of plasma-surface interactions. In the results presented here (This work represents a collaboration with R. Larson and P. Ho at Sandia, J. Rey and J. Li at TMA, S. M. Han and E. Aydil of UCSB, and S. Huang at Lam Research Corporation), we have used a CHEMKIN-based well mixed reactor model of a high-density SiH_4/O_2/Ar plasma to predict and characterize species fluxes, oxide-deposition rates, and ion-milling rates on a flat surface. These calculated rates can be used as direct input to a topographical simulator. The gas-phase chemistry in the plasma reactor model is comprised of electron impact reactions with silane, oxygen, hydrogen, and argon, as well as neutral radical recombination, abstraction, and oxidation reactions. The surface reaction mechanism contains four classes of reactions: silicon-containing radical deposition, radical abstraction, ion-induced desorption, and physical ion sputtering. We include relative thermochemistry of the surface and gas species to allow reversible reaction dynamics. The plasma model results show good agreement with measured ion densities, as

  2. Parameter identification and analysis of soluble chemical transfer from soil to surface runoff

    Science.gov (United States)

    Tong, J. X.; Yang, J. Z.; Hu, B. X.

    2012-03-01

    A two-layer mathematical model is used to predict the chemical transfer from the soil into the surface runoff with ponding water. There are two incomplete infiltration-related parameter γ and runoff-related parameter α in the analytical solution to the model, which were assumed to be constant in previous studies (Tong et al., 2010). In this study, experimental data are used to identify the variable γ and α based on the analytical solution. The soil depth of the mixing zone is kept to be constant in different experiments, and the values of γ and α before the surface runoff occurs are constant and equal to their values at the moment the runoff starts. From the study results, it is found that γ will decrease with the increase of the surface runoff time, the increase of the ponding-water depth, hp, or with the decrease of the initial volumetric water content. The variability of γ will decrease with the increase of the initial volumetric water content. Similarly, α will decrease with time for the initially unsaturated experimental soils, but will increase with time for the initially saturated experimental soils. The larger the infiltration, the less chemical concentration in the surface runoff is. The analytical solution is not valid for experimental soil without any infiltration if α is expected to be less or equal to 1. The results will help to quantify chemical transfer from soil into runoff, a significant problem in agricultural pollution management.

  3. Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Awada, Houssein, E-mail: houssein.awada@uqtr.c [Centre Integre en Pates et Papiers, Universite du Quebec a Trois-Rivieres (UQTR), 3351, boul. des Forges Trois-Rivieres, G9A 5H7, Quebec (Canada); Noel, Olivier [Universite du Maine, Molecular landscapes and biophotonics, CNRS-UMR 6087, Le Mans (France); Hamieh, Tayssir [Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA, CHAMSI) Faculty of Sciences, Lebanese University, Beirut (Lebanon); Kazzi, Yolla [Faculty of Sciences, Lebanese University, Beirut (Lebanon); Brogly, Maurice [Laboratoire LECOB, Universite de Haute-Alsace, 68057 Mulhouse Cedex (France)

    2011-03-31

    The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.

  4. The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces

    Directory of Open Access Journals (Sweden)

    Jinliang Zhuang

    2012-08-01

    Full Text Available A metal–organic framework (MOF material, [Zn2(adc2(dabco] (adc = anthracene-9,10-dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]­octane, the fluorescence of which depends on the loading of its nanopores, was synthesized in two forms: as free-flowing nanocrystals with different shapes and as surface-attached MOFs (SURMOFs. For the latter, we used self-assembled monolayers (SAMs bearing functional groups, such as carboxylate and pyridyl groups, capable of coordinating to the constituents of the MOF. It could be demonstrated that this directed coordination also orients the nanocrystals deposited at the surface. Using two different patterning methods, i.e., microcontact printing and electron-beam lithography, the lateral distribution of the functional groups could be determined in such a way that the highly localized deposition of the SURMOF films became possible.

  5. Pulsed supersonic molecular beam for characterization of chemically active metal-organic complexes at surfaces

    Science.gov (United States)

    Lear, Amanda M.

    Metal-organic coordination networks (MOCNs) at surfaces consist of a complex of organic ligands bound to an atomic metal center. The MOCNs, when chosen appropriately, can form highly-ordered arrays at surfaces. Ultra-high vacuum surface studies allow control of surface composition and provide 2D growth restrictions, which lead to under-coordinated metal centers. These systems provide an opportunity to tailor the chemical function of the metal centers due to the steric restrictions imposed by the surface. Tuning the adsorption/desorption energy at a metal center and developing a cooperative environment for catalysis are the key scientific questions that motivate the construction of a molecular beam surface analysis system. Characterization of the created systems can be performed utilizing a pulsed supersonic molecular beam (PSMB) in unison with a quadrupole mass spectrometer. A PSMB allows for the highly controlled delivery of reactants with well-defined energy to a given platform making it possible to elucidate detailed chemical tuning information. In this thesis, a summary of prior theoretical molecular beam derivations is provided. Design considerations and an overview of the construction procedure for the current molecular beam apparatus, including initial characterization experiments, are presented. By impinging an Ar beam on a Ag(111) surface, the location of the specular angle (˜65°) and rough sample perimeter coordinates were determined. Additionally, surface analysis experiments, mainly Auger Electron Spectroscopy (AES), were performed to investigate the oxidation of epitaxial graphene on the SiC(0001) surface utilizing an oxygen cracking method. The AES experiments are described in detail and highlight the challenges that were faced when several different graphene samples were used for the oxygen adsorption/desorption experiments.

  6. Estimated in vivo postnatal surface growth patterns of the ovine main pulmonary artery and ascending aorta.

    Science.gov (United States)

    Fata, Bahar; Gottlieb, Danielle; Mayer, John E; Sacks, Michael S

    2013-07-01

    Delineating the normal postnatal development of the pulmonary artery (PA) and ascending aorta (AA) can inform our understanding of congenital abnormalities, as well as pulmonary and systolic hypertension. We thus conducted the following study to delineate the PA and AA postnatal growth deformation characteristics in an ovine model. MR images were obtained from endoluminal surfaces of 11 animals whose ages ranged from 1.5 months/15.3 kg mass (very young) to 12 months/56.6 kg mass (adult). A bicubic Hermite finite element surface representation was developed for the each artery from each animal. Under the assumption that the relative locations of surface points were retained during growth, the individual animal surface fits were subsequently used to develop a method to estimate the time-evolving local effective surface growth (relative to the youngest measured animal) in the end-diastolic state. Results indicated that the spatial and temporal surface growth deformation patterns of both arteries, especially in the circumferential direction, were heterogeneous, leading to an increase in taper and increase in cross-sectional ellipticity of the PA. The longitudinal PA growth stretch of a large segment on the posterior wall reached 2.57 ± 0.078 (mean ± SD) at the adult stage. In contrast, the longitudinal growth of the AA was smaller and more uniform (1.80 ± 0.047). Interestingly, a region of the medial wall of both arteries where both arteries are in contact showed smaller circumferential growth stretches-specifically 1.12 ± 0.012 in the PA and 1.43 ± 0.071 in the AA at the adult stage. Overall, our results indicated that contact between the PA and AA resulted in increasing spatial heterogeneity in postnatal growth, with the PA demonstrating the greatest changes. Parametric studies using simplified geometric models of curved arteries during growth suggest that heterogeneous effective surface growth deformations must occur to account for the

  7. Analysis of chemical signals in red fire ants by gas chromatography and pattern recognition techniques

    Science.gov (United States)

    The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...

  8. Influence of geometric patterns of microstructured superhydrophobic surfaces on water harvesting performance via dewing

    International Nuclear Information System (INIS)

    We investigate how the wetting state of microstructured SHPo surfaces influences water harvesting performance via dewing by testing two different patterns including posts and grates with varying structural parameters. On grates, the observed Cassie wetting state during condensation is well described by the thermodynamic energy criteria, and small condensates can be efficiently detached from the surfaces due to the small contact line pinning force of Cassie droplets. Meanwhile, on posts, the observed wetting state is dominantly the Wenzel state regardless of the thermodynamic energy of each state, and the condensates are shed only after they grow to a sufficiently large size to overcome much larger pinning force of the Wenzel state. Based on mechanical force balance model and energy barrier consideration, we attribute the difference in the droplet shedding characteristics to the different dynamic pathway from the Wenzel state to the Cassie state between posts and grates. Overall, the faster droplet shedding helps enhance the water harvesting performance of the SHPo surfaces by facilitating the condensation on the droplet-free area, as evidenced by the best water harvesting performance of grates on the Cassie state amongst the tested surfaces

  9. Effects of Surface-Active Elements Sulfur on Flow Patterns of Welding Pool

    Institute of Scientific and Technical Information of China (English)

    Yuzhen ZHAO; Yongping LEI; Yaowu SHI

    2005-01-01

    A 3D mathematical model is developed to calculate the temperature and velocity distributions in a moving gas tungsten arc (GTA) welding pool with different sulfur concentrations. It has been shown that, the weld penetration increases sharply with increasing sulfur content. When sulfur content increases beyond 80×10-6, the increase in sulfur content does not have an appreciable difference on the welding pool size and shape, and the depth/width remains constant. Sulfur changes the temperature dependence of surface tension coefficient from a negative value to a positive value and causes significant changes on flow patterns. The increase in soluble sulfur content and the decrease at free surface temperature can extend the region of positive surface tension coefficient. As sulfur content exceeds 125×10-6, the sign of surface tension coefficient is positive. Depending upon the sulfur concentrations,three, one or two vortexes that have different positions, strength and directions may be found in the welding pool.The contrary vortexes can efficiently transfer the thermal energy from the arc, creating a deep welding pool. An optimum range of sulfur content is 20~150 ×10-6.

  10. Super-hydrophobic surface on pure magnesium substrate by wet chemical method

    International Nuclear Information System (INIS)

    A layer of flower-like super-hydrophobic film was fabricated on pure Mg surface by chemical etching in H2SO4, H2O2 and subsequent immersion in stearic acid (CH3(CH2)16COOH) ethanol solution. The super-hydrophobic surface showed a static water contact angle of 154 deg. with the sliding angle of about 3o. With scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and Fourier-transform infrared (FT-IR) spectrometer, the microstructure and composition of the sample were analyzed. Results showed that the flower-like structure and the bonding of the CH3(CH2)16COO- on Mg surface can be responsible for the superior water-repellent property. Electrochemical impedance spectroscopy revealed that the transfer resistance of super-hydrophobic surface was increased about four times than bare Mg after one-hour immersion in 0.1 mol/L NaCl solution.

  11. Chemical composition and the acid-base properties of the InSb-ZnSe surface

    International Nuclear Information System (INIS)

    Acid-base properties and chemical composition of the surface of solid solutions and binary compounds of the system InSb-ZnSe powders and films 0.25-0.35 μm thick were studied using a complex of physicochemical methods. It was ascertained that the initial surface features largely acid properties with transition to low-basic ones in the series InSb → (InSb)x(ZnSe)1-x → ZnSe. There are two types of acid centers on the surface: the Lewis (electron-accepted) and Broensted ones (adsorbed water molecules and OH- groups). After thermal vacuum treatment the surface composition was similar to stoichiometric one

  12. Chemical and topographic analysis of treated surfaces of five different commercial dental titanium implants

    Directory of Open Access Journals (Sweden)

    Bruno Ramos Chrcanovic

    2012-06-01

    Full Text Available We present a detailed investigation of the surface characteristics of five commercial titanium implants with different surface finishing (double acid etching, anodization and incorporation of Ca/P, acid etching and deposition of Ca/P, hydroxyapatite-blasting, acid etching and Ca/P-blasting produced by five different manufacturers. A set of experimental techniques were employed to study the surface chemical composition and morphology: XPS, XRD, SEM, EDS, and AFM. According to the implat manufacturers, the addition of Ca and P at the implant surface is a main feature of these implants (except the double acid etched implant, which was included for comparative purpose. However, the results showed a great discrepancy on the final amount of these elements on the implant surface, which suggests a different effectiveness of the employed surface finishing methods to fix those elements on the implant surface. Our results show that only the method used by the manufacturer of hydroxyapatite-blasting surface finished implants was efficient to produce a hydroxyapatite coating. This group also showed the highest roughness parameters.

  13. Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Dong, Lifang, E-mail: donglfhbu@163.com; Niu, Xuejiao; Gao, Yenan; Zhang, Chao [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Hebei Key Laboratory of Optic-electronic Information Materials, Baoding 071002 (China)

    2015-10-15

    The hexagonal super-lattice pattern with surface discharges (SDs) in dielectric barrier discharge is investigated by intensified charge-coupled device. The pattern is composed of the bright spot and the dim spot which is located at the centroid of surrounding other three bright spots. The phase diagram of the pattern as a function of the gas pressure and the argon concentration is given. The instantaneous images indicate that the bright spot emerging at the front of the current pulse is formed by the volume discharge (VD), and dim spot occurring at the tail of the current pulse is formed by the SD. The above result shows that the SD is induced by the VD. The simulation of the electric fields of wall charges accumulated by VDs confirms that the dim spot is formed by the confluences of the SDs of surrounding other three bright spots. By using optical emission spectrum method, both the molecule vibration temperature and electron density of the SD are larger than that of the VD.

  14. Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients.

    Science.gov (United States)

    Li, Shuyu; Yuan, Xiankun; Pu, Fang; Li, Deyu; Fan, Yubo; Wu, Liyong; Chao, Wang; Chen, Nan; He, Yong; Han, Ying

    2014-08-01

    Previous studies have suggested that amnestic mild cognitive impairment (aMCI) is associated with changes in cortical morphological features, such as cortical thickness, sulcal depth, surface area, gray matter volume, metric distortion, and mean curvature. These features have been proven to have specific neuropathological and genetic underpinnings. However, most studies primarily focused on mass-univariate methods, and cortical features were generally explored in isolation. Here, we used a multivariate method to characterize the complex and subtle structural changing pattern of cortical anatomy in 24 aMCI human participants and 26 normal human controls. Six cortical features were extracted for each participant, and the spatial patterns of brain abnormities in aMCI were identified by high classification weights using a support vector machine method. The classification accuracy in discriminating the two groups was 76% in the left hemisphere and 80% in the right hemisphere when all six cortical features were used. Regions showing high weights were subtle, spatially complex, and predominately located in the left medial temporal lobe and the supramarginal and right inferior parietal lobes. In addition, we also found that the six morphological features had different contributions in discriminating the two groups even for the same region. Our results indicated that the neuroanatomical patterns that discriminated individuals with aMCI from controls were truly multidimensional and had different effects on the morphological features. Furthermore, the regions identified by our method could potentially be useful for clinical diagnosis. PMID:25100588

  15. Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge

    Science.gov (United States)

    Liu, Ying; Dong, Lifang; Niu, Xuejiao; Gao, Yenan; Zhang, Chao

    2015-10-01

    The hexagonal super-lattice pattern with surface discharges (SDs) in dielectric barrier discharge is investigated by intensified charge-coupled device. The pattern is composed of the bright spot and the dim spot which is located at the centroid of surrounding other three bright spots. The phase diagram of the pattern as a function of the gas pressure and the argon concentration is given. The instantaneous images indicate that the bright spot emerging at the front of the current pulse is formed by the volume discharge (VD), and dim spot occurring at the tail of the current pulse is formed by the SD. The above result shows that the SD is induced by the VD. The simulation of the electric fields of wall charges accumulated by VDs confirms that the dim spot is formed by the confluences of the SDs of surrounding other three bright spots. By using optical emission spectrum method, both the molecule vibration temperature and electron density of the SD are larger than that of the VD.

  16. Influence of Soft Drinks with Low pH on Different Ni-Ti Orthodontic Archwire Surface Patterns

    Science.gov (United States)

    Abalos, C.; Paul, A.; Mendoza, A.; Solano, E.; Palazon, C.; Gil, F. J.

    2013-03-01

    The aim of this study was to determine the influence of soft drinks on the surface of Ni-Ti archwires and their corrosion behavior. Archwires with different patterns (smooth, scratch, dimple, and crack) were selected and characterized by scanning electron microscopy and laser confocal microscopy. Immersion tests were performed in artificial saliva (pH 6.7) with a soft drink with a pH of 2.5 for 28 days. The results showed an increase in the surface defects and/or roughness of the dimple, crack and scratch patterns with the immersion times, and a decrease in corrosion resistance. A relationship between the surface pattern and the extent of the corrosion in Ni-Ti archwires with soft drinks at low pH has been demonstrated. Pattern should be taken into account in future studies, and manufacturing processes that produce surface defects (especially cracks) should be avoided.

  17. Coral reef bleaching and sea surface temperature anomalies: 1991-1996 global patterns

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J.; Hayes, R.L.; Strong, A.

    1997-12-31

    Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indian Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.

  18. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    International Nuclear Information System (INIS)

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WOx layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WOx on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WOx layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WOx formed on the sidewall of tungsten line could be observed.

  19. Surface accuracy and radiation pattern characteristics of mesh deployable refector antennas

    Science.gov (United States)

    Ueno, Miyoshi; Ebisui, Takashi; Okamato, Teruki; Orikasa, Teruaki; Sugimoto, Toshio; Iso, Akio

    To facilitate the growth of mobile satellite communications, both an increase in the Equivalent Isotropically Radiated Power (EIRP) of satellites and improved frequency reuse are required to achiveve compact size, low cost terminal usage, and high channel capacity. High gain and low sidelobe antenna technology are very important for high EIRP and frequency reuse, respectively. These requirements are expected to be met by using a large deployable mesh reflector antenna, which is the key technology for future multibeam moble communications systems. In this paper, surface accruracy and related electrical characteristics are studied using a TETRUS-(Tetra Trigonal Prism Truss) type deployable mesh reflector antenna. Surface accuracy and related electrical characteristics of reflector antennas becaue any distortion of the ideal paraboloidal configuration causes antenna patterns to deteriorate, thereby reducing reflector aperture efficiency and increasing sidelobe and grating lobe levels. The sidelobe and grating lobe characteristics are especially important in frequency reuse. First, we show the problem with the radiation pattern characteristics of TETUS antenna. We then propose a new antenna configuration called the 'HYBRID TETRUS' that improves these characteristics. The mechanical performances of two partial deployable models are also described. Mechanical testing results reveal agreement between the calculated and measured values and high rigidities.

  20. Intensity and Pattern of Land Surface Temperature in Hat Yai City, Thailand

    Directory of Open Access Journals (Sweden)

    Poonyanuch RUTHIRAKO

    2014-07-01

    Full Text Available Land Surface Temperature (LST is an important factor in global climate. LST is governed by surface heat fluxes, which are affected by urbanization. In order to understand urban climate, LST needs to be examined. This study aimed to investigate the intensity and pattern of LST and examine the relationships between LST and the characteristics of urban land use, indices, and population density in Hat Yai City. Landsat 5TM images were used for interpretation of land use characteristics and derivation of LST, normalized difference built-up index (NDBI and normalized vegetation index (NDVI. The characteristics of land use were classified into 4 types: commercial/high density residential, medium density residential, minimum density residential and vegetation cover/park. The average maximum and minimum LST derived from Landsat 5TM were 25.9, 33.7 and 15.8 °C, respectively. The areas with high LST were located principally in central built-up areas, slightly northwest-southeast of the study area, including the commercial center and the newly expanded residential areas. The LST pattern was well related to land use types and population density. The relationship between LST and NDVI however portrayed negative correlation, while that between LST and NDBI highlighted a positive correlation. It is concluded that NDVI and NDBI can be used to evaluate the risk of Urban Heat Island (UHI and may help city managers better prepare for possible impacts of climate change.

  1. Fabrication of patterned surfaces that exhibit variable wettability ranging from superhydrophobicity to high hydrophilicity by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changwoo, E-mail: hirundo@postech.ac.kr [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Gyeongbuk (Korea, Republic of); Cho, Handong, E-mail: hyvaa@postech.ac.kr [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Gyeongbuk (Korea, Republic of); Kim, Dongseob, E-mail: yusae@postech.ac.kr [Graduate School of Engineering Mastership, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Gyeongbuk (Korea, Republic of); Hwang, Woonbong, E-mail: whwang@postech.ac.kr [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Gyeongbuk (Korea, Republic of)

    2014-01-01

    We present a simple method for fabricating patterned surfaces that exhibit different wettabilities in different areas using laser machining. This process can be extended to form complex and large patterns. The first step is the preparation of a superhydrophobic base surface on the aluminum specimen through formation of hierarchical micro- and nanostructures and coating of a self-assembled monolayer. This base surface is then patterned using a laser, which is moved along the surface using a computerized routing system. It was found that the surface hierarchical structures melted to a greater degree with an increase in the laser power used. However, with increases in the laser power, the degree of melting as well as the melted area increased, causing the wettability of the surface to change drastically and making the surface more hydrophilic. In addition, new crumb-like nanostructures were formed for high laser powers, which made the surface rougher and also increased its hydrophilicity. Further, when the rate at which the laser was moved across the machined surface was increased, the contact angle of the irradiated surface decreased for the same laser power. Finally, complex patterns, including stripes and circles, having different wettabilities in different area could be successfully fabricated.

  2. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  3. Surface morphology stabilization by chemical sputtering in carbon nitride film growth

    Energy Technology Data Exchange (ETDEWEB)

    Buijnsters, J G [Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Vazquez, L [Instituto de Ciencia de Materiales de Madrid (CSIC), C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2008-01-07

    We have studied the influence of chemical sputtering effects on the morphology of carbon nitride films grown on silicon substrates by electron cyclotron resonance chemical vapour deposition. This study has been performed by comparing the evolution of their morphology with that of hydrogenated amorphous carbon films grown under similar conditions, where these effects are not present. When chemical sputtering effects operate we observe a film surface stabilization for length scales in the 60-750 nm range after a threshold roughness of about 3-4 nm has been developed. This stabilization is explained on the basis of the re-emission of nitrogen etching species, which is confirmed by growth experiments on microstructured substrates. (fast track communication)

  4. World record in high speed laser surface microstructuring of polymer and steel using direct laser interference patterning

    Science.gov (United States)

    Lang, Valentin; Roch, Teja; Lasagni, Andrés. F.

    2016-03-01

    Periodic surfaces structures with micrometer or submicrometer resolution produced on the surface of components can be used to improve their mechanical, biological or optical properties. In particular, these surfaces can control the tribological performance of parts, for instance in the automotive industry. In the last years, substantial efforts have been made to develop new technologies capable to produce functionalized surfaces. One of these technologies is the Direct Laser Interference Patterning (DLIP) technology, which permits to combine high fabrication speed with high resolution even in the sub-micrometer range. In DLIP, a laser beam is split into two or more coherent beams which are guided to interfere on the work piece surface. This causes modulated laser intensities over the component's surface, enabling the direct fabrication of a periodic pattern based on selective laser ablation or melting. Depending on the angle between the laser beams and the wavelength of the laser, the pattern's spatial period can be perfectly controlled. In this study, we introduce new modular DLIP optical heads, developed at the Fraunhofer IWS and the Technische Universität Dresden for high-speed surface laser patterning of polymers and metals. For the first time it is shown that effective patterning speeds of up to 0.90 m2/min and 0.36 m2/min are possible on polymer and metals, respectively. Line- and dot-like surface architectures with spatial periods between 7 μm and 22 μm are shown.

  5. Low energy oxygen ion beam modification of the surface morphology and chemical structure of polyurethane fibers

    International Nuclear Information System (INIS)

    Energetic O+ ions were implanted into polyurethane (PU) fiber filaments, at 60 and 100 keV with doses of 5 x 1014 and 1 x 1015 ions/cm2, to modify the near-surface fiber morphology. The implantations were performed at room temperature and at -197 deg. C, a temperature well below the glass transition temperature for this system. At room temperature, the lower energy implantation heats the fibers primarily near their surface, causing the fiber surface to smoothen and to develop a flattened shape. At the higher energy, the ion beam deposits its energy closer to the fiber core, heating the fiber more uniformly and causing them to re-solidify slowly. This favors a cylindrical equilibrium shape with a smooth fiber surface and no crack lines. The average fiber diameter reduced during 100 keV implantation from 3.1 to 2.3 μm. At -197 deg. C, the ion implantation does not provide enough heat to cause notable physical modifications, but the fibers crack and break during subsequent warming to room temperature. The dose dependence of the crack formation along the fiber intersections is presented. The ion beams further cause near-surface chemical modifications in the fibers, particularly introducing two new chemical functional groups (C-(C=O)-C and C-N-C)

  6. Effect of aging on surface chemical bonds of PTFE irradiated by low energy Ti ion

    International Nuclear Information System (INIS)

    Polytetrafluoroethylene (PTFE) was irradiated by low energy titanium ion in a metal vapor vacuum arc (MEVVA) implanter. The samples were irradiated with 80 keV Ti ion with fluences from 5x1015 to 5x1017 Ti/cm2, respectively. Transportation of Ion in Matters (TRIM) code was employed to simulate Ti ion irradiation. The as-irradiated samples were investigated by ESCA, SEM and wettability. As increasing ion fluence, various chemical bonds and irradiation-damaged surfaces were observed. The water droplet contact angel of PTFE samples increased gradually with ion fluence. All the as-irradiated PTFE samples were aged in air for 1 year. After aging the surface-restructuring behavior was observed on the surfaces of the samples irradiated with ion fluence equal to or less than 5x1016 Ti/cm2, which resulted in decrease of the droplet contact angle of these samples. The surface roughness change of the aged samples, which were measured by atomic force microscopy (AFM), was consistent with the droplet contact angle change. The experimental results revealed that Ti ion fluence closely affected the surface chemical bond, morphology and wettability, as well as the aging stability of the as-irradiated PTFE samples

  7. Laser structuring and modification of polymer surfaces for chemical and medical microcomponents

    Science.gov (United States)

    Bremus-Koebberling, Elke A.; Meier-Mahlo, Ulrike; Henkenjohann, Oliver; Beckemper, Stefan; Gillner, Arnold

    2004-10-01

    In the production of micro devices the surface properties become more and more important for chemistry, biotechnology and medical technology with respect to wetting properties and chemical composition of the surface. Typical applications are implants as well as micro fluidic systems or miniaturized devices for DNA- and proteome analysis (biochips). In this paper newly designed laser technologies based on UV-laser treatment of polymers for surface processing are described to manipulate wetting properties, cell growth and immobilization of functional molecules with high spatial resolution. Depending on the processing parameters and used polymers either hydrophobic or hydrophilic properties can be enhanced (i.e. laser induced lotus/anti-lotus effect). Enhanced roughness and changes of the chemical composition have also influence on cell growth on polymer surfaces. Thus guiding aids for cells e.g. on medical implants can be generated by laser irradiation. Due to photo oxidation processes while UV-treatment in air, functional groups are created that are suited for covalent bonding of (bio)moelcules onto the surfaces. A second process for the locally selective immobilization of anchor molecules based on azide functionalized templates suitable for further modification steps is presented by means of irradiating polymers under solutions of these linkers.

  8. Low energy oxygen ion beam modification of the surface morphology and chemical structure of polyurethane fibers

    Science.gov (United States)

    Wong, K. H.; Zinke-Allmang, M.; Wan, W. K.; Zhang, J. Z.; Hu, P.

    2006-01-01

    Energetic O+ ions were implanted into polyurethane (PU) fiber filaments, at 60 and 100 keV with doses of 5 × 1014 and 1 × 1015 ions/cm2, to modify the near-surface fiber morphology. The implantations were performed at room temperature and at -197 °C, a temperature well below the glass transition temperature for this system. At room temperature, the lower energy implantation heats the fibers primarily near their surface, causing the fiber surface to smoothen and to develop a flattened shape. At the higher energy, the ion beam deposits its energy closer to the fiber core, heating the fiber more uniformly and causing them to re-solidify slowly. This favors a cylindrical equilibrium shape with a smooth fiber surface and no crack lines. The average fiber diameter reduced during 100 keV implantation from 3.1 to 2.3 μm. At -197 °C, the ion implantation does not provide enough heat to cause notable physical modifications, but the fibers crack and break during subsequent warming to room temperature. The dose dependence of the crack formation along the fiber intersections is presented. The ion beams further cause near-surface chemical modifications in the fibers, particularly introducing two new chemical functional groups (C-(Cdbnd O)-C and C-N-C).

  9. Can clouds enhance long-range transport of low volatile, ionizable and surface-active chemicals?

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2011-01-01

    potential of non-volatile substances. The liquid water content of clouds and the high specific surface of frozen or liquid cloud droplets can significantly contribute to the total activity capacity (i.e. the capacity to sorb chemicals) of the atmosphere for non-volatile, ionizable and surface active...... volatile or ionizable chemicals to investigate the potential of clouds to enhance the atmospheric transport potential. Probability density functions were derived for input substance properties and environmental parameters to quantify uncertainty and variability and probabilistic simulations at steady state...... were run for a constant emission to the atmospheric boundary layer to identify key model inputs. The degradation rate, the duration of dry and wet periods and the parameters describing air-water bulk partitioning (KAW and T) and ionization (pKa and pH) determine the residence time in the ABL. In the...

  10. Chemical changes induced on a TiO2 surface by electron bombardment

    International Nuclear Information System (INIS)

    We study the TiO2 (Ti4+) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO2 sample is characterized by the appearance of a lower Ti oxidation state, Ti2O3 (Ti3+), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form

  11. Chemical changes induced on a TiO{sub 2} surface by electron bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, L.I. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Passeggi, M.C.G. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina)], E-mail: mpggih@intec.unl.edu.ar; Ferron, J. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, (S3000AOM) Santa Fe (Argentina)

    2007-09-14

    We study the TiO{sub 2} (Ti{sup 4+}) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO{sub 2} sample is characterized by the appearance of a lower Ti oxidation state, Ti{sub 2}O{sub 3} (Ti{sup 3+}), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form.

  12. Surface contamination effects on leaf chemical composition in the Atlantic Forest

    International Nuclear Information System (INIS)

    The exogenous material that adheres to the leaf surface affects the elemental composition of the plant itself, thereby constituting one of the major error sources in plant analysis. The present work investigated the surface contamination of leaves from the Atlantic Forest. Instrumental neutron activation analysis (INAA) was applied to assess the efficiency of leaf EDTA-washing. Chemical element concentrations were corrected using Sc (soil tracer) since resuspended soil is the main source of contamination in leaves. As a result, EDTA-washing should be used mainly for the evaluation of terrigenous elements, while the Sc-corrected concentrations are considered satisfactory for the other elements. (author)

  13. Surface plasmon resonance based fibre optic chemical sensor for the detection of cocaine

    Science.gov (United States)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.

    2016-05-01

    A surface plasmon based fibre-optic chemical sensor for the detection of cocaine has been developed using a molecularly imprinted polymer (MIP) film with embedded gold nanoparticles as the recognition element. The MIP was formed on the layer of gold thin film which was deposited on the surface of a fibre core. The sensing was based on swelling of the MIP film induced by analyte binding that shifted the resonance spectrum toward a shorter wavelength. The sensor exhibited a response to cocaine in the concentration range of 0 - 400 μM in aqueous acetonitrile mixtures. Selectivity for cocaine over other drugs has also been demonstrated.

  14. Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'.

    Science.gov (United States)

    Ball, Philip

    2015-04-19

    Alan Turing was neither a biologist nor a chemist, and yet the paper he published in 1952, 'The chemical basis of morphogenesis', on the spontaneous formation of patterns in systems undergoing reaction and diffusion of their ingredients has had a substantial impact on both fields, as well as in other areas as disparate as geomorphology and criminology. Motivated by the question of how a spherical embryo becomes a decidedly non-spherical organism such as a human being, Turing devised a mathematical model that explained how random fluctuations can drive the emergence of pattern and structure from initial uniformity. The spontaneous appearance of pattern and form in a system far away from its equilibrium state occurs in many types of natural process, and in some artificial ones too. It is often driven by very general mechanisms, of which Turing's model supplies one of the most versatile. For that reason, these patterns show striking similarities in systems that seem superficially to share nothing in common, such as the stripes of sand ripples and of pigmentation on a zebra skin. New examples of 'Turing patterns' in biology and beyond are still being discovered today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750229

  15. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    Science.gov (United States)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%–60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  16. Parametrically excited surface waves: two-frequency forcing, normal form symmetries, and pattern selection.

    Science.gov (United States)

    Silber, M; Skeldon, A C

    1999-05-01

    Motivated by experimental observations of exotic free surface standing wave patterns in the two-frequency Faraday experiment, we investigate the role of normal form symmetries in the associated pattern-selection problem. With forcing frequency components in ratio m/n, where m and n are coprime integers that are not both odd, there is the possibility that both harmonic waves and subharmonic waves may lose stability simultaneously, each with a different wave number. We focus on this situation and compare the case where the harmonic waves have a longer wavelength than the subharmonic waves with the case where the harmonic waves have a shorter wavelength. We show that in the former case a normal form transformation can be used to remove all quadratic terms from the amplitude equations governing the relevant resonant triad interactions. Thus the role of resonant triads in the pattern-selection problem is greatly diminished in this situation. We verify our general bifurcation theoretic results within the example of one-dimensional surface wave solutions of the Zhang-Viñals model [J. Fluid Mech. 341, 225 (1997)] of the two-frequency Faraday problem. In one-dimension, a 1:2 spatial resonance takes the place of a resonant triad in our investigation. We find that when the bifurcating modes are in this spatial resonance, it dramatically effects the bifurcation to subharmonic waves in the case that the forcing frequencies are in ratio 1/2; this is consistent with the results of Zhang and Viñals. In sharp contrast, we find that when the forcing frequencies are in a ratio 2/3, the bifurcation to (sub)harmonic waves is insensitive to the presence of another spatially resonant bifurcating mode. This is consistent with the results of our general analysis. PMID:11969524

  17. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Kado, T.; Hidaka, T. [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Aita, H. [Division of Occlusion and Removable Prosthodontics, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Endo, K. [Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Furuichi, Y., E-mail: furuichi@hoku-iryo-u.ac.jp [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Cell-adhesive molecules were covalently immobilized on a Ti surface. Black-Right-Pointing-Pointer Immobilized cell-adhesive molecules maintained native function on the Ti surface. Black-Right-Pointing-Pointer Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully

  18. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    International Nuclear Information System (INIS)

    Highlights: ► Cell-adhesive molecules were covalently immobilized on a Ti surface. ► Immobilized cell-adhesive molecules maintained native function on the Ti surface. ► Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface

  19. Chemical modification of a polyacrylamide. Enhanced decontamination of soils and surfaces after a nuclear accident

    International Nuclear Information System (INIS)

    This contribution concerns the decontamination of soils and surfaces polluted by cesium and strontium after a nuclear accident. The decontamination rate by means of an industrial polyacrylamide previously selected for its mechanical covering properties is studied. The characteristics of the polymer and its cation-exchange capacity (CEC) are specified. The chemical modification of the polymer, involving a crosslinking path and functional grafting, affords an improvement of its decontaminating properties. (author). 6 refs., 4 figs., 1 tab

  20. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    OpenAIRE

    Sobek, Jens; Aquino, Catharine; Weigel, Wilfried; Schlapbach, Ralph

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop dr...