WorldWideScience

Sample records for chemically modified rna

  1. Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides.

    Science.gov (United States)

    Zhou, Yuan; Kierzek, Elzbieta; Loo, Zi Ping; Antonio, Meraldo; Yau, Yin Hoe; Chuah, York Wieo; Geifman-Shochat, Susana; Kierzek, Ryszard; Chen, Gang

    2013-07-01

    Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and reverse transcription. How chemical modification in TFOs affects RNA triplex stability, however, is not well understood. Here, we incorporated locked nucleic acid, 2-thio U- and 2'-O methyl-modified residues in a series of all pyrimidine RNA TFOs, and we studied the binding to two RNA hairpin structures. The 12-base-triple major-groove pyrimidine-purine-pyrimidine triplex structures form between the duplex regions of RNA/DNA hairpins and the complementary RNA TFOs. Ultraviolet-absorbance-detected thermal melting studies reveal that the locked nucleic acid and 2-thio U modifications in TFOs strongly enhance triplex formation with both parental RNA and DNA duplex regions. In addition, we found that incorporation of 2'-O methyl-modified residues in a TFO destabilizes and stabilizes triplex formation with RNA and DNA duplex regions, respectively. The (de)stabilization of RNA triplex formation may be facilitated through modulation of van der Waals contact, base stacking, hydrogen bonding, backbone pre-organization, geometric compatibility and/or dehydration energy. Better understanding of the molecular determinants of RNA triplex structure stability lays the foundation for designing and discovering novel sequence-specific duplex-binding ligands as diagnostic and therapeutic agents targeting RNA. PMID:23658228

  2. Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides

    OpenAIRE

    Zhou, Yuan; Kierzek, Elzbieta; Loo, Zi Ping; Antonio, Meraldo; Yau, Yin Hoe; Chuah, York Wieo; Geifman-Shochat, Susana; Kierzek, Ryszard; Chen, Gang

    2013-01-01

    Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and reverse transcription. How chemical modification in TFOs affects RNA triplex stability, however, is n...

  3. In Vivo Screening of Chemically Modified RNA duplexes for their Ability to Induce Innate Immune Responses

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen; Wengel, Jesper; Lorenzen, Niels

    Due to their sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form with...

  4. Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta 1

    OpenAIRE

    Jordon-Thaden, Ingrid E.; Chanderbali, Andre S; Gitzendanner, Matthew A.; Soltis, Douglas E.

    2015-01-01

    Premise of the study: Here we present a series of protocols for RNA extraction across a diverse array of plants; we focus on woody, aromatic, aquatic, and other chemically complex taxa. Methods and Results: Ninety-one taxa were subjected to RNA extraction with three methods presented here: (1) TRIzol/TURBO DNA-free kits using the manufacturer’s protocol with the addition of sarkosyl; (2) a combination method using cetyltrimethylammonium bromide (CTAB) and TRIzol/sarkosyl/TURBO DNA-free; and (...

  5. Chemical synthesis of the 5-taurinomethyl(-2-thio)uridine modified anticodon arm of the human mitochondrial tRNA(Leu(UUR)) and tRNA(Lys).

    Science.gov (United States)

    Leszczynska, Grazyna; Leonczak, Piotr; Wozniak, Karolina; Malkiewicz, Andrzej

    2014-06-01

    5-Taurinomethyluridine (τm(5)U) and 5-taurinomethyl-2-thiouridine (τm(5)s(2)U) are located at the wobble position of human mitochondrial (hmt) tRNA(Leu(UUR)) and tRNA(Lys), respectively. Both hypermodified units restrict decoding of the third codon letter to A and G. Pathogenic mutations in the genes encoding hmt-tRNA(Leu(UUR)) and hmt-tRNA(Lys) are responsible for the loss of the discussed modifications and, as a consequence, for the occurrence of severe mitochondrial dysfunctions (MELAS, MERRF). Synthetic oligoribonucleotides bearing modified nucleosides are a versatile tool for studying mechanisms of genetic message translation and accompanying pathologies at nucleoside resolution. In this paper, we present site-specific chemical incorporation of τm(5)U and τm(5)s(2)U into 17-mers related to the sequence of the anticodon arms hmt-tRNA(Leu(UUR)) and hmt-tRNA(Lys), respectively employing phosphoramidite chemistry on CPG support. Selected protecting groups for the sulfonic acid (4-(tert-butyldiphenylsilanyloxy)-2,2-dimethylbutyl) and the exoamine function (-C(O)CF3) are compatible with the blockage of the canonical monomeric units. The synthesis of τm(5)s(2)U-modified RNA fragment was performed under conditions eliminating the formation of side products of 2-thiocarbonyl group oxidation and/or oxidative desulphurization. The structure of the final oligomers was confirmed by mass spectroscopy and enzymatic cleavage data. PMID:24757169

  6. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats.

    Science.gov (United States)

    Balmayor, Elizabeth R; Geiger, Johannes P; Aneja, Manish K; Berezhanskyy, Taras; Utzinger, Maximilian; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2016-05-01

    Limitations associated to the use of growth factors represent a major hurdle to musculoskeletal regeneration. On the one hand, they are needed to induce neo-tissue formation for the substitution of a necrotic or missing tissue. On the other hand, these factors are used in supraphysiological concentrations, are short lived and expensive and result in many side effects. Here we develop a gene transfer strategy based on the use of chemically modified mRNA (cmRNA) coding for human bone morphogenetic protein 2 (hBMP-2) that is non-immunogenic and highly stable when compared to unmodified mRNA. Transfected stem cells secrete hBMP-2, show elevated alkaline phosphatase levels and upregulated expression of RunX2, ALP, Osterix, Osteocalcin, Osteopontin and Collagen Type I genes. Mineralization was induced as seen by positive Alizarin red staining. hBMP-2 cmRNA transfected human fat tissue also yielded an osteogenic response in vitro as indicated by expression of hBMP-2, RunX2, ALP and Collagen Type I. Delivering hBMP-2 cmRNA to a femur defect in a rat model results in new bone tissue formation as early as 2 weeks after application of very low doses. Overall, our studies demonstrate the feasibility and therapeutic potential of a new cmRNA-based gene therapy strategy that is safe and efficient. When applied clinically, this approach could overcome BMP-2 growth factor associated limitations in bone regeneration. PMID:26923361

  7. Screening of Modified RNA duplexes

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen;

    Because of sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form with...

  8. Chemical modifiers of radiotherapy

    International Nuclear Information System (INIS)

    Only two groups, anticancer drugs and radiosensitizers are discussed among many groups of chemical modifiers. In combined radiotherapy (RT) with chemotherapy (CT), sequential administration seems to be superior to concomitant administration, because simultaneous use enhances intensively normal tissue damage. In sequential administration, interruption of CT during RT causes growth of distant metastases. So, alternating scheme of RT and CT is proposed and evaluated clinically. Hypoxic cell sensitizers including well-known misonidazole and PLDR inhibitors (Ara-A etc.) are promising in radiotherapy. They should be used intermittently two or three times during RT in order to avoid neurotoxicity of misonidazole. (author) 70 refs

  9. Quality control of chemically damaged RNA.

    Science.gov (United States)

    Simms, Carrie L; Zaher, Hani S

    2016-10-01

    The "central dogma" of molecular biology describes how information contained in DNA is transformed into RNA and finally into proteins. In order for proteins to maintain their functionality in both the parent cell and subsequent generations, it is essential that the information encoded in DNA and RNA remains unaltered. DNA and RNA are constantly exposed to damaging agents, which can modify nucleic acids and change the information they encode. While much is known about how cells respond to damaged DNA, the importance of protecting RNA has only become appreciated over the past decade. Modification of the nucleobase through oxidation and alkylation has long been known to affect its base-pairing properties during DNA replication. Similarly, recent studies have begun to highlight some of the unwanted consequences of chemical damage on mRNA decoding during translation. Oxidation and alkylation of mRNA appear to have drastic effects on the speed and fidelity of protein synthesis. As some mRNAs can persist for days in certain tissues, it is not surprising that it has recently emerged that mRNA-surveillance and RNA-repair pathways have evolved to clear or correct damaged mRNA. PMID:27155660

  10. Synthesis of chemically modified DNA.

    Science.gov (United States)

    Shivalingam, Arun; Brown, Tom

    2016-06-15

    Naturally occurring DNA is encoded by the four nucleobases adenine, cytosine, guanine and thymine. Yet minor chemical modifications to these bases, such as methylation, can significantly alter DNA function, and more drastic changes, such as replacement with unnatural base pairs, could expand its function. In order to realize the full potential of DNA in therapeutic and synthetic biology applications, our ability to 'write' long modified DNA in a controlled manner must be improved. This review highlights methods currently used for the synthesis of moderately long chemically modified nucleic acids (up to 1000 bp), their limitations and areas for future expansion. PMID:27284032

  11. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA

    OpenAIRE

    Kowtoniuk, Walter Eugene; Shen, Yinghua; Heemstra, Jennifer M.; Agarwal, Isha; Liu, David Ruchien

    2009-01-01

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3'-aminoacylated tRNAs, nucleobase-modified RNAs, and 5'-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule-RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved ...

  12. Purification, crystallization and preliminary X-ray diffraction of a disulfide cross-linked complex between bovine poly(A) polymerase and a chemically modified 15-mer oligo(A) RNA

    International Nuclear Information System (INIS)

    A disulfide cross-linked complex between bovine poly(A) polymerase and a chemically modified RNA was crystallized. X-ray diffraction data were collected to 2.25 Å resolution from crystals that belonged to space group P2. Poly(A) polymerase (PAP) synthesizes the polyadenine tail at the 3′-end of messenger RNA. A disulfide cross-linking strategy was implemented to obtain a complex between bovine PAP (bPAP) and a 15-mer oligo(A). All seven endogenous cysteines were mutated to eliminate nonspecific cross-linked complexes. A cysteine residue was introduced at several different positions and A152C was found to achieve maximum specific cross-linking efficiency. The resulting bPAP construct was active and, when mixed with a chemically modified RNA, yielded crystals of a bPAP–RNA complex. The crystals, which belonged to space group P2 and harbored two protein–RNA complexes per asymmetric unit, diffracted X-rays to 2.25 Å resolution

  13. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA.

    Science.gov (United States)

    Kowtoniuk, Walter E; Shen, Yinghua; Heemstra, Jennifer M; Agarwal, Isha; Liu, David R

    2009-05-12

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3'-aminoacylated tRNAs, nucleobase-modified RNAs, and 5'-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule-RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved from RNA by base or nucleophile treatment. Application to Escherichia coli and Streptomyces venezuelae RNA revealed an RNA-linked hydroxyfuranone or succinyl ester group, in addition to a number of other putative small molecule-RNA conjugates not previously reported. The second method analyzes nuclease-generated mononucleotides before and after treatment with base or nucleophile and also revealed a number of new putative small molecule-RNA conjugates, including 3'-dephospho-CoA and its succinyl-, acetyl-, and methylmalonyl-thioester derivatives. Subsequent experiments established that these CoA species are attached to E. coli and S. venezuelae RNA at the 5' terminus. CoA-linked RNA cannot be generated through aberrant transcriptional initiation by E. coli RNA polymerase in vitro, and CoA-linked RNA in E. coli is only found among smaller (approximately < 200 nucleotide) RNAs that have yet to be identified. These results provide examples of small molecule-RNA conjugates and suggest that the chemical diversity of cellular RNA may be greater than previously understood. PMID:19416889

  14. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA

    Science.gov (United States)

    Kowtoniuk, Walter E.; Shen, Yinghua; Heemstra, Jennifer M.; Agarwal, Isha; Liu, David R.

    2009-01-01

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3′-aminoacylated tRNAs, nucleobase-modified RNAs, and 5′-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule–RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved from RNA by base or nucleophile treatment. Application to Escherichia coli and Streptomyces venezuelae RNA revealed an RNA-linked hydroxyfuranone or succinyl ester group, in addition to a number of other putative small molecule–RNA conjugates not previously reported. The second method analyzes nuclease-generated mononucleotides before and after treatment with base or nucleophile and also revealed a number of new putative small molecule–RNA conjugates, including 3′-dephospho-CoA and its succinyl-, acetyl-, and methylmalonyl-thioester derivatives. Subsequent experiments established that these CoA species are attached to E. coli and S. venezuelae RNA at the 5′ terminus. CoA-linked RNA cannot be generated through aberrant transcriptional initiation by E. coli RNA polymerase in vitro, and CoA-linked RNA in E. coli is only found among smaller (≲200 nucleotide) RNAs that have yet to be identified. These results provide examples of small molecule-RNA conjugates and suggest that the chemical diversity of cellular RNA may be greater than previously understood. PMID:19416889

  15. Modified Foxp3 mRNA protects against asthma through an IL-10 dependent mechanism

    OpenAIRE

    Mays, Lauren E.; Ammon-Treiber, Susanne; Mothes, Benedikt; Alkhaled, Mohammed; Rottenberger, Jennifer; Müller-Hermelink, Eva Sophie; Grimm, Melanie; Mezger, Markus; Beer-Hammer, Sandra; von Stebut, Esther; Rieber, Nikolaus; Nürnberg, Bernd; Schwab, Matthias; Handgretinger, Rupert; Idzko, Marco

    2013-01-01

    Chemically modified mRNA is capable of inducing therapeutic levels of protein expression while circumventing the threat of genomic integration often associated with viral vectors. We utilized this novel therapeutic tool to express the regulatory T cell transcription factor, FOXP3, in a time- and site-specific fashion in murine lung, in order to prevent allergic asthma in vivo. We show that modified Foxp3 mRNA rebalanced pulmonary T helper cell responses and protected from allergen-induced tis...

  16. Thermodynamics of RNA duplexes modified with unlocked nucleic acid nucleotides

    OpenAIRE

    Pasternak, Anna; Wengel, Jesper

    2010-01-01

    Thermodynamics provides insights into the influence of modified nucleotide residues on stability of nucleic acids and is crucial for designing duplexes with given properties. In this article, we introduce detailed thermodynamic analysis of RNA duplexes modified with unlocked nucleic acid (UNA) nucleotide residues. We investigate UNA single substitutions as well as model mismatch and dangling end effects. UNA residues placed in a central position makes RNA duplex structure less favourable by 4...

  17. Nonconventional chemical inhibitors of microRNA: therapeutic scope.

    Science.gov (United States)

    Jayaraj, Gopal Gunanathan; Nahar, Smita; Maiti, Souvik

    2015-01-18

    MicroRNAs (miRNAs) are a class of genomically encoded small RNA molecules (∼22nts in length), which regulate gene expression post transcriptionally. The term microRNA or miRNA was coined in 2001, and research in the past decade has shed light on their widespread occurrence, evolutionary conservation and tissue specific functions. It is estimated that they modulate the gene expression of approximately 60% of the mammalian genes by regulating the levels of target mRNAs to which they can bind on the basis of sequence complementarities. miRNAs are produced in a well coordinated series of steps from being transcribed in the nucleus to exerting their function in the cytoplasm. miRNAs are now implicated in diverse biological phenomena ranging from development to stress response which makes miRNAs one of the central regulatory molecules which modulate information flow along the central dogma of gene expression. More importantly, like any regulatory molecule, deregulation of miRNAs is causally associated with several diseases (mainly cancer) and is directly involved in a variety of pathophysiologies owing to their aberrant expression. Thus, modulation of miRNA levels is of prime therapeutic importance. Conventional methods of miRNA knockdown using chemically modified antisense-oligonucleotides have been explored extensively but face the challenges of modes of delivery, biostability and biodistribution. This calls for the development of more alternative and non-conventional methods to target miRNA. Small molecules targeting RNA chemical and structural space provide one such timely opportunity. In this article we first provide a brief overview of miRNA biogenesis and its disease associations. We then summarize the major developments in conventional oligonucleotide based approaches to miRNA knockdown and its status. We then focus on the more non-conventional methods like oligonucleotide enzymes and small molecules and provide an outlook on the future of such methods. PMID

  18. Chemical modification of RNA-based medicine can be used to reduce its induction of the innate immune response

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen;

    2012-01-01

    trout and VHSV to screen siRNAs containing various chemical modifications of the RNA backbone and found that was possible to modify the backbone so as to reduce the antiviral effect of the RNA. Antiviral protection was also dependent upon localisation of the modified nucleotide residues in the RNA...

  19. Modify or die? - RNA modification defects in metazoans

    Science.gov (United States)

    Sarin, L Peter; Leidel, Sebastian A

    2014-01-01

    Chemical RNA modifications are present in all kingdoms of life and many of these post-transcriptional modifications are conserved throughout evolution. However, most of the research has been performed on single cell organisms, whereas little is known about how RNA modifications contribute to the development of metazoans. In recent years, the identification of RNA modification genes in genome wide association studies (GWAS) has sparked new interest in previously neglected genes. In this review, we summarize recent findings that connect RNA modification defects and phenotypes in higher eukaryotes. Furthermore, we discuss the implications of aberrant tRNA modification in various human diseases including metabolic defects, mitochondrial dysfunctions, neurological disorders, and cancer. As the molecular mechanisms of these diseases are being elucidated, we will gain first insights into the functions of RNA modifications in higher eukaryotes and finally understand their roles during development. PMID:25692999

  20. Major and Modified Nucleosides, RNA, and DNA

    Science.gov (United States)

    Gehrke, Charles W.; Kuo, Kenneth C.

    Most analytical chemists are well aware of the rapid rate of development of high-performance liquid chromatography (HPLC) over the past 5 years. A number of articles have been published in Analytical Chemistry on different topics in HPLC and many papers appear in the chromatographic journals. Some books also have been published covering this subject. HPLC has proved to be a very effective, broadly applicable chromatographic method for the separation and analysis of complex molecules in fields as diverse as biochemistry and environmental, pharmaceutical, medical, and polymer chemistry. HPLC is now having a major impact on the clinical and research aspects of medical biochemistry. Although the contributions of HPLC to other disciplines generally complements gas-liquid chromatography, this method is destined to play a much greater role in medical and biochemical research. This is because many of the biomolecules, owing to their molecular complexity and size, are thermally unstable or nonvolatile, preventing or complicating an analysis by GC. A major factor contributing to the powerful advances in biomedical liquid chromatography is the development of reversed-phase high-performance liquid chromatography (RP-HPLC) using n-alkyl and phenyl chemically bonded substrates.

  1. A versatile toolbox for posttranscriptional chemical labeling and imaging of RNA

    Science.gov (United States)

    Sawant, Anupam A.; Tanpure, Arun A.; Mukherjee, Progya P.; Athavale, Soumitra; Kelkar, Ashwin; Galande, Sanjeev; Srivatsan, Seergazhi G.

    2016-01-01

    Cellular RNA labeling strategies based on bioorthogonal chemical reactions are much less developed in comparison to glycan, protein and DNA due to its inherent instability and lack of effective methods to introduce bioorthogonal reactive functionalities (e.g. azide) into RNA. Here we report the development of a simple and modular posttranscriptional chemical labeling and imaging technique for RNA by using a novel toolbox comprised of azide-modified UTP analogs. These analogs facilitate the enzymatic incorporation of azide groups into RNA, which can be posttranscriptionally labeled with a variety of probes by click and Staudinger reactions. Importantly, we show for the first time the specific incorporation of azide groups into cellular RNA by endogenous RNA polymerases, which enabled the imaging of newly transcribing RNA in fixed and in live cells by click reactions. This labeling method is practical and provides a new platform to study RNA in vitro and in cells. PMID:26384420

  2. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    Science.gov (United States)

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-01

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod. PMID:26818131

  3. Properties Characterization of Chemically Modified Hemp Hurds

    Directory of Open Access Journals (Sweden)

    Nadezda Stevulova

    2014-12-01

    Full Text Available The effect of chemical treatment of hemp hurds slices in three solutions (EDTA (Ethylenediaminetetraacetic acid, NaOH and Ca(OH2 on the properties of natural material was discussed in this paper. Changes in the morphology, chemical composition and structure as well as thermal stability of hemp hurds before and after their modification were investigated by using FTIR (Fourier transform infrared spectroscopy, XRD (X-ray powder diffraction analysis and TG (thermogravimetry/DSC (differential scanning calorimetry. Size exclusion chromatography (SEC measurements were used for determination of degree of cellulose polymerization of hemp hurd samples. Chemical modification is related to the partial removal of non-cellulosic components of lignin, hemicellulose and pectin as well as waxes from the surface of hemp hurd slices. Another effect of the chemical treatment applied is connected with increasing the crystallinity index of cellulose determined by FTIR and XRD methods. Decrease in degree of cellulose polymerization and polydispersity index in chemically modified hemp hurds compared to the original sample was observed. Increase in thermal stability of treated hemp hurd was found. The most significant changes were observed in alkaline treated hemp hurds by NaOH.

  4. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies

    KAUST Repository

    Chawla, Mohit

    2015-06-27

    Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.

  5. The tRNA-Dependent Biosynthesis of Modified Cyclic Dipeptides

    OpenAIRE

    Giessen, Tobias W.; Mohamed A. Marahiel

    2014-01-01

    In recent years it has become apparent that aminoacyl-tRNAs are not only crucial components involved in protein biosynthesis, but are also used as substrates and amino acid donors in a variety of other important cellular processes, ranging from bacterial cell wall biosynthesis and lipid modification to protein turnover and secondary metabolite assembly. In this review, we focus on tRNA-dependent biosynthetic pathways that generate modified cyclic dipeptides (CDPs). The essential peptide bond...

  6. Antitumor activity of chemical modified natural compounds

    Directory of Open Access Journals (Sweden)

    Marilda Meirelles de Oliveira

    1991-01-01

    Full Text Available Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1. Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.

  7. Chemically modified flexible strips as electrochemical biosensors.

    Science.gov (United States)

    Thota, Raju; Ganesh, V

    2014-09-21

    A flexible and disposable strip sensor for non-enzymatic glucose detection is demonstrated in this work. The strips are prepared by using chemical modification processes followed by a simple electroless deposition of copper. Essentially, polyester overhead projector (OHP) transparent films are modified with a monolayer of 3-aminopropyltrimethoxysilane (APTMS) and polyaniline (PANI) conducting polymer. Later, nanostructured copper is deposited onto this modified film. Scanning electron microscope (SEM) and X-ray diffraction (XRD) studies are used for the structural, morphological and crystallinity characterization of the modified films. Electrochemical techniques, namely cyclic voltammetry (CV) and chronoamperometry (CA), are employed for the non-enzymatic detection of glucose. These studies clearly reveal the formation of homogeneous, close-packed spherical Cu particles converged into uniform film that exhibits a good catalytic activity towards the oxidation of glucose. The Cu/PANI/APTMS/OHP sensor displays a remarkable enhancement in the oxidation current density, a very high sensitivity value of 2.8456 mA cm(-2) per mM, and a linear concentration range from 100 μM to 6.5 mM associated with glucose detection. Detection limit is estimated to be 5 μM and the response time of the sensor is determined to be less than 5 s. For comparison, similar studies are performed without PANI, namely Cu/APTMS/OHP films for glucose detection. In this case, a sensitivity value of 2.4457 mA cm(-2) per mM and a linear concentration range of 100 μM-3 mM are estimated. The higher performance characteristics observed in the case of Cu/PANI/APTMS/OHP are attributed to the synergistic effects of the conducting polymer acting as an electron facilitator and the nanostructured Cu films. These disposable, flexible and low-cost strip sensors have also been applied to the detection of glucose in clinical blood serum samples and the results obtained agree very well with the actual glucose

  8. Evolution of DNA and RNA as catalysts for chemical reactions.

    Science.gov (United States)

    Jäschke, A; Seelig, B

    2000-06-01

    In vitro selection from combinatorial nucleic acid libraries has provided new RNA and DNA molecules that have catalytic properties. Catalyzed reactions now go far beyond self-modifying reactions of nucleic acid molecules. The future application of in vitro selected RNA and DNA catalysts in bioorganic synthesis appears promising. PMID:10826969

  9. Purification of retrovirus genomic RNA suitable for chemical radioiodination

    International Nuclear Information System (INIS)

    An efficient method for the purification of genomic RNA from the retrovirus, caprine arthritis-encephalitis virus, is described. The method utilizes proteinase K, extraction with sodium perchlorate and chromatography on oligo(dT)-cellulose and results in highly purified RNA capable of being chemically iodinated with Na125I to high specific radioactivity. The iodinated RNA exhibits 80-90% precipitability in 5% trichloroacetic acid and is >= 99% sensitive to hydrolysis by ribonuclease. Several alternative methods which are effective for the preparation of eukaryotic ribosomal RNA are unreliable for purification of retrovirus RNA suitable for radioiodination. (Auth.)

  10. Small Molecule Chemical Probes of MicroRNA Function

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R.; Disney, Matthew D.

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as strides are made to understand small molecule recognition of RNA from a fundamental perspective. PMID:25500006

  11. Modified siRNA Structure With a Single Nucleotide Bulge Overcomes Conventional siRNA-mediated Off-target Silencing

    OpenAIRE

    Dua, Pooja; Yoo, Jae Wook; Kim, Soyoun; Lee, Dong-ki

    2011-01-01

    Off-target gene silencing is a major concern when using RNA interference. Imperfect pairing of the antisense strand with unintended mRNA targets is one of the main causes of small interfering RNA (siRNA) off-target silencing. To overcome this, we have developed “bulge-siRNA,” a modified siRNA backbone structure with a single nucleotide (nt) bulge placed in the antisense strand. We found that siRNAs with a bulge at position 2 of the antisense strand were able to discriminate better between per...

  12. The tRNA-Dependent Biosynthesis of Modified Cyclic Dipeptides

    Directory of Open Access Journals (Sweden)

    Tobias W. Giessen

    2014-08-01

    Full Text Available In recent years it has become apparent that aminoacyl-tRNAs are not only crucial components involved in protein biosynthesis, but are also used as substrates and amino acid donors in a variety of other important cellular processes, ranging from bacterial cell wall biosynthesis and lipid modification to protein turnover and secondary metabolite assembly. In this review, we focus on tRNA-dependent biosynthetic pathways that generate modified cyclic dipeptides (CDPs. The essential peptide bond-forming catalysts responsible for the initial generation of a CDP-scaffold are referred to as cyclodipeptide synthases (CDPSs and use loaded tRNAs as their substrates. After initially discussing the phylogenetic distribution and organization of CDPS gene clusters, we will focus on structural and catalytic properties of CDPSs before turning to two recently characterized CDPS-dependent pathways that assemble modified CDPs. Finally, possible applications of CDPSs in the rational design of structural diversity using combinatorial biosynthesis will be discussed before concluding with a short outlook.

  13. Properties Characterization of Chemically Modified Hemp Hurds

    OpenAIRE

    Nadezda Stevulova; Julia Cigasova; Adriana Estokova; Eva Terpakova; Anton Geffert; Frantisek Kacik; Eva Singovszka; Marian Holub

    2014-01-01

    The effect of chemical treatment of hemp hurds slices in three solutions (EDTA (Ethylenediaminetetraacetic acid), NaOH and Ca(OH)2) on the properties of natural material was discussed in this paper. Changes in the morphology, chemical composition and structure as well as thermal stability of hemp hurds before and after their modification were investigated by using FTIR (Fourier transform infrared spectroscopy), XRD (X-ray powder diffraction analysis) and TG (thermogravimetry)/DSC (differentia...

  14. Polymers based on chemically modified starch

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Kruliš, Zdeněk; Šárka, E.; Kobera, Libor

    Prague : Czech Chemical Society, 2014 - (Řápková, R.; Čopíková, J.; Šárka, E.), s. 88-90 ISBN 978-80-86238-70-8. [International Conference on Polysaccharides-Glycoscience /10./. Prague (CZ), 22.10.2014-24.10.2014] R&D Projects: GA TA ČR(CZ) TA04020853 Institutional support: RVO:61389013 Keywords : starch * chemical modification * degree of substitution Subject RIV: CD - Macromolecular Chemistry

  15. Chemical fidelity of an RNA polymerase ribozyme

    DEFF Research Database (Denmark)

    Attwater, J.; Tagami, S.; Kimoto, M.;

    2013-01-01

    strands. Our results indicate specificity mechanisms that are found in functionally analogous forms in natural polymerases. They also reveal a level of chemical fidelity over multiple catalytic steps that is remarkable for a comparatively unoptimized enzyme developed de novo from a random sequence pool....... The convergent evolution of specificity mechanisms in phylogenetically unrelated proteinaceous polymerases and polymerase ribozymes suggests that chemical as well as informational fidelity are emergent properties of polymerase enzymes. © 2013 The Royal Society of Chemistry....

  16. Highly Efficient Gene Suppression by Chemically Modified 27 Nucleotide Double-Stranded RNAs

    Science.gov (United States)

    Kubo, Takanori; Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki

    2008-02-01

    RNA interference (RNAi) technology, described by Fire and Mello in 1998, is a powerful tool for the suppression of gene expression in mammalian cells. RNAi technology has several advantages over other chemical and genetic drugs. However, several problems in RNAi technology, such as cellular delivery, nuclease stability, and side effects, should be solved before applying it in the clinic. In this study, we focused on the development of novel chemically modified 27 nucleotide (nt) double-stranded RNAs (dsRNAs) with improved biological properties. Our chemically modified 27 nt dsRNAs exhibited an enhanced RNAi activity and a markedly increased stability in cell culture medium (containing 10% serum) in comparison with widely used 21 nt siRNAs and recently reported nonmodified 27 nt dsRNAs. The chemically modified 27 nt dsRNAs also exhibited a strong high long-term gene silencing effect after the 7 d treatment of viable cells. The chemically modified 27 nt dsRNAs in specific positions could be processed to 21 nt siRNAs by a recombinant Dicer enzyme. We suggested that the chemically modified 27 nt dsRNAs could be used for therapeutic applications (as genetic drugs) and bioanalyses.

  17. Properties of chemically modified gelatin films

    Directory of Open Access Journals (Sweden)

    R. A. de Carvalho

    2006-03-01

    Full Text Available Edible and/or biodegradable films usually have limited water vapor barriers, making it difficult to use them. Thus, the objective of this work was to evaluate the effect of a chemical reticulation treatment with formaldehyde and glyoxal on the mechanical properties, water vapor permeability, solubility and color parameters of gelatin-based films. Formaldehyde and glyoxal were added to the filmogenic solution in concentrations ranging from 3.8 to 8.8 mmoles/100 mL of filmogenic solution and 6.3 to 26.3 mmoles/100 mL of filmogenic solution, respectively. The treatments caused a reduction in permeability to water vapor and in solubility. Only the treatment with formaldehyde caused a significant increase in rupture tension for concentrations above 6.3 mmoles/100 mL of filmogenic solution. Scanning electron microscopy indicated a loss of matrix orientation due to the chemical reticulation treatment.

  18. Nanoparticles Modified With Tumor-targeting scFv Deliver siRNA and miRNA for Cancer Therapy

    OpenAIRE

    Chen, Yunching; Zhu, Xiaodong; Zhang, Xiaoju; Liu, Bin; Huang, Leaf

    2010-01-01

    Targeted delivery of RNA-based therapeutics for cancer therapy remains a challenge. We have developed a LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation modified with tumor-targeting single-chain antibody fragment (scFv) for systemic delivery of small interfering RNA (siRNA) and microRNA (miRNA) into experimental lung metastasis of murine B16F10 melanoma. The siRNAs delivered by the scFv targeted nanoparticles efficiently downregulated the target genes (c-Myc/MDM2/VEGF) in t...

  19. Polymer based on chemically modified starch

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Kruliš, Zdeněk; Šárka, E.; Kobera, Libor

    Praha : Ústav makromolekulární chemie AV ČR, v. v. i, 2014. s. 82. ISBN 978-80-85009-81-1. [Česko-slovenská konference POLYMERY 2014 /8./. 06.10.2014-09.10.2014, Třešť] R&D Projects: GA TA ČR(CZ) TA04020853 Institutional support: RVO:61389013 Keywords : starch * chemical modification * degree of substitution Subject RIV: CD - Macromolecular Chemistry

  20. Chemical Mutagenesis of an Emissive RNA Alphabet.

    Science.gov (United States)

    Rovira, Alexander R; Fin, Andrea; Tor, Yitzhak

    2015-11-25

    An evolved fluorescent ribonucleoside alphabet comprising isomorphic purine ((tz)A, (tz)G) and pyrimidine ((tz)U, (tz)C) analogues, all derived from isothiazolo[4,3-d]pyrimidine as a common heterocyclic core, is described. Structural and biochemical analyses illustrate that the nucleosides, particularly the C-nucleosidic purine analogues, are faithful isomorphic and isofunctional surrogates of their natural counterparts and show improved features when compared to an RNA alphabet derived from thieno[3,4-d]-pyrimidine. The restoration of the nitrogen in a position equivalent to the purines' N7 leads to "isofunctional" behavior, as illustrated by the ability of adenosine deaminase to deaminate (tz)A as effectively as adenosine, the native substrate. PMID:26523462

  1. Obtention of chemically modified clays: organovermiculites

    International Nuclear Information System (INIS)

    The organovermiculite is obtained by incorporating the quaternary ammonium salt in the clay mineral vermiculite interlayer space. The objective of this work was to prepare organovermiculites for applications in organic contaminants adsorption. The variation of interlayer space was determined when the vermiculite was treated with an ionic salt (Praepagem WB) and a non-ionic salt (Amina Etoxilada TA50) in different concentrations. Before interacting with quaternary ammonium salt, the clay mineral was subjected to cationic change process with Na2CO3 to substitute Mg2+ by Na+. The results showed enlargement of interlayer space, reaching values up to 60.0 Å. The vermiculite pre-activated with Na2CO3 during 5 days and modified with the Praepagem WB showed the best performance. Amina Etoxilada TA50 salt was not observed significant changes with increasing concentration. The affinity of organovermiculite for organic solvents was confirmed by Foster swelling test and the best results were observed with diesel and petrol as solvents. (author)

  2. Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA.

    Science.gov (United States)

    Shaat, Hanan; Mostafa, Amany; Moustafa, Moustafa; Gamal-Eldeen, Amira; Emam, Ahmed; El-Hussieny, Enas; Elhefnawi, Mahmoud

    2016-05-17

    To overcome the rapid enzymatic degradation and low transfection efficiency of siRNA, the delivery carriers for siRNA is a therapeutic demand to increase its stability. Gold nanoparticles (AuNPs) modified by branched polyethyleneimine (bPEI) were developed as an efficient and safe intracellular delivery carriers for siRNA. The current study implied that siRNA designed against an oncogene c-Myc could be delivered by a modified AuNPs complex without significant cytotoxicity. The comparative semi-quantitative and quantitative real time PCR were used to measure the c-Myc gene expression after transfection with naked siRNA and siRNA/bPEI/AuNPs, but AuNPs interfered with PCR. However, the c-Myc protein translation was successfully detected in the transfected HuH7 cells with naked siRNA and siRNA/bPEI/AuNPs and it was found to be inhibited by siRNA/bPEI/AuNPs more than naked siRNA. The results validate the successful silencing of c-Myc gene. Accordingly, it may confirm the promising and effective delivery of siRNA by bPEI/AuNPs. The complex enhances the cellular uptake of siRNA without significant cytotoxicity and confirms that bPEI modified AuNPs could be used as a good candidate for safe cellular delivery of siRNA. PMID:27036397

  3. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  4. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    OpenAIRE

    Murphy, Katherine A.; Christine A. Tabuloc; Cervantes, Kevin R.; Joanna C. Chiu

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally...

  5. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    2007-01-01

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  6. A novel method of modifying immune responses by vaccination with lipiodol-siRNA mixtures

    Directory of Open Access Journals (Sweden)

    Yijian Li

    2006-01-01

    Full Text Available Abstract The dendritic cell (DC possesses the ability to stimulate both T helper 1 (Th1 and Th2 responses depending on activation stimuli. Although it is known that chemically or genetically modified DC can be used therapeutically to steer immune responses towards either Th1 or Th2, cellular therapy with ex vivo manipulated DC is clinically difficult. Here we demonstrate a novel method of switching immune responses from Th1 to Th2 through in vivo immune modulation by administration of siRNA. We demonstrate that siRNA targeting of the IL-12p35 gene leads to a Th2 bias in vitro through an IL-10 dependent mechanism. In vivo administration of siRNA admixed with the oil-based contrast agent lipiodol in the presence of antigen and adjuvant induced a deviation in recall response to reduced production of IFN-γ and augmented IL-4 response using either KLH or ovalbumin. This simple method of in vivo modification of immune response possesses therapeutic potential in Th1-mediated diseases such as multiple sclerosis and autoimmune diabetes.

  7. Biosorption of uranium by chemically modified Rhodotorula glutinis

    Energy Technology Data Exchange (ETDEWEB)

    Bai Jing, E-mail: baijing@impcas.ac.c [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yao Huijun [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Fan Fangli; Lin Maosheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Lina; Ding Huajie; Lei Fuan; Wu Xiaolei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xiaofei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Guo Junsheng; Qin Zhi [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-11-15

    The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L. The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. -- Research highlights: {yields} Uranium biosorption on to chemically modified yeast cells {yields} Cells before and after uranium sorption were investigate by FTIR spectroscopy {yields} Amino and carboxyl groups were important functional groups involved in uranium binding {yields} The sorption equilibrium date of raw and chemically modified biomass fitted well with Langmuir and Freundlich models

  8. Triple Helical Recognition of RNA Using 2-Aminopyridine-Modified PNA at Physiologically Relevant Conditions**

    OpenAIRE

    Zengeya, Thomas; Gupta, Pankaj; Rozners, Eriks

    2012-01-01

    Peptide nucleic acids containing thymidine and 2-aminopyridine (M) nucleobases formed stable and sequence selective triple helices with double stranded RNA at physiologically relevant conditions. The M-modified PNA displayed unique RNA selectivity by having two orders of magnitude higher affinity for the double stranded RNAs than for the same DNA sequences. Preliminary results suggested that nucleobase-modified PNA could bind and recognize double helical precursors of microRNAs.

  9. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory.

    Science.gov (United States)

    Yeates, Jessica A M; Hilbe, Christian; Zwick, Martin; Nowak, Martin A; Lehman, Niles

    2016-05-01

    Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock-paper-scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world. PMID:27091972

  10. Influence of temperature on natural and chemically modified zeolites

    International Nuclear Information System (INIS)

    Zeolites from Nizny Hrabovec (Slovak Republic) were modified with solutions of NaOH. The changes of zeolites in the temperature range 20-1200 deg C were studied by thermal analysis (DTA, TG, ETA), X-ray analysis and REM analysis. Thermal analysis showed that the process of dehydration started between temperatures 20 and 600 deg C, over this temperature the dealumination and structural changes have taken place. X-ray analysis and REM analysis showed the structural changes of natural zeolites and gradual loss of cristallinity of the chemically modified zeolites. (author)

  11. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  12. A cyclopropene-modified nucleotide for site-specific RNA labeling using genetic alphabet expansion transcription.

    Science.gov (United States)

    Eggert, F; Kath-Schorr, S

    2016-06-01

    Site-specific RNA modification with methyl cyclopropene moieties is performed by T7 in vitro transcription. An existing unnatural base is functionalized with a cyclopropene moiety and used in transcription reactions to produce site-specifically cyclopropene-modified RNA molecules. The posttranscriptional inverse electron demand Diels-Alder cycloaddition reaction with a selected tetrazine-fluorophore conjugate is demonstrated. PMID:27181840

  13. Triple Helical Recognition of Pyrimidine Inversions in Polypurine Tracts of RNA by Nucleobase-modified PNA

    OpenAIRE

    Gupta, Pankaj; Zengeya, Thomas; Rozners, Eriks

    2011-01-01

    Peptide nucleic acids containing 2-pyrimidinone (P) and 3-oxo-2,3-dihydropyridazine (E) heterocycles recognized C-G and U-A inversions in a polypurine tract of double helical RNA with high affinity and sequence selectivity at pH 6.25. E-modified PNA bound strongly to bacterial A-site RNA, while no binding was observed to the human A-site RNA.

  14. Reduced chemically modified graphene oxide for supercapacitor electrode

    OpenAIRE

    Rajagopalan, Balasubramaniyan; Chung, Jin Suk

    2014-01-01

    An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g-1 at 0.2 A g-1 in 2 M H2SO4 compared to a value of 141 F g-1 for graphene oxide reduced for 24 h (RGO-24), and good cyclic stability up to 3,000...

  15. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    FengXu; RuncangSun; HuaiyuZhan

    2004-01-01

    Various lignocellulosic materials such as wood, agricultural and forest residues has the potential to be valuable substitute for, or complement to, commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world's total straw pulp. However, huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  16. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Runcang Sun; Huaiyu Zhan

    2004-01-01

    Various lignocellulosic materials such as wood,agricultural and forest residues has the potential to be valuable substitute for, or complement to,commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world′s total straw pulp. However,huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  17. Genetic and chemical modifiers of a CUG toxicity model in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amparo Garcia-Lopez

    Full Text Available Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL proteins contributing to myotonic dystrophy 1 (DM1. To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen, muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine, and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.

  18. mRNA detection in living cell using phosphorothioate-modified molecular beacon

    Institute of Scientific and Technical Information of China (English)

    TANG HongXing; YANG XiaoHai; WANG KeMin; TAN WeiHong; LI Wei

    2009-01-01

    In this study, GFP mRNA in COS-7 cell and GFP-transfected COS-7 cell was detected in real time using phosphorothioate-modified molecular beacon based on living cell imaging method. Results showed that phosphorothioate-modified molecular beacon still kept the advantages of molecular beacon, such as, excellent selectivity, high sensitivity, and no separation detection. In addition, this modification could significantly increase the nuclease resistance of molecular beacon. Phosphorothioate-modified molecular beacon can efficiently reduce the false positive signal and improve the accuracy of living cell mRNA detection.

  19. In vitro RNA SELEX for the generation of chemically-optimized therapeutic RNA drugs.

    Science.gov (United States)

    Urak, Kevin T; Shore, Sabrina; Rockey, William M; Chen, Shi-Jie; McCaffrey, Anton P; Giangrande, Paloma H

    2016-07-01

    Aptamers are single-stranded DNA or RNA oligonucleotides that can bind with exquisitely high affinity and specificity to target molecules and are thus often referred to as 'nucleic acid' antibodies. Oligonucleotide aptamers are derived through a process of directed chemical evolution called SELEX (Systematic Evolution of Ligands by Exponential enrichment). This chemical equivalent of Darwinian evolution was first described in 1990 by Tuerk & Gold and Ellington & Szostak and has since yielded aptamers for a wide-range of applications, including biosensor technologies, in vitro diagnostics, biomarker discovery, and therapeutics. Since the inception of the original SELEX method, numerous modifications to the protocol have been described to fit the choice of target, specific conditions or applications. Technologies such as high-throughput sequencing methods and microfluidics have also been adapted for SELEX. In this chapter, we outline key steps in the SELEX process for enabling the rapid identification of RNA aptamers for in vivo applications. Specifically, we provide a detailed protocol for the selection of chemically-optimized RNA aptamers using the original in vitro SELEX methodology. In addition, methods for performing next-generation sequencing of the RNAs from each round of selection, based on Illumina sequencing technology, are discussed. PMID:26972786

  20. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    Science.gov (United States)

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J

    2016-07-01

    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself. PMID:27354583

  1. Reduction of Target Gene Expression by a Modified U1 snRNA

    OpenAIRE

    Beckley, S. A.; Liu, P; Stover, M L; Gunderson, S I; Lichtler, A C; Rowe, D W

    2001-01-01

    Although the primary function of U1 snRNA is to define the 5′ donor site of an intron, it can also block the accumulation of a specific RNA transcript when it binds to a donor sequence within its terminal exon. This work was initiated to investigate if this property of U1 snRNA could be exploited as an effective method for inactivating any target gene. The initial 10-bp segment of U1 snRNA, which is complementary to the 5′ donor sequence, was modified to recognize various target mRNAs (chlora...

  2. Integrating chemical footprinting data into RNA secondary structure prediction.

    Directory of Open Access Journals (Sweden)

    Kourosh Zarringhalam

    Full Text Available Chemical and enzymatic footprinting experiments, such as shape (selective 2'-hydroxyl acylation analyzed by primer extension, yield important information about RNA secondary structure. Indeed, since the [Formula: see text]-hydroxyl is reactive at flexible (loop regions, but unreactive at base-paired regions, shape yields quantitative data about which RNA nucleotides are base-paired. Recently, low error rates in secondary structure prediction have been reported for three RNAs of moderate size, by including base stacking pseudo-energy terms derived from shape data into the computation of minimum free energy secondary structure. Here, we describe a novel method, RNAsc (RNA soft constraints, which includes pseudo-energy terms for each nucleotide position, rather than only for base stacking positions. We prove that RNAsc is self-consistent, in the sense that the nucleotide-specific probabilities of being unpaired in the low energy Boltzmann ensemble always become more closely correlated with the input shape data after application of RNAsc. From this mathematical perspective, the secondary structure predicted by RNAsc should be 'correct', in as much as the shape data is 'correct'. We benchmark RNAsc against the previously mentioned method for eight RNAs, for which both shape data and native structures are known, to find the same accuracy in 7 out of 8 cases, and an improvement of 25% in one case. Furthermore, we present what appears to be the first direct comparison of shape data and in-line probing data, by comparing yeast asp-tRNA shape data from the literature with data from in-line probing experiments we have recently performed. With respect to several criteria, we find that shape data appear to be more robust than in-line probing data, at least in the case of asp-tRNA.

  3. Film forming capacity of chemically modified corn starches.

    Science.gov (United States)

    López, Olivia V; García, María A; Zaritzky, Noemí E

    2008-09-01

    Native starch can be chemically modified to improve its functionality and to expand its uses. Modified starches were characterized and the rheological behavior of filmogenic suspensions was analyzed. The film forming capacity of different chemical modified corn starches was evaluated. Acetylated starch was selected by the characteristics of the resulted films; its optimum concentration was 5% w/w since their films exhibited the lowest water vapor permeability (WVP, 1.26×10(-10)g/msPa). The effect of glycerol as plasticizer on film properties depend on its concentration, being 1.5% w/w those that allows to obtain the lowest WVP value (1.64×10(-11)g/msPa), low film solubility in water and a more compact structure than those of unplasticized films. Mechanical behavior of plasticized acetylated starch films depends on glycerol concentration, being rigid and brittle the unplasticized ones, ductile those containing 1.5% w/w of glycerol and very flexible those with a higher plasticizer content. PMID:26048223

  4. CHEMICALLY MODIFIED ZEOLITES: SURFACES AND INTERACTION WITH Cs AND Co

    Directory of Open Access Journals (Sweden)

    Pavel Dillinger

    2007-06-01

    Full Text Available Inorganic exchangers, including zeolites, have interesting properties such as resistance to decomposition in the presence of ionizing radiation or to high temperatures, what make them applicable for the purification of low and middle polluted radioactive waste waters. The research was focused on model radioactive waste effluents and the investigated metals were cobalt (Co and cesium (Cs. The performance of natural zeolite of clinoptilolite type and zeolite chemically modified with NaOH solutions was determined by studying their surface and sorption properties using volumetric method and static radioindicator method. The measurements of zeolite´s surfaces showed the double increase of the specific surface along with an increase of mesopore’s diameter. The reason is the extraction of silicon from zeolite caused by NaOH solution what creates secondary mesoporous structure. The radioactive tracer technique was used to evaluate sorption properties of zeolites and the best sorbent was selected based on KD, μ, Γ and S values. The sorption abilities of natural and chemically modified zeolites for Cs uptake were comparable. The uptake of Co with natural zeolite was negligible and it increased up to 14 times for modified zeolites depending on the concentration of treated NaOH solution.

  5. 227 Views of RNA: Is RNA Unique in Its Chemical Isomer Space?

    Science.gov (United States)

    Meringer, Markus; Goodwin, Jay

    2015-01-01

    Abstract Ribonucleic acid (RNA) is one of the two nucleic acids used by extant biochemistry and plays a central role as the intermediary carrier of genetic information in transcription and translation. If RNA was involved in the origin of life, it should have a facile prebiotic synthesis. A wide variety of such syntheses have been explored. However, to date no one-pot reaction has been shown capable of yielding RNA monomers from likely prebiotically abundant starting materials, though this does not rule out the possibility that simpler, more easily prebiotically accessible nucleic acids may have preceded RNA. Given structural constraints, such as the ability to form complementary base pairs and a linear covalent polymer, a variety of structural isomers of RNA could potentially function as genetic platforms. By using structure-generation software, all the potential structural isomers of the ribosides (BC5H9O4, where B is nucleobase), as well as a set of simpler minimal analogues derived from them, that can potentially serve as monomeric building blocks of nucleic acid–like molecules are enumerated. Molecules are selected based on their likely stability under biochemically relevant conditions (e.g., moderate pH and temperature) and the presence of at least two functional groups allowing the monomers to be incorporated into linear polymers. The resulting structures are then evaluated by using molecular descriptors typically applied in quantitative structure–property relationship (QSPR) studies and predicted physicochemical properties. Several databases have been queried to determine whether any of the computed isomers had been synthesized previously. Very few of the molecules that emerge from this structure set have been previously described. We conclude that ribonucleosides may have competed with a multitude of alternative structures whose potential proto-biochemical roles and abiotic syntheses remain to be explored. Key Words: Evolution—Chemical evolution

  6. Adsorption study of copper (II) by chemically modified orange peel

    International Nuclear Information System (INIS)

    An adsorbent, the chemically modified orange peel, was prepared from hydrolysis of the grafted copolymer, which was synthesized by interaction of methyl acrylate with cross-linking orange peel. The presence of poly (acrylic acid) on the biomass surface was verified by infrared spectroscopy (IR), scanning electron microscopy (SEM) and thermogravimetry (TG). Total negative charge in the biomass surface and the zeta potentials were determined. The modified biomass was found to present high adsorption capacity and fast adsorption rate for Cu (II). From Langmuir isotherm, the adsorption capacity for Cu (II) was 289.0 mg g-1, which is about 6.5 times higher than that of the unmodified biomass. The kinetics for Cu (II) adsorption followed the pseudo-second-order kinetics. The adsorbent was used to remove Cu (II) from electroplating wastewater and was suitable for repeated use for more than four cycles.

  7. Nanoparticles Modified With Tumor-targeting scFv Deliver siRNA and miRNA for Cancer Therapy

    Science.gov (United States)

    Chen, Yunching; Zhu, Xiaodong; Zhang, Xiaoju; Liu, Bin; Huang, Leaf

    2010-01-01

    Targeted delivery of RNA-based therapeutics for cancer therapy remains a challenge. We have developed a LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation modified with tumor-targeting single-chain antibody fragment (scFv) for systemic delivery of small interfering RNA (siRNA) and microRNA (miRNA) into experimental lung metastasis of murine B16F10 melanoma. The siRNAs delivered by the scFv targeted nanoparticles efficiently downregulated the target genes (c-Myc/MDM2/VEGF) in the lung metastasis. Two daily intravenous injections of the combined siRNAs in the GC4-targeted nanoparticles significantly reduced the tumor load in the lung. miRNA-34a (miR-34a) induced apoptosis, inhibited survivin expression, and downregulated MAPK pathway in B16F10 cells. miR-34a delivered by the GC4-targeted nanoparticles significantly downregulated the survivin expression in the metastatic tumor and reduced tumor load in the lung. When miR-34a and siRNAs were co-formulated in GC4-targeted nanoparticles, an enhanced anticancer effect was observed. PMID:20606648

  8. Impedimetric Detection of microRNA at Graphene Oxide Modified Sensors

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: • Impedimetric miRNA detection was performed. • Graphene oxide (GO) was modified onto the surface of graphite electrode (PGE) • GO–PGE was characterized by microscopic and electrochemical techniques. -- Abstract: The graphene oxide (GO) modified pencil graphite electrodes (PGEs) were utilized for electrochemical monitoring of microRNA-34a (miRNA-34a) in this study. The GO concentration was firstly optimized after its modification onto the surface of disposable PGE by passive adsorption. The electrochemical behaviour of GO–PGEs was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) as well as microscopic characterization by using scanning electron microscopy (SEM). The impedimetric detection of hybridization between miRNA-34a target and its complementary DNA probe was recognized under the optimum conditions. The selectivity of the impedimetric genosensor was furtherly studied against to other miRNA sequences; such as; miRNA-15a, miRNA-155 and miRNA-660 in PBS (pH 7.40) or fetal bovine serum (FBS): PBS (1:1) diluted solution

  9. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process.

    Directory of Open Access Journals (Sweden)

    Lim Chee Liew

    Full Text Available Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.

  10. Chemically modified tetracyclines: The novel host modulating agents.

    Science.gov (United States)

    Swamy, Devulapalli Narasimha; Sanivarapu, Sahitya; Moogla, Srinivas; Kapalavai, Vasavi

    2015-01-01

    Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA), including Non Steroidal Anti Inflammatory Drugs (NSAIDS), bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs) are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators. PMID:26392682

  11. Chemically modified tetracyclines: The novel host modulating agents

    Directory of Open Access Journals (Sweden)

    Devulapalli Narasimha Swamy

    2015-01-01

    Full Text Available Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA, including Non Steroidal Anti Inflammatory Drugs (NSAIDS, bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators.

  12. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  13. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases.

    Science.gov (United States)

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-04-20

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in anin vitrotranscription assay using RNA polymerase fromBacillus subtilisandEscherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by theE. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. PMID:27001521

  14. Peptide- and Amine-Modified Glucan Particles for the Delivery of Therapeutic siRNA.

    Science.gov (United States)

    Cohen, Jessica L; Shen, Yuefei; Aouadi, Myriam; Vangala, Pranitha; Tencerova, Michaela; Amano, Shinya U; Nicoloro, Sarah M; Yawe, Joseph C; Czech, Michael P

    2016-03-01

    Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multicomponent formulation of β-1,3-d-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were nontoxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses. PMID:26815386

  15. Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution.

    Science.gov (United States)

    Kusser, W

    2000-03-01

    Combinatorial library selections through the systematic evolution of ligands by exponential enrichment (SELEX) technique identify so-called nucleic acid aptamers that bind with high-affinity and specificity to a wide range of selected molecules. However, the modest chemical functionality of nucleic acids poses some limits on their versatility as binders and catalysts, and, furthermore, the sensitivity of pure RNA- and DNA-based aptamers to nucleases restricts their use as therapeutic and diagnostic agents. Here we review synthetic chemistries for modifying nucleotides that have been developed to enhance the affinity of aptamers for targets and to increase their stability in biological fluids. Implementation of in vitro selections with modified nucleotides promises to be an elegant technique for the creation of ligands with novel physical and chemical properties and is anticipated to have a significant impact on biotechnology, diagnostics and drug development. The current molecular designs and applications of modified nucleotides for in vitro selections are reviewed, along with a discussion of future developments expected to further the utility of this approach in both practical and theoretical terms. PMID:10943570

  16. Maltodextrins from chemically modified starches. Selected physicochemical properties.

    Science.gov (United States)

    Pycia, Karolina; Juszczak, Lesław; Gałkowska, Dorota; Witczak, Mariusz; Jaworska, Grażyna

    2016-08-01

    The aim of this work was to evaluate the effect of chemical modification of starch (cross-linking and/or stabilisation) on selected rheological and functional properties of maltodextrins of dextrose equivalent of 6, 11 and 16. It was found that values of glass transition temperatures were decreasing with dextrose equivalent of maltodextrin. The highest values of glass transition temperature (TG) were determined for maltodextrin of DE 6-obtained from distarch phosphate and acetylated distarch phosphate. Increase in DE value of maltodextrin was also accompanied by decrease and increase in values of intrinsic viscosity and the critical concentration, respectively; however, there was no significant effect of kind of chemical modification of starch on the values of these parameters. Maltodextrin solutions at concentrations of from 10 to 70 % exhibited Newtonian flow behaviour. In the case of 50% solutions of maltodextrins of DE 6 the highest viscosity was produced by maltodextrin from native potato starch, while the lowest one by maltodextrin from acetylated starch. On the other hand, among the maltodextrin of DE 11 this one produced from acetylated starch showed the highest viscosity. All the maltodextrins exhibited surfactant properties in a water-air system, with the strongest effect observed for maltodextrins produced from double chemically modified starches and from acetylated starch. The surface activity was increasing with increasing of the DE value of maltodextrin. Moreover, values of surface tension were decreasing with increasing in maltodextrin concentration in the system. PMID:27112878

  17. The prebiotic synthesis of modified purines and their potential role in the RNA world

    Science.gov (United States)

    Levy, M.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Modified purines are found in all organisms in the tRNA, rRNA, and even DNA, raising the possibility of an early role for these compounds in the evolution of life. These include N6-methyladenine, 1-methyladenine, N6,N6-dimethyladenine, 1-methylhypoxanthine, 1-methylguanine, and N2-methylguanine. We find that these bases as well as a number of nonbiological modified purines can be synthesized from adenine and guanine by the simple reaction of an amine or an amino group with adenine and guanine under the concentrated conditions of the drying-lagoon or drying-beach model of prebiotic synthesis with yields as high as 50%. These compounds are therefore as prebiotic as adenine and guanine and could have played an important role in the RNA world by providing additional functional groups in ribozymes, especially for the construction of hydrophobic binding pockets.

  18. Modelling Amperometric Biosensors Based on Chemically Modified Electrodes

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas

    2008-01-01

    The response of an amperometric biosensor based on a chemically modified electrode was modelled numerically. A mathematical model of the biosensor is based on a system of non-linear reaction-diffusion equations. The modelling biosensor comprises two compartments: an enzyme layer and an outer diffusion layer. In order to define the main governing parameters the corresponding dimensionless mathematical model was derived. The digital simulation was carried out using the finite difference technique. The adequacy of the model was evaluated using analytical solutions known for very specific cases of the model parameters. By changing model parameters the output results were numerically analyzed at transition and steady state conditions. The influence of the substrate and mediator concentrations as well as of the thicknesses of the enzyme and diffusion layers on the biosensor response was investigated. Calculations showed complex kinetics of the biosensor response, especially when the biosensor acts under a mixed limitation of the diffusion and the enzyme interaction with the substrate.

  19. 12-Tungstophosphates Immobilized on Chemically Modified Mesoporous Silica SBA-15

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing; YOU Wan-sheng; ZHU Zai-ming; SUN Zhen-gang; ZHANG Lan-cui; GU Yuan-peng

    2005-01-01

    A functionalized material, PW/SBA-15m, was prepared successfully in diluted H2SO4 aqueous solutions by immobilizing 12-tungstophosphates on chemically modified mesoporous silica SBA-15 and characterized by elemental analysis, FTIR, 31P MAS NMR, XRD and TEM. The results indicate that the framework of SBA-15 and the Keggin structure of PW12O3-40 were retained, and that 23%-33%(mass fraction) of PW12O3-40 was immobilized; the PW12O3-40 anions were finely dispersed on the pore wall of SBA-15. Having been leached in ethanol at 60 ℃ for 7 h, the loss of PW12O3-40 anions was not found.

  20. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    Science.gov (United States)

    Zhou, Liang-Chun; Meng, Xiang-Guang; Fu, Jing-Wei; Yang, Yu-Chong; Yang, Peng; Mi, Chun

    2014-02-01

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer-Emmett-Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m2/g), pore volume (7.29 × 10-3 mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m2/g, 2.00 × 10-3 mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and sbnd OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80-91% adsorption efficiency.

  1. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    International Nuclear Information System (INIS)

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer–Emmett–Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m2/g), pore volume (7.29 × 10−3 mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m2/g, 2.00 × 10−3 mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and -OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80–91% adsorption efficiency.

  2. The use of Saccharomyces cerevisiae proteomic libraries to identify RNA-modifying proteins.

    Science.gov (United States)

    Jackman, Jane E; Grayhack, Elizabeth J; Phizicky, Eric M

    2008-01-01

    Biochemical assay of proteomic libraries derived from the Saccharomyces cerevisiae genome provides a powerful new tool for the assignment of activities to proteins. Particular advantages of this approach include the speed with which a protein can be identified and the generality for any biological activity for which an assay can be developed. We discuss the utility of this approach for the identification of RNA-modifying enzymes using a yeast proteomic library derived from a genomic set of strains expressing GST-ORF fusion proteins. This technique is also broadly applicable to other classes of RNA-protein interactions, including RNA binding and RNA degradation, and can be used with any of the proteomic libraries that are available. PMID:18982304

  3. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang-Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Meng, Xiang-Guang, E-mail: mengxgchem@163.com [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); Fu, Jing-Wei [National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Yang, Yu-Chong; Yang, Peng; Mi, Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2014-02-15

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer–Emmett–Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m{sup 2}/g), pore volume (7.29 × 10{sup −3} mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m{sup 2}/g, 2.00 × 10{sup −3} mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and -OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80–91% adsorption efficiency.

  4. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference.

    Science.gov (United States)

    Murphy, Katherine A; Tabuloc, Christine A; Cervantes, Kevin R; Chiu, Joanna C

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  5. The use of Saccharomyces cerevisiae proteomic libraries to identify RNA-modifying proteins

    OpenAIRE

    Jackman, Jane E.; Grayhack, Elizabeth J.; Phizicky, Eric M.

    2008-01-01

    Biochemical assay of proteomic libraries derived from the S. cerevisiae genome provides a powerful new tool for the assignment of activities to proteins. Particular advantages of this approach include the speed with which a protein can be identified, and the generality for any biological activity for which an assay can be developed. We discuss the utility of this approach for the identification of RNA modifying enzymes using a yeast proteomic library derived from a genomic set of strains expr...

  6. Modelling Amperometric Biosensors Based on Chemically Modified Electrodes

    Directory of Open Access Journals (Sweden)

    Juozas Kulys

    2008-08-01

    Full Text Available The response of an amperometric biosensor based on a chemically modified electrode was modelled numerically. A mathematical model of the biosensor is based on a system of non-linear reaction-diffusion equations. The modelling biosensor comprises two compartments: an enzyme layer and an outer diffusion layer. In order to define the main governing parameters the corresponding dimensionless mathematical model was derived. The digital simulation was carried out using the finite difference technique. The adequacy of the model was evaluated using analytical solutions known for very specific cases of the model parameters. By changing model parameters the output results were numerically analyzed at transition and steady state conditions. The influence of the substrate and mediator concentrations as well as of the thicknesses of the enzyme and diffusion layers on the biosensor response was investigated. Calculations showed complex kinetics of the biosensor response, especially when the biosensor acts under a mixed limitation of the diffusion and the enzyme interaction with the substrate.

  7. Radiation modification of swollen and chemically modified cellulose

    International Nuclear Information System (INIS)

    Complete text of publication follows. Biodegradable hydrogel was produced by radiation-induced crosslinking of water soluble carboxymethyl cellulose. Mobility of the molecular chain was found to play an important role in the crosslinking reaction. In this work the role of cellulose chains' mobility in radiation-induced reactions of fibrous cellulose was studied. Mobility of chains was improved by swelling (in sodium hydroxide and tetramethylammonium hydroxide) and chemical modification (substitution of about 3 % of hydroxyl groups with carboxymethyl groups), respectively. All samples were neutralized after the treatments. Accessibility of cellulose characterized by water adsorption and retention was significantly improved by the treatments in the following order: sodium hydroxide < tetramethylammonium hydroxide < carboxymethylation. Less fibrillar structure of modified fibers was observed by electron microscope. Samples were irradiated in wet form in open air (10 kGy). Untreated sample coated with soluble CMC was also irradiated. Degree of polymerization, FTIR spectra, and water sorption of samples before and after irradiation are presented. Amount of water adsorbed on samples decreased after irradiation. It can be considered the consequence of crosslinks, which might improve the crease recovery ability of cotton fabric. High accessibility improved degradation rather than crosslinking of cellulose chains

  8. The cellular uptake of antisense oligonucleotid of E6 mRNA into cervical cancer cells by DOPE-modified hydroxyapatite nanoparticles

    OpenAIRE

    Negin Saffarzadeh; Seyed Mehdi Kalantar; Ali Jebali; Seyed Hossein Hekmatimoghaddam; Mohammad Hassan Sheikhha; Ehsan Farashahi

    2014-01-01

    Objective(s): Although several chemical and physical methods for gene delivery have been introduced, their cytotoxicity, non-specific immune responses and the lack of biodegradability remain the main issues. In this study, hydroxyapatite nanoparticles (NPs) and 1,2-dioleoyl-sn-glycero-3-phosphoethanol​amine (DOPE)-modified hydroxyapatite NPs was coated with antisense oligonucleotide of E6 mRNA, and their uptakes into the cervical cancer cell line were evaluated. Materials and Methods: Calcium...

  9. Modified gateway system for double shRNA expression and Cre/lox based gene expression

    Directory of Open Access Journals (Sweden)

    Leung Lisa

    2011-03-01

    Full Text Available Abstract Background The growing need for functional studies of genes has set the stage for the development of versatile tools for genetic manipulations. Results Aiming to provide tools for high throughput analysis of gene functions, we have developed a modified short hairpin RNA (shRNA and gene expression system based on Gateway Technology. The system contains a series of entry and destination vectors that enables easy transfer of shRNA or cDNA into lentiviral expression systems with a variety of selection or marker genes (i.e. puromycin, hygromycin, green fluorescent protein-EGFP, yellow fluorescent protein-YFP and red fluorescent protein-dsRed2. Our shRNA entry vector pENTR.hU6.hH1 containing two tandem human shRNA expression promoters, H1 and U6, was capable of co-expressing two shRNA sequences simultaneously. The entry vector for gene overexpression, pENTR.CMV.ON was constructed to contain CMV promoter with a multiple cloning site flanked by loxP sites allowing for subsequent Cre/lox recombination. Both shRNA and cDNA expression vectors also contained attL sites necessary for recombination with attR sites in our destination expression vectors. As proof of principle we demonstrate the functionality and efficiency of this system by testing expression of several cDNA and shRNA sequences in a number of cell lines. Conclusion Our system is a valuable addition to already existing library of Gateway based vectors and can be an essential tool for many aspects of gene functional studies.

  10. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery.

    Science.gov (United States)

    He, Bingwei; Wang, Yitong; Shao, Naimin; Chang, Hong; Cheng, Yiyun

    2015-08-01

    Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery. PMID:25937003

  11. Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling

    Science.gov (United States)

    Motorin, Yuri; Burhenne, Jürgen; Teimer, Roman; Koynov, Kaloian; Willnow, Sophie; Weinhold, Elmar; Helm, Mark

    2011-01-01

    This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNAPhe. LC/MS and LC/MS/MS techniques were used to detect and characterize the modified nucleoside as well as its cycloaddition product with a fluorescent azide. The latter resulted from a labeling reaction via Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition click chemistry, producing site-specifically labeled RNA whose suitability for single molecule fluorescence experiments was verified in fluorescence correlation spectroscopy experiments. PMID:21037259

  12. Isolation and Characterization of 2'-amino-modified RNA Aptamers for Human TNFα

    Institute of Scientific and Technical Information of China (English)

    Xinrui Yan; Xuwen Gao; Zhiqing Zhang

    2004-01-01

    Human tumor necrosis factor α (hTNFα), a pleiotropic cytokine with activities ranging from host defense mechanisms in infection and injury to severe toxicity in septic shock or other related diseases, is a promising target for drug screening. Using the SELEX (systematic evolution of ligands by exponential enrichment) process, we isolated oligonucleotide ligands (aptamers) with high affinities for hTNFα. Aptamers were selected from a starting pool of 40 randomized sequences composed of about 1015 RNA molecules. Representative aptamers were truncated to the minimal length with high affinity for hTNFα and were further modified by replacement of 2'-OH with 2'-F and 2'-NH2 at all ribopurine positions. These modified RNA aptamers were resistant to nuclease. The specificity of these aptamers for hTNFαwas confirmed, and their activity to inhibit the cytotoxicity of hTNFα on mouse L929 cells was determined. Results demonstrated that four 2'-NH2-modified aptamers bound to hTNFα with high affinity and blocked the binding of hTNFα to its receptor, thus protecting the L929 cells from the cytotoxicity of hTNFα. Oligonucleotide aptamers described here are potential therapeutics and diagnostics for hTNFc-related diseases.

  13. 227 Views of RNA: Is RNA Unique in Its Chemical Isomer Space?

    OpenAIRE

    Cleaves, H. James; Meringer, Markus; Goodwin, Jay T.

    2015-01-01

    Abstract Ribonucleic acid (RNA) is one of the two nucleic acids used by extant biochemistry and plays a central role as the intermediary carrier of genetic information in transcription and translation. If RNA was involved in the origin of life, it should have a facile prebiotic synthesis. A wide variety of such syntheses have been explored. However, to date no one-pot reaction has been shown capable of yielding RNA monomers from likely prebiotically abundant starting materials, though this do...

  14. Structure of a class II TrmH tRNA-modifying enzyme from Aquifex aeolicus

    International Nuclear Information System (INIS)

    The crystal structure of Aquifex aeolicus TrmH, a member of the a/b-knot superfamily responsible for O methylation of G18 of tRNAs, was determined to 1.85 Å resolution using the molecular-replacement method. Biological RNAs contain a variety of post-transcriptional modifications that facilitate their efficient function in the cellular environment. One of the two most common forms of modification is methylation of the 2′-hydroxyl group of the ribose sugar, which is performed by a number of S-adenosylmethionine (SAM) dependent methyltransferases. In bacteria, many of these modifications in tRNA and rRNA are carried out by the α/β-knot superfamily of enzymes, whose SAM-binding pocket is created by a characteristic deep trefoil knot. TrmH, an enzyme found throughout all three kingdoms of life, modifies the universally conserved guanosine 18 position of tRNA. The crystal structure of TrmH from the thermophilic bacterium Aquifex aeolicus has been determined at 1.85 Å resolution using data collected from a synchrotron-radiation source. The protein reveals a fold typical of members of the SpoU clan of proteins, a subfamily of the α/β-knot superfamily, with α-helical extensions at the N- and C-termini that are likely to be involved in tRNA binding

  15. Structure of a class II TrmH tRNA-modifying enzyme from Aquifex aeolicus

    Energy Technology Data Exchange (ETDEWEB)

    Pleshe, Elizabeth; Truesdell, John; Batey, Robert T., E-mail: robert.batey@colorado.edu [Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 215, Boulder, CO 80309-0215 (United States)

    2005-08-01

    The crystal structure of Aquifex aeolicus TrmH, a member of the a/b-knot superfamily responsible for O methylation of G18 of tRNAs, was determined to 1.85 Å resolution using the molecular-replacement method. Biological RNAs contain a variety of post-transcriptional modifications that facilitate their efficient function in the cellular environment. One of the two most common forms of modification is methylation of the 2′-hydroxyl group of the ribose sugar, which is performed by a number of S-adenosylmethionine (SAM) dependent methyltransferases. In bacteria, many of these modifications in tRNA and rRNA are carried out by the α/β-knot superfamily of enzymes, whose SAM-binding pocket is created by a characteristic deep trefoil knot. TrmH, an enzyme found throughout all three kingdoms of life, modifies the universally conserved guanosine 18 position of tRNA. The crystal structure of TrmH from the thermophilic bacterium Aquifex aeolicus has been determined at 1.85 Å resolution using data collected from a synchrotron-radiation source. The protein reveals a fold typical of members of the SpoU clan of proteins, a subfamily of the α/β-knot superfamily, with α-helical extensions at the N- and C-termini that are likely to be involved in tRNA binding.

  16. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    OpenAIRE

    GAITAN-FONSECA, Cesar; COLLART-DUTILLEUL, Pierre-Yves; SEMETEY, Vincent; Olivier ROMIEU; Roel CRUZ; Flores, Hector; Frederic CUISINIER; Elias PEREZ; POZOS-GUILLEN, Amaury

    2013-01-01

    Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS). Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angl...

  17. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe;

    2011-01-01

    We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilization...... multiple sites in intermediate exchange on the NMR timescale, resulting in broad lines in NMR spectra. We identified two intercalation sites with NOE data showing that the pyrene prefers to intercalate one base pair away from the modified nucleotide with its linker curled up in the minor groove. Both...... modifications are tolerated in DNA:RNA hybrids but leave their melting temperatures virtually unaffected. Fluorescence data indicate that the pyrene moiety is residing outside the helix. The available data suggest that the DNA discrimination is due to (i) the positive charge of the piperazino ring having a...

  18. Chemical modification of the tryptophan residues of leucyl-tRNA synthetase by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide

    International Nuclear Information System (INIS)

    The accessibility for modification of the tryptophan residues in leucyl-tRNA synthetase from cow mammary glands has been studied with the aid of the specific chemical reagents N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide. UV absorption and the intrinsic fluorescence of the tryptophan residues of the enzymes were used for recording the course of the modification. It has been shown that under native conditions (pH 7.8) two superficial residues in each subunit of the dimeric enzyme undergo modification. Under denaturing conditions (6 M guanidine hydrochloride), the internal tryptophan residues are also modified. When the tryptophan residues are modified, the leucyl-tRNA synthetase is inactivated both in the aminoacylation reaction and in the ATP-PP/sub i/ exchange reaction. In the specific complex of leucyl-tRNA synthetase with tRNA/sup Leu/ one of the superficial tryptophan residues is screened and does not undergo modification by the reagents used

  19. Targeted delivery of microRNA-126 to vascular endothelial cells via REDV peptide modified PEG-trimethyl chitosan.

    Science.gov (United States)

    Zhou, Fang; Jia, Xiaoling; Yang, Qingmao; Yang, Yang; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-05-26

    Manipulation of gene expression by means of microRNAs (miRNAs) is one of the emerging strategies to treat cardiovascular and cancer diseases. Nevertheless, efficient delivery of miRNAs to a specific vascular tissue is limited. In this work, a short peptide Arg-Glu-Asp-Val (REDV) was linked to trimethyl chitosan (TMC) via a bifunctional poly(ethylene glycol) (PEG) linker for the targeted delivery of microRNA-126 (miRNA-126) to vascular endothelial cells (VECs). The morphology, serum stability and cytotoxicity of the polyplex/miRNA complexes, namely, TMC/miRNA, TMC-g-PEG/miRNA and TMC-g-PEG-REDV/miRNA, were investigated along with the cellular uptake, proliferation and in vitro miRNA transfection efficiency. By REDV modification, the TMC-g-PEG-REDV/miRNA complex showed negligible cytotoxicity, increased expression of miRNA-126 and enhanced VEC proliferation compared with the TMC/miRNA and TMC-g-PEG/miRNA complexes. In particular, the approaches adopted for the miRNA delivery and targeted peptide REDV modification promote the selective uptake and the growth of VECs over vascular smooth muscle cells. It was suggested that the REDV peptide-modified TMC-g-PEG polyplex could be potentially used as a miRNA carrier in artificial blood vessels for rapid endothelialization. PMID:27055482

  20. Uranium (Vi) sorption onto zirconium diphosphate chemically modified

    International Nuclear Information System (INIS)

    This work deals with the uranium (Vi) speciation after sorption onto zirconium diphosphate (ZrP2O7) surface, hydrated and in a surface modified with organic acids. Oxalic and citric acids were chosen to modify the ZrP2O7 surface because they have poly carboxylic groups and they mimic the organic matter in nature. Thus the interest of this work is to evaluate the uranium (Vi) sorption edge at different s ph values in natural and modified surfaces. The luminescence technique (fluorescence and phosphorescence, respectively) was used for the quantification and speciation of uranyl sorbed at the zirconium diphosphate interface. The fluorescence experiment, showed that adsorption of uranyl on surface of zirconium diphosphate tends to 100%. The speciation shows that there are different complexes in surface which were formed between zirconium diphosphate and uranyl, since it is produced a displacement of wavelength in fluorescence spectra of each system. (Author)

  1. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-ß-lysine

    DEFF Research Database (Denmark)

    Roy, Hervé; Zou, S Betty; Bullwinkle, Tammy J;

    2011-01-01

    The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with a-lysine at low efficiency. Cell-free extracts containing non-a-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of ß-lysine, a substrate also predicted by genomic analyses. EF......-P was efficiently functionally modified with (R)-ß-lysine but not (S)-ß-lysine or genetically encoded a-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases....

  2. Genome-wide Mapping of Cellular Protein-RNA Interactions Enabled by Chemical Crosslinking

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Li; Jinghui Song; Chengqi Yi

    2014-01-01

    RNA-protein interactions influence many biological processes. Identifying the binding sites of RNA-binding proteins (RBPs) remains one of the most fundamental and important chal-lenges to the studies of such interactions. Capturing RNA and RBPs via chemical crosslinking allows stringent purification procedures that significantly remove the non-specific RNA and protein interactions. Two major types of chemical crosslinking strategies have been developed to date, i.e., UV-enabled crosslinking and enzymatic mechanism-based covalent capture. In this review, we com-pare such strategies and their current applications, with an emphasis on the technologies themselves rather than the biology that has been revealed. We hope such methods could benefit broader audi-ence and also urge for the development of new methods to study RNA RBP interactions.

  3. Chemical and Genetic Wrappers for Improved Phage and RNA Display

    OpenAIRE

    Lamboy, Jorge A.; Tam, Phillip Y.; Lee, Lucie S.; Jackson, Pilgrim J.; Avrantinis, Sara K; Lee, Hye Jin; Corn, Robert M.; Weiss, Gregory A.

    2008-01-01

    An Achilles heel inherent to all molecular display formats, background binding between target and display system introduces false positives into screens and selections. For example, the negatively charged surfaces of phage, mRNA, and ribosome display systems bind with unacceptably high non-specificity to positively charged target molecules, which represent an estimated 35% of proteins in the human proteome. We report the first systematic attempt to understand why a broad class of molecular di...

  4. Safety evaluation of chemically modified beta-lactoglobulin administered intravaginally.

    Science.gov (United States)

    Guo, Xuetao; Qiu, Lixia; Wang, Yonghong; Wang, Yue; Meng, Yuanguang; Zhu, Yun; Lu, Lu; Jiang, Shibo

    2016-06-01

    Currently, there is no specific antiviral therapy for treatment of HPV infection. Jiang and colleagues previously reported that anhydride-modified proteins have inhibitory activities against multiple viruses including HPV. Here, we evaluated the safety of 3-hydroxyphthalic anhydride-modified bovine beta-lactoglobulin, designated JB01, vaginally applied in women infected by high-risk HPV. After the vaginal application of JB01 in 38 women for 3 months, no serious adverse events were reported, and normalization of the vaginal micro-environment has been observed. It can be concluded that JB01-BD is safe for vaginal use in HPV-infected women, suggesting its potential application for the treatment of HPV infection. J. Med. Virol. 88:1098-1101, 2016. © 2015 Wiley Periodicals, Inc. PMID:26629967

  5. Improved pyrite rejection by chemically-modified fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Ye, Y.; Jin, R.

    1989-01-01

    Improved pyrite rejection during fine coal flotation can be achieved by chemical pretreatment of the coal prior to flotation. The process involves conditioning the suspension with potassium monopersulfate or other peroxy compounds followed by conventional flotation. The ambient-temperature treatment seems to improve the hydrophobic character of certain low-rank coals as is evident from induction time measurements and bench-scale flotation experiments. In addition, the chemical pretreatment leads to an improvement in ash rejection and to enhanced depression of pyrite. 23 refs., 9 figs., 2 tabs.

  6. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    International Nuclear Information System (INIS)

    Highlights: • We studied the dynamic wetting behavior of thermally modified wood by wetting models. • We found lower wetting speed of water droplets on thermally modified wood surface. • Dynamic wetting behavior and surface chemical components show a strong correlation. - Abstract: In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood

  7. 227 Views of RNA: Is RNA Unique in Its Chemical Isomer Space?

    Science.gov (United States)

    Cleaves, H James; Meringer, Markus; Goodwin, Jay

    2015-07-01

    Ribonucleic acid (RNA) is one of the two nucleic acids used by extant biochemistry and plays a central role as the intermediary carrier of genetic information in transcription and translation. If RNA was involved in the origin of life, it should have a facile prebiotic synthesis. A wide variety of such syntheses have been explored. However, to date no one-pot reaction has been shown capable of yielding RNA monomers from likely prebiotically abundant starting materials, though this does not rule out the possibility that simpler, more easily prebiotically accessible nucleic acids may have preceded RNA. Given structural constraints, such as the ability to form complementary base pairs and a linear covalent polymer, a variety of structural isomers of RNA could potentially function as genetic platforms. By using structure-generation software, all the potential structural isomers of the ribosides (BC5H9O4, where B is nucleobase), as well as a set of simpler minimal analogues derived from them, that can potentially serve as monomeric building blocks of nucleic acid-like molecules are enumerated. Molecules are selected based on their likely stability under biochemically relevant conditions (e.g., moderate pH and temperature) and the presence of at least two functional groups allowing the monomers to be incorporated into linear polymers. The resulting structures are then evaluated by using molecular descriptors typically applied in quantitative structure-property relationship (QSPR) studies and predicted physicochemical properties. Several databases have been queried to determine whether any of the computed isomers had been synthesized previously. Very few of the molecules that emerge from this structure set have been previously described. We conclude that ribonucleosides may have competed with a multitude of alternative structures whose potential proto-biochemical roles and abiotic syntheses remain to be explored. PMID:26200431

  8. Modified Smith Predictor Based Control Of Cascaded Chemical Reactor

    Directory of Open Access Journals (Sweden)

    Binu P. Mathew

    2014-04-01

    Full Text Available A cascade control with modified smith predictor is used for controlling an open loop unstable time delay process. It has three controllers, one is for servo response other two are for regulatory response. For two disturbance rejection controllers an analytical design method is used by proposing closed loop complementary sensitivity function. These two controllers are PID controller cascaded with second order lead/lag filter. Setpoint tracking controller is designed by using direct synthesis method. The main advantage of this control scheme is that the servo response can be decoupled from the regulatory response.

  9. Synthetically modified mRNA for efficient and fast human iPS cell generation and direct transdifferentiation to myoblasts.

    Science.gov (United States)

    Preskey, David; Allison, Thomas F; Jones, Mark; Mamchaoui, Kamel; Unger, Christian

    2016-05-01

    Synthetic mRNA transfection enables efficient and controlled gene expression in human cells, without genome integrations. Further, modifications to the mRNA and transfection protocol now allow for repeated transfection and long-term gene expression of an otherwise short-lived mRNA expression. This is mainly achieved through introducing modified nucleosides and interferon suppression. In this study we provide an overview and details of the advanced synthesis and modifications of mRNA originally developed for reprogramming. This mRNA allows for very efficient transfection of fibroblasts enabling the generation of high quality human iPS cells with a six-factor mRNA cocktail in 9 days. Furthermore, we synthesised and transfected modified MYOD1 mRNA to transdifferentiate human fibroblasts into myoblast-like cells without a transgene footprint. This efficient and integration-free mRNA technology opens the door for safe and controlled gene expression to reverse or redirect cell fate. PMID:26449459

  10. A Nonantibiotic Chemically Modified Tetracycline (CMT-3) Inhibits Intimal Thickening

    OpenAIRE

    Islam, Muzharul M.; Franco, Christopher D.; Courtman, David W.; Bendeck, Michelle P.

    2003-01-01

    Recent research has shown that the tetracycline antibiotics are pluripotent drugs that inhibit the activity of matrix metalloproteinases (MMPs) and affect many cellular functions including proliferation, migration, and matrix remodeling. We have shown that doxycycline inhibits MMP activity and intimal thickening after injury of the rat carotid artery, however we do not know whether these effects are because of the antibiotic, anti-MMP, or other actions of doxycycline. Recently, chemically mod...

  11. Stripping voltammetric behavior of technetium at various chemically modified electrodes

    International Nuclear Information System (INIS)

    In monitoring of nuclear processing plants and storage facilities the necessity arises of assaying traces of the artificial radioactive element technetium. The oxidation states IV and VII are of particular interest. Stripping voltammetry is among the methods of assay which are suited for this purpose. It allows an enhanced selectivity to be achieved by preconcentration of the analyte and of an oxidation state of the analyte, respectively, at the electrode used. This specific enrichment is successful after appropriate chemical modification of the electrode through immobilization of a Tc-specific reagent. When various approaches of chemical modification of a glassy carbon electrode were examined, the tetraphenylarsonium chloride extractant, which is highly selective with respect to technetium, proved to be the best suited reagent, capable of fixation both by ionic and by covalent bonding on an electrodeposited polymer film. For ionic immobilization the reagent was reacted to m-sulfophenyltriphenyl arsonium and then bound to a copolymer of vinylferrocene and vinylpyridine, which had been provided with cations. It was possible to enrich Tc(VII) at such an electrode and to determine it by stripping voltammetry down to a concentration of 1x10-8 M after 5 minutes enrichment time. (orig./EF)

  12. Interfacial characterization and analytical applications of chemically-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  13. Biosorption of Methylene Blue by Chemically Modified Cellulose Waste

    Institute of Scientific and Technical Information of China (English)

    JIN Yanqiao; ZHANG Yizhuan; Lü Qiufeng; CHENG Xiansu

    2014-01-01

    Citric acid modified cellulose waste (CMCW) was prepared via esterification and used as a low-cost biosorbent for the removal of methylene blue (MB) from aqueous solutions. The effects of biosorbent concentration, initial pH of MB solution, biosorption temperature, contact time, and initial MB concentration on the biosorption of MB were investigated using batch biosorption technique under static conditions. The experimental results showed that CMCW exhibited excellent biosorption characteristics for MB. The maximum biosorption capacity of MB was up to 214.5 mg/g at an adsorption temperature of 293 K. The removal rate of MB onto CMCW reached the maximum at pH>4 and the biosorption reached an equilibrium at about 50 min. The kinetic data can be described well with the pseudo-second-order model and the isotherm data was found to fit the Langmuir isotherm with a monolayer adsorption capacity of 211.42 mg/g. The biosorption appears to be controlled by chemisorption and may be involved in surface adsorption and pore diffusion during the whole biosorption process.

  14. CO2 adsorption on chemically modified activated carbon.

    Science.gov (United States)

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively. PMID:23500788

  15. PET Imaging and biodistribution of chemically modified bacteriophage MS2.

    Science.gov (United States)

    Farkas, Michelle E; Aanei, Ioana L; Behrens, Christopher R; Tong, Gary J; Murphy, Stephanie T; O'Neil, James P; Francis, Matthew B

    2013-01-01

    The fields of nanotechnology and medicine have merged in the development of new imaging and drug delivery agents based on nanoparticle platforms. As one example, a mutant of bacteriophage MS2 can be differentially modified on the exterior and interior surfaces for the concurrent display of targeting functionalities and payloads, respectively. In order to realize their potential for use in in vivo applications, the biodistribution and circulation properties of this class of agents must first be investigated. A means of modulating and potentially improving the characteristics of nanoparticle agents is the appendage of PEG chains. Both MS2 and MS2-PEG capsids possessing interior DOTA chelators were labeled with (64)Cu and injected intravenously into mice possessing tumor xenografts. Dynamic imaging of the agents was performed using PET-CT on a single animal per sample, and the biodistribution at the terminal time point (24 h) was assessed by gamma counting of the organs ex vivo for 3 animals per agent. Compared to other viral capsids of similar size, the MS2 agents showed longer circulation times. Both MS2 and MS2-PEG bacteriophage behaved similarly, although the latter agent showed significantly less uptake in the spleen. This effect may be attributed to the ability of the PEG chains to mask the capsid charge. Although the tumor uptake of the agents may result from the enhanced permeation and retention (EPR) effect, selective tumor imaging may be achieved in the future by using exterior targeting groups. PMID:23214968

  16. Crystallographic capture of a radical S-adenosylmethionine enzyme in the act of modifying tRNA.

    Science.gov (United States)

    Schwalm, Erica L; Grove, Tyler L; Booker, Squire J; Boal, Amie K

    2016-04-15

    RlmN is a dual-specificity RNA methylase that modifies C2 of adenosine 2503 (A2503) in 23S rRNA and C2 of adenosine 37 (A37) in several Escherichia coli transfer RNAs (tRNAs). A related methylase, Cfr, modifies C8 of A2503 via a similar mechanism, conferring resistance to multiple classes of antibiotics. Here, we report the x-ray structure of a key intermediate in the RlmN reaction, in which a Cys(118)→Ala variant of the protein is cross-linked to a tRNA(Glu)substrate through the terminal methylene carbon of a formerly methylcysteinyl residue and C2 of A37. RlmN contacts the entire length of tRNA(Glu), accessing A37 by using an induced-fit strategy that completely unfolds the tRNA anticodon stem-loop, which is likely critical for recognition of both tRNA and ribosomal RNA substrates. PMID:27081063

  17. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy. PMID:26356810

  18. Theory of nanoscale friction on chemically modified graphene

    Science.gov (United States)

    Ko, Jae-Hyeon; Kim, Yong-Hyun

    2013-03-01

    Recently, it is known from FFM experiments that friction force on graphene is significantly increased by chemical modification such as hydrogenation, oxidization, and fluorination, whereas adhesion properties are altered marginally. A novel nanotribological theory on two-dimensional materials is proposed on the basis of experimental results and first-principles density-functional theory (DFT) calculations. The proposed theory indicates that the total lateral stiffness that is the proportional constant of friction force is mostly associated with the out-of-plane bending stiffness of two-dimensional materials. This contrasts to the case of three-dimensional materials, in which the shear strength of materials determines nanoscale friction. We will discuss details of DFT calculations and how to generalize the current theory to three dimensional materials.

  19. WATER-BLOWN POLYURETHANE RIGID FOAMS MODIFIED BY CHEMICAL PLASTICATION

    Institute of Scientific and Technical Information of China (English)

    YU Ming; XU Qiang

    2006-01-01

    Water-blown polyurethane rigid foams are getting more and more attention, because the traditional blowing agent HCFC141b has already been abolished to prevent the ozone layer from destruction. However, the polyurethane rigid foams blown by water have serious defects, i.e. friability and resulting lower adhesion strength. Thus, the purpose of this study is to resolve the problems by chemical plastication. The maleate was added to polyol-premix containing water or to polyisocyanate,with both of which maleate does not react. To prove the reaction when polyol-premix and polyisocyanate were mixed, the model composite was synthesized and analyzed by IR, NMR and ESI (MS). Furthermore, a series of water-blown polyurethane rigid foams added different amount maleate were successfully prepared. By testing impact strength and adhesion strength of the foams, the actual effect of adding maleate was obtained.

  20. Equilibrium and thermodynamic studies of Cd (II) biosorption by chemically modified orange peel.

    Science.gov (United States)

    Kumar, Arbind; Kumar, Vipin

    2016-03-01

    Agricultural wastes have great potential of removing heavy metal ions from aqueous solution. Removal of Cd (II) from aqueous solutions onto chemically modified orange peel was studied at different pH, contact time, initial metal concentrations, adsorbent doses and temperature. Batch experiments were carried out under optimized conditions to evaluate the adsorption capacity of orange peel chemically modified with NaOH. The results showed that maximum adsorption capacity of modified orange peel, approximately 97.0%, was observed 3 mg 1⁻¹ of initial Cd(II) concentration pH 6 for 4 g 1⁻¹ adsorbent dosage, 200 min contact time and 298 K temperature. Adsorption efficiency of modified orange peel decreased with increase in temperature indicated exothermic nature of adsorption. A negative value of ΔG⁰(-8.59 kJ mol⁻¹) confirmed the feasibility of adsorption process and spontaneous nature of adsorption. A negative value of ΔH⁰ (-28.08 kJ mol⁻¹) indicated exothermic nature while a negative ΔS⁰ (-66.86 J K⁻¹ mol⁻¹) value suggested decrease in degree of freedom of the adsorbed species. The results showed that biosorption process of Cd(II) ions by chemically modified orange peel is feasible, spontaneous and exothermic under studied conditions. Chemically by modified orange peel investigated in the present study showed good potential for the removal of cadmium from aqueous solutions. PMID:27097438

  1. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  2. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets

    International Nuclear Information System (INIS)

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of 13C NMR data of RNAs. Our procedure uses five 13C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the 13C calibration and detect errors or inconsistencies in RNA 13C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure–13C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable 13C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure–chemical shift relationships with this improved list of 13C chemical shift data. This is demonstrated by a clear relationship between ribose 13C shifts and the sugar pucker, which can be used to predict a C2′- or C3′-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

  3. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mayumi Okamoto

    2014-09-01

    Full Text Available Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD. The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer.

  4. Database proton NMR chemical shifts for RNA signal assignment and validation

    International Nuclear Information System (INIS)

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the 1H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson–Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 43 possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA 1H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  5. A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2

    Directory of Open Access Journals (Sweden)

    Marti Borkent

    2016-05-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs from differentiated cells following forced expression of OCT4, KLF4, SOX2, and C-MYC (OKSM is slow and inefficient, suggesting that transcription factors have to overcome somatic barriers that resist cell fate change. Here, we performed an unbiased serial shRNA enrichment screen to identify potent repressors of somatic cell reprogramming into iPSCs. This effort uncovered the protein modifier SUMO2 as one of the strongest roadblocks to iPSC formation. Depletion of SUMO2 both enhances and accelerates reprogramming, yielding transgene-independent, chimera-competent iPSCs after as little as 38 hr of OKSM expression. We further show that the SUMO2 pathway acts independently of exogenous C-MYC expression and in parallel with small-molecule enhancers of reprogramming. Importantly, suppression of SUMO2 also promotes the generation of human iPSCs. Together, our results reveal sumoylation as a crucial post-transcriptional mechanism that resists the acquisition of pluripotency from fibroblasts using defined factors.

  6. A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2.

    Science.gov (United States)

    Borkent, Marti; Bennett, Brian D; Lackford, Brad; Bar-Nur, Ori; Brumbaugh, Justin; Wang, Li; Du, Ying; Fargo, David C; Apostolou, Effie; Cheloufi, Sihem; Maherali, Nimet; Elledge, Stephen J; Hu, Guang; Hochedlinger, Konrad

    2016-05-10

    The generation of induced pluripotent stem cells (iPSCs) from differentiated cells following forced expression of OCT4, KLF4, SOX2, and C-MYC (OKSM) is slow and inefficient, suggesting that transcription factors have to overcome somatic barriers that resist cell fate change. Here, we performed an unbiased serial shRNA enrichment screen to identify potent repressors of somatic cell reprogramming into iPSCs. This effort uncovered the protein modifier SUMO2 as one of the strongest roadblocks to iPSC formation. Depletion of SUMO2 both enhances and accelerates reprogramming, yielding transgene-independent, chimera-competent iPSCs after as little as 38 hr of OKSM expression. We further show that the SUMO2 pathway acts independently of exogenous C-MYC expression and in parallel with small-molecule enhancers of reprogramming. Importantly, suppression of SUMO2 also promotes the generation of human iPSCs. Together, our results reveal sumoylation as a crucial post-transcriptional mechanism that resists the acquisition of pluripotency from fibroblasts using defined factors. PMID:26947976

  7. A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo.

    Science.gov (United States)

    Ewe, Alexander; Przybylski, Susanne; Burkhardt, Jana; Janke, Andreas; Appelhans, Dietmar; Aigner, Achim

    2016-05-28

    The delivery of nucleic acids, particularly of small RNA molecules like siRNAs for the induction of RNA interference (RNAi), still represents a major hurdle with regard to their application in vivo. Possible therapeutic applications thus rely on the development of efficient non-viral gene delivery vectors. While low molecular weight polyethylenimines (PEIs) have been successfully explored, the introduction of chemical modifications offers an avenue towards the development of more efficient vectors. In this paper, we describe the synthesis of a novel tyrosine-modified low-molecular weight polyethylenimine (P10Y) for efficient siRNA complexation and delivery. The comparison with the respective parent PEI reveals that knockdown efficacies are considerably enhanced by the tyrosine modification, as determined in different reporter cell lines, without appreciable cytotoxicity. We furthermore identify optimal conditions for complex preparation as well as for storing or lyophilization of the complexes without loss of biological activity. Beyond reporter cell lines, P10Y/siRNA complexes mediate the efficient knockdown of endogenous target genes and, upon knockdown of the anti-apoptotic oncogene survivin, tumor cell inhibitory effects in different carcinoma cell lines. Pushing the system further towards its therapeutic in vivo application, we demonstrate in mice the delivery of intact siRNAs and distinct biodistribution profiles upon systemic (intravenous or intraperitoneal) injection. No adverse effects (hepatotoxicity, immunostimulation/alterations in immunophenotype, weight loss) are observed. More importantly, profound tumor-inhibitory effects in a melanoma xenograft mouse model are observed upon systemic application of P10Y/siRNA complexes for survivin knockdown, indicating the therapeutic efficacy of P10Y/siRNA complexes. Taken together, we (i) establish tyrosine-modified PEI (P10Y) as efficient platform for siRNA delivery in vitro and in vivo, (ii) identify optimal

  8. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  9. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    Science.gov (United States)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

  10. Towards electron transport measurements in chemically modified graphene: The effect of a solvent

    OpenAIRE

    Jacobsen, A.; Koehler, F. M.; Stark, W J; Ensslin, K.

    2010-01-01

    Chemical functionalization of graphene modifies the local electron density of the carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on the electron transport. Latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that solvent...

  11. Synthesis and physicochemical characterization of chemically modified chitosan by succinic anhydride

    OpenAIRE

    Karine Gargioni Pereira Correa de Mello; Leandra de Cássia Bernusso; Ronaldo Nogueira de Moraes Pitombo; Bronislaw Polakiewicz

    2006-01-01

    The N-succinil-chitosan is a chemically modified derivative of the biopolymer chitosan. The succinic anhydride attached to the free amino groups presented along the chitosan's polymer chain imparts to the molecule different physicochemical properties not exhibited before the modification. These chemical modifications enhance chitosan's solubility in slightly acid, neutral and alkaline media. These properties are related to the long alkyl chains attached to hydrophilic parts. In this case the ...

  12. Synergistic Effect of Chemical and Thermical Treatment on the Structure and Sorption Properties of Natural and Chemically Modified Slovak Zeolite

    Directory of Open Access Journals (Sweden)

    Štefan Svetík

    2005-06-01

    Full Text Available The calcinated natural and chemically modified zeolite from the deposit Nižný Hrabovec (Slovak Republic was studied. The changes of zeolite structure due to synergistic effect of temperature and chemical treat-ment were studied by DTA. The static radioindicatore method was used for studying the sorption of zeolite through the uptake of Cs and Co cations from model solutions. The results showed that the uptake of Cs and Co cations strongly depends on the modification of zeolite and on the higher temperature of calcination.

  13. Evaluation of Exogenous siRNA Addition as a Metabolic Engineering Tool for Modifying Biopharmaceuticals

    OpenAIRE

    Tummala, Seshu; Titus, Michael; Wilson, Lee; Wang, Chunhua; Ciatto, Carlo; Foster, Donald; Szabo, Zoltan; Guttman, Andras; Li, Chen; Bettencourt, Brian; Jayaraman, Muthuswamy; Deroot, Jack; Thill, Greg; Kocisko, David; Pollard, Stuart

    2013-01-01

    Traditional metabolic engineering approaches, including homologous recombination, zinc finger nucleases, and short hairpin RNA (shRNA), have previously been employed to generate biologics with specific characteristics that improve efficacy, potency, and safety. An alternative approach is to exogenously add soluble small interfering RNA (siRNA) duplexes, formulated with a cationic lipid, directly to cells grown in shake flasks or bioreactors, This approach has the following potential advantage...

  14. Modified method for combined DNA and RNA isolation from peanut and other oil seeds

    Science.gov (United States)

    Isolation of good quality RNA and DNA from seeds is difficult due to high levels of polysaccharides, polyphenols, and lipids that can degrade or co-precipitate with nucleic acids. Standard RNA extraction methods utilizing guanidinium-phenol-chloroform extraction has not shown to be successful. RNA...

  15. Base-modified nucleotides and DNA for applications in diagnostics and chemical biology

    Czech Academy of Sciences Publication Activity Database

    Hocek, Michal

    Praha: Czech Chemical Society, 2015. s. 31. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA ČR GBP206/12/G151; GA ČR GA14-04289S Institutional support: RVO:61388963 Keywords : base-modified nucleotides * DNA Subject RIV: CC - Organic Chemistry

  16. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  17. Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available BACKGROUND: Over the last 60 years, synthetic chemical pesticides have served as a main tactic in the field of crop protection, but their availability is now declining as a result of the development of insect resistance. Therefore, alternative pest management agents are needed. However, the demonstration of RNAi gene silencing in insects and its successful usage in disrupting the expression of vital genes opened a door to the development of a variety of novel, environmentally sound approaches for insect pest management. METHODOLOGY/PRINCIPAL FINDINGS: Six small interfering RNAs (siRNAs were chemically synthesized and modified according to the cDNA sequence of P. xylostella acetylcholine esterase genes AChE1 and AChE2. All of them were formulated and used in insecticide activity screening against P. xylostella. Bioassay data suggested that Si-ace1_003 and Si-ace2_001 at a concentration of 3 µg cm(-2 displayed the best insecticidal activity with 73.7% and 89.0%, mortality, respectively. Additional bioassays were used to obtain the acute lethal concentrations of LC50 and LC90 for Si-ace2_001, which were 53.66 µg/ml and 759.71 µg/ml, respectively. Quantitative Real-time PCR was used to confirm silencing and detected that the transcript levels of P. xylostella AChE2 (PxAChE2 were reduced by 5.7-fold compared to the control group. Consequently, AChE activity was also reduced by 1.7-fold. Finally, effects of the siRNAs on treated plants of Brassica oleracea and Brassica alboglabra were investigated with different siRNA doses. Our results showed that Si-ace2_001 had no negative effects on plant morphology, color and growth of vein under our experimental conditions. CONCLUSIONS: The most important finding of this study is the discovery that chemically synthesized and modified siRNA corresponding to P. xylostella AChE genes cause significant mortality of the insect both under laboratory and field conditions, which provides a novel strategy to control P

  18. Biomechanical properties of acellular sciatic nerves treated with a modified chemical method

    Institute of Scientific and Technical Information of China (English)

    Xinlong Ma; Zhao Yang; Xiaolei Sun; Jianxiong Ma; Xiulan Li; Zhenzhen Yuan; Yang Zhang; Honggang Guo

    2011-01-01

    Nerve grafts are able to adapt to surrounding biomechanical environments if the nerve graft itself exhibits appropriate biomechanical properties (load, elastic modulus, etc.). The present study was designed to determine the differences in biomechanical properties between fresh and chemically acellularized sciatic nerve grafts. Two different chemical methods were used to establish acellular nerve grafts. The nerve was chemically extracted in the Sondell method with a combination of Triton X-100 (nonionic detergent) and sodium deoxycholate (anionic detergent), and in the modified method with a combination of Triton X-200 (anionic detergent), sulfobetaine-10 (SB-10, amphoteric detergents), and sulfobetaine-16 (SB-16, amphoteric detergents). Following acellularization, hematoxylin-eosin staining and scanning electron microscopy demonstrated that the effect of acellularization via the modified method was similar to the traditional Sondell method. However, effects of demyelination and nerve fiber tube integrity were superior to the traditional Sondell method. Biomechanical testing showed that peripheral nerve graft treated using the chemical method resulted in decreased biomechanical properties (ultimate load, ultimate stress, ultimate strain, and mechanical work to fracture) compared with fresh nerves, but the differences had no statistical significance (P > 0.05). These results demonstrated no significant effect on biomechanical properties of nerves treated using the chemical method. In conclusion, nerve grafts treated via the modified method removed Schwann cells, preserved neural structures, and ensured biomechanical properties of the nerve graft, which could be more appropriate for implantation studies.

  19. Identification of 5-hydroxycytidine at position 2501 concludes characterization of modified nucleotides in E. coli 23S rRNA

    DEFF Research Database (Denmark)

    Havelund, Jesper Foged; Giessing, Anders Michael Bernth; Hansen, Trine Møller;

    2011-01-01

    modification as 5-hydroxycytidine-a novel modification in RNA. Identification of 5-hydroxycytidine was completed by liquid chromatography under nonoxidizing conditions using a graphitized carbon stationary phase in combination with ion trap tandem mass spectrometry and by comparing the fragmentation behavior...... rRNA-has previously been characterized in the bacterium Escherichia coli. Despite a first report nearly 20 years ago, the chemical nature of the modification at position 2501 has remained elusive, and attempts to isolate it have so far been unsuccessful. We unambiguously identify this last unknown...... of the natural nucleoside with that of a chemically synthesized ditto. Furthermore, we show that 5-hydroxycytidine is also present in the equivalent position of 23S rRNA from the bacterium Deinococcus radiodurans. Given the unstable nature of 5-hydroxycytidine, this modification might be found in...

  20. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery

    Directory of Open Access Journals (Sweden)

    Yao Y

    2015-10-01

    Full Text Available Yao Yao, Zhihui Su, Yanchao Liang, Na Zhang School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, People’s Republic of China Abstract: Combination of chemotherapeutic drug and small interfering RNA (siRNA can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS, was coated onto the surface of the cationic liposome (CL preloaded with sorafenib (Sf and siRNA (Si. To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy. Keywords: co-delivery, sorafenib, gene, charge conversion, cancer therapy

  1. Enhancing Polymer-Modified Mortar Adhesion to Ceramic Tile Surface by Chemical Functionalization with Organosilanes

    Science.gov (United States)

    Mansur, Alexandra Ancelmo Piscitelli; Do Nascimento, Otávio Luiz; Mansur, Herman Sander

    Adhesion between tiles and mortars is of paramount importance to the overall stability of ceramic tile systems. In this sense, from the chemical perspective, weak forces such as van der Waals forces and hydrophilic interactions are expected to occur preferably at the tiles and polymer-modified Portland cement mortar interfaces. Thus, the main goal of this study was to chemically modify the ceramic tile surface through organosilanes aiming to improve adhesion with polymer-modified mortars (PMMs). Glass tile surfaces were treated with five silane derivatives bearing specific functionalities. Fourier transform infrared spectroscopy and contact angle measurements were used for characterizing the novel surfaces produced as the chemical moieties were immobilized onto them. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate) modified mortar. The bond strength results have given strong evidence of the improvement on adherence at the tile-PMM interface, reflecting the whole balance of silane, cement, and polymer interactions.

  2. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  3. Simultaneous Extraction of DNA and RNA from Animal Cells by a Modified Laemmli Buffer

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Nasrin Shojaie, Mahmood S. Ghaffari & Zahra Safari ### Abstract Simultaneous investigation of DNA and RNA is often a necessity in genetic manipulation and biological researches. Besides, most of the traditional procedures devised for RNA isolation have some difficulties associated with RNase activity. Therefore, this protocol presents a safer process to extract high purity RNA in shorter time. ### Introduction The protocol describes a simple and less time-consumi...

  4. Recognition of Double Stranded RNA by Guanidine-Modified Peptide Nucleic Acids (GPNA)

    OpenAIRE

    Gupta, Pankaj; Muse, Oluwatoyosi; Rozners, Eriks

    2011-01-01

    Double helical RNA has become an attractive target for molecular recognition because many non-coding RNAs play important roles in control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double helical RNA via triple helix formation. Herein we tested if the molecular recognition of RNA can be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-worker...

  5. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    International Nuclear Information System (INIS)

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the 1H NMR and 13C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and 1H and 13C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA 1H and 13C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides

  6. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.

    Science.gov (United States)

    Brown, Joshua D; Summers, Michael F; Johnson, Bruce A

    2015-09-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides. PMID:26141454

  7. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  8. Reactive chemically modified piezoelectric crystal detectors: A new class of high-selectivity sensors

    International Nuclear Information System (INIS)

    A great number of works have focused on the study of properties of modified piezoelectric quartz crystal detectors (PQCDs) coated with sorbing substrates and on applying sensors based on them for the analysis of diluted gas mixtures and solutions. This work offers a new class of gravemetric sensors characterized by a reversible chemical reaction that occurs on their surface. Silica films are proposed as a sorbing coating of quartz detectors, and a chemical modification of a surface is suggested for covalent fixation of the necessary compounds. PQCDs were chemically modified with reactive diene derivatives that can also act as dienophiles. Hexachlorocyclopentadiene (HCCPD, resonater I) and cyclopentadiene (CPD, resonator II) were fixed on a PQCD surface in several stages. After treatment with the resonaters, the PQCD in a CPD gas phase exhibited time dependent frequency shifts from 20-100 Hz. The results suggest that there is a reversible chemical reaction on the electrode surface of resonators I and II when they interact with CPD vapors. Therefore, PQCDs modified with reactive dienes were prepared for the first time and may be employed as selective sensors for CPD

  9. Impact dynamics of water droplets on chemically modified WOx nanowire arrays

    Science.gov (United States)

    Kwak, Geunjae; Lee, Mikyung; Senthil, Karuppanan; Yong, Kijung

    2009-10-01

    The effects of surface energy on the wetting transition for impinging water droplets were investigated on the chemically modified WOx nanowire surfaces. We could modify the surface energy of the nanowires through chemisorption of alkyltrichlorosilanes with various carbon chain lengths and also by the ultraviolet-enhanced decomposition of self assembled monolayer molecules. Three surface wetting states could be identified through the balance between antiwetting and wetting pressures. This approach establishes a simple strategy for design of the water-repellent surface to impinging droplets.

  10. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    Science.gov (United States)

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. PMID:24413482

  11. Dramatically improved RNA in situ hybridization signals using LNA-modified probes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Nielsen, Peter Stein; Jensen, Torben Heick

    2005-01-01

    increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)+ RNA accumulation within...

  12. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    Science.gov (United States)

    Jacobsen, Arnhild; Koehler, Fabian M.; Stark, Wendelin J.; Ensslin, Klaus

    2010-12-01

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  13. TaxCollector: Modifying Current 16S rRNA Databases for the Rapid Classification at Six Taxonomic Levels

    Directory of Open Access Journals (Sweden)

    Eric W. Triplett

    2010-07-01

    Full Text Available The high level of conservation of 16S ribosomal RNA gene (16S rRNA in all Prokaryotes makes this gene an ideal tool for the rapid identification and classification of these microorganisms. Databases such as the Ribosomal Database Project II (RDP-II and the Greengenes Project offer access to sets of ribosomal RNA sequence databases useful in identification of microbes in a culture-independent analysis of microbial communities. However, these databases do not contain all of the taxonomic levels attached to the published names of the bacterial and archaeal sequences. TaxCollector is a set of scripts developed in Python language that attaches taxonomic information to all 16S rRNA sequences in the RDP-II and Greengenes databases. These modified databases are referred to as TaxCollector databases, which when used in conjunction with BLAST allow for rapid classification of sequences from any environmental or clinical source at six different taxonomic levels, from domain to species. The TaxCollector database prepared from the RDP-II database is an important component of a new 16S rRNA pipeline called PANGEA. The usefulness of TaxCollector databases is demonstrated with two very different datasets obtained using samples from a clinical setting and an agricultural soil. The six TaxCollector scripts are freely available on http://taxcollector.sourceforge.net and on http://www.microgator.org.

  14. Highly improved chromium (III uptake capacity in modified sugarcane bagasse using different chemical treatments

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Gonçalves Dos Santos

    2012-01-01

    Full Text Available The present paper focuses on improving chromium (III uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III maximum adsorption capacity (MAC value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1 giving a MAC value about three times greater (20.34 mg g-1 than for raw sugarcane bagasse.

  15. PRELIMINARY STUDY ON ENHANCED PROPERTIES AND BIOLOGICAL RESISTANCE OF CHEMICALLY MODIFIED ACACIA SPP.

    Directory of Open Access Journals (Sweden)

    H. P. S. Abdul Khalil

    2010-11-01

    Full Text Available A preliminary experimental study was carried out to examine the ability of a chemically modified Acacia spp. to resist biodegradation. The modifications of Acacia mangium and Acacia hybrid were carried out by propionic anhydride and succinic anhydride in the presence of sodium formate as a catalyst. The treated samples were found resistant to microbial attack, while the untreated ones were damaged on 12 months exposure to a soil burial. The appearance grading, mass loss, mechanical properties, and scanning electron microscopy results revealed that chemical modification enhances the resistance of Acacia mangium and Acacia hybrid wood species to biodegradation.

  16. Research on the chemical mechanism in the polyacrylate latex modified cement system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Rumin, E-mail: wangmin19@mail.nwpu.edu.cn [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Zheng, Shuirong [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Northwestern Polytechnical University–East China University of Science and Technology Combined Research Institute of New High Speed Railway Materials (China); Farhan, Shameel; Yao, Hao; Jiang, Hao [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  17. Sorption and desorption of Fe(III) on natural and chemically modified zeolite

    International Nuclear Information System (INIS)

    The Fe(III) uptake from aqueous solutions by natural and chemically modified zeolites was investigated using a gradual radioexchange method and AAS technique. The leachability of Fe(III) from loaded zeolites was studied too. The Fe-uptake reached the value of 60 mg x g-1 for the zeolite chemically treated with 6 mol x l-1 solution of NaOH and it is more than twelve times higher than that of the raw zeolite. The leachability of the loaded zeolite samples in water and alkaline solution was up 5%. The leachability of the same zeolites in acid solution depended on the concentration of modifying solution. The leachability at pH = 2.6 in the range 2-20% at pH = 1.9 was many times higher. The results of the radioexchange and AAS methods were compared. (author)

  18. Research on the chemical mechanism in the polyacrylate latex modified cement system

    International Nuclear Information System (INIS)

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH)2 (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH)2

  19. Adsorption and desorption of Cr(III) on natural and chemically modified Slovak zeolites

    International Nuclear Information System (INIS)

    Natural and chemically modified zeolites from the Slovak Republic and Ukraine have been investigated as the adsorbents for the uptake of Cr(III). Model water solution of low radioactivity was used. The adsorption and desorption kinetics of chromium were established with the gradual radioexchange technique (tracer 51Cr) and flame AAS. The effect of the factors studied are examined and explained. The sorption coefficient μ, distribution coefficient KD, sorption capacity Γ, sorption rate S, and leachability of Cr were calculated in neutral, alkaline and acidic aqueous solutions. The sorption capacity of the modified zeolites was found to be greater by a factor of 2 to 16 than that of the unmodified ones depending on the modifying solution applied. The leachability of chromium from loaded zeolites into the neutral solution was negligible. The leachability into alkaline and acidic solutions increased over 40%. (author)

  20. Chemically modified STM tips for atomic-resolution imaging of ultrathin NaCI films

    Institute of Scientific and Technical Information of China (English)

    Zhe Li[1; Koen Schouteden[1; Violeta lancu[1; Ewald Janssens[1; Peter Lievens[1; Chris Van Haesendonck[1; Jorge I. Cerda[2

    2015-01-01

    Cl-functionalized scanning tunneling microscopy (STM) tips are fabricated by modifying a tungsten STM tip in situ on islands of ultrathin NaCI(100) films on Au(111) surfaces. The functionalized tips are used to achieve clear atomic- resolution imaging of NaCI(100) islands. In comparison with bare metal tips, the chemically modified tips yield drastically enhanced spatial resolution as well as contrast reversal in STM topographs, implying that Na atoms, rather than C1 atoms, are imaged as protrusions. STM simulations based on a Green's function formalism reveal that the experimentally observed contrast reversal in the STM topographs is due to the highly localized character of the Cl-pz states at the tip apex. An additional remarkable characteristic of the modified tips is that in dI/dV maps, a Na atom appears as a ring with a diameter that depends crucially on the tip-sample distance.

  1. Chemically modified heparins inhibit fibrinogen-bridged indirect adhesion between tumor cells and platelets

    OpenAIRE

    Zheng, Sheng; Liu, Yan; Jiao, Yang; Min WEI; ZENG, XIANLU

    2011-01-01

    The interaction between platelets and tumor cells is critical for the hematogenous metastasis of tumor cells. We recently reported that fibrinogen was capable of bridging and enhancing the interaction of platelets and tumor cells under conditions of physical shear force. In the present study, we aimed to detect the effects of 8 chemically modified heparins on the binding of fibrinogen to platelets or tumor cells using flow cytometry assays, as well as the fibrinogen-bridged adhesion of platel...

  2. Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes

    OpenAIRE

    Koda, Ryo; Fukami, Kazuhiro; Sakka, Tetsuo; Ogata, Yukio H.

    2012-01-01

    Electrodeposition of platinum and silver into hydrophobic and hydrophilic microporous silicon layers was investigated using chemically modified microporous silicon electrodes. Hydrophobic microporous silicon enhanced the electrodeposition of platinum in the porous layer. Meanwhile, hydrophilic one showed that platinum was hardly deposited within the porous layer, and a film of platinum on the top of the porous layer was observed. On the other hand, the electrodeposition of silver showed simil...

  3. Uptake of plutonium from nuclear waste water by natural and chemically modified sorbents

    International Nuclear Information System (INIS)

    The uptake of plutonium from model solution of boric acid labelled with 239Pu by natural sorbents was studied. The range of pH of solution was from 5.1 to 8. For the uptake of Pu were used different natural and chemically modified natural sorbents of different mineralogical composition and from different deposits. The distribution coefficients for plutonium uptake were calculated and the best conditions for uptake were evaluated. (author)

  4. PRELIMINARY STUDY ON ENHANCED PROPERTIES AND BIOLOGICAL RESISTANCE OF CHEMICALLY MODIFIED ACACIA SPP.

    OpenAIRE

    H. P. S. Abdul Khalil; Irshad ul Haq Bhat,; Khairul B. Awang

    2010-01-01

    A preliminary experimental study was carried out to examine the ability of a chemically modified Acacia spp. to resist biodegradation. The modifications of Acacia mangium and Acacia hybrid were carried out by propionic anhydride and succinic anhydride in the presence of sodium formate as a catalyst. The treated samples were found resistant to microbial attack, while the untreated ones were damaged on 12 months exposure to a soil burial. The appearance grading, mass loss, mechanical properties...

  5. Chemically modified bitumens with enhanced rheology and adhesion properties to siliceous aggregates

    OpenAIRE

    Cuadri Vega, Antonio Abad; Partal López, Pedro; Ahmad, Naveed; Grenfell, James; Airey, Gordon

    2015-01-01

    Moisture damage is one of the major premature failures that worsens the performance and shortens service life of pavements. This research assesses the effect that two chemical modifiers (thiourea and an isocyanate-functionalized castor oil prepolymer) exerts on the bitumen rheology and on the resistance to potential moisture damage of asphalt mixtures based on siliceous aggregates. Both thiourea and the isocyanate-based prepolymer improve the viscous and viscoelastic behaviours of bitumen at ...

  6. Bending creep of Maritime pine wood (Pinus pinaster Ait.) chemically modified

    OpenAIRE

    Lopes, Duarte Barroso; Mai, Carsten; Militz, Holger

    2013-01-01

    The long-term performance of a structural member is determined by its durability and deformation with time. The bending creep behaviour of modified wood was assessed experimentally over a period of 35 days (840 hours). Four chemical modification processes were used: 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU), mmethylated melamine formaldehyde resin (MMF), tetraethoxysilane (TEOS) and amid wax (WA). Wood stakes with 20.10.200 mm RTL dimensions of Portuguese Maritime pine (Pinus pi...

  7. BIOSORPTION OF METHYLENE BLUE ON CHEMICALLY MODIFIED CHAETOPHORA ELEGANS ALGA BY HCl AND CITRIC ACID

    International Nuclear Information System (INIS)

    Chemical modification of Chaetophora Elegans algae with HCl and citric acid was undertaken in order to improve the methylene blue adsorption. The modified algae with 1 M HCl showed an increase in the maximum uptake from 143 mg g-1 to 320 mg g-1 due to elimination of carbonate. The modified algae with 1M citric acid showed an important decrease in the uptake from 143 mg g-1 to 20 mg g-1 due to increase in the cross linking degree. Acid concentration used in the chemical modification (0.1 M -1 M) is the major parameter affecting the maximum uptake. The temperature of the chemical modifica- tion has a small effect on the uptake. Langmuir-Freundlich isotherm model fitted better the isotherm adsorption data for all samples studied. Pseudo second order model was well in line with the experimental data. The adsorption rate constant (K ) is higher for modified algae with HCl than that of raw algae. The activation thermodynamic parameters E-a , ΔH, ΔS and ΔG were calculated. The maximum uptake is independent of isotherm adsorption temperature in the range studied. (author)

  8. A modified dinucleotide motif specifies tRNA recognition by TLR7

    OpenAIRE

    Kaiser, Steffen; Rimbach, Katharina; Eigenbrod, Tatjana; Dalpke, Alexander H.; Helm, Mark

    2014-01-01

    Innate sensing of DNA or RNA molecules comes with the great risk of autoimmune response and is, therefore, tightly controlled. This paper describes why some tRNAs activate TLR7, whereas others do not.

  9. Modified-chitosan/siRNA nanoparticles downregulate cellular CDX2 expression and cross the gastric mucus barrier.

    Directory of Open Access Journals (Sweden)

    Ana Sadio

    Full Text Available Development of effective non-viral vectors is of crucial importance in the implementation of RNA interference in clinical routine. The localized delivery of siRNAs to the gastrointestinal mucosa is highly desired but faces specific problems such as the stability in gastric acidity conditions and the presence of the mucus barrier. CDX2 is a transcription factor critical for intestinal differentiation being involved in the initiation and maintenance of gastrointestinal diseases. Specifically, it is the trigger of gastric intestinal metaplasia which is a precursor lesion of gastric cancer. Its expression is also altered in colorectal cancer, where it may constitute a lineage-survival oncogene. Our main objective was to develop a nanoparticle-delivery system of siRNA targeting CDX2 using modified chitosan as a vector. CDX2 expression was assessed in gastric carcinoma cell lines and nanoparticles behaviour in gastrointestinal mucus was tested in mouse explants. We show that imidazole-modified chitosan and trimethylchitosan/siRNA nanoparticles are able to downregulate CDX2 expression and overpass the gastric mucus layer but not colonic mucus. This system might constitute a potential therapeutic approach to treat CDX2-dependent gastric lesions.

  10. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    Science.gov (United States)

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar. PMID:26100325

  11. Chemically modified Si(111) surfaces simultaneously demonstrating hydrophilicity, resistance against oxidation, and low trap state densities

    Science.gov (United States)

    Brown, Elizabeth S.; Hlynchuk, Sofiya; Maldonado, Stephen

    2016-03-01

    Chemically modified Si(111) surfaces have been prepared through a series of wet chemical surface treatments that simultaneously show resistance towards surface oxidation, selective reactivity towards chemical reagents, and areal defect densities comparable to unannealed thermal oxides. Specifically, grazing angle attenuated total reflectance infrared and X-ray photoelectron (XP) spectroscopies were used to characterize allyl-, 3,4-methylenedioxybenzene-, or 4-[bis(trimethylsilyl)amino]phenyl-terminated surfaces and the subsequently hydroxylated surfaces. Hydroxylated surfaces were confirmed through reaction with 4-(trifluoromethyl)benzyl bromide and quantified by XP spectroscopy. Contact angle measurements indicated all surfaces remained hydrophilic, even after secondary backfilling with CH3sbnd groups. Surface recombination velocity measurements by way of microwave photoconductivity transients showed the relative defect-character of as-prepared and aged surfaces. The relative merits for each investigated surface type are discussed.

  12. Self-assembled monolayer-modified block copolymers for chemical surface nanopatterning

    International Nuclear Information System (INIS)

    Research highlights: → Self-organizing PS-b-PMMA creates striped nanostructure scaffolds. → These striped nanostructures can be selectively metalized and modified using light. → Metalized stripes can be decorated with SAMs to create functional substrates. → Nanostructured surfaces thus prepared exhibit controlled wetting and recognition. - Abstract: Thin-film poly(styrene-block-methyl methacrylate) diblock copolymer (PS-b-PMMA) is used to create chemically patterned surfaces via metal deposition combined with self-assembled monolayers (SAMs) and UV exposure. We use this method to produce surfaces that are chemically striped on the scale of a few tens of nanometers. Atomic force and transmission electron microscopies are used to verify the spatially localized organization of materials, and contact angle measurements confirm the chemical tunability of these scaffolds. These surfaces may be used for arraying nanoscale objects, such as nanoparticles or biological species, or for electronic, magnetic memory or photovoltaic applications.

  13. Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering.

    Science.gov (United States)

    Whitener, Keith E; Lee, Woo-Kyung; Bassim, Nabil D; Stroud, Rhonda M; Robinson, Jeremy T; Sheehan, Paul E

    2016-02-10

    Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate. PMID:26784372

  14. siRNA Delivery Improvement by Co-formulation of Different Modified Polymers in Erythroleukemic Cell Line K562

    Directory of Open Access Journals (Sweden)

    Mazdak Ganjalikhani hakemi

    2013-09-01

    Full Text Available Objective(s: siRNA may be a very promising tool for treatment of various diseases especially in cancer therapy due to high specificity. One of the main hurdles applications of siRNAs in vivo is optimization of the delivery strategy, especially the carrier systems. The aim of this study was to optimize siRNA delivery into suspended erythroleukemic cell line K562. Materials and Methods: We applied polyethyleneimine (PEI and oligoethyleneimine (OEI derivatives alone or their co-formulation with different agents such as chloroquine (a drug known to alter lysosomal pH and thus to inhibit lysosomal degradation of macromolecules, DOPE (lipophilic agent, succinic acid (introduction of negatively charged to polymer and transferrin (the ligand of transferring receptor which is over-expressed in many types of tumors and hematopoietic cells. Results: In this study it was shown that utilizing a combination of 70% OEI-HA10 (ten hexyl acrylate residues per one OEI chain plus 30% of transferin-PEI with Luc-siRNA was highly effective for transfecting K562 cell. This co-formulation silenced luciferase activity up to 70% after short time without any significant inhibition in the luciferase activity in siCONTROL wells. Conclusion: In conclusion, the combination of modified PEI with transferrin and OEI by hexyl acrylate may increase siRNA delivery and reduce toxicity in hematopoietic suspended cells.

  15. Internal motions in yeast phenylalanine transfer RNA from 13C NMR relaxation rates of modified base methyl groups: a model-free approach

    International Nuclear Information System (INIS)

    Internal motions at specific locations through yeast phenylalanine tRNA were measured by using nucleic acid biosynthetically enriched in 13C at modified base methyl groups. Carbon NMR spectra of isotopically enriched tRNA/sup Phe/ reveal 12 individual peaks for 13 of the 14 methyl groups known to be present. The two methyls of N2, N2-dimethylguanosine (m22G-26) have indistinguishable resonances, whereas the fourteenth methyl bound to ring carbon-11 of the hypermodified nucleoside 3' adjacent to the anticodon, wyosine (Y-37), does not come from the [methyl-13C] methionine substrate. Assignments to individual nucleosides within the tRNA were made on the basis of chemical shifts of the mononucleosides and correlation of 13C resonances with proton NMR chemical shifts via two-dimensional heteronuclear proton-carbon correlation spectroscopy. Values of 13C longitudinal relaxation (T1) and the nuclear Overhauser enhancements (NOE) were determined at 22.5, 75.5, and 118 MHz for tRNA/sup Phe/ in a physiological buffer solution with 10 mM MgCl2, at 220C. These data were used to extract two physical parameters that define the system with regard to fast internal motion: the generalized order parameters (S2) and effective correlation times (tau/sub e/) for internal motion of the C-H internuclear vectors. For all methyl groups the generalized order parameter varied from 0.057 to 0.108, compared with the value of 0.111 predicted for a rapidly spinning methyl group rigidly mounted on a spherical macromolecule. Values of tau/sub e/ ranged from 4 to 16 ps, generally shorter times than measured in other work for amino acid methyl groups in several proteins. Somewhat surprising was the finding that the two methyl esters terminating the Y-37 side chain have order parameters similar to those of other methyls in tRNA and only 25% less than that for a methyl directly bonded to the base

  16. Prediction of proton chemical shifts in RNA - Their use in structure refinement and validation

    International Nuclear Information System (INIS)

    An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct.,76, 81-92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341-346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1H chemical shifts revealing their physical origin. For example, a down-field shift of either H2' or H3' or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5'-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings

  17. Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles

    International Nuclear Information System (INIS)

    The present work aims at understanding the role of CeO2 nanoparticles (with and without activation in cerium(III) solutions) used as fillers for hybrid silane coatings applied on galvanized steel substrates. The work reports the improved corrosion protection performance of the modified silane films and discusses the chemistry of the cerium-activated nanoparticles, the mechanisms involved in the formation of the surface coatings and its corrosion inhibition ability. The anti-corrosion performance was investigated using electrochemical impedance spectroscopy (EIS), the scanning vibrating electrode technique (SVET) and d.c. potentiodynamic polarization. The chemical composition of silanised nanoparticles and the chemical changes of the silane solutions due to the presence of additives were studied using X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance spectroscopy (NMR), respectively. The NMR and XPS data revealed that the modified silane solutions and respective coatings have enhanced cross-linking and that silane-cerium bonds are likely to occur. Electrochemical impedance spectroscopy showed that the modified coatings have improved barrier properties and the SVET measurements highlight the corrosion inhibition effect of ceria nanoparticles activated with Ce(III) ions. Potentiodynamic polarization curves demonstrate an enhanced passive domain for zinc, in the presence of nanoparticles, in solutions simulating the cathodic environment.

  18. Evaluation of batch biosorption of chromium (vi) from aqueous solution by chemically modified polyalthia longifolia leaves

    International Nuclear Information System (INIS)

    Removal of toxic metals from surface water is a significant matter of concern. Biosorption is emerging as an economical and eco friendly methodology for the removal of toxic chemicals from waste water. Optimization of operating conditions has a large impact on the efficiency of this process. Simple untreated and chemically modified Polyalthia longifolia leaves were used to study biosorption of Cr (VI) from aqueous media within various experimental conditions and their efficiency of biosorption were compared. The effects of different conditions, such as contact time of solution with bio sorbent, temperature, pH, biosorbent dose and agitation speed for the removal of Cr (VI) were studied. It is found that acid treated Polyalthia longifolia leaves have greater biosorption capacity as compared to untreated and base treated leaves. Langmuir and Freundlich isotherms were also applied to evaluate maximum biosorption capacity of simple untreated and chemically modified Polyalthia longifolia leaves for Cr (VI). This research work is of great importance in regard of practical waste water treatment by biosorption. (author)

  19. Interleukin-6 modifies mRNA expression in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Hassing, Helle Adser; Wojtaszewski, Jørgen; Jakobsen, Anne Hviid; Kiilerich, Kristian; Hidalgo, J; Pilegaard, Henriette

    2011-01-01

    Aim: The aim of the present study was to test the hypothesis that interleukin-6 plays a role in exercise-induced PGC-1a and TNFa mRNA responses in skeletal muscle and to examine the potential IL-6 mediated AMPK regulation in these responses. Methods: Whole body IL-6 knockout and wildtype (WT) male...

  20. LNA-modified oligonucleotides mediate specific inhibition of microRNA function

    DEFF Research Database (Denmark)

    Ørom, Ulf Andersson; Kauppinen, Sakari; Lund, Anders H

    2006-01-01

    microRNAs are short, endogenous non-coding RNAs that act as post-transcriptional modulators of gene expression. Important functions for microRNAs have been found in the regulation of development, cellular proliferation and differentiation, while perturbed miRNA expression patterns have been...

  1. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  2. Highly dispersed Pd nanoparticles on chemically modified graphene with aminophenyl groups for formic acid oxidation

    Institute of Scientific and Technical Information of China (English)

    Yang Su-Dong; Shen Cheng-Min; Tong Hao; He Wei; Zhang Xiao-Gang; Gao Hong-Jun

    2011-01-01

    A novel electrode material based on chemically modified graphene (CMG) with aminophenyl groups is covalently functionalized by a nucleophilic ring-opening reaction between the epoxy groups of graphene oxide and the aminophenyl groups of p-phenylenediamine.Palladium nanoparticles with an average diameter of 4.2 nm are deposited on the CMG by a liquid-phase borohydride reduction.The electrocatalytic activity and stability of the Pd/CMG composite towards formic acid oxidation are found to be higher than those of reduced graphene oxide and commercial carbon materials such as Vulcan XC-72 supported Pd electrocatalysts.

  3. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    International Nuclear Information System (INIS)

    Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD). A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters

  4. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Directory of Open Access Journals (Sweden)

    Gavin R. Bell

    2014-01-01

    Full Text Available Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD. A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  5. The Viscoelastic Properties of Chemically Modified alpha-Keratins in Human Hair

    OpenAIRE

    Jinks, Ian Robert

    2014-01-01

    The University of ManchesterIan Robert JinksPh. D. MaterialsThe Viscoelastic Properties of Chemically Modified α-Keratins in Human HairMarch 2014Human hair, like other α-keratinous fibres, is a highly complex biomaterial. For the analysis of its mechanical and thermal properties it is, however, well described by a two-phase structure, which contains as morphological components the highly-ordered, crystalline intermediate filaments (IFs) and the less-ordered, amorphous matrix. The presence of ...

  6. Modified Augmented Lagrange Multiplier Methods for Large-Scale Chemical Process Optimization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.

  7. Fast and simple purification of chemically modified hammerhead ribozymes using a lipophilic capture tag.

    OpenAIRE

    Sproat, B S; Rupp, T; Menhardt, N; Keane, D.; Beijer, B

    1999-01-01

    A new type of 5'-lipophilic capture tag is described, enabling the facile reverse phase HPLC purification of chemically modified hammerhead ribozymes (oligozymes) whilst still carrying the 2'-O-tert.-butyldimethylsilyl protection of the essential riboses. In its most convenient form, the capture tag consists of a simple diol, such as hexan-1,6-diol, which at one end is attached via a silyl residue to a highly lipophilic entity such as tocopherol (vitamin E) or cholesterol, and the other end i...

  8. Highly dispersed Pd nanoparticles on chemically modified graphene with aminophenyl groups for formic acid oxidation

    International Nuclear Information System (INIS)

    A novel electrode material based on chemically modified graphene (CMG) with aminophenyl groups is covalently functionalized by a nucleophilic ring-opening reaction between the epoxy groups of graphene oxide and the aminophenyl groups of p-phenylenediamine. Palladium nanoparticles with an average diameter of 4.2 nm are deposited on the CMG by a liquid-phase borohydride reduction. The electrocatalytic activity and stability of the Pd/CMG composite towards formic acid oxidation are found to be higher than those of reduced graphene oxide and commercial carbon materials such as Vulcan XC-72 supported Pd electrocatalysts. (atomic and molecular physics)

  9. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    Science.gov (United States)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the

  10. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit.

    Science.gov (United States)

    Kruse, Holger; Mladek, Arnost; Gkionis, Konstantinos; Hansen, Andreas; Grimme, Stefan; Sponer, Jiri

    2015-10-13

    We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields. PMID:26574283

  11. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J Douglas

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  12. Two dimensional solid state NMR methods applied to whole coals and chemically modified coals

    Energy Technology Data Exchange (ETDEWEB)

    Zilm, K.W.; Webb, G.G.; Millar, J.M.

    1987-04-01

    Two dimensional NMR methods have been shown to provide a much finer accounting of the functional types present in coals than by CPMAS spectroscopy alone. The ADIPSHIFT method has been shown to be at least as quantitative as CPMAS both in theory and experimentally. The method gives reliable distributions of carbons with differing multiplicities which is useful in identifying different functionalities that overlap in chemical shift. Recent studies of a model system indicate that the connectivity of the different groups in chemically modified coals should be obtainable from solid state COSY and NOESY experiments. This type of information will provide a very accurate picture of the structure of the alkylated sites and the substitution patterns surrounding them.

  13. Lubricity of bio-based lubricant derived from chemically modified jatropha methyl ester

    Directory of Open Access Journals (Sweden)

    N.W.M. Zulkifli

    2014-06-01

    Full Text Available Many studies have been undertaken with a view to using chemically modified vegetable oil as a bio-based lubricant. This research focused on tribological properties of trimethylolpropane (TMP ester, which is derived from renewable resource. This TMP ester was produced from jatropha methyl ester; it is biodegradable and has high lubricity properties. Two different conditions of lubrication are being investigated: extreme pressure and anti-wear. It was found that the TMP ester (Jatropha has better lubricity in terms of wear and friction compared to paraffin oil under extreme pressure conditions. TMP ester (Jatropha has similar characteristics to fully formulated lubricant (FFL, in terms of the coefficient of friction (CoF. In terms of the anti-wear condition, TMP ester (Jatropha has the lowest CoF; however it also has the high wear scar diameter. This is due to corrosion and chemical attack.

  14. Electrocatalytic miRNA Detection Using Cobalt Porphyrin-Modified Reduced Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Camille De Souza

    2014-06-01

    Full Text Available Metalated porphyrins have been described to bind nucleic acids. Additionally, cobalt porphyrins present catalytic properties towards oxygen reduction. In this work, a carboxylic acid-functionalized cobalt porphyrin was physisorbed on reduced graphene oxide, then immobilized on glassy carbon electrodes. The carboxylic groups were used to covalently graft amino-terminated oligonucleotide probes which are complementary to a short microRNA target. It was shown that the catalytic oxygen electroreduction on cobalt porphyrin increases upon hybridization of miRNA strand (“signal-on” response. Current changes are amplified compared to non-catalytic amperometric system. Apart from oxygen, no added reagent is necessary. A limit of detection in the sub-nanomolar range was reached. This approach has never been described in the literature.

  15. A Tandem Oligonucleotide Approach for SNP-Selective RNA Degradation Using Modified Antisense Oligonucleotides

    OpenAIRE

    Magner, Dorota; Biala, Ewa; Lisowiec-Wachnicka, Jolanta; Kierzek, Elzbieta; Kierzek, Ryszard

    2015-01-01

    Antisense oligonucleotides have been studied for many years as a tool for gene silencing. One of the most difficult cases of selective RNA silencing involves the alleles of single nucleotide polymorphisms, in which the allele sequence is differentiated by a single nucleotide. A new approach to improve the performance of allele selectivity for antisense oligonucleotides is proposed. It is based on the simultaneous application of two oligonucleotides. One is complementary to the mutated form of...

  16. Screening for plant viruses by next generation sequencing using a modified double strand RNA extraction protocol with an internal amplification control.

    Science.gov (United States)

    Kesanakurti, Prasad; Belton, Mark; Saeed, Hanaa; Rast, Heidi; Boyes, Ian; Rott, Michael

    2016-10-01

    The majority of plant viruses contain RNA genomes. Detection of viral RNA genomes in infected plant material by next generation sequencing (NGS) is possible through the extraction and sequencing of total RNA, total RNA devoid of ribosomal RNA, small RNA interference (RNAi) molecules, or double stranded RNA (dsRNA). Plants do not typically produce high molecular weight dsRNA, therefore the presence of dsRNA makes it an attractive target for plant virus diagnostics. The sensitivity of NGS as a diagnostic method demands an effective dsRNA protocol that is both representative of the sample and minimizes sample cross contamination. We have developed a modified dsRNA extraction protocol that is more efficient compared to traditional protocols, requiring reduced amounts of starting material, that is less prone to sample cross contamination. This was accomplished by using bead based homogenization of plant material in closed, disposable 50ml tubes. To assess the quality of extraction, we also developed an internal control by designing a real-time (quantitative) PCR (qPCR) assay that targets endornaviruses present in Phaseolus vulgaris cultivar Black Turtle Soup (BTS). PMID:27387642

  17. Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: a promising strategy to overcome drug resistance in cancer

    OpenAIRE

    Salzano, G; Riehle, R.; Navarro, Gemma; Perche, Federico; Rosa, G.; Torchilin, VT

    2013-01-01

    The discovery that survivin, a small anti-apoptotic protein, is involved in chemoresistance, opens a new scenario to overcome the drug resistance in cancer. It was shown that siRNA can efficiently inhibit the expression of survivin in cancer cells. However, the clinical use of siRNA is still hampered by an unfavorable pharmacokinetic profile. To address this problem, earlier we developed a novel system to deliver siRNA into cancer cells. Namely, we reversibly modified the survivin siRNA with ...

  18. Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw.

    Science.gov (United States)

    Mahmood-ul-Hassan, M; Suthar, V; Rafique, E; Ahmad, R; Yasin, M

    2015-07-01

    In this study, cadmium (Cd), chromium (Cr), and lead (Pb) adsorption potential of unmodified and modified sugarcane bagasse and ground wheat straw was explored from aqueous solution through batch equilibrium technique. Both the materials were chemically modified by treating with sodium hydroxide (NaOH) alone and in combination with nitric acid (HNO3) and sulfuric acid (H2SO4). Two kinetic models, pseudo-first order and pseudo-second order were used to follow the adsorption process and reaction fallowed the later model. The Pb removal by both the materials was highest and followed by Cr and Cd. The chemical treatment invariably increased the adsorption capacity and NaOH treatment proved more effective than others. Langmuir maximum sorption capacity (q m) of Pb was utmost (12.8-23.3 mg/g of sugarcane bagasse, 14.5-22.4 mg/g of wheat straw) and of Cd was least (1.5-2.2 mg/g of sugarcane bagasse, 2.5-3.8 mg/g of wheat straw). The q m was in the order of Pb > Cr > Cd for all the three adsorbents. Results demonstrate that agricultural waste materials used in this study could be used to remediate the heavy metal-polluted water. PMID:26116198

  19. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant.

    Science.gov (United States)

    Gallovic, Matthew D; Montjoy, Douglas G; Collier, Michael A; Do, Clement; Wyslouzil, Barbara E; Bachelder, Eric M; Ainslie, Kristy M

    2016-02-23

    To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant. PMID:26753184

  20. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  1. Chemically and biologically synthesized CPP-modified gelonin for enhanced anti-tumor activity.

    Science.gov (United States)

    Shin, Meong Cheol; Zhang, Jian; David, Allan E; Trommer, Wolfgang E; Kwon, Young Min; Min, Kyoung Ah; Kim, Jin H; Yang, Victor C

    2013-11-28

    The ineffectiveness of small molecule drugs against cancer has generated significant interest in more potent macromolecular agents. Gelonin, a plant-derived toxin that inhibits protein translation, has attracted much attention in this regard. Due to its inability to internalize into cells, however, gelonin exerts only limited tumoricidal effect. To overcome this cell membrane barrier, we modified gelonin, via both chemical conjugation and genetic recombination methods, with low molecular weight protamine (LMWP), a cell-penetrating peptide (CPP) which was shown to efficiently ferry various cargoes into cells. Results confirmed that gelonin-LMWP chemical conjugate (cG-L) and recombinant gelonin-LMWP chimera (rG-L) possessed N-glycosidase activity equivalent to that of unmodified recombinant gelonin (rGel); however, unlike rGel, both gelonin-LMWPs were able to internalize into cells. Cytotoxicity studies further demonstrated that cG-L and rG-L exhibited significantly improved tumoricidal effects, with IC50 values being 120-fold lower than that of rGel. Moreover, when tested against a CT26 s.c. xenograft tumor mouse model, significant inhibition of tumor growth was observed with rG-L doses as low as 2 μg/tumor, while no detectable therapeutic effects were seen with rGel at 10-fold higher doses. Overall, this study demonstrated the potential of utilizing CPP-modified gelonin as a highly potent anticancer drug to overcome limitations of current chemotherapeutic agents. PMID:23973813

  2. Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling

    OpenAIRE

    Motorin, Yuri; Burhenne, Jürgen; Teimer, Roman; Koynov, Kaloian; Willnow, Sophie; Weinhold, Elmar; Helm, Mark

    2010-01-01

    This work identifies the combination of enzymatic transfer and click labeling as an efficient method for the site-specific tagging of RNA molecules for biophysical studies. A double-activated analog of the ubiquitous co-substrate S-adenosyl-l-methionine was employed to enzymatically transfer a five carbon chain containing a terminal alkynyl moiety onto RNA. The tRNA:methyltransferase Trm1 transferred the extended alkynyl moiety to its natural target, the N2 of guanosine 26 in tRNAPhe. LC/MS a...

  3. Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching.

    Science.gov (United States)

    Parkesh, Raman; Childs-Disney, Jessica L; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Tuan; Housman, David; Thornton, Charles A; Disney, Matthew D

    2012-03-14

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3'-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5'CUG/3'GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specific chloride ion channel, sarco(endo)plasmic reticulum Ca(2+) ATPase 1, and cardiac troponin T. Based on these observations, the development of small-molecule ligands that target specifically expanded DM1 repeats could be of use as therapeutics. In the present study, chemical similarity searching was employed to improve the efficacy of pentamidine and Hoechst 33258 ligands that have been shown previously to target the DM1 triplet repeat. A series of in vitro inhibitors of the RNA-protein complex were identified with low micromolar IC(50)'s, which are >20-fold more potent than the query compounds. Importantly, a bis-benzimidazole identified from the Hoechst query improves DM1-associated pre-mRNA splicing defects in cell and mouse models of DM1 (when dosed with 1 mM and 100 mg/kg, respectively). Since Hoechst 33258 was identified as a DM1 binder through analysis of an RNA motif-ligand database, these studies suggest that lead ligands targeting RNA with improved biological activity can be identified by using a synergistic approach that combines analysis of known RNA-ligand interactions with chemical similarity searching. PMID:22300544

  4. Sensory and rheological properties of transgenically and chemically modified starch ingredients as evaluated in a food product model

    DEFF Research Database (Denmark)

    Ahmt, T.; Wischmann, Bente; Blennow, A.; Madsen, F.; Bandsholm, O.; Thomsen, J.

    2004-01-01

    Starches derived from five genetically modified potato lines, two chemically modified potato starches and two native starches from potato and maize were subjected to physical and chemical analyses and their functionality evaluated in a milk-based food product model. The transgenic starches were...... specifically modified with respect to amylopectin chain length and phosphorous content by suppression of the starch branching enzyme and overexpression of glycogen branching enzyme. Transgenic starches with long amylopectin chains and high phosphorous content had increased gelatinisation temperatures, produced...... gels with a higher tendency to retrograde and a low freeze/thaw stability as compared to starches with shorter amylopectin chains and lower phosphorous content. The textural properties of the food product model prepared from genetically and chemically modified starches were characterised by sensory and...

  5. Dual-tracer method to estimate coral reef response to a plume of chemically modified seawater

    Science.gov (United States)

    Maclaren, J. K.; Caldeira, K.

    2013-12-01

    We present a new method, based on measurement of seawater samples, to estimate the response of a reef ecosystem to a plume of an additive (for example, a nutrient or other chemical). In the natural environment, where there may be natural variability in concentrations, it can be difficult to distinguish between changes in concentrations that would occur naturally and changes in concentrations that result from a chemical addition. Furthermore, in the unconfined natural environment, chemically modified water can mix with waters that have not been modified, making it difficult to distinguish between effects of dilution and effects of chemical fluxes or transformations. We present a dual-tracer method that extracts signals from observations that may be affected by both natural variability and dilution. In this dual-tracer method, a substance (in our example case, alkalinity) is added to the water in known proportion to a passive conservative tracer (in our example case, Rhodamine WT dye). The resulting plume of seawater is allowed to flow over the study site. Two transects are drawn across the plume at the front and back of the study site. If, in our example, alkalinity is plotted as a function of dye concentration for the front transect, the slope of the resulting mixing line is the ratio of alkalinity to dye in the added fluid. If a similar mixing line is measured and calculated for the back transect, the slope of this mixing line will indicate the amount of added alkalinity that remains in the water flowing out of the study site per unit of added dye. The ratio of the front and back slopes indicates the fraction of added alkalinity that was taken up by the reef. The method is demonstrated in an experiment performed on One Tree Reef (Queensland, Australia) aimed at showing that ocean acidification is already affecting coral reef growth. In an effort to chemically reverse some of the changes to seawater chemistry that have occurred over the past 200 years, we added

  6. Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA

    Directory of Open Access Journals (Sweden)

    Shinobu Sato

    2014-07-01

    Full Text Available Nucleolytic enzymes are associated with various diseases, and several methods have been developed for their detection. DNase expression is modulated in such diseases as acute myocardial infarction, transient myocardial ischemia, oral cancer, stomach cancer, and malignant lymphoma, and DNase I is used in cystic fibroma therapy. RNase is used to treat mesothelial cancer because of its antiproliferative, cytotoxic, and antineoplastic activities. Angiogenin, an angiogenic factor, is a member of the RNase A family. Angiogenin inhibitors are being developed as anticancer drugs. In this review, we describe fluorometric and electrochemical techniques for detecting DNase and RNase in disease. Oligonucleotides having fluorescence resonance energy transfer (FRET-causing chromophores are non-fluorescent by themselves, yet become fluorescent upon cleavage by DNase or RNase. These oligonucleotides serve as a powerful tool to detect activities of these enzymes and provide a basis for drug discovery. In electrochemical techniques, ferrocenyl oligonucleotides with or without a ribonucleoside unit are used for the detection of RNase or DNase. This technique has been used to monitor blood or serum samples in several diseases associated with DNase and RNase and is unaffected by interferents in these sample types.

  7. REMOVAL OF Pb (II FROM AQUEOUS SOLUTION WITH ORANGE SUB-PRODUCTS CHEMICALLY MODIFIED AS BIOSORBENT

    Directory of Open Access Journals (Sweden)

    João Valdir Tadioto Miranda De Souza,

    2012-02-01

    Full Text Available The effects of chemical modification of orange peel, bagasse, and a mixture of peel and bagasse for lead ion removal from aqueous medium were evaluated. The chemical modification of biomass was carried out with sodium hydroxide and citric acid to introduce carboxylate groups on the surface of the biomass. Infrared spectra confirmed the presence of carboxylate groups at 1735 cm-1. Adsorption isotherms performed by static adsorption experiments fitted very well to the linear Langmuir and Freundlich models. The experiments were carried out at pH 5 during 500 min of shaking time. Orange modified peel (O-MP presented the highest adsorption capacity (84.5 mg g-1, notably higher than other biosorbents described in the literature. The kinetic studies showed that the process obeyed a pseudo-second-order rate expression, thus indicating a strong interaction between the biosorbent and adsorbate. It was found that the chemical modifications of sorbents promoted an adsorption energetically more spontaneous, as indicated by negative values of Gibbs free energy. On the other hand, desorption studies showed low leaching of lead ions from the biosorbent, thus confirming the strong interaction of lead ions and the biosorbent. The satisfactory maximum adsorption capacity obtained and negligible cost of biosorbent makes the sub-products of orange a reliable natural material for the removal of lead ions from aqueous effluents.

  8. The performance of chemically and physically modified local kaolinite in methanol dehydration to dimethyl ether

    International Nuclear Information System (INIS)

    The catalytic activity of modified natural kaolinite as a solid acid catalyst for dimethyl ether (DME) preparation was investigated by following up the conversion % of methanol and the yield % of DME. Natural kaolinite (KN) was treated chemically with H2O2 (KT) followed by thermal treatment at 500 degree C (KC) and then mechano-chemically by ball milling with and without CaSO4 (KB-Ca and KB, respectively). These samples were characterized by XRD, FTIR, SEM, HRTEM, TGA and NH3 -TPD techniques. The different techniques showed that the chemical treatment of kaolinite with H2O2 resulted in partial exfoliation/delamination of kaolinite, decreased the amount of acidic sites which is accompanied by increasing their strength. Calcination only decreased the acidic strength and slightly enlarged the particle size mostly due to heat effect. Ball milling resulted in multitude randomly-oriented crystals and increased the amount of acidic sites with the same strength of KT sample. CaSO4 mostly produced ordered monocrystalline kaolinite and created new acidic sites with slightly lower strength relative to KB. The catalytic activity and selectivity depend on the reaction temperature, the space velocity and the strength of acid sites. The most active sample is KB-Ca, which gives 84% DME due to its high amount and strength of acidic sites. The different modification methods resulted in 100% selectivity for DME

  9. Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA

    DEFF Research Database (Denmark)

    Leihne, Vibeke; Kirpekar, Finn; Vågbø, Cathrine B;

    2011-01-01

    Uridine at the wobble position of tRNA is usually modified, and modification is required for accurate and efficient protein translation. In eukaryotes, wobble uridines are modified into 5-methoxycarbonylmethyluridine (mcm(5)U), 5-carbamoylmethyluridine (ncm(5)U) or derivatives thereof. Here, we...... activity of AtTRM9 depends on either one of two closely related proteins, AtTRM112a and AtTRM112b. Moreover, we demonstrate that AT1G36310, denoted AtALKBH8, is required for hydroxylation of mcm(5)U to (S)-mchm(5)U in tRNA(Gly)(UCC), and has a function similar to the mammalian dioxygenase ALKBH8......(5)U- and mcm(5)Um-containing forms of the selenocysteine-specific tRNA(Sec) in mammals reflects an important regulatory process. The present study reveals a role in for several hitherto uncharacterized Arabidopsis proteins in the formation of modified wobble uridines....

  10. Chemically modified and nanostructured porous silicon as a drug delivery material and device

    Science.gov (United States)

    Anglin, Emily Jessica

    This thesis describes the fabrication, chemical modification, drug release, and toxicity studies of nanostructured porous silicon for the purposes of developing a smart drug delivery device. The first chapter is an introductory chapter, presenting the chemical and physical properties of porous silicon, the concepts and issues of current drug delivery devices and materials, and how porous silicon can address the issues regarding localized and controlled drug therapies. The second chapter discusses chemical modifications of nanostructured porous Si for stabilizing the material in biologically relevant media while providing an extended release of a therapeutic in vitro. This chapter also demonstrates the utility of the porous silicon optical signatures for effectively monitoring drug release from the system and its applications for development of a self-reporting drug delivery device. In chapter three, the concept of providing a triggered release of a therapeutic from porous silicon microparticles through initiation by an external stimulus is demonstrated. The microparticles are chemically modified, and the release is enhanced by a short application of ultrasound to the particulate system. The effect of ultrasound on the drug release and particle size is discussed. Chapter four presents a new method for sustaining the release of a monoclonal antibody from the porous matrix of porous SiO2. The therapeutic is incorporated into the films through electrostatic adsorption and a slow release is observed in vitro. A new method of quantifying the extent of drug loading is monitored with interferometry. The last chapter of the thesis provides a basic in vivo toxicity study of various porous Si microparticles for intraocular applications. Three types of porous Si particles are fabricated and studied in a rabbit eye model. The toxicity studies were conducted by collaborators at the Shiley Eye Center, La Jolla, CA. This work, demonstrates the feasibility of developing a self

  11. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  12. Effect of three biological response modifiers on chemical carcinogenesis in mice.

    Science.gov (United States)

    Bogdanović, Z; Culo, F; Marusić, M

    1993-01-01

    The modulation of chemical carcinogenesis by three biological response modifiers was assessed in a mouse model. CBA mice given 20-methylcholanthrene s.c. were treated with peptidoglycan monomer, azure B and indomethacin for one month, either from day 0 or 75 after methylcholanthrene injection to assess their effects on tumor incidence (on days 150 and 300), time of tumor appearance, time of death, and duration and dynamics of tumor growth. All three agents significantly influenced some of the parameters of tumor growth, except tumor incidence on day 300. Highly significant sex differences in tumor appearance and growth were observed. Tumors with late appearance grew faster in comparison to tumors with early appearance. The data presented indicate that the effectiveness of anti-cancer body defense mechanisms can be best defined by the time of tumor appearance. PMID:8272149

  13. Immobilization of chemically modified horse radish peroxidase within activated alginate beads

    Directory of Open Access Journals (Sweden)

    Spasojević Dragica

    2014-01-01

    Full Text Available Immobilization of horse radish peroxidase (HRP within alginate beads was improved by chemical modification of the enzyme and polysaccharide chains. HRP and alginate were oxidized by periodate and subsequently modified with ethylenediamine. Highest specific activity of 0.43 U/ml of gel and 81 % of bound enzyme activity was obtained using aminated HRP and alginate oxidized by periodate. Immobilized enzyme retained 75 % of original activity after 2 days of incubation in 80 % (v/v dioxane and had increased activity at basic pH values compared to native enzyme. During repeated use in batch reactor for pyrogallol oxidation immobilized peroxidase retained 75 % of original activity. [Projekat Ministarstva nauke Republike Srbije, br. ON173017 i br. ON172049

  14. Kinetic and thermodynamic studies on biosorption of Cu(Ⅱ) by chemically modified orange peel

    Institute of Scientific and Technical Information of China (English)

    FENG Ning-chuan; GUO Xue-yi; LIANG Sha

    2009-01-01

    Cu(H) biosorption by orange peel that was chemically modified with sodium hydroxide and calcium chloride was investigated. The effects of temperature, contact time, initial concentration of metal ions and pH on the biosorption of Cu( II) ions were assessed. Thermodynamic parameters including change of free energy(△G~Θ), enthalpy (△H~Θ) and entropy(△S~Θ) during the biosorption were determined. The results show that the biosorption process of Cu( II) ions by chemically treated orange peel is feasible, spontaneous and exothermic under studied conditions. Equilibrium is well described by Langmuir equation with the maximum biosorption capacity(q_m) for Cu( II) as 72.73 mg/g and kinetics is found to fit pseudo-second order type biosorption kinetics. As the temperature increases from 16 ℃ to 60 ℃, copper biosorption decreases. The loaded biosorbent is regenerated using HC1 solution for repeatedly use for five times with little loss of biosorption capacity.

  15. High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin

    International Nuclear Information System (INIS)

    Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA-SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic-organic interfacial adhesion. The newly developed HA-SF composites are expected to be attractive biomedical materials for bone repair and remodeling

  16. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    Science.gov (United States)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  17. Sensory and rheological properties of transgenically and chemically modified starch ingredients as evaluated in a food product model

    DEFF Research Database (Denmark)

    Ahmt, T.; Wischmann, Bente; Blennow, A.;

    2004-01-01

    Starches derived from five genetically modified potato lines, two chemically modified potato starches and two native starches from potato and maize were subjected to physical and chemical analyses and their functionality evaluated in a milk-based food product model. The transgenic starches were...... specifically modified with respect to amylopectin chain length and phosphorous content by suppression of the starch branching enzyme and overexpression of glycogen branching enzyme. Transgenic starches with long amylopectin chains and high phosphorous content had increased gelatinisation temperatures, produced...... rheological analyses. To clearly visualise the effects of the modifications, data was evaluated by radar plots and multiple regression analysis (chemometrics). Genetically modified potato starches with longer amylopectin chains and increased phosphorous content gave a more gelled and a shorter texture as...

  18. Application of a modified EDTA-mediated exudation technique and guttation fluid analysis for Potato spindle tuber viroid RNA detection in tomato plants (Solanum lycopersicum).

    Science.gov (United States)

    Kovalskaya, Natalia; Owens, Robert; Baker, C Jacyn; Deahl, Kenneth; Hammond, Rosemarie W

    2014-03-01

    Potato spindle tuber viroid (PSTVd) is a small plant pathogenic circular RNA that does not encode proteins, replicates autonomously, and traffics systemically in infected plants. Long-distance transport occurs by way of the phloem; however, one report in the literature describes the presence of viroid RNA in the xylem ring of potato tubers. In this study, a modified method based on an EDTA-mediated phloem exudation technique was applied for detection of PSTVd in the phloem of infected tomato plants. RT-PCR, nucleic acid sequencing, and Southern blot analyses of RT-PCR products verified the presence of viroid RNA in phloem exudates. In addition, the guttation fluid collected from the leaves of PSTVd-infected tomato plants was analyzed revealing the absence of viroid RNA in the xylem sap. To our knowledge, this is the first report of PSTVd RNA detection in phloem exudates obtained by the EDTA-mediated exudation technique. PMID:24388932

  19. Effect of single base changes and the absence of modified bases in 16S RNA on the reconstitution and function of Escherichia coli 30S ribosomes

    International Nuclear Information System (INIS)

    The gene coding for E. coli 16S rRNA was placed in pUC19 under the control of the strong class III T7 promoter, phi 10, by ligation of the 1490 bp BclI/BstEII fragment of the rrnB operon with appropriate synthetic oligodeoxynucleotides. Such constructs allowed efficient in vitro synthesis of full-length transcripts (up to 900 mol RNA/mol template) free of modified bases. The synthetic RNA could be assembled into 30S subunits upon addition of E. coli 30S ribosomal proteins. The particles co-sedimented with authentic 30S particles and were electron microscopically indistinguishable from them. Upon addition of 50S subunits, codon-dependent P-site binding of tRNA and codon-dependent polypeptide synthesis were >80% of 30S reconstituted from natural 16S RNA and >50% of isolated 30S. UV-induced crosslinking of P-site bound AcVal-tRNA to residue C1400 was preserved. Changing C1400 to A had little effect on reconstitution, P-site binding, or polypeptide synthesis. However, the substitution of C1499 by G markedly inhibited assembly. The effect on P-site binding and polypeptide synthesis is under study. These results show (1) none of the modified bases of 16S RNA are essential for protein synthesis, (2) substitution of A for C1400 has little functional effect, and (3) position 1400 may be important for ribosome assembly

  20. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag{sub 2}O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed.

  1. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag2O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  2. [Internal initiation of translation in eukaryotes. Chemical probing of the encephalomyocarditis virus RNA IRES-element in the 48S preinitiation complex].

    Science.gov (United States)

    Boroviagin, A V; Ezrokhi, M V; Shatskiĭ, I N

    1995-01-01

    Using in vitro T7 polymerase system, the transcript containing the IRES-element (nts 315-833), and the initial part of the coding sequence of encephalomyocarditis virus (EMCV) RNA (nts 834-1155) was prepared. Its complex with the 40S ribosomal subunit (48S preinitiation complex) was then isolated by sucrose gradient sedimentation from ascites carcinoma Krebs2 cell extracts after preincubation with the transcript. The complex was treated with dimethylsulphate (DMS), a common reagent for chemical probing of A and C residues in single-stranded RNA regions. The modified nucleotides were identified by primer extension inhibition analysis in reverse transcription reaction. The pattern of modification of the 48S complex was compared with that for the corresponding free mRNP. Multiple protection of A residues against DMS modification was found in the domains of the IRES-element proximal to the initiation AUG codon (nt 834-836). The mechanism of internal translational initiation of EMCV RNA and other picornaviral RNAs is discussed. PMID:8552069

  3. Effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified White sorghum (Sorghum bicolor) starch

    International Nuclear Information System (INIS)

    Highlights: ► Sorghum starches were chemically modified. ► Starch–lipid complexes were studied in the presence of emulsifiers. ► Type II complexes were also detected in native and oxidized starches on adding GMS. ► Starch–lipid complexes sharply reduced retrogradation in modified starches. - Abstract: The effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified white sorghum starches was studied. Complex forming tendency of white sorghum starch with commercially available emulsifiers GMS and DATEM improved after acetylation. Presence of emulsifiers reduced λmax (wavelength of maximum absorbance) both for native and modified sorghum starches suggesting lower availability of amylose chains to complex with iodine. In native white sorghum starch (NWSS) and oxidized white sorghum starch (OWSS), both Type I and Type II starch–lipid complexes were observed on addition of 1.0% GMS prior to gelatinization. Acetylated-oxidized white sorghum starch (AOWSS) formed weakest complexes among all the modified starches. The results revealed that antistaling characteristics of modified sorghum starches were enhanced when used in combination with emulsifiers. The most prominent decline in reassociative capability among modified starches was observed for acetylated starches.

  4. Chemical reaction of sputtered Cu film with PI modified by low energy reactive atomic beam

    International Nuclear Information System (INIS)

    Polyimide (PMDA-ODA) surface was irradiated by low energy reactive atomic beam with energy 160-180 eV to enhance the adhesion with metal Cu film. O2+ and N2+ ions were irradiated at the fluence from 5 x 1015 to 1 x 1018 cm-2. Wetting angle 78o of distilled deionized (DI) water for bare PI was greatly reduced down to 2-4o after critical ion flounce, and the surface energy was increased from 37 to 81.2 erg/cm. From the analysis of O 1s core-level XPS spectra, such improvement seemed to result from the increment of hydrophilic carbonyl oxygen content on modified PI surface. To see more carefully correlation of the peel strength with interfacial reaction between Cu and PI, flexible copper clad laminate with Cu (9 μm)/Cu (200 nm) on modified PI substrate (25 μm) was fabricated by successive sputtering and electroplating. Firstly, peel strength was measured by using t-test and it was largely increased from 0.2 to 0.5 kgf/cm for Ar+ only irradiated PI to 0.72-0.8 kgf/cm for O2+ or N2O+ irradiated PI. Chemical reaction at the interface was reasoned by analyzing C 1s, O 1s, N 1s, and Cu 2p core-level X-ray photoelectron spectroscopy over the as-cleaved Cu-side and PI side surface through depth profiling. From the C 1s spectra of cleaved Cu-side, by the electron transfer from Cu to carbonyl oxygen, carbonyl carbon atom became less positive and as a result shifted to lower binding energy not reaching the binding energy of C2 and C3. The binding energy shift of the peak C4 as small as 1.7 eV indicates that carbonyl oxygen atoms were not completely broken. From the analysis of the O 1s spectra, it was found that new peak at 530.5 eV (O3) was occurred and the increased area of the peak O3 was almost the same with reduced area of the peak carbonyl oxygen peak O1. Since there was no change in the relative intensity of ether oxygen (O2) to carbonyl oxygen (O1), and thus O3 was believed to result from Cu oxide formation via a local bonding of Cu with carbonyl oxygen atoms

  5. Structure and magnetic properties of detonation nanodiamond chemically modified by copper

    Science.gov (United States)

    Shames, A. I.; Panich, A. M.; Osipov, V. Yu.; Aleksenskiy, A. E.; Vul', A. Ya.; Enoki, T.; Takai, K.

    2010-01-01

    We report on detailed study of detonation nanodiamonds (DNDs) whose surface has been chemically modified by copper with the aid of ion exchange in water DND suspension. High resolution transmission electron microscopy, Raman, IR, electron magnetic resonance (EMR), nuclear magnetic resonance (NMR), and superconducting quantum interference device techniques were used for the characterization of DND. Carboxyl groups, appearing on the surface of a nanodiamond particle during its synthesis and purification processes, provide an effective binding of divalent copper ions to the surface. The binding results from the ion exchange between metal cations and protons of surface carboxyl groups in water solutions. IR data evidence the presence of multiple COC groups in the dried copper-modified DND product. Both EMR and C13 NMR provide direct evidences of the appearance of isolated Cu2+ ions on the surface of the 5 nm nanodiamond particles. EMR spectra reveal well-pronounced hyperfine structure due to C63,65u nuclear spin I =3/2 with the spectral pattern which is typical for mononuclear axially distorted Cu2+ complexes in polycrystals. Using Cu2+ ions as paramagnetic probes two-component model of carbon inherited paramagnetic centers in DND is suggested. Magnetic susceptibility for all samples follows the Curie-Weiss law above 30 K. The concentration of magnetically observable copper ions Cu2+ (spin S =1/2) localized on the nanodiamonds surface increases up to approximately 1.5-3.5 ions per nanoparticle with increasing concentration of copper acetate in starting solutions.

  6. Adsorption Studies of Phenol Using Thermally and Chemically Modified Rice Husk as Adsorbents

    Directory of Open Access Journals (Sweden)

    *M. M. Yousaf

    2014-03-01

    Full Text Available Most of the Phenols are hazardous substances and some are supposed to have carcinogenic activity. Thus it is necessary to remove Phenolics and other aromatics from the aqueous ecosystem. Traditional processes for the removal of Phenolics compounds are extraction, adsorption on granulated activated carbon, steam distillation, chemical and bacterial techniques. Literature survey show a number of methods like oxidation, ion exchange, reverse osmosis, electrochemical oxidation and adsorption. Phenol removal by process like, adsorption is the best method of choice as it can remove most of phenols in simple and easy way. In recent past; agricultural by-products such as, maize cob, date stone, apricot Stones, rice bran, and bagass pith have been extensively studied and used as adsorbents for the adsorption of hazardous substances from wastewater. In the present study we tried modified rice husks as potential adsorbents for the removal of Phenol from aqueous system. Batch mode studies were carried out. Isotherm data was generated and fitted in Freundlich and Langmuir equation to explain the phenomenon of adsorption. The adsorption capacities based on Langmuir model (Qm of the 3 adsorbents were found to be 0.81 for raw husk (RH, 0.395 for the Grafted (G and 2.306 mg/g for the Charred (C. The R2 values were 0.92 for raw husk, 0.97 for grafted and 0.91 for charred husk. Based on Freundlich model the adsorption capacities (K were 2.94, 2.29 and 1.25mg/g for Raw husk, grafted husk and charred husk. The R2 values were found to be 0.72, 0.95 and 0.83 for the raw husk, grafted husk and charred husk respectively. Our result showed that modified rice husks could be used as potential adsorbents for Phenol removal from aqueous system.

  7. Analysis of the levels of lysine-specific demethylase 1 (LSD1) mRNA in human ovarian tumors and the effects of chemical LSD1 inhibitors in ovarian cancer cell lines

    OpenAIRE

    Konovalov, Sergiy; Garcia-Bassets, Ivan

    2013-01-01

    Background Lysine-specific demethylase 1 (LSD1, also known as KDM1A and AOF2) is a chromatin-modifying activity that catalyzes the removal of methyl groups from lysine residues in histone and non-histone proteins, regulating gene transcription. LSD1 is overexpressed in several cancer types, and chemical inhibition of the LSD1 activity has been proposed as a candidate cancer therapy. Here, we examine the levels of LSD1 mRNA in human ovarian tumors and the cytotoxicity of several chemical LSD1 ...

  8. Synthesis and physicochemical characterization of chemically modified chitosan by succinic anhydride

    Directory of Open Access Journals (Sweden)

    Karine Gargioni Pereira Correa de Mello

    2006-07-01

    Full Text Available The N-succinil-chitosan is a chemically modified derivative of the biopolymer chitosan. The succinic anhydride attached to the free amino groups presented along the chitosan's polymer chain imparts to the molecule different physicochemical properties not exhibited before the modification. These chemical modifications enhance chitosan's solubility in slightly acid, neutral and alkaline media. These properties are related to the long alkyl chains attached to hydrophilic parts. In this case the hydrophilic part of D-glucosamine promotes stronger interactions with the water molecules, and consequently, enhances the solubility of the chitosan polymer. Non-modified free chitosan is soluble only in acidic medium (pH A N-succinil-quitosana é um derivado quimicamente modificado do biopolímero quitosana. A inserção de substituintes de anidrido succínico nas aminas protonadas presentes ao longo da cadeia do polímero quitosana, conferem diferentes características físico-químicas a molécula de quitosana. Esta modificação química, possibilitou à quitosana, solubilidade em pHs que variam do ácido (2.0 a 3.0 até alcalino (13.0 a 14.0. Estas propriedades são atribuídas ao alongamento da cadeia alquílica, que afasta a parte hidrofílica da cadeia fechada da D-glicosamina, facilitando o acesso da água, a qual irá estabelecer uma interação mais forte com a molécula de quitosana. Esta propriedade não está presente em amostras de quitosana pura, a qual sabe-se que solubiliza-se apenas em pH abaixo de 5.5. Estas modificações na quitosana possibilitam novas aplicações na área de biotecnologia, uma vez que a solubilidade em meio neutro e levemente alcalino é importante na área biológica.

  9. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    Science.gov (United States)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  10. Photochemical cross-linking of tRNA/sup Phe/ modified at A76 and A73 to the Escherichia coli ribosome

    International Nuclear Information System (INIS)

    [5'-32P]-8-azidoadenosine 3',5'-bisphosphate ([5'-32P]p(N3)Ap) has been prepared using a simple two-step procedure: alkaline hydrolysis of 8-azidoadenosine 3',5'-cyclic monophosphate followed by labeling of the resulting 3'-mononucleotide with 32P at the 5' position using [γ-32P]ATP and T4 polynucleotide kinase. [5'-32P]p(N3)Ap has proven to be an excellent substrate for T4 RNA ligase. To study the environment of the 3' end of tRNA on bacterial ribosomes, nucleosides A76 and A73 in yeast tRNA/sup Phe/ were replaced with their 8-azido derivatives. This was achieved by stepwise removal of 3'-terminal nucleosides from the tRNA using the Whitfield procedure, incorporation of [5'-32P]p(N3)Ap into appropriately degraded tRNA with T4 RNA ligase, and restoration of the CCA/sub OH/ terminus with yeast nucleotidyl transferase. The modified tRNAs were bound to the A or P site of Escherichia coli ribosomes programmed with poly(U). UV irradiation produced covalent, zero-length cross-links between the tRNA and neighboring ribosomal components. The tRNA derivative containing (N3)A73 became attached exclusively to proteins of the 50S subunit whose identity is currently under investigation

  11. Verification of chemical evolution of RNA under hydrothermal environments on the primitive Earth

    Directory of Open Access Journals (Sweden)

    Kawamura Kunio

    2015-01-01

    Full Text Available The RNA World hypothesis proposes that primitive forms of life used polymers resembling RNA both as catalysts and as carriers of genetic information. It has also been suggested that the origin of life occurred in hydrothermal conditions, but this implies that the ester bonds of nucleic acids are sufficiently stable to survive in aqueous conditions at elevated temperatures. Here, we summarize the results of experimental tests of RNA in simulated hydrothermal conditions in which stability is monitored at elevated temperatures and pressures. This perspective provides insight into the evolutionary pathway from small nucleotides to functional RNA molecules and the feasibility of RNA-based life.

  12. Microenvironmental Effect of 2'-O-(1-Pyrenylmethyl)uridine Modified Fluorescent Oligonucleotide Probes on Sensitive and Selective Detection of Target RNA.

    Science.gov (United States)

    Imincan, Gülnur; Pei, Fen; Yu, Lijia; Jin, Hongwei; Zhang, Liangren; Yang, Xiaoda; Zhang, Lihe; Tang, XinJing

    2016-04-19

    2'-O-(1-Pyrenylmethyl)uridine modified oligoribonucleotides provide highly sensitive pyrene fluorescent probes for detecting specific nucleotide mutation of RNA targets. To develop more stable and cost-effective oligonucleotide probes, we investigated the local microenvironmental effects of nearby nucleobases on pyrene fluorescence in duplexes of RNAs and 2'-O-(1-pyrenylmethyl)uridine modified oligonucleotides. By incorporation of deoxyribonucleotides, ribonucleotides, 2'-MeO-nucleotides and 2'-F-nucleotides at both sides of 2'-O-(1-pyrenylmethyl)uridine (Up) in oligodeoxynucleotide probes, we synthesized a series of pyrene modified oligonucleotide probes. Their pyrene fluorescence emission spectra indicated that only two proximal nucleotides have a substantial effect on the pyrene fluorescence properties of these oligonucleotide probes hybridized with target RNA with an order of fluorescence sensitivity of 2'-F-nucleotides > 2'-MeO-nucleotides > ribonucleotides ≫ deoxyribonucleotides. While based on circular dichroism spectra, overall helix conformations (either A- or B-form) of the duplexes have marginal effects on the sensitivity of the probes. Instead, the local substitution reflected the propensity of the nucleotide sugar ring to adopt North type conformation and, accordingly, shifted their helix geometry toward a more A-type like conformation in local microenvironments. Thus, higher enhancement of pyrene fluorescence emission favored local A-type helix structures and more polar and hydrophobic environments (F > MeO > OH at 2' substitution) of duplex minor grooves of probes with the target RNA. Further dynamic simulation revealed that local microenvironmental effect of 2'-F-nucleotides or ribonucleotides was enough for pyrene moiety to move out of nucleobases to the minor groove of duplexes; in addition, 2'-F-nucleotide had less effect on π-stack of pyrene-modified uridine with upstream and downstream nucleobases. The present oligonucleotide probes

  13. Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions

    International Nuclear Information System (INIS)

    The adsorption efficiency of Opuntia ficus indica fibres regarding the removal of hexavalent uranium [U(VI)] from aqueous solutions has been investigated prior and after the chemical treatment (e.g. phosphorylation and MnO2-coating) of the biomass. The separation/removal efficiency has been studied as a function of pH, uranium concentration, adsorbent mass, ionic strength, temperature and contact time. Evaluation of the experimental data shows that biosorption is strongly pH-depended and that the MnO2-coated product presents the highest adsorption capacity followed by the phosphorylated and non-treated material. Experiments with varying ionic strength/salinity don't show any significant effect on the adsorption efficiency, indicating the formation of inner-sphere surface complexes. The adsorption reactions are in all cases exothermic and relatively fast, particularly regarding the adsorption on the MnO2-coated product. The results of the present study indicate that adsorption of uranium from waters is very effective by cactus fibres and particularly the modified treated fibres. The increased adsorption efficiency of the cactus fibres is attributed to their primary and secondary fibrillar structure, which result in a relative relative high specific surface available for sorption. (author)

  14. Progress in chemical treatment of LEU targets by the modified Cintichem process

    International Nuclear Information System (INIS)

    Presented here are recent experimental results on tests of a modified Cintichem process for producing 99Mo from low enriched uranium (LEU). Studies were focused in three areas: (1) testing the effects on 99Mo recovery and purity of dissolving LEU foil in nitric acid alone, rather than in the sulfuric/nitric acid mixture currently used, (2) measuring decontamination factors for radionuclide impurities in each purification step, and (3) testing the effects on processing of adding barrier materials to the LEU metal-foil target. The experimental results show that switching from dissolving the target in the sulfuric/nitric mixture to using nitric acid alone should cause no significant difference in 99Mo product yield or purity. Further, the results show that overall decontamination factors for gamma emitters in the LEU target processing are high enough to meet the purity requirements for the 99Mo product. The results also show that the selected barrier materials, Cu, Fe, and Ni, do not interfere with 99Mo recovery and can be removed during chemical processing of the LEU target. (author)

  15. High carrier mobility in chemically modified graphene on an atomically flat high-resistive substrate

    International Nuclear Information System (INIS)

    Special high-resistive substrates for graphene sheets are suggested with the aim of providing high conductivity and mobility of charge carriers in graphene. The substrates were created from N-methylpyrrolidone-intercalated few-layer graphene (FLG) using anneals given to FLG samples in the temperature range 100–180 °C. Structures containing a highly conductive single-layer graphene on an atomically flat, high-resistive substrate were produced by recovering the top-layer conductivity. The obtained structures have potential in electronic applications due to a high carrier mobility (up to 16 000–42 000 cm2 V−1 s−1) and strong gate-voltage-induced modulation (by 4–5 orders of magnitude) of the current in the top graphene layer. The strong gate-voltage-induced modulation of the current clearly demonstrated that the top layer was chemically modified graphene. The possibility of governing the surface conductivity in the described structures offers a unique tool for two-dimensional nanodesign. (paper)

  16. Removal of Cu(II) from aqueous solutions using chemically modified chitosan

    International Nuclear Information System (INIS)

    Chemically modified chitosan namely epichlorohydrin cross-linked xanthate chitosan (ECXCs) has been used for the removal of Cu(II) ions from aqueous medium. The influence of various operating parameters such as pH, temperature, sorbent dosage, initial concentration of Cu(II) ions and contact time on the adsorption capacity of ECXCs has been investigated. Thermodynamic parameters namely ΔGo, ΔHo and ΔSo of the Cu(II) adsorption process have been calculated. Differential anodic stripping voltammetric technique was used to determine the concentration of Cu(II) in the test solution before and after adsorption. The nature of the possible adsorbent-metal ion interactions was studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The studies showed that the adsorption of Cu(II) on ECXCs strongly depends on pH and temperature. The maximum adsorption capacity was observed at pH 5.0 and the adsorption capacity of ECXCs increased with increasing temperature indicating the endothermic nature of adsorption process. Langmuir and Freundlich adsorption equations were used to fit the experimental data. The adsorption process is found to follow the pseudo-second-order kinetic model. The maximum adsorption capacity was found to be 43.47 mg g-1 from the Langmuir isotherm model at 50 deg. C. During desorption studies 97-100% of adsorbed copper ion is released into solution in presence of 1N EDTA, HCl and H2SO4.

  17. A novel chemically modified curcumin reduces severity of experimental periodontal disease in rats: initial observations.

    Science.gov (United States)

    Elburki, Muna S; Rossa, Carlos; Guimaraes, Morgana R; Goodenough, Mark; Lee, Hsi-Ming; Curylofo, Fabiana A; Zhang, Yu; Johnson, Francis; Golub, Lorne M

    2014-01-01

    Tetracycline-based matrix metalloproteinase- (MMP-) inhibitors are currently approved for two inflammatory diseases, periodontitis and rosacea. The current study addresses the therapeutic potential of a novel pleiotropic MMP-inhibitor not based on an antibiotic. To induce experimental periodontitis, endotoxin (LPS) was repeatedly injected into the gingiva of rats on one side of the maxilla; the contralateral (control) side received saline injections. Two groups of rats were treated by daily oral intubation with a chemically modified curcumin, CMC 2.24, for two weeks; the control groups received vehicle alone. After sacrifice, gingiva, blood, and maxilla were collected, the jaws were defleshed, and periodontal (alveolar) bone loss was quantified morphometrically and by μ-CT scan. The gingivae were pooled per experimental group, extracted, and analyzed for MMPs (gelatin zymography; western blot) and for cytokines (e.g., IL-1β; ELISA); serum and plasma samples were analyzed for cytokines and MMP-8. The LPS-induced pathologically excessive bone loss was reduced to normal levels based on either morphometric (P = 0.003) or μ-CT (P = 0.008) analysis. A similar response was seen for MMPs and cytokines in the gingiva and blood. This initial study, on a novel triketonic zinc-binding CMC, indicates potential efficacy on inflammatory mediators and alveolar bone loss in experimental periodontitis and warrants future therapeutic and pharmacokinetic investigations. PMID:25104884

  18. Chemically modified graphene films for high-performance optical NO2 sensors.

    Science.gov (United States)

    Xing, Fei; Zhang, Shan; Yang, Yong; Jiang, Wenshuai; Liu, Zhibo; Zhu, Siwei; Yuan, Xiaocong

    2016-08-01

    Various graphene-based gas sensors that operate based on the electrical properties of graphene have been developed for accurate detection of gas components. However, electronic graphene-based gas sensors are unsafe under explosive atmospheres and sensitive to electromagnetic interference. Here, a novel optical graphene-based gas sensor for NO2 detection is established based on surface chemical modification of high-temperature-reduced graphene oxide (h-rGO) films with sulfo groups. Sulfo group-modified h-rGO (S-h-rGO) films with a thickness of several nanometers exhibit excellent performance in NO2 detection at room temperature and atmospheric pressure based on the polarization absorption effect of graphene. Initial slope analysis of the S-h-rGO sensor indicates that it has a limit of detection of 0.28 ppm and a response time of 300 s for NO2 gas sensing. Furthermore, the S-h-rGO sensor also possesses the advantages of good linearity, reversibility, selectivity, non-contact operation, low cost and safety. This novel optical gas sensor has the potential to serve as a general platform for the selective detection of a variety of gases with high performance. PMID:27265308

  19. Structural and dynamical properties of water on chemically modified surfaces: The role of the instantaneous surface

    Science.gov (United States)

    Bekele, Selemon; Tsige, Mesfin

    Surfaces of polymers such as atactic polystyrene (aPS) represent very good model systems for amorphous material surfaces. Such polymer surfaces are usually modified either chemically or physically for a wide range of applications that include friction, lubrication and adhesion. It is thus quite important to understand the structural and dynamical properties of liquids that come in contact with them to achieve the desired functional properties. Using molecular dynamics (MD) simulations, we investigate the structural and dynamical properties of water molecules in a slab of water in contact with atactic polystyrene surfaces of varying polarity. We find that the density of water molecules and the number distribution of hydrogen bonds as a function of distance relative to an instantaneous surface exhibit a structure indicative of a layering of water molecules near the water/PS interface. For the dynamics, we use time correlation functions of hydrogen bonds and the incoherent structure function for the water molecules. Our results indicate that the polarity of the surface dramatically affects the dynamics of the interfacial water molecules with the dynamics slowing down with increasing polarity. This work was supported by NSF Grant DMR1410290.

  20. A Novel Chemically Modified Curcumin Reduces Severity of Experimental Periodontal Disease in Rats: Initial Observations

    Directory of Open Access Journals (Sweden)

    Muna S. Elburki

    2014-01-01

    Full Text Available Tetracycline-based matrix metalloproteinase- (MMP- inhibitors are currently approved for two inflammatory diseases, periodontitis and rosacea. The current study addresses the therapeutic potential of a novel pleiotropic MMP-inhibitor not based on an antibiotic. To induce experimental periodontitis, endotoxin (LPS was repeatedly injected into the gingiva of rats on one side of the maxilla; the contralateral (control side received saline injections. Two groups of rats were treated by daily oral intubation with a chemically modified curcumin, CMC 2.24, for two weeks; the control groups received vehicle alone. After sacrifice, gingiva, blood, and maxilla were collected, the jaws were defleshed, and periodontal (alveolar bone loss was quantified morphometrically and by μ-CT scan. The gingivae were pooled per experimental group, extracted, and analyzed for MMPs (gelatin zymography; western blot and for cytokines (e.g., IL-1β; ELISA; serum and plasma samples were analyzed for cytokines and MMP-8. The LPS-induced pathologically excessive bone loss was reduced to normal levels based on either morphometric (P=0.003 or μ-CT (P=0.008 analysis. A similar response was seen for MMPs and cytokines in the gingiva and blood. This initial study, on a novel triketonic zinc-binding CMC, indicates potential efficacy on inflammatory mediators and alveolar bone loss in experimental periodontitis and warrants future therapeutic and pharmacokinetic investigations.

  1. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    Science.gov (United States)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  2. A highly stable and sensitive chemically modified screen-printed electrode for sulfide analysis

    International Nuclear Information System (INIS)

    We report here a highly stable and sensitive chemically modified screen-printed carbon electrode (CMSPE) for sulfide analysis. The CMSPE was prepared by first ion-exchanging ferricyanide into a Tosflex anion-exchange polymer and then sealing with a tetraethyl orthosilicate sol-gel layer. The sol-gel overlayer coating was crucial to stabilize the electron mediator (i.e., Fe(China)63-) from leaching. The strong interaction between the oxy-hydroxy functional group of sol-gel and the hydrophilic sites of Tosflex makes the composite highly rigid to trap the ferricyanide mediator. An obvious electrocatalytic sulfide oxidation current signal at ∼0.20 V versus Ag/AgCl in pH 7 phosphate buffer solution was observed at the CMSPE. A linear calibration plot over a wide range of 0.1 μM to 1 mM with a slope of 5.6 nA/μM was obtained by flow injection analysis. The detection limit (S/N = 3) was 8.9 nM (i.e., 25.6 ppt). Practical utility of the system was applied to the determination of sulfide trapped from cigarette smoke and sulfide content in hot spring water

  3. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall

    KAUST Repository

    Wang, Kai Yu

    2009-04-01

    To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated. © 2008 Elsevier Ltd. All rights reserved.

  4. Effects of Zn Content on Crystal Structure, Cytocompatibility, Antibacterial Activity, and Chemical Stability in Zn-Modified Calcium Silicate Coatings

    Science.gov (United States)

    Li, Kai; Yu, Jiangming; Xie, Youtao; Huang, Liping; Ye, Xiaojian; Zheng, Xuebin

    2013-08-01

    In our previous study, Zn-modified calcium silicate coatings possess not only excellent chemical stability but also well antibacterial activity. Still, effects of zinc content on these properties and cytocompatibility remain unclear. In this paper, two kinds of Zn-modified calcium silicate coatings (ZC0.3, ZC0.5) were fabricated on Ti-6Al-4V substrates via plasma spraying technology. X-ray diffraction results and transmission electron microscopy observations showed that the ZC0.5 coating was composed of pure hardystonite (Ca2ZnSi2O7) phase, while, besides Ca2ZnSi2O7 phase, the amorphous CaSiO3 phase was also detected in the ZC0.3 coating. Chemical stability in Tris-HCl buffer solution and antibacterial activity of the Zn-modified calcium silicate coatings increased with an increase in zinc content. In vitro cytocompatibility evaluation demonstrated that the proliferation and alkaline phosphatase activity and collagen type I (COLI) secretion of osteoblast-like MC3T3-E1 cells on Zn-modified coatings were significantly enhanced compared to the Zn-free coating and Ti-6Al-4V control, and no cytotoxicity appeared on Zn-modified coatings. The better antibacterial activity and the enhanced capability to promote MC3T3-E1 cells differentiation of Zn-modified coatings should be attributed to the slow and constant Zn2+ releasing from the coatings.

  5. 3-Nitropropionic acid modifies neurotrophin mRNA expression in the mouse striatum:18S-rRNA is a reliable control gene for studies of the striatum

    Institute of Scientific and Technical Information of China (English)

    S.Espíndola; A Vilches-Flores; E.Hernández-Echeagaray

    2012-01-01

    Objective The aim of the present study was to determine the changes in the mRNA levels ofneurotrophins and their receptors in the striatal tissue of mice treated with 3-nitropropionic acid (3-NP).Methods At 1 and 48 h after the last drug administration,the mRNA expression of nerve growth factor,brain-derived neurotrophic factor,neurotrophin-3 and neurotrophin-4/5 as well as their receptors p75,TrkA,TrkB and TrkC,was evaluated using semi-quantitative (semi-Q) and real-time RT-PCR.β-actin mRNA and ribosomal 18S (18S rRNA) were tested as internal controls.Results 3-NP treatment did not affect mRNA expression of all neurotrophins and their respective receptors equally.Also,differences in neurotrophin and receptor mRNA expression were observed between semi-Q and real-time RT-PCR.Real-time RT-PCR was more accurate in evaluating the mRNA expression of the neurotrophins than semi-Q,and 18S rRNA was more reliable than β-actin as an internal control.Conclusion Neurotrophins and their receptors expression is differentially affected by neuronal damage produced by inhibition of mitochondrial respiration with 3-NP treatment in low,sub-chronic doses in vivo.

  6. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides

    OpenAIRE

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S.; McBee, Megan E.; Dedon, Peter C.

    2014-01-01

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and...

  7. pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties.

    Science.gov (United States)

    Liu, Zi; Xiao, Xuan; Yu, Dong-Jun; Jia, Jianhua; Qiu, Wang-Ren; Chou, Kuo-Chen

    2016-03-15

    Just like PTM or PTLM (post-translational modification) in proteins, PTCM (post-transcriptional modification) in RNA plays very important roles in biological processes. Occurring at adenine (A) with the genetic code motif (GAC), N(6)-methyldenosine (m(6)A) is one of the most common and abundant PTCMs in RNA found in viruses and most eukaryotes. Given an uncharacterized RNA sequence containing many GAC motifs, which of them can be methylated, and which cannot? It is important for both basic research and drug development to address this problem. Particularly with the avalanche of RNA sequences generated in the postgenomic age, it is highly demanded to develop computational methods for timely identifying the N(6)-methyldenosine sites in RNA. Here we propose a new predictor called pRNAm-PC, in which RNA sequence samples are expressed by a novel mode of pseudo dinucleotide composition (PseDNC) whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross covariance transformations. It was observed via a rigorous jackknife test that, in comparison with the existing predictor for the same purpose, pRNAm-PC achieved remarkably higher success rates in both overall accuracy and stability, indicating that the new predictor will become a useful high-throughput tool for identifying methylation sites in RNA, and that the novel approach can also be used to study many other RNA-related problems and conduct genome analysis. A user-friendly Web server for pRNAm-PC has been established at http://www.jci-bioinfo.cn/pRNAm-PC, by which users can easily get their desired results without needing to go through the mathematical details. PMID:26748145

  8. Transfection of pseudouridine-modified mRNA encoding CPD-photolyase leads to repair of DNA damage in human keratinocytes: a new approach with future therapeutic potential

    Science.gov (United States)

    Boros, Gábor; Miko, Edit; Muramatsu, Hiromi; Weissman, Drew; Emri, Eszter; Rózsa, Dávid; Nagy, Georgina; Juhász, Attila; Juhász, István; van der Horst, Gijsbertus; Horkay, Irén; Remenyik, Éva; Karikó, Katalin; Emri, Gabriella

    2013-01-01

    UVB irradiation induces harmful photochemical reactions, including formation of cyclobutane pyrimidine dimers (CPDs) in DNA. Accumulation of unrepaired CPD lesions causes inflammation, premature ageing and skin cancer. Photolyases are DNA repair enzymes that can rapidly restore DNA integrity in a light-dependent process called photoreactivation, but these enzymes are absent in humans. Here, we present a novel mRNA-based gene therapy method that directs synthesis of a marsupial, Potorous tridactylus, CPD-photolyase in cultured human keratinocytes. Pseudouridine was incorporated during in vitro transcription to make the mRNA non-immunogenic and highly translatable. Keratinocytes transfected with lipofectamine-complexed mRNA expressed photolyase in the nuclei for at least 2 days. Exposing photolyase mRNA-transfected cells to UVB irradiation resulted in significantly less CPD in those cells that were also treated with photoreactivating light, which is required for photolyase activity. The functional photolyase also diminished other UVB-mediated effects, including induction of IL-6 and inhibition of cell proliferation. These results demonstrate that pseudouridine-containing photolyase mRNA is a powerful tool to repair UVB-induced DNA lesions. The pseudouridine-modified mRNA approach has a strong potential to discern cellular effects of CPD in UV-related cell biological studies. The mRNA-based transient expression of proteins offers a number of opportunities for future application in medicine. PMID:24211294

  9. Silencing of the metastasis-linked gene, AEG-1, using siRNA-loaded cholamine surface-modified gelatin nanoparticles in the breast carcinoma cell line MCF-7.

    Science.gov (United States)

    Abozeid, Salma M; Hathout, Rania M; Abou-Aisha, Khaled

    2016-09-01

    Cholamine surface-modified gelatin nanoparticles prepared by the double desolvation method using acetone as a dehydrating agent were selected and potentially evaluated as non viral vectors of siRNA targeting a metastatic gene AEG-1 in MCF-7 breast carcinoma cells. The ability of modified gelatin nanoparticle to complex and deliver siRNA for gene silencing was investigated. Hence, Particle size, surface charge (zeta potential) and morphology of siRNA/Gelatin nanoparticles (siGNPs) were characterized via dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Moreover, the nanoparticles cytotoxicity, loading efficiency and interaction with MCF-7 human breast carcinoma cells were evaluated. Cationized GNPs of mean size range of 174nm and PDI of 0.101 were produced. The loading efficiency of siGNPs at a Nitrogen/Phosphate (N/P) ratio (w/w) of 200:1 was approximately 96%. Cellular uptake was evaluated after FITC conjugation where the particles produced high transfection efficiency. Finally, ELISA analysis of AEG-1/MTDH expression demonstrated the gene silencing effect of siGNPs, as more than 75% MTDH protein were inhibited. Our data indicate that cholamine modified GNPs pose a promising non-viral siRNA carrier for altering gene expression in MCF-7 breast cancer cells with many advantages such as relatively high gene transfection efficiency and efficient silencing ability. PMID:27285732

  10. YibK is the 2'-O-methyltransferase TrmL that modifies the wobble nucleotide in Escherichia coli tRNA(Leu) isoacceptors

    DEFF Research Database (Denmark)

    Benítez-Páez, Alfonso; Villarroya, Magda; Douthwaite, Stephen Roger;

    2010-01-01

    Transfer RNAs are the most densely modified nucleic acid molecules in living cells. In Escherichia coli, more than 30 nucleoside modifications have been characterized, ranging from methylations and pseudouridylations to more complex additions that require multiple enzymatic steps. Most of the mod...... of the wobble nucleotide; YibK recognition of this target requires a pyridine at position 34 and N⁶-(isopentenyl)-2-methylthioadenosine at position 37. YibK is one of the last remaining E. coli tRNA modification enzymes to be identified and is now renamed TrmL....... modifying enzymes have been identified, although a few notable exceptions include the 2'-O-methyltransferase(s) that methylate the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). Here, we have used a comparative genomics approach to...... uncover candidate E. coli genes for the missing enzyme(s). Transfer RNAs from null mutants for candidate genes were analyzed by mass spectrometry and revealed that inactivation of yibK leads to loss of 2'-O-methylation at position 34 in both tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). Loss of Yib...

  11. Surfactants as bubble surface modifiers in the flotation of algae: dissolved air flotation that utilizes a chemically modified bubble surface.

    Science.gov (United States)

    Henderson, Rita K; Parsons, Simon A; Jefferson, Bruce

    2008-07-01

    In this paper we present an investigation into the use of bubbles modified with surfactants in dissolved air flotation (DAF). Bubble modification was investigated by dosing surfactants of varying character into the saturator of a DAF unit in turn. The cell removal efficiency only improved when using a cationic surfactant where optimum removal of Microcystis aeruginosa cells was obtained when using 0.0022-0.004 mequiv L(-1) surfactant. However, the magnitude of the removal differed according to the hydrophobicity of the surfactant. Typically, the more efficiently the surfactant adsorbed at the bubble interface, the better the removal efficiency. When the dose to saturator ratio was kept constant and the recycle ratio varied, the removal efficiency improved with increasing recycle ratio, reaching a maximum removal efficiency of 87% for M. aeruginosa. This value was comparable with that predicted by a theoretical model. The bubble collection efficiency of a maximum of two cells per bubble was constant irrespective of the influent cell number or recycle ratio. Treatment of additional species in this way revealed a relationship between increasing size and both increasing removal efficiency and decreasing surfactant dose, which is supported by theoretical relationships. PMID:18678021

  12. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    International Nuclear Information System (INIS)

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  13. Chemically modified carbon nanotubes as material enhanced laser desorption ionisation (MELDI) material in protein profiling

    Energy Technology Data Exchange (ETDEWEB)

    Najam-ul-Haq, M. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria); Rainer, M. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria); Schwarzenauer, T. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria); Huck, C.W. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria)]. E-mail: christian.w.huck@uibk.ac.at; Bonn, G.K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, A-6020 Innsbruck (Austria)

    2006-03-02

    Biomarkers play a potential role in the early detection and diagnosis of a disease. Our aim is to derivatize carbon nanotubes for exploration of the differences in human body fluids e.g. serum, through matrix assisted laser desorption ionisation/time of flight mass spectrometry (MALDI/TOF-MS) that can be related to disease and subsequently to be employed in the biomarker discovery process. This application we termed as the material enhanced laser desorption ionisation (MELDI). The versatility of this technology is meant to increase the amount of information from biological samples on the protein level, which will have a major impact to serve the cause of diagnostic markers. Serum peptides and proteins are immobilized on derivatized carbon nanotubes, which function as binding material. Protein-loaded suspension is placed on a stainless steel target or buckypaper on aluminum target for direct analysis with MALDI-MS. The elution method to wash the bound proteins from carbon nanotubes was employed to compare with the direct analysis procedure. Elution is carried out by MALDI matrix solution to get them out of the entangled nanotubes, which are difficult to desorb by laser due to the complex nanotube structures. The advantage of these optimized methods compared to the conventional screening methods is the improved sensitivity, selectivity and the short analysis time without prior albumin and immunoglobulin depletion. The comparison of similarly modified diamond and carbon nanotubes exhibit differences in their nature to bind the proteins out of serum due to the differences in their physical characteristics. Infrared (IR) spectroscopy provided hint for the presence of tertiary amine peak at the crucial chemical step of iminodiacetic acid addition to acid chloride functionality on carbon nanotubes. Atomic absorption spectroscopy (AAS) was utilized to quantitatively measure the copper capacity of these derivatized carbon nanotubes which is a direct measure of capacity of

  14. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  15. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    International Nuclear Information System (INIS)

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO3)2 and (NH4)H2PO4-Mg(NO3)2] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 μg L-1), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged -1

  16. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA

    OpenAIRE

    Yong Wang; Yinan Du; Bin Shen; Xiaoyang Zhou; Jian Li; Yu Liu; Jianying Wang; Jiankui Zhou; Bian Hu; Nannan Kang; Jimin Gao; Liqing Yu; Xingxu Huang; Hong Wei

    2015-01-01

    Co-injection of zygotes with Cas9 mRNA and sgRNA has been proven to be an efficient gene-editing strategy for genome modification of different species. Genetic engineering in pigs holds a great promise in biomedical research. By co-injection of one-cell stage embryos with Cas9 mRNA and Npc1l1 sgRNA, we achieved precise Npc1l1 targeting in Chinese Bama miniature pigs at the efficiency as high as 100%. Meanwhile, we carefully analyzed the Npc1l1 sgRNA:Cas9-mediated on- and off-target mutations ...

  17. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues

    DEFF Research Database (Denmark)

    Xu, Liang; Butler, Kyle Vincent; Chong, Jenny; Wengel, Jesper; Kool, Eric T; Wang, Dong

    2014-01-01

    The trigger loop (TL) of RNA polymerase II (Pol II) is a conserved structural motif that is crucial for Pol II catalytic activity and transcriptional fidelity. The TL remains in an inactive open conformation when the mismatched substrate is bound. In contrast, TL switches from an inactive open...... remains elusive. Here we employed synthetic nucleotide analogues as 'chemical mutation' tools coupling with α-amanitin transcription inhibition assay to systematically dissect the key chemical interactions and structural signatures governing the substrate-coupled TL closure in Saccharomyces cerevisiae Pol...

  18. Comparative Profiling of microRNA Expression in Soybean Seeds from Genetically Modified Plants and their Near-Isogenic Parental Lines

    Science.gov (United States)

    Wang, Yong; Lan, Qingkuo; Zhao, Xin; Xu, Wentao; Li, Feiwu; Wang, Qinying; Chen, Rui

    2016-01-01

    MicroRNAs (miRNAs) have been widely demonstrated to play fundamental roles in gene regulation in most eukaryotes. To date, there has been no study describing the miRNA composition in genetically modified organisms (GMOs). In this study, small RNAs from dry seeds of two GM soybean lines and their parental cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, several differentially expressed gma-miRNAs were found between the GM and non-GM soybeans. Meanwhile, more differentially expressed gma-miRNAs were identified between distantly relatednon-GM soybeans, indicating that the miRNA components of soybean seeds varied among different soybean lines, including the GM and non-GM soybeans, and the extent of difference might be related to their genetic relationship. Additionally, fourteen novel gma-miRNA candidates were predicted in soybean seeds including a potential bidirectionally transcribed miRNA family with two genomic loci (gma-miR-N1). Our findings firstly provided useful data for miRNA composition in edible GM crops and also provided valuable information for soybean miRNA research. PMID:27214227

  19. Comparative Profiling of microRNA Expression in Soybean Seeds from Genetically Modified Plants and their Near-Isogenic Parental Lines.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available MicroRNAs (miRNAs have been widely demonstrated to play fundamental roles in gene regulation in most eukaryotes. To date, there has been no study describing the miRNA composition in genetically modified organisms (GMOs. In this study, small RNAs from dry seeds of two GM soybean lines and their parental cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, several differentially expressed gma-miRNAs were found between the GM and non-GM soybeans. Meanwhile, more differentially expressed gma-miRNAs were identified between distantly relatednon-GM soybeans, indicating that the miRNA components of soybean seeds varied among different soybean lines, including the GM and non-GM soybeans, and the extent of difference might be related to their genetic relationship. Additionally, fourteen novel gma-miRNA candidates were predicted in soybean seeds including a potential bidirectionally transcribed miRNA family with two genomic loci (gma-miR-N1. Our findings firstly provided useful data for miRNA composition in edible GM crops and also provided valuable information for soybean miRNA research.

  20. Comparative Profiling of microRNA Expression in Soybean Seeds from Genetically Modified Plants and their Near-Isogenic Parental Lines.

    Science.gov (United States)

    Wang, Yong; Lan, Qingkuo; Zhao, Xin; Xu, Wentao; Li, Feiwu; Wang, Qinying; Chen, Rui

    2016-01-01

    MicroRNAs (miRNAs) have been widely demonstrated to play fundamental roles in gene regulation in most eukaryotes. To date, there has been no study describing the miRNA composition in genetically modified organisms (GMOs). In this study, small RNAs from dry seeds of two GM soybean lines and their parental cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, several differentially expressed gma-miRNAs were found between the GM and non-GM soybeans. Meanwhile, more differentially expressed gma-miRNAs were identified between distantly relatednon-GM soybeans, indicating that the miRNA components of soybean seeds varied among different soybean lines, including the GM and non-GM soybeans, and the extent of difference might be related to their genetic relationship. Additionally, fourteen novel gma-miRNA candidates were predicted in soybean seeds including a potential bidirectionally transcribed miRNA family with two genomic loci (gma-miR-N1). Our findings firstly provided useful data for miRNA composition in edible GM crops and also provided valuable information for soybean miRNA research. PMID:27214227

  1. Physico-Chemical Properties of Rice Starch Modified by Hydrothermal Treatments

    Science.gov (United States)

    Rice starches of long grain and waxy cultivars were annealed (ANN) in excess water at 50 oC for 4 hours. They were also modified under heat-moisture treatment (MHT) conditions at 110 oC, and various moisture contents (20%, 30%, and 40%) for 8 hours. The modified products were analyzed by Rapid-Vis...

  2. Utilization of chemically modified citrus reticulata peels for biosorptive removal of acid yellow-73 dye from water

    International Nuclear Information System (INIS)

    Textile effluents contain several varieties of natural and synthetic dyes, which are non-biodegradable. Acid Yellow-73 is one of them. In this research work, adsorptive removal of this dye was investigated using chemically modified Citrus reticulata peels, in batch mode. It was noted that adsorption of dye on Citrus reticulata peels increased by increasing contact time and decreased in basic pH conditions. Langmuir and Freundlich isothermal models were followed by equilibrium data, but the first isotherm fitted the data better, showing that chemisorption occurred more as compared to physiosorption, showing maximum adsorption capacity 96.46 mg.g-1.L-1. The thermodynamic study showed that adsorption of Acid Yellow-73 on chemically modified Citrus reticulata peels was favorable in nature, following pseudo-second order kinetics. (author)

  3. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery

    OpenAIRE

    Yao Y; Su ZH; Liang YC; Zhang N.

    2015-01-01

    Yao Yao, Zhihui Su, Yanchao Liang, Na Zhang School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, People’s Republic of China Abstract: Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome t...

  4. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    OpenAIRE

    Elżbieta Radziejewska-Kubzdela; Róża Biegańska-Marecik; Marcin Kidoń

    2014-01-01

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water act...

  5. Impact of chemically-modified tetracycline 3 on intertwined physiological, biochemical, and inflammatory networks in porcine sepsis/ARDS

    OpenAIRE

    Sadowsky, David; Nieman, Gary; Barclay, Derek; Mi, Qi; Zamora, Ruben; Constantine, Gregory; Golub, Lorne; Lee, Hsi-Ming; Roy, Shreyas; Gatto, Louis A; Vodovotz, Yoram

    2015-01-01

    Sepsis can lead to multiple organ dysfunction, including the Acute Respiratory Distress Syndrome (ARDS), due to intertwined, dynamic changes in inflammation and organ physiology. We have demonstrated the efficacy of Chemically-Modified Tetracycline 3 (CMT-3) at reducing inflammation and ameliorating pathophysiology in the setting of a clinically realistic porcine model of ARDS. Here, we sought to gain insights into the derangements that characterize sepsis/ARDS and the possible impact of CMT-...

  6. Physicochemical properties, morphological and X-ray pattern of chemically modified white sorghum starch. (Bicolor-Moench)

    OpenAIRE

    Olayinka, O. O.; Adebowale, K. O.; Olu-Owolabi, I. B.

    2011-01-01

    Starch isolated from white sorghum was subjected to chemical modifications like oxidation, acetylation and acid thinning. Proximate composition of these, such as crude protein, crude fat, moisture content and ash content were studied. Wide angle X-ray diffractograms showed typical ‘A’ pattern characteristic of cereal starches, but significant differences were observed between the X-ray pattern of native and modified starches. Scanning electron microscopy revealed round and polygonal shapes fo...

  7. Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation

    International Nuclear Information System (INIS)

    Highlights: • Chemically modified graphite felt was prepared using ethanol and hydrazine hydrate as reagents. • Carbon nanoparticles with functional groups were deposited on the surface after modification. • The electrochemical activity for ORR and H2O2 generation on the modified electrode was improved. • The cathode modification effictively improved the EF performance for pollutant degradation. - Abstract: A simple method with low-cost chemical reagents ethanol and hydrazine hydrate was used to modify graphite felt as the cathode for electro-Fenton (EF) application, using p-nitrophenol (p-Np) as the model pollutant. Characterized by scanning electron microscope, contact angle, Raman spectrum and X-ray photoelectron spectroscopy, the morphology and surface physicochemical properties after modification were observed considerably changed. After modification, some nanoparticles and oxygen and nitrogen-containing functional groups appeared on the cathode surface, which greatly improved the surface hydrophilic property and the electrocatalytic activity for oxygen reduction reaction. The effects led to the hydrogen peroxide accumulation on the modified cathode markedly increased to 175.8 mg L−1, while that on the unmodified one was only 67.5 mg L−1. p-Np of initial 50 mg L−1 could be completely removed by EF using the modified cathode, and the mineralization ratio reached 51.4%, more than 2 times of the pristine one. After 10 cycles, the mineralization ratio of the modified cathode was still above 45%, suggesting that the modification method can provide an effective approach to improve EF performance, and thus benefits to promote its environmental applications

  8. Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA

    Science.gov (United States)

    Kawamura, K.; Nagahama, M.; Kuranoue, K.

    2005-01-01

    The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 degees C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 degrees C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Renewable resources as reinforcement of polymeric matrices: composites based on phenolic thermosets and chemically modified sisal fibers.

    Science.gov (United States)

    Megiatto, Jackson D; Oliveira, Franciéli B; Rosa, Derval S; Gardrat, Christian; Castellan, Alain; Frollini, Elisabete

    2007-09-11

    Lignocellulosic materials can significantly contribute to the development of composites, since it is possible to chemically and/or physically modify their main components, cellulose, hemicelluloses and lignin. This may result in materials more stable and with more uniform properties. It has previously been shown that chemically modified sisal fibers by ClO(2) oxidation and reaction with FA and PFA presented a thin coating layer of PFA on their surface. FA and PFA were chosen as reagents because these alcohols can be obtained from renewable sources. In the present work, the effects of the polymeric coating layer as coupling agent in phenolic/sisal fibers composites were studied. For a more detailed characterization of the fibers, IGC was used to evaluate the changes that occurred at the sisal fibers surface after the chemical modifications. The dispersive and acid-base properties of untreated and treated sisal fibers surfaces were determined. Biodegradation experiments were also carried out. In a complementary study, another PFA modification was made on sisal fibers, using K2Cr2O(7) as oxidizing agent. In this case the oxidation effects involve mainly the cellulose polymer instead of lignin, as observed when the oxidation was carried out with ClO(2). The SEM images showed that the oxidation of sisal fibers followed by reaction with FA or PFA favored the fiber/phenolic matrix interaction at the interface. However, because the fibers were partially degraded by the chemical treatment, the impact strength of the sisal-reinforced composites decreased. By contrast, the chemical modification of fibers led to an increase of the water diffusion coefficient and to a decrease of the water absorption of the composites reinforced with modified fibers. The latter property is very important for certain applications, such as in the automotive industry. PMID:17676656

  10. Sulfur Fixation by Chemically Modified Red Mud Samples Containing Inorganic Additives: A Parametric Study

    OpenAIRE

    Liu, Yang; LI Yang; Zhou, Feng-shan; Hu, Ying-mo; Zhang, Yi-he

    2016-01-01

    Sulfur retention ability of Bayer red mud from alumina plant was investigated. Bayer red mud modified by fusel salt and waste mother liquor of sodium ferrocyanide as the main sulfur fixation agent and the calcium based natural mineral materials as servicing additives; the experimental results showed the following: (1) Through 10 wt% waste mother liquor of sodium ferrocyanide modifying Bayer red mud, sulfur fixation rate can increase by 13 wt%. (2) Magnesium oxide can obviously improve the sul...

  11. The conserved protein kinase-A target motif in synapsin of Drosophila is effectively modified by pre-mRNA editing

    Directory of Open Access Journals (Sweden)

    Buchner Erich

    2006-11-01

    Full Text Available Abstract Background Synapsins are abundant synaptic vesicle associated phosphoproteins that are involved in the fine regulation of neurotransmitter release. The Drosophila member of this protein family contains three conserved domains (A, C, and E and is expressed in most or all synaptic terminals. Similar to mouse mutants, synapsin knock-out flies show no obvious structural defects but are disturbed in complex behaviour, notably learning and memory. Results We demonstrate that the N-terminal phosphorylation consensus motif RRxS that is conserved in all synapsins investigated so far, is modified in Drosophila by pre-mRNA editing. In mammals this motif represents the target site P1 of protein kinase A (PKA and calcium/calmodulin dependent protein kinase I/IV. The result of this editing, by which RRFS is modified to RGFS, can be observed in cDNAs of larvae and adults and in both isolated heads and bodies. It is also seen in several newly collected wild-type strains and thus does not represent an adaptation to laboratory culture conditions. A likely editing site complementary sequence is found in a downstream intron indicating that the synapsin pre-mRNA can form a double-stranded RNA structure that is required for editing by the adenosine deaminase acting on RNA (ADAR enzyme. A deletion in the Drosophila Adar gene generated by transposon remobilization prevents this modification, proving that the ADAR enzyme is responsible for the pre-mRNA editing described here. We also provide evidence for a likely function of synapsin editing in Drosophila. The N-terminal synapsin undeca-peptide containing the genomic motif (RRFS represents an excellent substrate for in-vitro phosphorylation by bovine PKA while the edited peptide (RGFS is not significantly phosphorylated. Thus pre-mRNA editing by ADAR could modulate the function of ubiquitously expressed synapsin in a cell-specific manner during development and adulthood. Conclusion Similar to several other

  12. Prevalence of 16S rRNA methylase, modifying enzyme, and extended-spectrum beta-lactamase genes among Acinetobacter baumannii isolates.

    Science.gov (United States)

    Liu, Zhenru; Ling, Baodong; Zhou, Liming

    2015-08-01

    Multidrug-resistant Acinetobacter baumannii has become a worldwide problem, and methylation of 16S rRNA has recently emerged as a new mechanism of resistance to aminoglycosides, which is mediated by a newly recognized group of 16S rRNA methylases. 16S rRNA methylase confers a high-level resistance to all 4,6-substituted deoxystreptamine aminoglycosides that are currently used in clinical practice. Some of the A. baumannii isolates have been found to coproduce extended-spectrum beta-lactamases (ESBLs), contributing to their multidrug resistance. The aim of this study was to detect the determinants of the 16S rRNA methylase genes armA, rmtA, rmtB, rmtC, rmtD, rmtE, and npmA, the modifying enzyme genes aac(6')-Ib, ant(3″)-Ia, aph(3')-I, and the extended-spectrum beta-lactamase genes bla(TEM), bla(SHV), and bla(CTX-M-3) among A. baumannii isolates in northeastern Sichuan, China. Minimum inhibitory concentrations (MICs) of 21 different antimicrobial agents against the A. baumannii isolates were determined. The clinical isolates showed a high level of resistance (MIC≧256 μg/ml) to aminoglycosides, which ranged from 50·1 to 83·8%. The resistances to meropenem and imipenem, two of the beta-lactam antibiotics and the most active antibiotics against A. baumannii, were 9·1 and 8·2%, respectively. Among 60 amikacin-resistant isolates, only the 16S rRNA methylase gene armA was found to be prevalent (66·7%), but the other 16S rRNA methylase genes rmtA, rmtB, rmtC, rmtD, rmtE, and npmA were not detected. The prevalences of the modifying enzyme genes aac (6')-Ib, ant (3″)-Ia, and aph (3')-I were 51·7, 81·7, and 58·3%, respectively, which are different from a previous study in which the occurrences of these genes were 3, 64, and 72%, respectively. Among the 40 isolates that were armA-positive, the prevalences of bla(TEM), bla(SHV), and bla(CTX-M-3) genes were detected for the first time in China, and their occurrences were 45, 65, and 52·5%, respectively. In all, A

  13. Removal of heavy metals from water by zeolite mineral chemically modified. Mercury as a particular case

    International Nuclear Information System (INIS)

    Research works on the removal of mercury from water by zeolite minerals show that a small quantity of this element is sorbed. In this work the mercury sorption from aqueous solutions in the presence and absence of Cu(l l), Ni(l l) and/or Zn(l l) by a Mexican zeolite mineral, natural and modified by cisteaminium chloride or cistaminium dichloride, was investigated in acidic p H. The zeolite minerals were characterized by X- Ray diffraction Ftir, scanning electron microscopy and semiquantitative elemental analysis (EDS), surface area analysis (BET) and thermogravimetric analysis (TGA). Mercury from aqueous solutions was quantified by Atomic absorption spectroscopy. The amount of sulphur on the zeolite samples treated with Na CI and modified with cisteaminium chloride (0.375 mmol/g) or cistaminium dichloride(0.475 mmol/g) was found to be higher than that of the zeolite minerals modified with cisteaminium chloride and cistaminium dichloride without treating them with Na CI. The amount of sulphur on the zeolite minerals modified with thiourea was the lowest. The diffusion coefficients and sorption isotherms for mercury were determined in the natural, treated with Na CI and, treated with Na CI and then modified with the cisteaminium chloride or cistaminium dichloride zeolite samples. The retention of mercury was the highest for the zeolite minerals treated Na CI and then modified with cisteaminium chloride or cistaminium dichloride, with adsorption capacity of 0.0511 and 0.0525 mmol Hg/g, respectively. In this research work, it was found that the retention of mercury by the modified minerals was not affected by the presence of Cu (Il), Zn(l l) y Ni (I l) under the experimental conditions. (Author)

  14. HIGHLY EFFECTIVE CHEMICAL MODIFIERS FOR PRODUCTION OF CONCRETES WITH PRE-SET PROPERTIES

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniya Vladimirovna

    2012-10-01

    Full Text Available The paper demonstrates the application of industrial by-products and recycled materials. Waterproofing admixtures improve the structure and the properties of the cement stone. Development and preparation of highly effective waterproofing modifiers of durable effect, as well as development of the process procedure parameters, including mixing, activation, heat treatment, etc. are to be implemented. The composition of waterproofing modifiers is to be fine-tuned to synergize the behaviour of various ingredients of cement systems to assure the substantial improvement of their strength, freeze- and corrosion resistance. Multi-functional waterproofing admixtures were used to produce highly effective modified concretes. The key idea of the new method of modifying cement-based building materials is that the waterproofing admixture concentration is to exceed 10% of the weight of the binding agent within the per-unit weight of the cement stone, given that its strength does not deteriorate. GKM-type modifier coupled with organo-mineral waterproofing admixture concentration agent GT-M may be recommended for mass use in the manufacturing of hydraulic concrete and reinforced concrete products. Overview of their practical implementation has proven that waterproofing modifier GKM-S, if coupled with waterproofing admixture concentration agent GT-M, improves the corrosion control inside the cement stone and makes it possible to manufacture durable concrete and reinforced concrete products that demonstrate pre-set physical and processing behaviour. Comprehensive concrete modification by modifier GKM-S and waterproofing admixture concentration agent GT-M may be regarded as one of the most ambitious methods of production of highly effective waterproof concretes.

  15. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2004-01-01

    Roč. 19, č. 8 (2004), s. 1014-1017. ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : chemical vapour generation * chemical modification * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2004

  16. Determination of bismuth in environmental samples by slurry sampling graphite furnace atomic absorption spectrometry using combined chemical modifiers.

    Science.gov (United States)

    Dobrowolski, Ryszard; Dobrzyńska, Joanna; Gawrońska, Barbara

    2015-01-01

    Slurry sampling graphite furnace atomic absorption spectrometry technique was applied for the determination of Bi in environmental samples. The study focused on the effect of Zr, Ti, Nb and W carbides, as permanent modifiers, on the Bi signal. Because of its highest thermal and chemical stability and ability to substantially increase Bi signal, NbC was chosen as the most effective modifier. The temperature programme applied for Bi determination was optimized based on the pyrolysis and atomization curves obtained for slurries prepared from certified reference materials (CRMs) of the soil and sediments. To overcome interferences caused by sulfur compounds, Ba(NO₃)₂ was used as a chemical modifier. Calibration was performed using the aqueous standard solutions. The analysis of the CRMs confirmed the reliability of the proposed analytical method. The characteristic mass for Bi was determined to be 16 pg with the detection limit of 50 ng/g for the optimized procedure at the 5% (w/v) slurry concentration. PMID:25384374

  17. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Mládek, Arnošt; Sharma, P.; Mitra, A.; Bhattacharyya, D.; Šponer, Jiří; Šponer, Judit E.

    2009-01-01

    Roč. 113, č. 6 (2009), s. 1743-1755. ISSN 1520-6106 R&D Projects: GA AV ČR(CZ) IAA400550701; GA AV ČR(CZ) IAA400040802; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06030 Grant ostatní: GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : quantum chemical calculations * base pairing * RNA Subject RIV: BO - Biophysics Impact factor: 3.471, year: 2009

  18. A combined method for rescue of modified enteroviruses by mutagenic primers, long PCR and T7 RNA polymerase-driven in vivo transcription.

    Science.gov (United States)

    Heikkilä, Outi; Kainulainen, Markus; Susi, Petri

    2011-01-01

    The current methods for manipulation of enteroviral RNA genomes and production of modified virus particles include stepwise subcloning procedures and in vitro transcription and RNA transfection steps that are both time-consuming and inefficient. Several enteroviral cDNA clones with 5'-terminal T7 promoter and coxsackievirus A9 (CAV9) PCR product with the T7 promoter were transfected successfully into target cells expressing T7 RNA polymerase for the rescue of virus particles. This demonstrated the overall feasibility of the in vivo transcription method. Furthermore, a rapid method using high-fidelity DNA polymerase, Phusion™, for amplification and mutagenesis of CAV9 cDNA was generated. A long PCR method was employed together with mutagenic primers for direct introduction of a unique restriction enzyme site into the VP1-2A junction of the CAV9 cDNA clone during the PCR amplification process. Enhanced green fluorescent protein was subcloned to that site, and CAV9-eGFP cDNA was transfected to the target cells for in vivo transcription and successful rescue of CAV9-eGFP particles. The method allowed a straightforward mutagenesis and in vivo production of infectious enteroviral particles, and may be applicable routinely for rapid production of the modified picornaviruses over the use of the traditional subcloning protocols. PMID:20974179

  19. Sulfur Fixation by Chemically Modified Red Mud Samples Containing Inorganic Additives: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Sulfur retention ability of Bayer red mud from alumina plant was investigated. Bayer red mud modified by fusel salt and waste mother liquor of sodium ferrocyanide as the main sulfur fixation agent and the calcium based natural mineral materials as servicing additives; the experimental results showed the following: (1 Through 10 wt% waste mother liquor of sodium ferrocyanide modifying Bayer red mud, sulfur fixation rate can increase by 13 wt%. (2 Magnesium oxide can obviously improve the sulfur fixation performance of Bayer red mud and up to a maximum sulfur fixation rate of 47 wt% at adding 1 wt% magnesium oxide. (3 Dolomite enhanced the sulfur fixation performances with the sulfur fixation rate of 68 wt% in optimized condition. (4 Vermiculite dust reduced sulfur dioxide during the fixed-sulfur process of modified Bayer red mud, and the desulphurization ration could reach up to a maximum 76 wt% at 950°C. (5 An advanced three-component sulfur fixation agent was investigated, in which the optimized mass ratio of modified Bayer red mud, dolomite, and vermiculite dust was 70 : 28 : 2 in order, and its sulfur fixation efficiency has reached to a maximum 87 wt% under its 20 wt% dosage in the coal.

  20. Fabrication and characterization of indium sulfide thin films deposited on SAMs modified substrates surfaces by chemical bath deposition

    International Nuclear Information System (INIS)

    In an effort to explore the optoelectronic properties of nanostructured indium sulfide (In2S3) thin films for a wide range of applications, the In2S3 thin films were successfully deposited on the APTS layers (-NH2-terminated) modified ITO glass substrates using the chemical bath deposition technique. The surface morphology, structure and composition of the resultant In2S3 thin films were characterized by FESEM, XRD, and XPS, respectively. Also, the correlations between the optical properties, photocurrent response and the thickness of thin films were established. According to the different deposition mechanisms on the varying SAMs terminational groups, the positive and negative micropatterned In2S3 thin films were successfully fabricated on modified Si substrates surface combining with the ultraviolet lithography process. This offers an attractive opportunity to fabricate patterned In2S3 thin films for controlling the spatial positioning of functional materials in microsystems.

  1. A radiobiological approach to cancer treatment. Possible chemical and physical agents modifying radiosensitivity in comparison with high LET radiations

    International Nuclear Information System (INIS)

    Biological characteristics of high LET radiations are summarized to be low oxygen enhancement ratio, high RBE, low repair and low cell cycle dependency of radiosensitivity. Various chemical modifiers of radiosensitivity and radiological effect of hyperthermia are classified into these four properties. It is evident that we have now various means to mimic high LET radiations as far as biological response is concerned though some of them are still in experimental stage. Among them, the means to cope with hypoxia and repair which are assumed to be the most important causes of radioresistance of human tumors are discussed in some detail. It is expected that through the present seminar we would have consensus to concentrate our effort of development for new modifying means available and useful in developing countries. (author)

  2. Molecular dynamics and quantum mechanics of RNA: Conformational and chemical change we can believe in

    Czech Academy of Sciences Publication Activity Database

    Ditzler, M.A.; Otyepka, M.; Šponer, Jiří; Walter, N.G.

    2010-01-01

    Roč. 43, č. 1 (2010), s. 40-47. ISSN 0001-4842 R&D Projects: GA AV ČR(CZ) IAA400040802; GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/09/1476 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * quantum chemistry * RNA Subject RIV: BO - Biophysics Impact factor: 21.840, year: 2010

  3. Identification of siRNA delivery enhancers by a chemical library screen.

    Science.gov (United States)

    Gilleron, Jerome; Paramasivam, Prasath; Zeigerer, Anja; Querbes, William; Marsico, Giovanni; Andree, Cordula; Seifert, Sarah; Amaya, Pablo; Stöter, Martin; Koteliansky, Victor; Waldmann, Herbert; Fitzgerald, Kevin; Kalaidzidis, Yannis; Akinc, Akin; Maier, Martin A; Manoharan, Muthiah; Bickle, Marc; Zerial, Marino

    2015-09-18

    Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2-5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types. PMID:26220182

  4. Identification of siRNA delivery enhancers by a chemical library screen

    Science.gov (United States)

    Gilleron, Jerome; Paramasivam, Prasath; Zeigerer, Anja; Querbes, William; Marsico, Giovanni; Andree, Cordula; Seifert, Sarah; Amaya, Pablo; Stöter, Martin; Koteliansky, Victor; Waldmann, Herbert; Fitzgerald, Kevin; Kalaidzidis, Yannis; Akinc, Akin; Maier, Martin A.; Manoharan, Muthiah; Bickle, Marc; Zerial, Marino

    2015-01-01

    Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2–5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types. PMID:26220182

  5. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, mechanical and thermal properties

    Indian Academy of Sciences (India)

    K Prashantha; K Vasanth Kumar Pai; B S Sherigara; S Prasannakumar

    2001-10-01

    Interpenetrating polymer networks (IPNs) of glycerol modified castor oil polyurethane (GC–PU) and poly[2-hydroxyethylmethacrylate] (PHEMA) were synthesized using benzoyl peroxide as initiator and N,N-methylene bis acrylamide as crosslinker. GC–PU/PHEMA interpenetrating polymer networks were obtained by transfer moulding. These were characterized with respect to their resistance to chemical reagents and mechanical properties such as tensile strength, per cent elongation and shore A hardness. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were undertaken for thermal characterization. The changes in NCO/OH ratio and GC–PU/PHEMA composition on the properties of the IPNs were studied.

  6. Biosorption of Cu (II onto chemically modified waste mycelium of Aspergillus awamori: Equilibrium, kinetics and modeling studies

    Directory of Open Access Journals (Sweden)

    ZDRAVKA VELKOVA

    2012-01-01

    Full Text Available The biosorption potential of chemically modified waste mycelium of industrial xylanase-producing strain Aspergillus awamori for Cu (II removal from aqueous solutions was evaluated. The influence of pH, contact time and initial Cu (II concentration on the removal efficiency was evaluated. Maximum biosorption capacity was reached by sodium hydroxide treated waste fungal mycelium at pH 5.0. The Langmuir adsorption equation matched very well the adsorption equilibrium data in the studied conditions. The process kinetic followed the pseudo-firs order model.

  7. Comparison of Chemical Modifiers for Simultaneous Determination of Different Selenium-Compounds in Serum and Urine by Zeeman-Effect Electrothermal Atomic-Absorption Spectrometry

    DEFF Research Database (Denmark)

    Johannessen, J.K.; Gammelgaard, Bente; Jons, O.;

    1993-01-01

    The thermal stability of selenite, selenate, selenomethionine and trimethylselenonium was studied using different chemical modifiers in various amounts. The normally recommended amounts of nickel nitrate, magnesium nitrate, copper nitrate, copper nitrate mixed with magnesium nitrate, palladium ni...

  8. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  9. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers

    OpenAIRE

    Hansen, Mads E.; Bentin, Thomas; Nielsen, Peter E.

    2009-01-01

    While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA–dsDNA triplexes—mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine substitution, in combination with (oligo)lysine or 9-aminoacridine conjugation, homopyrimidine PNA oligomers bind complementary dsDNA targets via triplex formation with (sub)nanomolar affinities (at pH 7....

  10. Thrombin Binding Aptamer, More than a Simple Aptamer: Chemically Modified Derivatives and Biomedical Applications

    OpenAIRE

    Aviñó, Anna Maria; Eritja Casadellà, Ramón; Fàbrega, Carme; Tintoré, María

    2012-01-01

    The thrombin binding aptamer (TBA) is a well characterized chair-like, antiparallel quadruplex structure that binds specifically to thrombin at nanomolar concentrations and therefore it has interesting anticoagulant properties. In this article we review the research involved in the development of new TBA derivatives with improved anticoagulant properties as well as the use of the TBA as a model compound for the study of quadruplex structures. Specifically, we describe the impact of modified n...

  11. Rheological behaviour of polymer-modified bituminous mastics : a comparative analysis between physical and chemical modification

    OpenAIRE

    Shivokhin, Maxim; García Morales, Moisés; Partal López, Pedro; Cuadri Vega, Antonio Abad; Gallegos Montes, Críspulo

    2012-01-01

    Mastic, a bitumen/filler blend which naturally forms when bitumen is mixed with aggregates is the actual product used to bind coarse mineral particles in the asphalt mixtures. As a result, the characterisation of mastics is essential to improve the understanding of the response and performance of asphalt concrete pavements. On the other hand, the lack of experimental data concerning the behaviour of mastics and, above all, polymer-modified mastics has been lately claimed. In that sense, this ...

  12. MD simulation studies to investigate iso-energetic conformational behaviour of modified nucleosides m2G and m22G present in tRNA

    Directory of Open Access Journals (Sweden)

    Rohit S Bavi

    2013-02-01

    Full Text Available Modified nucleic acid bases are most commonly found in tRNA. These may contain modifications from simple methylation to addition of bulky groups. Methylation of the four canonical nucleotide bases at a wide variety of positions is particularly prominent among the known modification. Methylation of N2 group of guanine is a relatively common modification in tRNA and rRNA. N2-methylguanosine (m2G is the second most often encountered nucleoside in E. coli tRNAs. N2, N2-dimethylguanosine (m22G is found in the majority of eukaryotic tRNAs and involved in forming base pair interactions with adjacent bases. Hence, in order to understand the structural significance of these methylated nucleic acid bases we have carried out molecular dynamics simulation to see the salvation effect. The results obtained shows iso-energetic conformational behaviors for m2G and m22G. The simulation trajectory of m2G shows regular periodical fluctuations suggesting that m2G is equally stable as either s-cis or s-trans rotamers. The two rotamers of m2G may interact canonically or non-canonically with opposite base as s-trans m2G26:C/A/U44 and s-cis m2G26:A/U44. The free rotations around the C-N bond could be the possible reason for these iso-energetic conformations. Dimethylation of G has almost no influence on base pairing with either A or U. Thus, these results reveal that modified nucleosides m2G and m22G may play an important role to prevent tRNA from adopting the unusual mitochondrial like conformation.

  13. Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients.

    Science.gov (United States)

    Knights, Ashley J; Nuber, Natko; Thomson, Christopher W; de la Rosa, Olga; Jäger, Elke; Tiercy, Jean-Marie; van den Broek, Maries; Pascolo, Steve; Knuth, Alexander; Zippelius, Alfred

    2009-03-01

    The development of effective anti-cancer vaccines requires precise assessment of vaccine-induced immunity. This is often hampered by low ex vivo frequencies of antigen-specific T cells and limited defined epitopes. This study investigates the applicability of modified, in vitro-transcribed mRNA encoding a therapeutically relevant tumour antigen to analyse T cell responses in cancer patients. In this study transfection of antigen presenting cells, by mRNA encoding the tumour antigen NY-ESO-1, was optimised and applied to address spontaneous and vaccine-induced T cell responses in cancer patients. Memory CD8+ T cells from lung cancer patients having detectable humoral immune responses directed towards NY-ESO-1 could be efficiently detected in peripheral blood. Specific T cells utilised a range of different T cell receptors, indicating a polyclonal response. Specific killing of a panel of NY-ESO-1 expressing tumour cell lines indicates recognition restricted to several HLA allelic variants, including a novel HLA-B49 epitope. Using a modified mRNA construct targeting the translated antigen to the secretory pathway, detection of NY-ESO-1-specific CD4+ T cells in patients could be enhanced, which allowed the in-depth characterisation of established T cell clones. Moreover, broad CD8+ and CD4+ T cell responses covering multiple epitopes were detected following mRNA stimulation of patients treated with a recombinant vaccinia/fowlpox NY-ESO-1 vaccine. This approach allows for a precise monitoring of responses to tumour antigens in a setting that addresses the breadth and magnitude of antigen-specific T cell responses, and that is not limited to a particular combination of known epitopes and HLA-restrictions. PMID:18663444

  14. Chemically-modified graphene sheets as an active layer for eco-friendly metal electroplating on plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joon-Suk; Hwang, Taeseon; Nam, Gi-Yong; Hong, Jung-Pyo [Department of Polymer Science and Engineering, Sungkyunkwan University, Chunchun-dong, Jangan-gu, Suwon, 440-746 (Korea, Republic of); Bae, Ah-Hyun; Son, Sang-Ik; Lee, Geun-Ho; Sung, Hak kyung [Manufacturing Tech. Center, Samsung Electronics Co., Ltd., Maetan-dong, Yeongtong-gu, Suwon, 443-742 (Korea, Republic of); Choi, Hyouk Ryeol; Koo, Ja Choon [School of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Nam, Jae-Do, E-mail: jdnam@skku.edu [Department of Polymer Science and Engineering, Sungkyunkwan University, Chunchun-dong, Jangan-gu, Suwon, 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-10-30

    Eco-friendly nickel (Ni) electroplating was carried out on a plastic substrate using chemically modified graphene sheets as an active and conductive layer to initiate electroplating without using conventional pre-treatment or electroless metal-seeding processes. A graphene oxide (GO) solution was self-assembled on a polyethylene terephthalate (PET) film followed by evaporation to give GO layers (thickness around 6.5 {mu}m) on PET (GO/PET) film. Then, the GO/PET film was chemically and thermally reduced to convert the GO layers to reduced graphene oxide (RGO) layers on the PET substrate. The RGO-coated PET (RGO/PET) film showed the sheet resistance of 100 {Omega} per square. On RGO/PET film, Ni electroplating was conducted under the constant-current condition and the entire surface of the PET film was completely metalized with Ni without any voids.

  15. Chemically-modified graphene sheets as an active layer for eco-friendly metal electroplating on plastic substrates

    International Nuclear Information System (INIS)

    Eco-friendly nickel (Ni) electroplating was carried out on a plastic substrate using chemically modified graphene sheets as an active and conductive layer to initiate electroplating without using conventional pre-treatment or electroless metal-seeding processes. A graphene oxide (GO) solution was self-assembled on a polyethylene terephthalate (PET) film followed by evaporation to give GO layers (thickness around 6.5 μm) on PET (GO/PET) film. Then, the GO/PET film was chemically and thermally reduced to convert the GO layers to reduced graphene oxide (RGO) layers on the PET substrate. The RGO-coated PET (RGO/PET) film showed the sheet resistance of 100 Ω per square. On RGO/PET film, Ni electroplating was conducted under the constant-current condition and the entire surface of the PET film was completely metalized with Ni without any voids.

  16. Physical, chemical and sensory changes in irradiated fresh pork packaged in modified atmosphere

    International Nuclear Information System (INIS)

    The effects of irradiation dose (0, 0.5 and 1.0 kGy), headspace oxygen (0, 10 and 20% O2 balance nitrogen) and storage temperature (5, 15 and 25 degrees C) on the physical, chemical and sensory changes in fresh pork were studied using factorial design experiments. Irradiation in the absence of oxygen extended the sensory shelf life of pork from 9 to 26 days at 5 degrees C and from 2 to 2 days at 25 degrees C. Oxygen in the package headspace combined with irradiation adversely affected physical, chemical and sensory characteristics of the end product

  17. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Réblová, Kamila; Šponer, Judit E.; Špačková, Naďa; Beššeová, Ivana; Šponer, Jiří

    2011-01-01

    Roč. 115, č. 47 (2011), s. 13897-13910. ISSN 1520-6106 R&D Projects: GA AV ČR(CZ) KJB400040901; GA AV ČR(CZ) IAA400040802; GA ČR(CZ) GD203/09/H046; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GAP208/10/2302; GA MŠk(CZ) LC06030 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * RNA * kink turn Subject RIV: BO - Biophysics Impact factor: 3.696, year: 2011

  18. Study of sorption and desorption characteristics of natural and chemically modified ionexes

    International Nuclear Information System (INIS)

    The aim of this paper was give information for scientific community about not-traditionally, simply, high precise and effective radio-indicator method and possibilities its use for determination of sorption characteristics of naturals and chemically adjusted ionexes. These materials are suitable as barrier materials for water, soil and air cleaning

  19. Single-Point Mutation Detection in RNA Extracts using Gold Nanoparticles Modified with Hydrophobic Molecular Beacon-Like Structures

    Science.gov (United States)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Ortiz-Urda, Susana; Somoza, Álvaro

    2015-01-01

    Gold nanoparticles functionalized with oligonucleotides that bear a cholesterol group are used as gene sensors. The hydrophobic molecule is buried inside the nanostructure but when the complementary RNA sequence is present the structure unfolds exposing the cholesterol group to the water. This rearrangement leads to the aggregation of the nanostructures. PMID:24496380

  20. Structure and Electrical Study of New Chemically Modified Poly(vinyl chloride

    Directory of Open Access Journals (Sweden)

    F. Ammari

    2015-01-01

    Full Text Available The aim of this work was to study the structural and electrical properties of a new polymer obtained by functionalization of a commercial poly(vinyl chloride (PVC (Mw = 48000 by grafting aminoalkyl and aminoaryl groups. Modified poly(vinyl chloride was prepared in two steps. The structural properties of the polymer were systematically investigated by varieties of techniques as differential scanning calorimetric (DSC, thermogravimetry analysis (TG, X-ray diffraction (XRD, and Fourier transform infrared (FTIR spectroscopy. The electrical properties of the polymer were studied by electrochemical impedance spectroscopy (EIS.

  1. Chemically Modified Chitosan Beads as Molecularly Imprinted Polymer Matrix for Adsorptive Separation of Proteins

    Institute of Scientific and Technical Information of China (English)

    Tian Ying GUO; Yong Qing XIA; Guang Jie HAO; Bang Hua ZHANG

    2004-01-01

    In a phosphate buffer, a hemoglobin (Hb)-imprinted polymer complex was prepared using maleic anhydride (MAH) modified chitosan beads as matrix, acrylamide (AM) as functional monomer, N,N-methylenebisacrylamide (MBA) as cross-linker and potassiumpersulfate (KPS)/sodium hydrogen sulfite (NaHSO3) as initiators. Langmuir analysis showed that an equal class of adsorption was formed in the molecular imprinting polymer (MIP), and the MIP has high adsorption capacity and selectivity for the imprinted molecule. The MIP can be reused and the recovery was approximately 100% at low concentration.

  2. Biosorption of stable cesium by chemically modified biomass of Sargassum glaucescens and Cystoseira indica in a continuous flow system

    International Nuclear Information System (INIS)

    Pretreatment of biosorbents have been suggested to modify the surface characteristics which could improve biosorption process. Stable cesium biosorption was studied in continuous fixed-bed column by chemically modified biosorbents. Two kinds of brown algae (Sargassum glaucescens and Cystoseira indica) were treated with chemical agents including formaldehyde (FA), glutaraldehyde (GA), potassium hexacyanoferrate (HCF), FA and HCF, and GA and HCF. The highest biosorption capacity (BC) was obtained from C. indica treated with FA (63.5 mg Cs/g biomass) and S. glaucescens treated with FA and HCF (62 mg Cs/g biomass). To study the effect of the best treatments on the BC, the concentration of each treatment agent was decreased. With decreasing FA agent for C. indica treatment, the BC dropped. Treatment of 1 g S. glaucescens biomass with 2.2 g FA and then 0.18 g HCF resulted in the highest BC (73.08 mg Cs/g dry biomass) which was 35.8 times higher than intact S. glaucescens

  3. Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder

    Energy Technology Data Exchange (ETDEWEB)

    Bohlouli-Zanjani, Golnaz [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1 (Canada); Wen, John Z., E-mail: john.wen@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1 (Canada); Hu, Anming [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1 (Canada); Persic, John [Microbonds Inc., 151 Amber St., Unit 12, Markham, ON L3R 3B3 (Canada); Ringuette, Sophie [Defence Research and Development Canada – Valcartier, 2459 Pie-XI Blvd North, Quebec, QC G3K1Y1 (Canada); Zhou, Y. Norman [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1 (Canada)

    2013-11-20

    Highlights: • First study on the copper modified powder-type Al nanoparticle and NiO nanowire composites. • Experimental findings were unique in identifying the AlNi formation and comparing with the Al/CuO thermite. • Potential applications in material joining and bonding. - Abstract: Thermo-chemical properties of the Al nanoparticle and NiO nanowire composites modified by the micro-sized copper additive were investigated experimentally. Their onset temperatures of ignition and energy release data per mass were characterized using differential thermal analysis measurements. These microstructures and chemical compositions of reaction products were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The fuel-rich Al/NiO/Cu composites produced two types of metallic spheres. Copper spheres were formed from melting and solidification of the copper additive, while AlNi composite spheres were identified by the energy dispersive X-ray spectroscopy and X-ray diffraction analyses. It was found that the amount of the copper additive did not significantly influence the onset temperature of thermite peaks, but caused a dramatic change in energy release. The aforementioned ignition and energetic properties were compared with these from the Al nanoparticle and CuO nanowire composites.

  4. Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column.

    Science.gov (United States)

    Rangabhashiyam, S; Nandagopal, M S Giri; Nakkeeran, E; Selvaraju, N

    2016-07-01

    Packed bed column studies were carried out to evaluate the performance of chemically modified adsorbents for the sequestration of hexavalent chromium from synthetic and electroplating industrial effluent. The effects of parameters such as bed height (3-9 cm), inlet flow rate (5-15 mL/min), and influent Cr(VI) concentration (50-200 mg/L) on the percentage removal of Cr(VI) and the adsorption capacity of the adsorbents in a packed bed column were investigated. The breakthrough time increased with increasing bed height and decreased with the increase of inlet flow rate and influent Cr(VI) concentration. The adsorption column models such as Thomas, Adams-Bohart, Yoon-Nelson, and bed depth service time (BDST) were successfully correlated with the experimental data. The Yoon-Nelson and BDST model showed good agreement with the experimental data for all the studied parameter conditions. Results of the present study indicated that the chemically modified Swietenia mahagoni shell can be used as an adsorbent for the removal of Cr(VI) from industrial wastewater in a packed bed column. PMID:27312254

  5. Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder

    International Nuclear Information System (INIS)

    Highlights: • First study on the copper modified powder-type Al nanoparticle and NiO nanowire composites. • Experimental findings were unique in identifying the AlNi formation and comparing with the Al/CuO thermite. • Potential applications in material joining and bonding. - Abstract: Thermo-chemical properties of the Al nanoparticle and NiO nanowire composites modified by the micro-sized copper additive were investigated experimentally. Their onset temperatures of ignition and energy release data per mass were characterized using differential thermal analysis measurements. These microstructures and chemical compositions of reaction products were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The fuel-rich Al/NiO/Cu composites produced two types of metallic spheres. Copper spheres were formed from melting and solidification of the copper additive, while AlNi composite spheres were identified by the energy dispersive X-ray spectroscopy and X-ray diffraction analyses. It was found that the amount of the copper additive did not significantly influence the onset temperature of thermite peaks, but caused a dramatic change in energy release. The aforementioned ignition and energetic properties were compared with these from the Al nanoparticle and CuO nanowire composites

  6. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, Esmail R; Breault, Ronald W; Siriwardane, Ranjani; Miller, Duane D

    2013-10-01

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite –5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  7. Enhanced Electrochemical Performance of Lithium Iron(II) Phosphate Modified Cooperatively via Chemically Reduced Graphene Oxide and Polyaniline

    International Nuclear Information System (INIS)

    Highlights: •LiFePO4 was modified cooperatively with reduced graphene oxide and PANI •LiFePO4/ reduced graphene oxide /PANI composites showed unique 3D network structures •The composites exhibited enhanced electrochemical performances as cathode •The enhanced property is from unique structure and inherent properties of components -- Abstract: It is essential to improve the electron and lithium ion conductivities of Lithium iron(II) phosphate (LiFePO4) used as a cathode material for lithium-ion batteries. In the work, we designed and fabricated a series of composites of LiFePO4 modified cooperatively with chemically reduced graphene oxide (RGO) and polyaniline. It was demonstrated that the composites have a three dimensional network structures in which the CRGO and the polyaniline were intertwined and coated uniformly on the surface of LiFePO4. Comparably, as cathode for lithium-ion batteries, the as-prepared composites showed better electrochemical performances than the bare LiFePO4 and the LiFePO4 modified simply with CRGO or polyaniline alone. The elaboration of the underneath mechanism on the pronounced electrochemical properties of the composites was also attempted and discussed

  8. Chemically modified graphene and nitrogen-doped graphene: Electrochemical characterisation and sensing applications

    International Nuclear Information System (INIS)

    Highlights: •Characterisation of graphene, N-doped graphene, acid/base functionalised derivatives. •N-doping superior to time-consuming functionalisation procedures. •N-doped graphene with redox or conducting polymer composites characterised. •Electrocatalysis of enzyme cofactors FAD+ and NADH2, by N-doped graphene. -- Abstract: Functionalised graphene (G) and nitrogen doped graphene (NG) nanomaterials are excellent candidates for electrocatalytic sensing of biomolecules and for developing biosensors, due to their unique physicochemical and electronic properties. Electrochemical characterisation and comparison of basic or acidic functionalised G and NG has been carried out, as well as of composite materials based on NG with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and the redox polymer poly(neutral red) by cyclic voltammetry and electrochemical impedance spectroscopy. Electroactive areas and heterogeneous electron transfer constant, of the GCE modified with the graphene derivatives have been evaluated, in order to choose the best material for electrode modification. The NG modified GCE enabled excellent electrocatalytic regeneration of the enzyme cofactors β-nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), underlining the applicability of NG for the development of new sensitive biosensors

  9. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel

    International Nuclear Information System (INIS)

    Equilibrium, thermodynamic and kinetic studies were carried out for the biosorption of Pb2+, Cd2+ and Ni2+ ions from aqueous solution using the grafted copolymerization-modified orange peel (OPAA). Langmuir and Freundlich isotherm models were applied to describe the biosorption of the metal ions onto OPAA. The influences of pH and contact time of solution on the biosorption were studied. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. According to the Langmuir equation, the maximum uptake capacities for Pb2+, Cd2+ and Ni2+ ions were 476.1, 293.3 and 162.6 mg g-1, respectively. Compared with the unmodified orange peel, the biosorption capacity of the modified biomass increased 4.2-, 4.6- and 16.5-fold for Pb2+, Cd2+ and Ni2+, respectively. The kinetics for Pb2+, Cd2+ and Ni2+ ions biosorption followed the pseudo-second-order kinetics. The free energy changes (ΔGo) for Pb2+, Cd2+ and Ni2+ ions biosorption process were found to be -3.77, -4.99 and -4.22 kJ mol-1, respectively, which indicates the spontaneous nature of biosorption process. FTIR demonstrated that carboxyl and hydroxyl groups were involved in the biosorption of the metal ions. Desorption of Pb2+, Cd2+ and Ni2+ ions from the biosorbent was effectively achieved in a 0.05 mol L-1 HCl solution.

  10. Chemically Modified Activated Carbons as Catalysts of Oxidative Dehydrogenation of n-Butane

    International Nuclear Information System (INIS)

    Commercial availability and low price of light alkanes make them very attractive in many branches of industry. Potentially interesting is their use in the process of oxidative dehydrogenation leading to production of olefins. This study was undertaken to characterise the oxidative dehydrogenation of n-butane to 1,3-butadiene (important substrate in production of synthetic rubber and polyamides) taking place over the modified carbon catalysts obtained from peach stones precursor. The catalytic tests were performed in the temperature range 250-450oC at oxygen/n-butane ratio of 1:1. For the majority of the activated carbon samples studied at the lowest temperature the only product was CO2. At 300oC the products of dehydrogenation of n-butane and side products appeared. With increasing temperature the amount of compounds generated increased and in the group of C4 hydrocarbons the dominant were 1-butene and 1,3-butadiene. The most effective catalyst was the sample oxidised with air, the least effective was the sample modified with ammonium peroxydisulphate. (authors)

  11. Physico-chemical properties of corn starch modified with cyclodextrin glycosyltransferase.

    Science.gov (United States)

    Dura, Angela; Rosell, Cristina M

    2016-06-01

    Cyclodextrin glycosyltransferase (CGTase) has been used to produce cyclodextrins (CDs) from starches, but their ability to modify starches has been barely explored. The effect of CGTase on corn starch at sub-gelatinization temperature (50°C) and at different pH conditions, pH 4.0 and pH 6.0, was evaluated. Biochemical features, thermal and structural analysis, oligosaccharides and CDs content were studied. Microscopic analysis of the granules confirmed the enzymatic modification of the starches obtaining structures with irregular surface and small pinholes. The extent of the starch modification was largely dependent on the pHs, being higher at pH 6.0. This was also confirmed by the low viscosity of the resulting pastes during a heating and cooling cycle. Thermal parameters were not affected due to enzymatic treatment. Modified starches were less susceptible to undergo α-amylase hydrolysis. CDs released were higher for samples treated at pH 4.0. Therefore, CGTase modification of corn starches at sub-gelatinization temperature offers an attractive alternative for obtaining porous starches with different properties depending on the pH conditions. PMID:26970178

  12. Amyloid fibrillation in native and chemically-modified forms of carbonic anhydrase II: role of surface hydrophobicity.

    Science.gov (United States)

    Es-Haghi, Ali; Shariatizi, Sajad; Ebrahim-Habibi, Azadeh; Nemat-Gorgani, Mohsen

    2012-03-01

    Chemical modification or mutation of proteins may bring about significant changes in the net charge or surface hydrophobicity of a protein structure. Such events may be of major physiological significance and may provide important insights into the genetics of amyloid diseases. In the present study, fibrillation potential of native and chemically-modified forms of bovine carbonic anhydrase II (BCA II) were investigated. Initially, various denaturing conditions including low pH and high temperatures were tested to induce fibrillation. At a low pH of around 2.4, where the protein is totally dissociated, the apo form was found to take up a pre-molten globular (PMG) conformation with the capacity for fibril formation. Upon increasing the pH to around 3.6, a molten globular (MG) form became abundant, forming amorphous aggregates. Charge neutralization and enhancement of hydrophobicity by methylation, acetylation and propionylation of lysine residues appeared very effective in promoting fibrillation of both the apo and holo forms under native conditions, the rates and extents of which were directly proportional to surface hydrophobicity, and influenced by salt concentration and temperature. These modified structures underwent more pronounced fibrillation under native conditions, than the PMG intermediate form, observed under denaturing conditions. The nature of the fibrillation products obtained from intermediate and modified structures were characterized and compared and their possible cytotoxicity determined. Results are discussed in terms of the importance of surface net charge and hydrophobicity in controlling protein aggregation. A discussion on the physiological significance of the observations is also presented. PMID:22251892

  13. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.

    Science.gov (United States)

    Park, Kyung-Won; Sung, Yung-Eun

    2005-07-21

    Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state. PMID:16852701

  14. Adsorption Studies of Phenol Using Thermally and Chemically Modified Rice Husk as Adsorbents

    OpenAIRE

    *M. M. Yousaf; Ibrahim ,

    2014-01-01

    Most of the Phenols are hazardous substances and some are supposed to have carcinogenic activity. Thus it is necessary to remove Phenolics and other aromatics from the aqueous ecosystem. Traditional processes for the removal of Phenolics compounds are extraction, adsorption on granulated activated carbon, steam distillation, chemical and bacterial techniques. Literature survey show a number of methods like oxidation, ion exchange, reverse osmosis, electrochemical oxidation and adsorption. Phe...

  15. Developing electrodes chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA) by voltammetry

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A new stand in forensic chemistry. • Voltammetric method for the determination of MDMA in seized samples. • A new voltammetric sensor for MDMA. - Abstract: This study aimed to develop an electrode chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA), the main active principle of ecstasy samples, by voltammetry. We modified the electrode surface with a film containing cucurbit[6]uril, Nafion, and methanol, using the dip coating or the spin coating technique. During analysis, we employed an electrochemical cell with a conventional three-electrode system and KCl solution (0.1 mol L−1) as the supporting electrolyte. We conducted cyclic voltammetry at concentrations ranging from 4.2 × 10−6 to 4.8 × 10−5mol L−1. We also accomplished scanning electron microscopy, to investigate the structural behavior of the film that originated on the electrode surface. We obtained the following results when we used dip coating to prepare the modified electrode: standard deviation (SD) = 0.024 μA, limit of detection (LOD) = 3.5 μmol L−1, limit of quantification (LOQ) = 11.7 μmol L−1, and amperometric sensitivity (m) = 20.9 × 103 μA L mol−1. As for spin coating, we obtained SD = 0.024 μA, LOD = 2.7 μmol L−1, LOQ = 9.1 μmol L−1 and m = 25.9 × 103 μA mol L−1. These are very promising data: the modified electrode is more sensitive than the conventional glassy carbon electrode under the studied experimental conditions

  16. Radiation chemical and photochemical study of Z-DNA modified by 2-aminopurine and 8- bromodeoxyguanosine

    International Nuclear Information System (INIS)

    DNA is able to take a number of local conformations. (CG) n repeats have the highest potential to Z-DNA which has a left-handed zig-zag backbone and unusual syn-conformation purine base. Because of the polymorphic nature of dinucleotide repeats, it seems possible that Z-DNA forming sequences may provide a source of genetic variation if they occur in regions that are important for the regulation of gene activity. Here, we investigated structural properties of Z-DNA compared with those of B-DNA with respects to one-electron attachment reaction of 8-bromodeoxyguanosine (dBrG) and fluorescence properties of 2-aminopurine (Ap). To investigate one-electron attachment reaction of Z-DNA, we synthesized oligodeoxynucleotides modified by dBrG in which syn-conformation deoxyguanosine was stabilized by steric repulsion between 8-bromo group of dBrG and sugar moiety in Z-DNA. Debromination from the dBrG modified oligodeoxynucleotides occurred from the one-electron attachment during the gamma-ray irradiation. The structural dependence of B- and Z-DNA was observed in the one-electron attachment reaction. Interestingly, the higher conversion of dBrG were observed in the Z-DNA than in the B-DNA. Since the solvent accessibility to purine base in Z-DNA increases compared with that in B-DNA, it is suggested that the electron attachment is enhanced in Z-DNA than in B-DNA. Next we studied the fluorescence properties of Ap in left-handed Z-DNA and compared with those in B-DNA. Since photoexcited adenine analogue Ap can serve as a sensitive probe of DNA structural dynamics, we synthesized Ap- and dBrG-modified oligodeoxynucleotides. Higher intensity was observed in the steady-state fluorescence of Ap in Z-DNA than in B-DNA. A new peak at 275 nm was observed in the excitation spectrum measured at the Ap emission wavelength 370 nm in Z-DNA. This has been explained by the energy transfer from the excited nucleobases to Ap. It is found that Ap is a useful fluorescence probe of Z-DNA

  17. Targeted mRNA Profiling of Transfected Breast Cancer Gene in a Living Cell

    OpenAIRE

    Nawarathna, D.; Chang, R; Nelson, E.; Wickramasinghe, H. Kumar

    2010-01-01

    Selective mRNA profiling of transfected breast cancer gene expression in a living cell is demonstrated. Atomic Force Microscope (AFM) probe tips are structurally modified to create a dielectrophoretic force that attracts mRNA molecules within the cell nucleus. The tip end is chemically modified to hybridize only to the target mRNA from a pool of molecules within the nucleus. We successfully combined this scheme with standard assay techniques to develop an assay technology that can be used for...

  18. Chemical inhibition of RNA viruses reveals REDD1 as a host defense factor

    OpenAIRE

    Miguel A. Mata; Satterly, Neal; Versteeg, Gijs A.; Frantz, Doug; Wei, Shuguang; Williams, Noelle; Schmolke, Mirco; Peña-Llopis, Samuel; Brugarolas, James; Forst, Christian V.; White, Michael A.; García-Sastre, Adolfo; Roth, Michael G.; Fontoura, Beatriz M.A.

    2011-01-01

    A chemical genetics approach was taken to identify inhibitors of NS1, a major influenza A virus virulence factor that inhibits host gene expression. A high-throughput screen of 200,000 synthetic compounds identified small molecules that reversed NS1-mediated inhibition of host gene expression. A counterscreen for suppression of influenza virus cytotoxicity identified naphthalimides that inhibited replication of influenza virus and vesicular stomatitis virus (VSV). The mechanism of action occu...

  19. Chemical Inhibition of RNA Viruses Reveals REDD1 as Host Defense Factor

    OpenAIRE

    Miguel A. Mata; Satterly, Neal; Versteeg, Gijs A.; Frantz, Doug; Wei, Shuguang; Williams, Noelle; Schmolke, Mirco; Pena-Llopis, Samuel; Brugarolas, James; Forst, Christian; White, Michael A.; Garcia-Sastre, Adolfo; Roth, Michael G.; Fontoura, Beatriz M.A.

    2011-01-01

    A chemical genetics approach was taken to identify inhibitors of NS1, a major influenza A virus virulence factor that inhibits host gene expression. A high-throughput screen of 200,000 synthetic compounds identified small molecules that reverted NS1-mediated inhibition of host gene expression. A counter-screen for suppression of influenza virus cytotoxicity identified naphthalimides that inhibited replication of influenza virus and vesicular stomatitis virus. The mechanism of action was throu...

  20. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers

    DEFF Research Database (Denmark)

    Hansen, Mads E; Bentin, Thomas; Nielsen, Peter E

    2009-01-01

    While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA-dsDNA triplexes-mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine...... substitution, in combination with (oligo)lysine or 9-aminoacridine conjugation, homopyrimidine PNA oligomers bind complementary dsDNA targets via triplex formation with (sub)nanomolar affinities (at pH 7.2, 150 mM Na(+)). Binding affinity can be modulated more than 1000-fold by changes in pH, PNA oligomer...... length, PNA net charge and/or by substitution of pseudoisocytosine for cytosine, and conjugation of the DNA intercalator 9-aminoacridine. Furthermore, 9-aminoacridine conjugation also strongly enhanced triplex invasion. Specificity for the fully matched target versus one containing single centrally...

  1. Intramolecular derivatization of 2'-amino-pyrimidine modified RNA with functional groups that is compatible with re-amplification.

    OpenAIRE

    Kujau, M J; Wölfl, S

    1998-01-01

    To expand the scope of nucleic acid aptamers as a tool for precise molecular recognition, functional groups that are not naturally present in nucleic acid molecules are desired. For in vitro selection these new functional groups must be compatible with the selection process. The present method allows the introduction of succinimide activated side chains at internal amino groups of 2'-amino-pyrimidine-RNA in a combinatorial fashion that is compatible with enzymatic re-amplification.

  2. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel

    Energy Technology Data Exchange (ETDEWEB)

    Feng Ningchuan [School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004 (China); Guo Xueyi, E-mail: xyguo@mail.csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liang Sha [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Zhu Yanshu; Liu Jianping [School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004 (China)

    2011-01-15

    Equilibrium, thermodynamic and kinetic studies were carried out for the biosorption of Pb{sup 2+}, Cd{sup 2+} and Ni{sup 2+} ions from aqueous solution using the grafted copolymerization-modified orange peel (OPAA). Langmuir and Freundlich isotherm models were applied to describe the biosorption of the metal ions onto OPAA. The influences of pH and contact time of solution on the biosorption were studied. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. According to the Langmuir equation, the maximum uptake capacities for Pb{sup 2+}, Cd{sup 2+} and Ni{sup 2+} ions were 476.1, 293.3 and 162.6 mg g{sup -1}, respectively. Compared with the unmodified orange peel, the biosorption capacity of the modified biomass increased 4.2-, 4.6- and 16.5-fold for Pb{sup 2+}, Cd{sup 2+} and Ni{sup 2+}, respectively. The kinetics for Pb{sup 2+}, Cd{sup 2+} and Ni{sup 2+} ions biosorption followed the pseudo-second-order kinetics. The free energy changes ({Delta}G{sup o}) for Pb{sup 2+}, Cd{sup 2+} and Ni{sup 2+} ions biosorption process were found to be -3.77, -4.99 and -4.22 kJ mol{sup -1}, respectively, which indicates the spontaneous nature of biosorption process. FTIR demonstrated that carboxyl and hydroxyl groups were involved in the biosorption of the metal ions. Desorption of Pb{sup 2+}, Cd{sup 2+} and Ni{sup 2+} ions from the biosorbent was effectively achieved in a 0.05 mol L{sup -1} HCl solution.

  3. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    International Nuclear Information System (INIS)

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features

  4. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jihai [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Wenjie, E-mail: zhaowj@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Peng, Shusen; Zeng, Zhixiang; Zhang, Xin [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wu, Xuedong, E-mail: xdwu@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2014-08-30

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  5. Urocanic acid-modified chitosan nanoparticles can confer anti-inflammatory effect by delivering CD98 siRNA to macrophages.

    Science.gov (United States)

    Xiao, Bo; Ma, Panpan; Viennois, Emilie; Merlin, Didier

    2016-07-01

    CD98 plays an important role in the development and progression of inflammation. Here, CD98 siRNA (siCD98) was complexed with urocanic acid-modified chitosan (UAC) to form nanoparticles (NPs), which were transfected into Raw 264.7 macrophages in an effort to convey anti-inflammatory effects. Characterization showed that the generated NPs had a desirable particle size (156.0-247.1nm), a slightly positive zeta potential (15.8-17.5mV), and no apparent cytotoxicity against Raw 264.7 macrophages and colon-26 cells compared to control NPs fabricated by Oligofectamine (OF) and siRNA. Cellular uptake experiments demonstrated that macrophages exhibited a time-dependent accumulation profile of UAC/siRNA NPs. Further in vitro gene silencing experiments revealed that UAC/siCD98 NPs with a weight ratio of 60:1 yielded the most efficient knockdowns of CD98 and the pro-inflammatory cytokine, TNF-α. Indeed, the RNAi efficiency obtained with our NPs was even higher than that of the positive control OF/siCD98 NPs. These results suggest that UAC/siCD98 NPs might be a safe, efficient and promising candidate for the treatment of inflammatory disease. PMID:27011348

  6. Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW base in phenylalanine-tRNA.

    Directory of Open Access Journals (Sweden)

    Virginia Rodriguez

    Full Text Available Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNA(Phe. TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2 is active in yeast and can synthesize the yW of yeast tRNA(Phe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet, and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNA(Phe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis.

  7. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Xiangyu He

    Full Text Available The phenotypic manifestations of mitochondrial DNA (mtDNA mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R or P(R 454 mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R, the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S, mto2(P(S and MTO2(P(R. The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  8. Edge Effects on the Electronic Structures of Chemically Modified Armchair Graphene Nanoribbons

    OpenAIRE

    Ren, Hao; Li, Qunxiang; Su, Haibin; Shi, Q. W.; Chen, Jie; Yang, Jinlong

    2007-01-01

    In this paper, we apply the first-principle theory to explore how the electronic structures of armchair graphene nanoribbons (AGNRs) are affected by chemical modifications. The edge addends include H, F, N, NH$_{2}$, and NO$_{2}$. Our theoretical results show that the energy gaps are highly tunable by controlling the widths of AGNRs and addends. The most interesting finding is that N-passivated AGNRs with various widths are metallic due to the unique electronic features of N-N bonds. This pro...

  9. Modifying the effects of fast neutrons in rice seeds by post-treatment with chemical mutagens

    International Nuclear Information System (INIS)

    Dormant rice seeds were exposed to 290-1160 rad of neutrons, dehulled and then soaked in buffered aqueous solutions of either 0.03M EMS or 0.005M MMS for 15h at 30 deg. C. The neutron plus EMS treatment did not affect seedling height and seedset as much as did the neutron plus MMS treatment, which caused marked reductions over those due to neutrons alone. The mutation frequency (Msp) in all neutron doses was slightly to markedly increased by EMS, and reduced by MMS. Neutrons + EMS was found to be an efficient mutagenic combination whereas neutrons + MMS was inefficient (Msp/I). Differences in the synergistic effects of these combined treatments may be due to the specific biological action of the chemicals as determined by their physical properties. An idea that the chemicals may have acted essentially as selective factors for survival of neutron-damage or mutated tiller initials is briefly discussed. (author). 26 refs, 3 tabs

  10. Amperometric biosensors for detection of phenol using chemically modified electrodes containing immobilized bacteria.

    Science.gov (United States)

    Skládal, Petr; Morozova, Natalya O; Reshetilov, Anatoly N

    2002-10-01

    Eight strains of Pseudomonas were studied for development of phenol sensor. The immobilization of cells was performed by absorbing them on the working part of mediator-modified screen-printed electrodes (SPEs). Only three Pseudomonas strains were able to transfer electrons resulting from specific oxidation of phenol to the electrode by means of mediators; ferrocene, duroquinone and dimethyferrocene were successfully used with the strains 394 (p20), 74-III and 83-IV (working names), respectively. The lower limits for detection of phenol were 1 micro M for the strain 74-III and 10 micro M for the strain 83-IV and 394 (p20). Calibrations were obtained as the dependencies of logarithm of current changes (log deltaI) on logarithm of concentration (logC), log delta I vs. logC. Among all substrates tested (phenol, catechol, hydroquinone, ethanol, methanol, propanol, isopropanol, isobutanol, isoamylalcohol, acetate, glucose, xylose, vanillin, 2,4,6-trichlorphenol, 2,3,6-trichlorphenol, 4-hydroxy-3-methoxybenzoic acid, coumarin, pentafluorophenol), bacterial sensor demonstrated a good selectivity with respect to phenol and lower responses to catechol and hydroquinone (10-times lower). The dependence of signals on operating conditions was studied. The biosensor should be used during the day of preparation. The operational stability was satisfactory to perform up to 10 consecutive measurements. Low cost and very simple manufacturing procedure allow for bacterial sensor to be applied as disposable devices. PMID:12243905

  11. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  12. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    Science.gov (United States)

    Xu, Jihai; Zhao, Wenjie; Peng, Shusen; Zeng, Zhixiang; Zhang, Xin; Wu, Xuedong; Xue, Qunji

    2014-08-01

    Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10-12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45-55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5-8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  13. Chemically modified glasses for analysis of hydrogen isotopes by gas chromatography

    International Nuclear Information System (INIS)

    An extensive experimental research has been carried out by gas chromatographic runs in order to identify the most suitable adsorbents and define the best operated conditions for selective separation and analysis of hydrogen isotopes in near real-time (i.e. less than 10 min.). Preparation and operation procedures of chromatographic column for hydrogen isotope separation have been examined. This is one of the main requirements of the tritium separation from heavy water of CANDU reactor and of the tritium fuel cycle in D-T fusion reactors. This paper describes the preparation of absorbent materials utilised as stationary phase in the gas-chromatographic column for hydrogen isotope separation and treatment (activation) of stationary phase. Modified thermoresisting glass with Fe(NH4)2(SO4)2 6H2O and Cr2O3, respectively, have been experimentally investigated at 77 K for H2, HD, and D2 separation and the results of chromatographic runs are also reported and discussed. The hydrogen operating conditions of the adsorbent column Fe (III)/glass and Cr2O3/glass, i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate, sample volume have been study by means of the analysis of the retention times, separation factors and HETP. (authors)

  14. Radiation-chemical solidification of compositions based on modified epoxide resins

    International Nuclear Information System (INIS)

    Possibilites of obtaining radiation-solidified compositions on the base of EhD-20 epoxide resin where the greatest part of epoxide groups is replaced by methacrylates, are studied. Coatings on the base of epoxide groups have been solidified with γ-rays and accelerated electrons in the atmosphere of the inert gas (electron energy 600 keV, radiation intensity 9.8 Mrad/min). It is shown that dimethylaminoethylmethacrylate is a catalyst of radiation solidification. Its optimum quantity in compositions is 5%. The dose neccessary for solidification decreases considerably (from 5-7 Mrad to 2 Mrad) and gel fraction maximum content increases. Physical and chemical properties of the above coating on the metal are investigated

  15. The photosensitivity and ultraviolet absorption change of Sn-doped silica film fabricated by modified chemical vapor deposition

    International Nuclear Information System (INIS)

    10.5 μm thick Sn-doped silica films were prepared by the modified chemical vapor deposition followed by the solution-doping method. The films were exposed to 248 and 266 nm laser light, respectively. Positive refractive index change up to 2x10-4 at 1550 nm was observed by measuring the reflectivity based on Fresnel formulas. The data of UV absorption spectra suggest that the photosensitivity of the Sn-doped silica film under high energy density laser irradiation should be mainly due to the bond breaking of oxygen deficient defects, while under relatively low energy density laser irradiation, the refractive index change probably originates from photoconversion of optically active defects

  16. Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products--a review.

    Science.gov (United States)

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-01-01

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food. PMID:25244012

  17. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    Directory of Open Access Journals (Sweden)

    Elżbieta Radziejewska-Kubzdela

    2014-09-01

    Full Text Available Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food.

  18. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Ayumi Hirano-Iwata

    2016-03-01

    Full Text Available We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  19. Effect of chemically converted graphene as an electrode interfacial modifier on device-performances of inverted organic photovoltaic cells

    International Nuclear Information System (INIS)

    This study examined the effects of chemically converted graphene (CCG) materials as a metal electrode interfacial modifier on device-performances of inverted organic photovoltaic cells (OPVs). As CCG materials for interfacial layers, a conventional graphene oxide (GO) and reduced graphene oxide (rGO) were prepared, and their functions on OPV-performances were compared. The inverted OPVs with CCG materials showed all improved cell-efficiencies compared with the OPVs with no metal/bulk-heterojunction (BHJ) interlayers. In particular, the inverted OPVs with reduction form of GO showed better device-performances than those with GO and better device-stability than poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)-based inverted solar cells, showing that the rGO can be more desirable as a metal/BHJ interfacial material for fabricating inverted-configuration OPVs. (paper)

  20. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.

    Science.gov (United States)

    Uba, Franklin I; Pullagurla, Swathi R; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoon-Kyoung; Shin, Heungjoo; Soper, Steven A

    2015-01-01

    Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels. PMID:25369728

  1. Characterization of Heme-DNA Complexes Composed of Some Chemically Modified Hemes and Parallel G-Quadruplex DNAs.

    Science.gov (United States)

    Yamamoto, Yasuhiko; Kinoshita, Masashi; Katahira, Yuya; Shimizu, Haruna; Di, Yue; Shibata, Tomokazu; Tai, Hulin; Suzuki, Akihiro; Neya, Saburo

    2015-12-15

    Heme {Fe(II)- or Fe(III)-protoporphyrin IX complex [heme(Fe(2+)) or heme(Fe(3+)), respectively]} binds selectively to the 3'-terminal G-quartet of a parallel G-quadruplex DNA formed from a single repeat sequence of the human telomere, d(TTAGGG), through a π-π stacking interaction between the porphyrin moiety of the heme and the G-quartet. The binding affinities of some chemically modified hemes(Fe(3+)) for DNA and the structures of complexes between the modified hemes(Fe(2+)) and DNA, with carbon monoxide (CO) coordinated to the heme Fe atom on the side of the heme opposite the G6 G-quartet, have been characterized to elucidate the interaction between the heme and G-quartet in the complexes through analysis of the effects of the heme modification on the structural properties of the complex. The study revealed that the binding affinities and structures of the complexes were barely affected by the heme modification performed in the study. Such plasticity in the binding of heme to the G-quartet is useful for the versatile design of the complex through heme chemical modification and DNA sequence alteration. Furthermore, exchangeable proton signals exhibiting two-proton intensity were observed at approximately -3.5 ppm in the (1)H nuclear magnetic resonance (NMR) spectra of the CO adducts of the complexes. Through analysis of the NMR results, together with theoretical consideration, we concluded that the heme(Fe(2+)) axial ligand trans to CO in the complex is a water molecule (H2O). Identification of the Fe-bound H2O accommodated between the heme and G-quartet planes in the complex provides new insights into the structure-function relationship of the complex. PMID:26595799

  2. Fabrication and characterization of indium sulfide thin films deposited on SAMs modified substrates surfaces by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050 (China); Lu Yongjuan; Zhang Xiaoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing, 10049 (China); Yang Baoping [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050 (China); Yi Gewen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Jia Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2011-11-01

    In an effort to explore the optoelectronic properties of nanostructured indium sulfide (In{sub 2}S{sub 3}) thin films for a wide range of applications, the In{sub 2}S{sub 3} thin films were successfully deposited on the APTS layers (-NH{sub 2}-terminated) modified ITO glass substrates using the chemical bath deposition technique. The surface morphology, structure and composition of the resultant In{sub 2}S{sub 3} thin films were characterized by FESEM, XRD, and XPS, respectively. Also, the correlations between the optical properties, photocurrent response and the thickness of thin films were established. According to the different deposition mechanisms on the varying SAMs terminational groups, the positive and negative micropatterned In{sub 2}S{sub 3} thin films were successfully fabricated on modified Si substrates surface combining with the ultraviolet lithography process. This offers an attractive opportunity to fabricate patterned In{sub 2}S{sub 3} thin films for controlling the spatial positioning of functional materials in microsystems.

  3. A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase.

    Science.gov (United States)

    Del Barrio, Melisa; Cases, Rafael; Cebolla, Vicente; Hirsch, Thomas; de Marcos, Susana; Wilhelm, Stefan; Galbán, Javier

    2016-11-01

    Upon near-infrared excitation Tm(3+)+Yb(3+) doped fluorohafnate glasses present upconversion properties and emit visible light. This property permits to use these glasses (UCG) as excitation sources for fluorescent optical biosensors. Taking this into account, in this work a fluorescent biosensor for glucose determination is designed and evaluated. The biosensor combines the UCG and the fluorescence of the enzyme glucose oxidase chemically modified with a fluorescein derivative (GOx-FS), whose intensity is modified during the enzymatic reaction with glucose. Optical parameters have been optimized and a mathematical model describing the behavior of the analytical signal is suggested. Working in FIA mode, the biosensor responds to glucose concentrations up to, at least, 15mM with a limit of detection of 1.9mM. The biosensor has a minimum lifetime of 9 days and has been applied to glucose determination in drinks. The applicability of the sensor was tested by glucose determination in two fruit juices. PMID:27591654

  4. Efficient acetone-butanol-ethanol production (ABE) by Clostridium acetobutylicum XY16 immobilized on chemically modified sugarcane bagasse.

    Science.gov (United States)

    Kong, Xiangping; He, Aiyong; Zhao, Jie; Wu, Hao; Jiang, Min

    2015-07-01

    Sugarcane bagasse was chemically modified by polyethylenimine (PEI) and glutaraldehyde (GA) and then used as a support to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. Compared with batch fermentation using unmodified sugarcane bagasse, 22.3 g/L total solvents were produced by cells immobilized on 4 g/L PEI treated sugarcane bagasse with high solvent productivity of 0.62 g/(L h) and glucose consumption rate of 1.67 g/(L h). Improvement of 14, 43, and 37 % in total solvent titer, solvent productivity and glucose consumption rate was observed, respectively. Enhanced solvent production of 25.14 g/L was obtained when using a high concentration of glucose of 80 g/L. Continuous fermentation was studied using PEI/GA modified sugarcane bagasse as immobilization support with a range of dilution which rates from 0.2 to 2.5 to find an optimal condition. The maximum solvent productivity of 11.32 g/(L h) was obtained at a high dilution rate of 2.0 h(-1). PMID:25694132

  5. Development of Green Solvent Modified Zeolite (GSMZ) for the Removal of Chemical Contaminants and Pathogens from Water

    Science.gov (United States)

    Li, Z.; Stapleton, E. R.; Xu, S.

    2012-12-01

    Sorption represents an important strategy in the remediation of groundwater contamination. As a naturally-occurring mineral with large cation exchange capacity, zeolite is negatively charged and has been widely used as an inexpensive and effective sorbent for the removal of positively charged contaminants such as heavy metals from water. The negative charges of zeolite, however, make it generally ineffective in the sorption of anionic contaminants such as chromate and arsenate as well as many pathogens. In this research, we used the imidazolium group of chemicals, which are considered as "green solvents" and differ from the surfactants used in previous studies, to modify zeolite. Both batch and column experiments were performed to evaluate the effectiveness of GSMZ in the removal of representative anionic pollutant (i.e., Cr) and bacterium (i.e., Eschericha coli) under various water chemistry conditions. Our experimental results showed that the adsorption of Cr on GSMZ was fast (equilibrium was reached within ~5 min) and the capacity of GSMZ to remove chromate (>1000 mg/kg) was ~100% higher than surfactant modified zeolite (SMZ). GSMZ was also found to be very effective in the removal of E. coli. As pH was found to have minimal effects on the adsorption of chromium on GSMZ, higher ionic strength could lower the adsorption capacity of chromium by GSMZ.

  6. Biomimetic Deposition of Apatite on Surface Chemically Modified Porous NiTi Shapememory Alloy

    Science.gov (United States)

    Wu, S. L.; Liu, X. M.; Chung, C. Y.; Chu, Paul K.; Chan, Y. L.; Yeung, K. W. K.; Chu, C. L.

    Porous NiTi shape memory alloy (SMA) with 48% porosity and an average pore size of 50-800 μm was synthesized by capsule-free hot isostatic pressing (CF-HIP). To enhance the surface bioactivity, the porous NiTi SMA was subjected to H2O2 and subsequent NaOH treatment. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses revealed that a porous sodium titanate (Na2TiO3) film had formed on the surface of the porous NiTi SMA. An apatite layer was deposited on this film after immersion in simulated body fluid at 37°C, while no apatite could be found on the surface of the untreated porous NiTi SMA. The formation of the apatite layer infers that the bioactivity of the porous NiTi SMA may be enhanced by surface chemical treatment, which is favorable for its application as bone implants.

  7. The chemical synthesis of α-conotoxins and structurally modified analogs with enhanced biological stability.

    Science.gov (United States)

    Banerjee, Jayati; Gyanda, Reena; Chang, Yi-Pin; Armishaw, Christopher J

    2013-01-01

    α-Conotoxins are peptide neurotoxins isolated from the venom ducts of carnivorous marine cone snails that exhibit exquisite pharmacological potency and selectivity for various nicotinic acetylcholine receptor subtypes. As such, they are important research tools and drug leads for treating various diseases of the central nervous system, including pain and tobacco addiction. Despite their therapeutic potential, the chemical synthesis of α-conotoxins for use in structure-activity relationship studies is complicated by the possibility of three disulfide bond isomers, where inefficient folding methods can lead to a poor recovery of the pharmacologically active isomer. In order to achieve higher yields of the native isomer, especially in high-throughput syntheses it is necessary to select appropriate oxidative folding conditions. Moreover, the poor biochemical stability exhibited by α-conotoxins limits their general therapeutic applicability in vivo. Numerous strategies to enhance their stability including the substitution of disulfide bond with diselenide bond and N-to-C cyclization via an oligopeptide spacer have successfully overcome these limitations. This chapter describes methods for performing both selective and nonselective disulfide bond oxidation strategies for controlling the yields and formation of α-conotoxin disulfide bond isomers, as well as methods for the production of highly stable diselenide-containing and N-to-C cyclized conotoxin analogs. PMID:24014431

  8. Synthesis and Self-Assembly of Gold Nanoparticles by Chemically Modified Polyol Methods under Experimental Control

    International Nuclear Information System (INIS)

    In our present research, bottom-up self-assembly of gold (Au) nanoparticles on a flat copper (Cu) substrate is performed by a facile method. The very interesting evidence of self-assembly of Au nanoparticles on the top of the thin assembled layer was observed by scanning electron microscopy (SEM). We had discovered one of the most general and simple methods for the self-assembly of metal nanoparticles. The general physical and chemical mechanisms of the evaporation process of the solvents can be used for self-assembly of the as-prepared nanoparticles. The important roles of molecules of the used solvents are very critical to self-assembly of the as-prepared Au nanoparticles in the case without using any polymers for those processes. It is clear that self-assembly of such one nano system of the uniform Au nanoparticles is fully examined. Finally, an exciting surface plasmon resonance (SPR) phenomenon of the pure Au nanoparticles in the solvent was fully discovered in their exciting changes of the narrow and large SPR bands according to synthesis time. The SPR was considered as the collective oscillation of valence electrons of the surfaces of the pure Au nanoparticles in the solvent by incident ultraviolet-visible light. Then, the frequency of light photons matches the frequency of the oscillation of surface electrons of the Au nanoparticles that are excited.

  9. Field Deployable Chemical Redox Probe for Quantitative Characterization of Carboxymethylcellulose Modified Nano Zerovalent Iron.

    Science.gov (United States)

    Fan, Dimin; Chen, Shengwen; Johnson, Richard L; Tratnyek, Paul G

    2015-09-01

    Nano zerovalent iron synthesized with carboxymethylcelluose (CMC-nZVI) is among the leading formulations of nZVI currently used for in situ groundwater remediation. The main advantage of CMC-nZVI is that it forms stable suspensions, which are relatively mobile in porous media. Rapid contaminant reduction by CMC-nZVI is well documented, but the fate of the CMC-nZVI (including "aging" and "reductant demand") is not well characterized. Improved understanding of CMC-nZVI fate requires methods with greater specificity for Fe(0), less vulnerability to sampling/recovery artifacts, and more practical application in the field. These criteria can be met with a simple and specific colorimetric approach using indigo-5,5'-disulfonate (I2S) as a chemical redox probe (CRP). The measured stoichiometric ratio for reaction between I2S and nZVI is 1.45 ± 0.03, suggesting complete oxidation of nZVI to Fe(III) species. However, near pH 7, reduction of I2S is diagnostic for Fe(0), because aqueous Fe(II) reduces I2S much more slowly than Fe(0). At that pH, adding Fe(II) increased I2S reduction rates by Fe(0), consistent with depassivation of nZVI, but did not affect the stoichiometry. Using the I2S assay to quantify changes in the Fe(0) content of CMC-nZVI, the rate of Fe(0) oxidation by water was found to be orders of magnitude faster than previously reported values for other types of nZVI. PMID:26218836

  10. TREATMENT OF RADIOACTIVE WASTE SOLUTIONS CONTAINING CESIUM AND STRONTIUM BY CHEMICALLY MODIFIED ACTIVATED CARBON

    International Nuclear Information System (INIS)

    The aim of this study is to develop activated carbon prepared from peach stone shell as an adsorbent for Cs+ and Sr2+ ions from their aqueous waste solutions. In this respect, five samples of peach stone shell were investigated. The first four samples were prepared by immersing the samples in different concentrations of either ZnCl2 or KOH, individually, prior to heat treatment at 500oC. The fifth sample was prepared only by thermal treatment at 500oC.The physical and chemical characteristics of the prepared samples were carried out. A comparative study for the removal of Cs+ and Sr2+ ions from their aqueous waste solutions using the investigated samples have been carried out using batch experiments.The different parameters affecting adsorption process such as contact time and metal ion concentration were studied. The results obtained showed that the activated carbon prepared using ZnCl2 was more effective than the other investigated samples for adsorbing Cs+ and Sr2+ ions since the removal percentages reached 85% and 98% , respectively, while the activated carbon prepared using KOH was less effective for the removal of the same elements since the removal percentages reached 69% and 60%, respectively. In case of using physically activated carbon, the removal percentages reached 18% and 25% for Cs+ and Sr2+, respectively.From the obtained data, it can be concluded that the activated carbon prepared using ZnCl2 can be used as a good adsorbent for the removal of the investigated elements that may present in radioactive waste solutions before their discharge to the environment

  11. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Science.gov (United States)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-12-01

    A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface with HPDLCs. The Col-immobilized titanium surface could be used for forming ligament-like tissues around titanium dental implants.

  12. Induction of primary mixed leukocyte reactions with ultraviolet B or chemically modified stimulator cells

    International Nuclear Information System (INIS)

    Treatment of stimulator cells with paraformaldehyde for 60 sec or ultraviolet-B (UV-B) irradiation eliminates their ability to elicit T cell proliferation in a primary mixed leukocyte reaction. However, a T cell response equal to 20-40% of control value could be elicited by paraformaldehyde fixed or UV-B irradiated cells providing the latter are incubated at 37 degrees C for 18 hr prior to treatment. The incubation also induces a one-log increase in the density of fluorescence when the cells are stained with monoclonal antibodies against class II molecules DR and DP as well as the intercellular adhesion molecule -1. We interpret this as an increase in the membrane expression of these structures following incubation. Chloroquine and cerulenin, known to inhibit protein degradation and antigen processing and presentation do not influence the upregulation in membrane expression of these class II and adhesion molecules, but do prevent incubation from overriding the effect of paraformaldehyde treatment. Colchicine, which reduces the traffic through tubular lysosomes, also has no effect on the upregulation but enhances allopresentation. We propose that incubation of stimulator cells in the presence of chloroquine and cerulenin results in the membrane expression of class II molecules without associated peptides. The inability of stimulator cells expressing such nude MHC molecules to elicit T cell proliferation after chemical modification could be due to easier crosslinking of the allodeterminants by paraformaldehyde when the binding site is empty but could also mean that nude MHC molecules are not per se immunogenic and become so only after acquisition of a peptide. It is also possible that chloroquine, NH4Cl, and cerulenin block the expression of signals other than the class II and cell adhesion molecules that are essential for induction of T cell proliferation

  13. Phase Stability of Ce-Modified La2Zr2O7 Coatings and Chemical Compatibility with YSZ

    Science.gov (United States)

    Wu, Qiong; Ji, Xiaojuan; Peng, Haoran; Ren, Xianjing; Yu, Yueguang

    2016-04-01

    Ce-modified La2Zr2O7 powders, i.e., La2Zr2O7 (LZ), La2(Zr0.7Ce0.3)2O7 (LZ7C3), and La2(Zr0.3Ce0.7)2O7 (LZ3C7), were used to produce thermal barrier coatings by atmospheric plasma spray process. The chemical compatibility of the CeO2-doped La2Zr2O7 with the traditional YSZ was investigated in LZ-YSZ powder mixtures and LZ-YSZ bilayer coatings by x-ray diffraction and scanning electron microscope. The powder mixtures and coatings were aged at 1200 and 1300 °C for 100 h. The results showed that LZ and LZ7C3 presented single pyrochlore structure after the heat treatments at both 1200 and 1300 °C. For LZ3C7, however, fluorite structure was observed at 1300 °C, indicating a poor phase stability of LZ3C7 at the elevated temperature. The results further showed that La2(Zr0.3Ce0.7)2O7 reacted with YSZ in the bilayer ceramic coatings due to the diffusion of cerium, zirconium, and yttrium. While for La2Zr2O7(LZ) and La2(Zr0.7Ce0.3)2O7, a better chemical compatibility with YSZ was shown.

  14. A chemically modified [alpha]-amylase with a molten-globule state has entropically driven enhanced thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Khawar Sohail; Poljak, Anne; De Francisci, Davide; Guerriero, Gea; Pilak, Oliver; Burg, Dominic; Raftery, Mark J.; Parkin, Don M.; Trewhella, Jill; Cavicchioli, Ricardo (Sydney); (New South)

    2010-11-15

    The thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAA{sub MOD} exhibited a 200% improvement in starch-hydrolyzing productivity at 60 C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAA{sub MOD} had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20 C. The X-ray crystal structure of TAA{sub MOD} revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAA{sub MOD}, we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAA{sub MOD}. This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.

  15. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Kado, T.; Hidaka, T. [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Aita, H. [Division of Occlusion and Removable Prosthodontics, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Endo, K. [Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Furuichi, Y., E-mail: furuichi@hoku-iryo-u.ac.jp [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Cell-adhesive molecules were covalently immobilized on a Ti surface. Black-Right-Pointing-Pointer Immobilized cell-adhesive molecules maintained native function on the Ti surface. Black-Right-Pointing-Pointer Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully

  16. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    International Nuclear Information System (INIS)

    Highlights: ► Cell-adhesive molecules were covalently immobilized on a Ti surface. ► Immobilized cell-adhesive molecules maintained native function on the Ti surface. ► Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface

  17. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Adam Johan Bergren

    2006-05-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  18. A STUDY COMPARING CHEMICAL PEELING USING MODIFIED JESSNER'S SOLUTION AND 15%TRICHLOROACETIC ACID VERSUS 15% TRICHLOROACETIC ACID IN THE TREATMENT OF MELASMA

    OpenAIRE

    Safoury, Omar Soliman; Zaki, Nagla Mohamed; El Nabarawy, Eman Ahmad; Farag, Eman Abas

    2009-01-01

    Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner's solution, modified Jessner's solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA) and modified Jessner's...

  19. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  20. Enhancement of uranium(VI) biosorption by chemically modified marine-derived mangrove endophytic fungus Fusarium sp. ZZF51

    International Nuclear Information System (INIS)

    Fusarium sp. ZZF51, mangrove endophytic fungus originated from South China Sea coast, was chemically modified by formaldehyde, methanol and acetic acid to enhance its affinity of uranium(VI) from waste water. The influencing factors about uranium(VI) adsorption such as contact time, solution pH, the ratio of solid/liquid (S/L) and initial uranium(VI) concentration were investigated, and the suitable adsorption isotherm and kinetic models were determined. In addition, the biosorption mechanism was also discussed by FTIR analysis. Experimental results show that the maximum biosorption capacity of formaldehyde-treated biomass for uranium(VI) at the optimized condition of pH 6.0, S/L 0.6 and equilibrium time 90 min is 318.04 mg g-1, and those of methanol-treated and HAc-treated biomass are 311.95 and 351.67 mg g-1 at the same pH and S/L values but different equilibrium time of 60 and 90 min, respectively. Thus the maximum biosorption capacity of the three kind of modified biomass have greatly surpassed that of the raw biomass (21.42 mg g-1). The study of kinetic exhibits a high level of compliance with the Lagergren's pseudo-second-order kinetic models. Langumir and Freundlich models have proved to be well able to explain the sorption equilibrium with the satisfactory correlation coefficients higher than 0.96. FTIR analysis reveals that the carboxyl, amino and hydroxyl groups on the cell wall of Fusarium sp. ZZF51 play an important role in uranium(VI) biosorption process. (author)

  1. Design of a Bioactive Small Molecule that Targets the Myotonic Dystrophy Type 1 RNA Via an RNA Motif-Ligand Database & Chemical Similarity Searching

    OpenAIRE

    Parkesh, Raman; Childs-Disney, Jessica L.; Nakamori, Masayuki; Kumar, Amit; Wang, Eric; Wang, Thomas; Hoskins, Jason; Tran, Van Tuan; Housman, David; Thornton, Charles A.; Disney, Matthew D.

    2012-01-01

    Myotonic dystrophy type 1 (DM1) is a triplet repeating disorder caused by expanded CTG repeats in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The transcribed repeats fold into an RNA hairpin with multiple copies of a 5′CUG/3′GUC motif that binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Sequestration of MBNL1 by expanded r(CUG) repeats causes splicing defects in a subset of pre-mRNAs including the insulin receptor, the muscle-specifi...

  2. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: ► Synthesis of cadmium and tin telluride. ► Chemical route to obtain pure crystalline cadmium and tin telluride. ► Effect of the annealing temperature on the crystalline phases. ► Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by 119Sn Mössbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 °C has proven to be useful to reduce the amount of oxide produced as side product.

  3. Glassy carbon electrode modified with a graphene oxide/poly(o-phenylenediamine) composite for the chemical detection of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van Hoa [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang (Viet Nam); Tran, Trung Hieu [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of)

    2014-11-01

    Conducting poly(o-phenylenediamine) (POPD)/graphene oxide (GO) composites were prepared using a facile and efficient method involving the in-situ polymerization of OPD in the presence of GO in an aqueous medium. Copper sulfate was used as an oxidative initiator for the polymerization of OPD. Scanning electron microscopy and transmission electron microscopy images showed that POPD microfibrils were formed and distributed relatively uniformly with GO sheets in the obtained composites. X-ray diffraction results revealed the highly crystal structure of POPD. This composite exhibited good catalytic activity and stability. These results highlight the potential applications of POPD/GO composites as excellent electrochemical sensors. The composites were used to modify glass carbon electrodes for the chemical detection of hydrogen peroxide in aqueous media. - Highlights: • Graphene oxide/poly(o-phenylenediamine) composites were prepared efficiently. • POPD microfibrils were distributed relatively uniformly with GO sheets. • The composite exhibited good catalytic activity and stability for H{sub 2}O{sub 2} sensing.

  4. Physical characteristics of chemically modified starch from potatoes, evaluated by X-ray diffraction, SEM and NMR

    International Nuclear Information System (INIS)

    The aim of this study was to compare the physical characteristics of chemically modified starch by cross-linking and methylation in order to observe the changes occurred in the molecule which could give it a positive and specific application. The physical characteristics were evaluated by morphometric analysis using analytical methods as scanning electron microscopy, x-ray diffraction and nuclear magnetic resonance in solid state. The results point for all the evaluated characteristics that the cross-linked starch from potato maintains a granular size and shape similar to native starch, through some granules were affected since they presented cracks and outlet of internal material; the introduction of phosphate groups in the molecule is evident in the NMR spectra: the methylated starch from potato changed in a drastic way the structure of granules since the size increased from 9 to 53 μm of the native starch to 44 to 181 μm for the methylated, the X-ray spectra shows a formation of crystals, banishing the characteristic standard type B, likewise with NMR a modification of starch was observed due to the presence of methyl groups. (Author)

  5. Transcriptionally active and inactive genes are similarly modified by chemical carcinogens or X-ray in normal human fibroblasts

    International Nuclear Information System (INIS)

    Chemical carcinogens and ionizing radiation induce DNA modifications and strand breaks in cells. This damage is reported to be affected by chromatin proteins or chromatin of a higher structure order. To compare the sensitivity of transcriptionally active and inactive genes on chromatin toward DNA-damaging agents, we treated normal human fibroblasts (WI-38) cells with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), X-ray, 4-hydroxyaminoquinoline 1-oxide or N-acetoxy-2-acetylaminofluorene, and high molecular weight DNA was isolated. After digestion with EcoRI to completion, the DNA was electrophoresed on an alkaline agarose gel, blotted on a nitrocellulose filter and hybridized with a transcriptionally active gene probe (human type I(α2) procollagen gene) or an inactive gene probe (human β-globin gene). The results show that both genes are similarly modified by these agents. Repair of DNA damage caused by MNNG also occurred similarly in collagen and β-globin genes after removal of MNNG. (Auth.)

  6. Magnetic and Electrical Properties of Nitrogen-Doped Multiwall Carbon Nanotubes Fabricated by a Modified Chemical Vapor Deposition Method

    Directory of Open Access Journals (Sweden)

    María Luisa García-Betancourt

    2015-01-01

    Full Text Available Chemical vapor deposition (CVD is a preferential method to fabricate carbon nanotubes (CNTs. Several changes have been proposed to obtain improved CNTs. In this work we have fabricated nitrogen-doped multiwall carbon nanotubes (N-MWCNTs by means of a CVD which has been slightly modified. Such modification consists in changing the content of the by-product trap. Instead of acetone, we have half-filled the trap with an aqueous solution of NaCl (0–26.82 wt.%. Scanning electron microscope (SEM characterization showed morphological changes depending upon concentration of NaCl included in the trap. Using high resolution transmission electron microscopy several shape changes on the catalyst nanoparticles were also observed. According to Raman spectroscopy results N-MWCNTs fabricated using pure distillate water exhibit better crystallinity. Resistivity measurements performed on different samples by physical properties measurement Evercool system (PPMS showed metallic to semiconducting temperature dependent transitions when high content of NaCl is used. Results of magnetic properties show a ferromagnetic response to static magnetic fields and the coercive fields were very similar for all the studied cases. However, saturation magnetization is decreased if aqueous solution of NaCl is used in the trap.

  7. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG) transcripts

    OpenAIRE

    Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J.; Childs-Disney, Jessica; Sobczak, Krzysztof; Disney, Matthew D.

    2012-01-01

    Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)exp) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5’CAG/3’GAC motif found in r(CAG)exp hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to impro...

  8. Eletrodos quimicamente modificados aplicados à eletroanálise: uma breve abordagem Chemically modified electrodes applyes to electroanalysis: a brief presentation

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Brito Souza

    1997-04-01

    Full Text Available Chemically modified electrodes (CMEs have been subject of considerable attention since its inception about 23 years ago. CMEs result of a deliberate immobilization of a modifier agent onto the electrode surface obtained through chemical reactions, chemisorption, composite formation or polymer coating. This immobilization seeks transfer the physicochemical properties of the modifier to the electrode surface and thus to dictate and control the behavior of the electrode/solution interface. In recent years the interest in CMEs has increased particularly to enhance the sensitivity and/or the selectivity of electroanalytical techniques. In general higher sensitivity and/or selectivity may be achieved by exploiting one or more of the following phenomena: electrocatalysis, preconcentration and interferents exclusion. This paper deals with the application of CMEs in electroanalysis, including a brief presentation of the more general procedures that have been employed for the modification of electrode surfaces.

  9. Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme.

    Science.gov (United States)

    Chen, Tien-Hao; Tanimoto, Akiko; Shkriabai, Nikoloz; Kvaratskhelia, Mamuka; Wysocki, Vicki; Gopalan, Venkat

    2016-06-20

    Among all enzymes in nature, RNase P is unique in that it can use either an RNA- or a protein-based active site for its function: catalyzing cleavage of the 5'-leader from precursor tRNAs (pre-tRNAs). The well-studied catalytic RNase P RNA uses a specificity module to recognize the pre-tRNA and a catalytic module to perform cleavage. Similarly, the recently discovered proteinaceous RNase P (PRORP) possesses two domains - pentatricopeptide repeat (PPR) and metallonuclease (NYN) - that are present in some other RNA processing factors. Here, we combined chemical modification of lysines and multiple-reaction monitoring mass spectrometry to identify putative substrate-contacting residues in Arabidopsis thaliana PRORP1 (AtPRORP1), and subsequently validated these candidate sites by site-directed mutagenesis. Using biochemical studies to characterize the wild-type (WT) and mutant derivatives, we found that AtPRORP1 exploits specific lysines strategically positioned at the tips of it's V-shaped arms, in the first PPR motif and in the NYN domain proximal to the catalytic center, to bind and cleave pre-tRNA. Our results confirm that the protein- and RNA-based forms of RNase P have distinct modules for substrate recognition and cleavage, an unanticipated parallel in their mode of action. PMID:27166372

  10. Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme

    Science.gov (United States)

    Chen, Tien-Hao; Tanimoto, Akiko; Shkriabai, Nikoloz; Kvaratskhelia, Mamuka; Wysocki, Vicki; Gopalan, Venkat

    2016-01-01

    Among all enzymes in nature, RNase P is unique in that it can use either an RNA- or a protein-based active site for its function: catalyzing cleavage of the 5′-leader from precursor tRNAs (pre-tRNAs). The well-studied catalytic RNase P RNA uses a specificity module to recognize the pre-tRNA and a catalytic module to perform cleavage. Similarly, the recently discovered proteinaceous RNase P (PRORP) possesses two domains – pentatricopeptide repeat (PPR) and metallonuclease (NYN) – that are present in some other RNA processing factors. Here, we combined chemical modification of lysines and multiple-reaction monitoring mass spectrometry to identify putative substrate-contacting residues in Arabidopsis thaliana PRORP1 (AtPRORP1), and subsequently validated these candidate sites by site-directed mutagenesis. Using biochemical studies to characterize the wild-type (WT) and mutant derivatives, we found that AtPRORP1 exploits specific lysines strategically positioned at the tips of it's V-shaped arms, in the first PPR motif and in the NYN domain proximal to the catalytic center, to bind and cleave pre-tRNA. Our results confirm that the protein- and RNA-based forms of RNase P have distinct modules for substrate recognition and cleavage, an unanticipated parallel in their mode of action. PMID:27166372

  11. Synthesis of Base-Modified 2 '-Deoxyribonucleoside Triphosphates and Their Use in Enzymatic Synthesis of Modified DNA for Applications in Bioanalysis and Chemical Biology

    Czech Academy of Sciences Publication Activity Database

    Hocek, Michal

    2014-01-01

    Roč. 79, č. 21 (2014), s. 9914-9921. ISSN 0022-3263 R&D Projects: GA ČR GBP206/12/G151; GA ČR GA14-04289S Institutional support: RVO:61388963 Keywords : cross-coupling reactions * modified nucleoside triphosphates * nucleic acids Subject RIV: CC - Organic Chemistry Impact factor: 4.721, year: 2014

  12. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts.

    Science.gov (United States)

    Kumar, Amit; Parkesh, Raman; Sznajder, Lukasz J; Childs-Disney, Jessica L; Sobczak, Krzysztof; Disney, Matthew D

    2012-03-16

    Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)(exp)) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5'CAG/3'GAC motif found in r(CAG)(exp) hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)(exp). The compound was identified by first studying the binding of RNA 1 × 1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5'CAG/3'GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate, a small molecule that improves pre-mRNA splicing defects associated with the r(CAG)(exp)-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)(exp) and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)(exp) toxicity. The approach used in these studies, defining the small RNA motifs that bind small molecules with known affinity for nucleic acids and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in the human genomic sequence. PMID:22252896

  13. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family.

    Science.gov (United States)

    Sponer, Judit E; Spacková, Nad'a; Kulhanek, Petr; Leszczynski, Jerzy; Sponer, Jirí

    2005-03-17

    Large RNA molecules exhibit an astonishing variability of base-pairing patterns, while many of the RNA base-pairing families have no counterparts in DNA. The cis Watson-Crick/sugar edge (cis WC/SE) RNA base pairing is investigated by ab initio quantum chemical calculations. A detailed structural and energetic characterization of all 13 crystallographically detected members of this family is provided by means of B3LYP/6-31G and RIMP2/aug-cc-pVDZ calculations. Further, a prediction is made for the remaining 3 cis WC/SE base pairs which are yet to be seen in the experiments. The interaction energy calculations point at the key role of the 2'-OH group in stabilizing the sugar-base contact and predict all 16 cis WC/SE base-pairing patterns to be nearly isoenergetic. The perfect correlation of the main geometrical parameters in the gas-phase optimized and X-ray structures shows that the principle of isosteric substitutions in RNA is rooted from the intrinsic structural similarity of the isolated base pairs. The present quantum chemical calculations for the first time analyze base pairs involving the ribose 2'-OH group and unambiguously correlate the structural information known from experiments with the energetics of interactions. The calculations further show that the relative importance and absolute value of the dispersion energy in the cis WC/SE base pairs are enhanced compared to the standard base pairs. This may by an important factor contributing to the strength of such interactions when RNA folds in its polar environment. The calculations further demonstrate that the Cornell et al. force field commonly used in molecular modeling and simulations provides satisfactory performance for this type of RNA interactions. PMID:16838999

  14. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity.

    Science.gov (United States)

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K; Dikshit, Madhu; Barthwal, Manoj K

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia. PMID:27504095

  15. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.

  16. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    International Nuclear Information System (INIS)

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg−1 and 4.7 mg kg−1, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol

  17. Evaluation of FTA(®) card for the rescue of infectious foot-and-mouth disease virus by chemical transfection of extracted RNA in cultured cells.

    Science.gov (United States)

    Biswal, Jitendra K; Subramaniam, Saravanan; Ranjan, Rajeev; Pattnaik, Bramhadev

    2016-08-01

    Foot-and-mouth disease (FMD) is a highly contagious epidemic disease of transboundary importance. Inadequate storage and shipment of suspected clinical samples can compromise the ability to detect and characterise FMD virus (FMDV) in endemic countries, thereby, leading to the loss of valuable virological and epidemiological data. This study, investigates the potential of using FTA(®) cards for dry transportation of clinical samples and subsequent recovery of infectious FMDV by chemical transfection of FTA(®) card fixed RNA as an alternative to the conventional cell culture based virus isolation method. A higher proportion of infectious FMDV was rescued from clinical samples (cell culture isolates, tongue epithelial suspension and impression smears) by the FTA(®) card fixed RNA transfection method (76%) compared to the conventional cell culture based virus isolation (56%), suggesting a better performance of the current RNA transfection procedure. Furthermore, it was possible to rescue live virus by the transfection of RNA extracted from FTA(®) card impregnated with clinical samples that had been stored at varying temperature (4-37 °C) up to a period of six weeks. The VP1 sequence data and antigenic relationships with the vaccine strains, between viruses rescued by FTA(®) card fixed RNA transfection and conventional cell culture, were comparable. Therefore, these results support the use of the FTA(®) card for the economic, dry, non-hazardous transport of FMD suspected clinical samples from the site of collection to national/international reference laboratories. PMID:27321701

  18. Chemical modification of nucleotide bases and mRNA editing depend on hexamer or nucleoprotein phase in Sendai virus nucleocapsids.

    OpenAIRE

    Iseni, Frédéric; Baudin, Florence; Garcin, Dominique; Marq, Jean-Baptiste; Ruigrok, Rob W. H.; Kolakofsky, Daniel

    2002-01-01

    The minus-strand genome of Sendai virus is an assembly of the nucleocapsid protein (N) and RNA, in which each N subunit is associated with precisely 6 nt. Only genomes that are a multiple of 6 nt long replicate efficiently or are found naturally, and their replication promoters contain sequence elements with hexamer repeats. Paramyxoviruses that are governed by this hexamer rule also edit their P gene mRNA during its synthesis, by G insertions, via a controlled form of viral RNA polymerase "s...

  19. Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions

    International Nuclear Information System (INIS)

    Adsorbents for Hg(II) ion extraction were prepared using amorphous silica gel and ordered MCM-41. Grafting with 2-(3-(2-aminoethylthio)propylthio)ethanamine was used to functionalize the silica. The functionalized adsorbents were characterized by nitrogen adsorption, X-ray diffraction, 13C MAS NMR spectroscopy and thermogravimetric analysis. The adsorption properties of the modified silica gel and MCM-41 were compared using batch method. The effect of pH, stirring time, ionic strength and foreign ions were studied. The extraction of Hg(II) ions occurred rapidly with the modified MCM-41 and the optimal pH range for the extraction by the modified materials was pH 4-7. Foreign ions, especially Cl- had some effect on the extraction efficiency of the modified silica gel and the modified MCM-41. The adsorption behavior of both adsorbents could be described by a Langmuir model at 298 K, and the maximum adsorption capacity of the modified silica gel and MCM-41 at pH 3 was 0.79 and 0.70 mmol g-1, respectively. The modified MCM-41 showed a larger Langmuir constant than that of the modified silica gel, indicating a better ability for Hg(II) ion adsorption. The results indicate that the structure of the materials affects the adsorption behavior. These materials show a potential for the application as effective and selective adsorbents for Hg(II) removal from water

  20. Acute stressor exposure modifies plasma exosome-associated heat shock protein 72 (Hsp72 and microRNA (miR-142-5p and miR-203.

    Directory of Open Access Journals (Sweden)

    Lida A Beninson

    Full Text Available Exosomes, biologically active nanoparticles (40-100 nm released by hematopoietic and non-hematopoietic cells, contain a variety of proteins and small, non-coding RNA known as microRNA (miRNA. Exposure to various pathogens and disease states modifies the composition and function of exosomes, but there are no studies examining in vivo exosomal changes evoked by the acute stress response. The present study reveals that exposing male Fisher 344 rats to an acute stressor modulates the protein and miRNA profile of circulating plasma exosomes, specifically increasing surface heat shock protein 72 (Hsp72 and decreasing miR-142-5p and -203. The selected miRNAs and Hsp72 are associated with immunomodulatory functions and are likely a critical component of stress-evoked modulation of immunity. Further, we demonstrate that some of these stress-induced modifications in plasma exosomes are mediated by sympathetic nervous system (SNS activation of alpha-1 adrenergic receptors (ADRs, since drug-mediated blockade of the receptors significantly attenuates the stress-induced modifications of exosomal Hsp72 and miR-142-5p. Together, these findings demonstrate that activation of the acute stress response modifies the proteomic and miRNA profile of exosomes released into the circulation.

  1. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA.

    Science.gov (United States)

    Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David

    2016-02-01

    As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual

  2. DNA - dependent RNA-polymerase of irradiated animal organs Communication 5. Physico-chemical changes in the enzyme molecules

    International Nuclear Information System (INIS)

    The authors investigate the changes noted in the properties of macromolecules of a DNA-dependent RNA-polymerase from rat liver and spleen 120 hours after irradiation (800 rad). In particular, they find changes in the sedimentation constant, in the electrophoretic mobility of sub-units and in their concentration and also suppression of the fermentative activity of RNA-polymerases, both in DNA isolated after irradiation and in DNA from normal organs. (V.A.P.)

  3. Preparation, Biodegradation of Coconut Oil Driven Chemically Modified Bovine Serum Albumin Microparticles of Encapsulated Cicer arietinum Amylase and Study of Their Application in Washing Detergents

    OpenAIRE

    Kirti Rani; Vartika Mehta

    2014-01-01

    In present work, Cicer arietinum amylase was encapsulated by emulsification through covalent coupling by glutaraldehyde into chemically modified bovine serum albumin. Biodegradation of coconut oil driven emulsified bovine serum albumin encapsulated Cicer arietinum amylase was carried out by the alkaline protease for its controlled and sustained release of encapsulated enzyme from prepared microparticles of encapsulated Cicer arietinum amylase and its stability increased up to 6 months as comp...

  4. A study comparing chemical peeling using modified jessner′s solution and 15% trichloroacetic acid versus 15% trichloroacetic acid in the treatment of melasma

    OpenAIRE

    Safoury Omar; Zaki Nagla; El Nabarawy Eman; Farag Eman

    2009-01-01

    Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner′s solution, modified Jessner′s solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA...

  5. Review of long-term adverse effects associated with the use of chemically-modified animal and nonanimal source hyaluronic acid dermal fillers

    OpenAIRE

    Edwards, Paul

    2008-01-01

    Paul C Edwards1, John E Fantasia21Associate Professor (Clinical), Department of Periodontics and Oral Medicine, Pathology and Oncology, University of Michigan School of Dentistry, Ann Arbor MI, USA; 2Chief, Division of Oral Pathology, Department of Dental Medicine, Long Island Jewish Medical Center, New Hyde Park, NY, USAAbstract: Although only recently introduced, chemically-modified hyaluronic acid dermal fillers have gained widespread acceptance as “redefining” dermal f...

  6. Review of long-term adverse effects associated with the use of chemically-modified animal and nonanimal source hyaluronic acid dermal fillers

    OpenAIRE

    Edwards, Paul C.; John E Fantasia

    2007-01-01

    Paul C Edwards1, John E Fantasia21Associate Professor (Clinical), Department of Periodontics and Oral Medicine, Pathology and Oncology, University of Michigan School of Dentistry, Ann Arbor MI, USA; 2Chief, Division of Oral Pathology, Department of Dental Medicine, Long Island Jewish Medical Center, New Hyde Park, NY, USAAbstract: Although only recently introduced, chemically-modified hyaluronic acid dermal fillers have gained widespread acceptance as “redefining” dermal f...

  7. Preparation, Biodegradation of Coconut Oil Driven Chemically Modified Bovine Serum Albumin Microparticles of Encapsulated Cicer arietinum Amylase and Study of Their Application in Washing Detergents

    Directory of Open Access Journals (Sweden)

    Kirti Rani

    2014-10-01

    Full Text Available In present work, Cicer arietinum amylase was encapsulated by emulsification through covalent coupling by glutaraldehyde into chemically modified bovine serum albumin. Biodegradation of coconut oil driven emulsified bovine serum albumin encapsulated Cicer arietinum amylase was carried out by the alkaline protease for its controlled and sustained release of encapsulated enzyme from prepared microparticles of encapsulated Cicer arietinum amylase and its stability increased up to 6 months as compared to free enzyme. Its biodegradation was carried out by the using different concentration of alkaline protease (5U, 10U, 15U, 20U, 25U, 30U, 35U, 40U. Further, this coconut oil driven chemically modified bovine serum albumin microparticles of encapsulated Cicer arietinum amylase with alkaline protease were used with detergents for washing of stained cloths which have rust, gel pen ink, grease and chocolate strains. These chosen strains are very commonly present on uniforms of school going children which are very tough upon drying, hence, not to be easily vanish with well known brand detergents upon in one wash. But, the mixture solution of coconut oil driven chemically modified bovine serum albumin microparticles of encapsulated Cicer arietinum amylase along with alkaline protease were used with detergents powder for washing of these dry tough strains (rust, gel pen ink, grease and chocolate strains leads to vanishing these strains very fast with absolute clear results were found as compared to results of washing of stained cloths with detergents only.

  8. S-Adenosyl-S-carboxymethyl-l-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert T.; Whelan, Fiona [University of York, Heslington YO10 5DD (United Kingdom); Aller, Pierre [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Bird, Louise E. [OPPF-UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Oxford University, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Dowle, Adam [University of York, Heslington YO10 5DD (United Kingdom); Lobley, Carina M. C. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Reddivari, Yamini; Nettleship, Joanne E.; Owens, Raymond J. [OPPF-UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Oxford University, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Antson, Alfred A. [University of York, Heslington YO10 5DD (United Kingdom); Waterman, David G., E-mail: david.waterman@stfc.ac.uk [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); University of York, Heslington YO10 5DD (United Kingdom)

    2013-06-01

    The putative methyltransferase CmoA is involved in the nucleoside modification of transfer RNA. X-ray crystallography and mass spectrometry are used to show that it contains a novel SAM derivative, S-adenosyl-S-carboxymethyl-l-homocysteine, in which the donor methyl group is replaced by a carboxymethyl group. Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo{sup 5}U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo{sup 5}U and was annotated as an S-adenosyl-l-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-l-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxymethyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-ray structure, PDB entry http://scripts.iucr.org/cgi-bin/cr.cgi?rm, suggests that the active site contains SCM-SAH and not SAM.

  9. S-Adenosyl-S-carboxymethyl-l-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA

    International Nuclear Information System (INIS)

    The putative methyltransferase CmoA is involved in the nucleoside modification of transfer RNA. X-ray crystallography and mass spectrometry are used to show that it contains a novel SAM derivative, S-adenosyl-S-carboxymethyl-l-homocysteine, in which the donor methyl group is replaced by a carboxymethyl group. Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo5U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo5U and was annotated as an S-adenosyl-l-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-l-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxymethyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-ray structure, PDB entry http://scripts.iucr.org/cgi-bin/cr.cgi?rm, suggests that the active site contains SCM-SAH and not SAM

  10. PCR synthesis of base-modified DNA templates for transcription

    Czech Academy of Sciences Publication Activity Database

    Raindlová, Veronika; Hocek, Michal

    Praha : Czech Chemical Society, 2015. s. 132. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA ČR GA14-04289S Institutional support: RVO:61388963 Keywords : base-modified DNA * polymerase chain reaction * RNA polymerase Subject RIV: CC - Organic Chemistry

  11. Optimization of total RNA isolation method from the aromatic medicinal plant Artemisia annua L.

    Directory of Open Access Journals (Sweden)

    Suganthi Appalasamy

    2012-12-01

    Full Text Available This paper is the first report on the development of a protocol that allows rapid and simplified extraction of total RNA from Artemisia annua L., an aromatic medicinal plant. This innovative protocol ensures a consistently high quantity and good quality of total RNA without any contamination of polyphenols, polysaccharides and proteins. The total RNA obtained is also free of fungal RNA even when extracted from fungal infested plants. The extraction buffer used in the proposed modified protocol was made up of non-hazardous chemicals. High concentrations of polyphenols of A. annua L. could be successfully eliminated and the prepared total RNA could be used for downstream reactions.

  12. RNA Interference in Mammalia Cells by RNA-3’-PNA Chimeras

    Directory of Open Access Journals (Sweden)

    Anna Messere

    2008-03-01

    Full Text Available The discovery of siRNAs as the mediators of RNA interference has led to an increasing interest in their therapeutic applications. Chemical modifications are introduced into siRNAs to optimize the potency, the stability and the pharmacokinetic properties in vivo. Here, we synthesize and test the effects of RNA-3’-PNA chimeras on siRNA functioning and stability. We demonstrate that the chemical modifications are compatible with the siRNA machinery, because all the PNA-modified siRNAs can efficiently mediate specific gene silencing in mammalian cells. Furthermore, we find that the modification on the sense strand of siRNA results in an increased persistence of the activity, whereas modification on both strands results in enhanced nuclease resistance in serum.

  13. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    International Nuclear Information System (INIS)

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations

  14. Determination of antimony in sediments and soils by slurry sampling graphite furnace atomic absorption spectrometry using a permanent chemical modifier

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolski, Ryszard, E-mail: rdobrow@poczta.umcs.lublin.pl; Adamczyk, Agnieszka; Otto, Magdalena; Dobrzynska, Joanna

    2011-07-15

    For comparison of action of mixed permanent modifiers Ir/Nb and Ir/W, the influence of the amounts of modifier components was studied and the atomic absorption pyrolysis and atomization curves were determined with different modifiers. The optimum amounts of modifier components were 30 {mu}g Ir and 40 {mu}g of Nb that were deposited onto the L'vov platform in advance to analytical measurements. The long-term performance of the Ir and Nb permanent modifiers was derived from the investigations by scanning electron microscopy and energy dispersive X-ray spectrometry. The soil and sediment slurries were prepared in 4% hydrofluoric acid and 6% suspension of polytetrafluoroethylene in order to remove the high concentration of silica during the pyrolysis step of 900 deg. C. The calibration was made by using aqueous standards. The analysis of certified reference materials confirmed the accuracy and reliability of the proposed analytical approach. The precision of Sb determination was characterized with less than 6% RSD.

  15. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  16. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Science.gov (United States)

    Huber, Charles S.; Vale, Maria Goreti R.; Welz, Bernhard; Andrade, Jailson B.; Dessuy, Morgana B.

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg- 1 and 4.7 mg kg- 1, respectively.

  17. Profiling of 2'-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity

    DEFF Research Database (Denmark)

    Krogh, Nicolai; Jansson, Martin D; Häfner, Sophia J; Tehler, Disa; Birkedal, Ulf; Christensen-Dalsgaard, Mikkel; Lund, Anders H; Nielsen, Henrik

    2016-01-01

    the level of RNA modifications. A comparison to HCT116 cells reveals similar 2'-O-Me profiles with distinct differences at several sites. This study constitutes the first comprehensive mapping of 2'-O-Me sites in human rRNA using a high throughput sequencing approach. It establishes the existence of a...

  18. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  19. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality.

    Science.gov (United States)

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2016-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P oil absorption capacity was observed for the acetylated starch and, which was less pronounced for the enzymatically hydrolysed starch but more pronounced for the enzymatically hydrolysed acetylated product. The latter product underwent an increase in resistant starch content, which is induced by a rise in hydrolysis time to attain about 67 % after 1 h of reaction. The modified starch samples were added to cake formulations at 5 and 10 % concentrations on a wheat flour basis and compared to native starch. The results revealed that when applied at 5 % concentrations, the modified starches reduced the hardness, cohesion, adhesion and chewiness of baked cakes and enhanced their elasticity, volume, height, crust color, and appearance as compared to native starch. These effects were more pronounced for the cake incorporating the dually modified starch. PMID:26787967

  20. Comparison of Fe-Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F(-) and As(V).

    Science.gov (United States)

    Vázquez Mejía, G; Martínez-Miranda, V; Fall, C; Linares-Hernández, I; Solache-Ríos, M

    2016-03-01

    The adsorption of fluoride and arsenic ions by modified natural materials may have an impact on the removal of F(-) and As(V) from waters. In this work, a zeolitic material and pozzolan (commonly known as pumicite) were modified with aluminium an iron by an electrochemical method and chemical precipitation, respectively. The adsorbents were characterized by X-ray diffraction, scanning electron microscopy with energy X-ray disperse spectroscopy analysis and the point of zero charge (pHzpc). F(-) and As(V) adsorption properties of both materials were investigated. Adsorption kinetic data were best fitted to pseudo-second-order model and equilibrium data to the Langmuir isotherm model. The highest F(-) and As(V) sorption capacities were obtained for modified zeolitic (0.866 mg/g) and pozzolan (3.35 mg/g) materials, respectively, with initial F(-) or As(V) concentrations of 10 mg/L. It was found that the unmodified materials did not show either adsorption of F(-) ions or As(V), which indicated that Al and Fe in the adsorbents are responsible for the adsorption of these ions. In general, both modified materials show similar capacities for the adsorption of F(-) and As(V). PMID:26362939

  1. A study comparing chemical peeling using modified jessner′s solution and 15% trichloroacetic acid versus 15% trichloroacetic acid in the treatment of melasma

    Directory of Open Access Journals (Sweden)

    Safoury Omar

    2009-01-01

    Full Text Available Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner′s solution, modified Jessner′s solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA and modified Jessner′s solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type, with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner′s solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index between the right malar area and the left malar area. Conclusion: Modified Jessner′s solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation.

  2. Direct determination of Cd and Pb in human urine by GFAAS with deuterium-lamp background correction using different chemical modifiers

    International Nuclear Information System (INIS)

    Several authors have contributed to the elaboration of methodology for direct determination of Cd and Pb in urine by graphite furnace atomic absorption spectrometry (GFAAS). In the proposed approaches, Zeeman background correction systems were predominantly used, without paying much attention to the selection of an appropriate chemical modifier. However, systematic studies on eleven recommended and less commonly used modifiers have resulted in optimization of atomization conditions, so that accurate analysis also with the use of D2-lamp background correction became possible. This was confirmed by comparative measurements using both background correction systems. For determination of Cd in urine, NH4F has been selected resulting in the lowest limit of detection (LOD): 0.07 μg L-1. NH4F promotes efficient atomization at low temperatures and suppresses chloride interference effect. Pd + Sr (nitrate) has been selected as the most adequate modifier for determination of Pb. Its presence raised the maximum tolerable pyrolysis temperature up to 1200oC, which resulted in the maximum reduction of the background signal and the lowest LOD of 1.5 mg L-1 for Pb (10 μL aliquots of dispensed urine). Applying the above modifiers to the analysis of standards and samples, direct aqueous calibration for accurate analysis of diluted and acidified urine samples became possible. Accuracy of the analysis was verified by the use of commercially available quality control reference materials. (authors)

  3. Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin.

    OpenAIRE

    Forster, A C; McInnes, J L; Skingle, D C; Symons, R H

    1985-01-01

    A photo-activatable analogue of biotin, N-(4-azido-2-nitrophenyl)-N'-(N-d-biotinyl-3-aminopropyl)-N'-methyl-1,3- propanediamine (photobiotin), has been synthesized and used for the rapid and reliable preparation of large amounts of stable, non-radioactive, biotin-labelled DNA and RNA hybridization probes. Upon brief irradiation with visible light, photobiotin formed stable linkages with single- and double-stranded nucleic acids yielding probes which were purified from excess reagent by 2-buta...

  4. Working with RNA

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    Working with RNA is not a special discipline in molecular biology. However, RNA is chemically and structurally different from DNA and a few simple work rules have to be implemented to maintain the integrity of the RNA. Alkaline pH, high temperatures, and heavy metal ions should be avoided when...

  5. Changing blue fluorescent protein to green fluorescent protein using chemical RNA editing as a novel strategy in genetic restoration.

    Science.gov (United States)

    Vu, Luyen T; Nguyen, Thanh T K; Alam, Shafiul; Sakamoto, Takashi; Fujimoto, Kenzo; Suzuki, Hitoshi; Tsukahara, Toshifumi

    2015-11-01

    Using the transition from cytosine of BFP (blue fluorescent protein) gene to uridine of GFP (green fluorescent protein) gene at position 199 as a model, we successfully controlled photochemical RNA editing to effect site-directed deamination of cytidine (C) to uridine (U). Oligodeoxynucleotides (ODNs) containing 5'-carboxyvinyl-2'-deoxyuridine ((CV) U) were used for reversible photoligation, and single-stranded 100-nt BFP DNA and in vitro-transcribed full-length BFP mRNA were the targets. Photo-cross-linking with the responsive ODNs was performed using UV (366 nm) irradiation, which was followed by heat treatment, and the cross-linked nucleotide was cleaved through photosplitting (UV, 312 nm). The products were analyzed using restriction fragment length polymorphism (RFLP) and fluorescence measurements. Western blotting and fluorescence-analysis results revealed that in vitro-translated proteins were synthesized from mRNAs after site-directed RNA editing. We detected substantial amounts of the target-base-substituted fragment using RFLP and observed highly reproducible spectra of the transition-GFP signal using fluorescence spectroscopy, which indicated protein stability. ODNc restored approximately 10% of the C-to-U transition. Thus, we successfully used non-enzymatic site-directed deamination for genetic restoration in vitro. In the near future, in vivo studies that include cultured cells and model animals will be conducted to treat genetic disorders. PMID:26031895

  6. Electron transfer modifies chemical properties of C70 fullerene surface: an ab initio molecular dynamics study of C70O3 molozonides doped with light atoms

    OpenAIRE

    Morrison, Carole; Bil, Andrzej; Hutter, Jurg

    2014-01-01

    Light metal atoms such as Li, K (electronic state 2S 1/2) or Ca (1S0) encapsulated in a C 70 cage considerably modifies the chemical properties of the fullerene surface due to metal-to-cage electron transfer. H-doped and anion ozonide systems were also considered to validate the electron transfer hypothesis. The relative stabilities of the eight isomers of the C 70O3 molozonide series at room temperature depend on the identity of the endohedral guest, as was the preferred channel for thermal ...

  7. Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq–INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; Dessuy, Morgana B. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq–INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq–INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2014-02-01

    In this work, chemical modifiers in solution (Pd/Mg, NH{sub 4}H{sub 2}PO{sub 4} and NH{sub 4}NO{sub 3}/Pd) were compared with permanent modifiers (Ir and Ru) for the determination of lead in fertilizer and limestone samples using slurry sampling and graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. The analytical line at 283.3 nm was used due to some spectral interference observed at 217.0 nm. The NH{sub 4}H{sub 2}PO{sub 4} was abandoned due to severe spectral interference even at the 283.3-nm line. For Pd/Mg and NH{sub 4}NO{sub 3}/Pd the optimum pyrolysis and atomization temperatures were 900 °C and 1900 °C, respectively. For Ru and Ir, the integrated absorbance signal was stable up to pyrolysis temperatures of 700 °C and 900 °C, respectively, and up to atomization temperature of 1700 °C. The limit of detection (LOD) was 17 ng g{sup −1} using Pd/Mg and 29 ng g{sup −1} using NH{sub 4}NO{sub 3}/Pd. Among the permanent modifiers investigated, the LOD was 22 ng g{sup −1} Pb for Ir and 10 ng g{sup −1} Pb for Ru. The accuracy of the method was evaluated using the certified reference material NIST SRM 695. Although Ru provided lower LOD, which can be attributed to a lower blank signal, only the modifiers in solution showed concordant values of Pb concentration for the NIST SRM 695 and the most of analyzed samples. Moreover, the Pd/Mg modifier provided the highest sensitivity and for this reason it is more suitable for the determination of Pb in fertilizers samples in slurry; besides this it presented a better signal-to-noise ratio than NH{sub 4}NO{sub 3}/Pd. - Highlights: • Lead has been determined in fertilizers using slurry sampling GF AAS. • The mixture of palladium and magnesium nitrates was found to be the ideal chemical modifier. • Calibration could be carried out against aqueous standard solutions. • The proposed method is much faster than the EPA method, which includes sample digestion.

  8. Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling

    International Nuclear Information System (INIS)

    In this work, chemical modifiers in solution (Pd/Mg, NH4H2PO4 and NH4NO3/Pd) were compared with permanent modifiers (Ir and Ru) for the determination of lead in fertilizer and limestone samples using slurry sampling and graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. The analytical line at 283.3 nm was used due to some spectral interference observed at 217.0 nm. The NH4H2PO4 was abandoned due to severe spectral interference even at the 283.3-nm line. For Pd/Mg and NH4NO3/Pd the optimum pyrolysis and atomization temperatures were 900 °C and 1900 °C, respectively. For Ru and Ir, the integrated absorbance signal was stable up to pyrolysis temperatures of 700 °C and 900 °C, respectively, and up to atomization temperature of 1700 °C. The limit of detection (LOD) was 17 ng g−1 using Pd/Mg and 29 ng g−1 using NH4NO3/Pd. Among the permanent modifiers investigated, the LOD was 22 ng g−1 Pb for Ir and 10 ng g−1 Pb for Ru. The accuracy of the method was evaluated using the certified reference material NIST SRM 695. Although Ru provided lower LOD, which can be attributed to a lower blank signal, only the modifiers in solution showed concordant values of Pb concentration for the NIST SRM 695 and the most of analyzed samples. Moreover, the Pd/Mg modifier provided the highest sensitivity and for this reason it is more suitable for the determination of Pb in fertilizers samples in slurry; besides this it presented a better signal-to-noise ratio than NH4NO3/Pd. - Highlights: • Lead has been determined in fertilizers using slurry sampling GF AAS. • The mixture of palladium and magnesium nitrates was found to be the ideal chemical modifier. • Calibration could be carried out against aqueous standard solutions. • The proposed method is much faster than the EPA method, which includes sample digestion

  9. Serum low density lipoprotein of alcoholic patients is chemically modified in vivo and induces apolipoprotein E synthesis by macrophages.

    OpenAIRE

    Lin, R C; Dai, J; Lumeng, L; Zhang, M Y

    1995-01-01

    This work was carried out to investigate the effect of alcohol drinking on serum LDL. Agarose gel electrophoresis showed that LDL samples from alcoholic patients without serious liver disease were more negatively charged and moved faster toward the cathode than LDL from nondrinking control subjects. Rabbit antibodies raised by using keyhole limpet hemocyanin modified in vitro by 4-hydroxynonenal or by acetaldehyde as immunogens reacted more strongly with patients' LDL than with control LDL, i...

  10. Assessment of antimicrobial activity of polyazolidinammonium modified by iodine hydrate ions depending on its physical and chemical characteristics.

    OpenAIRE

    Vakaraeva M.M.; Uljanov V.Yu.; Nechaeva O.V.; Luneva I.0.; Tikhomirova E.l.; Shapoval O.G.; Zayarskiy D.A.

    2015-01-01

    Aim: to study antimicrobial activity of variants of polymeric compound polyazolidinammonium modified by iodine hydrate-ions (PAAG-M), depending on the polymeric chain length and concentration of the iodine hydrate-ions against standard strains of gram-positive and gram-negative bacteria as well as microscopic fungi. Materials and methods. Minimum inhibitory concentrations of all variants of the polymeric compound for tested microbial strains have been determined by using serial dilution metho...

  11. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization

    International Nuclear Information System (INIS)

    The measurement conditions for determining boron using graphite furnace–atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L−1 when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS. (author)

  12. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Chen, Paul; Ruan, Roger

    2015-12-01

    Chemical vapor deposition with tetra-ethyl-orthosilicate as the modifier was applied to deposit the external acid sites of HZSM-5, and the modified HZSM-5 samples were used for the microwave-assisted catalytic fast pyrolysis (MACFP) of biomass for bio-oil production. The experimental results showed that the external acid sites of HZSM-5 decreased significantly when SiO2 deposited amount increased from 0% to 5.9%. For product distribution, the coke yield decreased, the oil fraction yield decreased at first and then increased, and the yields of water and gas first increased and then decreased over the range of SiO2 deposited amount studied. For chemical compositions in oil fraction, the relative contents of aliphatic hydrocarbons, aromatic hydrocarbons and oxygen-containing aromatic compounds first increased to maximum values and then decreased, while the relative content of oxygen-containing aliphatic compounds first decreased and then increased with increasing SiO2 deposited amount. PMID:26318925

  13. Fixation of laccase enzyme into polypyrrole, assisted by chemical interaction with modified magnetite nanoparticles: A facile route to synthesize stable electroactive bionanocomposite catalysts

    International Nuclear Information System (INIS)

    Highlights: • Chemically immobilized laccase enzyme on magnetite nanoparticles is presented. • Modified nanoparticles were entrapped in conducting polymer matrix. • Bio-electrocatalytic effect was evidenced in the oxygen reduction reaction. • The method may serve as a general platform for enzyme incorporation. • New avenue for conducting polymer based biocatalytic electrodes. - Abstract: Effective bio-electrocatalysts require stable immobilization of sufficient amounts of the bioactive component. In this study, a novel and efficient method for specific binding of laccase enzyme onto magnetite nanoparticles (NPs) is presented. The interaction between the chemically modified magnetite NPs and the enzyme was evidenced by both infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). Subsequently, the enzyme-coated magnetite NPs were successfully incorporated into polypyrrole (PPy) matrix during galvanostatic electropolymerization. The encapsulation of laccase covered NPs was proved by EQCN, TEM, and FT-IR spectroscopy; whereas the electrochemical behaviour of the formed bionanocomposite was characterized by cyclic voltammetry. In oxygen saturated solution a cathodic charge surplus was observed, related to the electrochemical reduction of oxygen. This surplus was two times higher in the case of the laccase containing layer compared to its only magnetite containing counterpart. Kinetic aspects of the oxygen reduction reaction (ORR) on the laccase containing films were investigated by hydrodynamic voltammetry, and the four-electron route was found to be exclusive, which is promising from the fuel cell perspective. Such synergistic combination of inorganic NPs and enzymes may open new avenues in the application of these bio-nanocomposite materials

  14. Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Panice, Lucimara B.; Oliveira, Elisangela A. de; Filho, Ricardo A.D. Molin; Oliveira, Daniela P. de [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Lazarin, Angélica M., E-mail: amlazarin2@uem.br [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Andreotti, Elza I.S.; Sernaglia, Rosana L. [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Gushikem, Yoshitaka [Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas, São Paulo (Brazil)

    2014-10-15

    Highlights: • The cyano-bridged mixed valence ruthenium composite material was synthesized. • This newly synthesized compound was incorporated into a carbon paste electrode. • The electrode did not show significant changes in response after six months of use. • The modified electrode is very stable and reproducible. • The electrode sensor was successfully applied for ascorbic acid determination. - Abstract: The chemically modified silica gel with zirconium(IV) oxide was used to immobilize the [Fe(CN){sub 6}]{sup 4−} complex ion initially. The reaction of this material with [Ru(edta)H{sub 2}O]{sup −} complex ion formed the immobilized cyano-bridged mixed valence ruthenium complex, (≡Zr){sub 5}[(edta)RuNCFe(CN){sub 5}]. This material was incorporated into a carbon paste electrode and, its electrochemical properties were investigated. However, for an ascorbic acid solution, an enhancement of the anodic peak current was detected due to electrocatalytic oxidation. The electrode presented the same response for at least 150 successive measurements, with a good repeatability. The modified electrode is very stable and reproducible. The sensor was applied for ascorbic acid determination in pharmaceutical preparation with success.

  15. Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide

    International Nuclear Information System (INIS)

    Highlights: • The cyano-bridged mixed valence ruthenium composite material was synthesized. • This newly synthesized compound was incorporated into a carbon paste electrode. • The electrode did not show significant changes in response after six months of use. • The modified electrode is very stable and reproducible. • The electrode sensor was successfully applied for ascorbic acid determination. - Abstract: The chemically modified silica gel with zirconium(IV) oxide was used to immobilize the [Fe(CN)6]4− complex ion initially. The reaction of this material with [Ru(edta)H2O]− complex ion formed the immobilized cyano-bridged mixed valence ruthenium complex, (≡Zr)5[(edta)RuNCFe(CN)5]. This material was incorporated into a carbon paste electrode and, its electrochemical properties were investigated. However, for an ascorbic acid solution, an enhancement of the anodic peak current was detected due to electrocatalytic oxidation. The electrode presented the same response for at least 150 successive measurements, with a good repeatability. The modified electrode is very stable and reproducible. The sensor was applied for ascorbic acid determination in pharmaceutical preparation with success

  16. Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly(amidoamine) dendrimer composite with gold and silver nanoclusters

    International Nuclear Information System (INIS)

    We describe a strategy for the determination of microRNA-126 (miRNA-126) that is based on the use of a glassy carbon electrode modified with (a) carboxy-terminated generation 3.5 poly(amidoamine) (PAMAM) dendrimer; (b) gold and silver nanoclusters, and (c) a chitosan-graphen composite. A peptide nucleic acid (PNA) was immobilized on the surface and serves as a receptor to hybridize miRNA-126. Subsequently, a digoxin labeled signal DNA is specifically recognized by the PNA. The analytical signal was finally generated by adding anti-digoxin antibody labeled with horse radish peroxidase. The biosensor was characterized by differential pulse voltammetry. A linear current-concentration relationship is found for miRNA-126 at a working voltage of 208 mV in the 1.0 fM to 10 nM concentration range. The limit of detection is 0.79 fM (at an S/N of 3). This biosensor displays good reproducibility, stability and selectivity (author)

  17. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    International Nuclear Information System (INIS)

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm-2 for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  18. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    Energy Technology Data Exchange (ETDEWEB)

    Irena, Gancarz, E-mail: irena.gancarz@pwr.wroc.pl [Department of Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Jolanta, Bryjak; Karolina, Zynek [Department of Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland)

    2009-07-15

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm{sup -2} for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  19. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    Science.gov (United States)

    Irena, Gancarz; Jolanta, Bryjak; Karolina, Zynek

    2009-07-01

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm -2 for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  20. Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Vishwanath D. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Srivastava, Ashwini K. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India)], E-mail: aksrivastava@chem.mu.ac.in

    2007-12-31

    Voltammetric behavior of folic acid at plain carbon paste electrode and electrode modified with calixarenes has been studied. Two peaks for irreversible oxidation were observed. Out of the three calixarenes chosen for modification of the electrodes, p-tert-butyl-calix[6]arene modified electrode (CME-6) was found to have better sensitivity for folic acid. Chronocoulometric and differential pulse voltammetric studies reveal that folic acid can assemble at CME-6 to form a monolayer whose electron transfer rate is 0.00273 s{sup -1} with 2-electron/2-proton transfer for the peak at +0.71 V against SCE. An adsorption equilibrium constant of 5 x 10{sup 3} l/mol for maximum surface coverage of 2.89 x 10{sup -10} mol/cm{sup 2} was obtained. The current is found to be rectilinear with concentration by differential pulse voltammetry. However, linearity in the lower range of concentration 8.79 x 10{sup -12} M to 1.93 x 10{sup -9} M with correlation coefficient of 0.9920 was achieved by adsorptive stripping voltammetry. The limit of detection obtained was found to be 1.24 x 10{sup -12} M. This method was used for the determination of folic acid in a variety of samples, viz. serum, asparagus, spinach, oranges and multivitamin preparations.

  1. Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon

    OpenAIRE

    Prokhorova, Irina V.; Osterman, Ilya A.; Burakovsky, Dmitry E.; Serebryakova, Marina V.; Galyamina, Maria A.; Pobeguts, Olga V.; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G.; Govorun, Vadim M.; Bogdanov, Alexey A.; Sergiev, Petr V.; Dontsova, Olga A

    2013-01-01

    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show – using proteomic analysis and dual fluorescence reporter in vivo assays – that m2G966 and m5C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m2G966 and m5C967 modifications. The upregulation requi...

  2. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    International Nuclear Information System (INIS)

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  3. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    Energy Technology Data Exchange (ETDEWEB)

    He Ying, E-mail: yinghe@staff.shu.edu.c [Shanghai University, Department of Polymer Materials, School of Materials Science and Engineering (China); Wang Junan [Shanghai University, Institute of Materials, School of Materials Science and Engineering (China); Pei Changlong; Song Jizhong; Zhu Di; Chen Jie [Shanghai University, Department of Polymer Materials, School of Materials Science and Engineering (China)

    2010-10-15

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  4. Selective catalytic conversion of ethanol to basic chemicals over phosphorus-modified H-ZSM-5 zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Danilina, N.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. fuer Technische Chemie; Toufar, H. [TRICAT Zeolites, Bitterfeld (Germany)

    2006-07-01

    The activity and selectivity of unmodified and phosphorus-modified H-ZSM-5 zeolites (Si/Al = 11) in the conversion of ethanol was studied. The post-synthesis modification of H-ZSM-5 was done using phosphoric acid; the phosphorus loading was varied between 0.33 and 1.3 wt.-%. The catalytic tests were performed at 450 C and under atmospheric pressure in a plug-flow reactor. All catalyst samples were characterized with XRD, AAS, EDX, IR, and 31P MAS NMR. The acidic properties were determined with in situ FTIR measurements of temperature-programmed ammonia-desorption. The incorporation of phosphorus in H-ZSM-5 zeolites by post-synthesis modification leads to highly active and selective catalysts for the conversion of ethanol to aromatics. The conversion of ethanol increases to up to 100 % and the selectivity to aromatics to maximally 80 wt.-%. (orig.)

  5. RNA triplexes: from structural principles to biological and biotech applications.

    Science.gov (United States)

    Devi, Gitali; Zhou, Yuan; Zhong, Zhensheng; Toh, Desiree-Faye Kaixin; Chen, Gang

    2015-01-01

    The diverse biological functions of RNA are determined by the complex structures of RNA stabilized by both secondary and tertiary interactions. An RNA triplex is an important tertiary structure motif that is found in many pseudoknots and other structured RNAs. A triplex structure usually forms through tertiary interactions in the major or minor groove of a Watson-Crick base-paired stem. A major-groove RNA triplex structure is stable in isolation by forming consecutive major-groove base triples such as U·A-U and C(+) ·G-C. Minor-groove RNA triplexes, e.g., A-minor motif triplexes, are found in almost all large structured RNAs. As double-stranded RNA stem regions are often involved in biologically important tertiary triplex structure formation and protein binding, the ability to sequence specifically target any desired RNA duplexes by triplex formation would have great potential for biomedical applications. Programmable chemically modified triplex-forming oligonucleotides (TFOs) and triplex-forming peptide nucleic acids (PNAs) have been developed to form TFO·RNA2 and PNA·RNA2 triplexes, respectively, with enhanced binding affinity and sequence specificity at physiological conditions. Here, we (1) provide an overview of naturally occurring RNA triplexes, (2) summarize the experimental methods for studying triplexes, and (3) review the development of TFOs and triplex-forming PNAs for targeting an HIV-1 ribosomal frameshift-inducing RNA, a bacterial ribosomal A-site RNA, and a human microRNA hairpin precursor, and for inhibiting the RNA-protein interactions involving human RNA-dependent protein kinase and HIV-1 viral protein Rev. PMID:25146348

  6. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Application of a modified EDTA-mediated exudation technique and guttation fluid analysis for potato spindle tuber viroid RNA detection in tomato plants (Solanum lycopersicum)

    Science.gov (United States)

    Potato spindle tuber viroid (PSTVd) is a small plant pathogenic circular RNA that does not encode proteins, replicates autonomously, and traffics systemically in infected plants. Long-distance transport occurs by way of the phloem; however one report in the literature describes the presence of viroi...

  8. Application of Nafion/Cobalt Hexacyanoferrate Chemically Modified Electrodes for the Determination of Electroinactive Cations by Ion Chromatography

    Institute of Scientific and Technical Information of China (English)

    徐继明; 鲜跃仲; 等

    2002-01-01

    An amperometric detector based on the chemical modification of Nafion and cobalt(Ⅱ) hexacyanoferrate(Ⅱ,Ⅲ)thin film (Nafion /Co-CN-Fe) onto a glassy carbon(GC) electrode was firstly developed for the determination of electroinactive cations (Li+,Na+,K+,Rb+,Cs+,and NH4+)in single column ion cgrinatography,A set of well-defined peaks of electroinactive cation was obtained ,The relative standard deviations (RSDs) of chromatographic peak height(nA) for these cations were all below 3.8% .The cations were detected convenivently in the linear concentration ragne of 6.0×10-6--5.0×10-3 mol/L and their correlation coefficients were all above 0.99 .The detection limits of the cations were 9.2×107 mol/L for K+,7.8×107mol/L for Rb+,6.2×107mol/L for Cs+ and 6.2×106mol/L for NH4+ ,at a signal-noise ratio of 3. The method was quick,sensitive,simple and was successfully applied to the analysis of rainwater samples,The electrode was stable for a 2 week period of operation with no evidence of chemical of mechanical deterioration.

  9. Radium removal from aqueous solutions by adsorption on non-treated and chemically modified biomass by-product

    International Nuclear Information System (INIS)

    The adsorption efficiency of a biomass by-product (olive cake) regarding the removal of radium (226Ra) from aqueous solutions has been investigated prior and after its chemical treatment. The chemical treatment of the biomass by-product included phosphorylation and MnO2-coating. The separation/removal efficiency has been studied as a function of pH, salinity (NaCl) and calcium ion concentration (Ca2+) in solution. Evaluation of the experimental data shows clearly that the phosphorylated biomass by-product presents the highest adsorption capacity and efficiency followed by the MnO2-coated material and the non-treated biomass by-product. However, regarding the effect of salinity and the presence of competitive cations (e.g. Ca2+) on the adsorption/removal efficiency, the MnO2-coated material shows the lowest decline in efficiency (only 2 % of the relative adsorption efficiency) followed by the non-treated and the phosphorylated biomass by-product. The results of the present study indicate that depending on the physicochemical characteristics of the radium-contaminated water, all three types of the biomass by-product could be effectively used for the treatment of radium-contaminated waters. Nevertheless, the MnO2-coated material is expected to be the most effective adsorbent and an alternative to MnO2 resins for the treatment of environmentally relevant waters. (author)

  10. How to understand quantum chemical computations on DNA and RNA systems? A practical guide for non-specialists.

    Science.gov (United States)

    Šponer, Jiří; Šponer, Judit E; Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal

    2013-11-01

    In this review primarily written for non-experts we explain basic methodological aspects and interpretation of modern quantum chemical (QM) computations applied to nucleic acids. We introduce current reference QM computations on small model systems consisting of dozens of atoms. Then we comment on recent advance of fast and accurate dispersion-corrected density functional theory methods, which will allow computations of small but complete nucleic acids building blocks in the near future. The qualitative difference between QM and molecular mechanics (MM, force field) computations is discussed. We also explain relation of QM and molecular simulation computations to experiments. PMID:23747334

  11. Assessment of antimicrobial activity of polyazolidinammonium modified by iodine hydrate ions depending on its physical and chemical characteristics.

    Directory of Open Access Journals (Sweden)

    Vakaraeva M.M.

    2015-09-01

    Full Text Available Aim: to study antimicrobial activity of variants of polymeric compound polyazolidinammonium modified by iodine hydrate-ions (PAAG-M, depending on the polymeric chain length and concentration of the iodine hydrate-ions against standard strains of gram-positive and gram-negative bacteria as well as microscopic fungi. Materials and methods. Minimum inhibitory concentrations of all variants of the polymeric compound for tested microbial strains have been determined by using serial dilution method. Results. High sensitivity of Eschehchia coli 113-13 and Pseudomonas aeruginosa ATCC 27853 was shown to the variants of PAAG-M with molecular weight <100 and 100-200 kD. Staphylococcus aureus 209 P was more sensitive to the variants with molecular weight 200-350 and 400-500 kD. Direct relation of sensitivity was demonstrated for all microbial strains on the increase of iodine hydrate-ions concentration in the polymeric compound. Standard strain Candida albicans 13108 was sensitive to variants of the polymer with maximum iodine hydrate-ions concentration. Conclusion. The received results allow to carry out a choice of the most effective chemotherapeutic antimicrobic preparations depending on biological properties of the activator of infectious process.

  12. The Role of Genotypes That Modify the Toxicity of Chemical Mutagens in the Risk for Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Carol Ann Gross-Davis

    2015-02-01

    Full Text Available Background: The etiology of myeloproliferative neoplasms (MPN (polycythemia vera; essential thrombocythemia; primary myelofibrosis is unknown, however they are associated with a somatic mutation—JAK2 V617F—suggesting a potential role for environmental mutagens. Methods: We conducted a population-based case-control study in three rural Pennsylvania counties of persons born 1921–1968 and residing in the area between 2000–2008. Twenty seven MPN cases and 292 controls were recruited through random digit dialing. Subjects were genotyped and odds ratios estimated for a select set of polymorphisms in environmentally sensitive genes that might implicate specific environmental mutagens if found to be associated with a disease. Results: The presence of NAT2 slow acetylator genotype, and CYP1A2, GSTA1, and GSTM3 variants were associated with an average 3–5 fold increased risk. Conclusions: Exposures, such as to aromatic compounds, whose toxicity is modified by genotypes associated with outcome in our analysis may play a role in the environmental etiology of MPNs.

  13. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  14. Bio-compatibility, surface and chemical characterization of glow discharge plasma modified ZnO nanocomposite polycarbonate

    International Nuclear Information System (INIS)

    Bio compatibility is an important issue for synthesis of biomedical devices, which can be tested by bioadoptability and creations of active site to enhance the bacterial/cell growth in biomedical devices. Hence a systematic study was carried out to characterize the effects of Nitrogen ion plasma for creations of active site in nano composite polymer membrane. Nano particles of ZnO are synthesized by chemical root, using solution casting nano composite polymeric membranes were prepared and treated with Nitrogen ion plasma. These membranes were characterized by different technique such as optical microscopy, SEM- Scanning electron microscope, optical transmittance, Fourier transform infrared spectroscopy. Then biocompatibility for membranes was tested by testing of bio-adoptability of membrane

  15. Metalorganic chemical vapor deposition of anatase titanium dioxide on Si: Modifying the interface by pre-oxidation

    Science.gov (United States)

    Sandell, A.; Andersson, M. P.; Johansson, M. K.-J.; Karlsson, P. G.; Alfredsson, Y.; Schnadt, J.; Siegbahn, H.; Uvdal, P.

    2003-04-01

    The formation of TiO 2 films on clean and pre-oxidized Si(1 1 1) through chemical vapor deposition of titanium(IV) isopropoxide (TTIP) in ultra-high vacuum has been examined by synchrotron radiation photoelectron spectroscopy, X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy. In both cases, TTIP deposition at 500 °C eventually results in an anatase TiO 2 film with a carbon-free surface and the surface morphology of the anatase films is very similar. By using a novel way of combining photoemission and XAS data, it is demonstrated that the two situations have substantially different interfacial properties. Pre-oxidation of the surface at 500 °C passivates the surface so that the thickness of the amorphous TiSi xO y interface layer decreases from 30-35 to 15-25 Å and eliminates the formation of interfacial carbon completely.

  16. Effect of calf feeding regimes and diet EDTA on physico-chemical characteristics of veal stored under modified atmospheres.

    Science.gov (United States)

    Gariépy, C; Delaquis, P J; Pommier, S; De Passillé, A M; Fortin, J; Lapierre, H

    1998-05-01

    Physico-chemical characteristics of veal from 30 calves allotted to five different rations with respect to iron bioavailability were evaluated at packaging and after 2 and 4 weeks of storage under both 100% CO(2) and 100% N(2). The five diets were 'Milk', 'Grain', 'Mix' (combination of Milk and Grain) and 'Mix + EDTA' and 'Grain + EDTA' where 15 mg EDTA were added per mg Fe in the feed concentrate. Diet EDTA was generally more influential on veal quality than storage treatments. The chelator caused an unexpected pH drop in veal stored four weeks irrespective of storage conditions (p ≤ 0.05). However, the colour, texture and flavour of meat from animals fed EDTA in the Grain- and Mix-ration was equivalent to that of Milk-fed veal (p ≤ 0.05). The EDTA treatments also improved the appearance of veal under anoxic atmospheres. Upon storage however, the chelator increased veal drip losses (p ≤ 0.05) and also cooking losses from Grain-fed calves (p ≤ 0.05). Packaging under CO(2) decreased pH (p ≤ 0.05) and increased drip losses (p ≤ 0.05) but did not alter other physico-chemical parameters. Dietary treatments had no effect on shear forces (p > 0.05) which decreased after two weeks in storage (p ≤ 0.05) independent of gas atmospheres. Overall, the quality characteristics of pale veal were obtained following addition of EDTA in Grain- and Mix-fed animals and were maintained in storage. This approach looks promising for the veal industry but warrants further research. PMID:22063188

  17. Synthetic Pre-miRNA-Based shRNA as Potent RNAi Triggers

    Directory of Open Access Journals (Sweden)

    Kazuya Terasawa

    2011-01-01

    Full Text Available RNA interference (RNAi is a powerful tool for studying gene function owing to the ease with which it can selectively silence genes of interest, and it has also attracted attention because of its potential for therapeutic applications. Chemically synthesized small interfering RNAs (siRNAs and DNA vector-based short hairpin RNAs (shRNAs are now widely used as RNAi triggers. In contrast to expressed shRNAs, the use of synthetic shRNAs is limited. Here we designed shRNAs modeled on a precursor microRNA (pre-miRNA and evaluated their biological activity. We demonstrated that chemically synthetic pre-miRNA-based shRNAs have more potent RNAi activity than their corresponding siRNAs and found that their antisense strands are more efficiently incorporated into the RNA-induced silencing complex. Although greater off-target effects and interferon responses were induced by shRNAs than by their corresponding siRNAs, these effects could be overcome by simply using a lower concentration or by optimizing and chemically modifying shRNAs similar to synthetic siRNAs. These are challenges for the future.

  18. Review of long-term adverse effects associated with the use of chemically-modified animal and nonanimal source hyaluronic acid dermal fillers

    Directory of Open Access Journals (Sweden)

    Paul C Edwards

    2007-01-01

    Full Text Available Paul C Edwards1, John E Fantasia21Associate Professor (Clinical, Department of Periodontics and Oral Medicine, Pathology and Oncology, University of Michigan School of Dentistry, Ann Arbor MI, USA; 2Chief, Division of Oral Pathology, Department of Dental Medicine, Long Island Jewish Medical Center, New Hyde Park, NY, USAAbstract: Although only recently introduced, chemically-modified hyaluronic acid dermal fillers have gained widespread acceptance as “redefining” dermal fillers in the fields of dermatology and cosmetic facial surgery. Although hyaluronic acid-based dermal fillers have a low overall incidence of long term side effects, occasional adverse outcomes, ranging from chronic lymphoplasmacytic inflammatory reactions to classic foreign body-type granulomatous reactions have been documented. These long-term adverse events are reviewed.Keywords: hyaluronic acid, Restylane®, Hylaform®, injectable dermal filler, foreign body reaction, granuloma

  19. Electron transfer modifies chemical properties of C70 fullerene surface: An ab initio molecular dynamics study of C70O3 molozonides doped with light atoms

    Science.gov (United States)

    Bil, Andrzej; Hutter, Jürg; Morrison, Carole A.

    2014-06-01

    Light metal atoms such as Li, K (electronic state 2S1/2) or Ca (1S0) encapsulated in a C70 cage considerably modifies the chemical properties of the fullerene surface due to metal-to-cage electron transfer. H-doped and anion ozonide systems were also considered to validate the electron transfer hypothesis. The relative stabilities of the eight isomers of the C70O3 molozonide series at room temperature depend on the identity of the endohedral guest, as was the preferred channel for thermal decomposition. No electron transfer was observed for the complex N@C70 where the fullerene acts as an inert container for the 4S3/2 radical.

  20. Determination of vanadium(V) by direct automatic potentiometric titration with EDTA using a chemically modified electrode as a potentiometric sensor.

    Science.gov (United States)

    Quintar, S E; Santagata, J P; Cortinez, V A

    2005-10-15

    A chemically modified electrode (CME) was prepared and studied as a potentiometric sensor for the end-point detection in the automatic titration of vanadium(V) with EDTA. The CME was constructed with a paste prepared by mixing spectral-grade graphite powder, Nujol oil and N-2-naphthoyl-N-p-tolylhydroxamic acid (NTHA). Buffer systems, pH effects and the concentration range were studied. Interference ions were separated by applying a liquid-liquid extraction procedure. The CME did not require any special conditioning before using. The electrode was constructed with very inexpensive materials and was easily made. It could be continuously used, at least two months without removing the paste. Automatic potentiometric titration curves were obtained for V(V) within 5 x 10(-5) to 2 x 10(-3)M with acceptable accuracy and precision. The developed method was applied to V(V) determination in alloys for hip prosthesis. PMID:18970248

  1. Low temperature deposition and effect of plasma power on tin oxide thin films prepared by modified plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    This work presents low temperature (200 and 300 deg. C) thin film deposition of tin oxide (SnO2) using modified plasma enhanced chemical vapor deposition as a function of radio frequency power (100 - 500 W). Stannic chloride (SnCl4) was used as precursor and oxygen (O2, 300 SCCM) as reactant gas. Fine granular morphology was observed with tetragonal rutile structure grown along the [110] direction, at all the deposition conditions. Higher plasma power resulted in smoother morphology, improved crystallinity, and enhanced conductivity. Electrical resistivity value of as low as ∼0.01 Ω cm was obtained at the deposition temperature of 300 deg. C and 250 W of plasma power

  2. Extracellular biosynthesis of gadolinium oxide (Gd2O3 nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    2014-03-01

    Full Text Available As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3 nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoemission spectroscopy (XPS. The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC.

  3. Fatigue behavior of Ti-6Al-4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment.

    Science.gov (United States)

    Claros, Cesar Adolfo Escobar; Oliveira, Diego Pedreira; Campanelli, Leonardo Contri; Pereira da Silva, Paulo Sergio Carvalho; Bolfarini, Claudemiro

    2016-10-01

    This work evaluated the influence of the surface modification using acid etching combined with alkaline treatment on the fatigue strength of Ti-6Al-4V ELI alloy. The topography developed by chemical surface treatments (CST) was examined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Increased roughness and effective surface area were investigated and compared with the Ti-6Al-4V samples without modification. Surface composition was analyzed by energy dispersive X-ray spectroscopy (EDS). Axial fatigue resistance of polished and modified surfaces was determined by stepwise load increase tests and staircase test method. Light microscopy and SEM were employed to examine the fracture surface of the tested specimens. According to the results, a similar fatigue behavior was found and a negligible difference in the fatigue crack nucleation was observed for the Ti-6Al-4V with CST in comparison to the samples without treatment. PMID:27287139

  4. Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins.

    Science.gov (United States)

    Zhang, Yu; Gu, Ying; Lee, Hsi-Ming; Hambardjieva, Elena; Vranková, Kveta; Golub, Lorne M; Johnson, Francis

    2012-01-01

    Matrix metalloproteinases (MMPs) are essential for the degradation and turnover of components of the extracellular matrix (ECM) and, when pathologically elevated, mediate connective tissue loss (including bone destruction) in various inflammatory and other diseases. Tetracyclines (TCs) are known inhibitors of mammalian-derived MMPs, and non-antibiotic formulations of Doxycycline are FDA-approved to treat periodontitis and the chronic inflammatory skin disease, rosacea. Because the C-11/ C-12 diketonic moiety of the tetracyclines is primarily responsible, through zinc-binding, for MMP inhibition, we have uniquely modified curcumin as a "core" molecule, since it contains a similar enolic system and is known to have beneficial effects in diseases where connective-tissue loss occurs. Specifically we have developed new congeners which exhibit improved zinc-binding and solubility, and potent reduction of excessive MMP levels and activity. We now describe a series of curcuminoid bi- and tri-carbonylmethanes in which all of these properties are substantially improved. An N-phenylaminocarbonyl derivative of bis-demethoxycurcumin (CMC2.24) was selected as the "lead" substance because it showed superior potency in vitro (i.e., the lowest IC(50)) against a series of neutral proteases (MMPs) associated with tissue erosion. Moreover, CMC2.24 administered to diabetic rats orally (30mg/kg), reduced the secretion of pathologically-excessive levels of MMP-9 to normal in cultured peritoneal macrophages with no evidence of toxicity. Thus, this (and other similar novel) compound(s) may be useful in various diseases of connective-tissue loss. PMID:22830350

  5. How to find the optimal partner--studies of snurportin 1 interactions with U snRNA 5' TMG-cap analogues containing modified 2-amino group of 7-methylguanosine.

    Science.gov (United States)

    Piecyk, Karolina; Niedzwiecka, Anna; Ferenc-Mrozek, Aleksandra; Lukaszewicz, Maciej; Darzynkiewicz, Edward; Jankowska-Anyszka, Marzena

    2015-08-01

    Snurportin 1 is an adaptor protein that mediates the active nuclear import of uridine-rich small nuclear RNAs (U snRNA) by the importin-β receptor pathway. Its cellular activity influences the overall transport yield of small ribonucleoprotein complexes containing N(2),N(2),7-trimethylguanosine (TMG) capped U snRNA. So far little is still known about structural requirements related to molecular recognition of the trimethylguanosine moiety by snurportin in solution. Since these interactions are of a great biomedical importance, we synthesized a series of new 7-methylguanosine cap analogues with extended substituents at the exocyclic 2-amino group to gain a deeper insight into how the TMG-cap is adapted into the snurportin cap-binding pocket. Prepared chemical tools were applied in binding assays using emission spectroscopy. Surprisingly, our results revealed strict selectivity of snurportin towards the TMG-cap structure that relied mainly on its structural stiffness and compactness. PMID:26118337

  6. Chitosan hydrolysis using chitosan decomposition enzyme chemically modified by polyalkylene oxide - maleic anhydride copolymers; Poriarukirenoshido, musui marein kankyojugotai ni yotte kagaku shushoku shita kitosan bunkai koso wo mochiita kitosan kasui bunkai

    Energy Technology Data Exchange (ETDEWEB)

    Araya, Yoshitsune; Kajiuchi, Toshio; Hinode, Hirofumi; Haku, Tatsuto

    1999-01-05

    Pectinase on the market, which has chitosan hydrolysis activation, was chemically modified using two polyalkylene oxides - maleic anhydride copolymers of different hydrophilicity; the effect of the chemical modification of enzymes on the chitosan hydrolysis characteristics was experimentally investigated. As the characteristics, the initial activation of enzymes, the dynamics constant based on the Michaelis-Menten mechanism, thermal stability, and the variation of generating, reduced sugar quantities with time by the hydrolysis reaction were investigated. The result clarified that the hydrophilicity of modifiers and the modification rate of enzymes affected greatly the above enzymes characteristics. The initial activation of highly chemically modified enzymes was low regardless of the hydrophilicity of modifiers. It was confirmed that the Michaelis-Menten constant decreased, i.e. the affinity of modified enzymes and substrate increased, and that the thermal stability rose at 40 degrees C. It was also known that the chitosan hydrolysis reaction continued for a longer time when the modified enzyme was used. The above enzyme characteristics improved greatly when the modification rate raised using the hydrophilic modifier AKM-1510, polyalkylene oxide chain of which consists of only ethylene oxide. (translated by NEDO)

  7. RNA-sequencing Reveals Global Transcriptomic Changes in Nicotiana tabacum Responding to Topping and Treatment of Axillary-shoot Control Chemicals.

    Science.gov (United States)

    Singh, Sanjay K; Wu, Yongmei; Ghosh, Jayadri S; Pattanaik, Sitakanta; Fisher, Colin; Wang, Ying; Lawson, Darlene; Yuan, Ling

    2015-01-01

    Removal of terminal buds (topping) and control of the formation of axillary shoots (suckers) are common agronomic practices that significantly impact the yield and quality of various crop plants. Application of chemicals (suckercides) to plants following topping is an effective method for sucker control. However, our current knowledge of the influence of topping, and subsequent suckercide applications, to gene expression is limited. We analyzed the differential gene expression using RNA-sequencing in tobacco (Nicotiana tabacum) that are topped, or treated after topping by two different suckercides, the contact-localized-systemic, Flupro(®) (FP), and contact, Off-Shoot-T(®). Among the differentially expressed genes (DEGs), 179 were identified as common to all three conditions. DEGs, largely related to wounding, phytohormone metabolism and secondary metabolite biosynthesis, exhibited significant upregulation following topping, and downregulation after suckercide treatments. DEGs related to photosynthetic processes were repressed following topping and suckercide treatments. Moreover, topping and FP-treatment affect the expression of auxin and cytokinin signaling pathway genes that are possibly involved in axillary shoot formation. Our results provide insights into the global change of plant gene expression in response to topping and suckercide treatments. The regulatory elements of topping-inducible genes are potentially useful for the development of a chemical-free sucker control system. PMID:26670135

  8. Cysteine-10 on 17 β -Hydroxysteroid Dehydrogenase 1 Has Stabilizing Interactions in the Cofactor Binding Region and Renders Sensitivity to Sulfhydryl Modifying Chemicals.

    Science.gov (United States)

    Nashev, Lyubomir G; Atanasov, Atanas G; Baker, Michael E; Odermatt, Alex

    2013-01-01

    17 β -Hydroxysteroid dehydrogenase type 1 (17 β -HSD1) catalyzes the conversion of estrone to the potent estrogen estradiol. 17 β -HSD1 is highly expressed in breast and ovary tissues and represents a prognostic marker for the tumor progression and survival of patients with breast cancer and other estrogen-dependent tumors. Therefore, the enzyme is considered a promising drug target against estrogen-dependent cancers. For the development of novel inhibitors, an improved understanding of the structure-function relationships is essential. In the present study, we examined the role of a cysteine residue, Cys(10), in the Rossmann-fold NADPH binding region, for 17 β -HSD1 function and tested the sensitivity towards sulfhydryl modifying chemicals. 3D structure modeling revealed important interactions of Cys(10) with residues involved in the stabilization of amino acids of the NADPH binding pocket. Analysis of enzyme activity revealed that 17 β -HSD1 was irreversibly inhibited by the sulfhydryl modifying agents N-ethylmaleimide (NEM) and dithiocarbamates. Preincubation with increasing concentrations of NADPH protected 17 β -HSD1 from inhibition by these chemicals. Cys(10)Ser mutant 17 β -HSD1 was partially protected from inhibition by NEM and dithiocarbamates, emphasizing the importance of Cys(10) in the cofactor binding region. Substitution of Cys(10) with serine resulted in a decreased protein half-life, without significantly altering kinetic properties. Despite the fact that Cys(10) on 17 β -HSD1 seems to have limited potential as a target for new enzyme inhibitors, the present study provides new insight into the structure-function relationships of this enzyme. PMID:24348564

  9. Cysteine-10 on 17β-Hydroxysteroid Dehydrogenase 1 Has Stabilizing Interactions in the Cofactor Binding Region and Renders Sensitivity to Sulfhydryl Modifying Chemicals

    Directory of Open Access Journals (Sweden)

    Lyubomir G. Nashev

    2013-01-01

    Full Text Available 17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1 catalyzes the conversion of estrone to the potent estrogen estradiol. 17β-HSD1 is highly expressed in breast and ovary tissues and represents a prognostic marker for the tumor progression and survival of patients with breast cancer and other estrogen-dependent tumors. Therefore, the enzyme is considered a promising drug target against estrogen-dependent cancers. For the development of novel inhibitors, an improved understanding of the structure-function relationships is essential. In the present study, we examined the role of a cysteine residue, Cys10, in the Rossmann-fold NADPH binding region, for 17β-HSD1 function and tested the sensitivity towards sulfhydryl modifying chemicals. 3D structure modeling revealed important interactions of Cys10 with residues involved in the stabilization of amino acids of the NADPH binding pocket. Analysis of enzyme activity revealed that 17β-HSD1 was irreversibly inhibited by the sulfhydryl modifying agents N-ethylmaleimide (NEM and dithiocarbamates. Preincubation with increasing concentrations of NADPH protected 17β-HSD1 from inhibition by these chemicals. Cys10Ser mutant 17β-HSD1 was partially protected from inhibition by NEM and dithiocarbamates, emphasizing the importance of Cys10 in the cofactor binding region. Substitution of Cys10 with serine resulted in a decreased protein half-life, without significantly altering kinetic properties. Despite the fact that Cys10 on 17β-HSD1 seems to have limited potential as a target for new enzyme inhibitors, the present study provides new insight into the structure-function relationships of this enzyme.

  10. Effects of copper precursor concentration on the growth of cupric oxide nanorods for photoelectrode using a modified chemical bath deposition method

    International Nuclear Information System (INIS)

    Highlights: • CuO nanorod photoelectrodes were prepared by modified CBD method. • The CuO nanorods were vertically grown with a high growth rate. • Effects of precursor concentration on the CuO nanorods were investigated. - Abstract: In this study, vertically aligned CuO nanorods were grown using a modified chemical bath deposition method with various copper precursor concentrations. The morphological, structural, optical and photoelectrochemical properties of the synthesized CuO samples were characterized using a field-emission scanning electron microscope, an X-ray diffractometer, a UV–visible spectrometer and a three-electrode potentiostat, respectively. The growth rates of the samples varied from 4.3 to 500 nm/min with the varying precursor concentrations. The vertically well-grown CuO nanorods exhibited one-dimensional growth along the (0 2 0) plane. We obtained a maximum photocurrent density of −1.05 mA/cm2 at −0.6 V (vs. SCE) from the CuO nanorod photoelectrode grown using the 10 mM copper precursor concentration

  11. Effects of copper precursor concentration on the growth of cupric oxide nanorods for photoelectrode using a modified chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hee-bong [Department of Nano Science and Engineering, High Safety Vehicle Core Technology Research Center, Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, Hyukhyun, E-mail: hhryu@inje.ac.kr [Department of Nano Science and Engineering, High Safety Vehicle Core Technology Research Center, Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Won-Jae [Department of Materials and Components Engineering, Dong-Eui University, Busan 614-714 (Korea, Republic of)

    2015-01-25

    Highlights: • CuO nanorod photoelectrodes were prepared by modified CBD method. • The CuO nanorods were vertically grown with a high growth rate. • Effects of precursor concentration on the CuO nanorods were investigated. - Abstract: In this study, vertically aligned CuO nanorods were grown using a modified chemical bath deposition method with various copper precursor concentrations. The morphological, structural, optical and photoelectrochemical properties of the synthesized CuO samples were characterized using a field-emission scanning electron microscope, an X-ray diffractometer, a UV–visible spectrometer and a three-electrode potentiostat, respectively. The growth rates of the samples varied from 4.3 to 500 nm/min with the varying precursor concentrations. The vertically well-grown CuO nanorods exhibited one-dimensional growth along the (0 2 0) plane. We obtained a maximum photocurrent density of −1.05 mA/cm{sup 2} at −0.6 V (vs. SCE) from the CuO nanorod photoelectrode grown using the 10 mM copper precursor concentration.

  12. Metal modified graphite. An innovative material for systems converting electro-chemical energy; Metallmodifizierter Graphit. Ein innovativer Werkstoff fuer Systeme zur elektrochemischen Energieumwandlung

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Peter

    2007-07-23

    The work deals with metal modification of graphite electrodes in a water-acid electrolyte solution. The target is to improve the catalytic properties of graphite electrodes as they are applied in redox storage batteries for storing electric energy. Different carbon and graphite materials were used and coated electro-chemically with different metals. After being coated with metal the graphite and carbon electrodes were investigated in terms of changing their catalytic properties by means of impedance measurements. It was shown, a metal coating without a prior activation with electro-chemical oxidation-reduction cycles only results in a low or zero increase of the catalytic properties. Investigations at the electrode material glass carbon showed, a prior activation of the electrode surface by means of electro-chemical oxidation-reduction cycles decreases the penetration resistance. The activation of the glass carbon surface prior to the surface coating with metal is favourable to the electro-chemical properties of the metal-modified electrode. All carbon types, which were used in this work, could be activated at a different level by means of electro-chemical oxidation-reduction cycles depending on the carbon type. The investigations further showed that the edge levels of the carbon were activated by means of the electro-chemical oxidation-reduction cycles. The metal precipitation favourably occurs at the activated positions. (orig.) [German] Die Arbeit befasst sich mit der Metallmodifizierung von Graphitelektroden in waessriger saurer Elektrolytloesung. Ziel ist es die katalytischen Eigenschaften von Graphitelektroden wie sie in Redoxspeicherbatterien zur Speicherung von elektrischer Energie eingesetzt werden zu verbessern. Fuer die Untersuchungen wurden unterschiedliche Kohlenstoff und Graphitmaterialien eingesetzt, die elektrochemisch mit verschiedenen Metallen belegt wurden. Die Graphit- und Kohlenstoffelektroden wurden nach der Metallbelegung durch

  13. Boron Nitride Nanosheets (BNNSs) Chemically Modified by "Grafting-From" Polymerization of Poly(caprolactone) for Thermally Conductive Polymer Composites.

    Science.gov (United States)

    Lee, Jinseong; Jung, Haejong; Yu, Seunggun; Man Cho, Suk; Tiwari, Vimal K; Babu Velusamy, Dhinesh; Park, Cheolmin

    2016-07-01

    To meet the growing demand for rapid heat dissipation in electronic devices to ensure their reliable performance with a high level of safety, many polymer composites with thermally conductive but electrically insulating 2D boron nitride nanosheets (BNNSs) are being developed. Here we present an efficient way to enhance the thermal conductivity (TC) of a polymer composite by means of "grafting-from" polymerization of a poly(caprolactone) (PCL) onto BNNSs. The BNNSs, which were exfoliated from bulk BN by means of ultra-sonication, were prepared by means of radical oxidation. These oxidized BNNSs (oxi-BNNSs) were employed as initiators for subsequent ring-opening polymerization of PCL, which successfully resulted in PCL chemically grafted onto BNNSs (PCL-g-BNNSs). The excellent dispersion of PCL-g-BNNSs in common solvents allowed us to readily fabricate a polymer composite that contained PCL-g-BNNSs embedded in a PCL matrix, and the composite showed TC values that were five and nine times greater in the out-of-plane and in-plane mode, respectively, than those of pristine PCL. PMID:27283727

  14. Prostaglandins can modify gamma-radiation and chemical induced cytotoxicity and genetic damage in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Das, U.N.; Ramadevi, G.; Rao, K.P.; Rao, M.S. (Nizam' s Institute of Medical Sciences, Hyderabad (India))

    1989-12-01

    The effect of prostaglandin E1, E2, and F2 alpha on gamma-radiation, benzo(a)pyrene and diphenylhydantoin-induced cytotoxicity in vivo and genotoxicity in vitro was investigated. Prostaglandin E1 prevented both cytotoxic and genotoxic actions of all the three agents, where as both PGE2 and PGF2 alpha were ineffective. In fact, it was seen that both PGE2 and PGF2 alpha are genotoxic by themselves. Gamma-linolenic acid and dihomogamma-linolenic acid, the precursor of PGE1 were also as protective as that of PGE1, where as arachidonic acid, the precursor of 2 series PGs, has genotoxic actions to human lymphocytes in vitro. These results suggest that prostaglandins and their precursors can determine the susceptibility of cells to cytotoxic and genotoxic actions of chemicals and radiation. This study is particularly interesting since, it is known that some tumor cells contain excess of PGE2 and PGF2 alpha and many carcinogens can augment the synthesis of 2 series of PGs.

  15. Prostaglandins can modify gamma-radiation and chemical induced cytotoxicity and genetic damage in vitro and in vivo

    International Nuclear Information System (INIS)

    The effect of prostaglandin E1, E2, and F2 alpha on gamma-radiation, benzo(a)pyrene and diphenylhydantoin-induced cytotoxicity in vivo and genotoxicity in vitro was investigated. Prostaglandin E1 prevented both cytotoxic and genotoxic actions of all the three agents, where as both PGE2 and PGF2 alpha were ineffective. In fact, it was seen that both PGE2 and PGF2 alpha are genotoxic by themselves. Gamma-linolenic acid and dihomogamma-linolenic acid, the precursor of PGE1 were also as protective as that of PGE1, where as arachidonic acid, the precursor of 2 series PGs, has genotoxic actions to human lymphocytes in vitro. These results suggest that prostaglandins and their precursors can determine the susceptibility of cells to cytotoxic and genotoxic actions of chemicals and radiation. This study is particularly interesting since, it is known that some tumor cells contain excess of PGE2 and PGF2 alpha and many carcinogens can augment the synthesis of 2 series of PGs

  16. The topology of the promoter of RNA polymerase II- and III-transcribed genes is modified by the methylation of 5'-CG-3' dinucleotides.

    OpenAIRE

    Muiznieks, I; Doerfler, W

    1994-01-01

    In eukaryotic cells, RNA polymerase II- and III-transcribed promoters can be inactivated by sequence-specific methylation. For some promoter motifs, the introduction of 5-methyldeoxycytidine (5-mC) residues has been shown to alter specific promoter motif-protein interactions. To what extent does the presence of 5-mC in promoter or regulatory DNA sequences affect the structure of DNA itself. We have investigated changes in DNA bending in three naturally occurring DNA elements, the late E2A pro...

  17. Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon

    Science.gov (United States)

    Prokhorova, Irina V.; Osterman, Ilya A.; Burakovsky, Dmitry E.; Serebryakova, Marina V.; Galyamina, Maria A.; Pobeguts, Olga V.; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G.; Govorun, Vadim M.; Bogdanov, Alexey A.; Sergiev, Petr V.; Dontsova, Olga A.

    2013-11-01

    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show - using proteomic analysis and dual fluorescence reporter in vivo assays - that m2G966 and m5C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m2G966 and m5C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon.

  18. Optimization of a siRNA Carrier Modified with a pH-Sensitive Cationic Lipid and a Cyclic RGD Peptide for Efficiently Targeting Tumor Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Hada

    2015-09-01

    Full Text Available In recent years, anti-angiogenic therapy has attracted much interest because it is a versatile approach to treating most types of tumors, and therefore would be expected to be applicable for various cancers. Severe adverse events in patients treated with currently available anti-angiogenic therapeutics have, however, been reported, and these are caused by their inhibitory effects in normal tissue. To achieve an efficient anti-angiogenic therapy with minimal toxicity, a drug delivery system (DDS specific to tumor endothelial cells (TECs is needed. Cyclic RGD (cRGD is a well-known ligand against αVβ3 integrin that is expressed at high levels in the cell surface of TECs. To address this issue, we previously developed a cyclic RGD-equipped liposomal DDS (RGD-MEND in which small interfering RNA (siRNA was encapsulated. However, in the previous study, details of the preparation steps were not thoroughly examined. In this paper, to produce the most efficient delivery of therapeutic TECs, we explored optimum preparation conditions and components of the RGD-MEND. The cellular uptake and silencing ability of the RGD-MEND were investigated as a function of ligand density, poly(ethyleneglycol linker length, and lipid composition. As a result, a knockdown efficiency that was five-fold higher than that of the previously reported one (ED50, from 4.0 to 0.75 mg/kg was achieved.

  19. Modified nucleotides m(2)G966/m(5)C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon.

    Science.gov (United States)

    Prokhorova, Irina V; Osterman, Ilya A; Burakovsky, Dmitry E; Serebryakova, Marina V; Galyamina, Maria A; Pobeguts, Olga V; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G; Govorun, Vadim M; Bogdanov, Alexey A; Sergiev, Petr V; Dontsova, Olga A

    2013-01-01

    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show--using proteomic analysis and dual fluorescence reporter in vivo assays--that m(2)G966 and m(5)C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m(2)G966 and m(5)C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon. PMID:24241179

  20. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation.

    Science.gov (United States)

    Jiang, Pingping; Jin, Xiaofen; Peng, Yanyan; Wang, Meng; Liu, Hao; Liu, Xiaoling; Zhang, Zengjun; Ji, Yanchun; Zhang, Juanjuan; Liang, Min; Zhao, Fuxin; Sun, Yan-Hong; Zhang, Minglian; Zhou, Xiangtian; Chen, Ye; Mo, Jun Qin; Huang, Taosheng; Qu, Jia; Guan, Min-Xin

    2016-02-01

    Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disorder. Nuclear modifier genes are proposed to modify the phenotypic expression of LHON-associated mitochondrial DNA (mtDNA) mutations. By using an exome sequencing approach, we identified a LHON susceptibility allele (c.572G>T, p.191Gly>Val) in YARS2 gene encoding mitochondrial tyrosyl-tRNA synthetase, which interacts with m.11778G>A mutation to cause visual failure. We performed functional assays by using lymphoblastoid cell lines derived from members of Chinese families (asymptomatic individuals carrying m.11778G>A mutation, or both m.11778G>A and heterozygous p.191Gly>Val mutations and symptomatic subjects harboring m.11778G>A and homozygous p.191Gly>Val mutations) and controls lacking these mutations. The 191Gly>Val mutation reduced the YARS2 protein level in the mutant cells. The aminoacylated efficiency and steady-state level of tRNA(Tyr) were markedly decreased in the cell lines derived from patients both carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The failure in tRNA(Tyr) metabolism impaired mitochondrial translation, especially for polypeptides with high content of tyrosine codon such as ND4, ND5, ND6 and COX2 in cells lines carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The YARS2 p.191Gly>Val mutation worsened the respiratory phenotypes associated with m.11778G>A mutation, especially reducing activities of complexes I and IV. The respiratory deficiency altered the efficiency of mitochondrial ATP synthesis and increased the production of reactive oxygen species. Thus, mutated YARS2 aggravates mitochondrial dysfunctions associated with the m.11778G>A mutation, exceeding the threshold for the expression of blindness phenotype. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutation and mutated nuclear-modifier YARS2. PMID:26647310

  1. Generation of siRNA Nanosheets for Efficient RNA Interference

    Science.gov (United States)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  2. Effects of the modified atmosphere and irradiation on the microbiological, physical-chemical and sensory characteristics of the 'minas frescal' cheese

    International Nuclear Information System (INIS)

    The experiment was divided into two parts. Initially, it was studied the 'Minas Frescal' cheeses packed under atmospheric air, modified atmosphere of 70% CO2 and 30% N2 (ATM) and vacuum. Second the cheeses packed under these three treatments had been radiated by doses of 2 KGy. In the two parts of the experiment, it was analyzed the microbial evolution and, the sensory and physical-chemical characteristics of the cheeses under the different treatments during a 4 deg C-storage. In the first phase of the experiment it was verified that the ATM and the vacuum decreased the intensity of the total population growth of aerobic mesophilic and psychotropic and had reduced the population of Staphylococcus positive coagulase, but they had not been efficient controlling the total coliforms and Escherichia coli, while in control all the populations had continuously grown, according to the sensory characteristics of the cheeses, color, odor and appearance. These characteristics were kept the same during the 40 days of storage, and the control decreased the acceptability levels gradually, being rejected in the 17th day. In the second part of the experiment, it was observed that a 2KGy-irradiation over the 'Minas Frescal' cheeses reduced the populations of aerobic mesophilic, aerobic and anaerobic psychotropic, Staphylococcus positive coagulase, total coliforms and Escherichia coli. The ATM and vacuum treatments were very efficient therefore they prevented the growth of these microorganisms during the storage, while in control, the aerobic mesophilic and psychotropic population grew during the storage. According to sensory aspects, the ATM treatment was the most efficient one, because it kept the appearance, texture and flavor for more than 43 days while the vacuum kept for 36 days and the control for only 8 days. The use of the irradiation with modified atmosphere and low temperatures of storage increased the shelf life of the cheeses, hindering the growth of the microbial

  3. Antisense Oligonucleotides: Treating Neurodegeneration at the Level of RNA

    OpenAIRE

    DeVos, Sarah L.; Miller, Timothy M.

    2013-01-01

    Adequate therapies are lacking for Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and other neurodegenerative diseases. The ability to use antisense oligonucleotides (ASOs) to target disease-associated genes by means of RNA may offer a potent approach for the treatment of these, and other, neurodegenerative disorders. In modifying the basic backbone chemistry, chemical groups, and target sequence, ASOs can act through numerous mechanisms to decr...

  4. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM.

    Science.gov (United States)

    Issa, Yousry M; Mohamed, Sabrein H; Baset, Mohamed Abd-El

    2016-08-01

    Chemically modified carbon-paste (CMCP) and membrane- sensors based on incorporating benzothonium-tetraphenylborate (BT-TPB) were constructed for the analysis of benzethonium chloride, and some other surfactants such as sodium lauryl ether sulphate (SLES), sodium dodecyl sulphate (SDS), and linear alkylbenzene sulphonic acid (LABSA). All sensors showed good sensitivity and reverse wide linearity over a concentration range of 5.97×10(-7) to 1.00×10(-3) and 5.96×10(-7) to 3.03×10(-3)molL(-1) with limit of detection of 3.92×10(-7)and 3.40×10(-7)molL(-1) for membrane and chemically modified carbon paste sensors, respectively, with respect to benzethonium chloride (BT.Cl). They could be used over a wide pH range of 2.0-10.0. The thermal coefficients of membrane and CMCP sensors are 5.40×10(-4), 1.17×10(-4)V/°C, respectively. The sensors indicated a wide selectivity over different inorganic cations. The effect of soaking on the surface morphology of the membrane sensor was studied using EDX-SEM and AFM techniques. The response time was <10s The freshly prepared, exhausted membrane, and CMCP sensors were successfully applied for the potentiometric determination of the pure BT.Cl solution. They were also used for the determination of its pharmaceutical formulation Dermoplast(®) antibacterial spray (20% benzocaine+0.2% benzethonium chloride) with recovery values ranging from 97.54±1.70 to 101.25±1.12 and from 96.32±2.49 to 101.23±2.15%. The second goal of these sensors is the potentiometric determination of different surfactants such as SLES, SDS, and LABSA with good recovery values using BT.Cl as a titrant in their pure forms, and in samples containing one of them (shampoo, Touri(®) dishwashing liquid, and waste water). The statistical analysis of the obtained data was studied. PMID:27216669

  5. Effect of modified atmosphere and vacuum packaging on selected chemical parameters of rainbow trout (Oncorhynchus mykiss and carp (Cyprinus carpio cuts freshness

    Directory of Open Access Journals (Sweden)

    Babić Jelena A.

    2014-01-01

    Full Text Available The purpose of food packing in modified atmosphere is to extend its sustainability by preventing both biochemical processes and growth of spoilage bacteria. Gases or their mixtures which are mostly used in the modified atmosphere food packing technology are carbon-dioxide (CO2, oxygen (O2 and nitrogen (N2. The aim of our research was to examine the influence of packaging in modified atmosphere and vacuum on the total volatile basic nitrogen (TVB-N content and pH in muscle of rainbow trout (Oncorhynchus mykiss and common carp (Cyprinus carpio, as well as to determine the most suitable gas mixtures for packing of these freshwater species. Three sample groups of trout and carp cuts were investigated. The first two groups were packaged in modified atmosphere with different gas ratios: 60%CO2+40%N2 (I group and 40%CO2+60%N2 (II group, whereas the samples from third, control group, (III group were vacuum packaged. During trials samples were stored in refrigerator at +3°C. Determination of TVB-N and pH was performed on 1st, 7th and 14th day of storage. The obtained results indicate that the investigated mixtures of gases and vacuum as well had a significant influence on the values of TVB-N in trout and carp cuts samples. The lowest increase in TVB-N was established in trout and carp cuts samples from the group I, whereas the highest increase was established in samples from group III. Statistical significant difference (p < 0,001 between the average values of TVB-N for trout (I group: 18,17 ± 0,93; II group: 20,90 ± 0,81 and III group: 36,18 ± 2,65 mg N/100 g and carp cuts (I group: 26,74 ± 1,48; II group: 30,02 ± 0,31 and III group: 35,10 ± 1,75 mg N/100 g was established on 14th day. The lowest pH value was established in samples packaged in modified atmosphere with 60% CO2 +40% N2 (I group. On 14th day of testing the obtained value was 6,15 ± 0,09 for trout and 5,94 ± 1,11 for carp samples. Increase in pH value in trout samples packed in

  6. Deuterated nucleotides as chemical probes of RNA structure: a detailed protocol for the enzymatic synthesis of a complete set of nucleotides specifically deuterated at ribose carbons

    Directory of Open Access Journals (Sweden)

    Robert N. Azad

    2015-05-01

    Full Text Available We describe here a detailed protocol for the synthesis of ribonucleotides specifically deuterated at each ribose carbon atom. We synthesized 20 specifically deuterated ribonucleotides: ATP, CTP, GTP, and UTP, each of which contained one of five deuterated riboses (either 1′-D, 2″-D, 3′-D, 4′-D, or 5′,5″-D2. Our synthetic approach is inspired by the pioneering work of Tolbert and Williamson, who developed a method for the convenient one-pot enzymatic synthesis of nucleotides (Tolbert, T. J. and Williamson, J. R. (1996 J. Am. Chem. Soc. 118, 7929–7940. Our protocol consists of a comprehensive list of required chemical and enzymatic reagents and equipment, detailed procedures for enzymatic assays and nucleotide synthesis, and chromatographic procedures for purification of deuterated nucleotides. As an example of the utility of specifically deuterated nucleotides, we used them to synthesize specifically deuterated sarcin/ricin loop (SRL RNA and measured the deuterium kinetic isotope effect on hydroxyl radical cleavage of the SRL.

  7. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring.

    Science.gov (United States)

    Short, A K; Fennell, K A; Perreau, V M; Fox, A; O'Bryan, M K; Kim, J H; Bredy, T W; Pang, T Y; Hannan, A J

    2016-01-01

    Recent studies have suggested that physiological and behavioral traits may be transgenerationally inherited through the paternal lineage, possibly via non-genomic signals derived from the sperm. To investigate how paternal stress might influence offspring behavioral phenotypes, a model of hypothalamic-pituitary-adrenal (HPA) axis dysregulation was used. Male breeders were administered water supplemented with corticosterone (CORT) for 4 weeks before mating with untreated female mice. Female, but not male, F1 offspring of CORT-treated fathers displayed altered fear extinction at 2 weeks of age. Only male F1 offspring exhibited altered patterns of ultrasonic vocalization at postnatal day 3 and, as adults, showed decreased time in open on the elevated-plus maze and time in light on the light-dark apparatus, suggesting a hyperanxiety-like behavioral phenotype due to paternal CORT treatment. Interestingly, expression of the paternally imprinted gene Igf2 was increased in the hippocampus of F1 male offspring but downregulated in female offspring. Male and female F2 offspring displayed increased time spent in the open arm of the elevated-plus maze, suggesting lower levels of anxiety compared with control animals. Only male F2 offspring showed increased immobility time on the forced-swim test and increased latency to feed on the novelty-supressed feeding test, suggesting a depression-like phenotype in these animals. Collectively, these data provide evidence that paternal CORT treatment alters anxiety and depression-related behaviors across multiple generations. Analysis of the small RNA profile in sperm from CORT-treated males revealed marked effects on the expression of small noncoding RNAs. Sperm from CORT-treated males contained elevated levels of three microRNAs, miR-98, miR-144 and miR-190b, which are predicted to interact with multiple growth factors, including Igf2 and Bdnf. Sustained elevation of glucocorticoids is therefore involved in the transmission of paternal

  8. A Novel Chemically Modified Curcumin “Normalizes” Wound-Healing in Rats with Experimentally Induced Type I Diabetes: Initial Studies

    Science.gov (United States)

    Zhang, Yazhou; McClain, Steve A.; Lee, Hsi-Ming; Elburki, Muna S.; Yu, Huiwen; Gu, Ying; Zhang, Yu; Wolff, Mark; Johnson, Francis; Golub, Lorne M.

    2016-01-01

    Introduction. Impaired wound-healing in diabetics can lead to life-threatening complications, such as limb amputation, associated in part with excessive matrix metalloproteinase- (MMP-) mediated degradation of collagen and other matrix constituents. In the current study, a novel triketonic chemically modified curcumin, CMC2.24, was tested for efficacy in healing of standardized skin wounds in streptozotocin-induced diabetic rats. Initially, CMC2.24 was daily applied topically at 1% or 3% concentrations or administered systemically (oral intubation; 30 mg/kg); controls received vehicle treatment only. Over 7 days, the diabetics exhibited impaired wound closure, assessed by gross and histologic measurements, compared to the nondiabetic controls. All drug treatments significantly improved wound closure with efficacy ratings as follows: 1% 2.24 > systemic 2.24 > 3% 2.24 with no effect on the severe hyperglycemia. In subsequent experiments, 1% CMC2.24 “normalized” wound-healing in the diabetics, whereas 1% curcumin was no more effective than 0.25% CMC2.24, and the latter remained 34% worse than normal. MMP-8 was increased 10-fold in the diabetic wounds and topically applied 1% (but not 0.25%) CMC2.24 significantly reduced this excessive collagenase-2; MMP-13/collagenase-3 did not show significant changes. Additional studies indicated efficacy of 1% CMC2.24 over more prolonged periods of time up to 30 days.

  9. Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition

    International Nuclear Information System (INIS)

    Diamond-Like Carbon (DLC) films find abundant applications as hard and protective coatings due to their excellent mechanical and tribological performances. The addition of new elements to the amorphous DLC matrix tunes the properties of this material, leading to an extension of its scope of applications. In order to scale up their production to a large plasma reactor, DLC films modified by silicon and oxygen additions have been grown in an industrial plant of 1m3 by means of pulsed-DC plasma-activated chemical vapour deposition (PACVD). The use of an additional microwave (MW) source has intensified the glow discharge, partly by electron cyclotron resonance (ECR), accelerating therefore the deposition process. Hence, acetylene, tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO) constituted the respective gas precursors for the deposition of a-C:H (DLC), a-C:H:Si and a-C:H:Si:O films by dual MW/pulsed-DC PACVD. This work presents systematic studies of the deposition rate, hardness, adhesion, abrasive wear and water contact angle aimed to optimize the technological parameters of deposition: gas pressure, relative gas flow of the monomers and input power. This study has been completed with measures of the atomic composition of the samples. Deposition rates around 1 μm/h, typical for standard processes held in the large reactor, were increased about by a factor 10 when the ionization source has been operated in ECR mode

  10. Soft chemical synthesis of carbon-modified Ti3+ self-doped hierarchical porous TiO2 with enhanced photocatalysis

    Science.gov (United States)

    Zhao, Chunxia; Wang, Zongsheng; Chen, Wen; Song, Yanbao; Chen, Xuehua; Xie, Tao

    2016-03-01

    Carbon-modified Ti3+ self-doped hierarchical porous titanium dioxides were synthesized by one-step soft chemical method. The contents of carbon and Ti3+ of the catalysts were tuned through a facile heat treatment. The prepared photocatalysts possess well-packed uniform macropores with the size of ˜200nm, mesoporous structure with the pore size of 5.9-6.8nm, and the specific surface area of 50-200m2/g. The results illustrate the carbon combined with TiO2 via the interfacial C‑O‑Ti bonds and the rich existence of Ti3+. The catalyst with 18wt.% carbon content exhibits a degradation ratio of crystal violet up to 97.5%. The enhanced photocatalysis is ascribed to the synergistic effect of carbon and Ti3+. The interfacial C‑O‑Ti bonds act as the pathway to transfer excited electrons and the Ti3+ can trap the electrons to hinder the recombination of electrons and holes.

  11. Photoluminescence and chemical properties of ZnS:Mn2+ nanocrystal powder synthesized in the AOT reverse micelles modified with lauryl phosphate

    International Nuclear Information System (INIS)

    A transparent colloidal solution of the ZnS:Mn2+ nanocrystal was prepared in hybrid reverse micelles comprising two kinds of surfactants: sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and lauryl phosphate (HLP). Then, the powdered sample was obtained from the colloidal solution by coagulation of these micelles. Modification of HLP surfactant increases the photoluminescence (PL) intensity due to the d-d transition of Mn2+ ions for both of the colloidal solution and the powder. FT-IR spectra and energy dispersive X-ray analysis (EDX) data reveal that HLP modifies ZnS:Mn2+ nanocrystals more preferentially than AOT. The detailed investigation on chemical interaction between HLP molecules and ZnS nanocrystals with and without Mn2+ is performed by solid-state nuclear magnetic resonance (NMR) techniques of 31P inversion recovery and 1H →31P cross-polarization (CP) in a magnetic field of 11.7 T using magic angle spinning (MAS) at a high spinning rate of 19 and 28 kHz, respectively. These NMR results suggest that most of HLP molecules strongly interact with nanocrystals through coordination bonds and/or hydrogen bonds

  12. miRNA Alterations Modify Kinase Activation In The IGF-1 Pathway And Correlate With Colorectal Cancer Stage And Progression In Patients

    Directory of Open Access Journals (Sweden)

    David L. Knowlton, Kim Tang, Peter V. Henstock, Romesh R. Subramanian

    2011-01-01

    Full Text Available Investigation of therapy naïve human tumor and adjacent normal tissue biopsies demonstrated that expression levels of miRNAs are altered at and between stages of CRC. Targets of these altered miRNAs are members of the Insulin signaling pathways. Phosphorylation states of several molecules in the Insulin signaling pathways were altered between stages of CRC, and significantly the change in molecular phosphorylation state correlated with decreases in specific miRNAs that target them. This data establishes a direct relationship between decreased expression of specific miRNAs and increased phosphorylation events in the IGF-1 pathway and identifies the IGF-1 pathway as a critical driver of colorectal cancer.The expression levels of 319 miRNAs and phosphorylation levels of major signaling proteins were determined. Interestingly, we observed that miRNAs were altered in expression and several signaling molecules were altered in phosphorylation levels at and between each stage of CRC. Furthermore, many of the miRNAs that are differentially expressed at each CRC stage were targeting these same signaling proteins identified to be altered in phosphorylation level. Thus, our studies define a subset of important miRNAs to classify CRC stage and a relationship between miRNA depression and elevated phosphorylation of IGF-1R pathway signaling molecules.

  13. MRPS18CP2 alleles and DEFA3 absence as putative chromosome 8p23.1 modifiers of hearing loss due to mtDNA mutation A1555G in the 12S rRNA gene

    Directory of Open Access Journals (Sweden)

    Fischel-Ghodsian Nathan

    2007-12-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations account for at least 5% of cases of postlingual, nonsyndromic hearing impairment. Among them, mutation A1555G is frequently found associated with aminoglycoside-induced and/or nonsyndromic hearing loss in families presenting with extremely variable clinical phenotypes. Biochemical and genetic data have suggested that nuclear background is the main factor involved in modulating the phenotypic expression of mutation A1555G. However, although a major nuclear modifying locus was located on chromosome 8p23.1 and regardless intensive screening of the region, the gene involved has not been identified. Methods With the aim to gain insights into the factors that determine the phenotypic expression of A1555G mutation, we have analysed in detail different genetic and genomic elements on 8p23.1 region (DEFA3 gene absence, CLDN23 gene and MRPS18CP2 pseudogene in a group of 213 A1555G carriers. Results Family based association studies identified a positive association for a polymorphism on MRPS18CP2 and an overrepresentation of DEFA3 gene absence in the deaf group of A1555G carriers. Conclusion Although none of the factors analysed seem to have a major contribution to the phenotype, our findings provide further evidences of the involvement of 8p23.1 region as a modifying locus for A1555G 12S rRNA gene mutation.

  14. Modified Nucleoside Triphosphates for in-vitro Selection Techniques

    Science.gov (United States)

    Iribarren, Adolfo; Dellafiore, María; Montserrat, Javier

    2016-05-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  15. MicroRNA silencing in primates: towards development of novel therapeutics

    DEFF Research Database (Denmark)

    Petri, Andreas; Lindow, Morten; Kauppinen, Sakari

    2009-01-01

    MicroRNAs (miRNA) comprise an abundant class of small noncoding RNAs that act as important posttranscriptional regulators of gene expression. Accumulating evidence showing that aberrantly expressed miRNAs play important roles in human cancers underscores them as potential targets for therapeutic ...... intervention. Recent reports on efficient miRNA silencing in rodents and nonhuman primates using high-affinity targeting by chemically modified antisense oligonucleotides highlight the utility of such compounds in the development of miRNA-based cancer therapeutics....

  16. microRNA-210 MODIFIED HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS INDUCE CAPILLARY FORMATION%microRNA-210基因修饰人脐静脉内皮细胞诱导血管形成

    Institute of Scientific and Technical Information of China (English)

    娄远蕾; 高法梁; 谢安; 郭菲; 邓志锋; 汪泱

    2012-01-01

    Objective To construct human recombinant lentiviral expression vector of microRNA-210 (miR-210) and to explore the over-expression of miR-210 on the capillary formation in human umbilical vein endothelial cells 12 (HUVE-12). Methods The recombinant lentiviral expression vector of pGCSIL-green fluorescent protein (GFP)-pre-miR-210 was constructed by molecular cloning and transfected to HUVE-12 (LV-miR-210-GFP group), only pGCSIL-GFP was transfected as control group (LV-GFP group). The miR-210 expression activity was evaluated by GFP reporter through fluorescence detection and real-time fluorescent quantitative PCR. The ephrinA3 protein expression was measured by flow cytometry. The concentration of vascular endothelial growth factor (VEGF) in culture supernatant was determined by ELISA. The cells were cultured in 96-well culture plate coated with Matrigel to assess the ability of capillary formation. Results The recombinant plasmid pGCSIL-GFP-pre-miR-210 was confirmed by restriction endonuclease analysis and DNA sequencing. Fluorescence detection showed that the fluorescence intensity of GFP was highest between 48 and 72 hours after transfection. Real-time fluorescent quantitative PCR showed that the miR-210 expression of LV-miR-210-GFP group was 9.72 times higher than that in LV-GFP group ((t=—11.10, P=0.00). Flow cytometry analysis showed that the positive cell rate of enphrinA3 in LV-miR-210-GFP group (12.52% + 0.67%) was significantly lower than that in LV-GFP group (73.22% ± 1.45%) (t= -66.12, P=0.00). The concentration of VEGF in supernatant in LV-miR-210-GFP group was significantly higher than that in LV-GFP group [(305.29 + 16.52) pg/mL vs. (42.52 ±3.11)pg/mL, (=-27.06, P=0.00]. In vitro capillary-like formation assay showed that the number of capillaries was significantly larger in LV-miR-210-GFP group than in LV-GFP group (17.33 + 6.33 vs. 6.33 ± 2.33, t=-2.83, P=0.04). Conclusion The recombinant lentiviral expression vector of miR-210 is constructed

  17. RNA genetics

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, E. (Instituto de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Canto Blanco, Madrid (ES)); Holland, J.J. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Biology); Ahlquist, P. (Wisconsin Univ., Madison, WI (USA). Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA genetics: Retroviruses, Viroids, and RNA recombination, Volume 2. Topics covered include: Replication of retrovirus genomes, Hepatitis B virus replication, and Evolution of RNA viruses.

  18. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    International Nuclear Information System (INIS)

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A)+RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A)+ RNAs comprising mRNAs and poly (A)+ non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A)+ RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing

  19. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan); Igarashi, Masayuki [Laboratory of Disease Biology, Institute of Microbial Chemistry, Shinagawa-ku, Tokyo 141-0021 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan)

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  20. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE.

    Science.gov (United States)

    Flynn, Ryan A; Zhang, Qiangfeng Cliff; Spitale, Robert C; Lee, Byron; Mumbach, Maxwell R; Chang, Howard Y

    2016-02-01

    icSHAPE (in vivo click selective 2-hydroxyl acylation and profiling experiment) captures RNA secondary structure at a transcriptome-wide level by measuring nucleotide flexibility at base resolution. Living cells are treated with the icSHAPE chemical NAI-N3 followed by selective chemical enrichment of NAI-N3-modified RNA, which provides an improved signal-to-noise ratio compared with similar methods leveraging deep sequencing. Purified RNA is then reverse-transcribed to produce cDNA, with SHAPE-modified bases leading to truncated cDNA. After deep sequencing of cDNA, computational analysis yields flexibility scores for every base across the starting RNA population. The entire experimental procedure can be completed in ∼5 d, and the sequencing and bioinformatics data analysis take an additional 4-5 d with no extensive computational skills required. Comparing in vivo and in vitro icSHAPE measurements can reveal in vivo RNA-binding protein imprints or facilitate the dissection of RNA post-transcriptional modifications. icSHAPE reactivities can additionally be used to constrain and improve RNA secondary structure prediction models. PMID:26766114

  1. Selective extraction of U(VI), Th(IV), and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin

    International Nuclear Information System (INIS)

    A new grafted polymer has been developed by the chemical modification of Amberlite XAD-16 (AXAD-16) polymeric matrix with [(2-dihydroxyarsinoylphenylamino)methyl]phosphonic acid (AXAD-16-AsP). The modified polymer was characterized by a combination of 13C CPMAS and 31P solid-state NMR, Fourier transform-NIR-FIR-Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis (TGA). The distribution studies for the extraction of U(VI), Th(IV), and La(III) from acidic solutions were performed using an AXAD-16-AsP-packed chromatographic column. The influences of various physiochemical parameters on analyte recovery were optimized by both static and dynamic methods. Accordingly, even under high acidities (>4 M), good distribution ratio (D) values (102-104) were achieved for all the analytes. Metal ion desorption was effective using 1 mol L-1 (NH4)2CO3. From kinetic studies, a time duration of -1 for U(VI); 0.47, 0.39, and 1.40 mmol g-1 for Th(IV); and 1.44, 1.48, and 1.12 mmol g-1 for La(III), in the presence of 2 mol L-1 HNO3, 2 mol L-1 HCl, and under pH conditions, respectively. The analyte selectivity of the grafted polymer was tested in terms of interfering species tolerance studies. The system showed an enrichment factor of 365, 300, and 270 for U(VI), Th(IV), and La(III), and the limit of analyte detection was in the range of 18-23 ng mL-1. The practical applicability of the polymer was tested with synthetic nuclear spent fuel and seawater mixtures, natural water, and geological samples. The RSD of the total analytical procedure was within 4.9%, thus confirming the reliability of the developed method. (orig.)

  2. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    Science.gov (United States)

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. PMID:26652418

  3. Comparison of palladium chemical modifiers for the determination of selenium in plasma by Zeeman-effect background corrected electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.

    1997-01-01

    former species, It was not possible to stabilize trimethylselenonium to the same extent with this modifier, Peak shapes and appearance times of the atomization signals were equal for the four selenium species with this modifier, The addition of 20 mu g of palladium was used for the analysis of the serum...

  4. Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9

    Science.gov (United States)

    Terao, Miho; Tamano, Moe; Hara, Satoshi; Kato, Tomoko; Kinoshita, Masato; Takada, Shuji

    2016-01-01

    The CRISPR/Cas9 system is a powerful genome editing tool for the production of genetically modified animals. To produce mutant mice, chimeric single-guide RNA (sgRNA) is cloned in a plasmid vector and a mixture of sgRNA and Cas9 are microinjected into the fertilized eggs. An issue associated with gene manipulation using the CRISPR/Cas9 system is that there can be off-target effects. To simplify the production of mutant mice with low risks of off-target effects caused by the CRISPR/Cas9 system, we demonstrated that genetically modified mice can be efficiently obtained using chemically synthesized CRISPR RNA (crRNA), trans-activating crRNA (tracrRNA), and modified Cas9s, such as the nickase version and FokI-fused catalytically inactive Cas9, by microinjection into fertilized eggs. Using this method, it is no longer necessary to clone sgRNA into a plasmid vector, and this enables high-throughput production of mutant mice. PMID:26972821

  5. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    International Nuclear Information System (INIS)

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  6. Effect of modified atmosphere packaging on the course of physical and chemical changes in chilled muscle tissue of silver carp (Hypophthalmichthys molitrix, V.).

    Science.gov (United States)

    Jezek, F; Buchtová, H

    2012-01-01

    The effect of two types of modified atmosphere (MA1: 69% N2, 25% CO2, 5% O2, 1% CO; MA2: 70% N2, 30% CO2) on changes in physical and chemical parameters (pH, a(w)--water activity, TVBN - total volatile basic nitrogen, TMA - trimethylamine, FFA - free fatty acids, PV - peroxide value, TBA--thiobarbituric acid) in muscle tissues of the silver carp was monitored in the study. The samples were stored at temperatures +2 +/- 2 degrees C for 18 days. Changes in gas volumes (CO2 and O2) in MAs were also monitored. CO2 levels increased in MA1 but decreased in MA2. At the end of 18 days of storage, a significantly (P MA1, in contrast to samples packaged under MA2 where water activity values showed considerable fluctuation. Variations in pH values in the two types of MA showed similar trends. Sample pH gradually decreased until day 9 of storage. On day 11, muscle tissue pH increased markedly and then began to decrease again. The overall decrease in pH values was more profound in samples packaged under MA1. TVBN and TMA levels in samples packaged under the two types of MAs remained almost identical until day 9 of the experiment. Later, however, significantly (P MA1. FFA concentrations in silver carp samples in MA1 were significantly lower (P MA1 starting on day 9. Maximum TBA values in MA1 and MA2 were observed on days 14 and 18 of the experiment, respectively. From the course of proteolytic and oxidative changes point of view, the more appropriate combination of gases for silver carp storage seems to be the mixture of 70% N2 and 30% CO2 (MA2), which allows for muscle storage of up to 9 days. We recommend TVBN as a suitable indicator of freshness, and TBA assay as a suitable indicator of the extent of oxidative processes. PMID:23214362

  7. Efficient generation of volatile species for cadmium analysis in seafood and rice samples by a modified chemical vapor generation system coupled with atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xin-an, E-mail: 13087641@qq.com; Chi, Miao-bin, E-mail: 1161306667@qq.com; Wang, Qing-qing, E-mail: wangqq8812@163.com; Zhang, Wang-bing, E-mail: ahutwbzh@163.com

    2015-04-15

    Highlights: • We develop a modified chemical vapor generation method coupled with AFS for the determination of cadmium. • The response of Cd could be increased at least four-fold compared to conventional thiourea and Co(II) system. • A simple mixing sequences experiment is designed to study the reaction mechanism. • The interference of transition metal ions can be easily eliminated by adding DDTC. • The method is successfully applied in seafood samples and rice samples. - Abstract: A vapor generation procedure to determine Cd by atomic fluorescence spectrometry (AFS) has been established. Volatile species of Cd are generated by following reaction of acidified sample containing Fe(II) and L-cysteine (Cys) with sodium tetrahydroborate (NaBH{sub 4}). The presence of 5 mg L{sup −1} Fe(II) and 0.05% m/v Cys improves the efficiency of Cd vapor generation substantially about four-fold compared with conventional thiourea and Co(II) system. Three experiments with different mixing sequences and reaction times are designed to study the reaction mechanism. The results document that the stability of Cd(II)–Cys complexes is better than Cys–THB complexes (THB means NaBH{sub 4}) while the Cys–THB complexes have more contribution to improve the Cd vapor generation efficiency than Cd(II)–Cys complexes. Meanwhile, the adding of Fe(II) can catalyze the Cd vapor generation. Under the optimized conditions, the detection limit of Cd is 0.012 μg L{sup −1}; relative standard deviations vary between 0.8% and 5.5% for replicate measurements of the standard solution. In the presence of 0.01% DDTC, Cu(II), Pb(II) and Zn(II) have no significant influence up to 5 mg L{sup −1}, 10 mg L{sup −1}and 10 mg L{sup −1}, respectively. The accuracy of the method is verified through analysis of the certificated reference materials and the proposed method has been applied in the determination of Cd in seafood and rice samples.

  8. Efficient generation of volatile species for cadmium analysis in seafood and rice samples by a modified chemical vapor generation system coupled with atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Highlights: • We develop a modified chemical vapor generation method coupled with AFS for the determination of cadmium. • The response of Cd could be increased at least four-fold compared to conventional thiourea and Co(II) system. • A simple mixing sequences experiment is designed to study the reaction mechanism. • The interference of transition metal ions can be easily eliminated by adding DDTC. • The method is successfully applied in seafood samples and rice samples. - Abstract: A vapor generation procedure to determine Cd by atomic fluorescence spectrometry (AFS) has been established. Volatile species of Cd are generated by following reaction of acidified sample containing Fe(II) and L-cysteine (Cys) with sodium tetrahydroborate (NaBH4). The presence of 5 mg L−1 Fe(II) and 0.05% m/v Cys improves the efficiency of Cd vapor generation substantially about four-fold compared with conventional thiourea and Co(II) system. Three experiments with different mixing sequences and reaction times are designed to study the reaction mechanism. The results document that the stability of Cd(II)–Cys complexes is better than Cys–THB complexes (THB means NaBH4) while the Cys–THB complexes have more contribution to improve the Cd vapor generation efficiency than Cd(II)–Cys complexes. Meanwhile, the adding of Fe(II) can catalyze the Cd vapor generation. Under the optimized conditions, the detection limit of Cd is 0.012 μg L−1; relative standard deviations vary between 0.8% and 5.5% for replicate measurements of the standard solution. In the presence of 0.01% DDTC, Cu(II), Pb(II) and Zn(II) have no significant influence up to 5 mg L−1, 10 mg L−1and 10 mg L−1, respectively. The accuracy of the method is verified through analysis of the certificated reference materials and the proposed method has been applied in the determination of Cd in seafood and rice samples

  9. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity.

    Science.gov (United States)

    Ramírez, Vicente; Gonzalez, Beatriz; López, Ana; Castelló, María José; Gil, María José; Etherington, Graham J; Zheng, Bo; Chen, Peng; Vera, Pablo

    2015-10-01

    tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response. PMID:26492405

  10. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity.

    Directory of Open Access Journals (Sweden)

    Vicente Ramírez

    2015-10-01

    Full Text Available tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9. Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response.

  11. Cellular Dynamics of RNA Modification

    OpenAIRE

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characteri...

  12. Enhancing aptamer function and stability via in vitro selection using modified nucleic acids.

    Science.gov (United States)

    Meek, Kirsten N; Rangel, Alexandra E; Heemstra, Jennifer M

    2016-08-15

    Nucleic acid aptamers have emerged as a promising alternative to antibodies for use as recognition elements in therapeutics, bioimaging, and analytical applications. A key benefit that aptamers possess relative to antibodies is their ability to be chemically synthesized. This advantage, coupled with the broad range of modified nucleotide building blocks that can be constructed using chemical synthesis, has enabled the discovery and development of modified aptamers having extraordinary affinity, specificity, and biostability. Early efforts to generate modified aptamers focused on selection of a native DNA or RNA aptamer, followed by post-selection trial-and-error testing of modifications. However, recent advances in polymerase engineering and templated nucleic acid synthesis have enabled the direct selection of aptamers having modified backbones and nucleobases. This review will discuss these technological advances and highlight the improvements in aptamer function that have been realized through in vitro selection of non-natural nucleic acids. PMID:27012179

  13. Transfer RNA and human disease.

    Science.gov (United States)

    Abbott, Jamie A; Francklyn, Christopher S; Robey-Bond, Susan M

    2014-01-01

    Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease. PMID:24917879

  14. Mitochondrial COX2 G7598A Mutation May Have a Modifying Role in the Phenotypic Manifestation of Aminoglycoside Antibiotic-Induced Deafness Associated with 12S rRNA A1555G Mutation in a Han Chinese Pedigree

    Science.gov (United States)

    Chen, Tianbin; Liu, Qicai; Jiang, Ling; Liu, Can

    2013-01-01

    Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by Microarray chip, which possessed the nine NSHL hot-spot mutations, including GJB2 (35delG, 176dell6bp, 235de1C, and 299delAT), GJB3 (538C>T), SLC26A4 (IVS7-2A>G and 2168A>G), and mitochondrial DNA (mtDNA) 12S rRNA (C1494T and A1555G). Only the homoplasmic A1555G mutation was detected, which was confirmed by direct sequencing. Also, real-time amplification refractory mutation system quantitative polymerase chain reaction methodology was performed to calculate the A1555G mutation load. The proband's complete mtDNA genome were amplified and direct sequencing was performed to determine the mitochondrial haplogroup and private mutations. The proband's mitochondrial haplogroup belonges to M7b1 and a private mutation MTCOX2 G7598A (p.Ala 5 Thr) is found. Phylogenetic analysis of COX2 polypeptide sequences demonstrates that the alanine residue is relatively conserved, but owing to the missense mutation (p.Ala 5 Thr), its side chain hydrophobicity will be changed, and what is more, as it is adjacent to a glutamine residue, which is highly conserved and hydrophilic, in an evolutionary stable domain; G7598A (p.Ala 5 Thr) may alter the protein secondary structure and physiological function of COX2 and, thus, aggravate the mitochondrial dysfunction conferred by the A1555G mutation. Furthermore, the G7598A mutation is absent in 100 unrelated healthy controls; therefore, G7598A (p.Ala 5 Thr) in the mitochondrial haplogoup M7b1 may have a modifying role, enhancing its penetrance and severity

  15. Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards

    Science.gov (United States)

    da Silva, Alessandra Furtado; Welz, Bernhard; Curtius, Adilson J.

    2002-12-01

    Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l -1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55-60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg -1 were satisfactory for a routine procedure.

  16. Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandra Furtado da; Welz, Bernhard; Curtius, Adilson J

    2002-12-02

    Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 {mu}m, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 {mu}g of each modifier was applied using 25 injections of 20 {mu}l of modifier solution (500 mg l{sup -1}), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55-60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg{sup -1} were satisfactory for a routine procedure.

  17. Cellular Dynamics of RNA Modification

    Science.gov (United States)

    Yi, Chengqi; Pan, Tao

    2011-01-01

    Conspectus Decades of research have identified over 100 types of ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved in bacteria, archeae and eukaryotes, while some modified nucleosides are unique to each branch of life. However, the cellular and functional dynamics of RNA modifications remains largely unexplored, mostly due to the lack of functional hypotheses and experimental methods for quantification and large scale analysis. Just as many well characterized protein and DNA modifications, many RNA modifications are not essential for life. Instead, increasingly more evidence indicates that RNA modifications can play regulatory roles in cells, especially in response to stress conditions. In this Account, we review some known examples of RNA modifications that are dynamically controlled in cells and introduce some contemporary technologies and methods that enhance the studies of cellular dynamics of RNA modifications. Examples of RNA modifications discussed in this Account include (Figure 1): (1) 4-thio uridine (s4U) which can act as a cellular sensor of near UV-light; (2) queuosine (Q) which is a potential biomarker for malignancy; (3) N6-methyl adenine (m6A) which is the prevalent modification in eukaryotic mRNAs; and (4) pseudouridine (ψ) which are inducible by nutrient deprivation. Two recent technical advances that stimulated the studies of cellular dynamics of modified ribonucleosides are also described. First, a genome-wide method combines primer extension and microarray to study N1-methyl adenine (m1A) hypomodification in human tRNA. Second, a quantitative mass spectrometric method investigates dynamic changes of a wide range of tRNA modifications under stress conditions in yeast. In addition, we discuss potential mechanisms that control dynamic regulation of RNA modifications, and hypotheses for discovering potential RNA de-modification enzymes. We conclude the Account by highlighting the need to develop new

  18. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115

  19. Stabilization of organic and inorganic mercury in the graphite furnace with (NH 4) 2PdCl 6-(NH 4) 3RhCl 6 as a mixed chemical modifier

    Science.gov (United States)

    De-Qiang, Zhang; Zhe-Ming, Ni; Han-Wen, Sun

    1998-08-01

    The thermal stabilization characteristics of mercury species (inorganic and organic) in the presence of different chemical modifiers, including PdCl 2+ascorbic acid, (NH 4) 2PdCl 6+citric acid, (NH 4) 3RhCl 6+citric acid and a mixture of the last two salts, were investigated. The results indicate that PdCl 2+ascorbic acid can stabilize mercury species upto a temperature of 500°C whereas, with the mixed (NH 4) 2PdCl 6-(NH 4) 3RhCl 6 modifier, mercury can withstand a pyrolysis temperature as high as 920°C and can tolerate much higher concentration of interferents than with palladium or rhodium alone. The integrated absorbance for mercury was also much increased in the presence of the mixed modifier. The characteristic mass, which gives an integrated absorbance of 0.0044 s for mercury, is found to be 59 pg, and the absolute detection limit, based on the variability of the blank (3σ), is 38 pg. The proposed (NH 4) 2PdCl 6-(NH 4) 3RhCl 6 mixed modifier has been applied to the determination of low levels of mercury in cosmetics with a recovery range of 97%-103%.

  20. Modified cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.