WorldWideScience

Sample records for chemically modified p-type

  1. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    Science.gov (United States)

    Ambade, Swapnil B.; Mane, R. S.; Kale, S. S.; Sonawane, S. H.; Shaikh, Arif V.; Han, Sung-Hwan

    2006-12-01

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 °C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu 2- xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm 2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  2. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambade, Swapnil B. [Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune 411037 (India); Mane, R.S. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of); Kale, S.S. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of); Sonawane, S.H. [Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune 411037 (India); Shaikh, Arif V. [Department of Electronic Science, AKI' s Poona College of Arts, Science and Commerce, Camp, Pune 411 001 (India); Han, Sung-Hwan [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of)]. E-mail: shhan@hanyang.ac.kr

    2006-12-15

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 deg. C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu{sub 2-x}Se phase was confirmed by XRD pattern and spherical grains of 30 {+-} 4 - 40 {+-} 4 nm in size aggregated over about 130 {+-} 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm{sup 2} light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  3. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs

    Science.gov (United States)

    Bioud, Youcef A.; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard

    2016-10-01

    We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate.

  4. Enhanced photovoltaic effect of ruthenium complex-modified graphene oxide with P-type conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: jj_zw_js@sina.com.cn; Bai, Huicong; Zhang, Yu; Sun, Ying; Lin, Shen; Liu, Jian; Yang, Qi; Song, Xi-Ming, E-mail: songlab@lnu.edu.cn

    2014-10-15

    A graphene oxide nanocomposite with bis(1,10-phenanthroline)(N-(2-aminoethyl)-4-(4-methyl-2,2-bipyridine-4-yl) formamide) ruthenium (Ru(phen){sub 2}(bpy-NH{sub 2})(PF{sub 6}){sub 2}), a ruthenium complex, was synthesized by amidation reaction between amino group of the ruthenium complex and carboxyl group of GO. The as-prepared Ru(II)–GO composite was characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible (UV–Vis) absorption spectra, fluorescence spectra, surface photovoltage (SPV) spectrum and transient photovoltage (TPV) technology. This nanocomposite showed a typical p-type character and an enhanced photovoltaic effect at long timescale of about 3 × 10{sup −3} s compared to GO alone. A reversible rise/decay of the photocurrent in response to the on/off illumination step was also observed in a photoelectrochemical cell of the Ru(II)–GO composite. The photocurrent response of the Ru(II)–GO film was remarkably higher than that of GO film. Therefore, this Ru(II)–GO composite is believed to be a promising p-type photoelectric conversion material for further photovoltaic applications. - Highlights: • A new dye-sensitized graphene oxide nanocomposite was reported. • A photo-induced charge transfer process in this nanocomposite was confirmed. • This composite showed a typical p-type conductivity. • This composite showed an enhanced photovoltaic effect at a long timescale.

  5. Double acceptor in p-type GaAsN grown by chemical beam epitaxy

    Science.gov (United States)

    Elleuch, Omar; Wang, Li; Lee, Kan-Hua; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-12-01

    The properties of the acceptor states in GaAsN grown by chemical beam epitaxy (CBE) are studied by analyzing their charges based on the Poole-Frenkel model. Deep level transient spectroscopy (DLTS) shows two acceptor levels at 0.11 and 0.19 eV above the valence band maximum. The emission rates of carriers from these states are enhanced with increasing the electric field during the DLTS measurement, which indicates that the energies required for the emission are decreased. By analyzing this field-enhanced emission process, the polarizabilities of the levels at 0.11 and 0.19 eV are found to be -1 (±0.1) and -2 (±0.1), respectively. In addition, these states have almost the same concentration. Therefore, we conclude that they originate from the same defect, acting as a double acceptor in GaAsN film grown by CBE.

  6. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor

    Science.gov (United States)

    Goldgof, Gregory M.; Durrant, Jacob D.; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E.; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A.; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M.; Manary, Micah J.; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W.; Slayman, Carolyn W.; Amaro, Rommie E.; Suzuki, Yo; Winzeler, Elizabeth A.

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  7. Hot-wire chemical vapor deposition prepared aluminum doped p-type microcrystalline silicon carbide window layers for thin film silicon solar cells

    Science.gov (United States)

    Chen, Tao; Köhler, Florian; Heidt, Anna; Carius, Reinhard; Finger, Friedhelm

    2014-01-01

    Al-doped p-type microcrystalline silicon carbide (µc-SiC:H) thin films were deposited by hot-wire chemical vapor deposition at substrate temperatures below 400 °C. Monomethylsilane (MMS) highly diluted in hydrogen was used as the SiC source in favor of SiC deposition in a stoichiometric form. Aluminum (Al) introduced from trimethylaluminum (TMAl) was used as the p-type dopant. The material property of Al-doped p-type µc-SiC:H thin films deposited with different deposition pressure and filament temperature was investigated in this work. Such µc-SiC:H material is of mainly cubic (3C) SiC polytype. For certain conditions, like high deposition pressure and high filament temperature, additional hexagonal phase and/or stacking faults can be observed. P-type µc-SiC:H thin films with optical band gap E04 ranging from 2.0 to 2.8 eV and dark conductivity ranging from 10-5 to 0.1 S/cm can be prepared. Such transparent and conductive p-type µc-SiC:H thin films were applied in thin film silicon solar cells as the window layer, resulting in an improved quantum efficiency at wavelengths below 480 nm.

  8. Chemical fabrication of p-type Cu{sub 2}O transparent thin film using molecular precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Hiroki [Research Institute of Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Suzuki, Tatsuya [Department of Applied Chemistry and Chemical Engineering, Graduate School of Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Hara, Hiroki; Mochizuki, Chihiro; Takano, Ichiro; Honda, Tohru [Research Institute of Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Sato, Mitsunobu, E-mail: lccsato@cc.kogakuin.ac.jp [Research Institute of Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2012-11-15

    A transparent p-type Cu{sub 2}O thin film of 50 nm thickness was successfully fabricated by means of a solution-based process involving the thermal reaction of molecular precursor films spin-coated on a Na-free glass substrate. The precursor solution was prepared by the reaction of an isolated Cu{sup 2+} complex of ethylenediamine-N, N, N Prime , N Prime -tetraacetic acid with dibutylamine in ethanol. The Cu{sub 2}O thin films resulting from heat treatment of the precursor film at 450 Degree-Sign C for 10 min in Ar gas at a flow rate of 1.0 L min{sup -1} were characterized by X-ray diffraction which indicated a precise cubic lattice cell parameter of a = 0.4265(2) nm, with a crystallite size of 8(2) nm. X-ray photoelectron spectroscopy peaks, attributable to the O 1s and Cu 2p{sub 3/2} level of the Cu{sub 2}O film were found at 532.6 eV and 932.4 eV, respectively. An average grain size of the deposited Cu{sub 2}O particles of ca. 200 nm was observed via field-emission scanning electron microscopy. The optical band edge evaluated from the absorption spectrum of the Cu{sub 2}O transparent thin film was 2.3 eV, assuming a direct-transition semiconductor. Hall Effect measurements of the thin film indicated that the single-phase Cu{sub 2}O thin film is a typical p-type semiconductor, with a hole concentration of 1.7 Multiplication-Sign 10{sup 16} cm{sup -3} and hole mobility of 4.8 cm{sup 2} V{sup -1} s{sup -1} at ambient temperature. The activation energy from the valence band to the acceptor level determined from an Arrhenius plot was 0.34 eV. The adhesion strength of the thin film on the Na-free glass substrate was also determined as a critical load (Lc1) of 2.0 N by means of a scratch test. The method described is the first example of fabrication and characterization of a p-type Cu{sub 2}O transparent thin film by a wet process. -- Graphical abstract: The p-type Cu{sub 2}O transparent thin film was facilely fabricated on a Na-free grass substrate by a solution based

  9. Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.Q. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: robt@sjtu.edu.cn; Zhou, Z.B. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: zbzhou@sjtu.edu.cn; Chan, K.Y. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor (Malaysia); Tang, D.Y.; Cui, R.Q.; Dou, X.M. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2008-12-30

    Hydrogenated nanocrystalline silicon (nc-Si:H) grown by hot-wire chemical vapor deposition (HWCVD) has recently drawn significant attention in the area of thin-film large area optoelectronics due to possibility of high deposition rate. We report on the effects of diborane (B{sub 2}H{sub 6}) doping ratio on the microstructural and optoelectrical properties of the p-type nc-Si:H thin films grown by HWCVD at low substrate temperature of 200 deg. C and with high hydrogen dilution ratio of 98.8%. An attempt has been made to elucidate the boron doping mechanism of the p-type nc-Si:H thin films deposited by HWCVD and the correlation between the B{sub 2}H{sub 6} doping ratio, crystalline volume fraction, optical band gap and dark conductivity.

  10. Properties of In–N codoped p-type ZnO nanorods grown through a two-step chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Duta, M.; Mihaiu, S.; Munteanu, C. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Anastasescu, M., E-mail: manastasescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Osiceanu, P.; Marin, A.; Preda, S. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Nicolescu, M., E-mail: mnicolescu2006@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Modreanu, M. [Tyndall National Institute, University College, Cork (Ireland); Zaharescu, M.; Gartner, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2015-07-30

    Highlights: • p-Type ZnO film codoped with In, N on glass substrate was obtained. • The films were prepared by sol–gel followed by hydrothermal method. • Influence of annealing regimes on opto-electrical properties was studied. • Thin films morphology consists of interconnected, randomly oriented nanorods. • 3.31 × 10{sup 17} cm{sup −3}carrier concentration and 85% transmission were obtained at 500 °C. - Abstract: By codoping with a donor–acceptor pair through a two-step chemical method we have succeed to obtain p-type ZnO thin films on glass. Firstly, a thin undoped ZnO seed layer was deposited by sol–gel method followed by the deposition of In–N codoped ZnO film obtained through the hydrothermal technique. The influence of post-deposition annealing temperature (100 °C, 300 °C and 500 °C) on the samples was investigated from a structural, chemical, morphological and optoelectrical point of view. X-ray diffractometry (XRD), infrared ellipsometry and X-ray photoelectron spectroscopy (XPS) analyses have confirmed the codoped nature of the ZnO thin films. The XRD pattern analysis has established the films have wurtzite nanocrystalline structure, the crystallite sizes varying between 10 nm and 13 nm with the annealing temperature. Continuous and homogenous films with nanorods surface morphology has been obtained, as visualized by scanning electron microscopy measurements. Hall Effect measurements have established that all samples, regardless of annealing temperature, showed p-type conduction due to the successful incorporation of nitrogen in the film, with the highest carrier concentration registered at 500 °C. This is in good correlation with the nitrogen content in the films as revealed from XPS. In all samples, the XPS depth profiling has shown a nitrogen gradient with higher elemental concentration at the surface.

  11. Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells

    Science.gov (United States)

    Jenatsch, Sandra; Geiger, Thomas; Heier, Jakob; Kirsch, Christoph; Nüesch, Frank; Paracchino, Adriana; Rentsch, Daniel; Ruhstaller, Beat; C Véron, Anna; Hany, Roland

    2015-01-01

    Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability. PMID:27877804

  12. Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells.

    Science.gov (United States)

    Jenatsch, Sandra; Geiger, Thomas; Heier, Jakob; Kirsch, Christoph; Nüesch, Frank; Paracchino, Adriana; Rentsch, Daniel; Ruhstaller, Beat; C Véron, Anna; Hany, Roland

    2015-06-01

    Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability.

  13. Chemical etching investigation of polycrystalline p-type 6H-SiC in HF/Na{sub 2}O{sub 2} solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gabouze, Noureddine [Silicon Technology Development Unit (UDTS), 2 Bd Frantz Fanon, B.P. 140, Algiers (Algeria); Keffous, Aissa, E-mail: ngabouze@yahoo.fr [Silicon Technology Development Unit (UDTS), 2 Bd Frantz Fanon, B.P. 140, Algiers (Algeria); Kerdja, Tahar; Belaroussi, Yasmine [Advanced Techniques Development Center (CDTA), Haouch Loukil, Baba Hassen, Algiers (Algeria)

    2009-05-15

    In this work, an experimental study on the chemical etching reaction of polycrystalline p-type 6H-SiC was carried out in HF/Na{sub 2}O{sub 2} solutions. The morphology of the etched surface was examined with varying Na{sub 2}O{sub 2} concentration, etching time, agitation speed and temperature. The surfaces of the etched samples were analyzed using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. The surface morphology of samples etched in HF/Na{sub 2}O{sub 2} is shown to depend on the solution composition and bath temperature. The investigation of the HF/Na{sub 2}O{sub 2} solutions on 6H-SiC surface shows that as Na{sub 2}O{sub 2} concentration increases, the etch rate increases to reach a maximum value at about 0.5 M and then decreases. A similar behaviour has been observed when temperature of the solution is increased. The maximum etch rate is found for 80 deg. C. In addition, a new polishing etching solution of 6H-SiC has been developed. This result is very interesting since to date no chemical polishing solution has been developed on the material.

  14. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua; Demizu, Koshiro; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measured carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.

  15. Fabrication of p-type CuO thin films using chemical bath deposition technique and their solar cell applications with Si nanowires

    Science.gov (United States)

    Akgul, Funda Aksoy; Akgul, Guvenc

    2017-02-01

    Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.

  16. Study of the electrical, thermal and chemical properties of Pd ohmic contacts to p-type 4H-SiC: dependence on annealing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kassamakova, L.; Kakanakov, R. [Inst. of Appl. Phys., Plovdiv (Bulgaria). BAS; Nordell, N.; Savage, S. [Industrial Microelectronics Center, Kista (Sweden); Kakanakova-Georgieva, A.; Marinova, Ts. [Inst. of General and Inorganic Chemistry, BAS, Sofia (Bulgaria)

    1999-07-30

    The electrical and chemical properties of Pd ohmic contacts to p-type 4H-SiC, together with their thermal stability, have been studied in the annealing temperature range 600 - 700 C. The ohmic behaviour of as-deposited and annealed contacts has been checked from I - V characteristics and the contact resistivity has been determined by the linear TLM method in order to determine the electrical properties and the thermal stability. An ohmic behaviour was established after annealing at 600 C, while the lowest contact resistivity 5.5 x 10{sup -5} {omega}cm{sup 2} was obtained at 700 C. The contact structure, before and after annealing, was investigated using X-ray photoelectron spectroscopy depth analysis. As-deposited Pd films form an abrupt and chemically inert Pd/SiC interface. Annealing causes the formation of palladium silicide. After formation at 600 C the contact structure consists of unreacted Pd and Pd{sub 3}Si. During annealing at 700 C. Pd and SiC react completely and a mixture of Pd{sub 3}Si, Pd{sub 2}Si and C in a graphite state is found in the contact layer. The examination of the thermal stability shows that after a 100 h heating at 500 C, only the contacts annealed at 700 C did not suffer from a change in resistivity. This can be explained by a more complete reaction between the Pd contact layer and the SiC substrate at this higher annealing temperature. (orig.)

  17. Quality of chemically modified hemp fibers.

    Science.gov (United States)

    Kostic, Mirjana; Pejic, Biljana; Skundric, Petar

    2008-01-01

    Hemp fibers are very interesting natural material for textile and technical applications now. Applying hemp fibers to the apparel sector requires improved quality fibers. In this paper, hemp fibers were modified with sodium hydroxide solutions (5% and 18% w/v), at room and boiling temperature, for different periods of time, and both under tension and slack, in order to partially extract noncellulosic substances, and separate the fiber bundles. The quality of hemp fibers was characterised by determining their chemical composition, fineness, mechanical and sorption properties. The modified hemp fibers were finer, with lower content of lignin, increased flexibility, and in some cases tensile properties were improved. An original method for evaluation of tensile properties of hemp fibers was developed.

  18. Encoded libraries of chemically modified peptides.

    Science.gov (United States)

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries.

  19. Antitumor activity of chemical modified natural compounds

    Directory of Open Access Journals (Sweden)

    Marilda Meirelles de Oliveira

    1991-01-01

    Full Text Available Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1. Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.

  20. XANES and IR spectroscopy study of the electronic structure and chemical composition of porous silicon on n- and p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lenshin, A. S., E-mail: lenshinas@phys.vsu.ru; Kashkarov, V. M.; Seredin, P. V. [Voronezh State University (Russian Federation); Spivak, Yu. M.; Moshnikov, V. A. [LETI St. Petersburg State Electrotechnical University (Russian Federation)

    2011-09-15

    The differences in the electronic structure and composition of porous silicon samples obtained under identical conditions of electrochemical etching on the most commonly used n- and p-type substrates with different conductivities are demonstrated by X-ray absorption near-edge spectroscopy (XANES) and Fourier transform IR spectroscopy (FTIR) methods. It is shown that significantly higher oxidation and saturation with hydrogen is observed for the porous layer on n-type substrates.

  1. Preparation and Properties of N-Doped p-Type ZnO Films by Solid-Source Chemical Vapour Deposition with the c-Axis Parallel to the Substrate

    Institute of Scientific and Technical Information of China (English)

    吕建国; 叶志镇; 汪雷; 赵炳辉; 黄靖云

    2002-01-01

    We report on N-doped p-type ZnO films with the c-axis parallel to the substrate. ZnO films were prepared onan α-A12O3 (0001) substrate by solid-source chemical vapour deposition (CVD). Zn( CH3COO)2.2H2O was usedas the precursor and CH3COONH4 as the nitrogen source. The growth temperature was varied from 300℃ C to600℃ C. The as-grown ZnO film deposited at 500° C showed p-type conduction with its resistivity of 42 Ωcrm, carrierdensity 3.7 × 1017 cm-3 and Hall mobility 1.26cm2V-1.s-1 at room temperature, which are the best propertiesfor p-type ZnO deposited by CVD. The p-type ZnO film possesses a transmittance of about 85% in the visibleregion and a bandgap of 3.21 eV at room temperature.

  2. Chemically modified field effect transistors with nitrite or fluoride selectivity

    NARCIS (Netherlands)

    Antonisse, Martijn M.G.; Snellink-Ruël, Bianca H.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1998-01-01

    Polysiloxanes with different types of polar substituents are excellent membrane materials for nitrite and fluoride selective chemically modified field effect transistors (CHEMFETs). Nitrite selectivity has been introduced by incorporation of a cobalt porphyrin into the membrane; fluoride selectivity

  3. Cyclic Voltammetric Responses of Nitrate Reductase on Chemical Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    YaRuSONG; HuiBoSHAO; 等

    2002-01-01

    Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified electrode showed electrochemical cyclic voltammetric responses in phosphate buffers.

  4. Chemical and semisynthesis of modified histones.

    Science.gov (United States)

    Maity, Suman Kumar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Post-translational modifications (PTMs) of histones play critical roles in the epigenetic regulation of eukaryotic genome by directly altering the biophysical properties of chromatin or by recruiting effector proteins. The large number of PTMs and the inherent complexity in their population and signaling processes make it highly challenging to understand epigenetics-related processes. To address these challenges, accesses to homogeneously modified histones are obligatory. Over the last decade, synthetic protein chemists have been devising novel synthetic tools and applying state-of-the-art chemoselective ligation strategies to prepare precious materials useful in answering fundamental questions in this area. In this short review, we cover some of the recent breakthroughs in these directions in particular the synthesis and semi-synthesis of modified histones and their use to unravel the mysteries of epigenetics. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  5. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    Science.gov (United States)

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  6. Lubricants from chemically modified vegetable oils.

    Science.gov (United States)

    Campanella, Alejandrina; Rustoy, Eduardo; Baldessari, Alicia; Baltanás, Miguel A

    2010-01-01

    This work reports laboratory results obtained from the production of polyols with branched ether and ester compounds from epoxidized vegetable oils pertaining to annual, temperate climate crops (soybean, sunflower and high-oleic sunflower oils), focusing on their possible use as components of lubricant base stocks. To this end, two different opening reactions of the epoxide ring were studied. The first caused by the attack with glacial acetic acid (exclusively in a single organic phase) and the second using short-chain aliphatic alcohols, methanol and ethanol, in acid media. Both reactions proceed under mild conditions: low synthesis temperature and short reaction times and with conversions above 99%. Spectroscopic (NMR), thermal (DSC) and rheological techniques were used to characterize the oils, their epoxides and polyols, to assess the impact of the nature of the vegetable oil and the chemical modifications introduced, including long-term storage conditions. Several correlations were employed to predict the viscosity of the vegetable oils with temperature, and good agreement with the experimental data was obtained.

  7. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  8. Modified NASA-Lewis Chemical Equilibrium Code for MHD applications

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-12-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code has recently been developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. This report describes the effect of the programming details from a user point of view, but does not describe the Code in detail.

  9. Structure and biological activity of chemically modified nisin A species

    NARCIS (Netherlands)

    Rollema, Harry S.; Metzger, Jörg W.; Both, Paula; Kuipers, Oscar P.; Siezen, Roland J.

    1996-01-01

    Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, β-methyllanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray m

  10. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  11. Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes

    Directory of Open Access Journals (Sweden)

    Matteo Bonomo

    2016-05-01

    Full Text Available This review reports the properties of p-type semiconductors with nanostructured features employed as photocathodes in photoelectrochemical cells (PECs. Light absorption is crucial for the activation of the reduction processes occurring at the p-type electrode either in the pristine or in a modified/sensitized state. Beside thermodynamics, the kinetics of the electron transfer (ET process from photocathode to a redox shuttle in the oxidized form are also crucial since the flow of electrons will take place correctly if the ET rate will overcome that one of recombination and trapping events which impede the charge separation produced by the absorption of light. Depending on the nature of the chromophore, i.e., if the semiconductor itself or the chemisorbed dye-sensitizer, different energy levels will be involved in the cathodic ET process. An analysis of the general properties and requirements of electrodic materials of p-type for being efficient photoelectrocatalysts of reduction processes in dye-sensitized solar cells (DSC will be given. The working principle of p-type DSCs will be described and extended to other p-type PECs conceived and developed for the conversion of the solar radiation into chemical products of energetic/chemical interest like non fossil fuels or derivatives of carbon dioxide.

  12. Chemical sensors based on molecularly modified metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haick, Hossam [Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2007-12-07

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  13. Gene silencing by chemically modified siRNAs.

    Science.gov (United States)

    Engels, Joachim W

    2013-03-25

    RNA interference (RNAi) has not only already risen as a gold standard for validating gene function in basic science studies, but also holds great promise as a new therapeutic paradigm. Advantages of RNAi-based therapeutics include relatively fast initial screening and the ability to target proteins not yet addressable by traditional drug design strategies. In this review we describe the development of chemically modified small inhibiting siRNAs and their application as potential therapeutics during the past decade. Focus is on proper siRNA design, choice of chemical modification and how to circumvent immunogenicity as well as off-target effects.

  14. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Runcang Sun; Huaiyu Zhan

    2004-01-01

    Various lignocellulosic materials such as wood,agricultural and forest residues has the potential to be valuable substitute for, or complement to,commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world′s total straw pulp. However,huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  15. THE INDUSTRIAL UTILIZATION OF CHEMICAL MODIFIED AGRICULTURAL RESIDUES

    Institute of Scientific and Technical Information of China (English)

    FengXu; RuncangSun; HuaiyuZhan

    2004-01-01

    Various lignocellulosic materials such as wood, agricultural and forest residues has the potential to be valuable substitute for, or complement to, commercial sorbents for removing heavy metal ions or dyes from waste water or spilled oil from inland water or sea. More than 9 million tons of straw pulp are produced annually in china, which account for about 90% of the world's total straw pulp. However, huge quantity of remain straw is not used as industrial raw material and is burnt in the fields or on the side of road. These resources can be chemical modified such as acetylation. Modified straws have the characteristics of low cost, high capacity, quick uptake, and easy to desorb. This paper reviews the current status of the technology for modified agricultural residues, which focus on hemicellulose and cellulose. The potential of these natural sorbents in main industry is also indicated.

  16. Chemical characteristics and volatile profile of genetically modified peanut cultivars.

    Science.gov (United States)

    Ng, Ee Chin; Dunford, Nurhan T; Chenault, Kelly

    2008-10-01

    Genetic engineering has been used to modify peanut cultivars for improving agronomic performance and pest resistance. Food products developed through genetic engineering have to be assessed for their safety before approval for human consumption. Preservation of desirable chemical, flavor and aroma attributes of the peanut cultivars during the genetic modifications is critical for acceptance of genetically modified peanuts (GMP) by the food industry. Hence, the main objective of this study is to examine chemical characteristics and volatile profile of GMP. The genetically modified peanut cultivars, 188, 540 and 654 were obtained from the USDA-ARS in Stillwater, Oklahoma. The peanut variety Okrun was examined as a control. The volatile analysis was performed using a gas chromatograph/mass spectrometer (GC/MS) equipped with an olfactory detector. The peanut samples were also analyzed for their moisture, ash, protein, sugar and oil compositions. Experimental results showed that the variations in nutritional composition of peanut lines examined in this study were within the values reported for existing cultivars. There were minor differences in volatile profile among the samples. The implication of this study is significant, since it shows that peanut cultivars with greater pest and fungal resistance were successfully developed without major changes in their chemical characteristics.

  17. Chemically modified cellulose paper as a thin film microextraction phase.

    Science.gov (United States)

    Saraji, Mohammad; Farajmand, Bahman

    2013-11-01

    In this paper, chemically modified cellulose paper was introduced as a novel extracting phase for thin film microextraction (TFME). Different reagents (Octadecyltrichlorosilane, diphenyldichlorosilane, cyclohexyl isocyanate and phenyl isocyanate) were used to modify the cellulose papers. The modified papers were evaluated as a sorbent for the extraction of some synthetic and natural estrogenic hormones (17α-ethynylestradiol, estriol and estradiol) from aqueous samples. Liquid chromatography-fluorescence detection was used for the quantification of the extracted compounds. The cellulose paper modified with phenyl isocyanate showed the best affinity to the target compounds. TEME parameters such as desorption condition, shaking rate, sample ionic strength and extraction time were investigated and optimized. Limit of detections were between 0.05 and 0.23μgL(-1) and relative standard deviations were less than 11.1% under the optimized condition. The calibration curves were obtained in the range of 0.2-100μgL(-1) with a good linearity (r(2)>0.9935). Wastewater, human urine, pool and river water samples were studied as real samples for the evaluation of the method. Relative recoveries were found to be between 75% and 101%.

  18. Recovery of palladium using chemically modified cedar wood powder.

    Science.gov (United States)

    Parajuli, Durga; Hirota, Koichi

    2009-10-15

    Japanese cedar wood powder (CWP) was chemically modified to a tertiary-amine-type adsorbent and studied for the selective recovery of Pd(II) from various industrial waters. Batch adsorption tests performed from 0.1 M to 5 M HCl and HNO3 systems reveal stable performance with better results in HNO3 medium. The maximum loading capacity for Pd(II) was studied in HCl as well as in HNO3. A continuous-flow experiment taking a real industrial solution revealed the feasibility of using modified CWP for the selective uptake and preconcentration of traces of palladium contained in acidic effluents. In addition, stable adsorption performance even on long exposure to gamma-irradiation and selective recovery of palladium from simulated high-level liquid waste (HLW) are important outcomes of the study.

  19. Mechano-sorptive creep of Portuguese pinewood chemically modified

    Directory of Open Access Journals (Sweden)

    Barroso Lopes Duarte

    2014-03-01

    Full Text Available The effect of chemical modification on mechano-sorptive creep in bending was studied by experimental work. Stakes with 20 × 20 × 400 mm RTL of Portuguese wood species (Pinus pinaster Aiton modified with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU, m-methylated melamine resin (MMF, tetraethoxysilane (TEOS and amid wax (WA were measured under asymmetric moistening conditions over a period of 42 days (app. 1000 hours with stress level (SL of 12 MPa, according to ENV 1156.

  20. Chemically modified oligonucleotides with efficient RNase H response

    DEFF Research Database (Denmark)

    Vester, Birte; Boel, Anne Marie; Lobedanz, Sune;

    2008-01-01

    Ten different chemically modified nucleosides were incorporated into short DNA strands (chimeric oligonucleotides ON3-ON12 and ON15-ON24) and then tested for their capacity to mediate RNAse H cleavage of the complementary RNA strand. The modifications were placed at two central positions directly...... in the RNase H cleaving region. The RNA strand of duplexes with ON3, ON5 and ON12 were cleaved more efficiently than the RNA strand of the DNA:RNA control duplex. There seems to be no correlation between the thermal stability between the duplexes and RNase H cleavage....

  1. Chemically modified tetracyclines: The novel host modulating agents

    Directory of Open Access Journals (Sweden)

    Devulapalli Narasimha Swamy

    2015-01-01

    Full Text Available Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA, including Non Steroidal Anti Inflammatory Drugs (NSAIDS, bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators.

  2. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  3. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  4. Reduced chemically modified graphene oxide for supercapacitor electrode.

    Science.gov (United States)

    Rajagopalan, Balasubramaniyan; Chung, Jin Suk

    2014-01-01

    An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g(-1) at 0.2 A g(-1) in 2 M H2SO4 compared to a value of 141 F g(-1) for graphene oxide reduced for 24 h (RGO-24), and good cyclic stability up to 3,000 cycles. Interestingly, RCMGO-24 demonstrated a higher specific capacitance and excellent cycle stability due to its residual oxygen functional groups that accelerate the faradaic reactions and aid in faster wetting. This non-annealed strategy offers the potential for simple and cost-effective preparation of an active material for a supercapacitor electrode.

  5. Band bending and electrical transport at chemically modified silicon surfaces

    Science.gov (United States)

    Lopinski, Greg; Ward, Tim; Hul'Ko, Oleksa; Boukherroub, Rabah

    2002-03-01

    High resolution electron energy loss spectroscopy (HREELS) and electrical transport measurements have been used to investigate how various chemical modifications give rise to band bending and alter the conductivity of Si(111) surfaces. HREELS is a sensitive probe of band bending through observations of the low frequency free carrier plasmon mode. For hydrogen terminated surfaces, prepared by the standard etch in ammonium flouride, HREELS measurements on both n and n+ substrates are consistent with nearly flat bands. Chlorination of these surfaces results in substantial upward band bending due to the strong electron withdrawing nature of the chlorine, driving the surface into inversion. The presence of this inversion layer on high resistivity n-type samples is observed through a substantial enhancement of the surface conductivity (relative to the H-terminated surface), as well as through broadening of the quasi-elastic peak in the HREELS measurements. We have also begun to examine organically modified silicon surfaces, prepared by various wet chemical reactions with the H-terminated surface. Decyl modified Si(111) surfaces are seen to exhibit a small degree of band bending, attributed to extrinsic defect states cause by a small degree of oxidation accompanying the modification reaction. The prospects of using conductivity as an in-situ monitor of the rate of these reactions will be discussed.

  6. Chemically modified solid state nanopores for high throughput nanoparticle separation

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Anmiv S; Kim, Min Jun [School of Biomedical Engineering and Health Science, Drexel University, Philadelphia, PA 19104 (United States); Jubery, Talukder Zaki N; Dutta, Prashanta [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Freedman, Kevin J; Mulero, Rafael, E-mail: mkim@coe.drexel.ed [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104 (United States)

    2010-11-17

    The separation of biomolecules and other nanoparticles is a vital step in several analytical and diagnostic techniques. Towards this end we present a solid state nanopore-based set-up as an efficient separation platform. The translocation of charged particles through a nanopore was first modeled mathematically using the multi-ion model and the surface charge density of the nanopore membrane was identified as a critical parameter that determines the selectivity of the membrane and the throughput of the separation process. Drawing from these simulations a single 150 nm pore was fabricated in a 50 nm thick free-standing silicon nitride membrane by focused-ion-beam milling and was chemically modified with (3-aminopropyl)triethoxysilane to change its surface charge density. This chemically modified membrane was then used to separate 22 and 58 nm polystyrene nanoparticles in solution. Once optimized, this approach can readily be scaled up to nanopore arrays which would function as a key component of next-generation nanosieving systems.

  7. P-type transparent conducting oxides

    Science.gov (United States)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  8. 12-Tungstophosphates Immobilized on Chemically Modified Mesoporous Silica SBA-15

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing; YOU Wan-sheng; ZHU Zai-ming; SUN Zhen-gang; ZHANG Lan-cui; GU Yuan-peng

    2005-01-01

    A functionalized material, PW/SBA-15m, was prepared successfully in diluted H2SO4 aqueous solutions by immobilizing 12-tungstophosphates on chemically modified mesoporous silica SBA-15 and characterized by elemental analysis, FTIR, 31P MAS NMR, XRD and TEM. The results indicate that the framework of SBA-15 and the Keggin structure of PW12O3-40 were retained, and that 23%-33%(mass fraction) of PW12O3-40 was immobilized; the PW12O3-40 anions were finely dispersed on the pore wall of SBA-15. Having been leached in ethanol at 60 ℃ for 7 h, the loss of PW12O3-40 anions was not found.

  9. Preparation of calcium stannate by modified wet chemical method

    Institute of Scientific and Technical Information of China (English)

    何则强; 李新海; 刘恩辉; 侯朝辉; 邓凌峰; 胡传跃

    2003-01-01

    A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachloride,calcium chloride and sodium hydroxide at room temperature. Then the precursor was annealed at relatively low tem-perature of 600 ℃ to obtain CaSnO3. The phase identification, thermal behavior and surface morphology of the sam-ples were characterized by element analysis, X-ray diffraction (XRD), thermo-gravimetric (TG) analysis and deriva-tive thermo-gravimetric (DTG) analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron mi-croscopy (SEM) in detail. The results show that CaSnO3 obtained by this method possesses a cubic perovskitestructure with average grain size of 5 μm.

  10. Piezoresistance in p-type silicon revisited

    DEFF Research Database (Denmark)

    Richter, Jacob; Pedersen, Jesper; Brandbyge, Mads;

    2008-01-01

    We calculate the shear piezocoefficient pi44 in p-type Si with a 6×6 k·p Hamiltonian model using the Boltzmann transport equation in the relaxation-time approximation. Furthermore, we fabricate and characterize p-type silicon piezoresistors embedded in a (001) silicon substrate. We find that the ...

  11. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang-Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Meng, Xiang-Guang, E-mail: mengxgchem@163.com [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China); Fu, Jing-Wei [National Center for Packaging Material Quality Supervision and Inspection, Chengdu Institute of Product Quality Supervision and Inspection, Chengdu 610064 (China); Yang, Yu-Chong; Yang, Peng; Mi, Chun [Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 (China)

    2014-02-15

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer–Emmett–Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m{sup 2}/g), pore volume (7.29 × 10{sup −3} mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m{sup 2}/g, 2.00 × 10{sup −3} mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and -OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80–91% adsorption efficiency.

  12. Reference field effect transistor based on chemically modified ISFETs

    NARCIS (Netherlands)

    Skowronska-Ptasinska, Maria; Wal, van der Peter D.; Berg, van den Albert; Bergveld, Piet; Sudhölter, Ernst J.R.; Reinhoudt, David N.

    1990-01-01

    Different hydrophobic polymers were used for chemical modification of ion-sensitive field effect transistors (ISFETs) in order to prepare a reference FET (REFET). Chemical attachment of the polymer to the ISFET gate results in a long lifetime of the device. Properties of polyacrylate (polyACE) REFET

  13. Evolution of plant P-type ATPases

    Directory of Open Access Journals (Sweden)

    Christian N.S. Pedersen

    2012-02-01

    Full Text Available Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauria and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a moss, Selaginella moellendorffii (a primitive vascular plant, and Arabidopsis thaliana (a model flowering plant. Each organism contained sequences for all five subfamilies of P-type ATPases. Our analysis demonstrates when specific subgroups of P-type ATPases disappeared in the evolution of Angiosperms. Na/K-pump related P2C ATPases were lost with the evolution of streptophytes whereas Na+ or K+ pumping P2D ATPases and secretory pathway Ca2+-ATPases remained until mosses. An N-terminally located calmodulin binding domain in P2B ATPases can only be detected in pumps from Streptophytae, whereas, like in animals, a C-terminally localized calmodulin binding domain might be present in chlorophyte P2B Ca2+-ATPases. Chlorophyte genomes encode P3A ATPases resembling protist plasma membrane H+-ATPases and a C-terminal regulatory domain is missing. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

  14. CHEMICALLY MODIFIED FIELD-EFFECT TRANSISTORS - POTENTIOMETRIC AG+ SELECTIVITY OF PVC MEMBRANES BASED ON MACROCYCLIC THIOETHERS

    NARCIS (Netherlands)

    BRZOZKA, Z; COBBEN, PLHM; REINHOUDT, DN; EDEMA, JJH; KELLOGG, RM

    1993-01-01

    A chemically modified field-effect transistor (CHEMFET) with satisfactory Ag+ selectivity is described. The potentiometric Ag+ selectivities of CHEMFETs with plasticized PVC membranes based on macrocyclic thioethers have been determined. All the macrocyclic thioethers tested showed silver response a

  15. A NOVEL METHOD TO SYNTHESIZE N-DOPED CNTs ARRAYS VIA CHEMICAL MODIFYING POROUS ALUMINA MEMBRANE

    OpenAIRE

    CHENGYONG LI; LEI HE

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60–70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  16. a Novel Method to Synthesize N-DOPED CNTs Arrays via Chemical Modifying Porous Alumina Membrane

    Science.gov (United States)

    Li, Chengyong; He, Lei

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60-70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  17. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen, E-mail: caoj@bjfu.edu.cn; Sun, Wenjing

    2015-01-01

    Highlights: • We studied the dynamic wetting behavior of thermally modified wood by wetting models. • We found lower wetting speed of water droplets on thermally modified wood surface. • Dynamic wetting behavior and surface chemical components show a strong correlation. - Abstract: In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C{sub 1}/C{sub 2} ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  18. DIMENSIONAL STABILITY AND WATER REPELLENT EFFICIENCY MEASUREMENT OF CHEMICALLY MODIFIED TROPICAL LIGHT HARDWOOD

    OpenAIRE

    Md. Saiful Islam; Sinin Hamdan; Mohamad Rusop; Md. Rezaur Rahman; Abu Saleh Ahmed; M. A. M. Mohd Idrus

    2012-01-01

    Chemical modification is an often-followed route to improve physical and mechanical properties of solid wood materials. In this study five kinds of tropical light hardwoods species, namely jelutong (Dyera costulata), terbulan (Endospermum diadenum), batai (Paraserianthes moluccana), rubberwood (Hevea brasiliensis), and pulai (Alstonia pneumatophora), were chemically modified with benzene diazonium salt to improve their dimensional stability and water repellent efficiency. The dimensional stab...

  19. Electrical Properties of Photodiode Ba0.25Sr0.75TiO3 (BST Thin Film Doped with Ferric Oxide on p-type Si (100 Substrate using Chemical Solution Deposition Method

    Directory of Open Access Journals (Sweden)

    Irzaman

    2011-12-01

    Full Text Available In this paper we have grown pure Ba0.25Sr0.75TiO3 (BST and BST doped by Ferric Oxide Fe2O3 (BFST with doping variations of 5%, 10%, and 15% above type-p Silicon (100 substrate using the chemical solution deposition (CSD method with spin coating technique at rotation speed of 3000 rpm, for 30 seconds. BST thin film are made with a concentration of 1 M 2-methoxyethanol and annealing temperature of 850OC for the Si (100 substrate. Characterization of the thin film is performed for the electrical properties such as the current-voltage (I-V curve using Keithley model 2400 as well as dielectric constant, time constant, pyroelectric characteristics, and depth measurement. The results show that the thin film depth increases if the concentration of the Ferric Oxide doping increases. The I-V characterization shows that the BST and BFST thin film has photodiode properties. The dielectric constant increases with the addition of doping. The maximum dielectric constant value is obtained for 15 % doping concentration namely 83.1 for pure BST and 6.89, 11.1, 41.63 and 83.1, respectively for the Ferric Oxide doping based BST with concentration of 5%, 10%, and 15%. XRD spectra of 15 % of ferric oxide doped BST thin film tetragonal phase, we carried out the lattice constant were a = b = 4.203 Å; c = 4.214 Å; c/a ratio = 1.003

  20. The use of modified phenol for chemical face peeling.

    Science.gov (United States)

    Stone, P A

    1998-01-01

    This article reviews the results of 59 consecutive, modified phenol facial peels on 627 anatomic areas for the purpose of reducing fine to coarse rhytides, hyperpigmentation, and actinic keratoses. This work discusses the Venner-Kellson concentrated Lysol saponated formula containing 62.5% phenol; the Maschek-Truppman 53% phenol, nonsaponated glycerin formula; and the previously unpublished Gradé formulae I, II, and III with 49.5%, 60%, and 70% phenol, respectively. The new Stone formulae I, II, and III are introduced here. These new formulae are mixed from available reagents, thus obviating the need to melt potentially toxic phenol crystals, and are designed to achieve a range of clinical peel results on a wide variety of skin types. The ingredients, methods of preparation and application, as well as three postpeel occlusion techniques are presented. Clinical data including pH measurements, croton oil ratios, phenol concentrations, and preliminary biopsy data also are presented.

  1. Radiation modification of swollen and chemically modified cellulose

    Science.gov (United States)

    Borsa, J.; Tóth, T.; Takács, E.; Hargittai, P.

    2003-06-01

    Effect of accessibility of cellulose molecules on development of crosslinks during high-energy irradiation was investigated. Accessibility of cellulose was improved by swelling (NaOH, tetramethylammonium hydroxide), carboxymethylation, coating with water-soluble carboxymethylcellulose, respectively. Irradiation of samples (10 kGy) was carried out in wet state of the fabric as mobility of cellulose molecules is much higher in the presence of water and high mobility of molecular chains is advantageous for development of crosslinks. Change in molecular size was followed by degree of polymerization. The structure modified by crosslinks was characterized by increase in the absorbance assigned to the intermolecular hydrogen bonds (FTIR), and by decrease of fiber swelling (water vapor sorption, water retention). Thew highest values both for water vapor sorption and water retention were found in sample of highest accessibility (carboxymethylated cotton fabric coated with carboxymethylcellulose).

  2. Mthfd1 is a modifier of chemically induced intestinal carcinogenesis.

    Science.gov (United States)

    MacFarlane, Amanda J; Perry, Cheryll A; McEntee, Michael F; Lin, David M; Stover, Patrick J

    2011-03-01

    The causal metabolic pathways underlying associations between folate and risk for colorectal cancer (CRC) have yet to be established. Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate and methionine. Methionine is converted to S-adenosylmethionine (AdoMet), the major one-carbon donor for cellular methylation reactions. Impairments in folate metabolism can modify DNA synthesis, genomic stability and gene expression, characteristics associated with tumorigenesis. The Mthfd1 gene product, C1-tetrahydrofolate synthase, is a trifunctional enzyme that generates one-carbon substituted tetrahydrofolate cofactors for one-carbon metabolism. In this study, we use Mthfd1(gt/+) mice, which demonstrate a 50% reduction in C1-tetrahydrofolate synthase, to determine its influence on tumor development in two mouse models of intestinal cancer, crosses between Mthfd1(gt/+) and Apc(min)(/+) mice and azoxymethane (AOM)-induced colon cancer in Mthfd1(gt/+) mice. Mthfd1 hemizygosity did not affect colon tumor incidence, number or load in Apc(min/+) mice. However, Mthfd1 deficiency increased tumor incidence 2.5-fold, tumor number 3.5-fold and tumor load 2-fold in AOM-treated mice. DNA uracil content in the colon was lower in Mthfd1(gt/+) mice, indicating that thymidylate biosynthesis capacity does not play a significant role in AOM-induced colon tumorigenesis. Mthfd1 deficiency-modified cellular methylation potential, as indicated by the AdoMet: S-adenosylhomocysteine ratio and gene expression profiles, suggesting that changes in the transcriptome and/or decreased de novo purine biosynthesis and associated mutability cause cellular transformation in the AOM CRC model. This study emphasizes the impact and complexity of gene-nutrient interactions with respect to the relationships among folate metabolism and colon cancer initiation and progression.

  3. Interfacial characterization and analytical applications of chemically-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhong [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  4. WATER-BLOWN POLYURETHANE RIGID FOAMS MODIFIED BY CHEMICAL PLASTICATION

    Institute of Scientific and Technical Information of China (English)

    YU Ming; XU Qiang

    2006-01-01

    Water-blown polyurethane rigid foams are getting more and more attention, because the traditional blowing agent HCFC141b has already been abolished to prevent the ozone layer from destruction. However, the polyurethane rigid foams blown by water have serious defects, i.e. friability and resulting lower adhesion strength. Thus, the purpose of this study is to resolve the problems by chemical plastication. The maleate was added to polyol-premix containing water or to polyisocyanate,with both of which maleate does not react. To prove the reaction when polyol-premix and polyisocyanate were mixed, the model composite was synthesized and analyzed by IR, NMR and ESI (MS). Furthermore, a series of water-blown polyurethane rigid foams added different amount maleate were successfully prepared. By testing impact strength and adhesion strength of the foams, the actual effect of adding maleate was obtained.

  5. Biosorption of Methylene Blue by Chemically Modified Cellulose Waste

    Institute of Scientific and Technical Information of China (English)

    JIN Yanqiao; ZHANG Yizhuan; Lü Qiufeng; CHENG Xiansu

    2014-01-01

    Citric acid modified cellulose waste (CMCW) was prepared via esterification and used as a low-cost biosorbent for the removal of methylene blue (MB) from aqueous solutions. The effects of biosorbent concentration, initial pH of MB solution, biosorption temperature, contact time, and initial MB concentration on the biosorption of MB were investigated using batch biosorption technique under static conditions. The experimental results showed that CMCW exhibited excellent biosorption characteristics for MB. The maximum biosorption capacity of MB was up to 214.5 mg/g at an adsorption temperature of 293 K. The removal rate of MB onto CMCW reached the maximum at pH>4 and the biosorption reached an equilibrium at about 50 min. The kinetic data can be described well with the pseudo-second-order model and the isotherm data was found to fit the Langmuir isotherm with a monolayer adsorption capacity of 211.42 mg/g. The biosorption appears to be controlled by chemisorption and may be involved in surface adsorption and pore diffusion during the whole biosorption process.

  6. CO2 adsorption on chemically modified activated carbon.

    Science.gov (United States)

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively.

  7. Mechanical and chemical properties of cysteine-modified kinesin molecules.

    Science.gov (United States)

    Iwatani, S; Iwane, A H; Higuchi, H; Ishii, Y; Yanagida, T

    1999-08-10

    To probe the structural changes within kinesin molecules, we made the mutants of motor domains of two-headed kinesin (4-411 aa) in which either all the five cysteines or all except Cys45 were mutated. A residual cysteine (Cys45) of the kinesin mutant was labeled with an environment-sensitive fluorescent probe, acrylodan. ATPase activity, mechanical properties, and fluorescence intensity of the mutants were measured. Upon acrylodan-labeled kinesin binding to microtubules in the presence of 1 mM AMPPNP, the peak intensity was enhanced by 3.4-fold, indicating the structural change of the kinesin head by the binding. Substitution of cysteines decreased both the maximum microtubule-activated ATPase and the sliding velocity to the same extent. However, the maximum force and the step size were not affected; the force produced by a single molecule was 6-6.5 pN, and a step size due to the hydrolysis of one ATP molecule by kinesin molecules was about 10 nm for all kinesins. This step size was close to a unitary step size of 8 nm. Thus, the mechanical events of kinesin are tightly coupled with the chemical events.

  8. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  9. Food preparation characteristics of potato starch pastes containing a proportion of chemically-modified starch

    OpenAIRE

    菊地, 和美; 高橋 セツ子; 吉田 訓子; 山本 未穂; 知地 英征; Kazumi, KIKUCHI; Takahashi, Setsuko; Yoshida, Kuniko; Yamamoto, Miho; Chiji, Hideyuki; 藤女子大学人間生活学部食物栄養学科; 藤女子大学人間生活学部食物栄養学科藤女子大学大学院人間生活学研究科食物栄養学専攻

    2011-01-01

    Hokkaido potatoes are widely used as a source of starch. Potato starch is used for various purposes,particularly for the production of fish paste products,livestock products, and confectionery. Moreover, modified starch, which is produced by processing potato starch chemically and physically, is used in a variety of forms. This study examines the properties of modified starch gels produced by further enhancing the starch functions of potato starch. To study the primary properties of starch ge...

  10. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    Science.gov (United States)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  11. Applicability of chemically modified capillaries in chiral capillary electrophoresis for methamphetamine profiling.

    Science.gov (United States)

    Iwata, Yuko T; Mikuma, Toshiyasu; Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Inoue, Hiroyuki

    2013-03-10

    We examined the applicability of chemically modified capillaries on the chiral capillary electrophoresis of essential compounds for methamphetamine (MA) profiling (MA, amphetamine, ephedrine, pseudoephedrine, norephedrine, and norpseudoephedrine) using highly sulfated γ-cyclodextrin as a chiral selector. Four types of chemically modified capillaries, namely, FunCap-CE/Type D (possessing diol groups), Type A (amino groups), Type C (carboxyl groups), and Type S (sulfate groups), were evaluated. Repeatability, speed, and good chiral resolution sufficient for routine MA profiling were achieved with the Type S capillary.

  12. Evaluating Zeolite-Modified Sensors: towards a faster set of chemical sensors

    Science.gov (United States)

    Berna, A. Z.; Vergara, A.; Trincavelli, M.; Huerta, R.; Afonja, A.; Parkin, I. P.; Binions, R.; Trowell, S.

    2011-09-01

    The responses of zeolite-modified sensors, prepared by screen printing layers of chromium titanium oxide (CTO), were compared to unmodified tin oxide sensors using amplitude and transient responses. For transient responses we used a family of features, derived from the exponential moving average (EMA), to characterize chemo-resistive responses. All sensors were tested simultaneously against 20 individual volatile compounds from four chemical groups. The responses of the two types of sensors showed some independence. The zeolite-modified CTO sensors discriminated compounds better using either amplitude response or EMA features and CTO-modified sensors also responded three times faster.

  13. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    Science.gov (United States)

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study.

  14. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  15. X-Ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Elio Desimoni

    2015-04-01

    Full Text Available The characterization of chemically modified sensors and biosensors is commonly performed by cyclic voltammetry and electron microscopies, which allow verifying electrode mechanisms and surface morphologies. Among other techniques, X-ray photoelectron spectroscopy (XPS plays a unique role in giving access to qualitative, quantitative/semi-quantitative and speciation information concerning the sensor surface. Nevertheless, XPS remains rather underused in this field. The aim of this paper is to review selected articles which evidence the useful performances of XPS in characterizing the top surface layers of chemically modified sensors and biosensors. A concise introduction to X-ray Photoelectron Spectroscopy gives to the reader the essential background. The application of XPS for characterizing sensors suitable for food and environmental analysis is highlighted.

  16. Chemical modifiers in electrothermal atomic absorption determination of Platinum and Palladium containing preparations in blood serum

    Directory of Open Access Journals (Sweden)

    Аntonina Alemasova

    2012-11-01

    Full Text Available The biological liquids matrixes influence on the characteristic masses and repeatability of Pt and Pd electrothermal atomic absorption spectroscopy (ETAAS determination was studied. The chemical modifiers dimethylglyoxime and ascorbic acid for matrix interferences elimination and ETAAS results repeatability improvement were proposed while bioliquids ETAAS analysis, and their action mechanism was discussed.

  17. Chemically modified tetracyclines stimulate matrix metalloproteinase-2 production by periodontal ligament cells.

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den

    2006-01-01

    BACKGROUND AND OBJECTIVE: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases. MATERIA

  18. Biomechanical properties of acellular sciatic nerves treated with a modified chemical method

    Institute of Scientific and Technical Information of China (English)

    Xinlong Ma; Zhao Yang; Xiaolei Sun; Jianxiong Ma; Xiulan Li; Zhenzhen Yuan; Yang Zhang; Honggang Guo

    2011-01-01

    Nerve grafts are able to adapt to surrounding biomechanical environments if the nerve graft itself exhibits appropriate biomechanical properties (load, elastic modulus, etc.). The present study was designed to determine the differences in biomechanical properties between fresh and chemically acellularized sciatic nerve grafts. Two different chemical methods were used to establish acellular nerve grafts. The nerve was chemically extracted in the Sondell method with a combination of Triton X-100 (nonionic detergent) and sodium deoxycholate (anionic detergent), and in the modified method with a combination of Triton X-200 (anionic detergent), sulfobetaine-10 (SB-10, amphoteric detergents), and sulfobetaine-16 (SB-16, amphoteric detergents). Following acellularization, hematoxylin-eosin staining and scanning electron microscopy demonstrated that the effect of acellularization via the modified method was similar to the traditional Sondell method. However, effects of demyelination and nerve fiber tube integrity were superior to the traditional Sondell method. Biomechanical testing showed that peripheral nerve graft treated using the chemical method resulted in decreased biomechanical properties (ultimate load, ultimate stress, ultimate strain, and mechanical work to fracture) compared with fresh nerves, but the differences had no statistical significance (P > 0.05). These results demonstrated no significant effect on biomechanical properties of nerves treated using the chemical method. In conclusion, nerve grafts treated via the modified method removed Schwann cells, preserved neural structures, and ensured biomechanical properties of the nerve graft, which could be more appropriate for implantation studies.

  19. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function

    Directory of Open Access Journals (Sweden)

    Ville Y. P. Väre

    2017-03-01

    Full Text Available RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA’s cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.

  20. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  1. Polynuclear Nickel Hexacyanoferrate/Graphitized Mesoporous Carbon Hybrid Chemically Modified Electrode for Selective Hydrazine Detection

    OpenAIRE

    Palani Barathi; Annamalai Senthil Kumar; Minnal Ranjan Babu Karthick

    2011-01-01

    A hybrid polynuclear nickel hexacyanoferrate (NiHCFe)/graphitized mesoporous carbon- (GMC-) modified glassy carbon electrode (GCE/NiHCFe@GMC) has been prepared by a sequential method using electrodeposited Ni on a GMC-modified glassy carbon electrode (GCE/Ni@GMC) as a template and [Fe(CN)6]3− as an in-situ chemical precipitant, without any additional interlinking agent. Physicochemical and electrochemical characterizations reveal the presence of NiHCFe units within the porous sites of the GM...

  2. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    OpenAIRE

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    1999-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface mo...

  3. Highly improved chromium (III uptake capacity in modified sugarcane bagasse using different chemical treatments

    Directory of Open Access Journals (Sweden)

    Vanessa Cristina Gonçalves Dos Santos

    2012-01-01

    Full Text Available The present paper focuses on improving chromium (III uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III maximum adsorption capacity (MAC value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1 giving a MAC value about three times greater (20.34 mg g-1 than for raw sugarcane bagasse.

  4. Research on the chemical mechanism in the polyacrylate latex modified cement system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Rumin, E-mail: wangmin19@mail.nwpu.edu.cn [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Zheng, Shuirong [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China); Northwestern Polytechnical University–East China University of Science and Technology Combined Research Institute of New High Speed Railway Materials (China); Farhan, Shameel; Yao, Hao; Jiang, Hao [The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  5. Chemically Modified Ordered Mesoporous Carbon/Polyaniline Composites for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    KONG Ling-bin; ZHANG Jing; CAI Jian-jun; YANG Zhen-sheng; LUO Yong-chun; KANG Long

    2011-01-01

    Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.

  6. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, C.G.; Huerta, V.N.; Neira, J.Y. [Departamento de Analisis Instrumental, Facultad de Farmacia, Universidad de Concepcion, P.O. Box 237, Concepcion (Chile)

    2004-01-01

    Palladium, iridium, and rhodium are evaluated as possible chemical modifiers in the determination of As in digest solutions of biological materials (human hair and clam) by tungsten coil electrothermal atomic absorption spectrophotometry (TCA-AAS). The modifier in solution was applied onto the coil and thermally pre-reduced; the pre-reduction conditions, the amount of modifier, and the thermal program were optimized. Palladium was not satisfactory, whereas Ir and Rh were effective modifiers and rendered better relative sensitivity for As by a factor of 1.4 and 1.9, respectively compared to the case without modifier. Upon optimization of thermal conditions for As in pre-reduced Ir (2.0 {mu}g) and Rh (2.0 {mu}g) modifiers and in the digest solutions of the study matrices, Rh (2.0 {mu}g) was more effective modifier and was selected as such. The mean within-day repeatability was 2.8% in consecutive measurements (25-100 {mu}g L{sup -1}) (3 cycles, each of n=6) and confirmed good short-term stability of the absorbance measurements. The mean reproducibility was 4.4% (n=20 in a 3-day period) and the detection limit (3{sigma}{sub blank}/slope) was 29 pg (n=15). The useful coil lifetime in Rh modifier was extended to 300-400 firings. Validation was by determination of As in the certified reference material (CRM) of ''Oyster tissue'' solution with a percentage relative error (E{sub rel}%) of 2% and percentage relative standard deviation (RSD%) of 3% (n=4), and by analytical recovery of As spiked in CRM of human hair [94{+-}8% (n=4)]. The methodology is simple, fast (sample readout frequency 21 h{sup -1}), reliable, of low cost, and was applied to the determination of As in hair samples of exposed and unexposed workers. (orig.)

  7. Chemically modified STM tips for atomic-resolution imaging of ultrathin NaCI films

    Institute of Scientific and Technical Information of China (English)

    Zhe Li[1; Koen Schouteden[1; Violeta lancu[1; Ewald Janssens[1; Peter Lievens[1; Chris Van Haesendonck[1; Jorge I. Cerda[2

    2015-01-01

    Cl-functionalized scanning tunneling microscopy (STM) tips are fabricated by modifying a tungsten STM tip in situ on islands of ultrathin NaCI(100) films on Au(111) surfaces. The functionalized tips are used to achieve clear atomic- resolution imaging of NaCI(100) islands. In comparison with bare metal tips, the chemically modified tips yield drastically enhanced spatial resolution as well as contrast reversal in STM topographs, implying that Na atoms, rather than C1 atoms, are imaged as protrusions. STM simulations based on a Green's function formalism reveal that the experimentally observed contrast reversal in the STM topographs is due to the highly localized character of the Cl-pz states at the tip apex. An additional remarkable characteristic of the modified tips is that in dI/dV maps, a Na atom appears as a ring with a diameter that depends crucially on the tip-sample distance.

  8. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    OpenAIRE

    2011-01-01

    International audience; Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium ...

  9. Chemically modified bitumens with enhanced rheology and adhesion properties to siliceous aggregates

    OpenAIRE

    Cuadri Vega, Antonio Abad; Partal López, Pedro; Ahmad, Naveed; Grenfell, James; Airey, Gordon

    2015-01-01

    Moisture damage is one of the major premature failures that worsens the performance and shortens service life of pavements. This research assesses the effect that two chemical modifiers (thiourea and an isocyanate-functionalized castor oil prepolymer) exerts on the bitumen rheology and on the resistance to potential moisture damage of asphalt mixtures based on siliceous aggregates. Both thiourea and the isocyanate-based prepolymer improve the viscous and viscoelastic behaviours of bitumen at ...

  10. Origin of the p-type character of AuCl3 functionalized carbon nanotubes

    KAUST Repository

    Murat, Altynbek

    2014-02-13

    The microscopic origin of the p-type character of AuCl3 functionalized carbon nanotubes (CNTs) is investigated using first-principles self-interaction corrected density functional theory (DFT). Recent DFT calculations suggest that the p-type character of AuCl3 functionalized CNTs is due to the Cl atoms adsorbed on the CNTs. We test this hypothesis and show that adsorbed Cl atoms only lead to a p-type character for very specific concentrations and arrangements of the Cl atoms, which furthermore are not the lowest energy configurations. We therefore investigate alternative mechanisms and conclude that the p-type character is due to the adsorption of AuCl4 molecules. The unraveling of the exact nature of the p-doping adsorbates is a key step for further development of AuCl3 functionalized CNTs in water sensor applications. © 2014 American Chemical Society.

  11. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    Science.gov (United States)

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  12. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  13. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Science.gov (United States)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P. I.; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M. A.; Nistal, A.; Rubio, J.

    2016-11-01

    Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating ("sizing"), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  14. A new modified-rate approach for gas-grain chemical simulations

    CERN Document Server

    Garrod, R T

    2008-01-01

    Understanding grain-surface processes is crucial to interpreting the chemistry of the ISM. However, accurate surface chemistry models are computationally expensive and are difficult to integrate with gas-phase simulations. A new modified-rate method for solving grain-surface chemical systems is presented. Its purpose is accurately to model highly complex systems that can otherwise only be treated using the sometimes inadequate rate-equation approach. In contrast to previous rate-modification techniques, the functional form of the surface production rates was modified, and not simply the rate coefficient. This form is appropriate to the extreme "small-grain" limit, and can be verified using an analytical master-equation approach. Various further modifications were made to this basic form, to account for competition between processes, to improve estimates of surface occupation probabilities, and to allow a switch-over to the normal rate equations where these are applicable. The new method was tested against sys...

  15. A modified method for estimation of chemical oxygen demand for samples having high suspended solids.

    Science.gov (United States)

    Yadvika; Yadav, Asheesh Kumar; Sreekrishnan, T R; Satya, Santosh; Kohli, Sangeeta

    2006-03-01

    Determination of chemical oxygen demand (COD) of samples having high suspended solids concentration such as cattle dung slurry with open reflux method of APHA-AWWA-WPCF did not give consistent results. This study presents a modification of the open reflux method (APHA-AWWA-WPCF) to make it suitable for samples with high percentage of suspended solids. The new method is based on a different technique of sample preparation, modified quantities of reagents and higher reflux time as compared to the existing open reflux method. For samples having solids contents of 14.0 g/l or higher, the modified method was found to give higher value of COD with much higher consistency and accuracy as compared to the existing open reflux method.

  16. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  17. Silencing of Inducible Immunoproteasome Subunit Expression by Chemically Modified siRNA and shRNA.

    Science.gov (United States)

    Gvozdeva, Olga V; Prassolov, Vladimir S; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L

    2016-08-01

    Overexpression of inducible subunits of immunoproteasome is related to pathogenesis of some chronic diseases. Specific inhibition of the immunosubunits may be used for the treatment of these diseases and RNA interference is one of the potent methods used in this area. We designed 2'-O-methyl modified siRNAs with selectively protected nuclease-sensitive sites, which efficiently silence LMP2, LMP7, and MECL-1 genes expression. To provide stable long-lasting inhibition of target genes, short-hairpin RNAs (shRNA) expressed by lentiviral vectors were constructed. Our results demonstrated that chemically modified siRNAs inhibited the expression of target genes with similar efficiency or with efficiency exceeding that of corresponding shRNAs and provide silencing effect for 5 days.

  18. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Gavin R., E-mail: gavin.bell@warwick.ac.uk; Dawson, Peter M.; Pandey, Priyanka A.; Wilson, Neil R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Mulheran, Paul A. [Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose St., Glasgow G1 1XJ (United Kingdom)

    2014-01-01

    Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD). A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  19. Modified Augmented Lagrange Multiplier Methods for Large-Scale Chemical Process Optimization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.

  20. Retention of proteins and metalloproteins in open tubular capillary electrochromatography with etched chemically modified columns.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Salgotra, Vasudha

    2008-09-01

    Etched chemically modified capillaries with two different bonded groups (pentyl and octadecyl) are compared for their migration behavior of several common proteins and metalloproteins as well as metalloproteinases. Migration times, efficiency and peak shape are evaluated over the pH range of 2.1-8.1 to determine any effects of the bonded group on the electrochromatographic behavior of these compounds. One goal was to determine if the relative hydrophobicity of the stationary phase has a significant effect on proteins in the open tubular format of capillary electrochromatography as it does in HPLC. Reproducibility of the migration times is also investigated.

  1. Retention of Proteins and Metalloproteins in Open Tubular Capillary Electrochromatography with Etched Chemically Modified Columns

    Science.gov (United States)

    Pesek, Joseph J.; Matyska, Maria T.; Salgotra, Vasudha

    2010-01-01

    Etched chemically modified capillaries with two different bonded groups (pentyl and octadecyl) are compared for their migration behavior of several common proteins and metalloproteins as well as metalloproteinases. Migration times, efficiency and peak shape are evaluated over the pH range of 2.1 to 8.1 to determine any effects of the bonded group on the electrochromatographic behavior of these compounds. One goal was to determine if the relative hydrophobicity of the stationary phase has a significant effect on proteins in the open tubular format of capillary electrochromatography as it does in HPLC. Reproducibility of the migration times is also investigated. PMID:18850653

  2. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Directory of Open Access Journals (Sweden)

    Gavin R. Bell

    2014-01-01

    Full Text Available Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD. A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  3. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants

    Science.gov (United States)

    Quinn, R. C.; Zent, A. P.

    1999-01-01

    Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the

  4. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J Douglas

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  5. Free-radical-promoted conversion of graphite oxide into chemically modified graphene.

    Science.gov (United States)

    Chai, Na-Na; Zeng, Jing; Zhou, Kai-Ge; Xie, Yu-Long; Wang, Hang-Xing; Zhang, Hao-Li; Xu, Chen; Zhu, Ji-Xin; Yan, Qing-Yu

    2013-05-01

    The preparation of chemically modified graphene (CMG) generally involves the reduction of graphite oxide (GO) by using various reducing reagents. Herein, we report a free-radical-promoted synthesis of CMG, which does not require any conventional reductant. We demonstrated that the phenyl free radical can efficiently promote the conversion of GO into CMG under mild conditions and produces phenyl-functionalized CMG. This pseudo-"reduction" process is attributed to a free-radical-mediated elimination of the surface-attached oxygen-containing functionalities. This work illustrates a new strategy for preparing CMG that is alternative to the conventional means of chemical reduction. Furthermore, the phenyl-functionalized graphene shows an excellent performance as an electrode material for lithium-battery applications.

  6. DIMENSIONAL STABILITY AND WATER REPELLENT EFFICIENCY MEASUREMENT OF CHEMICALLY MODIFIED TROPICAL LIGHT HARDWOOD

    Directory of Open Access Journals (Sweden)

    Md Saiful Islam,

    2012-01-01

    Full Text Available Chemical modification is an often-followed route to improve physical and mechanical properties of solid wood materials. In this study five kinds of tropical light hardwoods species, namely jelutong (Dyera costulata, terbulan (Endospermum diadenum, batai (Paraserianthes moluccana, rubberwood (Hevea brasiliensis, and pulai (Alstonia pneumatophora, were chemically modified with benzene diazonium salt to improve their dimensional stability and water repellent efficiency. The dimensional stability of treated samples in terms of volumetric swelling coefficient (S and anti-swelling-efficiency (ASE were found to improve with treatment. The water repellent efficiency (WRE values also seemed to improve considerably with treatment of wood samples. Furthermore, treated wood samples had lower water and moisture absorption compared to that of untreated ones.

  7. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant.

    Science.gov (United States)

    Gallovic, Matthew D; Montjoy, Douglas G; Collier, Michael A; Do, Clement; Wyslouzil, Barbara E; Bachelder, Eric M; Ainslie, Kristy M

    2016-03-01

    To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant.

  8. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation

    Science.gov (United States)

    Das, Saroj Kumar; Bedar, Amita; Kannan, Aadithya; Jasuja, Kabeer

    2015-01-01

    The discovery of graphene has led to a rising interest in seeking quasi two-dimensional allotropes of several elements and inorganic compounds. Boron, carbon’s neighbour in the periodic table, presents a curious case in its ability to be structured as graphene. Although it cannot independently constitute a honeycomb planar structure, it forms a graphenic arrangement in association with electron-donor elements. This is exemplified in magnesium diboride (MgB2): an inorganic layered compound comprising boron honeycomb planes alternated by Mg atoms. Till date, MgB2 has been primarily researched for its superconducting properties; it hasn’t been explored for the possibility of its exfoliation. Here we show that ultrasonication of MgB2 in water results in its exfoliation to yield few-layer-thick Mg-deficient hydroxyl-functionalized nanosheets. The hydroxyl groups enable an electrostatically stabilized aqueous dispersion and create a heterogeneity leading to an excitation wavelength dependent photoluminescence. These chemically modified MgB2 nanosheets exhibit an extremely small absorption coefficient of 2.9 ml mg−1 cm−1 compared to graphene and its analogs. This ability to exfoliate MgB2 to yield nanosheets with a chemically modified lattice and properties distinct from the parent material presents a fundamentally new perspective to the science of MgB2 and forms a first foundational step towards exfoliating metal borides. PMID:26041686

  9. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  10. Determination of bisphenol A in food-simulating liquids using LCED with a chemically modified electrode.

    Science.gov (United States)

    D'Antuono, A; Dall'Orto, V C; Lo Balbo, A; Sobral, S; Rezzano, I

    2001-03-01

    Liquid chromatography with electrochemical detector (LC-ED), using a chemically modified electrode coated with a metalloporphyrin film, is reported for determination of bisphenol A (BPA) migration from polycarbonate baby bottles. The extraction process of the samples was performed according to regulations of the Southern Common Market (MERCOSUR), where certain food-simulating liquids [(A) distilled water, (B) acetic acid 3% V/V in distilled water, and (C) ethanol 15% V/V in distilled water] are defined along with controlled time and temperature conditions. The baseline obtained using the naked electrode showed a considerable drift which increased the detection limit. This effect was suppressed with the chemically modified electrode. A linear range up to 450 ppb along with a detection limit of 20 ppb for the amperometric detection technique was observed. The procedure described herein allowed lowering the detection limit of the method to 0.2 ppb. The value found for BPA in the food-simulating liquid is 1.2 ppb, which is below the tolerance limit for specific migration (4.8 ppm).

  11. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  12. Sensory and rheological properties of transgenically and chemically modified starch ingredients as evaluated in a food product model

    DEFF Research Database (Denmark)

    Ahmt, T.; Wischmann, Bente; Blennow, A.

    2004-01-01

    Starches derived from five genetically modified potato lines, two chemically modified potato starches and two native starches from potato and maize were subjected to physical and chemical analyses and their functionality evaluated in a milk-based food product model. The transgenic starches were...... gels with a higher tendency to retrograde and a low freeze/thaw stability as compared to starches with shorter amylopectin chains and lower phosphorous content. The textural properties of the food product model prepared from genetically and chemically modified starches were characterised by sensory...... and rheological analyses. To clearly visualise the effects of the modifications, data was evaluated by radar plots and multiple regression analysis (chemometrics). Genetically modified potato starches with longer amylopectin chains and increased phosphorous content gave a more gelled and a shorter texture...

  13. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.

    Science.gov (United States)

    Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N

    2016-12-01

    Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.

  14. Dual-tracer method to estimate coral reef response to a plume of chemically modified seawater

    Science.gov (United States)

    Maclaren, J. K.; Caldeira, K.

    2013-12-01

    We present a new method, based on measurement of seawater samples, to estimate the response of a reef ecosystem to a plume of an additive (for example, a nutrient or other chemical). In the natural environment, where there may be natural variability in concentrations, it can be difficult to distinguish between changes in concentrations that would occur naturally and changes in concentrations that result from a chemical addition. Furthermore, in the unconfined natural environment, chemically modified water can mix with waters that have not been modified, making it difficult to distinguish between effects of dilution and effects of chemical fluxes or transformations. We present a dual-tracer method that extracts signals from observations that may be affected by both natural variability and dilution. In this dual-tracer method, a substance (in our example case, alkalinity) is added to the water in known proportion to a passive conservative tracer (in our example case, Rhodamine WT dye). The resulting plume of seawater is allowed to flow over the study site. Two transects are drawn across the plume at the front and back of the study site. If, in our example, alkalinity is plotted as a function of dye concentration for the front transect, the slope of the resulting mixing line is the ratio of alkalinity to dye in the added fluid. If a similar mixing line is measured and calculated for the back transect, the slope of this mixing line will indicate the amount of added alkalinity that remains in the water flowing out of the study site per unit of added dye. The ratio of the front and back slopes indicates the fraction of added alkalinity that was taken up by the reef. The method is demonstrated in an experiment performed on One Tree Reef (Queensland, Australia) aimed at showing that ocean acidification is already affecting coral reef growth. In an effort to chemically reverse some of the changes to seawater chemistry that have occurred over the past 200 years, we added

  15. The performance of chemically and physically modified local kaolinite in methanol dehydration to dimethyl ether

    Directory of Open Access Journals (Sweden)

    Sanaa M. Solyman

    2014-09-01

    Full Text Available The catalytic activity of modified natural kaolinite as a solid acid catalyst for dimethyl ether (DME preparation was investigated by following up the conversion% of methanol and the yield% of DME. Natural kaolinite (KN was treated chemically with H2O2 (KT followed by thermal treatment at 500 °C (KC and then mechano-chemically by ball milling with and without CaSO4 (KB-Ca and KB, respectively. These samples were characterized by XRD, FTIR, SEM, HRTEM, TGA and NH3-TPD techniques. The different techniques showed that the chemical treatment of kaolinite with H2O2 resulted in partial exfoliation/delamination of kaolinite, decreased the amount of acidic sites which is accompanied by increasing their strength. Calcination only decreased the acidic strength and slightly enlarged the particle size mostly due to heat effect. Ball milling resulted in multitude randomly-oriented crystals and increased the amount of acidic sites with the same strength of KT sample. CaSO4 mostly produced ordered monocrystalline kaolinite and created new acidic sites with slightly lower strength relative to KB. The catalytic activity and selectivity depend on the reaction temperature, the space velocity and the strength of acid sites. The most active sample is KB-Ca, which gives 84% DME due to its high amount and strength of acidic sites. The different modification methods resulted in 100% selectivity for DME.

  16. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  17. Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels.

    Science.gov (United States)

    Lim, Khoon S; Alves, Marie H; Poole-Warren, Laura A; Martens, Penny J

    2013-09-01

    Development of tissue engineering solutions for biomedical applications has driven the need for integration of biological signals into synthetic materials. Approaches to achieve this typically require chemical modification of the biological molecules. Examples include chemical grafting of synthetic polymers onto protein backbones and covalent modification of proteins using crosslinkable functional groups. However, such chemical modification processes can cause protein degradation, denaturation or loss of biological activity due to side chain disruption. This study exploited the observation that native tyrosine rich proteins could be crosslinked via radical initiated bi-phenol bond formation without any chemical modification of the protein. A new, tyramine functionalised poly(vinyl alcohol) (PVA) polymer was synthesised and characterised. The tyramine modified PVA (PVA-Tyr) was fabricated into hydrogels using a visible light initiated crosslinking system. Mass loss studies showed that PVA-Tyr hydrogels were completely degraded within 19 days most likely via degradation of ester linkages in the network. Protein incorporation to form a biosynthetic hydrogel was achieved using unmodified gelatin, a protein derived from collagen and results showed that 75% of gelatin was retained in the gel post-polymerisation. Incorporation of gelatin did not alter the sol fraction, swelling ratio and degradation profile of the hydrogels, but did significantly improve the cellular interactions. Moreover, incorporation of as little as 0.01 wt% gelatin was sufficient to facilitate fibroblast adhesion onto PVA-Tyr/gelatin hydrogels. Overall, this study details the synthesis of a new functionalised PVA macromer and demonstrates that tyrosine containing proteins can be covalently incorporated into synthetic hydrogels using this innovative PVA-Tyr system. The resultant degradable biosynthetic hydrogels hold great promise as matrices for tissue engineering applications.

  18. Chemically modified and nanostructured porous silicon as a drug delivery material and device

    Science.gov (United States)

    Anglin, Emily Jessica

    This thesis describes the fabrication, chemical modification, drug release, and toxicity studies of nanostructured porous silicon for the purposes of developing a smart drug delivery device. The first chapter is an introductory chapter, presenting the chemical and physical properties of porous silicon, the concepts and issues of current drug delivery devices and materials, and how porous silicon can address the issues regarding localized and controlled drug therapies. The second chapter discusses chemical modifications of nanostructured porous Si for stabilizing the material in biologically relevant media while providing an extended release of a therapeutic in vitro. This chapter also demonstrates the utility of the porous silicon optical signatures for effectively monitoring drug release from the system and its applications for development of a self-reporting drug delivery device. In chapter three, the concept of providing a triggered release of a therapeutic from porous silicon microparticles through initiation by an external stimulus is demonstrated. The microparticles are chemically modified, and the release is enhanced by a short application of ultrasound to the particulate system. The effect of ultrasound on the drug release and particle size is discussed. Chapter four presents a new method for sustaining the release of a monoclonal antibody from the porous matrix of porous SiO2. The therapeutic is incorporated into the films through electrostatic adsorption and a slow release is observed in vitro. A new method of quantifying the extent of drug loading is monitored with interferometry. The last chapter of the thesis provides a basic in vivo toxicity study of various porous Si microparticles for intraocular applications. Three types of porous Si particles are fabricated and studied in a rabbit eye model. The toxicity studies were conducted by collaborators at the Shiley Eye Center, La Jolla, CA. This work, demonstrates the feasibility of developing a self

  19. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells

    Directory of Open Access Journals (Sweden)

    Stefania Roberta Cicco

    2016-12-01

    Full Text Available In the past decade, mesoporous silica nanoparticles (MSNs with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS and 3-aminopropyl-triethoxysilane (APTES. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the –SH or –NH2 were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility.

  20. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.

    Science.gov (United States)

    Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Wahlsten, Matti; Gugger, Muriel; Calteau, Alexandra; Permi, Perttu; Kerfeld, Cheryl A; Sivonen, Kaarina; Fewer, David P

    2013-08-22

    Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications.

  1. A modified next reaction method for simulating chemical systems with time dependent propensities and delays.

    Science.gov (United States)

    Anderson, David F

    2007-12-01

    Chemical reaction systems with a low to moderate number of molecules are typically modeled as discrete jump Markov processes. These systems are oftentimes simulated with methods that produce statistically exact sample paths such as the Gillespie algorithm or the next reaction method. In this paper we make explicit use of the fact that the initiation times of the reactions can be represented as the firing times of independent, unit rate Poisson processes with internal times given by integrated propensity functions. Using this representation we derive a modified next reaction method and, in a way that achieves efficiency over existing approaches for exact simulation, extend it to systems with time dependent propensities as well as to systems with delays.

  2. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  3. Immobilization of chemically modified horse radish peroxidase within activated alginate beads

    Directory of Open Access Journals (Sweden)

    Spasojević Dragica

    2014-01-01

    Full Text Available Immobilization of horse radish peroxidase (HRP within alginate beads was improved by chemical modification of the enzyme and polysaccharide chains. HRP and alginate were oxidized by periodate and subsequently modified with ethylenediamine. Highest specific activity of 0.43 U/ml of gel and 81 % of bound enzyme activity was obtained using aminated HRP and alginate oxidized by periodate. Immobilized enzyme retained 75 % of original activity after 2 days of incubation in 80 % (v/v dioxane and had increased activity at basic pH values compared to native enzyme. During repeated use in batch reactor for pyrogallol oxidation immobilized peroxidase retained 75 % of original activity. [Projekat Ministarstva nauke Republike Srbije, br. ON173017 i br. ON172049

  4. Genetic and chemical modifiers of a CUG toxicity model in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amparo Garcia-Lopez

    Full Text Available Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL proteins contributing to myotonic dystrophy 1 (DM1. To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen, muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine, and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.

  5. New Inorganic-organic Hybrid Tetravanadate:Preparation, Characterization and Application in Chemically Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    SUN Ying-hua; LI Xiao-ping; MEI Ze-min; ZHU Yu; NIU Li

    2011-01-01

    A new inorganic-organic hybrid tetravanadate [Co(2,2'-bpy)3]2V4O12.llH2O(l) has been prepared and characterized. X-Ray diffraction study reveals that compound 1 contains classical cluster anions [V4O12]4-, coordi nated cations [Co(2,2'-bpy)3]2+ and eleven water molecules, in which an interesting decamer water cluster is formed.The hybrid nanoparticles were firstly used as a bulk-modifier to fabricate a chemically modified paste electrode (1-CPE). The electrochemical behavior and electrocatalysis of 1-CPE have been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of bromate in a 0.5 mol/L H2SO4 aqueous solu tion. I-CPE shows remarkable stability that be ascribed to the hydrogen bonding interactions between V4O12 cluster and water cluster, which are very important for practical application in electrode modification.

  6. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    Science.gov (United States)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  7. High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li; Li Chunzhong [East China University of Science and Technology, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China)], E-mail: czli@ecust.edu.cn; Senna, Mamoru [Keio University, Department of Applied Chemistry, Faculty of Science and Technology (Japan)

    2007-10-15

    Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA-SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic-organic interfacial adhesion. The newly developed HA-SF composites are expected to be attractive biomedical materials for bone repair and remodeling.

  8. The effects of space radiation on a chemically modified graphite-epoxy composite material

    Science.gov (United States)

    Reed, S. M.; Herakovich, C. T.; Sykes, G. F.

    1986-01-01

    The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature.

  9. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    Science.gov (United States)

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  10. Kinetic and thermodynamic studies on biosorption of Cu(Ⅱ) by chemically modified orange peel

    Institute of Scientific and Technical Information of China (English)

    FENG Ning-chuan; GUO Xue-yi; LIANG Sha

    2009-01-01

    Cu(H) biosorption by orange peel that was chemically modified with sodium hydroxide and calcium chloride was investigated. The effects of temperature, contact time, initial concentration of metal ions and pH on the biosorption of Cu( II) ions were assessed. Thermodynamic parameters including change of free energy(△G~Θ), enthalpy (△H~Θ) and entropy(△S~Θ) during the biosorption were determined. The results show that the biosorption process of Cu( II) ions by chemically treated orange peel is feasible, spontaneous and exothermic under studied conditions. Equilibrium is well described by Langmuir equation with the maximum biosorption capacity(q_m) for Cu( II) as 72.73 mg/g and kinetics is found to fit pseudo-second order type biosorption kinetics. As the temperature increases from 16 ℃ to 60 ℃, copper biosorption decreases. The loaded biosorbent is regenerated using HC1 solution for repeatedly use for five times with little loss of biosorption capacity.

  11. On the structure and topography of free-standing chemically modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, N R; Pandey, P A; Beanland, R; Lupo, U; Rowlands, G; Roemer, R A [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL (United Kingdom); Rourke, J P, E-mail: Neil.Wilson@Warwick.ac.uk [Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL (United Kingdom)

    2010-12-15

    The mechanical, electrical and chemical properties of chemically modified graphene (CMG) are intrinsically linked to its structure. Here, we report on our study of the topographic structure of free-standing CMG using atomic force microscopy (AFM) and electron diffraction. We find that, unlike graphene, suspended sheets of CMG are corrugated and distorted on nanometre length scales. AFM reveals not only long-range (100 nm) distortions induced by the support, as previously observed for graphene, but also short-range corrugations with length scales down to the resolution limit of 10 nm. These corrugations are static not dynamic, and are significantly diminished on CMG supported on atomically smooth substrates. Evidence for even shorter-range distortions, down to a few nanometres or less, is found by electron diffraction of suspended CMG. Comparison of the experimental data with simulations reveals that the mean atomic displacement from the nominal lattice position is of order 10% of the carbon-carbon bond length. Taken together, these results suggest a complex structure for CMG where heterogeneous functionalization creates local strain and distortion.

  12. On the structure and topography of free-standing chemically modified graphene

    Science.gov (United States)

    Wilson, N. R.; Pandey, P. A.; Beanland, R.; Rourke, J. P.; Lupo, U.; Rowlands, G.; Römer, R. A.

    2010-12-01

    The mechanical, electrical and chemical properties of chemically modified graphene (CMG) are intrinsically linked to its structure. Here, we report on our study of the topographic structure of free-standing CMG using atomic force microscopy (AFM) and electron diffraction. We find that, unlike graphene, suspended sheets of CMG are corrugated and distorted on nanometre length scales. AFM reveals not only long-range (100 nm) distortions induced by the support, as previously observed for graphene, but also short-range corrugations with length scales down to the resolution limit of 10 nm. These corrugations are static not dynamic, and are significantly diminished on CMG supported on atomically smooth substrates. Evidence for even shorter-range distortions, down to a few nanometres or less, is found by electron diffraction of suspended CMG. Comparison of the experimental data with simulations reveals that the mean atomic displacement from the nominal lattice position is of order 10% of the carbon-carbon bond length. Taken together, these results suggest a complex structure for CMG where heterogeneous functionalization creates local strain and distortion.

  13. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag{sub 2}O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed.

  14. Effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified White sorghum (Sorghum bicolor) starch

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Tahira Mohsin, E-mail: tahira.mohsin@uok.edu.pk [Department of Food Science and Technology, University of Karachi, 75270 Karachi (Pakistan); Hasnain, Abid, E-mail: abidhasnain@uok.edu.pk [Department of Food Science and Technology, University of Karachi, 75270 Karachi (Pakistan)

    2013-01-20

    Highlights: Black-Right-Pointing-Pointer Sorghum starches were chemically modified. Black-Right-Pointing-Pointer Starch-lipid complexes were studied in the presence of emulsifiers. Black-Right-Pointing-Pointer Type II complexes were also detected in native and oxidized starches on adding GMS. Black-Right-Pointing-Pointer Starch-lipid complexes sharply reduced retrogradation in modified starches. - Abstract: The effect of emulsifiers on complexation and retrogradation characteristics of native and chemically modified white sorghum starches was studied. Complex forming tendency of white sorghum starch with commercially available emulsifiers GMS and DATEM improved after acetylation. Presence of emulsifiers reduced {lambda}{sub max} (wavelength of maximum absorbance) both for native and modified sorghum starches suggesting lower availability of amylose chains to complex with iodine. In native white sorghum starch (NWSS) and oxidized white sorghum starch (OWSS), both Type I and Type II starch-lipid complexes were observed on addition of 1.0% GMS prior to gelatinization. Acetylated-oxidized white sorghum starch (AOWSS) formed weakest complexes among all the modified starches. The results revealed that antistaling characteristics of modified sorghum starches were enhanced when used in combination with emulsifiers. The most prominent decline in reassociative capability among modified starches was observed for acetylated starches.

  15. Adsorption Studies of Phenol Using Thermally and Chemically Modified Rice Husk as Adsorbents

    Directory of Open Access Journals (Sweden)

    *M. M. Yousaf

    2014-03-01

    Full Text Available Most of the Phenols are hazardous substances and some are supposed to have carcinogenic activity. Thus it is necessary to remove Phenolics and other aromatics from the aqueous ecosystem. Traditional processes for the removal of Phenolics compounds are extraction, adsorption on granulated activated carbon, steam distillation, chemical and bacterial techniques. Literature survey show a number of methods like oxidation, ion exchange, reverse osmosis, electrochemical oxidation and adsorption. Phenol removal by process like, adsorption is the best method of choice as it can remove most of phenols in simple and easy way. In recent past; agricultural by-products such as, maize cob, date stone, apricot Stones, rice bran, and bagass pith have been extensively studied and used as adsorbents for the adsorption of hazardous substances from wastewater. In the present study we tried modified rice husks as potential adsorbents for the removal of Phenol from aqueous system. Batch mode studies were carried out. Isotherm data was generated and fitted in Freundlich and Langmuir equation to explain the phenomenon of adsorption. The adsorption capacities based on Langmuir model (Qm of the 3 adsorbents were found to be 0.81 for raw husk (RH, 0.395 for the Grafted (G and 2.306 mg/g for the Charred (C. The R2 values were 0.92 for raw husk, 0.97 for grafted and 0.91 for charred husk. Based on Freundlich model the adsorption capacities (K were 2.94, 2.29 and 1.25mg/g for Raw husk, grafted husk and charred husk. The R2 values were found to be 0.72, 0.95 and 0.83 for the raw husk, grafted husk and charred husk respectively. Our result showed that modified rice husks could be used as potential adsorbents for Phenol removal from aqueous system.

  16. Supported liquid membrane stability in chiral resolution by chemically and physically modified membranes

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, R.; Argurio, P. [Arcavata di Rende Univ. of Calabria, Arcavata di Rende, CS (Italy). Dept. of Chemical and Materials Engineering

    2001-04-01

    In the present work some stability studies on Supported Liquid Membranes (SLMs) to be used for chiral separations were realized. In particular, primary aim was to determine how a modification of the support surface influences the SLM stability. First, the procedure for support modification was optimised, making a screening of various compounds (sulphuric acid, nitric acid, chromic acid, sodium dodecyl sulphate (SDS), glycerol, oleic alcohol, propylene glycol (PPG), bovine serum albumin (BSA)) and testing their performance by means of contact angle measurements. Next, a second screening was realized by permeation tests in a stirred cell. Finally, to compare the stability of modified with unmodified support in a process of interest for chemical and/or biochemical industries, some permeation tests for resolution of DNB-DL-Leucine were realized in a re-circulation system. Results showed a better surface hydrophilization of chemically modified support and better stability of the sulphonated support. However, in operating conditions a little high stability of the unmodified support was obtained. [Italian] Nel presente lavoro sono stati realizzati degli studi di stabilita' di Membrane Liquide Supportate (SLMs) da impiegare in separazioni chirali. In particolare, obiettivo principale e' stato quello di determinare l'influenza che una modifica della superficie del supporto ha sulla stabilita' della SLM. Cosi', in un primo momento, e' stata ottimizzata le procedura di modifica del supporto, facendo una selezione tra vari composti (acido solforico, acido nitrico, acido cromico, sodio dodecil solfato (SDS), glicerolo, alcool oleico, glicole propilenico (PPG), siero di albumina bovina (BSA)) basata su misure dell'angolo di contatto. Successivamente, e' stata realizzata una seconda selezione mediante prove di permeazione in una cella agitata. Infine, con lo scopo di confrontare la stabilita' della SLM con supporto modificato rispetto

  17. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    Science.gov (United States)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  18. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  19. Modified chemical synthesis of porous α-Sm{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhar, V.S.; Jagadale, A.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India); Gaikwad, N.S. [Rayat Shikshan Sanstha, Satara, (M.S.) 415 001 (India); Lokhande, C.D., E-mail: l_chandrakant@yahoo.com [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) 416004 (India)

    2014-08-15

    Highlights: • A novel chemical route to prepare α-Sm{sub 2}S{sub 3} thin films. • A porous honeycomb like morphology of the α-Sm{sub 2}S{sub 3} thin film. • An application of α-Sm{sub 2}S{sub 3} thin film toward its supercapacitive behaviour. - Abstract: The paper reports synthesis of porous α-Sm{sub 2}S{sub 3} thin films using modified chemical synthesis, also known as successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), wettability and ultraviolet–visible spectroscopy (UV–vis) techniques are used for the study of structural, elemental, morphological and optical properties of α-Sm{sub 2}S{sub 3} films. An orthorhombic crystal structure of α-Sm{sub 2}S{sub 3} is resulted from XRD study. The SEM and AFM observations showed highly porous α-Sm{sub 2}S{sub 3} film surface. An optical band gap of 2.50 eV is estimated from optical absorption spectrum. The porous α-Sm{sub 2}S{sub 3} thin film tuned for supercapacitive behaviour using cyclic voltammetry and galvanostatic charge discharge showed a specific capacitance and energy density of 294 Fg{sup –1} and 48.9 kW kg{sup –1}, respectively in 1 M LiClO{sub 4}–propylene carbonate electrolyte.

  20. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    Science.gov (United States)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  1. Enhancement of p-type mobility in tin monoxide by native defects

    KAUST Repository

    Granato, D. B.

    2013-05-31

    Transparent p-type materials with good mobility are needed to build completely transparent p-n junctions. Tin monoxide (SnO) is a promising candidate. A recent study indicates great enhancement of the hole mobility of SnO grown in Sn-rich environment [E. Fortunato et al., Appl. Phys. Lett. 97, 052105 (2010)]. Because such an environment makes the formation of defects very likely, we study defect effects on the electronic structure to explain the increased mobility. We find that Sn interstitials and O vacancies modify the valence band, inducing higher contributions of the delocalized Sn 5p orbitals as compared to the localized O 2p orbitals, thus increasing the mobility. This mechanism of valence band modification paves the way to a systematic improvement of transparent p-type semiconductors.

  2. Distribution of phosphorus and hydroxypropyl groups within granules of modified sweet potato starches as determined after chemical peeling

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin, Z.; Buwalda, P.; Gruppen, H.

    2015-01-01

    The distributions of phosphorus and hydroxypropyl groups within granules of cross-linked and hydroxypropylated sweet potato starches were investigated. Chemical surface peeling of starch granules was performed after sieving of native and modified starches into large-size (diameter = 20 µm) and small

  3. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall

    KAUST Repository

    Wang, Kai Yu

    2009-04-01

    To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated. © 2008 Elsevier Ltd. All rights reserved.

  4. Removal of lead from aqueous solution with native and chemically modified corncobs.

    Science.gov (United States)

    Tan, Guangqun; Yuan, Hongyan; Liu, Yong; Xiao, Dan

    2010-02-15

    In this study, corncobs biomass was utilized as an adsorbent to remove Pb(II) from aqueous solution. The adsorption behavior of Pb(II) was studied under different conditions, including solution pH, contact time and metal concentration. Ground corncobs were modified with CH(3)OH and NaOH to investigate the effect of chemical modification on Pb(II) binding capacity. Results showed that Pb(II) binding on the biomass is pH-dependent and the kinetics can be well described by the Lagergren-second-order model. The maximum Pb(II) binding capacity q(max) calculated from Langmuir isotherm was 0.0783 mmol/g. After base hydrolysis of the biomass, Pb(II) binding capacity increased from 0.0783 to 0.2095 mmol/g (about 43.4 mg Pb/g). However, Pb(II) binding capacity on the esterified corncobs decreased greatly from 0.0783 to 0.0381 mmol/g. Fourier transform infrared spectroscopy (FTIR) analysis showed that hydroxyl and carboxylic (COO(-)) groups on the biomass play an important role in Pb(II) binding process. The X-ray photoelectron spectroscopy (XPS) data further indicated that lead is adsorbed as Pb(2+) and is attached to oxide groups on the biomass.

  5. Optimizing the lanthanum adsorption process onto chemically modified biomaterials using factorial and response surface design.

    Science.gov (United States)

    Gabor, Andreea; Davidescu, Corneliu Mircea; Negrea, Adina; Ciopec, Mihaela; Grozav, Ion; Negrea, Petru; Duteanu, Narcis

    2017-01-29

    The rare metals' potential to pollute air, water, soil, and especially groundwater has received lot of attention recently. One of the most common rare earth group elements, lanthanum, is used in many industrial branches, and due to its toxicity, it needs to be eliminated from all residual aqueous solutions. The goal of this study was to evaluate the control of the adsorption process for lanthanum removal from aqueous solutions, using cellulose, a known biomaterial with high adsorbent properties, cheap, and environment friendly. The cellulose was chemically modified by functionalization with sodium β-glycerophosphate. The experimental results obtained after factorial design indicate optimum adsorption parameters as pH 6, contact time 60 min, and temperature 298 K, when the equilibrium concentration of lanthanum was 250 mg L(-1), and the experimental adsorption capacity obtained was 31.58 mg g(-1). Further refinement of the optimization of the adsorption process by response surface design indicates that at pH 6 and the initial concentration of 256 mg L(-1), the adsorption capacity has maximum values between 30.87 and 36.73 mg g(-1).

  6. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber.

    Science.gov (United States)

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang

    2015-12-15

    In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29±0.28 mg/g, 505.64±0.21 mg/g, and 123.08±0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  7. Chemically modified tetracyclines: Novel therapeutic agents in the management of chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Rupali Agnihotri

    2012-01-01

    Full Text Available Chronic periodontitis is a complex infection initiated by gram-negative bacteria which destroy the supporting structures of the tooth. Recently, it has been recognized that it is the host response to bacterial infection which causes greater destruction of the connective tissue elements, periodontal ligament and alveolar bone in periodontitis. This has led to the development of various host modulating approaches to target cells and their destructive mediators involved in tissue degradation. Chemically modified tetracyclines (CMTs are derivatives of tetracycline group of drugs which lack antimicrobial action but have potent host modulating affects. They inhibit pathologically elevated matrix metal loproteinases, pro-inflammtory cytokines and other destructive mediators. Bone resorption is also suppressed due to their combined anti-proteinase and apoptotic affects on osteoblasts and osteoclasts, respectively. Development of resistant bacteria and gastrointestinal toxicity seen with parent tetracyclines is not produced by CMTs. Hence, CMTs are viewed as potential therapeutic agents in the management of chronic diseases like periodontitis that involve destruction of connective tissue and bone.

  8. Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

    Directory of Open Access Journals (Sweden)

    Jeanine F Amacher

    Full Text Available PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR. Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL, and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.

  9. Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

    Science.gov (United States)

    Amacher, Jeanine F; Zhao, Ruizhi; Spaller, Mark R; Madden, Dean R

    2014-01-01

    PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR). Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL), and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.

  10. A Novel Chemically Modified Curcumin Reduces Severity of Experimental Periodontal Disease in Rats: Initial Observations

    Directory of Open Access Journals (Sweden)

    Muna S. Elburki

    2014-01-01

    Full Text Available Tetracycline-based matrix metalloproteinase- (MMP- inhibitors are currently approved for two inflammatory diseases, periodontitis and rosacea. The current study addresses the therapeutic potential of a novel pleiotropic MMP-inhibitor not based on an antibiotic. To induce experimental periodontitis, endotoxin (LPS was repeatedly injected into the gingiva of rats on one side of the maxilla; the contralateral (control side received saline injections. Two groups of rats were treated by daily oral intubation with a chemically modified curcumin, CMC 2.24, for two weeks; the control groups received vehicle alone. After sacrifice, gingiva, blood, and maxilla were collected, the jaws were defleshed, and periodontal (alveolar bone loss was quantified morphometrically and by μ-CT scan. The gingivae were pooled per experimental group, extracted, and analyzed for MMPs (gelatin zymography; western blot and for cytokines (e.g., IL-1β; ELISA; serum and plasma samples were analyzed for cytokines and MMP-8. The LPS-induced pathologically excessive bone loss was reduced to normal levels based on either morphometric (P=0.003 or μ-CT (P=0.008 analysis. A similar response was seen for MMPs and cytokines in the gingiva and blood. This initial study, on a novel triketonic zinc-binding CMC, indicates potential efficacy on inflammatory mediators and alveolar bone loss in experimental periodontitis and warrants future therapeutic and pharmacokinetic investigations.

  11. Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; ZHENG Jianfeng; PENG Jinfang; HE Liping; ZHU Minhao

    2010-01-01

    The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear

  12. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  13. Direct determination of cadmium in Orujo spirit samples by electrothermal atomic absorption spectrometry: Comparative study of different chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vilar Farinas, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Barciela Garcia, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Garcia Martin, S. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Pena Crecente, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain); Herrero Latorre, C. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo (Spain)]. E-mail: cherrero@lugo.usc.es

    2007-05-22

    In this work, several analytical methods are proposed for cadmium determination in Orujo spirit samples using electrothermal atomic absorption spectrometry (ETAAS). Permanent chemical modifiers thermally coated on the platforms inserted in pyrolytic graphite tubes (such as W, Ir, Ru, W-Ir and W-Ru) were comparatively studied in relation to common chemical modifier mixtures [Pd-Mg(NO{sub 3}){sub 2} and (NH{sub 4})H{sub 2}PO{sub 4}-Mg(NO{sub 3}){sub 2}] for cadmium stabilization. Different ETAAS Cd determination methods based on the indicated modifiers have been developed. In each case, pyrolysis and atomization temperatures, atomization shapes, characteristic masses and detection limits as well as other analytical characteristics have been determined. All the assayed modifiers (permanent and conventional) were capable of achieving the appropriate stabilization of the analyte, with the exception of Ru and W-Ru. Moreover, for all developed methods, recoveries (99-102%) and precision (R.S.D. lower than 10%) were acceptable. Taking into account the analytical performance (best detection limit LOD = 0.01 {mu}g L{sup -1}), the ETAAS method based on the use of W as a permanent modifier was selected for further direct Cd determinations in Orujo samples from Galicia (NW Spain). The chosen method was applied in the determination of the Cd content in 38 representative Galician samples. The cadmium concentrations ranged

  14. Growth and electrical properties of high-quality Mg-doped P-type A10.2Ga0.8N films

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiaowei; Li Peixian; Xu Shengrui; Hao Yue

    2009-01-01

    The growth of high-performance Mg-doped p-type AlxGa1-xN(X=0.2)using metal-organic chemical vapor deposition is reported.The influence of growth conditions(growth temperature,magnesium flow,and thermal annealing temperature)on the electrical properties of Mg-doped p-type AlxGa1-xN(X=0.2)has been investigated.Using the optimized conditions,we obtained a minimum p-type resistivity of 0.71 Ωcm for p-type AlGaN with 20% Al fraction.

  15. Electrochemical impedance spectroscopy for graphene surface modification and protein translocation through the chemically modified graphene nanopore

    Science.gov (United States)

    Tiwari, Purushottam; Shan, Yuping; Wang, Xuewen; Darici, Yesim; He, Jin

    2014-03-01

    The multilayer graphene surface has been modified using mercaptohexadecanoic acid (MHA) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-750] (DPPE-PEG750). The surface modifications are evaluated using electrochemical impedance spectroscopy (EIS). EIS measurements show the better graphene surface passivation with DPPE-PEG750 than with MHA. After modification with ferritin, the MHA modified surface shows greater charge transfer resistance (Rct) change than DPPE-PEG750 modified surface. Based on these results the translocations of ferritin through modified graphene nanopore with diameter 5-20 nm are studied. The translocation is more successful through DPPE-PEG750 modified graphene nanopore. This concludes that that the attachment of ferritin to DPPE-PEG750 modified graphene nanopore is not significant compared to MHA modified pore for the ferritin translocation hindrance. These results nicely correlate with the EIS data for respective Rct change of ferritin modified surfaces. P. Tiwari would like to thank FIU School of Integrated Science & Humanity, College Arts & Sciences for the research assistantship.

  16. P-type conductivity in annealed strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D., E-mail: mattmcc@wsu.edu [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814 (United States)

    2015-12-15

    Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO{sub 3}, or STO) samples that were annealed at 1200°C. Room-temperature mobilities above 100 cm{sup 2}/V s were measured, an order of magnitude higher than those for electrons (5-10 cm{sup 2}/V s). Average hole densities were in the 10{sup 9}-10{sup 10} cm{sup −3} range, consistent with a deep acceptor.

  17. Development in p-type Doping of ZnO

    Institute of Scientific and Technical Information of China (English)

    YU Liping; ZHU Qiqiang; FAN Dayong; LAN Zili

    2012-01-01

    Zinc oxide (ZnO) is a wide band-gap material of the Ⅱ-Ⅵ group with excellent optical properties for optoelectronics applications,such as the flat panel displays and solar cells used in sports tournament.Despite its advantages,the application of ZnO is hampered by the lack of stable p-type doping.In this paper,the recent progress in this field was briefly reviewed,and a comprehensive summary of the research was carried out on ZnO fabrication methods and its electrical,optical,and magnetic properties were presented.

  18. Bi-Se doped with Cu, p-type semiconductor

    Science.gov (United States)

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  19. Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon.

    Science.gov (United States)

    Macías-García, A; Gómez Corzo, M; Alfaro Domínguez, M; Alexandre Franco, M; Martínez Naharro, J

    2017-04-15

    The aim of this work is to modify the porous texture and superficial groups of a commercial activated carbon through chemical and thermal treatment and subsequently study the kinetics of adsorption and electroadsorption of Cu (II) ion for these carbons. Samples of three activated carbons were used. These were a commercial activated carbon, commercial activated carbon modified thermically (C-N2-900) and finally commercial activated carbon modified chemically C-SO2-H2S-200. The activated carbons were characterized chemically and texturally and the electrical conductivity of them determined. Different kinetic models were applied. The kinetics of the adsorption and electroadsorption process of the Cu (II) ion fits a pseudo second order model and the most likely mechanism takes place in two stages. A first step through transfer of the metal mass through the boundary layer of the adsorbent and distribution of the Cu (II) on the external surface of the activated carbon and a second step that represents intraparticle diffusion and joining of the Cu (II) with the active centres of the activated carbon. Finally, the kinetics of the adsorption process are faster than the kinetics of the electroadsorption but the percentage of the Cu (II) ion retained is much higher in the electroadsorption process.

  20. Effect of surface chemical composition on the work function of silicon substrates modified by binary self-assembled monolayers.

    Science.gov (United States)

    Kuo, Che-Hung; Liu, Chi-Ping; Lee, Szu-Hsian; Chang, Hsun-Yun; Lin, Wei-Chun; You, Yun-Wen; Liao, Hua-Yang; Shyue, Jing-Jong

    2011-09-07

    It has been shown that the application of self-assembled monolayers (SAMs) to semiconductors or metals may enhance the efficiency of optoelectronic devices by changing the surface properties and tuning the work functions at their interfaces. In this work, binary SAMs with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were used to modify the surface of Si to fine-tune the work function of Si to an arbitrary energy level. As an electron-donor, amine SAM (from APTMS) produced outward dipole moments, which led to a lower work function. Conversely, electron-accepting thiol SAM (from MPTMS) increased the work function. It was found that the work function of Si changed linearly with the chemical composition and increased with the concentration of thiol SAMs. Because dipoles of opposite directions cancelled each other out, homogeneously mixing them leads to a net dipole moment (hence the additional surface potential) between the extremes defined by each dipole and changes linearly with the chemical composition. As a result, the work function changed linearly with the chemical composition. Furthermore, the amine SAM possessed a stronger dipole than the thiol SAM. Therefore, the SAMs modified with APTMS showed a greater work function shift than did the SAMs modified with MPTMS.

  1. Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deckers, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium); Bourgeois, E. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Jivanescu, M. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Abass, A. [Photonics Research Group (INTEC), Ghent University-imec, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Van Gestel, D.; Van Nieuwenhuysen, K.; Douhard, B. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); D' Haen, J.; Nesladek, M.; Manca, J. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Gordon, I.; Bender, H. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Stesmans, A. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Mertens, R.; Poortmans, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium)

    2015-03-31

    We have investigated fine grained polycrystalline silicon thin films grown by direct chemical vapor deposition on oxidized silicon substrates. More specifically, we analyze the influence of the doping type on the properties of this model polycrystalline silicon material. This includes an investigation of defect passivation and benchmarking of minority carrier properties. In our investigation, we use a variety of characterization techniques to probe the properties of the investigated polycrystalline silicon thin films, including Fourier Transform Photoelectron Spectroscopy, Electron Spin Resonance, Conductivity Activation, and Suns-Voc measurements. Amphoteric silicon dangling bond defects are identified as the most prominent defect type present in these layers. They are the primary recombination center in the relatively lowly doped polysilicon thin films at the heart of the current investigation. In contrast with the case of solar cells based on Czochralski silicon or multicrystalline silicon wafers, we conclude that no benefit is found to be associated with the use of n-type dopants over p-type dopants in the active absorber of the investigated polycrystalline silicon thin-film solar cells. - Highlights: • Comparison of n- and p-type absorbers for thin-film poly-Si solar cells • Extensive characterization of the investigated layers' characteristics • Literature review pertaining the use of n-type and p-type dopants in silicon.

  2. Record mobility in transparent p-type tin monoxide films and devices by phase engineering

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-06-25

    Here, we report the fabrication of nanoscale (15 nm) fully transparent p-type SnO thin film transistors (TFT) at temperatures as low as 180 C with record device performance. Specifically, by carefully controlling the process conditions, we have developed SnO thin films with a Hall mobility of 18.71 cm2 V-1 s-1 and fabricated TFT devices with a linear field-effect mobility of 6.75 cm2 V-1 s -1 and 5.87 cm2 V-1 s-1 on transparent rigid and translucent flexible substrates, respectively. These values of mobility are the highest reported to date for any p-type oxide processed at this low temperature. We further demonstrate that this high mobility is realized by careful phase engineering. Specifically, we show that phase-pure SnO is not necessarily the highest mobility phase; instead, well-controlled amounts of residual metallic tin are shown to substantially increase the hole mobility. A detailed phase stability map for physical vapor deposition of nanoscale SnO is constructed for the first time for this p-type oxide. © 2013 American Chemical Society.

  3. HIGHLY EFFECTIVE CHEMICAL MODIFIERS FOR PRODUCTION OF CONCRETES WITH PRE-SET PROPERTIES

    OpenAIRE

    2012-01-01

    The paper demonstrates the application of industrial by-products and recycled materials. Waterproofing admixtures improve the structure and the properties of the cement stone. Development and preparation of highly effective waterproofing modifiers of durable effect, as well as development of the process procedure parameters, including mixing, activation, heat treatment, etc. are to be implemented. The composition of waterproofing modifiers is to be fine-tuned to synergize the behaviour of var...

  4. HIGHLY EFFECTIVE CHEMICAL MODIFIERS FOR PRODUCTION OF CONCRETES WITH PRE-SET PROPERTIES

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniya Vladimirovna

    2012-10-01

    Full Text Available The paper demonstrates the application of industrial by-products and recycled materials. Waterproofing admixtures improve the structure and the properties of the cement stone. Development and preparation of highly effective waterproofing modifiers of durable effect, as well as development of the process procedure parameters, including mixing, activation, heat treatment, etc. are to be implemented. The composition of waterproofing modifiers is to be fine-tuned to synergize the behaviour of various ingredients of cement systems to assure the substantial improvement of their strength, freeze- and corrosion resistance. Multi-functional waterproofing admixtures were used to produce highly effective modified concretes. The key idea of the new method of modifying cement-based building materials is that the waterproofing admixture concentration is to exceed 10% of the weight of the binding agent within the per-unit weight of the cement stone, given that its strength does not deteriorate. GKM-type modifier coupled with organo-mineral waterproofing admixture concentration agent GT-M may be recommended for mass use in the manufacturing of hydraulic concrete and reinforced concrete products. Overview of their practical implementation has proven that waterproofing modifier GKM-S, if coupled with waterproofing admixture concentration agent GT-M, improves the corrosion control inside the cement stone and makes it possible to manufacture durable concrete and reinforced concrete products that demonstrate pre-set physical and processing behaviour. Comprehensive concrete modification by modifier GKM-S and waterproofing admixture concentration agent GT-M may be regarded as one of the most ambitious methods of production of highly effective waterproof concretes.

  5. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.

    Science.gov (United States)

    Suksabye, Parinda; Thiravetyan, Paitip

    2012-07-15

    Coir pith samples were chemically modified by grafting with acrylic acid for the removal of Cr(VI) from electroplating wastewater. The presence of acrylic acid on the coir pith surface was verified by a scanning electron microscope with an electron dispersive x-ray spectrometer (SEM/EDX), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG). The carbonyl groups (C==O) from the carboxylic acids (COOH) increased on the coir pith surface after grafting with acrylic acid. In addition, the thermal stability of the acrylic acid-grafted coir pith also improved. The optimum conditions for grafting the acrylic acid on the coir pith consisted of 2 M acrylic acid and 0.00125 M ceric ammonium nitrate (CAN, as an initiator). The maximum Cr(VI) removal (99.99 ± 0.07%) was obtained with the following conditions: a 1.3% (w/v) dosage of acrylic acid-grafted coir pith, a system pH of 2, a contact time of 22 h, a temperature of 30 °C, a particle size of <150 μm and an initial Cr(VI) of 1,171 mg l(-1). At system pH of 2, Cr(VI) in the HCrO(4)(-) form can be adsorbed with acrylic acid-grafted coir pith via an electrostatic attraction. The adsorption isotherm of 2 M acrylic acid-grafted coir pith exhibited a good fit with the Langmuir isotherm. The maximum Cr(VI) adsorption capacity of the 2 M acrylic acid-grafted coir pith was 196.00 mg Cr(VI) g(-1) adsorbent, whereas for coir pith without grafting, the maximum Cr(VI) removal was 165.00 mg Cr(VI) g(-1) adsorbent. The adsorption capacity of the acrylic acid-grafted coir pith for Cr(VI) was higher compared to the original coir pith. This result was due to the enhancement of the carbonyl groups on the coir pith surface that may have involved the mechanism of chromium adsorption. The X-ray absorption near edged structure (XANES) and desorption studies suggested that most of the Cr(III) that presented on the acrylic acid-grafted coir pith was due to the Cr(VI) being reduced to Cr(III) on the adsorbent surface. FTIR

  6. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.; Isacsson, U. [Royal Institute of Technology, Stockholm (Sweden). Division of Highway Engineering

    1998-07-01

    The ageing properties of Styrene-Butadiene-Styrene (SBS) polymer modified bitumens were evaluated using Dynamic Mechanical Analysis (DMA), Gel Permeation Chromatography (GPC) and Fourier Transform InfraRed (FTIR) spectroscopy. The binders were aged by means of the Thin Film Oven Test (TFOT) and the Rolling Thin Film Oven Test (RTFOT), respectively. It was observed that ageing resulted in degradation of the SBS polymer containing molecules and increase in bitumen molecular weight. The polymer was observed to resist formation of sulphoxides. Changes in the rheological properties of aged-modified binders were dependent on a combined effect of bitumen oxidation and polymer degradation, which varied with bitumen source/grade and polymer type/content. In all cases, the aged modified binders showed better rheological properties than aged base bitumens. The study also indicated that the ageing index obtained using DMA was largely influenced by temperature and frequency. This parameter may be applied for evaluating the base bitumens and modified binders with a low polymer content (3% in this study), but not for modified binders with a high (6%) polymer content. 18 refs., 9 figs., 4 tabs.

  7. Elucidating Functional Aspects of P-type ATPases

    DEFF Research Database (Denmark)

    Autzen, Henriette Elisabeth

    2015-01-01

    similar to that of the wild type (WT) protein. The discrepancy between the newly determined crystal structure of LpCopA and the functional manifestations of the missense mutation in human CopA, could indicate that LpCopA is insufficient in structurally elucidating the effect of disease-causing mutations...... cancer and pathogenic microbes. The goal of this Ph.D. dissertation was to functionally characterize SERCA1a and CopA from Legionella pneumophila (LpCopA) through a range of different methods within structural biology. Crystallographic studies of SERCA1a led to a newly determined crystal structure......P-type ATPases are proteins that act to maintain ion homeostasis and electrochemical gradients through the translocation of cations across cell membranes. Underscoring their significance in humans, dysfunction of the ATPases can lead to crucial diseases. Dysfunction of the sarco...

  8. p-Type NiO Hybrid Visible Photodetector.

    Science.gov (United States)

    Mallows, John; Planells, Miquel; Thakare, Vishal; Bhosale, Reshma; Ogale, Satishchandra; Robertson, Neil

    2015-12-23

    A novel hybrid visible-light photodetector was created using a planar p-type inorganic NiO layer in a junction with an organic electron acceptor layer. The effect of different oxygen pressures on formation of the NiO layer by pulsed laser deposition shows that higher pressure increases the charge carrier density of the film and lowers the dark current in the device. The addition of a monolayer of small molecules containing conjugated π systems and carboxyl groups at the device interface was also investigated and with correct alignment of the energy levels improves the device performance with respect to the quantum efficiency, responsivity, and photogeneration. The thickness of the organic layer was also optimized for the device, giving a responsivity of 1.54 × 10(-2) A W(-1) in 460 nm light.

  9. Study on the p-type QWIP-LED device

    Institute of Scientific and Technical Information of China (English)

    ZHEN; Honglou; XIONG; Dayuan; ZHOU; Xuchang; LI; Ning; SHAO; Jun; LU; Wei

    2006-01-01

    A p-type quantum well infrared photodetector (QWIP) integrated with a light-emitting diode (LED) (named QWIP-LED) was fabricated and studied. The infrared photo-response spectrum was obtained from the device resistance variation and the near-infrared photo-emission intensity variation. A good agreement between these two spectra was observed, which demonstrates that the long-wavelength infrared radiation around 7.5 μm has been transferred to the near-infrared light at 0.8 μm by the photo-electronic process in the QWIP-LED structure. Moreover, the experimentally observed infrared response wavelength is in good agreement with the theoretical calculation value of 7.7 μm. The results on the upconversion of the infrared radiation will be very useful for the new infrared focal plane array technology.

  10. A Modified Approach for Calculating Dressed Quark Propagator at Finite Chemical Potential

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 0, it is proved that the dressed From the dressed quark propagator at finite chemical potential μ can be written as (g0-1)[μ]=iγ·(p~)A((p~2))+B((p~2))with (p~)μ=((p),p4+iμ).From the dressed quark propagator at finite chemical potential in Munczek model the bag constant of a baryon and the scalar quark condensate are evaluated. A comparison with previous results is given.

  11. Wide band gap p-type windows by CBD and SILAR methods

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch

    2004-03-22

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na{sub 2}S{sub 2}O{sub 3}. The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS{sub 2} (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed.

  12. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers

    DEFF Research Database (Denmark)

    Hansen, Mads E; Bentin, Thomas; Nielsen, Peter E

    2009-01-01

    While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA-dsDNA triplexes-mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine subs...

  13. Sulfur Fixation by Chemically Modified Red Mud Samples Containing Inorganic Additives: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Sulfur retention ability of Bayer red mud from alumina plant was investigated. Bayer red mud modified by fusel salt and waste mother liquor of sodium ferrocyanide as the main sulfur fixation agent and the calcium based natural mineral materials as servicing additives; the experimental results showed the following: (1 Through 10 wt% waste mother liquor of sodium ferrocyanide modifying Bayer red mud, sulfur fixation rate can increase by 13 wt%. (2 Magnesium oxide can obviously improve the sulfur fixation performance of Bayer red mud and up to a maximum sulfur fixation rate of 47 wt% at adding 1 wt% magnesium oxide. (3 Dolomite enhanced the sulfur fixation performances with the sulfur fixation rate of 68 wt% in optimized condition. (4 Vermiculite dust reduced sulfur dioxide during the fixed-sulfur process of modified Bayer red mud, and the desulphurization ration could reach up to a maximum 76 wt% at 950°C. (5 An advanced three-component sulfur fixation agent was investigated, in which the optimized mass ratio of modified Bayer red mud, dolomite, and vermiculite dust was 70 : 28 : 2 in order, and its sulfur fixation efficiency has reached to a maximum 87 wt% under its 20 wt% dosage in the coal.

  14. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this metho

  15. Recycling of p-type mc-si Top Cuts into p-type mono c-Si Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bronsveld, P.C.P.; Manshanden, P.; Lenzmann, F.O. [ECN Solar Energy, Westerduinweg 3, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Gjerstad, O. [Si Pro Holding AS, Ornesveien 3, P.O. Box 37, 8161, Glomfjord (Norway); Oevrelid, E.J. [SINTEF, Alfred Getz Vei 2, 7465, Trondheim (Norway)

    2013-07-01

    Solar cell results and material analysis are presented of 2 p-type Czochralski (Cz) ingots pulled from a charge consisting of 100% and 50% recycled multicrystalline silicon top cuts. The top cuts were pre-cleaned with a dedicated low energy consuming technology. No structure loss was observed in the bodies of the ingots. The performance of solar cells made from the 100% recycled Si ingot decreases towards the seed end of the ingot, which could be related to a non-optimal pulling process. Solar cells from the tail end of this ingot and from the 50% recycled Si ingot demonstrated an average solar cell efficiency of 18.6%. This is only 0.1% absolute lower than the efficiency of higher resistivity reference solar cells from commercially available wafers that were co-processed.

  16. Biosorption of Cu (II onto chemically modified waste mycelium of Aspergillus awamori: Equilibrium, kinetics and modeling studies

    Directory of Open Access Journals (Sweden)

    ZDRAVKA VELKOVA

    2012-01-01

    Full Text Available The biosorption potential of chemically modified waste mycelium of industrial xylanase-producing strain Aspergillus awamori for Cu (II removal from aqueous solutions was evaluated. The influence of pH, contact time and initial Cu (II concentration on the removal efficiency was evaluated. Maximum biosorption capacity was reached by sodium hydroxide treated waste fungal mycelium at pH 5.0. The Langmuir adsorption equation matched very well the adsorption equilibrium data in the studied conditions. The process kinetic followed the pseudo-firs order model.

  17. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, mechanical and thermal properties

    Indian Academy of Sciences (India)

    K Prashantha; K Vasanth Kumar Pai; B S Sherigara; S Prasannakumar

    2001-10-01

    Interpenetrating polymer networks (IPNs) of glycerol modified castor oil polyurethane (GC–PU) and poly[2-hydroxyethylmethacrylate] (PHEMA) were synthesized using benzoyl peroxide as initiator and N,N-methylene bis acrylamide as crosslinker. GC–PU/PHEMA interpenetrating polymer networks were obtained by transfer moulding. These were characterized with respect to their resistance to chemical reagents and mechanical properties such as tensile strength, per cent elongation and shore A hardness. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were undertaken for thermal characterization. The changes in NCO/OH ratio and GC–PU/PHEMA composition on the properties of the IPNs were studied.

  18. Use of modified chemical route for ZnSe nanocrystalline thin films growth: Study on surface morphology and physical properties

    Science.gov (United States)

    Kale, R. B.; Lokhande, C. D.; Mane, R. S.; Han, Sung-Hwan

    2006-06-01

    The zinc selenide thin films have been deposited using modified chemical bath deposition (M-CBD) method. Zinc acetate and sodium selenosulphate were used as Zn 2+ and Se 2- ion sources, respectively. The preparative parameters such as concentration, pH, number of deposition cycles have been optimized in order to deposit ZnSe thin films. The as-deposited ZnSe thin films are specularly reflective and faint yellowish in color. The as-deposited ZnSe films are annealed in an air atmosphere at 473 K for 2 h. The films are characterized using structural, morphological, compositional, optical and electrical properties.

  19. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  20. Rheological behaviour of polymer-modified bituminous mastics : a comparative analysis between physical and chemical modification

    OpenAIRE

    Shivokhin, Maxim; García Morales, Moisés; Partal López, Pedro; Cuadri Vega, Antonio Abad; Gallegos Montes, Críspulo

    2012-01-01

    Mastic, a bitumen/filler blend which naturally forms when bitumen is mixed with aggregates is the actual product used to bind coarse mineral particles in the asphalt mixtures. As a result, the characterisation of mastics is essential to improve the understanding of the response and performance of asphalt concrete pavements. On the other hand, the lack of experimental data concerning the behaviour of mastics and, above all, polymer-modified mastics has been lately claimed. In that sense, this ...

  1. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.

    Science.gov (United States)

    Wu, Weidong; Li, Jianhong; Niazi, Nabeel Khan; Müller, Karin; Chu, Yingchao; Zhang, Lingling; Yuan, Guodong; Lu, Kouping; Song, Zhaoliang; Wang, Hailong

    2016-11-01

    Biochar has received widespread attention as an eco-friendly and efficient material for immobilization of toxic heavy metals in aqueous environments. In the present study, three types of coconut fiber-derived biochars were obtained by pyrolyzing at three temperatures, i.e., 300, 500, and 700 °C. In addition, nine types of biochars were prepared by chemical modification with ammonia, hydrogen peroxide, and nitric acid, respectively, which were used to investigate changes in physico-chemical properties by inter alia, Fourier transformation infrared spectrophotometry (FTIR), scanning electron microscope (SEM), and BET specific surface area analysis. Batch sorption experiments were carried out to determine the sorption capacity of the biochars for lead (Pb) in aqueous solutions. Results showed that the cation exchange capacity of biochar pyrolyzed at 300 °C and modified with nitric acid increased threefold compared to the control. Loosely corrugated carbon surface and uneven carbon surface of the biochar pyrolyzed at 300 °C were produced during ammonia and nitric acid modifications. Removal rate of Pb by the coconut biochar pyrolyzed at 300 °C and modified with ammonia was increased from 71.8 to 99.6 % compared to the untreated biochar in aqueous solutions containing 100 mg L(-1) Pb. However, chemical modification did not enhance adsorption of Pb of the biochars pyrolyzed at higher temperatures (e.g., 500 or 700 °C), indicating that resistance of biochars to chemical treatment increased with pyrolysis temperature.

  2. Infrared Transparent Spinel Films with p -Type Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Exarhos, Gregory J.; Ferris, Kim F.; Engelhard, Mark H.; Stewart, Donald C.

    2001-11-29

    Spinel oxide films containing at least two transition metal cations were found to exhibit p-type conductivity with high optical transparency from the visible to wavelengths near 15 micrometers. Resistivities as low as 0.003 ohm-cm were measured on 100 nm thick rf sputter deposited films that contained nickel and cobalt. Optical spectra, Raman scattering and XPS measurements indicated the valency of nickel localized on octahedral sites within the spinel lattice determines these properties. Electronic band structure calculations corroborated the experimental results. A resistivity minimum was found at the composition NiCo2O4 deposited from aqueous or alcoholic solutions followed by subsequent annealing at 400 degrees C in air. Solution deposited films richer in nickel than this stoichiometry always were found to phase separate into nickel oxide and a spinel phase with concomitant loss in conductivity. However, the phase stability region could be extended to higher nickel contents when rf-sputter deposition techniques were used. Sputter deposited spinel films having a nickel to cobalt ratio less than 2 were found to exhibit the highest conductivity. Results suggest that the phase stability region for these materials can be extended through appropriate choice of deposition conditions. A possible mechanism that promotes high conductivity in this system is thought to be charge transfer between the resident di- and trivalent cations that may be assisted by the magnetic nature of the oxide film.

  3. P type porous silicon resistivity and carrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Ménard, S., E-mail: samuel.menard@st.com [STMicroelectronics, 10, rue Thalès de Milet, 37071 Tours Cedex 2 (France); Fèvre, A. [STMicroelectronics, 10, rue Thalès de Milet, 37071 Tours Cedex 2 (France); Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN UMR 7347, Tours (France); Billoué, J.; Gautier, G. [Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN UMR 7347, Tours (France)

    2015-09-14

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P{sub %}) was found to be the major contributor to the PS resistivity (ρ{sub PS}). ρ{sub PS} increases exponentially with P{sub %}. Values of ρ{sub PS} as high as 1 × 10{sup 9} Ω cm at room temperature were obtained once P{sub %} exceeds 60%. ρ{sub PS} was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ{sub PS}. Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P{sub %} lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P{sub %} overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices.

  4. (Ga,Fe)Sb: A p-type ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan)

    2014-09-29

    A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.

  5. Photoconduction spectroscopy of p-type GaSb films

    Energy Technology Data Exchange (ETDEWEB)

    Shura, M.W., E-mail: Megersa.Shura@live.nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Wagener, V.; Botha, J.R.; Wagener, M.C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Excess carrier lifetimes (77 K) have been measured as function of the absorbed flux density in undoped p-type gallium antimonide films (GaSb/GaAs) using steady state photoconductivity measurements with the illumination wavelength of 1.1 {mu}m. Using the results from Hall effect measurements along with the relations describing the lifetimes of the excess minority carriers in the bulk of the films and at the surface, the theoretical values of the effective excess carrier lifetime in the materials were also calculated. Discrepancies between the experimental and theoretical results were described using a two-layer model, by considering the variation in the charge distribution within the layer due to the presence of surface states, as well as the band offset between the layer and the substrate. Theoretical modeling of the experimental result yields values of different parameters such as band bending at the surface, minimum value of Shockley-Read-Hall lifetime and maximum value of the surface recombination velocity.

  6. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    Science.gov (United States)

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  7. Chemically modified fatty acid methyl esters: their potential for use as lubrication fluids and surfactants

    Science.gov (United States)

    A review of recent developments in the synthesis and characterization of lubrication fluids and surfactants from methyl oleate. The synthesis of materials made using an epoxidation route is the focus. This versatile method of chemical modification of fatty acid methyl esters improves their oxidati...

  8. Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications

    Science.gov (United States)

    Treatment of biochar with oxidants such as acids and hydrogen peroxide has been shown to alter porosity, increase adsorption of chemicals, and introduce functional groups on the biochar surfaces, all of which are desirable for their use in horticultural applications. Biochar was produced from the py...

  9. Crystal engineering of energetic materials: co-crystals of Ethylenedinitramine (EDNA) with modified performance and improved chemical stability.

    Science.gov (United States)

    Aakeröy, Christer B; Wijethunga, Tharanga K; Desper, John

    2015-07-27

    In the area of energetic materials, co-crystallization is emerging as a new technology for modifying or enhancing the properties of existing energetic substances. Ethylenedinitramine (EDNA) is a known energetic material which requires attention partly due to its chemical instability originating with its two highly acidic protons. In order to stabilize EDNA, a co-crystallization approach targeting the acidic protons using a series of co-crystallizing agents with suitable hydrogen-bond acceptors was employed. Fifteen attempted co-crystallizations resulted in eight successful outcomes and six of these were crystallographically characterized and all showed evidence of hydrogen bonds to the intended protons. Calculated detonation properties and experimental thermal and impact data for the co-crystals were obtained and compared with those of pure EDNA. The co-crystal of EDNA and 1,2-bis(4-pyridyl)ethylene was recognized as a more thermally stable alternative to EDNA while the co-crystal of EDNA and pyrazine N,N'-dioxide showed comparable detonation strengths (and much improved chemical stability) compared with that of EDNA. The co-crystals EDNA:4,4'-bipyridine and EDNA:pyrazine N,N'-dioxide were found to be about 50 % less impact sensitive than EDNA, all of which illustrate how co-crystallizations can be utilized for successfully modifying specific aspects of energetic materials.

  10. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    Science.gov (United States)

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  11. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, Esmail R; Breault, Ronald W; Siriwardane, Ranjani; Miller, Duane D

    2013-10-01

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite –5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  12. Structure and Electrical Study of New Chemically Modified Poly(vinyl chloride

    Directory of Open Access Journals (Sweden)

    F. Ammari

    2015-01-01

    Full Text Available The aim of this work was to study the structural and electrical properties of a new polymer obtained by functionalization of a commercial poly(vinyl chloride (PVC (Mw = 48000 by grafting aminoalkyl and aminoaryl groups. Modified poly(vinyl chloride was prepared in two steps. The structural properties of the polymer were systematically investigated by varieties of techniques as differential scanning calorimetric (DSC, thermogravimetry analysis (TG, X-ray diffraction (XRD, and Fourier transform infrared (FTIR spectroscopy. The electrical properties of the polymer were studied by electrochemical impedance spectroscopy (EIS.

  13. Chemically Modified Chitosan Beads as Molecularly Imprinted Polymer Matrix for Adsorptive Separation of Proteins

    Institute of Scientific and Technical Information of China (English)

    Tian Ying GUO; Yong Qing XIA; Guang Jie HAO; Bang Hua ZHANG

    2004-01-01

    In a phosphate buffer, a hemoglobin (Hb)-imprinted polymer complex was prepared using maleic anhydride (MAH) modified chitosan beads as matrix, acrylamide (AM) as functional monomer, N,N-methylenebisacrylamide (MBA) as cross-linker and potassiumpersulfate (KPS)/sodium hydrogen sulfite (NaHSO3) as initiators. Langmuir analysis showed that an equal class of adsorption was formed in the molecular imprinting polymer (MIP), and the MIP has high adsorption capacity and selectivity for the imprinted molecule. The MIP can be reused and the recovery was approximately 100% at low concentration.

  14. Comparative repellent properties of certain chemicals against mosquitoes, house flies and cockroaches using modified techniques.

    Science.gov (United States)

    Vartak, P H; Tungikar, V B; Sharma, R N

    1994-09-01

    Several terpenoids were assessed for their repellent/toxic properties against mosquitoes (Aedes aegypti), house flies (Musca domestica) and cockroaches (Periplaneta americana). Impregnated wide mesh netting was used in the case of the Dipterans, while treated filtered paper was employed for the bioassays with cockroaches. Persistence of the repellent chemicals was studied. Doses ranged from 5-20 gm/M2 for the Dipterans and 25-100 mg per 4 x 4 cm filter paper for the cockroaches. Dimethyl phthalate (DMP) offered the maximum protection of the chemicals tested against mosquitoes but was not so effective against house flies and cockroaches. Citral and Eugenol were effective against all the three test insects. Other test compounds afforded varying degrees of protection. Application strategy and utility of the findings are discussed.

  15. Calcium phosphate formation from sea urchin - (brissus latecarinatus via modified mechano-chemical (ultrasonic conversion method

    Directory of Open Access Journals (Sweden)

    R. Samur

    2013-07-01

    Full Text Available This study aims to produce apatite structures, such as hydroxyapatite (HA and fluorapatite (FA, from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The experimental results suggest that sea urchin, Brissus latecarinatus skeleton could be an alternative source for the production of various mono or biphasic calcium phosphates with simple and economic mechano-chemical (ultrasonic conversion method.

  16. The optimal one dimensional periodic table: a modified Pettifor chemical scale from data mining

    Science.gov (United States)

    Glawe, Henning; Sanna, Antonio; Gross, E. K. U.; Marques, Miguel A. L.

    2016-09-01

    Starting from the experimental data contained in the inorganic crystal structure database, we use a statistical analysis to determine the likelihood that a chemical element A can be replaced by another B in a given structure. This information can be used to construct a matrix where each entry (A,B) is a measure of this likelihood. By ordering the rows and columns of this matrix in order to reduce its bandwidth, we construct a one-dimension ordering of the chemical elements, analogous to the famous Pettifor scale. The new scale shows large similarities with the one of Pettifor, but also striking differences, especially in what comes to the ordering of the non-metals.

  17. Cellular RNA is chemically modified by exposure to air pollution mixtures.

    Science.gov (United States)

    Baldridge, Kevin C; Zavala, Jose; Surratt, Jason; Sexton, Kenneth G; Contreras, Lydia M

    2015-01-01

    RNAs are more susceptible to modifications than DNA, and chemical modifications in RNA have an effect on their structure and function. This study aimed to characterize chemical effects on total RNA in human A549 lung cells after exposure to elevated levels of major secondary air pollutants commonly found in urban locations, including ozone (O3), acrolein (ACR) and methacrolein (MACR). Enzyme-linked immunosorbent assays (ELISA) were used to measure levels of interleukin (IL)-8 in the growth media and 8-oxoguanine (8OG) levels in total cellular RNA, and lactate dehydrogenase (LDH) in the growth media was measured by a coupled enzymatic assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure levels of microRNA 10b (miR-10b). The study found that 1-h exposure to all tested pollutant mixtures consistently caused significant increases in the levels of 8OG in total RNA. In the case of 4 ppm O3 exposures, measured levels of IL-8, LDH and miR-10b each showed consistent trends between two independent trials, but varied among these three targets. After 1-h exposures to an ACR+MACR mixture, measured levels of IL-8, LDH and miR-10b showed variable results. For mixtures of O3+ACR+MACR, IL-8 measurements showed no change; miR-10b and LDH showed variable results. The results indicate that short-term high-concentration exposures to air pollution can cause RNA chemical modifications. Chemical modifications in RNAs could represent more consistent markers of cellular stress relative to other inflammation markers, such as IL-8 and LDH, and provide a new biomarker endpoint for mechanistic studies in toxicity of air pollution exposure.

  18. Calcium phosphate formation from sea urchin - (brissus latecarinatus) via modified mechano-chemical (ultrasonic) conversion method

    OpenAIRE

    R. Samur; Ozyegin, L.; D. Agaogullari; F. N. Oktar; Agathopoulos, S.; Kalkandelen, C.; I. Duman; B. Ben-Nissan

    2013-01-01

    This study aims to produce apatite structures, such as hydroxyapatite (HA) and fluorapatite (FA), from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM) studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The e...

  19. Use of hexamethyldisiloxane for p-type microcrystalline silicon oxycarbide layers

    Directory of Open Access Journals (Sweden)

    Goyal Prabal

    2016-01-01

    Full Text Available The use of hexamethyldisiloxane (HMDSO as an oxygen source for the growth of p-type silicon-based layers deposited by Plasma Enhanced Chemical Vapor Deposition is evaluated. The use of this source led to the incorporation of almost equivalent amounts of oxygen and carbon, resulting in microcrystalline silicon oxycarbide thin films. The layers were examined with characterisation techniques including Spectroscopic Ellipsometry, Dark Conductivity, Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy to check material composition and structure. Materials studies show that the refractive indices of the layers can be tuned over the range from 2.5 to 3.85 (measured at 600 nm and in-plane dark conductivities over the range from 10-8 S/cm to 1 S/cm, suggesting that these doped layers are suitable for solar cell applications. The p-type layers were tested in single junction amorphous silicon p-i-n type solar cells.

  20. POLYPROPYLENE-MODIFIED KAOLINITE COMPOSITES: EFFECT OF CHEMICAL MODIFICATION ON MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    O. Meziane

    2016-05-01

    Full Text Available The intercalation of kaolinite with an ammonium salt was performed. Untreated and treated kaolinite samples were examined by XRD. PP/kaolinite compounds were prepared by the melt intercalation method. The effects of modified clay on properties of the prepared composites were studied. The XRD results showed that the treatment with the ammonium salt caused the return to the initial state of the clay. TGA thermograms marked an increase in thermal degradation of the composites, while the DSC results showed the decrease of the crystallization temperature and the melting point in presence of clay in the matrix owing to the fact that the filler acts as reinforcing effect. The mechanical properties of the composites exhibited important variations, the morphology of the composites was further studied using SEM and showed poor dispersion of used nanoclay in PP matrix.

  1. Physico-chemical characteristics of nano-organo bentonite prepared using different organo-modifiers

    Directory of Open Access Journals (Sweden)

    A.M. Motawie

    2014-09-01

    Full Text Available Different types of nano-organo bentonite (NOB were prepared from the Egyptian Bentonite (EB. EB was characterized by energy dispersive X-ray EDX. It was purified from different impurities using a conventional method via the treatment with HCl and distilled water. The modification of the clay was carried out using different types of organo-modifiers namely; hexadecyl trimethyl ammonium bromide (HTAB, 3-aminopropyltriethoxysilane (Silane, octadecylamine (ODA, and dodecylamine (DDA. The cation exchange capacity (CEC was measured for pristine bentonite after and before modification. The NB was characterized by FTIR, XRD, TEM, and TGA techniques. The obtained results indicated that variation of the interlayer space gallery was effected by the type of the penetrator used.

  2. Study on Natural and Modified Bentonite Adsorption of Antibiotics%Guangzhou Chemical Industry

    Institute of Scientific and Technical Information of China (English)

    刘希

    2016-01-01

    To deal with the water polluted by antibiotics, adsorption experiments for adsorption behavior of oxytetracycline and tetracycline on bentonite/acid modified bentonite were carried out to investigate the effect of pH,activation temperature, dosing quantity and adsorption time. The results showed that two kind of antibiotics could beabsorbed effectively when theactivation temperature was 200 ℃, pH=6 , the dosing quantity was 1 gandadsorption time was 8 h. Asakind of environmental friendlyadsorbent for promotion, modified bentonite is better than natural bentonite.%针对制药工业产生的抗生素废水,研究了一定条件下膨润土/酸改性膨润土对土霉素( OTC)和四环素( TC)的吸附作用,综合考察了原土与改性膨润土在不同pH、活化温度、投加量以及吸附时间等条件下的吸附效率。结果表明:在活化温度为200℃、 pH=6、投加量为1 g、吸附时间为8 h时,可以有效地吸附两种抗生素,且酸改性膨润土比膨润土吸附效果更好,能够作为环境友好的抗生素吸附剂进行推广。

  3. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jihai [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Wenjie, E-mail: zhaowj@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Peng, Shusen; Zeng, Zhixiang; Zhang, Xin [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wu, Xuedong, E-mail: xdwu@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2014-08-30

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features.

  4. Wrapping of a single bacterium with Functionalized - Chemically Modified Graphene (FCMG) sheets via highly specific protein-cell wall interaction

    Science.gov (United States)

    Mohanty, Nihar; Berry, Vikas

    2009-03-01

    Graphene has recently generated a lot of interest due to its unique structural and electrical properties. It's micro-scale area and sub-nano-scale thickness coupled with ballistic electronic transport at room temperature, low Johnston noise and low charge scattering, have made it a gold mine for novel applications. Since its discovery in 2004, there have been a plethora of studies on characterizing its unique physical, chemical and electrical properties of graphene as well as on integrating it with various physical/chemical systems to utilize these properties. But there have been limited or no studies on the integration of graphene with living microorganisms or mammalian cells. Here we describe the novel wrapping of a single live bacterium (Bacillus cereus) with a chemically modified graphene sheet functionalized with the protein Concanavalin-A (Con-A) via the highly specific Con-A - Teichoic acid interaction. We are investigating the structural and the electrical properties of these novel bacteria-FCMG ensembles. Further, we are also interested in characterizing this wrapping process in detail by studying the kinetics and the mechanism of action of bacterial-wrapping via 3D modelling. This is a first step towards the live-bio-nano-integration of graphene which would open up avenues for applications as diverse as bio-batteries using the Geobacter to recombinant enzyme compartmentalization.

  5. UV Spectral Analysis of the Chemical Modification and Photolysis of Acetylacetone Modified Alumina Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    Chengbin JING; Xiujian ZHAO; Haizheng TAO; Xina WANG; Aiyun LIU

    2004-01-01

    Acetylacetone was firstly introduced into the aqueous media with the presence of aluminum sec-butoxide and peptizator. It was confirmed that the UV (ultraviolet) absorption band of acetylacetone underwent 14 nm of red-shift due to the formation of the six-membered ring of the complex between alumina and acetylacetone in the aqueous solution. It was also found that the chemical modification can be dissociated by the UV irradiation with a wavelength shorter than 286 nm as a result of the excitation of π-π* transition in the complex.

  6. Modifying culture conditions in chemical library screening identifies alternative inhibitors of mycobacteria.

    Science.gov (United States)

    Miller, Christopher H; Nisa, Shahista; Dempsey, Sandi; Jack, Cameron; O'Toole, Ronan

    2009-12-01

    In this study, application of a dual absorbance/fluorescence assay to a chemical library screen identified several previously unknown inhibitors of mycobacteria. In addition, growth conditions had a significant effect on the activity profile of the library. Some inhibitors such as Se-methylselenocysteine were detected only when screening was performed under nutrient-limited culture conditions as opposed to nutrient-rich culture conditions. We propose that multiple culture condition library screening is required for complete inhibitory profiling and for maximal antimycobacterial compound detection.

  7. Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation.

    Science.gov (United States)

    DeGraw, Amanda J; Palsuledesai, Charuta; Ochocki, Joshua D; Dozier, Jonathan K; Lenevich, Stepan; Rashidian, Mohammad; Distefano, Mark D

    2010-12-01

    Protein prenyltransferases catalyze the attachment of C15 (farnesyl) and C20 (geranylgeranyl) groups to proteins at specific sequences localized at or near the C-termini of specific proteins. Determination of the specific protein prenyltransferase substrates affected by the inhibition of these enzymes is critical for enhancing knowledge of the mechanism of such potential drugs. Here, we investigate the utility of alkyne-containing isoprenoid analogs for chemical proteomics experiments by showing that these compounds readily penetrate mammalian cells in culture and become incorporated into proteins that are normally prenylated. Derivatization via Cu(I) catalyzed click reaction with a fluorescent azide reagent allows the proteins to be visualized and their relative levels to be analyzed. Simultaneous treatment of cells with these probes and inhibitors of prenylation reveals decreases in the levels of some but not all of the labeled proteins. Two-dimensional electrophoretic separation of these labeled proteins followed by mass spectrometric analysis allowed several labeled proteins to be unambiguously identified. Docking experiments and density functional theory calculations suggest that the substrate specificity of protein farnesyl transferase may vary depending on whether azide- or alkyne-based isoprenoid analogs is employed. These results demonstrate the utility of alkyne-containing analogs for chemical proteomic applications.

  8. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    Science.gov (United States)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-01-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438

  9. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    Science.gov (United States)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  10. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors.

    Science.gov (United States)

    Kim, Bongjun; Geier, Michael L; Hersam, Mark C; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  11. Empirical model predicting the layer thickness and porosity of p-type mesoporous silicon

    Science.gov (United States)

    Wolter, Sascha J.; Geisler, Dennis; Hensen, Jan; Köntges, Marc; Kajari-Schröder, Sarah; Bahnemann, Detlef W.; Brendel, Rolf

    2017-04-01

    Porous silicon is a promising material for a wide range of applications because of its versatile layer properties and the convenient preparation by electrochemical etching. Nevertheless, the quantitative dependency of the layer thickness and porosity on the etching process parameters is yet unknown. We have developed an empirical model to predict the porosity and layer thickness of p-type mesoporous silicon prepared by electrochemical etching. The impact of the process parameters such as current density, etching time and concentration of hydrogen fluoride is evaluated by ellipsometry. The main influences on the porosity of the porous silicon are the current density, the etching time and their product while the etch rate is dominated by the current density, the concentration of hydrogen fluoride and their product. The developed model predicts the resulting layer properties of a certain porosification process and can, for example be used to enhance the utilization of the employed chemicals.

  12. A re-examination of cobalt-related defects in n- and p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, Leopold; Kolkovsky, Vladimir; Weber, Joerg [Technische Universitaet Dresden, 01069 Dresden (Germany)

    2012-10-15

    In the present work cobalt-doped n- and p-type silicon samples were studied by means of deep level transient spectroscopy (DLTS) and Laplace-DLTS (LDLTS). We demonstrate that two dominant DLTS peaks previously assigned to a substitutional Co defect have different annealing behaviour and therefore belong to different defects. After wet chemical etching three other peaks (E90, E140 and H160) were observed in the samples. The intensity of the peaks becomes larger in the H-plasma treated samples. This together with depth profiling demonstrates that the peaks are hydrogen-related defects. The origin of the peaks will be discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents

    Science.gov (United States)

    Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut

    2015-04-01

    Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.

  14. Preparation and mechanism of calcium phosphate coatings on chemical modified carbon fibers by biomineralization

    Institute of Scientific and Technical Information of China (English)

    HUANG Su-ping; ZHOU Ke-chao; LI Zhi-you

    2008-01-01

    In order to prepare HA coatings on the carbon fibers, chemical modification and biomineralization processes were applied. The phase components, morphologies, and possible growth mechanism of calcium phosphate were studied by infrared spectroscopy(IR), X-ray diffractometry(XRD) and scanning electron microscopy(SEM). The results show that calcium phosphate coating on carbon fibers can be obtained by biomineralization. But the phase components and morphologies of calcium phosphate coatings are different due to different modification methods. Plate-like CaHPO4-2H2O (DCPD) crystals grow from one site of the active centre by HNO3 treatment. While on the para-aminobenzoic acid treated fibers, the coating is composed of nano-structural HA crystal homogeneously. This is because the -COOH functional groups of para-aminobenzoic acid graft on fibers, with negative charge and arranged structure, accelerating the HA crystal nucleation and crystallization on the carbon fibers.

  15. Facile synthesis of graphene oxide-modified lithium hydroxide for low-temperature chemical heat storage

    Science.gov (United States)

    Yang, Xixian; Huang, Hongyu; Wang, Zhihui; Kubota, Mitsuhiro; He, Zhaohong; Kobayashi, Noriyuki

    2016-01-01

    LiOH·H2O nanoparticles supported on graphene oxide (GO) were facilely synthesized by a hydrothermal process. The mean diameter of nanoparticles on the integrated graphene sheet was about 5-10 nm showed by SEM and TEM results. XRD results suggested that the nanoparticles are in good agreement with the data of LiOH·H2O. The as-prepared sample showed a greatly enhanced thermal energy storage density and exhibit higher rate of heat release than pure lithium hydroxide, and thermal conductivity of composites increased due to the introduction of nano carbon. LiOH·H2O/GO nanocomposites are novel chemical heat storage materials for potential highly efficient energy system.

  16. Electrochemical investigation of the surface-modifying roles of guanidine carbonate in chemical mechanical planarization of tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Rock, S.E.; Crain, D.J.; Zheng, J.P. [Department of Physics, Clarkson University, Potsdam, NY 13699-5820 (United States); Pettit, C.M. [Department of Physics, Emporia State University, Emporia, KS 66801-5087 (United States); Roy, D., E-mail: samoy@clarkson.edu [Department of Physics, Clarkson University, Potsdam, NY 13699-5820 (United States)

    2011-10-03

    Highlights: {yields} This work contributes to the development of CMP slurries for Ta and Cu at low pressure. {yields} We present here a model of the chemical mechanism of the CMP of Ta and Cu using guanidine slurries. {yields} Removal of Ta occurs as structurally weak guanidinium-tantalic-acid surface complexes. {yields} The results will be useful for the CMP processing of interconnects with low-k dielectrics. {yields} We demonstrate the utility of electro-analytical techniques in the development of CMP slurries. - Abstract: The fabrication of interconnect structures for semiconductor devices requires low down-pressure chemical mechanical planarization (CMP) of Ta barrier layers. Guanidine carbonate (GC) serves as an effective surface-complexing agent for such CMP applications, where the rate of Ta removal can be chemically controlled through pH-tuned selectivity with respect to the removal of Cu lines. Electrochemical techniques are employed in this work to study the surface-modifying roles of GC that make this chemical an attractive complexing agent for Ta CMP. In addition, the effects of including H{sub 2}O{sub 2} (an oxidizer) and dodecyl benzene sulfonic acid (DBSA, a dissolution inhibitor for Cu) in GC-based CMP solutions are investigated to examine the selective CMP mechanisms of Ta and Cu in these solutions. The results suggest that the removal of Ta is supported in part by structurally weak guanidinium-tantalic-acid surface complexes formed on Ta/Ta{sub 2}O{sub 5}. The bicarbonate/carbonate anions of GC also facilitate Ta removal through the generation of ion-incorporated tantalum pentoxide. DBSA strongly affects the CMP chemistry of Cu, but exhibits relatively weaker effects on the surface activity of Ta, and thus plays a vital role in dictating the selectivity of Ta:Cu polish rates.

  17. Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels

    Science.gov (United States)

    Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas

    2006-01-01

    We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.

  18. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    Directory of Open Access Journals (Sweden)

    Elżbieta Radziejewska-Kubzdela

    2014-09-01

    Full Text Available Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food.

  19. Raman spectra investigation of the defects of chemical vapor deposited multilayer graphene and modified by oxygen plasma treatment

    Science.gov (United States)

    Li, Zongyao; Xu, Yu; Cao, Bing; Qi, Lin; He, Shunyu; Wang, Chinhua; Zhang, Jicai; Wang, Jianfeng; Xu, Ke

    2016-11-01

    Graphene, a two dimensional material, can be modified its properties by defects engineering. Here, we present Raman spectra studies of the multilayer graphene (MLG) fabricated by low-pressure chemical vapor deposition over copper foil, and report that the defects of MLG can be controlled by adjusting methane concentration. Moreover, MLG can be changed from metallic to semiconductoring properties by using oxygen plasma treatment, and we investigate the defects evolution of the graphene after exposing to oxygen plasma by Raman spectra. Our results indicate that the amount of defects in graphene can be changed by regulating the methane concentration and oxygen plasma exposure times, but the primary type of defect in MLG is still boundary-like defect. It is valuable for understanding the physics of defects evolution through artificially generated defects, and such defect engineering will greatly open up the future application of the novel material.

  20. The application of solid sorbents for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Bulska, E; Pyrzyńska, K

    1996-06-01

    Various microcolumns with solid sorbents (ion exchange resins, functionalised cellulose sorbents, chelating resins) have been tested with respect to their ability for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry. The purification of NaNO(3), Mg(NO(3))(2), K(2)SO(4) and (NH(4))(2)HPO(4) has been the most effective with an almost 100% efficiency, when Spheron-Oxine was used as chelating resin. The sorption of aluminum from KOH solution has been found to be very high (around 90%) for all investigated sorbents. However, the best results have been obtained with anion-exchange resins. It has been difficult to purify concentrated mineral acids (HCl, H(2)SO(4)). A retention of aluminum above 80% has been achieved only when Cellex P, Chelex 100 or Amberlite XAD-2 have been used.

  1. Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination.

    Science.gov (United States)

    Krishnakumar, Balu; Balakrishna, Avula; Arranja, Cláudia T; Dias, Carlos M F; Sobral, Abilio J F N

    2017-04-05

    In this paper, for the first time, chemically modified 5,10,15,20-meso-tetra-(para-amino)-phenyl-porphyrin/TiO2 (TPAPP/TiO2) was prepared and used for the degradation of an azo dye Acid Black 1 (AB 1) under direct sunlight. Initially, TiO2 was prepared by sol-gel method. Before making a TPAPP/TiO2 composite, the surface modification of TiO2 was carried out with glycidoxypropyltrimethoxy silane (GPTMS) which acts as a coupling agent. This is an epoxy terminated silane and could easily bond to the amino group of TPAPP through epoxy cleavage. The formation of TPAPP/TiO2 was confirmed by different characterization techniques such as FT-IR, XRD, SEM and DRS. The photocatalytic activity of TiO2 was highly influenced by TPAPP. A mechanism was proposed for AB 1 degradation by TPAPP/TiO2 under sun light.

  2. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Science.gov (United States)

    Hirano-Iwata, Ayumi; Matsumura, Ryosuke; Ma, Teng; Kimura, Yasuo; Niwano, Michio; Nishikawa, Kazuo

    2016-03-01

    We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  3. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Ayumi Hirano-Iwata

    2016-03-01

    Full Text Available We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  4. Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: five-year follow-up.

    Science.gov (United States)

    Nack, C; Raguse, J-D; Stricker, A; Nelson, K; Nahles, S

    2015-01-01

    The aim of this study is to evaluate the clinical and radiological parameters of standard SLA surface implants compared to chemically modified hydrophilic SLActive implants in irradiated patients after the initial 12-month loading period up to 5 years. Twenty patients with a mean age of 61·1 years were treated with dental implants after ablative surgery and radio-chemotherapy of oral cancer. All patients were non-smokers. The placement of 102 implants (50 SLA, 52 SLActive) was performed bilaterally according to a split-mouth design. Mean crestal bone changes were evaluated using standardised orthopantomographies and clinical parameters. Data were analysed using a Kaplan-Meier curve, Mann-Whitney U-test and two-factorial non-parametric analysis. The average observation period was 60 months. The amount of bone loss at the implant shoulder of SLA implants was mesial and distal 0·7 mm. The SLActive implants displayed a bone loss of mesial 0·6 mm as well as distal 0·7 mm after 5 years. Two SLA implants were lost before loading. One patient lost five implants due to recurrence of a tumour. The overall cumulative 12-month, 3-year and 5-year survival rate of SLA implants was 92%, 80% and 75·8% and of SLActive implants 94·2%, 78·8% and 74·4%, respectively. Eighteen implants were considered lost because the patients had died. Sandblasted acid-etched implants with or without a chemically modified surface can be used in irradiated patients with a high predictability of success. Lower implant survival rates in patients with irradiated oral cancer may be associated with systemic effects rather than peri-implantitis.

  5. Efficient acetone-butanol-ethanol production (ABE) by Clostridium acetobutylicum XY16 immobilized on chemically modified sugarcane bagasse.

    Science.gov (United States)

    Kong, Xiangping; He, Aiyong; Zhao, Jie; Wu, Hao; Jiang, Min

    2015-07-01

    Sugarcane bagasse was chemically modified by polyethylenimine (PEI) and glutaraldehyde (GA) and then used as a support to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. Compared with batch fermentation using unmodified sugarcane bagasse, 22.3 g/L total solvents were produced by cells immobilized on 4 g/L PEI treated sugarcane bagasse with high solvent productivity of 0.62 g/(L h) and glucose consumption rate of 1.67 g/(L h). Improvement of 14, 43, and 37 % in total solvent titer, solvent productivity and glucose consumption rate was observed, respectively. Enhanced solvent production of 25.14 g/L was obtained when using a high concentration of glucose of 80 g/L. Continuous fermentation was studied using PEI/GA modified sugarcane bagasse as immobilization support with a range of dilution which rates from 0.2 to 2.5 to find an optimal condition. The maximum solvent productivity of 11.32 g/(L h) was obtained at a high dilution rate of 2.0 h(-1).

  6. Factors affecting protein transfer into surfactant-isooctane solution: a case study of extraction behavior of chemically modified cytochrome c.

    Science.gov (United States)

    Ono, T; Goto, M

    1998-01-01

    The extraction mechanism of proteins by surfactant molecules in an organic solvent has been investigated using a chemically modified protein. We conducted guanidylation on lysine residues of cytochrome c by replacing their amino groups with homoarginine to enhance the protein-surfactant interaction. Results have shown that guanidylated cytochrome c readily forms a hydrophobic complex with dioleyl phosphoric acid (DOLPA) through hydrogen bonding between the phosphate moiety and the guanidinium groups. Although improved protein-surfactant interaction activated the formation of a hydrophobic complex at the interface, it could not improve the protein transfer in isooctane. It has been established that the protein extraction mechanism using surfactant molecules is mainly governed by two processes: formation of an interfacial complex at the oil-water interface and the subsequent solubilization of the complex into the organic phase. In addition, a kinetic study demonstrated that guanidylation of lysine accelerated the initial extraction rate of cytochrome c. This fact implies that the protein transferability from aqueous phase into organic phase depends on the protein-surfactant interaction which can be modified by protein surface engineering.

  7. Ultraviolet light-emitting diodes with polarization-doped p-type layer

    Science.gov (United States)

    Hu, Wenxiao; Qin, Ping; Song, Weidong; Zhang, Chongzhen; Wang, Rupeng; Zhao, Liangliang; Xia, Chao; Yuan, Songyang; Yin, Yian; Li, Shuti

    2016-09-01

    We report ultraviolet light emitting diode (LEDs) with polarization doped p-type layer. Fabricated LEDs with polarization doped p-type layer exhibited reduced forward voltage and enhanced light output power, compared to those with traditional p-type AlGaN layer. The improvement is attributed to improved hole concentration and the smooth valence band by the polarization enhanced p-type doping. Our simulated results reveal that this p-type layer can further enhance the performance of ultraviolet LEDs by removing the electron blocking layer (EBL).

  8. Physisorption of DNA molecules on chemically modified single-walled carbon nanotubes with and without sonication.

    Science.gov (United States)

    Umemura, Kazuo; Ishibashi, Yu; Oura, Shusuke

    2016-09-01

    We investigated the physisorption phenomenon of single-stranded DNA (ssDNA) molecules onto two types of commercially available chemically functionalized single-walled carbon nanotubes (SWNTs) by atomic force microscopy (AFM) and agarose gel electrophoresis. We found that DNA molecules can adsorb on the water-soluble SWNT surfaces without sonication, although sonication treatment has been used for hybridization of DNA and SWNTs in many previous studies. Using our method, damage of DNA molecules by sonication can be avoided. On the other hand, the amount of DNA molecules adsorbed on SWNT surfaces increased when the samples were sonicated. This fact suggests that the sonication is effective not only at debundling of SWNTs, but also at assisting DNA adsorption. Furthermore, DNA adsorption was affected by the types of functionalized SWNTs. In the case of SWNTs functionalized with polyethylene glycol (PEG-SWNT), physisorption of ssDNA molecules was confirmed only by agarose-gel electrophoresis. In contrast, amino-terminated SWNTs (NH2-SWNTs) showed a change in the height distribution profile based on AFM observations. These results suggest that DNA molecules tended to adsorb to NH2-SWNT surfaces, although DNA molecules can also adsorb on PEG-SWNT surfaces. Our results revealed fundamental information for developing nanobiodevices using hybrids of DNA and SWNTs.

  9. A chemically modified [alpha]-amylase with a molten-globule state has entropically driven enhanced thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Khawar Sohail; Poljak, Anne; De Francisci, Davide; Guerriero, Gea; Pilak, Oliver; Burg, Dominic; Raftery, Mark J.; Parkin, Don M.; Trewhella, Jill; Cavicchioli, Ricardo (Sydney); (New South)

    2010-11-15

    The thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAA{sub MOD} exhibited a 200% improvement in starch-hydrolyzing productivity at 60 C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAA{sub MOD} had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20 C. The X-ray crystal structure of TAA{sub MOD} revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAA{sub MOD}, we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAA{sub MOD}. This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.

  10. Phase Stability of Ce-Modified La2Zr2O7 Coatings and Chemical Compatibility with YSZ

    Science.gov (United States)

    Wu, Qiong; Ji, Xiaojuan; Peng, Haoran; Ren, Xianjing; Yu, Yueguang

    2016-04-01

    Ce-modified La2Zr2O7 powders, i.e., La2Zr2O7 (LZ), La2(Zr0.7Ce0.3)2O7 (LZ7C3), and La2(Zr0.3Ce0.7)2O7 (LZ3C7), were used to produce thermal barrier coatings by atmospheric plasma spray process. The chemical compatibility of the CeO2-doped La2Zr2O7 with the traditional YSZ was investigated in LZ-YSZ powder mixtures and LZ-YSZ bilayer coatings by x-ray diffraction and scanning electron microscope. The powder mixtures and coatings were aged at 1200 and 1300 °C for 100 h. The results showed that LZ and LZ7C3 presented single pyrochlore structure after the heat treatments at both 1200 and 1300 °C. For LZ3C7, however, fluorite structure was observed at 1300 °C, indicating a poor phase stability of LZ3C7 at the elevated temperature. The results further showed that La2(Zr0.3Ce0.7)2O7 reacted with YSZ in the bilayer ceramic coatings due to the diffusion of cerium, zirconium, and yttrium. While for La2Zr2O7(LZ) and La2(Zr0.7Ce0.3)2O7, a better chemical compatibility with YSZ was shown.

  11. A genotype of modified vaccinia Ankara (MVA) that facilitates replication in suspension cultures in chemically defined medium.

    Science.gov (United States)

    Jordan, Ingo; Horn, Deborah; John, Katrin; Sandig, Volker

    2013-01-21

    While vectored vaccines, based on hyperattenuated viruses, may lead to new treatment options against infectious diseases and certain cancers, they are also complex products and sometimes difficult to provide in sufficient amount and purity. To facilitate vaccine programs utilizing host-restricted poxviruses, we established avian suspension cell lines (CR and CR.pIX) and developed a robust, chemically defined, culturing process for production of this class of vectors. For one prominent member, modified vaccinia Ankara (MVA), we now describe a new strain that appears to replicate to greater yields of infectious units, especially in the cell-free supernatant of cultures in chemically defined media. The new strain was obtained by repeated passaging in CR suspension cultures and, consistent with reports on the exceptional genetic stability of MVA, sequencing of 135 kb of the viral genomic DNA revealed that only three structural proteins (A3L, A9L and A34R) each carry a single amino acid exchange (H639Y, K75E and D86Y, respectively). Host restriction in a plaque-purified isolate of the new genotype appears to be maintained in cell culture. Processing towards an injectable vaccine preparation may be simplified with this strain as a complete lysate, containing the main burden of host cell contaminants, may not be required anymore to obtain adequate yields.

  12. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zhai, Wen-Lei; Li, Da-Wei; Qu, Lu-Lu; Fossey, John S.; Long, Yi-Tao

    2011-12-01

    A facile and cost-effective approach for the preparation of a surface-enhanced Raman spectroscopy (SERS) substrate through constructing silver nanoparticle/3-aminopropyltriethoxysilane/agarose films (Ag NPs/APTES/Agar film) on various solid supports is described. The SERS performance of the substrate was systematically investigated, revealing a maximum SERS intensity with four layers of the Ag NP deposition. The enhancement factor of the developed substrate was calculated as 1.5 × 107 using rhodamine 6G (R6G) as the probe molecule, and the reproducibility of the SERS signals was established. A high throughput screening platform was designed, manufactured and implemented which utilised the ability to cast agarose to assemble arrays. Quantitative analysis of 4-aminobenzoic acid (4-ABA) and 4-aminothiophenol (4-ATP) was achieved over a ~0.5 nM-0.1 μM range.A facile and cost-effective approach for the preparation of a surface-enhanced Raman spectroscopy (SERS) substrate through constructing silver nanoparticle/3-aminopropyltriethoxysilane/agarose films (Ag NPs/APTES/Agar film) on various solid supports is described. The SERS performance of the substrate was systematically investigated, revealing a maximum SERS intensity with four layers of the Ag NP deposition. The enhancement factor of the developed substrate was calculated as 1.5 × 107 using rhodamine 6G (R6G) as the probe molecule, and the reproducibility of the SERS signals was established. A high throughput screening platform was designed, manufactured and implemented which utilised the ability to cast agarose to assemble arrays. Quantitative analysis of 4-aminobenzoic acid (4-ABA) and 4-aminothiophenol (4-ATP) was achieved over a ~0.5 nM-0.1 μM range. Electronic supplementary information (ESI) available: the chemical structure of agarose, the SEM characterization of the synthesised Ag NPs, the calculation of the EF, the stability of the SERS substrate. See DOI: 10.1039/c1nr10956a

  13. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport.

    Science.gov (United States)

    Bygd, Hannah C; Bratlie, Kaitlin M

    2016-07-01

    Macrophage (MΦ) reprogramming has received significant attention in applications such as cancer therapeutics and tissue engineering where the host immune response to biomaterials is crucial in determining the success or failure of an implanted device. Polymeric systems can potentially be used to redirect infiltrating M1 MΦs toward a proangiogenic phenotype. This work exploits the concept of MΦ reprogramming in the engineering of materials for improving the longevity of tissue engineering scaffolds. We have investigated the effect of 13 different chemical modifications of alginate on MΦ phenotype. Markers of the M1 response-tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase-and the M2 response-arginase-were measured and used to determine the ability of the materials to alter MΦ phenotype. It was found that some modifications were able to reduce the pro-inflammatory response of M1 MΦs, others appeared to amplify the M2 phenotype, and the results for two materials suggested they were able to reprogram a MΦ population from M1 to M2. These findings were supplemented by studies done to examine the permselectivity of the materials. Diffusion of TNF-α was completely prevented through some of these materials, while up to 84% was found to diffuse through others. The diffusion of insulin through the materials was statistically consistent. These results suggest that the modification of these materials might alter mass transport in beneficial ways. The ability to control polarization of MΦ phenotypes with immunoprotective materials has the potential to augment the success of tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1707-1719, 2016.

  14. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Adam Johan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  15. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Kado, T.; Hidaka, T. [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Aita, H. [Division of Occlusion and Removable Prosthodontics, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Endo, K. [Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Furuichi, Y., E-mail: furuichi@hoku-iryo-u.ac.jp [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Cell-adhesive molecules were covalently immobilized on a Ti surface. Black-Right-Pointing-Pointer Immobilized cell-adhesive molecules maintained native function on the Ti surface. Black-Right-Pointing-Pointer Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully

  16. Large area growth and electrical properties of p-type WSe2 atomic layers.

    Science.gov (United States)

    Zhou, Hailong; Wang, Chen; Shaw, Jonathan C; Cheng, Rui; Chen, Yu; Huang, Xiaoqing; Liu, Yuan; Weiss, Nathan O; Lin, Zhaoyang; Huang, Yu; Duan, Xiangfeng

    2015-01-14

    Transition metal dichacogenides represent a unique class of two-dimensional layered materials that can be exfoliated into single or few atomic layers. Tungsten diselenide (WSe(2)) is one typical example with p-type semiconductor characteristics. Bulk WSe(2) has an indirect band gap (∼ 1.2 eV), which transits into a direct band gap (∼ 1.65 eV) in monolayers. Monolayer WSe(2), therefore, is of considerable interest as a new electronic material for functional electronics and optoelectronics. However, the controllable synthesis of large-area WSe(2) atomic layers remains a challenge. The studies on WSe(2) are largely limited by relatively small lateral size of exfoliated flakes and poor yield, which has significantly restricted the large-scale applications of the WSe(2) atomic layers. Here, we report a systematic study of chemical vapor deposition approach for large area growth of atomically thin WSe(2) film with the lateral dimensions up to ∼ 1 cm(2). Microphotoluminescence mapping indicates distinct layer dependent efficiency. The monolayer area exhibits much stronger light emission than bilayer or multilayers, consistent with the expected transition to direct band gap in the monolayer limit. The transmission electron microscopy studies demonstrate excellent crystalline quality of the atomically thin WSe(2). Electrical transport studies further show that the p-type WSe(2) field-effect transistors exhibit excellent electronic characteristics with effective hole carrier mobility up to 100 cm(2) V(-1) s(-1) for monolayer and up to 350 cm(2) V(-1) s(-1) for few-layer materials at room temperature, comparable or well above that of previously reported mobility values for the synthetic WSe(2) and comparable to the best exfoliated materials.

  17. P-type Cu2O/SnO bilayer thin film transistors processed at low temperatures

    KAUST Repository

    Al-Jawhari, Hala A.

    2013-10-09

    P-type Cu2O/SnO bilayer thin film transistors (TFTs) with tunable performance were fabricated using room temperature sputtered copper and tin oxides. Using Cu2O film as capping layer on top of a SnO film to control its stoichiometry, we have optimized the performance of the resulting bilayer transistor. A transistor with 10 nm/15 nm Cu2O to SnO thickness ratio (25 nm total thickness) showed the best performance using a maximum process temperature of 170 C. The bilayer transistor exhibited p-type behavior with field-effect mobility, on-to-off current ratio, and threshold voltage of 0.66 cm2 V-1 s-1, 1.5×10 2, and -5.2 V, respectively. The advantages of the bilayer structure relative to single layer transistor are discussed. © 2013 American Chemical Society.

  18. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Donati, George L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Santos, Luana N. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil)

    2013-05-30

    Graphical abstract: -- Highlights: •Charge transfer reactions increase the population of Cr{sup +}. •Chromium ions and electrons recombine to form excited-state Cr atoms. •A 10-fold improvement in LOD is observed for Cr emission measurements. •The two-step ionization/excitation mechanism improves sensitivity and accuracy. •High concentrations of Co also minimize matrix effects. -- Abstract: Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L{sup −1} Co, WCAES limit of detection for Cr (λ = 425.4 nm) is calculated as 0.070 mg L{sup −1}; a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr{sup +} by charge transfer reactions. In a second step, Cr{sup +}/e{sup −} recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25–10 mg L{sup −1} and repeatability of 3.8% (RSD, n = 10) for a 2.0 mg L{sup −1} Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and

  19. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Anderson Fuzer [Departamento de Química, CCE, Universidade Federal do Espírito Santo, Campus Goiabeiras, 29075-910 Vitória, Espírito Santo (Brazil); Porto, Arilza de Oliveira, E-mail: arilzaporto@yahoo.com.br [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Magela de Lima, Geraldo [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Paniago, Roberto [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Ardisson, José Domingos [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, Minas Gerais (Brazil)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of cadmium and tin telluride. ► Chemical route to obtain pure crystalline cadmium and tin telluride. ► Effect of the annealing temperature on the crystalline phases. ► Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by {sup 119}Sn Mössbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 °C has proven to be useful to reduce the amount of oxide produced as side product.

  20. Eletrodos quimicamente modificados aplicados à eletroanálise: uma breve abordagem Chemically modified electrodes applyes to electroanalysis: a brief presentation

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Brito Souza

    1997-04-01

    Full Text Available Chemically modified electrodes (CMEs have been subject of considerable attention since its inception about 23 years ago. CMEs result of a deliberate immobilization of a modifier agent onto the electrode surface obtained through chemical reactions, chemisorption, composite formation or polymer coating. This immobilization seeks transfer the physicochemical properties of the modifier to the electrode surface and thus to dictate and control the behavior of the electrode/solution interface. In recent years the interest in CMEs has increased particularly to enhance the sensitivity and/or the selectivity of electroanalytical techniques. In general higher sensitivity and/or selectivity may be achieved by exploiting one or more of the following phenomena: electrocatalysis, preconcentration and interferents exclusion. This paper deals with the application of CMEs in electroanalysis, including a brief presentation of the more general procedures that have been employed for the modification of electrode surfaces.

  1. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Science.gov (United States)

    Walkowiak, Mariusz; Zalewska, Aldona; Jesionowski, Teofil; Waszak, Daniel; Czajka, Bogdan

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica.

  2. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Walkowiak, Mariusz; Waszak, Daniel; Czajka, Bogdan [Central Laboratory of Batteries and Cells, ul. Forteczna 12, 61-362 Poznan (Poland); Zalewska, Aldona [Warsaw University of Technology, Department of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Jesionowski, Teofil [Poznan University of Technology, Institute of Chemical Technology and Engineering, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland)

    2006-09-13

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica. (author)

  3. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes

    Science.gov (United States)

    Santiago, Enrique Vigueras; López, Susana Hernández; Camacho López, Marco A.; Contreras, Delfino Reyes; Farías-Mancilla, Rurik; Flores-Gallardo, Sergio G.; Hernández-Escobar, Claudia A.; Zaragoza-Contreras, E. Armando

    2016-10-01

    This research focused on the nanosecond (Nd: YAG-1064 nm) laser pulse effect on the optical and morphological properties of chemically modified multi-walled carbon nanotubes (MWCNT). Two suspensions of MWCNT in tetrahydrofuran (THF) were prepared, one was submitted to laser pulses for 10 min while the other (blank) was only mechanically homogenized during the same time. Following the laser irradiation, the suspension acquired a yellow-amber color, in contrast to the black translucent appearance of the blank. UV-vis spectroscopy confirmed this observation, showing the blank a higher absorption. Additionally, photoluminescence measurements exhibited a broad blue-green emission band both in the blank and irradiated suspension when excited at 369 nm, showing the blank a lower intensity. However, a modification in the excitation wavelength produced a violet to green tuning in the irradiated suspension, which did not occur in the blank. Lastly, the electron microscopy analysis of the treated nanotubes showed the abundant formation of amorphous carbon, nanocages, and nanotube unzipping, exhibiting the intense surface modification produced by the laser pulse. Nanotube surface modification and the coexistence with the new carbon nanostructures were considered as the conductive conditions for optical properties modification.

  4. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain.

    Science.gov (United States)

    Edan, Rawan Abdulhameed; Luqmani, Yunus A; Masocha, Willias

    2013-01-01

    Microglia activation results in release of proinflammatory molecules including cytokines, which contribute to neuronal damage in the central nervous system (CNS) if not controlled. Tetracycline antibiotics such as minocycline inhibit microglial activation and cytokine expression during CNS inflammation. In the present study we found that administration of chemically modified tetracycline-3 (COL-3), inhibits lipopolysaccharide (LPS)-induced microglial and p38 MAPK activation, as well as the increase in TNF-α, but not IL-1β expression, in the brains of BALB/c mice. COL-3 has been described to have no antibacterial activity. We observed that COL-3 had no activity against a Gram-negative bacteria, Escherichia coli; however surprisingly, COL-3 had antibacterial activity against a Gram-positive bacteria Staphylococcus aureus, with a minimum inhibitory concentration of 1 mg/ml. Our data show that COL-3 has some antibacterial activity against S. aureus, inhibits LPS-induced neuroinflammation, and displays potential as a therapeutic agent for treatment of conditions involving CNS inflammation.

  5. Comparison of adsorption of Cd(II and Pb(II ions on pure and chemically modified fly ashes

    Directory of Open Access Journals (Sweden)

    Sočo Eleonora

    2016-06-01

    Full Text Available The study investigates chemical modifications of coal fly ash (FA treated with HCl or NH4HCO3 or NaOH or Na2edta, based on the research conducted to examine the behaviour of Cd(II and Pb(II ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K and pH (2 - 11 values. The maximum Cd(II and Pb(II ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH4HCO3 > FA > FA-Na2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS and images of scanning electron microscope (SEM. The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudofirst order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II and Pb(II ion uptake from polluted waters.

  6. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain.

    Directory of Open Access Journals (Sweden)

    Rawan Abdulhameed Edan

    Full Text Available Microglia activation results in release of proinflammatory molecules including cytokines, which contribute to neuronal damage in the central nervous system (CNS if not controlled. Tetracycline antibiotics such as minocycline inhibit microglial activation and cytokine expression during CNS inflammation. In the present study we found that administration of chemically modified tetracycline-3 (COL-3, inhibits lipopolysaccharide (LPS-induced microglial and p38 MAPK activation, as well as the increase in TNF-α, but not IL-1β expression, in the brains of BALB/c mice. COL-3 has been described to have no antibacterial activity. We observed that COL-3 had no activity against a Gram-negative bacteria, Escherichia coli; however surprisingly, COL-3 had antibacterial activity against a Gram-positive bacteria Staphylococcus aureus, with a minimum inhibitory concentration of 1 mg/ml. Our data show that COL-3 has some antibacterial activity against S. aureus, inhibits LPS-induced neuroinflammation, and displays potential as a therapeutic agent for treatment of conditions involving CNS inflammation.

  7. Effects of modified atmosphere and vacuum packaging on microbiological and chemical properties of rainbow trout (Oncorynchus mykiss) fillets.

    Science.gov (United States)

    Arashisar, Sükriye; Hisar, Olcay; Kaya, Mükerrem; Yanik, Telat

    2004-12-15

    Microbial (psychrotrophic, mesophilic aerobic bacteria and Enterobacteriacae counts), and chemical analysis [pH, total volatile bases nitrogen (TVB-N), lipid oxidation (Thiobarbituric acid reactive substance, TBARS)] of rainbow trout (Oncorynchus mykiss) fillets in air (control), vacuum and modified atmosphere packaging (MAP) with various gas mixtures conditions at 4+/-1 degrees C were determined. The gas mixtures evaluated were 100% CO2, 2.5% O2+7.5% N2+90% CO2 and 30% O2+30% N2+40% CO2. Psychrotrophic bacteria count was above 1 x 10(7) cfu/g on the 12th day in 100% CO2. However; mesophilic bacteria count was below 1 x 10(6) cfu/g at the end of the 14-day storage period. Enterobacteriaceae count was significantly lower in samples packaged with MAP. Lipid oxidation increased rapidly after 6 days of storage in the samples containing 30% O2. While minimum TBARS values were recorded in fillets containing 100% CO2 and vacuumed fillets, the lowest TVB-N values were obtained in fillets with 100% CO2.

  8. Compositionally and structurally modified SrTiO{sub 3} thin films prepared by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spitzner, Dirk; Gutmann, Emanuel; Reibold, Marianne; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden (Germany); Mahltig, Boris [GMBU e.V., Arbeitsgruppe Funktionelle Schichten, Dresden (Germany)

    2009-07-01

    For electronic and architectural design of functional electroceramic devices, materials with a perovskite-type of structure play a major role. For high-k dielectric, sensing and thermal switching applications the introduction of Barium into SrTiO{sub 3}(STO) allows tuning the electrical properties by tuning the paraelectric-to-ferroelectric transition temperature. For thin film preparation a classic sol-gel route was modified by refluxing as well as solvothermal treatment of the as-synthesized sols. For treated sols the decomposition, phase evolution and transition behaviour differed and from X-ray diffraction (XRD) we observed a supression of foreign phases and a higher degree of compositional homogeneity. In this context also the homologous series of perovskite-related Ruddlesden-Popper (RP) phases promise an engineering of electrical properties by selecting a specific member. Exemplarily we realised the chemical solution deposition of epitaxial thin films of SrO(SrTiO{sub 3}){sub n} RP phases (n=1,2,3) on STO substrates. Structural characteristics of the films were analysed by means of XRD and HRTEM. An application as buffer layers exhibiting tuneable dielectric properties is conceivable.

  9. Glassy carbon electrode modified with a graphene oxide/poly(o-phenylenediamine) composite for the chemical detection of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Van Hoa [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang (Viet Nam); Tran, Trung Hieu [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749 (Korea, Republic of)

    2014-11-01

    Conducting poly(o-phenylenediamine) (POPD)/graphene oxide (GO) composites were prepared using a facile and efficient method involving the in-situ polymerization of OPD in the presence of GO in an aqueous medium. Copper sulfate was used as an oxidative initiator for the polymerization of OPD. Scanning electron microscopy and transmission electron microscopy images showed that POPD microfibrils were formed and distributed relatively uniformly with GO sheets in the obtained composites. X-ray diffraction results revealed the highly crystal structure of POPD. This composite exhibited good catalytic activity and stability. These results highlight the potential applications of POPD/GO composites as excellent electrochemical sensors. The composites were used to modify glass carbon electrodes for the chemical detection of hydrogen peroxide in aqueous media. - Highlights: • Graphene oxide/poly(o-phenylenediamine) composites were prepared efficiently. • POPD microfibrils were distributed relatively uniformly with GO sheets. • The composite exhibited good catalytic activity and stability for H{sub 2}O{sub 2} sensing.

  10. Improved properties of chemically modified graphene/poly(methyl methacrylate nanocomposites via a facile in-situ bulk polymerization

    Directory of Open Access Journals (Sweden)

    X. Y. Yuan

    2012-10-01

    Full Text Available The nanosheet of graphene was chemically modified by long alkyl chain for enhanced compatibility with polymer matrix and graphene/poly(methyl methacrylate (PMMA nanocomposites with homogeneous dispersion of the nanosheets and enhanced nanofiller-matrix interfacial interaction were fabricated via a facile in-situ bulk polymerization. The nanocomposites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and thermogravimetry. The results showed that the graphene nanosheets were fully exfoliated in PMMA matrix and the thermal and mechanical properties of the nanocomposites were significantly improved at low graphene loadings. Large shifts of 15°C in the glass transition temperature and 27°C improvement of onset thermal degradation temperature were achieved with graphene loading as low as 0.07 wt%. A 67% increase in tensile strength was also observed by the addition of only 0.5 wt% graphene. The method used in this study provided a novel route to other graphene-based polymers.

  11. Realization of stable p-type ZnO thin films using Li-N dual acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T. Prasada, E-mail: prasadview@gmail.com [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli- 620 015 (India); Kumar, M.C. Santhosh, E-mail: santhoshmc@nitt.edu [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli- 620 015 (India)

    2011-09-01

    Highlights: > We have presented a promising Li-N dual acceptor doping method to realize p-type ZnO films via spray pyrolysis. > The influence of concentration of Li-N on the structural, electrical, and optical properties of p-type ZnO:(Li, N) films were investigated in detail. > It is found that (Li, N):ZnO films deposited on glass substrate show the preferential orientation of (002) plane. > The Hall Effect measurements exhibited p-type behaviour on (Li, N):ZnO thin films and the stability of the samples were verified by aging studies. - Abstract: Lithium and nitrogen dual acceptors-doped p-type ZnO thin films have been prepared using spray pyrolysis technique. The influence of dual acceptor (Li, N) doping on the structural, electrical, and optical properties of (Li, N):ZnO films are investigated in detail. The (Li, N):ZnO films exhibit good crystallinity with a preferred c-axis orientation. From AFM studies, it is found that the surface roughness of the thin films increases with the increase of doping percentage. The Hall Effect measurements showed p-type conductivity. The Hall measurements have been performed periodically up to seven months and it is observed that the films show p-type conductivity throughout the period of observation. The samples with Li:N ratio of 8:8 mol% showed the lowest resistivity of 35.78 {Omega} cm, while sample with Li:N ratio of 6:6 mol% showed highest carrier concentration. The PL spectra of (Li, N):ZnO films show a strong UV emission at room temperature. Furthermore, PL spectra show low intensity in deep level transition, indicating a low density of native defects. This indicates that the formation of intrinsic defects is effectively suppressed by dual acceptor (Li, N) doping in ZnO thin films. The chemical bonding states of N and Li in the films were examined by XPS analysis.

  12. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating.

    Science.gov (United States)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-28

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  13. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    Science.gov (United States)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  14. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used ...

  15. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein

    DEFF Research Database (Denmark)

    Ekberg, Kira; Palmgren, Michael; Veierskov, Bjarke;

    2010-01-01

    The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus...

  16. Evidence for an iron-hydrogen complex in p-type silicon

    Science.gov (United States)

    Leonard, S.; Markevich, V. P.; Peaker, A. R.; Hamilton, B.; Murphy, J. D.

    2015-07-01

    Interactions of hydrogen with iron have been studied in Fe contaminated p-type Czochralski silicon using capacitance-voltage profiling and deep level transient spectroscopy (DLTS). Hydrogen has been introduced into the samples from a silicon nitride layer grown by plasma enhanced chemical vapor deposition. After annealing of the Schottky diodes on Si:Fe + H samples under reverse bias in the temperature range of 90-120 °C, a trap has been observed in the DLTS spectra which we have assigned to a Fe-H complex. The trap is only observed when a high concentration of hydrogen is present in the near surface region. The trap concentration is higher in samples with a higher concentration of single interstitial Fe atoms. The defect has a deep donor level at Ev + 0.31 eV. Direct measurements of capture cross section of holes have shown that the capture cross section is not temperature dependent and its value is 5.2 × 10-17 cm2. It is found from an isochronal annealing study that the Fe-H complex is not very stable and can be eliminated completely by annealing for 30 min at 125 °C.

  17. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    Science.gov (United States)

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy.

  18. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.

  19. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Minakshi Rana

    2016-07-01

    Full Text Available The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L. enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa extract (CMCE. CMCE (1 or 10 µg/mL; 14 h significantly decreased LPS (50-100 ng/mL induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100 and 300 mg/kg; 10 days p.o. pre-treated and LPS (10 mg/kg challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3 and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.

  20. A Standardized Chemically Modified Curcuma longa Extract Modulates IRAK-MAPK Signaling in Inflammation and Potentiates Cytotoxicity.

    Science.gov (United States)

    Rana, Minakshi; Maurya, Preeti; Reddy, Sukka S; Singh, Vishal; Ahmad, Hafsa; Dwivedi, Anil K; Dikshit, Madhu; Barthwal, Manoj K

    2016-01-01

    The TLR/IL-1R pathway is a critical signaling module that is misregulated in pathologies like inflammation and cancer. Extracts from turmeric (Curcuma longa L.) enriched in curcumin and carbonyls like turmerones have been shown to exert potent anti-inflammatory effects. The present study evaluated the anti-inflammatory activity, cytotoxic effect and the underlying mechanism of a novel chemically modified, non-carbonyl compound enriched Curcuma longa L. (C. longa) extract (CMCE). CMCE (1 or 10 μg/mL; 14 h) significantly decreased LPS (50-100 ng/mL) induced TNF-α and IL-1β production in THP-1 cells, human, and mouse whole blood as measured by ELISA. LPS-induced IRAK1, MAPK activation, TLR4 expression, TLR4-MyD88 interaction, and IκBα degradation were significantly reduced in CMCE pre-treated THP-1 cells as assessed by Western blotting. CMCE (30, 100, and 300 mg/kg; 10 days p.o.) pre-treated and LPS (10 mg/kg) challenged Swiss mice exhibited attenuated plasma TNF-α, IL-1β, nitrite, aortic iNOS expression, and vascular dysfunction. In a PI permeability assay, cell lines derived from acute myeloid leukemia were most sensitive to the cytotoxic effects of CMCE. Analysis of Sub-G1 phase, Annexin V-PI positivity, loss of mitochondrial membrane potential, increased caspase-3, and PARP-1 activation confirmed CMCE induced apoptosis in HL-60 cells. IRAK inhibition also sensitized HL-60 cells to CMCE induced cytotoxicity. The present study defines the mechanism underlying the action of CMCE and suggests a therapeutic potential for its use in sepsis and leukemia.

  1. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: mxq071000@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)

    2012-01-31

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  2. Activation of the ERK1/2 Signaling Pathway during the Osteogenic Differentiation of Mesenchymal Stem Cells Cultured on Substrates Modified with Various Chemical Groups

    Directory of Open Access Journals (Sweden)

    Bing Bai

    2013-01-01

    Full Text Available The current study examined the influence of culture substrates modified with the functional groups –OH, –COOH, –NH2, and –CH3 using SAMs technology, in conjunction with TAAB control, on the osteogenic differentiation of rabbit BMSCs. The CCK-8 assay revealed that BMSCs exhibited substrate-dependent cell viability. The cells plated on –NH2- and –OH-modified substrates were well spread and homogeneous, but those on the –COOH- and –CH3-modified substrates showed more rounded phenotype. The mRNA expression of BMSCs revealed that –NH2-modified substrate promoted the mRNA expression and osteogenic differentiation of the BMSCs. The contribution of ERK1/2 signaling pathway to the osteogenic differentiation of BMSCs cultured on the –NH2-modified substrate was investigated in vitro. The –NH2-modified substrate promoted the expression of integrins; the activation of FAK and ERK1/2. Inhibition of ERK1/2 activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked ERK1/2 activation in a dose-dependent manner, as revealed for expression of Cbfα-1 and ALP. Blockade of ERK1/2 phosphorylation in BMSCs by PD98059 suppressed osteogenic differentiation on chemical surfaces. These findings indicate a potential role for ERK in the osteogenic differentiation of BMSCs on surfaces modified by specific chemical functional groups, indicating that the microenvironment affects the differentiation of BMSCs. This observation has important implications for bone tissue engineering.

  3. Thermal effect mechanism of magnetoresistance in p-type diamond films

    Institute of Scientific and Technical Information of China (English)

    Qin Guo-Ping; Kong Chun-Yang; Ruan Hai-Bo; Huang Gui-Juan; Cui Yu-Ting; Fang Liang

    2010-01-01

    Based on the analysis and the discussion of the influence of thermal ionization energy and various scatterings on magnetoresistance(MR) of p-type diamond films, a revised model of valence band split-off over temperature is put forward, and a corresponding calculation formula is given for the MR of p-type diamond films (Corbino discs). It is shown that the theoretical calculation that the MR of diamond films changes with temperature is consistent with the experiment. The influence of Fermi energy level on MR of diamond films is discussed. Additionally, the thermal effect mechanism of MR in p-type diamond films is also explored.

  4. Characterization of plasma etching damage on p -type GaN using Schottky diodes

    OpenAIRE

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was ...

  5. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    OpenAIRE

    Khan, Shadab Ali; Gambhir, Sanjay; Ahmad, Absar

    2014-01-01

    As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconj...

  6. Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide

    Science.gov (United States)

    Saint-Cast, Pierre; Kania, Daniel; Hofmann, Marc; Benick, Jan; Rentsch, Jochen; Preu, Ralf

    2009-10-01

    Aluminum oxide layers can provide excellent passivation for lowly and highly doped p-type silicon surfaces. Fixed negative charges induce an accumulation layer at the p-type silicon interface, resulting in very effective field-effect passivation. This paper presents highly negatively charged (Qox=-2.1×1012 cm-2) aluminum oxide layers produced using an inline plasma-enhanced chemical vapor deposition system, leading to very low effective recombination velocities (˜10 cm s-1) on low-resistivity p-type substrates. A minimum static deposition rate (100 nm min-1) at least one order of magnitude higher than atomic layer deposition was achieved on a large carrier surfaces (˜1 m2) without significantly reducing the resultant passivation quality.

  7. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    Science.gov (United States)

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction.

  8. Preparation, Biodegradation of Coconut Oil Driven Chemically Modified Bovine Serum Albumin Microparticles of Encapsulated Cicer arietinum Amylase and Study of Their Application in Washing Detergents

    Directory of Open Access Journals (Sweden)

    Kirti Rani

    2014-10-01

    Full Text Available In present work, Cicer arietinum amylase was encapsulated by emulsification through covalent coupling by glutaraldehyde into chemically modified bovine serum albumin. Biodegradation of coconut oil driven emulsified bovine serum albumin encapsulated Cicer arietinum amylase was carried out by the alkaline protease for its controlled and sustained release of encapsulated enzyme from prepared microparticles of encapsulated Cicer arietinum amylase and its stability increased up to 6 months as compared to free enzyme. Its biodegradation was carried out by the using different concentration of alkaline protease (5U, 10U, 15U, 20U, 25U, 30U, 35U, 40U. Further, this coconut oil driven chemically modified bovine serum albumin microparticles of encapsulated Cicer arietinum amylase with alkaline protease were used with detergents for washing of stained cloths which have rust, gel pen ink, grease and chocolate strains. These chosen strains are very commonly present on uniforms of school going children which are very tough upon drying, hence, not to be easily vanish with well known brand detergents upon in one wash. But, the mixture solution of coconut oil driven chemically modified bovine serum albumin microparticles of encapsulated Cicer arietinum amylase along with alkaline protease were used with detergents powder for washing of these dry tough strains (rust, gel pen ink, grease and chocolate strains leads to vanishing these strains very fast with absolute clear results were found as compared to results of washing of stained cloths with detergents only.

  9. Theoretical prediction of p-type transparent conductivity in Zn-doped TiO2.

    Science.gov (United States)

    Han, Xiaoping; Shao, Guosheng

    2013-06-28

    It is very difficult and yet extremely important to fill the wide technological gap in developing transparent conducting oxides (TCOs) that exhibit excellent p-type conducting characteristics. Here, on the basis of extensive first-principles calculations, we discover for the first time potentially promising p-type transparent conductivity in Zn-doped TiO2 under oxygen rich conditions. Efforts have been made to elaborate the effects of possible defects and their interaction with Zn doping on the p-type transparent conductivity. This work offers a fundamental road map for cost-effective development of p-type TCOs based on TiO2, which is a cheap and stable material system of large natural resources.

  10. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida)

    OpenAIRE

    2014-01-01

    Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium and possibly copper and calcium. So fa...

  11. Convergence of valence bands for high thermoelectric performance for p-type InN

    Science.gov (United States)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-12-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  12. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    Energy Technology Data Exchange (ETDEWEB)

    Dehzangi, Arash, E-mail: arashd53@hotmail.com [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Larki, Farhad [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Naseri, Mahmud G. [Department of Physics, Faculty of Science, Malayer University, Malayer, Hamedan (Iran, Islamic Republic of); Navasery, Manizheh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Majlis, Burhanuddin Y.; Razip Wee, Mohd F. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Halimah, M.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Islam, Md. Shabiul; Md Ali, Sawal H. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Saion, Elias [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2015-04-15

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated.

  13. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  14. INFLUENCE OF PACKAGING MATERIAL AND STORAGE TIME ON PHYSICAL, CHEMICAL AND MICROBIOLOGICAL PROPERTIES OF SET YOGURT: A COMPARATIVE STUDY BETWEEN MODIFIED BIODEGRADABLE POLY(LACTIC ACID AND POLYPROPYLENE

    Directory of Open Access Journals (Sweden)

    NAWADON PETCHWATTANA

    2016-10-01

    Full Text Available The current paper investigates the influence of storage time and type of polymeric packaging material on the chemical, physical and microbiological properties of set yogurt. Firstly, poly(lactic acid (PLA was modified by using a core-shell rubber (CSR and an acrylic processing aid (PA to produce PLA with high toughness and good processability. Secondly, an appropriate PLA/PA/CSR composition was selected and fabricated to yogurt cup. The yogurt was stored in both modified PLA and polypropylene (PP packages to observe some physical, chemical and biological changes. Finally, the biodegradation test was made on both packages and compared with that cellulose. Experimental results revealed that adding 5wt% CSR gave PLA/PA as tough as PP. Types of packaging material and storage time did not change the color of yogurt. The number of lactic acid bacteria grew significantly after they had been incubated for 6 days. The bacterial viability decreased dramatically due to the increased acidity and the decreased pH. A positive impact on the viability of bacterial growth was found when yogurt was stored in modified PLA package. This made yogurt had more health benefits than stored in PP package. The biodegradation test results indicated that the modified PLA degraded at a rapid rate. It achieved approximately 50% biodegradation within 40 days which was comparable to the time required to degrade the cellulose, whereas PP was non-biodegradable over the period studied. In summary, substitution conventional PP by a novel modified PLA seems to be a better way for both the health and the environment benefits.

  15. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    Science.gov (United States)

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant

  16. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality.

    Science.gov (United States)

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2016-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P cake formulations at 5 and 10 % concentrations on a wheat flour basis and compared to native starch. The results revealed that when applied at 5 % concentrations, the modified starches reduced the hardness, cohesion, adhesion and chewiness of baked cakes and enhanced their elasticity, volume, height, crust color, and appearance as compared to native starch. These effects were more pronounced for the cake incorporating the dually modified starch.

  17. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  18. CuNb3O8: A p-Type Semiconducting Metal Oxide Photoelectrode.

    Science.gov (United States)

    Joshi, Upendra A; Maggard, Paul A

    2012-06-07

    A new p-type CuNb3O8 polycrystalline photoelectrode was investigated and was determined to have indirect and direct bandgap sizes of 1.26 and 1.47 eV, respectively. The p-type polycrystalline film could be prepared on fluorine-doped tin oxide glass and yielded a cathodic photocurrent under visible-light irradiation (λ > 420 nm) with incident photon-to-current efficiencies of up to ∼6-7% and concomitant hydrogen evolution. A Mott-Schottky analysis yielded a flat band potential of +0.35 V versus RHE (pH = 6.3) and a calculated p-type dopant concentration of ∼7.2 × 10(15) cm(-3). The conduction band energies are found to be negative enough for the reduction of water under visible light irradiation. A hole mobility of ∼145 cm(2)/V·s was obtained from J(I)-V(2) measurements using the Mott-Gurney relation, which is ∼50% higher than that typically found for p-type Cu2O. DFT-based electronic structure calculations were used to probe the atomic and structural origins of the band gap transitions and carrier mobility. Thus, a new p-type semiconductor is discovered for potential applications in solar energy conversion.

  19. Recent Developments in p-Type Oxide Semiconductor Materials and Devices.

    Science.gov (United States)

    Wang, Zhenwei; Nayak, Pradipta K; Caraveo-Frescas, Jesus A; Alshareef, Husam N

    2016-05-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  20. Comparative studies on p-type CuI grown on glass and copper substrate by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, Sunetra L.; Latthe, Sanjay S. [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India); Kappenstein, Charles [University of Poitiers, Laboratory of Catalysis in Organic Chemistry, LA CCO, UMR CNRS 6503, Poitiers-86000 (France); Mukherjee, S.K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400085, Maharashtra India (India); Rao, A. Venkateswara, E-mail: avrao2012@gmail.com [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India)

    2010-04-01

    Depending upon the method of synthesis and the nature of substrate surface, there is variation in the physico-chemical properties of the material. Cuprous iodide films are deposited at room temperature on the glass and copper substrates by a simple SILAR method and the obtained results are compared. The p-type material with optical band gap 2.88 eV is found to be possessing face-centered cubic crystal structure with lattice parameter 6.134 A. We observed irregular particles for the CuI film on the glass substrate while patterned arrays of micro-rods with cabbage like tips on copper substrate, for the same preparative conditions. Also, the material deposited on copper is showing superhydrophobic nature (contact angle {approx}156{sup o}) while that on glass it is hydrophilic (contact angle {approx}88{sup o}). We have characterized the thin films by X-ray diffraction, scanning electron microscopy, surface roughness and contact angle measurement, thermoelectric power measurement and optical studies. This hydrophobic, p-type material with wide band gap will be helpful in the development of optoelectronic devices.

  1. The synthesis and characterization of Ag-N dual-doped p-type ZnO: experiment and theory.

    Science.gov (United States)

    Duan, Li; Wang, Pei; Yu, Xiaochen; Han, Xiao; Chen, Yongnan; Zhao, Peng; Li, Donglin; Yao, Ran

    2014-03-07

    Ag-N dual-doped ZnO films have been fabricated by a chemical bath deposition method. The p-type conductivity of the dual-doped ZnO:(Ag, N) is stable over a long period of time, and the hole concentration in the ZnO:(Ag, N) is much higher than that in mono-doped ZnO:Ag or ZnO:N. We found that this is because AgZn-NO complex acceptors can be formed in ZnO:(Ag, N). First-principles calculations show that the complex acceptors generate a fully occupied band above the valance band maximum, so the acceptor levels become shallower and the hole concentration is increased. Furthermore, the binding energy of the Ag-N complex in ZnO is negative, so ZnO:(Ag, N) can be stable. These results indicate that the Ag-N dual-doping may be expected to be a potential route to achieving high-quality p-type ZnO for use in a variety of devices.

  2. Comparative studies on p-type CuI grown on glass and copper substrate by SILAR method

    Science.gov (United States)

    Dhere, Sunetra L.; Latthe, Sanjay S.; Kappenstein, Charles; Mukherjee, S. K.; Rao, A. Venkateswara

    2010-04-01

    Depending upon the method of synthesis and the nature of substrate surface, there is variation in the physico-chemical properties of the material. Cuprous iodide films are deposited at room temperature on the glass and copper substrates by a simple SILAR method and the obtained results are compared. The p-type material with optical band gap 2.88 eV is found to be possessing face-centered cubic crystal structure with lattice parameter 6.134 Å. We observed irregular particles for the CuI film on the glass substrate while patterned arrays of micro-rods with cabbage like tips on copper substrate, for the same preparative conditions. Also, the material deposited on copper is showing superhydrophobic nature (contact angle ˜156°) while that on glass it is hydrophilic (contact angle ˜88°). We have characterized the thin films by X-ray diffraction, scanning electron microscopy, surface roughness and contact angle measurement, thermoelectric power measurement and optical studies. This hydrophobic, p-type material with wide band gap will be helpful in the development of optoelectronic devices.

  3. Fatigue behavior of Ti–6Al–4V alloy in saline solution with the surface modified at a micro- and nanoscale by chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Claros, Cesar Adolfo Escobar; Oliveira, Diego Pedreira; Campanelli, Leonardo Contri; Pereira da Silva, Paulo Sergio Carvalho; Bolfarini, Claudemiro

    2016-10-01

    This work evaluated the influence of the surface modification using acid etching combined with alkaline treatment on the fatigue strength of Ti–6Al–4V ELI alloy. The topography developed by chemical surface treatments (CST) was examined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Increased roughness and effective surface area were investigated and compared with the Ti–6Al–4V samples without modification. Surface composition was analyzed by energy dispersive X-ray spectroscopy (EDS). Axial fatigue resistance of polished and modified surfaces was determined by stepwise load increase tests and staircase test method. Light microscopy and SEM were employed to examine the fracture surface of the tested specimens. According to the results, a similar fatigue behavior was found and a negligible difference in the fatigue crack nucleation was observed for the Ti–6Al–4V with CST in comparison to the samples without treatment. - Highlights: • Fatigue behavior of Ti–6Al–4V with the surface modified by chemical treatments • The topography developed did not induce differences in the fatigue resistance. • Untreated and chemically treated surfaces presented fractographic similarities.

  4. A study comparing chemical peeling using modified jessner′s solution and 15% trichloroacetic acid versus 15% trichloroacetic acid in the treatment of melasma

    Directory of Open Access Journals (Sweden)

    Safoury Omar

    2009-01-01

    Full Text Available Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner′s solution, modified Jessner′s solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA and modified Jessner′s solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type, with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner′s solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index between the right malar area and the left malar area. Conclusion: Modified Jessner′s solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation.

  5. A STUDY COMPARING CHEMICAL PEELING USING MODIFIED JESSNER'S SOLUTION AND 15%TRICHLOROACETIC ACID VERSUS 15% TRICHLOROACETIC ACID IN THE TREATMENT OF MELASMA

    Science.gov (United States)

    Safoury, Omar Soliman; Zaki, Nagla Mohamed; El Nabarawy, Eman Ahmad; Farag, Eman Abas

    2009-01-01

    Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner's solution, modified Jessner's solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA) and modified Jessner's solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type), with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner's solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index) between the right malar area and the left malar area. Conclusion: Modified Jessner's solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation. PMID:20049268

  6. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality

    OpenAIRE

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2015-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P 

  7. Rheological and chemical evaluation on the ageing properties of SBS polymer modified bitumen: From the laboratory to the field

    NARCIS (Netherlands)

    Liu, G.; Nielsen, E.; Komacka, J.; Greet, L.; Ven, M.V.D.

    2014-01-01

    This study investigated the ageing properties of the styrene-butadiene- styrene polymer modified bitumen (SBS PMB) from the laboratory to the field. The virgin SBS PMB had been kept for 23 years and its field-aged binder was extracted from the reclaimed stone matrix asphalt (SMA) after the 22-year s

  8. Surface Structure and Photocatalytic Properties of Bi2WO6 Nanolatelets Modified by Molybdena Islands from Chemical Vapor Deposition

    NARCIS (Netherlands)

    Dittmer, A.; Menze, J.; Mei, B.T.; Strunk, J.; Luftman, H.S.; Gutkowski, R.; Wachs, I.E.; Schuhmann, W.; Muhler, M.

    2016-01-01

    We report on a novel route of preparing molybdena-modified bismuth tungstates and their successful application in the photocatalytic oxygen evolution reaction and the oxidation of glycerol. Hierarchically assembled monocrystalline Bi2WO6 nanoplatelets with a specific surface area of 10 m2/g were obt

  9. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  10. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;

    2016-01-01

    the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site......P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used...... as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among...

  11. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.

    2013-11-25

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p-type oxide semiconductor processed at similar temperature. Compared to thin film transistors, the SnO nanowire transistors exhibit five times higher mobility and one order of magnitude lower subthreshold swing. The SnO nanowire transistors show three times lower threshold voltages (−1 V) than the best reported SnO thin film transistors and fifteen times smaller than p-type Cu 2O nanowire transistors. Gate dielectric and process temperature are critical to achieving such performance.

  12. DyP-type peroxidases comprise a novel heme peroxidase family.

    Science.gov (United States)

    Sugano, Y

    2009-04-01

    Dye-decolorizing peroxidase (DyP) is produced by a basidiomycete (Thanatephorus cucumeris Dec 1) and is a member of a novel heme peroxidase family (DyP-type peroxidase family) that appears to be distinct from general peroxidases. Thus far, 80 putative members of this family have been registered in the PeroxiBase database (http://peroxibase.isbsib.ch/) and more than 400 homologous proteins have been detected via PSI-BLAST search. Although few studies have characterized the function and structure of these proteins, they appear to be bifunctional enzymes with hydrolase or oxygenase, as well as typical peroxidase activities. DyP-type peroxidase family suggests an ancient root compared with other general peroxidases because of their widespread distribution in the living world. In this review, firstly, an outline of the characteristics of DyP from T. cucumeris is presented and then interesting characteristics of the DyP-type peroxidase family are discussed.

  13. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  14. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  15. Hall and thermoelectric evaluation of p-type InAs

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M.C., E-mail: magnus.wagener@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Wagener, V.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-15

    This paper compares the galvanometric and thermoelectric evaluation of the electrical characteristics of narrow gap semiconductors. In particular, the influence of a surface inversion layer is incorporated into the analysis of the temperature-dependent Hall and thermoelectric measurements of p-type InAs. The temperature at which the Seebeck coefficient of p-type material changes sign is shown to be unaffected by the presence of degenerate conduction paths. This finding consequently facilitated the direct determination of the acceptor density of lightly doped thin film InAs.

  16. One-pot chemical synthesis of small ubiquitin-like modifier protein-peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates.

    Science.gov (United States)

    Boll, Emmanuelle; Drobecq, Hervé; Ollivier, Nathalie; Blanpain, Annick; Raibaut, Laurent; Desmet, Rémi; Vicogne, Jérôme; Melnyk, Oleg

    2015-02-01

    Small ubiquitin-like modifier (SUMO) post-translational modification (PTM) of proteins has a crucial role in the regulation of important cellular processes. This protocol describes the chemical synthesis of functional SUMO-peptide conjugates. The two crucial stages of this protocol are the solid-phase synthesis of peptide segments derivatized by thioester or bis(2-sulfanylethyl)amido (SEA) latent thioester functionalities and the one-pot assembly of the SUMO-peptide conjugate by a sequential native chemical ligation (NCL)/SEA native peptide ligation reaction sequence. This protocol also enables the isolation of a SUMO SEA latent thioester, which can be attached to a target peptide or protein in a subsequent step. It is compatible with 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, and it gives access to homogeneous, reversible and functional SUMO conjugates that are not easily produced using living systems. The synthesis of SUMO-peptide conjugates on a milligram scale takes 20 working days.

  17. Towards combined electrochemistry and surface-enhanced resonance Raman of heme proteins: Improvement of diffusion electrochemistry of cytochrome c at silver electrodes chemically modified with 4-mercaptopyridine.

    Science.gov (United States)

    Millo, Diego; Ranieri, Antonio; Koot, Wynanda; Gooijer, Cees; van der Zwan, Gert

    2006-08-01

    To date, a successful combination of surface-enhanced resonance Raman spectroscopy (SERRS) and electrochemistry to study heme proteins is inhibited by the problems raised by the prerequisite to use silver as electrode metal. This paper indicates an approach to overcome these problems. It describes a quick and reproducible procedure to prepare silver electrodes chemically modified with 4-mercaptopyridine suitable to perform diffusion electrochemistry of cytochrome c (cyt c). The method involves the employment of a mechanical and a chemical treatment and avoids the use of alumina slurries and any electrochemical pretreatment. Cyclic voltammetry (CV) was used to test the electrochemical response of cyt c, and the CV signals were found identical with those obtained on gold electrodes under the same experimental conditions. Compared to previous literature, a significant improvement of the CV signal of cyt c at silver electrodes was achieved. Preliminary results show that this treatment can be also successfully employed for the preparation of SERRS-active electrodes.

  18. Advance in researches on chemically modified starch used in food%变性淀粉在食品中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    张静静; 梁艳; 宫丽华; 崔波

    2014-01-01

    Starch has become a kind of important industrial raw material as renewable natural resources . Because many inherent qualities of the original starch( infusibility in cold water,instability of paste liquid in acid,heat and shearing action)limit its industrial application.So people developed modified technology according to the starch structure and physical and chemical properties ,named modified starch .With many good properties of the modified starch ,its application in food industry is becoming more and more widely at home and abroad.This paper introduces preparation methods of modified starch,domain,and prospects the development of modified starch.%淀粉作为一种可再生的天然资源,已成为重要的工业原料。由于原淀粉的许多固有性质(冷水不溶性,糊液在酸、热、剪切作用下不稳定)限定了淀粉的工业应用,人们根据淀粉的结构和理化性质开发了淀粉的变性技术,即变性淀粉。随着变性淀粉诸多优良性质的显现,其在国内外食品行业的应用也越来越广泛。本文介绍了变性淀粉的制备方法及应用领域,并对变性淀粉的发展做了展望。

  19. Development of a virus concentration method using lanthanum-based chemical flocculation coupled with modified membrane filtration procedures.

    Science.gov (United States)

    Zhang, Yanyan; Riley, Lela K; Lin, Mengshi; Purdy, Gregory A; Hu, Zhiqiang

    2013-06-01

    Direct membrane filtration is often used to concentrate viruses in water but it may suffer from severe membrane fouling and clogging. Here, a lanthanum-based flocculation method coupled with modified membrane filtration procedures was developed and evaluated to detect viruses in large volume (40 L) water samples. The lanthanum-based flocculation method could easily reduce the water sample volume by a factor of 40. Additional volume reduction was achieved by a two-step membrane filtration approach. First, selected membrane filters (including 1MDS electropositive filters and nitrocellulose electronegative filters-Millipore HATF filters) were used to reduce water sample volume further and compare their efficiencies in virus recovery. The Mg²⁺-modified HATF membrane performed better on MS2 retention with an average virus recovery of 83.4% (±4.5% [standard deviation]). After HATF membrane filtration and elution, centrifugal ultrafiltration through a 30 kDa cut-off membrane resulted in an overall concentration factor of 20,000. Results from the infectivity assay showed that the MS2 recovery efficiencies from the NanoCeram- and 1MDS-based direct filtration and the lanthanum-based concentration coupled with the modified filtration procedure were 10.1% (±1.0%), 3.3% (±0.1%), and 17.5% (±1.1%), respectively. Results from the PCR analysis showed that the virus recoveries of the lanthanum-based method were 20.6% (±2.9%) and 19.5% (±3.4%) for MS2 and adenovirus, respectively, while no adenovirus could be detected through the NanoCeram- and 1MDS-based direct filtration. The lanthanum-based concentration method coupled with modified membrane filtration procedures is therefore a promising method for detecting waterborne viruses.

  20. Characterization of 3D-DDTC detectors on p-type substrates

    CERN Document Server

    Betta, G -F Dalla; Bosisio, Luciano; Darbo, Giovanni; Gabos, Paolo; Gemme, Claudia; Koehler, Michael; La Rosa, Alessandro; Parzefall, Ulrich; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Rachevskaia, Irina; Ronchin, Sabina; Wiik, Liv; Zoboli, Aanrea; Zorzi, Nicola

    2009-01-01

    We report on the electrical and functional characterization of 3D Double-side, Double-Type-Column (3D- DDTC) detectors fabricated on p-type substrates. Results relevant to detectors in the diode, strip and pixel configurations are presented, and demonstrate a clear improvement in the charge collection performance compared to the first prototypes of these detectors.

  1. Origin and evolution of metal p-Type ATPases in Plantae (Archaeplastida

    Directory of Open Access Journals (Sweden)

    Marc eHanikenne

    2014-01-01

    Full Text Available Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium and possibly copper and calcium. So far, few efforts have been devoted to elucidating the origin and evolution of these proteins in Eukaryotes. In this work, we use large-scale phylogenetics to show that metal P-type ATPases form a homogenous group among P-type ATPases and that their specialisation into either monovalent (Cu or divalent (Zn, Cd… metal transport stems from a gene duplication that took place early in the evolution of Life. Then, we demonstrate that the four subgroups of plant metal ATPases all have a different evolutionary origin and a specific taxonomic distribution, only one tracing back to the cyanobacterial progenitor of the chloroplast. Finally, we examine the subsequent evolution of these proteins in green plants and conclude that the genes thoroughly characterised in model organisms are often the result of lineage-specific gene duplications, which calls for caution when attempting to infer function from sequence similarity alone in non-model organisms.

  2. Synthesis of p-type and n-type nickel ferrites and associated electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Šutka, Andris, E-mail: andris.sutka@rtu.lv [Faculty of Material Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, Riga, LV-1048 (Latvia); Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Pärna, Rainer [Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Estonian Nanotechnology Competence Centre, Ravila 14c, 50411, 51014 Tartu (Estonia); Käämbre, Tanel [Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Kisand, Vambola [Institute of Physics, University of Tartu, Ravila 14c, 50411, 51014 Tartu (Estonia); Estonian Nanotechnology Competence Centre, Ravila 14c, 50411, 51014 Tartu (Estonia)

    2015-01-01

    We used sol–gel auto combustion to synthesize nickel ferrites of p-type and n-type conductivity by controlling the relative amounts of nickel and iron during synthesis. The obtained samples have been characterized by XRD, FE-SEM, electrical measurements and XPS. We observe huge differences in the effect of grain size on the electrical resistivity between the p-type and the n-type material when the grain size increases from nano to micro scale during annealing at temperatures from 900 {sup o}C to 1300 {sup o}C. The observed resistivity decrease (due to grain size) is four orders of magnitude in the n-type nickel ferrite, whereas the p-type material remains virtually unaffected. We rationalize this drastic difference to stem from a reverse contrast of the surface (grain shell) versus bulk (grain core) conductivity between p- and n-type ferrite. With the grain shells in p-type the easier charge carrier path the effect of scatter at grain boundaries is accordingly diminished, whereas in the n-type charge transport properties are controlled by (the number of) grain boundaries in a conduction path.

  3. Realization of Ag-S codoped p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tian Ning, E-mail: xtn9886@zju.edu.cn [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Xiang; Lu, Zhong [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Chen, Yong Yue [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Sui, Cheng Hua [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Wu, Hui Zhen [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-10-15

    Highlights: • Ag-S codoped p-type ZnO thin films have been fabricated. • The films exhibit low resistivity and high Hall mobility and hole concentration. • A ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction has been fabricated and shows rectifying behaviors. - Abstract: Ag-S codoped ZnO films have been grown on quartz substrates by e-beam evaporation at low temperature (100 °C). The effects of Ag{sub 2}S content on the structural and electrical properties of the films were investigated. The results showed that 2 wt% Ag{sub 2}S doped films exhibited p-type conduction, with a resistivity of 0.0347 Ω cm, a Hall mobility of 9.53 cm{sup 2} V{sup −1} s{sup −1}, and a hole concentration of 1.89 × 10{sup 19} cm{sup −3} at room temperature. The X-ray photoelectron spectroscopy measurements showed that Ag and S have been incorporated into the films. To further confirm the p-type conduction of Ag-S codoped ZnO films, a ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction was fabricated and rectifying behaviors of which was measured. High electrical performance and low growth temperature indicate that Ag{sub 2}S is a promising dopant to fabricate p-type Ag-S codoped ZnO films.

  4. A structural and functional perspective of DyP-type peroxidase family.

    Science.gov (United States)

    Yoshida, Toru; Sugano, Yasushi

    2015-05-15

    Dye-decolorizing peroxidase from the basidiomycete Bjerkandera adusta Dec 1 (DyP) is a heme peroxidase. This name reflects its ability to degrade several anthraquinone dyes. The substrate specificity, the amino acid sequence, and the tertiary structure of DyP are different from those of the other heme peroxidase (super)families. Therefore, many proteins showing the similar amino acid sequences to that of DyP are called DyP-type peroxidase which is a new family of heme peroxidase identified in 2007. In fact, all structures of this family show a similar structure fold. However, this family includes many proteins whose amino acid sequence identity to DyP is lower than 15% and/or whose catalytic efficiency (kcat/Km) is a few orders of magnitude less than that of DyP. A protein showing an activity different from peroxidase activity (dechelatase activity) has been also reported. In addition, the precise physiological roles of DyP-type peroxidases are unknown. These facts raise a question of whether calling this family DyP-type peroxidase is suitable. Here, we review the differences and similarities of structure and function among this family and propose the reasonable new classification of DyP-type peroxidase family, that is, class P, I and V. In this contribution, we discuss the adequacy of this family name.

  5. Effects of a Modified Through-Mask Drinking System (MDS) on Fluid Intake During Exercise in Chemical Protective Gear

    Science.gov (United States)

    1989-10-12

    in chemical protective gear. METHODS Test Subiects: Eighteen (18) unacclimated male volunteers were recruited from the military population at USARIEM...hydration status, a pretest urine sample was analyzed for specific gravity ( refractometry ) and no significant difference was observed between the two

  6. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    Science.gov (United States)

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  7. Use of sodium tungstate as a permanent chemical modifier for slurry sampling electrothermal atomic absorption spectrometric determination of indium in soils

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Rivas, Ricardo E.; Hernandez-Cordoba, Manuel [University of Murcia, Department of Analytical Chemistry, Faculty of Chemistry, Murcia (Spain)

    2008-06-15

    A number of chemical modifiers have been assessed for the direct determination of indium in soils using electrothermal atomic absorption spectrometry and slurry sampling. The best results were obtained when the graphite atomizer was impregnated with sodium tungstate, which acts as a permanent chemical modifier. Slurries were prepared by suspending 100 mg sample in a solution containing 1% (v/v) concentrated nitric acid and 10% (v/v) concentrated hydrofluoric acid and then 15-{mu}L aliquots were directly introduced into the atomizer. Standard indium solutions prepared in the suspension medium in the range 4-80 {mu}g L{sup -1} indium were used for calibration. The relative standard deviation for ten consecutive measurements of a 40 {mu}g L{sup -1} indium solution was 2.8%. The limit of detection in soils was 0.1 {mu}g g{sup -1}. The reliability of the procedures was confirmed by analysing two standard reference materials and by using an alternative procedure. (orig.)

  8. Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Panice, Lucimara B.; Oliveira, Elisangela A. de; Filho, Ricardo A.D. Molin; Oliveira, Daniela P. de [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Lazarin, Angélica M., E-mail: amlazarin2@uem.br [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Andreotti, Elza I.S.; Sernaglia, Rosana L. [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Gushikem, Yoshitaka [Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas, São Paulo (Brazil)

    2014-10-15

    Highlights: • The cyano-bridged mixed valence ruthenium composite material was synthesized. • This newly synthesized compound was incorporated into a carbon paste electrode. • The electrode did not show significant changes in response after six months of use. • The modified electrode is very stable and reproducible. • The electrode sensor was successfully applied for ascorbic acid determination. - Abstract: The chemically modified silica gel with zirconium(IV) oxide was used to immobilize the [Fe(CN){sub 6}]{sup 4−} complex ion initially. The reaction of this material with [Ru(edta)H{sub 2}O]{sup −} complex ion formed the immobilized cyano-bridged mixed valence ruthenium complex, (≡Zr){sub 5}[(edta)RuNCFe(CN){sub 5}]. This material was incorporated into a carbon paste electrode and, its electrochemical properties were investigated. However, for an ascorbic acid solution, an enhancement of the anodic peak current was detected due to electrocatalytic oxidation. The electrode presented the same response for at least 150 successive measurements, with a good repeatability. The modified electrode is very stable and reproducible. The sensor was applied for ascorbic acid determination in pharmaceutical preparation with success.

  9. Application of chemical modified starch in adhesives%经化学改性后淀粉在胶粘剂中的应用

    Institute of Scientific and Technical Information of China (English)

    姜青松; 黄庆东; 李广源; 韦志福; 李军生; 胡孝勇

    2015-01-01

    The starch adhesives is a kind of environment friendly and renewable biomass products, which have broad application prospects. Starch has the disadvantages of low bond strength, poor water resistance, slow drying rate, etc,. and needs to be modified. In this paper, using the oxidation, esterification, crosslinking and grafting as the chemical methods to modify starch, the applications of the modified starch in adhesives and their development trend were reviewed.%淀粉胶粘剂是一种环保型、可再生型生物质产品,具有广阔应用前景。淀粉具有粘接强度低、耐水性差、干燥速度慢等缺点,需对其进行化学改性。本文综述了淀粉经氧化、酯化、交联化、接枝化等化学手段改性后在胶粘剂中的应用以及发展趋势。

  10. Electrochemical behavior of folic acid at calixarene based chemically modified electrodes and its determination by adsorptive stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Vishwanath D. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Srivastava, Ashwini K. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India)], E-mail: aksrivastava@chem.mu.ac.in

    2007-12-31

    Voltammetric behavior of folic acid at plain carbon paste electrode and electrode modified with calixarenes has been studied. Two peaks for irreversible oxidation were observed. Out of the three calixarenes chosen for modification of the electrodes, p-tert-butyl-calix[6]arene modified electrode (CME-6) was found to have better sensitivity for folic acid. Chronocoulometric and differential pulse voltammetric studies reveal that folic acid can assemble at CME-6 to form a monolayer whose electron transfer rate is 0.00273 s{sup -1} with 2-electron/2-proton transfer for the peak at +0.71 V against SCE. An adsorption equilibrium constant of 5 x 10{sup 3} l/mol for maximum surface coverage of 2.89 x 10{sup -10} mol/cm{sup 2} was obtained. The current is found to be rectilinear with concentration by differential pulse voltammetry. However, linearity in the lower range of concentration 8.79 x 10{sup -12} M to 1.93 x 10{sup -9} M with correlation coefficient of 0.9920 was achieved by adsorptive stripping voltammetry. The limit of detection obtained was found to be 1.24 x 10{sup -12} M. This method was used for the determination of folic acid in a variety of samples, viz. serum, asparagus, spinach, oranges and multivitamin preparations.

  11. Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies.

    Science.gov (United States)

    Hermsen, Sanne A B; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Piersma, Aldert H

    2011-04-01

    The zebrafish embryotoxicity test (ZET) is a fast and simple method to study chemical toxicity after exposure of the complete vertebrate embryo during embryogenesis in ovo. We developed a novel quantitative evaluation method to assess the development of the zebrafish embryo based on specific endpoints in time, the general morphology score (GMS) system. For teratogenic effects a separate scoring list was developed. The relative effects of eight glycol ethers and six 1,2,4-triazole anti-fungals were evaluated in this system and results were compared with in vivo developmental toxicity potencies. Methoxyacetic acid and ethoxyacetic acid appeared as the most potent glycol ether metabolites, inducing growth retardation and malformations. Other glycol ethers showed no developmental toxicity. Flusilazole appeared the most potent triazole, followed by hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole, respectively. In general, the potency ranking of the compounds within their class in the ZET was comparable to their in vivo ranking. In conclusion, the ZET with the GMS system appears an efficient and useful test system for screening embryotoxic properties of chemicals within the classes of compounds tested. This alternative test method may also be useful for the detection of embryotoxic properties of other classes of chemicals.

  12. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    Energy Technology Data Exchange (ETDEWEB)

    He Ying, E-mail: yinghe@staff.shu.edu.c [Shanghai University, Department of Polymer Materials, School of Materials Science and Engineering (China); Wang Junan [Shanghai University, Institute of Materials, School of Materials Science and Engineering (China); Pei Changlong; Song Jizhong; Zhu Di; Chen Jie [Shanghai University, Department of Polymer Materials, School of Materials Science and Engineering (China)

    2010-10-15

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  13. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    Science.gov (United States)

    He, Ying; Wang, Jun-An; Pei, Chang-Long; Song, Ji-Zhong; Zhu, Di; Chen, Jie

    2010-10-01

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  14. Chemically modified polymeric resins for solid-phase extraction and group separation prior to analysis by liquid or gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, L.W.

    1993-07-01

    Polystyrene divinylbenzene was modified by acetyl, sulfonic acid, and quaternary ammonium groups. A resin functionalized with an acetyl group was impregnated in a PTFE membrane and used to extract and concentrate phenolic compounds from aqueous samples. The acetyl group created a surface easily wetted, making it an efficient adsorbent for polar compounds in water. The membrane stabilized the resin bed. Partially sulfonated high surface area resins are used to extract and group separate an aqueous mixture of neutral and basic organics; the bases are adsorbed electrostatically to the sulfonic acid groups, while the neutraons are adsorbed hydrophobically. A two-step elution is then used to separate the two fractions. A partially functionalized anion exchange resin is used to separate organic acids and phenols from neutrals in a similar way. Carboxylic acids are analyzed by HPLC and phenols by GC.

  15. Directly coupled high-performance liquid chromatography-accelerator mass spectrometry measurement of chemically modified protein and peptides.

    Science.gov (United States)

    Thomas, Avi T; Stewart, Benjamin J; Ognibene, Ted J; Turteltaub, Kenneth W; Bench, Graham

    2013-04-02

    Quantitation of low-abundance protein modifications involves significant analytical challenges, especially in biologically important applications, such as studying the role of post-translational modifications in biology and measurement of the effects of reactive drug metabolites. (14)C labeling combined with accelerator mass spectrometry (AMS) provides exquisite sensitivity for such experiments. Here, we demonstrate real-time (14)C quantitation of high-performance liquid chromatography (HPLC) separations by liquid sample accelerator mass spectrometry (LS-AMS). By enabling direct HPLC-AMS coupling, LS-AMS overcomes several major limitations of conventional HPLC-AMS, where individual HPLC fractions must be collected and converted to graphite before measurement. To demonstrate LS-AMS and compare the new technology to traditional solid sample AMS (SS-AMS), reduced and native bovine serum albumin (BSA) was modified by (14)C-iodoacetamide, with and without glutathione present, producing adducts on the order of 1 modification in every 10(6) to 10(8) proteins. (14)C incorporated into modified BSA was measured by solid carbon AMS and LS-AMS. BSA peptides were generated by tryptic digestion. Analysis of HPLC-separated peptides was performed in parallel by LS-AMS, fraction collection combined with SS-AMS, and (for peptide identification) electrospray ionization and tandem mass spectrometry (ESI-MS/MS). LS-AMS enabled (14)C quantitation from ng sample sizes and was 100 times more sensitive to (14)C incorporated in HPLC-separated peptides than SS-AMS, resulting in a lower limit of quantitation of 50 zmol (14)C/peak. Additionally, LS-AMS turnaround times were minutes instead of days, and HPLC trace analyses required 1/6th the AMS instrument time required for analysis of graphite fractions by SS-AMS.

  16. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Preparation and Photovoltaic Properties of p-Type Nano-ZnFe2O4

    Institute of Scientific and Technical Information of China (English)

    LI Zi-heng; ZOU Xu; LI Gen; ZOU Guang-tian

    2012-01-01

    p-Type nano-ZnFe2O4 semiconductors were gained by high-prssure treatment.Surface photovoltaic spectrum(SPS) and transient photovoltaic technology(TPV) were used for studying the photogenerated charge of nano-ZnFe2O4.Results show that the photovoltaic behavior of nano-ZnFe2O4 changed as the processing pressure increased.When the processing pressure was higher than 2 GPa,both SPS response interval and peak changed significantly.XPS results show that the non-lattice oxygen entered into the lattice and the content of lattice oxygen increased with the increase of processing pressure.The material changed from oxygen vacancy type to oxygen excess type and the photoelectric properties changed from n-type to p-type when the processing pressure is higher than 2GPa.

  18. A Density Functional Theory Study of Doped Tin Monoxide as a Transparent p-type Semiconductor

    KAUST Repository

    Bianchi Granato, Danilo

    2012-05-01

    In the pursuit of enhancing the electronic properties of transparent p-type semiconductors, this work uses density functional theory to study the effects of doping tin monoxide with nitrogen, antimony, yttrium and lanthanum. An overview of the theoretical concepts and a detailed description of the methods employed are given, including a discussion about the correction scheme for charged defects proposed by Freysoldt and others [Freysoldt 2009]. Analysis of the formation energies of the defects points out that nitrogen substitutes an oxygen atom and does not provide charge carriers. On the other hand, antimony, yttrium, and lanthanum substitute a tin atom and donate n-type carriers. Study of the band structure and density of states indicates that yttrium and lanthanum improves the hole mobility. Present results are in good agreement with available experimental works and help to improve the understanding on how to engineer transparent p-type materials with higher hole mobilities.

  19. Measurement of the dead layer thickness in a p-type point contact germanium detector

    Science.gov (United States)

    Jiang, Hao; Yue, Qian; Li, Yu-Lan; Kang, Ke-Jun; Li, Yuan-Jing; Li, Jin; Lin, Shin-Ted; Liu, Shu-Kui; Ma, Hao; Ma, Jing-Lu; Su, Jian; Tsz-King Wong, Henry; Yang, Li-Tao; Zhao, Wei; Zeng, Zhi

    2016-09-01

    A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated 133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results. Supported by National Natural Science Foundation of China (10935005, 10945002, 11275107, 11175099)

  20. Infrared absorption and visible transparency in heavily doped p-type BaSnO3

    Science.gov (United States)

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    2017-01-01

    The recent experimental work shows that perovskite BaSnO3 can be heavily doped by K to become a stable p-type semiconductor. Here, we find that p-type perovskite BaSnO3 retains transparency for visible light while absorbing strongly in the infrared below 1.5 eV. The origin of the remarkable optical transparency even with heavy doping is that the interband transitions that are enabled by empty states at the top of the valence band are concentrated mainly in the energy range from 0.5 to 1.5 eV, i.e., not extending past the near IR. In contrast to n-type, the Burstein-Moss shift is slightly negative, but very small reflecting the heavier valence bands relative to the conduction bands.

  1. Comment on 'Electronic Properties of Red P-Type T12S5 Single Crystals'

    Institute of Scientific and Technical Information of China (English)

    M. Cankurtaran; H. (C)elik

    2007-01-01

    Recently, Gamal et al. [Chin. Phys. Lett. 22 (2005) 1530] reported the results of electrical conductivity, Hall effect and thermoelectric measurements on p-type Th2S5 single crystals. From the experimental data for the temperature dependence of differential thermoelectric power, Gamal et al. determined the values of 2.66 × 10-41 kg and 2.50 × 10-41 kg, respectively, for the effective masses of electrons and holes in p-type Tl2S5, which are about ten orders of magnitude smaller than the free electron mass (9.11 × 10-31 kg). We argue that the anomalously small values obtained for the effective mass of charge carriers in Tl2S5 have no physical significance.

  2. An integrated driving circuit implemented with p-type LTPS TFTs for AMOLED

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-qing; WU Chun-ya; HAO Da-shou; YAO Ying; MENG Zhi-guo; XIONG Shao-zhen

    2009-01-01

    Based on the technology of low temperature poly silicon thin film transistors (poly-Si-TFTs), a novel p-type TFT AMOLED panel with self-scanned driving circuit is introduced in this paper. A shift register formed with novel p-type TFTs is pro-posed to realize the gate driver. A flip-latch cooperated with the shift register is designed to conduct the data writing. In order to verify the validity of the proposed design, the circuits are simulated with SILVACO TCAD tools, using the MODEL in which the parameters of LTPS TFTs were extracted from the LTPS TFTs made in our lab. The simulation results indicate that the circuit can fulfill the driving function.

  3. Perspectives of High-Temperature Thermoelectric Applications and p-type and n-type Aluminoborides

    Science.gov (United States)

    Mori, T.

    2016-10-01

    A need exists to develop high-temperature thermoelectric materials which can utilize high-temperature unutilized/waste heat in thermal power plants, steelworks, factories, incinerators, etc., and also focused solar power. The thermal power plant topping application is of potential high impact since it can sizably increase the efficiency of power plants which are the major supply of electrical power for many countries. Higher borides are possible candidates for their particular high-temperature stability, generally large Seebeck coefficients, α, and intrinsic low thermal conductivity. Excellent (|α| > 200 μV/K) p-type or n-type behavior was recently achieved in the aluminoboride YAl x B14 by varying the occupancy of Al sites, x. Finding p-type and n-type counterparts has long been a difficulty of thermoelectric research not limited to borides. This paper reviews possible high-temperature thermoelectric applications, and recent developments and perspectives of thermoelectric aluminoborides.

  4. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  5. Sensitization of p-type NiO using n-type conducting polymers

    NARCIS (Netherlands)

    Chavhan, S.D.; Abellon, R.D.; Breemen, A.J.J.M. van; Koetse, M.M.; Sweelssen, J.; Savenije, T.J.

    2010-01-01

    We report on the sensitization of a p-type inorganic semiconductor, NiO, by n-type conjugated polymers. NiO thin films were deposited using RF sputtering in pure Ar (NiO A) or in Ar + O2 (90% + 10%) (NiO B). XPS and Kelvin probe measurements indicate the incorporation of oxygen in NiO B l

  6. Kinetics of self-interstitials reactions in p-type silicon irradiated with alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarenko, L.F., E-mail: makarenko@bsu.by [Department of Applied Mathematics and Computer Science, Belarusian State University, Independence Ave. 4, 220030 Minsk (Belarus); Moll, M. [CERN, Geneva (Switzerland); Evans-Freeman, J.H. [University of Canterbury, Christchurch (New Zealand); Lastovski, S.B.; Murin, L.I.; Korshunov, F.P. [Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk (Belarus)

    2012-08-01

    New findings on the self-interstitial migration in p-type silicon are presented. They are based on experimental studies of the formation kinetics of defects related to interstitial carbon after irradiation with alpha particles. The main parameters characterizing the interaction rate of silicon self-interstitials with substitutional carbon atoms have been determined. A preliminary interpretation of the experimental data is given. The interpretation takes into account different diffusivities of self-interstitials in their singly and doubly ionized states.

  7. Investigation of negative photoconductivity in p-type Pb1-xSnxTe film

    Science.gov (United States)

    Tavares, M. A. B.; da Silva, M. J.; Peres, M. L.; de Castro, S.; Soares, D. A. W.; Okazaki, A. K.; Fornari, C. I.; Rappl, P. H. O.; Abramof, E.

    2017-01-01

    We investigated the negative photoconductivity (NPC) effect that was observed in a p-type Pb1-xSnxTe film for temperatures varying from 300 K down to 85 K. We found that this effect is a consequence of defect states located in the bandgap which act as trapping levels, changing the relation between generation and recombination rates. Theoretical calculations predict contributions to the NPC from both conduction and valence bands, which are in accordance with the experimental observations.

  8. Application of Nation/Cobalt Hexacyanoferrate Chemically Modified Electrodes for the Determination of Electroinactive Cations by Ion Chromatography

    Institute of Scientific and Technical Information of China (English)

    XU,Ji-Ming(徐继明); XIAN,Yue-Zhong(鲜跃仲); SHI,Guo-Yue(施国跃); LI,Jin-Hua(李金花); JIN Li-Tong(金利通)

    2002-01-01

    An amperometric detector based on the chemical modification of Nafion and cobalt(H) hexacyanoferrate(Ⅱ, Ⅲ) thin film (Nafion/Co-CN-Fe) onto a glassy carbon (GC) electrode was firslly developed for the determination of electroinactive cations (Li+, Na+, K+, Rb+, Cs+ and NH4+) in single column ion chromatography. A set of well-defined peaks of electroinactive cation was obtained. The relative standard deviations (RSDs)of - peak height (nA) for these cations were all below 3.8%. The cations were detected conveniently in the linear concentration range of 6.0× 10-6-5.0 × 10-3 mol/L and their correlation coefficients were all above 0.99. Tne detection limiits of the cations were 9.2 × 10- 6 mol/L for Li + , 3.4 ×10-6 mol/L for Na+ , 6.3 × 10-7 mol/L for K+ , 7.8 × 10-7 mol/L for Rb+ , 6.2 × 10-7 mol/L for Cs+ and 6.2 × 10-6 mol/L for NH4+ , at a signal-noise ratio of 3. The method was quick, sensitive, simple and was successfully applied to the analysis of rainwater samples. The electrode was stable for a 2 week period of operation with no evidence of chemical or mechanical deterioration.

  9. p-Type Quasi-Mono Silicon Solar Cell Fabricated by Ion Implantation

    Directory of Open Access Journals (Sweden)

    Chien-Ming Lee

    2013-01-01

    Full Text Available The p-type quasi-mono wafer is a novel type of silicon material that is processed using a seed directional solidification technique. This material is a promising alternative to traditional high-cost Czochralski (CZ and float-zone (FZ material. Here, we evaluate the application of an advanced solar cell process featuring a novel method of ion implantation on p-type quasi-mono silicon wafer. The ion implantation process has simplified the normal industrial process flow by eliminating two process steps: the removal of phosphosilicate glass (PSG and the junction isolation process that is required after the conventional thermal POCl3 diffusion process. Moreover, the good passivation performance of the ion implantation process improves Voc. Our results show that, after metallization and cofiring, an average cell efficiency of 18.55% can be achieved using 156 × 156 mm p-type quasi-mono silicon wafer. Furthermore, the absolute cell efficiency obtained using this method is 0.47% higher than that for the traditional POCl3 diffusion process.

  10. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life.

    Science.gov (United States)

    Dao, Trong Tuan; Sehgal, Pankaj; Tung, Truong Thanh; Møller, Jesper Vuust; Nielsen, John; Palmgren, Michael; Christensen, Søren Brøgger; Fuglsang, Anja Thoe

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material.

  11. P-type electronic and thermal transport properties of Mg2Sn1-xSix

    Science.gov (United States)

    Kim, Sunphil; Wiendlocha, Bartlomiej; Heremans, Joseph P.

    2013-03-01

    P-type Mg2Sn doped with various acceptors(1)(2) has been studied as a potential thermoelectric material. Because of its narrow band gap and high lattice thermal conductivity, the zT values of the binary compound are limited: zTmax reported is 0.3(3). In this work, we synthesize and characterize p-type-doped Mg2Sn1-xSix with various acceptors. Silicon is added in order to widen the band gap and scatter the phonons. The conduction band degeneracy that yields excellent zT in n-type material in the Mg2Sn1-xSix alloy system unfortunately does not apply to p-type material. Thermomagnetic and galvanomagnetic properties (electrical resistivity, Seebeck, Hall, and Nernst coefficients) are measured, along with thermal conductivity and band gap measurements. Finally, zT values are reported. (1) H. Y. Chen et al. Journal of Electronic Materials, Vol. 38, No. 7, 2009 (2) S. Choi et al. Journal of Electronic Materials, Vol. 41, No. 6, 2012 (3) H. Y. Chen et al. Phys. Status Solidi A 207, No. 11, 2523-2531 (2010) The work is supported by the joint NSF/DOE program on thermoelectrics, NSF-CBET-1048622

  12. Effective p-type N-doped WS{sub 2} monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xu, E-mail: zhaoxu@htu.cn; Xia, Congxin; Wang, Tianxing; Peng, Yuting; Dai, Xianqi

    2015-11-15

    Based on density functional theory, the characteristics of n- and p-type dopants are investigated by means of group V and VII atoms substituting sulfur in the WS{sub 2} monolayer. Numerical results show that for each doping case, the formation energy is lower under W-rich condition, which indicates that it is energy favorable to incorporate group V and VII atoms into WS{sub 2} under W-rich experimental conditions. Moreover, compared with other dopant cases, N-doped WS{sub 2} monolayer owns the lowest formation energy. In particular, the transition level of (−1/0) is only 75 meV in the N-doped case, which indicates that N impurities can offer effective p-type carriers in the WS{sub 2} monolayer. - Highlights: • The formation energy is lower under W-rich conditions. • N-doped system owns the lowest formation energy compared with other atoms. • The transition level of N-doping in WS{sub 2} is 75 meV. • N impurities can offer effective p-type carriers in the WS{sub 2}.

  13. Electronic inhomogeneity in n- and p-type PbTe detected by 125Te NMR

    Science.gov (United States)

    Levin, E. M.; Heremans, J. P.; Kanatzidis, M. G.; Schmidt-Rohr, K.

    2013-09-01

    125Te nuclear magnetic resonance spectra and spin-lattice relaxation of n- and p-type PbTe, self-doping narrow band-gap semiconductors, have been studied and compared to those of p-type GeTe. Spin-lattice relaxation in GeTe can be fit by one component, while that in both PbTe samples must be fit by at least two components, showing electronically homogeneous and inhomogeneous materials, respectively. For PbTe-based materials, the spin-lattice relaxation rate 1/T1 increases linearly with carrier concentration. The data for GeTe fall on the same line and allow us to extend this plot to higher concentrations. Long and short T1 components in both PbTe samples reflect “low,” ˜1017 cm-3, and “high,” ˜1018 cm-3, carrier concentration components. Carrier concentrations in both n- and p-type PbTe samples obtained from the Hall and Seebeck effects generally match the “high” carrier concentration component, and to some extent, ignore the “low” one. This demonstrates that the Hall and Seebeck effects may have a limited ability for the determination of carrier concentration in complex thermoelectric PbTe-based and other multicomponent materials.

  14. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    Science.gov (United States)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  15. Fabrication and Characterization of p-Type SnO Thin Film with High c-Axis Preferred Orientation

    Science.gov (United States)

    Pei, Yanli; Liu, Wuguang; Shi, Jingtao; Chen, Zimin; Wang, Gang

    2016-11-01

    p-Type tin monoxide (SnO) thin films with high c-axis preferred orientation have been fabricated on quartz substrate via electron-beam evaporation at 280°C. Subsequently, rapid thermal annealing (RTA) was performed in N2 atmosphere at 400°C to 800°C. Their structural, chemical, optical, and electrical properties were investigated by x-ray diffraction analysis, ultraviolet-visible spectroscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and Hall-effect measurements. The c-axis-oriented films of Sn-rich SnO presented excellent thermal stability up to RTA at 700°C. Both the crystallization and the hole Hall mobility were enhanced with increasing RTA temperature, with Hall mobility of 16 cm2 V-1 s-1 being obtained after RTA at 700°C. It was considered that the presence of defects and low scattering from grain boundaries contributed to this high Hall mobility. RTA annealing temperature above 700°C induced chemical reaction between SnO and the quartz substrate, with a change of the film to amorphous state with Sn4+ formation.

  16. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    Energy Technology Data Exchange (ETDEWEB)

    Razavizadeh, Mahmoud; Jamshidi, Masoud, E-mail: mjamshidi@iust.ac.ir

    2016-08-30

    Highlights: • In this research UV-irradiated PET fabric was chemically modified. • The fabric at first carboxylated under UV irradiation using glutaric anhydride, then it was grafted using isocyanate (i.e. MDI). • The surface of the fabric was characterized before and after each treating satge. • The composite samples were prepared and tested for T-Peel test. The surfaces of the fabrics were surface characterized to understand. - Abstract: Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  17. Long-Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2014-07-31

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Activated carbon (AC) is a low-cost and effective catalyst for oxygen reduction in air cathodes of microbial fuel cells (MFCs), but its performance must be maintained over time. AC was modified by three methods: 1)pyrolysis with iron ethylenediaminetetraacetic acid (AC-Fe), 2)heat treatment (AC-heat), and 3)mixing with carbon black (AC-CB). The maximum power densities after one month with these AC cathodes were 35% higher with AC-Fe (1410±50mW m-2) and AC-heat (1400±20mW m-2), and 16% higher with AC-CB (1210±30mW m-2) than for plain AC (1040±20mW m-2), versus 1270±50mW m-2 for a Pt control. After 16months, the Pt cathodes produced only 250±10mW m-2. However, the AC-heat and AC-CB cathodes still produced 960-970mW m-2, whereas plain AC produced 860±60mW m-2. The performance of the AC cathodes was restored to >85% of the initial maximum power densities by cleaning with a weak acid solution. Based on cost considerations among the AC materials, AC-CB appears to be the best choice for long-term performance.

  18. Chemically modified tetracycline (COL-3) improves survival if given 12 but not 24 hours after cecal ligation and puncture.

    Science.gov (United States)

    Halter, Jeffrey M; Pavone, Lucio A; Steinberg, Jay M; Gatto, Louis A; DiRocco, Joseph; Landas, Steve; Nieman, Gary F

    2006-12-01

    Sepsis can result in excessive and maladaptive inflammation that is responsible for more than 215,00 deaths per year in the United State alone. Current strategies for reducing the morbidity and mortality associated with sepsis rely on treatment of the syndrome rather than prophylaxis. We have been investigating a modified tetracycline, COL-3, which can be given prophylactically to patients at high risk for developing sepsis. Our group has shown that COL-3 is very effect at preventing the sequelae of sepsis if given before or immediately after injury in both rat and porcine sepsis models. In this study, we wanted to determine the "treatment window" for COL-3 after injury at which it remains protective. Sepsis was induced by cecal ligation and puncture (CLP). Rats were anesthetized and placed into five groups: CLP (n = 20) = CLP without COL-3, sham (n = 5) = surgery without CLP or COL-3, COL3@6h (n = 10) = COL-3 given by gavage 6 h after CLP, COL3@12h (n = 10) = COL-3 given by gavage 12 h after CLP, and COL3@24h (n = 20) = COL-3 given by gavage 24 h after CLP. COL-3 that was given at 6 and 12 h after CLP significantly improved survival as compared with the CLP and the CLP@24h groups. Improved survival was associated with a significant improvement in lung pathology assessed morphologically. These data suggest that COL-3 can be given up to 12 h after trauma and remain effective.

  19. Chemical analyses of hydroxyapatite formation on SAM surfaces modified with COOH, NH(2), CH(3), and OH functions.

    Science.gov (United States)

    Hirata, Isao; Akamatsu, Mai; Fujii, Eri; Poolthong, Suchit; Okazaki, Masayuki

    2010-08-01

    Hydroxyapatite formation was examined at the surface of self-assembled monolayers (SAMs) modified with four functional groups, -COOH, -NH(2), -CH(3), and -OH. For COOH-SAM and NH(2)-SAM, scanning electron spectroscopic observation showed that flake-like sheet crystals covered the whole wafer and small broccoli-like crystals were observed occasionally on the flake-like crystal base layer. For CH(3)-SAM and OH-SAM, no flake-like sheet crystals were observed; broccoli-like crystals were observed in a dispersed manner for CH(3)-SAM, but in localized spots for OH-SAM. X-ray diffraction patterns showed a strong apatite pattern oriented toward the c-axis direction for COOH-SAM. ESCA analysis revealed distinct Ca, P, O peaks for COOH-, NH(2)-, CH(3)-, and OH-SAM. Surface plasmon resonance (SPR) analysis indicated that during the supply of supersaturated calcium phosphate solution, the deposition of precipitates increased monotonically with time for COOH-SAM, increased slightly for NH(2)-SAM, but little increase in deposition was detected for CH(3)-SAM and OH-SAM.

  20. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol.

    Science.gov (United States)

    Khan, Shadab Ali; Gambhir, Sanjay; Ahmad, Absar

    2014-01-01

    As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). The Gd2O3-taxol bioconjugate was confirmed by UV-vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC).

  1. Extracellular biosynthesis of gadolinium oxide (Gd2O3 nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    2014-03-01

    Full Text Available As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3 nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoemission spectroscopy (XPS. The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC.

  2. Metal modified graphite. An innovative material for systems converting electro-chemical energy; Metallmodifizierter Graphit. Ein innovativer Werkstoff fuer Systeme zur elektrochemischen Energieumwandlung

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Peter

    2007-07-23

    The work deals with metal modification of graphite electrodes in a water-acid electrolyte solution. The target is to improve the catalytic properties of graphite electrodes as they are applied in redox storage batteries for storing electric energy. Different carbon and graphite materials were used and coated electro-chemically with different metals. After being coated with metal the graphite and carbon electrodes were investigated in terms of changing their catalytic properties by means of impedance measurements. It was shown, a metal coating without a prior activation with electro-chemical oxidation-reduction cycles only results in a low or zero increase of the catalytic properties. Investigations at the electrode material glass carbon showed, a prior activation of the electrode surface by means of electro-chemical oxidation-reduction cycles decreases the penetration resistance. The activation of the glass carbon surface prior to the surface coating with metal is favourable to the electro-chemical properties of the metal-modified electrode. All carbon types, which were used in this work, could be activated at a different level by means of electro-chemical oxidation-reduction cycles depending on the carbon type. The investigations further showed that the edge levels of the carbon were activated by means of the electro-chemical oxidation-reduction cycles. The metal precipitation favourably occurs at the activated positions. (orig.) [German] Die Arbeit befasst sich mit der Metallmodifizierung von Graphitelektroden in waessriger saurer Elektrolytloesung. Ziel ist es die katalytischen Eigenschaften von Graphitelektroden wie sie in Redoxspeicherbatterien zur Speicherung von elektrischer Energie eingesetzt werden zu verbessern. Fuer die Untersuchungen wurden unterschiedliche Kohlenstoff und Graphitmaterialien eingesetzt, die elektrochemisch mit verschiedenen Metallen belegt wurden. Die Graphit- und Kohlenstoffelektroden wurden nach der Metallbelegung durch

  3. Template-free TiO2 photoanodes for dye-sensitized solar cell via modified chemical route.

    Science.gov (United States)

    Gaikwad, M A; Mane, A A; Desai, S P; Moholkar, A V

    2017-02-15

    Surfactant and template-free Titanium dioxide (TiO2) spheres have been deposited via ultrasonic rinsing assisted modified successive ionic layer adsorption and reaction (M-SILAR) method. The effect of M-SILAR cycle variation on the growth of TiO2 films and power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs) has been reported. Also, the significant influence of the dye adsorption time of photoelectrodes on the overall PCE of TiO2 based DSSCs has been investigated systematically. The SEM images reveal that the TiO2 microspheres are made up of densely packed and interconnected nanospheres. After dye loading maximum absorption peak around 500nm is seen with broader coverage in the visible region of the solar spectrum. The excess amount of dye for dye loading time 15h did not contribute to current and is suspected to be present either in multilayers or physisorbed on the surface of TiO2. The DSSC prepared using photoelectrode TO125 and dye loading time of 12h exhibited the highest power conversion efficiency (PCE) of 1.16% with short-circuit current density (Jsc) of 8.17mA/cm(2), open circuit voltage (Voc) of 0.42V and fill factor of 0.34. The PCE is attributed to the large molecular interconnected TiO2 spheres diffusing visible light to enhance the light absorption. Also, it possesses relatively superior 3-D microsphere like structure and thus provides the effective pathway to the photogenerated electrons with low recombination rate, leading to attaining the high PCE.

  4. Determination of Atropine Sulfate in Human Urines by Capillary Electrophoresis Using Chemical Modified Electrode as Electrochemiluminescence Sensor

    Directory of Open Access Journals (Sweden)

    Min Zhou

    2011-01-01

    Full Text Available A Ru(bpy3 2+-based electrochemiluminescence (ECL detection coupled with capillary electrophoresis (CE was developed for the determination of atropine sulfate on the basis of an Eu-PB modified platinum electrode as the working electrode. The analyte was injected to separation capillary of 50 cm length (25 μm i.d., 360 μm o.d. by electrokinetic injection for 10 s at 10 kV. Parameters related to the separation and detection were discussed and optimized. It was proved that 10 mM phosphate buffer at pH 8.0 could achieve the most favorable resolution, and the high sensitivity of detection was obtained by using the detection potential at 1.15 V and 5 mM Ru(bpy3 2+ in 80 mM phosphate buffer at pH 8.0 in the detection reservoir. Under the optimized conditions, the ECL peak area was in proportion to atropine sulfate concentration in the range from 0.08 to 20 μg⋅mL−1 with a detection limit of 50 ng⋅mL−1 (3σ. The relative standard derivations of migration time and peak area were 0.81 and 3.19%, respectively. The developed method was successfully applied to determine the levels of atropine sulfate in urine samples of patients with recoveries between 90.9 and 98.6%.

  5. Modified growth of Ge quantum dots using C{sub 2}H{sub 4} mediation by ultra-high vacuum chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.W. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China)], E-mail: swlee@ncu.edu.tw; Chen, P.S. [Department of Materials Science and Engineering, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan (China); Cheng, S.L. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Department of Chemical and Materials Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Lee, M.H. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Chang, H.T. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Lee, C.-H.; Liu, C.W. [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2008-07-30

    C{sub 2}H{sub 4} mediations were used to modify the Stranski-Krastanow growth mode of Ge dots on Si(0 0 1) at 550 deg. C by ultra-high vacuum chemical vapor deposition. With appropriate C{sub 2}H{sub 4}-mediation to modify the Si surface, the elongated Ge hut clusters can be transformed to highly uniform Ge domes with a high Ge composition at the core. These C{sub 2}H{sub 4}-mediated Ge dots, almost bounded by {l_brace}1 1 3{r_brace} facets, have an average diameter and height of 55 and 9 nm, respectively. We propose two major mechanisms to depict the formation of these C{sub 2}H{sub 4}-mediated Ge dots: (i) an almost hydrogen-passivated Si surface to limit the nucleation sites for dot formation, and (ii) the incorporation of Ge atoms, repelled by the C-rich areas, into the existing Ge dots. This work provides a useful scheme to tune the topography of Ge dots in an UHV/CVD condition for possible optoelectronic applications.

  6. Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides.

    Science.gov (United States)

    Espiritu, Michael J; Cabalteja, Chino C; Sugai, Christopher K; Bingham, Jon-Paul

    2014-01-01

    Bioactive peptides from Conus venom contain a natural abundance of post-translational modifications that affect their chemical diversity, structural stability, and neuroactive properties. These modifications have continually presented hurdles in their identification and characterization. Early endeavors in their analysis relied on classical biochemical techniques that have led to the progressive development and use of novel proteomic-based approaches. The critical importance of these post-translationally modified amino acids and their specific assignment cannot be understated, having impact on their folding, pharmacological selectivity, and potency. Such modifications at an amino acid level may also provide additional insight into the advancement of conopeptide drugs in the quest for precise pharmacological targeting. To achieve this end, a concerted effort between the classical and novel approaches is needed to completely elucidate the role of post-translational modifications in conopeptide structure and dynamics. This paper provides a reflection in the advancements observed in dealing with numerous and multiple post-translationally modified amino acids within conotoxins and conopeptides and provides a summary of the current techniques used in their identification.

  7. Measurement of beta-glucuronidase in effluent of perifused alveolar macrophages challenged with chemically modified chrysotile asbestos.

    Science.gov (United States)

    Forget, G; Lacroix, M J; Calvert, R; Sirois, P

    1984-06-01

    Chrysotile asbestos has been implicated with lung disorders, notably fibrotic lesions and cancer. In vitro, chrysotile fibers are cytotoxic to lung macrophages and stimulate the release of inflammatory mediators. Reports to the effect that chemical modifications of asbestos fibers reduce their cytotoxic and inflammatory potential initiated the present study of three fiber modifications. The cytotoxic and inflammatory effects of magnesium-leached chrysotile, POCL3-treated chrysotile, and CaO-treated chrysotile were studied in a perifused rat alveolar macrophage culture system, relative to untreated fibers. Natural Canadian chrysotile (UICC "B") caused dose-dependent cell mortality and clumping. The release of beta-glucuronidase (beta-Glu), a lysosomal enzyme, was also dose dependent. Rhodesian chrysotile (UICC "A") caused similar cytotoxic and inflammatory effects. However, magnesium-leached chrysotile was less cytotoxic (39% less) and had a lesser clumping capacity (31% less) than untreated chrysotile. Total secretion of beta-Glu elicited by magnesium-leached chrysotile was reduced by 43% from the untreated sample, but kinetic monitoring indicates that this reduction in inflammatory potential is only significant during the first 12 h of an 18-h culture period. POCl3 treatment of chrysotile fibers produced differing effects depending on the length of the fibers under study. Treating fibers with a mean length of 8 micron produced a secretion pattern similar to that produced by acid leaching. The total output for the treated sample was 44% lower than with untreated chrysotile; the difference was only significant during the first 12 h of perifusion. Cell mortality and aggregation were not reduced in any important way with POCl3 treatment of these longer fibers. When ultra-short fibers (mean length = 0.8 micron) were treated with POCl3, the total decrease in beta-Glu output was equal to 41%, and the release of enzyme was significantly lower during the whole 18-h

  8. Coal-smoke pollution modifies physio-chemical characteristics of tissues during the ontogeny of Peristrophe bicalyculata

    Energy Technology Data Exchange (ETDEWEB)

    Nighat, F.; Iqbal, M. [Jamia Hamdard, New Delhi (India). Dept. of Botany

    2008-12-15

    Coal-smoke emissions of a thermal power plant affected the physio-chemical status of Peristrophe bicalyculata (Reth) Nees, as observed at the pre-flowering, flowering and post-flowering stages of plant growth. The nitrate level was raised while nitrate reductase activity, and the soluble protein content of leaf declined heavily at the polluted site during different stages of plant growth, compared to the control. The rate of photosynthesis also decreased under the pollution stress. Sugar level in root, stem and leaves increased with growing age of the plant but was always lower at the polluted site than at the reference site. In roots, the difference was marginal till flowering stage and quite conspicuous afterwards; stems showed a reverse pattern of variation. Sulphur content was higher at the polluted site in all the organs and at each stage of the plant life. The Zn and Fe concentrations were reduced in all plant parts under the pollution stress. Copper content in root was consistently low at the polluted site. In the stem and leaves, however, it was almost equal on both the sites at the pre-flowering stage but showed a wide difference during the later part of plant ontogeny.

  9. Chemically-modified polysaccharide extract derived from Leucaena leucocephala alters Raw 264.7 murine macrophage functions.

    Science.gov (United States)

    Gamal-Eldeen, Amira M; Amer, Hassan; Helmy, Wafaa A; Talaat, Roba M; Ragab, Halla

    2007-06-01

    In this study, a chemical modification of the polysaccharides extract (E) derived from Leucaena leucocephala seeds was performed to prepare C-glycosidic 2-propanol derivative (PE), and its sulphated derivative (SPE). This study aimed to characterize immunomodulatory activities of the original extract and its derivatives by exploring their effects on Raw macrophage 264.7 functions and their antioxidant activity. Our results indicated that PE was an effective radical scavenger to hydroxyl, peroxyl, and superoxide anion radicals, and SPE was a peroxyl radical scavenger. PE and SPE were found to influence the macrophage functions. Both of PE and SPE enhanced the macrophage proliferation and phagocytosis of FITC-zymosan; PE inhibited nitric oxide (NO) generation and tumor necrosis factor-alpha (TNF-alpha) secretion in lipopolysaccharide (LPS)-stimulated Raw macrophage 264.7. In contrast, SPE over-induced NO generation and TNF-alpha secretion. Moreover, PE strongly inhibited the binding affinity of FITC-LPS to Raw 264.7, as indicated by flow cytometry analysis. These findings revealed that PE may act as a potent anti-inflammatory agent; however SPE may act as an inducer of macrophage functions against pathogens.

  10. Selective adsorption of molybdenum(VI) from Mo-Re bearing effluent by chemically modified astringent persimmon.

    Science.gov (United States)

    Xiong, Ying; Wang, Haitao; Lou, Zhenning; Shan, Weijun; Xing, Zhiqiang; Deng, Guichun; Wu, Dongbei; Fang, Dawei; Biswas, Biplob Kumar

    2011-02-28

    Astringent persimmon was chemically cross-linked by formaldehyde to obtain a novel kind of adsorption gel, which was named as APF gel. The adsorption behaviors of Mo(VI) and Re(VII) along with other coexisting metals onto the APF gel were studied in the present paper. The APF gel was found to be effective for the adsorption of Mo(VI) while the gel is almost completely inert toward rhenium and calcium over the whole hydrochloric acid concentration region. The APF gel has a low affinity for iron, copper, lead, nickel, manganese and zinc ions when the concentration of HCl is higher than 1 mol/L. The gel exhibited selectivity only for Mo(VI) with a remarkably high adsorption capacity 1.05 mol/kg, and the adsorption behavior obeys the Langmuir model. According to the thermodynamic and kinetic studies, the endothermic adsorption process followed pseudo-second order kinetics. Also, its excellent adsorption characteristics for Mo(VI) were confirmed by the adsorption and elution tests using a column packed with the APF gel. The result provides a new approach for the recovery of Mo(VI) from a industrial waste effluent.

  11. Photocatalysis-triggered ion rectification in artificial nanochannels based on chemically modified asymmetric TiO2 nanotubes.

    Science.gov (United States)

    Hu, Ziying; Zhang, Qianqian; Gao, Jun; Liu, Zhaoyue; Zhai, Jin; Jiang, Lei

    2013-04-16

    Ion rectification is one of the important characteristics of biological ion channels. Inspired by the function of biological ion channels, creation of artificial nanochannels that show analogous ion rectification characteristics has attracted a great interest recently. Herein, we demonstrate a new type of artificial solid-state nanochannel with ion rectification characteristics. The creation of artificial nanochannels includes the formation of asymmetric TiO2 nanotubes by electrochemical anodization of Ti metal, followed by chemical modification with octadecyltrimethoxysilane (OTS) molecules. The carboxylic groups are introduced onto the tip side of TiO2 nanotubes via photocatalytic decomposition of OTS molecules by TiO2 photocatalysis under ultraviolet light. When the radius of tip side of TiO2 nanotubular channels is comparable to the thickness of electric double layer, the negatively charged surface in neutral electrolyte in combination with the asymmetric pore geometry contributes to the ion rectification characteristics. Compared with previous artificial nanochannels, our new type of artificial nanochannel is more facile to fabricate and behaves as a diode that rectifies the ion transport, which also shows some other potential applications, such as sensor and separation materials.

  12. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH.

    Science.gov (United States)

    Yamasaki, Ryujiroh; Ito, Masateru; Lee, BongKuk; Jung, HoSup; Lee, HeaYeon; Kawai, Tomoji

    2007-11-05

    In an effort toward determining the feasibility of single molecule analysis, we describe a case whereby the binding of one biotinylated DNA to one streptavidin molecule via electrostatic interactions was controlled by altering in pH 4.0-9.0 and 0.16 of the ion strength. The quantitative analysis of immobilized probe ssDNA was realized in real-time via a quartz crystal microbalance (QCM) and electrochemical (EC) measurement in the range 100 pM to 50 microM of probe oligonucleotide concentration. The variation amount of biotinylated ssDNA immobilized on the streptavidin-modified surface at pH 7.5 was about 0.16 pmol, giving a ratio of streptavidin to biotinylated ssDNA of about 1:1.1. On the other hand, at pH 4.9, it was immobilized about 0.29 pmol. From the shape of the Langmuir plot and QCM, the immobilization efficiency of biotinylated DNA via streptavidin at pH 4.9 was approximately twofold that at pH 7.5. In view points of the reaction velocity, it was increased with decreasing buffer solution pH, indicating a strong interaction of negatively charged probe DNA with the positively charged streptavidin. And also the EC response value of deltaI/I(streptavidin) for the immobilized biotinylated ssDNA in pH 4.9 was about 49%, while the corresponding value for the pH 7.5 was approximately 34%. As DNA molecules possess negative charges, electrostatic repulsion occurred between streptavidin and biotinylated ssDNA at pH 7.5. At pH 4.9, the attraction between the biotinylated ssDNA and streptavidin resulted in increased adsorption which has an isoelectric point of about 5.9. It was deduced that the binding of biotinylated ssDNA to one or two of the four binding sites of streptavidin can be controlled by adjusting the pH-controlled electrostatic interaction.

  13. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula x Populus alba).

    Science.gov (United States)

    Al-Haddad, Jameel M; Kang, Kyu-Young; Mansfield, Shawn D; Telewski, Frank W

    2013-04-01

    The effect of altering the expression level of the F5H gene was investigated in three wood tissues (normal, opposite and tension wood) in 1-year-old hybrid poplar clone 717 (Populus tremula × Populus alba L.), containing the F5H gene under the control of the C4H promoter. Elevated expression of the F5H gene in poplar has been previously reported to increase the percent syringyl content of lignin. The wild-type and three transgenic lines were inclined 45° for 3 months to induce tension wood formation. Tension and opposite wood from inclined trees, along with normal wood from control trees, were analyzed separately for carbohydrates, lignin, cellulose crystallinity and microfibril angle (MFA). In the wild-type poplar, the lignin in tension wood contained a significantly higher percentage of syringyl than normal wood or opposite wood. However, there was no significant difference in the percent syringyl content of the three wood types within each of the transgenic lines. Increasing the F5H gene expression caused an increase in the percent syringyl content and a slight decrease in the total lignin in normal wood. In tension wood, the addition of a gelatinous layer in the fiber walls resulted in a consistently lower percentage of total lignin in the tissue. Acid-soluble lignin was observed to increase by up to 2.3-fold in the transgenic lines. Compared with normal wood and opposite wood, cell wall crystallinity in tension wood was higher and the MFA was smaller, as expected, with no evidence of an effect from modifying the syringyl monomer ratio. Tension wood in all the lines contained consistently higher total sugar and glucose percentages when compared with normal wood within the respective lines. However, both sugar and glucose percentages were lower in the tension wood of transgenic lines when compared with the tension wood of wild-type trees. Evaluating the response of trees with altered syringyl content to gravity will improve our understanding of the changes

  14. Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures.

    Science.gov (United States)

    Alifragis, Y; Volosirakis, A; Chaniotakis, N A; Konstantinidis, G; Adikimenakis, A; Georgakilas, A

    2007-06-15

    We investigate the use of the AlGaN/GaN high electron mobility transistor (HEMT) as a novel transducer for the development of ion-selective chemically modified HEMT sensors (ChemHEMTs). For this, polyvinyl chloride (PVC) membrane doped with ion-selective ionophores is deposited onto the area of the gate for the chemical recognition step, while the AlGaN/GaN HEMT is used as the transducer. In particular, the use of a valinocycin doped membrane with thickness of 50 microm generates a sensor with excellent analytical characteristics for the monitoring of K(+). The K(+)-ChemHEMT has sensitivity of 52.4 mV/pK(+)in the linear range of 10(-5) to 10(-2)M, while the detection limit is in the order of 3.1 x 10(-6)M. Also, the sensor shows selectivity similar to valinomycin-based ISEs, while the signal stability over time and the measurement to measurement reproducibility are very good.

  15. Evaluation of a synergetic effect between Rh as permanent chemical modifier and acetylacetone as complexing agent in Sc determination in sediment slurry samples by ETAAS

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Araceli Veronica [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas, P.O. Box 6154, 13084 971 Campinas, Sao Paulo (Brazil); Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron, P.O. Box 6192, 13084 971 Campinas, Sao Paulo (Brazil); Arruda, Marco Aurelio Zezzi [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas, P.O. Box 6154, 13084 971 Campinas, Sao Paulo (Brazil)]. E-mail: zezzi@iqm.unicamp.br

    2005-02-14

    In the present work, scandium was determined in sediment slurry samples (from three different rivers) by electrothermal atomic absorption spectrometry (ETAAS). Slurries were prepared by weighting 100 mg of dry sediment samples ({<=}53 {mu}m particle sizes) and adding 6 ml of HCl:HNO{sub 3}:HF (3:1:2, v/v). Accurate results were only possible due to the synergetic effect between Rh as permanent chemical modifier and acetylacetone (Acac) as complexing agent. The same platform was used for 400 heating cycles. The performance of the chemical modification was evaluated by using scanning electron microscopy (SEM), synchrotron radiation X-ray fluorescence (SRXRF) and some figures of merit (precision and detectability). The best analytical conditions were attained using 1500 and 2550 deg. C as pyrolysis and atomization temperatures. The scandium content in the liquid phase of the slurries ranged from 61 to 73%, thus indicating, in this study, that both liquid and solid phases play an important role in slurry analyses. An amount of 5.0-20.0 {mu}g l{sup -1} Sc linear range as well as LOD and LOQ of 0.19 and 0.62 {mu}g l{sup -1}, respectively, were obtained under these conditions. The accuracy was checked by using microwave-assisted decomposition, and the results compared to those obtained with the proposed methodology (slurry analysis). By checking both sets of the results, there is no statistical difference at the 95% confidence levels.

  16. Ivermectin is a nonselective inhibitor of mammalian P-type ATPases.

    Science.gov (United States)

    Pimenta, Paulo Henrique Cotrim; Silva, Claudia Lucia Martins; Noël, François

    2010-02-01

    Ivermectin is a large spectrum antiparasitic drug that is very safe at the doses actually used. However, as it is being studied for new applications that would require higher doses, we should pay attention to its effects at high concentrations. As micromolar concentrations of ivermectin have been reported to inhibit the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), we decided to investigate its putative inhibitory effect on other two important P-type ATPases, namely the Na(+) , K(+)-ATPase and H(+)/K(+)-ATPase. We first extended the data on SERCA, using preparations from rat enriched in SERCA1a (extensor digitorum longus) and 1b (heart) isoforms. Secondly, we tested the effect of ivermectin in two preparations of rat Na(+), K(+)-ATPase in order to appreciate its putative selectivity towards the alpha(1) isoform (kidney) and the alpha(2)/alpha(3) isoforms (brain), and in an H(+)/K(+)-ATPase preparation from rat stomach. Ivermectin inhibited all these ATPases with similar IC(50) values (6-17 microM). With respect to the inhibition of the Na(+), K(+)-ATPase, ivermectin acts by a mechanism different from the classical cardiac glycosides, based on selectivity towards the isoforms, sensibility to the antagonistic effect of K(+) and to ionic conditions favoring different conformations of the enzyme. We conclude that ivermectin is a nonselective inhibitor of three important mammalian P-type ATPases, which is indicative of putative important adverse effects if this drug were used at high doses. As a consequence, we propose that novel analogs of ivermectin should be developed and tested both for their parasitic activity and in vitro effects on P-type ATPases.

  17. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    Science.gov (United States)

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-07

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.

  18. Elastic constants determined by nanoindentation for p-type thermoelectric half-Heusler

    Energy Technology Data Exchange (ETDEWEB)

    Gahlawat, S.; Wheeler, L.; White, K. W., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); He, R.; Chen, S.; Ren, Z. F., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States)

    2014-08-28

    This paper presents a study of the elastic properties of the p-type thermoelectric half-Heusler material, Hf{sub 0.44}Zr{sub 0.44}Ti{sub 0.12}CoSb{sub 0.8}Sn{sub 0.2}, using nanoindentation. Large grain-sized polycrystalline specimens were fabricated for these measurements, providing sufficient indentation targets within single grains. Electron Backscatter Diffraction methods indexed the target grains for the correlation needed for our elastic analysis of individual single crystals for this cubic thermoelectric material. Elastic properties, including the Zener ratio and the Poisson ratio, obtained from the elasticity tensor are also reported.

  19. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  20. About the Nature of Electroluminescence Centers in Plastically Deformed Crystals of p-type Silicon

    Directory of Open Access Journals (Sweden)

    B.V. Pavlyk

    2015-10-01

    Full Text Available The paper describes research of dislocation electroluminescence of single crystal p-type silicon with a high concentration of dislocations on the surface (111. It is shown the reaction of the luminescence spectra and capacitive-modulation spectra of samples after high-temperature annealing in an atmosphere of flowing oxygen. The analysis of the results lets us to establish the nature of recombination centers and their reorganization under high-temperature annealing. It is shown that deposition of Al film on the substrate p-Si leads to the formation of strain capacity and the localization of defects in the surface layer that corresponds to luminescence centers.

  1. Structure and mechanism of Zn2+-transporting P-type ATPases

    DEFF Research Database (Denmark)

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele

    2014-01-01

    Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (ZntA...... been proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn2+-ATPases and PIII-type H+-ATPases and at the same time show structural features...

  2. Initial results from 3D-DDTC detectors on p-type substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A., E-mail: zoboli@disi.unitn.i [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste, and INFN, Sezione di Trieste, Via A. Valerio, 2, I-34127 Trieste (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, and INFN, Sezione di Padova (Gruppo Collegato di Trento), Via Sommarive, 14, I-38100 Povo di Trento (Italy); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38100 Povo di Trento (Italy)

    2010-01-11

    Owing to their superior radiation hardness compared to planar detectors, 3D detectors are one of the most promising technologies for the LHC upgrade foreseen in 2017. Fondazione Bruno Kessler has developed 3D Double-side Double-Type Column (3D-DDTC) detectors providing a technological simplifications with respect to a standard 3D process while aiming at comparable detector performance. We present selected results from the electrical characterization of 3D-DDTC structures from the second batch made on p-type substrates, supported also by TCAD simulations.

  3. Does p-type ohmic contact exist in WSe2-metal interfaces?

    Science.gov (United States)

    Wang, Yangyang; Yang, Ruo Xi; Quhe, Ruge; Zhong, Hongxia; Cong, Linxiao; Ye, Meng; Ni, Zeyuan; Song, Zhigang; Yang, Jinbo; Shi, Junjie; Li, Ju; Lu, Jing

    2015-12-01

    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices.Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for

  4. Ferromagnetic-resonance induced electromotive forces in Ni81Fe19 | p-type diamond

    Science.gov (United States)

    Fukui, Naoki; Morishita, Hiroki; Kobayashi, Satoshi; Miwa, Shinji; Mizuochi, Norikazu; Suzuki, Yoshishige

    2016-10-01

    We report on direct-current (DC) electromotive forces (emfs) in a nickel-iron alloy (Ni81 Fe19) | p-type diamond under the ferromagnetic resonance of the Ni81Fe19 layer at room temperature. The observed DC emfs take its maximum around the ferromagnetic resonant frequency of the Ni81Fe19, and their signs are reversed by reversing the direction of an externally-applied magnetic field; it shows that the observed DC emfs are spin-related emfs.

  5. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Poulsen, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellular...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  6. Electroforming-free resistive switching memory effect in transparent p-type tin monoxide

    KAUST Repository

    Hota, M. K.

    2014-04-14

    We report reproducible low bias bipolar resistive switching behavior in p-type SnO thin film devices without extra electroforming steps. The experimental results show a stable resistance ratio of more than 100 times, switching cycling performance up to 180 cycles, and data retention of more than 103 s. The conduction mechanism varied depending on the applied voltage range and resistance state of the device. The memristive switching is shown to originate from a redox phenomenon at the Al/SnO interface, and subsequent formation/rupture of conducting filaments in the bulk of the SnO layer, likely involving oxygen vacancies and Sn interstitials.

  7. Above bandgap luminescence of p-type GaAs epitaxial layers

    Science.gov (United States)

    Sapriel, J.; Chavignon, J.; Alexandre, F.; Azoulay, R.; Sermage, B.; Rao, K.; Voos, M.

    1991-08-01

    New photoluminescence bands are observed in p-type GaAs epitaxial layers at 300 and 80 K, above the bandgap. These bands are independent of the nature of the dopant (Zn, Be, C) and of the growth technique (MBE or MOCVD). Their intensities increase as a function of the p doping (1 × 10 17 < p < 2 × 10 20cm-3) and peak at energies which correspond to transitions between the Γ 6, L 6 and X 6 minima of the conduction band and the Γ 8 and Γ 7 maxima of the valence band.

  8. P-Type Doping of GaN by Mg+ Implantation

    Institute of Scientific and Technical Information of China (English)

    YAO Shu-De; ZHAO Qiang; ZHOU Sheng-Qiang; YANG Zi-Jian; LU Yi-Hong; SUN Chang-Chun; SUN Chang; ZHANG Guo-Yi; VANTOMME Andre; PIPELEERS Bert

    2003-01-01

    Mg+ and Mg++P+ were introduced into GaN by ion implantation. The structure and crystalline quality of the GaN samples were analysed by Rutherford backscattering and channelling spectrometry before (xmin = 1.6%) and after implantation (Xmin = 4.1%). X-ray diffraction reveals the existence of implantation-induced damage in the case of post-implantation followed by rapid thermal annealing. The resistivity, average factor, carrier concentration and carrier mobility were measured by the Hall effect. The transformation from n-type to p-type for GaN was observed.

  9. KARAKTERISTIK FISIK DAN KIMIA PATI GANYONG DAN GADUNG TERMODIFIKASI METODE IKATAN SILANG Physical and Chemical Characteristics of Canna edulis Kerr and Dioscorea hispida Dennst Modified Starch with Cross Linking Method

    OpenAIRE

    Budi Santoso; Filli Pratama; Basuni Hamzah; Rindit Pambayun

    2015-01-01

    The research aimed to know physical and chemical characteristics of Canna edulis Kerr and Dioscorea hispida Dennst unmodified and modified starch with cross-linking method. This research was divided into two stages. The first stage of the research was characterization of starch from Canna edulis Kerr and Dioscorea hispida Dennst and the second stage of the research was processing of modified starch from Canna edulis Kerr and Dioscorea hispida Dennst through crosslinking by using POCl at the c...

  10. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p-n junction solar cells.

    Science.gov (United States)

    Park, Si-Nae; Sung, Shi-Joon; Sim, Jun-Hyoung; Yang, Kee-Jeong; Hwang, Dae-Kue; Kim, JunHo; Kim, Gee Yeong; Jo, William; Kim, Dae-Hwan; Kang, Jin-Kyu

    2015-07-07

    Nanoporous p-type semiconductor thin films prepared by a simple solution-based process with appropriate thermal treatment and three-dimensional (3D) p-n junction solar cells fabricated by depositing n-type semiconductor layers onto the nanoporous p-type thin films show considerable photovoltaic performance compared with conventional thin film p-n junction solar cells. Spin-coated p-type Cu2ZnSnS4 (CZTS) thin films prepared using metal chlorides and thiourea show unique nanoporous thin film morphology, which is composed of a cluster of CZTS nanograins of 50-500 nm, and the obvious 3D p-n junction structure is fabricated by the deposition of n-type CdS on the nanoporous CZTS thin films by chemical bath deposition. The photovoltaic properties of 3D p-n junction CZTS solar cells are predominantly affected by the scale of CZTS nanograins, which is easily controlled by the sulfurization temperature of CZTS precursor films. The scale of CZTS nanograins determines the minority carrier transportation within the 3D p-n junction between CZTS and CdS, which are closely related with the photocurrent of series resistance of 3D p-n junction solar cells. 3D p-n junction CZTS solar cells with nanograins below 100 nm show power conversion efficiency of 5.02%, which is comparable with conventional CZTS thin film solar cells.

  11. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  12. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  13. Valence band states in Si-based p-type delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Vlaev, Stoyan J, E-mail: jcmover@correo.unam.m [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico)

    2009-05-01

    We present tight-binding calculations of the hole level structure of delta-doped Field Effect Transistor in a Si matrix within the first neighbors sp{sup 3}s* semi-empirical tight-binding model including spin. We employ analytical expressions for Schottky barrier potential and the p-type delta-doped well based on a Thomas-Fermi approximation, we consider these potentials as external ones, so in the computations they are added to the diagonal terms of the tight-binding Hamiltonian, by this way we have the possibility to study the energy levels behavior as we vary the backbone parameters in the system: the two-dimensional impurity density (p{sub 2d}) of the p-type delta-doped well and the contact voltage (V{sub c}). The aim of this calculation is to demonstrate that the tight-binding approximation is suitable for device characterization that permits us to propose optimal values for the input parameters involved in the device design.

  14. EEG/MEG forward simulation through h- and p-type finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Pursiainen, S [Institute of Mathematics, Box 1100, FI-02015 Helsinki University of Technology (Finland)], E-mail: sampsa.pursiainen@tkk.fi

    2008-07-15

    Electro/Magnetoencephalography (EEG/MEG) is a non-invasive imaging modality, in which a primary current density generated by the neural activity in the brain is to be reconstructed from external electric potential/magnetic field measurements. This work focuses on effective and accurate simulation of the EEG/MEG forward model through the h- and p-versions of the finite element method (h- and p-FEM). The goal is to compare the effectiveness of these two versions in forward simulation. Both h- and p-type forward simulations are described and implemented, and the technical solutions found are discussed. These include, for example, suitable ways to generate a finite element mesh for a real head geometry through the use of different element types. Performances of the two implemented forward simulation types are compared by measuring directly the forward modeling error, as well as by computing reconstructions through a regularized FOCUSS (FOCal Underdetermined System Solver) algorithm. The results obtained suggest that the p-type performs better in terms of the forward modeling error. However, both types perform well in regularized FOCUSS reconstruction.

  15. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    Institute of Scientific and Technical Information of China (English)

    Li Shang-Sheng; Ma Hong-An; Li Xiao-Lei; Su Tai-Chao; Huang Guo-Feng; Li Yong; Jia Xiao-Peng

    2011-01-01

    High-quality p-type boron-doped II0b diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond.

  16. Anabaena sp. DyP-type peroxidase is a tetramer consisting of two asymmetric dimers.

    Science.gov (United States)

    Yoshida, Toru; Ogola, Henry Joseph Oduor; Amano, Yoshimi; Hisabori, Toru; Ashida, Hiroyuki; Sawa, Yoshihiro; Tsuge, Hideaki; Sugano, Yasushi

    2016-01-01

    DyP-type peroxidases are a newly discovered family of heme peroxidases distributed from prokaryotes to eukaryotes. Recently, using a structure-based sequence alignment, we proposed the new classes, P, I and V, as substitutes for classes A, B, C, and D [Arch Biochem Biophys 2015;574:49-55]. Although many class V enzymes from eukaryotes have been characterized, only two from prokaryotes have been reported. Here, we show the crystal structure of one of these two enzymes, Anabaena sp. DyP-type peroxidase (AnaPX). AnaPX is tetramer formed from Cys224-Cys224 disulfide-linked dimers. The tetramer of wild-type AnaPX was stable at all salt concentrations tested. In contrast, the C224A mutant showed salt concentration-dependent oligomeric states: in 600 mM NaCl, it maintained a tetrameric structure, whereas in the absence of salt, it dissociated into monomers, leading to a reduction in thermostability. Although the tetramer exhibits non-crystallographic, 2-fold symmetry in the asymmetric unit, two subunits forming the Cys224-Cys224 disulfide-linked dimer are related by 165° rotation. This asymmetry creates an opening to cavities facing the inside of the tetramer, providing a pathway for hydrogen peroxide access. Finally, a phylogenetic analysis using structure-based sequence alignments showed that class V enzymes from prokaryotes, including AnaPX, are phylogenetically closely related to class V enzymes from eukaryotes.

  17. Transporters, chaperones, and P-type ATPases controlling grapevine copper homeostasis.

    Science.gov (United States)

    Leng, Xiangpeng; Mu, Qian; Wang, Xiaomin; Li, Xiaopeng; Zhu, Xudong; Shangguan, Lingfei; Fang, Jinggui

    2015-11-01

    With more copper and copper-containing compounds used as bactericides and fungicides in viticulture, copper homeostasis in grapevine (Vitis) has become one of the serious environmental crises with great risk. To better understand the regulation of Cu homeostasis in grapevine, grapevine seedlings cultured in vitro with different levels of Cu were utilized to investigate the tolerance mechanisms of grapevine responding to copper availability at physiological and molecular levels. The results indicated that Cu contents in roots and leaves arose with increasing levels of Cu application. With copper concentration increasing, malondialdehyde (MDA) content increased in roots and leaves and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased to protect the plant itself from damage. The expression patterns of 19 genes, encoding transporters, chaperones, and P-type ATPases involved in copper homeostasis in root and leaf of grapevine seedling under various levels of Cu(2+) were further analyzed. The expression patterns indicated that CTr1, CTr2, and CTr8 transporters were significantly upregulated in response both to Cu excess and deficiency. ZIP2 was downregulated in response to Cu excess and upregulated under Cu-deficient conditions, while ZIP4 had an opposite expression pattern under similar conditions. The expression of chaperones and P-type ATPases in response to Cu availability in grapevine were also briefly studied.

  18. A P-type ATPase importer that discriminates between essential and toxic transition metals.

    Science.gov (United States)

    Lewinson, Oded; Lee, Allen T; Rees, Douglas C

    2009-03-24

    Transition metals, although being essential cofactors in many physiological processes, are toxic at elevated concentrations. Among the membrane-embedded transport proteins that maintain appropriate intracellular levels of transition metals are ATP-driven pumps belonging to the P-type ATPase superfamily. These metal transporters may be differentiated according to their substrate specificities, where the majority of pumps can extrude either silver and copper or zinc, cadmium, and lead. In the present report, we have established the substrate specificities of nine previously uncharacterized prokaryotic transition-metal P-type ATPases. We find that all of the newly identified exporters indeed fall into one of the two above-mentioned categories. In addition to these exporters, one importer, Pseudomonas aeruginosa Q9I147, was also identified. This protein, designated HmtA (heavy metal transporter A), exhibited a different substrate recognition profile from the exporters. In vivo metal susceptibility assays, intracellular metal measurements, and transport experiments all suggest that HmtA mediates the uptake of copper and zinc but not of silver, mercury, or cadmium. The substrate selectivity of this importer ensures the high-affinity uptake of essential metals, while avoiding intracellular contamination by their toxic counterparts.

  19. Analysis of carrier concentration, lifetime, and electron mobility on p-type HgCdTe

    Science.gov (United States)

    Yoo, Sang Dong; Kwack, Kae Dal

    1998-03-01

    Minority carrier transport characteristics of vacancy-doped p-type HgCdTe such as carrier concentration, lifetime, and mobility are investigated. In the calculation of the carrier concentration two acceptor levels—a donor level and a trap level—were taken into account. The acceptor levels have been described by two models—two independent singly ionized levels and a divalent level with two ionization energies. When each model was examined by calculating electron mobility as a function of temperature, the latter was found to be more accurate. Electron mobility as a function of majority carrier concentration was also presented for both n-type and p-type HgCdTe with 0.225 Cd mole fraction. Steady state electron lifetime was computed assuming the acceptor levels and the trap level would act as Schokley-Read-Hall type recombination centers. The calculated results using the divalent acceptor model were in good agreement with the experimental data.

  20. Lateral photovoltaic effect in p-type silicon induced by surface states

    Science.gov (United States)

    Huang, Xu; Mei, Chunlian; Gan, Zhikai; Zhou, Peiqi; Wang, Hui

    2017-03-01

    A colossal lateral photovoltaic effect (LPE) was observed at the surface of p-type silicon, which differs from the conventional thought that a large LPE is only observed in Schottky junctions and PN junctions consisting of several layers with different conductivities. It shows a high sensitivity of 499.24 mV/mm and an ultra-broadband spectral responsivity (from 405 nm to 980 nm) at room temperature, which makes it an attractive candidate for near-infrared detection. We propose that this phenomenon can be understood by considering the surface band bending near the surface of p-Si induced by charged surface states. The energy band diagrams of the samples are shown based on X-ray photoelectron spectroscopy suggesting the correlation between the LPE and surface band bending. The conjectures are validated by changing the surface states of p-type silicon using Ni nano-films. These findings reveal a generation mechanism of the LPE and may lead to p-Si based, broadband-responsivity, low-cost, and high-precision optical and optoelectronic applications.

  1. Atomic layer deposition of undoped TiO2 exhibiting p-type conductivity.

    Science.gov (United States)

    Iancu, Andrei T; Logar, Manca; Park, Joonsuk; Prinz, Fritz B

    2015-03-11

    With prominent photocatalytic applications and widespread use in semiconductor devices, TiO2 is one of the most popular metal oxides. However, despite its popularity, it has yet to achieve its full potential due to a lack of effective methods for achieving p-type conductivity. Here, we show that undoped p-type TiO2 films can be fabricated by atomic layer deposition (ALD) and that their electrical properties can be controlled across a wide range using proper postprocessing anneals in various ambient environments. Hole mobilities larger than 400 cm(2)/(V·s) are accessible superseding the use of extrinsic doping, which generally produces orders of magnitude smaller values. Through a combination of analyses and experiments, we provide evidence that this behavior is primarily due to an excess of oxygen in the films. This discovery enables entirely new categories of TiO2 devices and applications, and unlocks the potential to improve existing ones. TiO2 homojunction diodes fabricated completely by ALD are developed as a demonstration of the utility of these techniques and shown to exhibit useful rectifying characteristics even with minimal processing refinement.

  2. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films.

    Science.gov (United States)

    Hu, Youfan; Zhang, Yan; Lin, Long; Ding, Yong; Zhu, Guang; Wang, Zhong Lin

    2012-07-11

    We present that the electroluminescence (EL) properties of Mg-doped p-type GaN thin films can be tuned by the piezo-phototronic effect via adjusting the minority carrier injection efficiency at the metal-semiconductor (M-S) interface by strain induced polarization charges. The device is a metal-semiconductor-metal structure of indium tin oxide (ITO)-GaN-ITO. Under different straining conditions, the changing trend of the transport properties of GaN films can be divided into two types, corresponding to the different c-axis orientations of the films. An extreme value was observed for the integral EL intensity under certain applied strain due to the adjusted minority carrier injection efficiency by piezoelectric charges introduced at the M-S interface. The external quantum efficiency of the blue EL at 430 nm was changed by 5.84% under different straining conditions, which is 1 order of magnitude larger than the change of the green peak at 540 nm. The results indicate that the piezo-phototronic effect has a larger impact on the shallow acceptor states related EL process than on the one related to the deep acceptor states in p-type GaN films. This study has great significance on the practical applications of GaN in optoelectronic devices under a working environment where mechanical deformation is unavoidable such as for flexible/printable light emitting diodes.

  3. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering

    Science.gov (United States)

    Arakawa, Yasuaki; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-08-01

    We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 1016 cm-3, which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 1017 cm-3) deposited by PSD showed hole mobilities of 34 and 62 cm2 V-1 s-1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.

  4. Low specific contact resistance on epitaxial p-type 4H-SiC with a step-bunching surface

    Institute of Scientific and Technical Information of China (English)

    韩超; 张玉明; 宋庆文; 汤晓燕; 张义门; 郭辉; 王悦湖

    2015-01-01

    This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on the Al:Ti composition with no more than 50 at.%Al. The specific contact resistance (SCR) is obtained to be as low as 2.6 × 10−6Ω·cm2 for the bilayered Ti(100 nm)/Al(100 nm) contact treated with 3 min rapid thermal annealing (RTA) at 1000◦C. The microstructure analyses examined by physical and chemical characterization techniques reveal an alloy-assisted ohmic contact formation mechanism, i.e., a high degree of alloying plays a decisive role in forming the interfacial ternary Ti3SiC2 dominating the ohmic behavior of the Ti/Al based contact. Furthermore, a globally covered Ti3SiC2 layer with (0001)-oriented texture can be formed, regardless of the surface step bunching as well as its structural evolution during the metallization annealing.

  5. P-type AlAs/[GaAs/AlAs] Semiconductor/Superlattice DBR Grown by MBE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A p-type AlAs(70.2 nm)/16.5 period [GaAs(3 nm)/AlAs(0.7 nm)] semiconductor/superlatice distributed Bragg reflector (DBR) has been grown on n+-GaAs(100) substrate by V80H molecular beam epitaxy system. Experimental reflection spectrum shows that its central wavelength is 820 nm, with the peak reflectivity for 10-pair DBR of as high as 96 %, and the reflection bandwidth of as wide as 90 nm. We formed a 20×20 μm2 square mesa to measure the series resistance using wet chemical etching. From the measurement result, the series resistance of about 50 Ω is obtained at a moderate doping (3×1018 cm-3). Finally, the dependence of the resistance of the DBR on the temperature is analyzed. From the experimental result, it is found that the mechanism of the low series resistance of this kind of DBR may increase the tunneling current in the semiconductor/superlattice mirror structure, which will result in a decrease in series resistance.

  6. Chemical Defects, Electronic Structure, and Transport in N-type and P-type Organic Semiconductors: First Principles Theory

    Science.gov (United States)

    2012-11-29

    boundaries. A paper describing the work was published in Nature Materials. {J. Rivnay, L.H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega , S. Lu, T. J...Switzerland.[4] [1] J. Rivnay, R. Noriega , J. E. Northrup, R. J. Kline, M. F. Toney, and A. Salleo, Structural origin of gap states in semicrystalline...1] J. Rivnay, L.H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega , S. Lu, T. J. Marks, A, Facchetti, and A. Salleo, Large modulation of

  7. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Midori de Oliveira, Fernanda; Gava Segatelli, Mariana [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Tarley, César Ricardo Teixeira, E-mail: ctarleyquim@yahoo.com.br [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Departamento de Química Analítica, Cidade Universitária Zeferino Vaz s/n, CEP 13083-970 Campinas, SP (Brazil)

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium (pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. - Highlights: • The molecularly imprinted hybrid polymer showed high adsorption capacity for folic acid. • The molecularly imprinted hybrid polymer showed high selectivity for folic acid. • The molecularly imprinted hybrid polymer modified with GPTMS excludes higher amount of BSA.

  8. Effect of Modified Atmosphere Packaging on Aril Physico-chemical and Microbial Properties of Two Pomegranate Cultivars (Punica granatum L. Grown in Iran

    Directory of Open Access Journals (Sweden)

    Sedighe Tavasoli Talarposhti

    2016-10-01

    Full Text Available Background and Objectives: Edible parts of pomegranate fruits are a rich source of bioactive compounds. The present research examines the effect of modified atmosphere packaging on the fruit physico-chemical and microbial properties of two commercial pomegranate cultivars grown in Iran. Materials and Methods: The arils were packaged and stored under four different atmospheres. All of the packaged samples were stored at 4 °C for 15 days. Results: The results revealed an increase in total acidity of all treatments. The highest total soluble solid (TSS was observed in ‘Yousef-Khani’­ stored in 10% O2 + 15% CO2, while ‘Malas-e-Saveh’ treated with 20% O2 + 5% CO2 showed the highest degree of TSS. The mean value of a* in ‘Malas-e-Saveh’ arils packed with normal and (15% O2 + 10% CO2 + 75% N2 atmosphere increased significantly. The L* showed a decrease in ‘Yousef-Khani’­. Total phenolic compounds gradually increased during storage. After storage, decreases in total anthocyanin contents ranged from 12 to 30% for ‘Yousef-Khani’­. The overall antioxidant activity of arils in ‘Yousef-Khani’ showed a 6-15% increase during storage. However, a reverse effect was observed for ‘Malas-e-Saveh’. The lowest microbial counts were recorded under the atmosphere containing 10 and 15% CO2. Conclusions: Packaging of ‘Malas-e-Saveh’ arils in 15% O2 + 10% CO2 and ‘Yousef-Khani’ in 15% O2 + 10% CO2 or 10% O2 + 15% CO2 is recommended to extend the shelf-life of ready-to-eat arils. Keywords: Pomegranate, Modified atmosphere, Phenolic compounds, Anthocyanin, Antioxidant activity

  9. Pristine and Al-doped hematite printed films as photoanodes of p-type dye-sensitized solar cells

    Science.gov (United States)

    Congiu, Mirko; De Marco, Maria L.; Bonomo, Matteo; Nunes-Neto, Oswaldo; Dini, Danilo; Graeff, Carlos F. O.

    2017-01-01

    We hereby propose a non-expensive method for the deposition of pure and Al-doped hematite photoanodes in the configuration of thin films for the application of dye-sensitized solar cells (DSSC). The electrodes have been prepared from hematite nanoparticles that were obtained by thermal degradation of a chemical precursor. The particles have been used in the preparation of a paste, suitable for both screen printing and doctor blade deposition. The paste was then spread on fluorine-doped tin oxide (FTO) to obtain porous hematite electrodes. The electrodes have been sensitized using N3 and D5 dyes and were characterized through current/voltage curves under simulated sun light (1 sun, AM 1.5) with a Pt counter electrode. Al-doping of hematite showed interesting changes in the physical and electrochemical characteristics of sensitized photoanodes since we could notice the growth of AlFe2O4 (hercynite) as a secondary crystal phase into the oxides obtained by firing the mixtures of two chemical precursors at different molar ratios. Pure and Al-doped hematite electrodes have been used in a complete n-type DSSCs. The kinetics of charge transfer through the interface dye/electrolyte was studied and compared to that of a typical p-type DSSC based on NiO photocathodes sensitized with erythrosine B. The results suggest a potential application of both Fe2O3 and Fe2O3/AlFe2O4 as photoanodes of a tandem DSSC.

  10. Effective surface passivation of p-type crystalline silicon with silicon oxides formed by light-induced anodisation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jie, E-mail: j.cui@unsw.edu.au [School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney 2052 (Australia); Grant, Nicholas [Centre for Sustainable Energy Systems, Australian National University, Canberra, A.C.T. 0200 (Australia); Lennon, Alison [School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney 2052 (Australia)

    2014-12-30

    Highlights: • The surface passivation by anodic SiO{sub 2} formed by light-induced anodisation is investigated. • The anodic SiO{sub 2} grows lower temperatures with shorter growth times. After annealing in oxygen and then forming gas the effective minority carrier lifetime is increased to 150 μs. • It shows a very low positive Q{sub eff} of 3.4 × 10{sup 11} cm{sup −2}, a moderate D{sub it} of 6 × 10{sup 11} eV{sup −1} cm{sup −2}. • It has a very low leakage current density suggesting its application in solar cell as a functional dielectric. - Abstract: Electronic surface passivation of p-type crystalline silicon by anodic silicon dioxide (SiO{sub 2}) was investigated. The anodic SiO{sub 2} was grown by light-induced anodisation (LIA) in diluted sulphuric acid at room temperature, a process that is significantly less-expensive than thermal oxidation which is widely-used in silicon solar cell fabrication. After annealing in oxygen and then forming gas at 400 °C for 30 min, the effective minority carrier lifetime of 3–5 Ω cm, boron-doped Czochralski silicon wafers with a phosphorus-doped 80 Ω/□ emitter and a LIA anodic SiO{sub 2} formed on the p-type surface was increased by two orders of magnitude to 150 μs. Capacitance–voltage measurements demonstrated a very low positive charge density of 3.4 × 10{sup 11} cm{sup −2} and a moderate density of interface states of 6 × 10{sup 11} eV{sup −1} cm{sup −2}. This corresponded to a silicon surface recombination velocity of 62 cm s{sup −1}, which is comparable with values reported for other anodic SiO{sub 2} films, which required higher temperatures and longer growth times, and significantly lower than oxides grown by chemical vapour deposition techniques. Additionally, a very low leakage current density of 3.5 × 10{sup −10} and 1.6 × 10{sup −9} A cm{sup −2} at 1 and −1 V, respectively, was measured for LIA SiO{sub 2} suggesting its potential application as insulation layer in

  11. Chemically modified carbon paste and membrane sensors for the determination of benzethonium chloride and some anionic surfactants (SLES, SDS, and LABSA): Characterization using SEM and AFM.

    Science.gov (United States)

    Issa, Yousry M; Mohamed, Sabrein H; Baset, Mohamed Abd-El

    2016-08-01

    Chemically modified carbon-paste (CMCP) and membrane- sensors based on incorporating benzothonium-tetraphenylborate (BT-TPB) were constructed for the analysis of benzethonium chloride, and some other surfactants such as sodium lauryl ether sulphate (SLES), sodium dodecyl sulphate (SDS), and linear alkylbenzene sulphonic acid (LABSA). All sensors showed good sensitivity and reverse wide linearity over a concentration range of 5.97×10(-7) to 1.00×10(-3) and 5.96×10(-7) to 3.03×10(-3)molL(-1) with limit of detection of 3.92×10(-7)and 3.40×10(-7)molL(-1) for membrane and chemically modified carbon paste sensors, respectively, with respect to benzethonium chloride (BT.Cl). They could be used over a wide pH range of 2.0-10.0. The thermal coefficients of membrane and CMCP sensors are 5.40×10(-4), 1.17×10(-4)V/°C, respectively. The sensors indicated a wide selectivity over different inorganic cations. The effect of soaking on the surface morphology of the membrane sensor was studied using EDX-SEM and AFM techniques. The response time was <10s The freshly prepared, exhausted membrane, and CMCP sensors were successfully applied for the potentiometric determination of the pure BT.Cl solution. They were also used for the determination of its pharmaceutical formulation Dermoplast(®) antibacterial spray (20% benzocaine+0.2% benzethonium chloride) with recovery values ranging from 97.54±1.70 to 101.25±1.12 and from 96.32±2.49 to 101.23±2.15%. The second goal of these sensors is the potentiometric determination of different surfactants such as SLES, SDS, and LABSA with good recovery values using BT.Cl as a titrant in their pure forms, and in samples containing one of them (shampoo, Touri(®) dishwashing liquid, and waste water). The statistical analysis of the obtained data was studied.

  12. NbFeSb based p-type half-Heusler for power generation applications

    Science.gov (United States)

    Joshi, Giri; He, Ran; Engber, Michael; Samsonidze, Georgy; Pantha, Tej; Dahal, Ekraj; Dahal, Keshab; Yang, Jian; Lan, Yucheng; Kozinsky, Boris; Ren, Zhifeng

    2015-03-01

    We report a peak dimensionless figure-of-merit (ZT) of ~1 at 700 oC in nanostructured p-type Nb0.6Ti0.4FeSb0.95Sn0.05composition. Even though the power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is improved by 25% in comparison to the previously reported p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2, the ZT value is not increased due to a higher thermal conductivity. However, the higher power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition led to a 15% increase in power output of a thermoelectric device in comparison to a device made from the previous best material Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. The n-type material used to make the unicouple device is the best reported nanostructured Hf0.25Zr0.75NiSn0.99Sb0.01 composition with the lowest hafnium (Hf) content. Both the p- and n-type nanostructured samples are prepared by ball milling the arc melted ingot and hot pressing the finely ground powders. Moreover, the raw material cost of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is more than six times lower compared to the cost of the previous best p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. This cost reduction is crucial for these materials to be used in large-scale quantities for vehicle and industrial waste heat recovery applications. DOE:DE-EE0004840.

  13. Effect of modified atmosphere and vacuum packaging on selected chemical parameters of rainbow trout (Oncorhynchus mykiss and carp (Cyprinus carpio cuts freshness

    Directory of Open Access Journals (Sweden)

    Babić Jelena A.

    2014-01-01

    Full Text Available The purpose of food packing in modified atmosphere is to extend its sustainability by preventing both biochemical processes and growth of spoilage bacteria. Gases or their mixtures which are mostly used in the modified atmosphere food packing technology are carbon-dioxide (CO2, oxygen (O2 and nitrogen (N2. The aim of our research was to examine the influence of packaging in modified atmosphere and vacuum on the total volatile basic nitrogen (TVB-N content and pH in muscle of rainbow trout (Oncorhynchus mykiss and common carp (Cyprinus carpio, as well as to determine the most suitable gas mixtures for packing of these freshwater species. Three sample groups of trout and carp cuts were investigated. The first two groups were packaged in modified atmosphere with different gas ratios: 60%CO2+40%N2 (I group and 40%CO2+60%N2 (II group, whereas the samples from third, control group, (III group were vacuum packaged. During trials samples were stored in refrigerator at +3°C. Determination of TVB-N and pH was performed on 1st, 7th and 14th day of storage. The obtained results indicate that the investigated mixtures of gases and vacuum as well had a significant influence on the values of TVB-N in trout and carp cuts samples. The lowest increase in TVB-N was established in trout and carp cuts samples from the group I, whereas the highest increase was established in samples from group III. Statistical significant difference (p < 0,001 between the average values of TVB-N for trout (I group: 18,17 ± 0,93; II group: 20,90 ± 0,81 and III group: 36,18 ± 2,65 mg N/100 g and carp cuts (I group: 26,74 ± 1,48; II group: 30,02 ± 0,31 and III group: 35,10 ± 1,75 mg N/100 g was established on 14th day. The lowest pH value was established in samples packaged in modified atmosphere with 60% CO2 +40% N2 (I group. On 14th day of testing the obtained value was 6,15 ± 0,09 for trout and 5,94 ± 1,11 for carp samples. Increase in pH value in trout samples packed in

  14. Synthesis of chemically-modified single-walled carbon nanotubes by counter-current ammonia gas injection into the induction thermal plasma process

    Science.gov (United States)

    Shahverdi, Ali

    Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications. This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: 1) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs. Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (ITP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y2O3, Ni-Co-Y2O3, and Ni-Mo-Y2O3) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results. Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, IM, and gas flow rate, FR) on the Tonset and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on Tonset. A methodology was then developed based upon the SWCNTs synthesis using the ITP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in

  15. Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with beta-cyclodextrin and chemically modified beta-cyclodextrins.

    Science.gov (United States)

    Martín, L; León, A; Olives, A I; Del Castillo, B; Martín, M A

    2003-06-13

    The association characteristics of the inclusion complexes of the beta-carboline alkaloids harmane and harmine with beta-cyclodextrin (beta-CD) and chemically modified beta-cyclodextrins such as hydroxypropyl-beta-cyclodextrin (HPbeta-CD), 2,3-di-O-methyl-beta-cyclodextrin (DMbeta-CD) and 2,3,6-tri-O-methyl-beta-cyclodextrin (TMbeta-CD) are described. The association constants vary from 112 for harmine/DMbeta-CD to 418 for harmane/HPbeta-CD. The magnitude of the interactions between the host and the guest molecules depends on the chemical and geometrical characteristics of the guest molecules and therefore the association constants vary for the different cyclodextrin complexes. The steric hindrance is higher in the case of harmine due to the presence of methoxy group on the beta-carboline ring. The association obtained for the harmane complexes is stronger than the one observed for harmine complexes except in the case of harmine/TMbeta-CD. Important differences in the association constants were observed depending on the experimental variable used in the calculations (absolute value of fluorescence intensity or the ratio between the fluorescence intensities corresponding to the neutral and cationic forms). When fluorescence intensity values were considered, the association constants were higher than when the ratio of the emission intensity for the cationic and neutral species was used. These differences are a consequence of the co-existence of acid-base equilibria in the ground and in excited states together with the complexation equilibria. The existence of a proton transfer reaction in the excited states of harmane or harmine implies the need for the experimental dialysis procedure for separation of the complexes from free harmane or harmine. Such methodology allows quantitative results for stoichiometry determinations to be obtained, which show the existence of both 1:1 and 1:2 beta-carboline alkaloid:CD complexes with different solubility properties.

  16. Origin of Photovoltage Enhancement via Interfacial Modification with Silver Nanoparticles Embedded in an a-SiC:H p-Type Layer in a-Si:H Solar Cells.

    Science.gov (United States)

    Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan

    2017-03-17

    We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.

  17. Bulk and Surface Event Identification in p-type Germanium Detectors

    CERN Document Server

    Yang, L T; Jia, L P; Jiang, H; Li, J; Lin, F K; Lin, S T; Liu, S K; Ma, J L; Sharma, V; Singh, L; Singh, M K; Soma, A K; Yang, S W; Wang, L; Wang, Q; Wong, H T; Yue, Q; Zhao, W

    2016-01-01

    The p-type point-contact germanium detectors, due to its sub-keV sensitivities and low internal radioactivity background, are demonstrated to be competitive tools for light dark matter WIMPs searches and may have potential applications in neutrino physics. These detectors exhibit anomalous surface behavior, which has been characterized and dealt with in previous analysis. However, the analysis method rely on spectral shape assumptions and must use external calibration sources. In this report, we purpose an improved method, where in situ data could be used as calibration sources. Data from CDEX-1 and TEXONO experiments will be re-examined and the results are shown to be consistent with both analysis.

  18. InP nanowire p-type doping via Zinc indiffusion

    Science.gov (United States)

    Haggren, Tuomas; Otnes, Gaute; Mourão, Renato; Dagyte, Vilgaile; Hultin, Olof; Lindelöw, Fredrik; Borgström, Magnus; Samuelson, Lars

    2016-10-01

    We report an alternative pathway for p-type InP nanowire (NW) doping by diffusion of Zn species from the gas phase. The diffusion of Zn was performed in a MOVPE reactor at 350-500 °C for 5-20 min with either H2 environment or additional phosphorus in the atmosphere. In addition, Zn3P2 shells were studied as protective caps during post-diffusion annealing. This post-diffusion annealing was performed to outdiffuse and activate Zn in interstitial locations. The characterization methods included photoluminescence and single NW conductivity and carrier concentration measurements. The acquired carrier concentrations were in the order of >1017 cm-3 for NWs without post-annealing, and up to 1018 cm-3 for NWs annealed with the Zn3P2 shells. The diffused Zn caused redshift to the photoluminescence signal, and the degree of redshift depended on the diffusion process.

  19. Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aminorroaya Yamini, Sima, E-mail: sima@uow.edu.au, E-mail: jsnyder@caltech.edu; Dou, Shi Xue [Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, NSW 2500 (Australia); Mitchell, David R. G. [Electron Microscopy Centre (EMC), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, NSW 2500 (Australia); Wang, Heng [Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Gibbs, Zachary M. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Pei, Yanzhong [School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Snyder, G. Jeffrey, E-mail: sima@uow.edu.au, E-mail: jsnyder@caltech.edu [Electron Microscopy Centre (EMC), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, NSW 2500 (Australia); ITMO University, Saint Petersburg (Russian Federation)

    2015-05-15

    The electrical resistivity curves for binary phase compounds of p-type lead chalcogenide (PbTe){sub (0.9−x)}(PbSe){sub 0.1}(PbS){sub x,} (x = 0.15, 0.2, 0.25), which contain PbS-rich secondary phases, show different behaviour on heating and cooling between 500-700 K. This is contrast to single phase compounds which exhibit similar behaviour on heating and cooling. We correlate these anomalies in the electrical resistivities of multiphase compounds to the variation in phase composition at high temperatures. The inhomogeneous distribution of dopants between the matrix and secondary phase is found to be crucial in the electronic transport properties of the multiphase compounds. These results can lead to further advances in designing composite Pb-chalcogenides with high thermoelectric performance.

  20. Phonon bottleneck in p-type Ge/Si quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yakimov, A. I., E-mail: yakimov@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk (Russian Federation); Tomsk State University, 634050 Tomsk (Russian Federation); Kirienko, V. V.; Armbrister, V. A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk (Russian Federation); Bloshkin, A. A.; Dvurechenskii, A. V. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2015-11-23

    We study the effect of quantum dot size on the mid-infrared photo- and dark current, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage and the growth temperature during molecular beam epitaxy of Ge/Si(001) system in the Stranski-Krastanov growth mode. In all samples, we observed the general tendency: with decreasing the size of the dots, the dark current and hole capture probability are reduced, while the photoconductive gain and photoresponse are enhanced. Suppression of the hole capture probability in small-sized quantum dots is attributed to a quenched electron-phonon scattering due to phonon bottleneck.

  1. Improved thermoelectric efficiency in p-type ZnSb through Zn deficiency

    Science.gov (United States)

    Guo, Qilong; Luo, Sijun

    2015-12-01

    We herein report a feasible approach to improve the thermoelectric performance of p-type ZnSb compound by Zn content regulation. It is found that Zn vacancies formed by Zn deficiency not only efficiently enhance the electrical conductivity due to the improved hole concentration but also markedly lower the lattice thermal conductivity on account of the reinforced point defect scattering of phonons. The ZnSb compound with a nominal 3 mol.% Zn deficiency shows a maximum thermoelectric figure of merit ZT of 0.8 at 700 K which is a 60% improvement over the pristine sample. The strategies of further enhancing the performance of ZnSb-based material have been discussed.

  2. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Science.gov (United States)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-04-01

    More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm2 V-1 s-1, which is much higher than that of MoS2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  3. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti

    2015-02-23

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2) architecture with self-compliance effect is demonstrated. By using two layers of SnO film, a good memory performance is obtained as compared to the individual oxide films. The memory devices show resistance ratio of 103 between the high resistance and low resistance states, and this difference can be maintained for up to 180 cycles. The devices also show good retention characteristics, where no significant degradation is observed for more than 103 s. Different charge transport mechanisms are found in both resistance states, depending on the applied voltage range and its polarity. The resistive switching is shown to originate from the oxygen ion migration and subsequent formation/rupture of conducting filaments.

  4. How thermoelectric properties of p-type Tl-filled skutterudites are improved

    Directory of Open Access Journals (Sweden)

    Donghun Kim

    2013-09-01

    Full Text Available The high-temperature thermoelectric properties of p-type Tl-filled skutterudites TlxFe1Co3Sb12 (x = 0, 0.2, 0.4, 0.6, and 0.8 were examined. While samples with x ≤ 0.4 were single-phase Tl-filled skutterudite, samples with x = 0.6 and 0.8 were composed of two phases: TlxFe1Co3Sb12 (x ≈ 0.4 as the matrix phase and a Tl-Fe-Sb ternary alloy. The thermal conductivity (κ was reduced effectively by Tl addition, but the secondary phase increased κ slightly. The maximum value of the dimensionless figure of merit ZT (=S2T/ρ/κ, where T is the absolute temperature was 0.36 at 723 K for Tl0.2Fe1Co3Sb12.

  5. Wide bandgap n-type and p-type semiconductor porous junction devices as photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan-Pai; Horng, Sheng-Fu [Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chao, Yu-Chiang; Meng, Hsin-Fei [Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Zan, Hsiao-Wen, E-mail: yuchiangchao@gmail.com, E-mail: meng@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2011-10-12

    In junction absorber photovoltaics doped wide bandgap n-type and p-type semiconductors form a porous interpenetrating junction structure with a layer of low bandgap absorber at the interface. The doping concentration is high enough such that the junction depletion width is smaller than the pore size. The highly conductive neutral region then has a dentrite shape with fingers reaching the absorber to effectively collect the photo-carriers swept out by the junction electric field. With doping of 10{sup 19} cm{sup -3} corresponding to a depletion width of 25 nm, pore size of 32 nm, absorber thickness close to exciton diffusion length of 17 nm, absorber bandgap of 1.4 eV and carrier mobility over 10{sup -5} cm{sup 2} V{sup -1} s{sup -1}, numerical calculation shows the power conversion efficiency is as high as 19.4%. It rises to 23% for a triplet exciton absorber.

  6. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-09-01

    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  7. Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses

    Science.gov (United States)

    Ho, Phuong; Bao, Le Quoc; Cheruku, Rajesh; Kim, Jae Hong

    2016-09-01

    The introduction of different thicknesses of a compact NiO blocking layer coating with different spin speeds on FTO and followed by a coating of photoactive NiO electrode for p-type dye-sensitized solar cells ( p-DSCs). This study examined the fabrication of a compact NiO blocking layer by decomposing an ethanolic precursor solution of nickel acetate tetrahydrate. The DCBZ dye used as the photosensitizer for the NiO electrode in the p-DSCs device and their performances have been analyzed. The enhancement of photovoltaic performance and resulted from an increase in the power conversion efficiency ( η). The electrochemical impedance spectroscopy (EIS) measurement demonstrated that charge recombination was suppressed when a compact NiO blocking layer was applied. The results showed that the best p-DSC was achieved by employing 3000 rpm spin-coated process for different times of blocking layer.

  8. Photostable p-type dye-sensitized photoelectrochemical cells for water reduction.

    Science.gov (United States)

    Ji, Zhiqiang; He, Mingfu; Huang, Zhongjie; Ozkan, Umit; Wu, Yiying

    2013-08-14

    A photostable p-type NiO photocathode based on a bifunctional cyclometalated ruthenium sensitizer and a cobaloxime catalyst has been created for visible-light-driven water reduction to produce H2. The sensitizer is anchored firmly on the surface of NiO, and the binding is resistant to the hydrolytic cleavage. The bifunctional sensitizer can also immobilize the water reduction catalyst. The resultant photoelectrode exhibits superior stability in aqueous solutions. Stable photocurrents have been observed over a period of hours. This finding is useful for addressing the degradation issue in dye-sensitized photoelectrochemical cells caused by desorption of dyes and catalysts. The high stability of our photocathodes should be important for the practical application of these devices for solar fuel production.

  9. Microhardness of carbon-doped (111) p-type Czochralski silicon

    Science.gov (United States)

    Danyluk, S.; Lim, D. S.; Kalejs, J.

    1985-01-01

    The effect of carbon on (111) p-type Czochralski silicon is examined. The preparation of the silicon and microhardness test procedures are described, and the equation used to determine microhardness from indentations in the silicon wafers is presented. The results indicate that as the carbon concentration in the silicon increases the microhardness increases. The linear increase in microhardness is the result of carbon hindering dislocation motion, and the effect of temperature on silicon deformation and dislocation mobility is explained. The measured microhardness was compared with an analysis which is based on dislocation pinning by carbon; a good correlation was observed. The Labusch model for the effect of pinning sites on dislocation motion is given.

  10. P-type calcium channels are blocked by the alkaloid daurisoline.

    Science.gov (United States)

    Lu, Y M; Fröstl, W; Dreessen, J; Knöpfel, T

    1994-07-21

    IN looking for a structurally defined non-peptide P-channel blocker we have tested the alkaloid daurisoline which has been isolated from traditional Chinese medicinal herb (Menispermum dauricum) used for the treatment of epilepsy, hypertension and asthma. We have found that daurisoline is an inhibitor of omega-Aga-IVA sensitive barium currents in cerebellar Purkinje cells and of excitatory postsynaptic potentials evoked in Purkinje cells by stimulating parallel fibres in acutely prepared cerebellar slices. Daurisoline did not significantly affect omega-Aga-IVA-insensitive barium currents recorded from granule cells freshly isolated from rat cerebellum. Daurisoline passes the blood-brain barrier and will, therefore, facilitate the functional characterization of brain calcium channels as well as the exploration of P-type calcium channels as possible drug targets.

  11. DLTS of p-type Czochralski Si wafers containing processing-induced macropores

    Science.gov (United States)

    Simoen, E.; Depauw, V.; Gordon, I.; Poortmans, J.

    2012-01-01

    The deep levels present in p-type Czochralski silicon with processing-induced macropores in the depletion region have been studied by the deep-level transient (DLT) spectroscopy technique. It is shown that a broad band is present for a bias pulse close to the interface with the Al Schottky contact, which exhibits anomalously slow hole capture and is ascribed to the internal interface states of the macropores. For depths beyond the pore region, other deep levels, associated with point defects—possibly metal contamination during the high-temperature annealing step under H2 ambient--have been observed. The impact of the observed defects on the lifetime of thin-film solar cells, fabricated using macropore-based layer transfer is discussed. Finally, it is shown that the presence of pores in the depletion region, which also affects the DLT-spectrum, alters the capacitance-voltage characteristics.

  12. Nanopore formation on low-doped p-type silicon under illumination

    Energy Technology Data Exchange (ETDEWEB)

    Chiboub, N. [UDTS, 02 Bd. Frantz Fanon, B.P. 140, Alger-7 Merveilles, 16200 Algiers (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [UDTS, 02 Bd. Frantz Fanon, B.P. 140, Alger-7 Merveilles, 16200 Algiers (Algeria); Chazalviel, J.-N.; Ozanam, F. [Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Moulay, S. [Universite Saad Dahleby, B.P. 270, Route de Soumaa, Blida (Algeria); Manseri, A. [UDTS, 02 Bd. Frantz Fanon, B.P. 140, Alger-7 Merveilles, 16200 Algiers (Algeria)

    2010-04-01

    Porous silicon layers were elaborated by anodization of highly resistive p-type silicon in HF/ethylene glycol solution under front side illumination, as a function of etching time, HF concentration and illumination intensity. The porous layer morphology was investigated by scanning electron microscopy (SEM). The illumination during anodization was provided by a tungsten lamp or lasers of different wavelengths. Under anodization, a microporous layer is formed up to a critical thickness above which macropores appear. Under illumination, the instability limiting the growth of the microporous layer occurs at a critical thickness much larger than in the dark. This critical thickness depends on HF concentration, illumination wavelength and intensity. These non-trivial dependencies are rationalized in a model in which photochemical etching in the electrochemically formed porous layer plays the central role.

  13. Asymptotics of the trap-dominated Gunn effect in p-type Ge

    Science.gov (United States)

    Bonilla, L. L.; Hernando, P. J.; Herrero, M. A.; Kindelan, M.; Velázquez, J. J. L.

    1997-09-01

    We present an asymptotic analysis of the Gunn effect in a drift-diffusion model - including electric-field-dependent generation-recombination processes - for long samples of strongly compensated p-type Ge at low temperature and under d.c. voltage bias. During each Gunn oscillation, there are different stages corresponding to the generation, motion and annihilation of solitary waves. Each stage may be described by one evolution equation for only one degree of freedom (the current density), except for the generation of each new wave. The wave generation is a faster process that may be described by solving a semiinfinite canonical problem. As a result of our study we have found that (depending on the boundary condition) one or several solitary waves may be shed during each period of the oscillation. Examples of numerical simulations validating our analysis are included.

  14. Effect of modified atmosphere packaging on the course of physical and chemical changes in chilled muscle tissue of silver carp (Hypophthalmichthys molitrix, V.).

    Science.gov (United States)

    Jezek, F; Buchtová, H

    2012-01-01

    The effect of two types of modified atmosphere (MA1: 69% N2, 25% CO2, 5% O2, 1% CO; MA2: 70% N2, 30% CO2) on changes in physical and chemical parameters (pH, a(w)--water activity, TVBN - total volatile basic nitrogen, TMA - trimethylamine, FFA - free fatty acids, PV - peroxide value, TBA--thiobarbituric acid) in muscle tissues of the silver carp was monitored in the study. The samples were stored at temperatures +2 +/- 2 degrees C for 18 days. Changes in gas volumes (CO2 and O2) in MAs were also monitored. CO2 levels increased in MA1 but decreased in MA2. At the end of 18 days of storage, a significantly (P TVBN and TMA levels in samples packaged under the two types of MAs remained almost identical until day 9 of the experiment. Later, however, significantly (P TVBN as a suitable indicator of freshness, and TBA assay as a suitable indicator of the extent of oxidative processes.

  15. Assessment of a modified and optimised method for determining chemical oxygen demand of solid substrates and solutions with high suspended solid content.

    Science.gov (United States)

    Raposo, F; de la Rubia, M A; Borja, R; Alaiz, M

    2008-07-15

    A modified approach to determine the chemical oxygen demand (COD) of solid substrates based on the DIN 38414-S9 standard method is proposed. The adapted procedure is assessed and compared with standard methods widely used for water and wastewater such as the American Public Health Association-American Water Works Association-Water Pollution Control Federation (APHA-AWWA-WPCF) standard methods 5220 B-open reflux (SM-OR) and 5220 D-closed reflux colorimetric (SM-CR). Solutions with high suspended concentration of solids, as well as digestates from an anaerobic reactor, were used during the comparative test. For solid substrates, the COD recovery was about 100% when the proposed method was used. For solutions with solid content higher than 20 g TS L(-1), the recovery was only completed when the proposed method was used, showing that the methods traditionally employed are not very appropriate for samples with the described characteristics. For instance, percentages of COD recovery in the ranges of 77.3-87.1% and 89.4-94.1% were achieved when the SM-OR and SM-CR methods were used, respectively.

  16. Monocyte/macrophage and protein interactions with non-fouling plasma polymerized tetraglyme and chemically modified polystyrene surfaces: In vitro and in vivo studies

    Science.gov (United States)

    Shen, Mingchao

    2001-07-01

    Biomaterials become encapsulated by fibrous tissues after implantation in soft tissues. Monocytes and macrophages are believed to play important roles in this response. The hypothesis tested in this dissertation is that material surface chemistry determines the amount of adsorbed proteins, which mediate monocyte adhesion, activation, and the foreign body response. On chemically modified polystyrene surfaces, monocyte adhesion in vitro was promoted by preadsorbed fibrinogen, fibronectin, and IgG, and increased with increasing amount of adsorbed fibrinogen. Adsorbed proteins and material surface chemistry mediated monocyte activation. TNFalpha release, procoagulant activity, and multinucleated foreign body giant cell (FBGC) formation was at least two-fold higher on IgG than other protein adsorbed surfaces. Adsorbed IgG and fibrinogen triggered monocyte intracellular calcium changes. FBGC formation was the highest on the hydrophobic polystyrene surface. Materials that greatly reduce non-specific protein adsorption may reduce the foreign body response to implanted materials. Radio-frequency plasma polymerized tetraglyme (CH3O(CH2CH2O)4CH 3) surfaces contained PEO-like chemical species and reduced fibrinogen adsorption to less than 10 ng/cm2. Monocyte adhesion to tetraglyme in vitro was also greatly reduced. Monocyte adhesion correlated linearly to the amount of adsorbed fibrinogen on a series of tetraglyme surfaces deposited at different plasma powers. Multivariate analysis using partial least squares regression identified the key surface spectra variables from electron spectroscopy for chemical analysis (ESCA) and time of flight secondary ion mass spectrometry (ToF-SIMS) that contributed to the non-fouling properties of tetraglyme. However, leukocyte adhesion to surfaces implanted subcutaneously in mice for 1 or 28 days did not correlate with protein adsorption and was higher on tetraglyme than the FEP control. Fibrous encapsulation to tetraglyme implanted for 28 days

  17. Sputtering deposition of P-type SnO films with SnO₂ target in hydrogen-containing atmosphere.

    Science.gov (United States)

    Hsu, Po-Ching; Hsu, Chao-Jui; Chang, Ching-Hsiang; Tsai, Shiao-Po; Chen, Wei-Chung; Hsieh, Hsing-Hung; Wu, Chung-Chih

    2014-08-27

    In this work, we had investigated sputtering deposition of p-type SnO using the widely used and robust SnO2 target in a hydrogen-containing reducing atmosphere. The effects of the hydrogen-containing sputtering gas on structures, compositions, optical, and electrical properties of deposited SnOx films were studied. Results show that polycrystalline and SnO-dominant films could be readily obtained by carefully controlling the hydrogen gas ratio in the sputtering gas and the extent of reduction reaction. P-type conductivity was unambiguously observed for SnO-dominant films with traceable Sn components, exhibiting a p-type Hall mobility of up to ∼3 cm(2) V(-1) s(-1). P-type SnO thin-film transistors using such SnO-dominant films were also demonstrated.

  18. Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers

    KAUST Repository

    Nam, Sungho

    2016-11-18

    Ambipolar organic phototransistors with sensing channel layers, featuring p-type and n-type conjugated polymer bulk heterojunctions, exhibit outstanding light-sensing characteristics in both p-channel and n-channel sensing operation modes.

  19. Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation.

    Science.gov (United States)

    Nipane, Ankur; Karmakar, Debjani; Kaushik, Naveen; Karande, Shruti; Lodha, Saurabh

    2016-02-23

    P-type doping of MoS2 has proved to be a significant bottleneck in the realization of fundamental devices such as p-n junction diodes and p-type transistors due to its intrinsic n-type behavior. We report a CMOS compatible, controllable and area selective phosphorus plasma immersion ion implantation (PIII) process for p-type doping of MoS2. Physical characterization using SIMS, AFM, XRD and Raman techniques was used to identify process conditions with reduced lattice defects as well as low surface damage and etching, 4X lower than previous plasma based doping reports for MoS2. A wide range of nondegenerate to degenerate p-type doping is demonstrated in MoS2 field effect transistors exhibiting dominant hole transport. Nearly ideal and air stable, lateral homogeneous p-n junction diodes with a gate-tunable rectification ratio as high as 2 × 10(4) are demonstrated using area selective doping. Comparison of XPS data from unimplanted and implanted MoS2 layers shows a shift of 0.67 eV toward lower binding energies for Mo and S peaks indicating p-type doping. First-principles calculations using density functional theory techniques confirm p-type doping due to charge transfer originating from substitutional as well as physisorbed phosphorus in top few layers of MoS2. Pre-existing sulfur vacancies are shown to enhance the doping level significantly.

  20. Low specific contact resistance on epitaxial p-type 4H-SiC with a step-bunching surface

    Science.gov (United States)

    Han, Chao; Zhang, Yu-Ming; Song, Qing-Wen; Tang, Xiao-Yan; Zhang, Yi-Men; Guo, Hui; Wang, Yue-Hu

    2015-11-01

    This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on the Al:Ti composition with no more than 50 at.% Al. The specific contact resistance (SCR) is obtained to be as low as 2.6 × 10-6 Ω·cm2 for the bilayered Ti(100 nm)/Al(100 nm) contact treated with 3 min rapid thermal annealing (RTA) at 1000 °C. The microstructure analyses examined by physical and chemical characterization techniques reveal an alloy-assisted ohmic contact formation mechanism, i.e., a high degree of alloying plays a decisive role in forming the interfacial ternary Ti3SiC2 dominating the ohmic behavior of the Ti/Al based contact. Furthermore, a globally covered Ti3SiC2 layer with (0001)-oriented texture can be formed, regardless of the surface step bunching as well as its structural evolution during the metallization annealing. Project supported by the Key Specific Projects of Ministry of Education of China (Grant No. 625010101), the National Natural Science Foundation of China (Grant No. 61234006), the Natural Science Foundation of ShaanXi Province, China (Grant No. 2013JQ8012), the Doctoral Fund of Ministry of Education of China (Grant No. 20130203120017), and the Specific Project of the Core Devices, China (Grant No. 2013ZX0100100-004).

  1. High performance p-type NiOx thin-film transistor by Sn doping

    Science.gov (United States)

    Lin, Tengda; Li, Xiuling; Jang, Jin

    2016-06-01

    Major obstacles towards power efficient complementary electronics employing oxide thin-film transistors (TFTs) lie in the lack of equivalent well performing p-channel devices. Here, we report a significant performance enhancement of solution-processed p-type nickel oxide (NiOx) TFTs by introducing Sn dopant. The Sn-doped NiOx (Sn-NiOx) TFTs annealed at 280 °C demonstrate substantially improved electrical performances with the increase in the on/off current ratio (Ion/Ioff) by ˜100 times, field-effect mobility (μlin) by ˜3 times, and the decrease in subthreshold swing by half, comparing with those of pristine NiOx TFTs. X-ray photoelectron spectroscopy and X-ray diffraction results confirm that Sn atoms tend to substitute Ni sites and induce more amorphous phase. A decrease in density of states in the gap of NiOx by Sn doping and the shift of Fermi level (EF) into the midgap lead to the improvements of TFT performances. As a result, Sn-NiOx can be a promising material for the next-generation, oxide-based electronics.

  2. Porous silicon damage enhanced phosphorus and aluminium gettering of p-type Czochralski silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hassen, M. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, PB 95 2050 Hammam-Lif (Tunisia); Ben Jaballah, A. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, PB 95 2050 Hammam-Lif (Tunisia)]. E-mail: gadour2003@yahoo.fr; Hajji, M. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, PB 95 2050 Hammam-Lif (Tunisia); Rahmouni, H. [Laboratoire de Physique des Semiconducteurs et des Composants Electroniques, Faculte des Sciences de Monastir, Rue de Kairouan, 5000 Monastir (Tunisia); Selmi, A. [Laboratoire de Physique des Semiconducteurs et des Composants Electroniques, Faculte des Sciences de Monastir, Rue de Kairouan, 5000 Monastir (Tunisia); Ezzaouia, H. [Institut National de Recherche Scientifique et Technique, Laboratoire de Photovoltaique et des Semiconducteurs, PB 95 2050 Hammam-Lif (Tunisia)

    2005-12-05

    In this work, porous silicon damage (PSD) is presented as a simple sequence for efficient external purification techniques. The method consists of using thin nanoporous p-type silicon on both sides of the silicon substrates with randomly hemispherical voids. Then, two main sample types are processed. In the first type, thin aluminium layers ({>=}1 {mu}m) are thermally evaporated followed by photo-thermal annealing treatments in N{sub 2} atmosphere at one of several temperatures ranging between 600 and 800 deg. C. In the second type, phosphorus is continually diffused in N{sub 2}/O{sub 2} ambient in a solid phase from POCl{sub 3} solution during heating at one of several temperatures ranging between 750 and 1000 deg. C for 1 h. Hall Effect and Van Der Pauw methods prove the existence of an optimum temperature in the case of phosphorus gettering at 900 deg. C yielding a Hall mobility of about 982 cm{sup 2} V{sup -1} s{sup -1}. However, in the case of aluminium gettering, there is no gettering limit in the as mentioned temperature range. Metal/Si Schottky diodes are elaborated to clarify these improvements. In this study, we demonstrate that enhanced metal solubility model cannot explain the gettering effect. The solid solubility of aluminium is higher than that of P atoms in silicon; however, the device yield confirms the effectiveness of phosphorus as compared to aluminium.

  3. Interstitial oxygen as a source of p-type conductivity in hexagonal manganites

    Science.gov (United States)

    Skjærvø, Sandra H.; Wefring, Espen T.; Nesdal, Silje K.; Gaukås, Nikolai H.; Olsen, Gerhard H.; Glaum, Julia; Tybell, Thomas; Selbach, Sverre M.

    2016-12-01

    Hexagonal manganites, h-RMnO3 (R=Sc, Y, Ho-Lu), have been intensively studied for their multiferroic properties, magnetoelectric coupling, topological defects and electrically conducting domain walls. Although point defects strongly affect the conductivity of transition metal oxides, the defect chemistry of h-RMnO3 has received little attention. We use a combination of experiments and first principles electronic structure calculations to elucidate the effect of interstitial oxygen anions, Oi, on the electrical and structural properties of h-YMnO3. Enthalpy stabilized interstitial oxygen anions are shown to be the main source of p-type electronic conductivity, without reducing the spontaneous ferroelectric polarization. A low energy barrier interstitialcy mechanism is inferred from Density Functional Theory calculations to be the microscopic migration path of Oi. Since the Oi content governs the concentration of charge carrier holes, controlling the thermal and atmospheric history provides a simple and fully reversible way of tuning the electrical properties of h-RMnO3.

  4. Ferromagnetic ordering of Cr and Fe doped p-type diamond: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Benecha, E. M. [Department of Physics, University of South Africa, P.O Box 392, UNISA 0003, Pretoria (South Africa); Lombardi, E. B. [College of Graduate Studies, University of South Africa, P.O Box 392, UNISA 0003, Pretoria (South Africa)

    2014-02-21

    Ferromagnetic ordering of transition metal dopants in semiconductors holds the prospect of combining the capabilities of semiconductors and magnetic systems in single hybrid devices for spintronic applications. Various semiconductors have so far been considered for spintronic applications, but low Curie temperatures have hindered room temperature applications. We report ab initio DFT calculations on the stability and magnetic properties of Fe and Cr impurities in diamond, and show that their ground state magnetic ordering and stabilization energies depend strongly on the charge state and type of co-doping. We predict that divacancy Cr{sup +2} and substitutional Fe{sup +1} order ferromagnetically in p-type diamond, with magnetic stabilization energies (and magnetic moment per impurity ion) of 16.9 meV (2.5 μ{sub B}) and 33.3 meV (1.0 μ{sub B}), respectively. These magnetic stabilization energies are much larger than what has been achieved in other semiconductors at comparable impurity concentrations, including the archetypal dilute magnetic semiconductor GaAs:Mn. In addition, substitutional Fe{sup +1} exhibits a strong half-metallic character, with the Fermi level crossing bands in only the spin down channel. These results, combined with diamond’s extreme properties, demonstrate that Cr or Fe dopedp-type diamond may successfully be considered in the search for room temperature spintronic materials.

  5. P-type InGaAsP coolers for integrated optic devices

    Science.gov (United States)

    Vashaee, Daryoosh; LaBounty, Christopher J.; Fang, Xiaofeng; Zeng, Gehong; Abraham, Patrick; Bowers, John E.; Shakouri, Ali

    2001-05-01

    Single stage thin film coolers based on thermoelectric and thermionic cooling in p-type InGaAsP superlattice structures have been fabricated. Devices with different sizes and at various ambient temperatures have been characterized. Experimental results showed 0.5 degree centigrade cooling below the ambient temperature at 25C. This cooling over 1 4mu2m thick superlattice barrier corresponds to cooling power densities on the order of 200 W/cm2. The device cools by a factor of two better at higher temperatures (70C). This is due to the reduction of the superlattice thermal conductivity and the broadening of the electronic distribution function at higher temperatures. 150x150 micrometers 2 devices provide largest cooling at room temperature while the optimum device size shrinks as the temperature increases. Simulations results that take into account finite thermal resistance of the InP substrate, the effect of the contact resistance, heat generation in the wire-bonds and metallic pads on top of the device predict accurately the optimum cooling of these micro refrigerators. By eliminating the major parasitic sources of heating (Joule heating in the substrate, heat conduction through the side contact and reducing the contact resistance to 5x7-7 ohm-cm2) simulations show that, ultimately, one can achieve 15 degree(s)C cooling (10's of kW/cm2 cooling power) with single stage p-InGaAsP thin film coolers.

  6. Results with p-type pixel sensors with different geometries for the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Allport, P.P. [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom); Bates, R.; Butter, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Casse, G. [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom); Dervan, P.J., E-mail: Paul.Dervan@cern.ch [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom); Forshaw, D.; Tsurin, I. [Department of Physics, University of Liverpool, Oxford Road, Liverpool, L69 7ZE (United Kingdom)

    2013-12-11

    Pixel detectors will be extensively used for the four innermost layers of the upgraded ATLAS experiment at the future High Luminosity LHC (HL-LHC) at CERN. The total area of pixel sensors will be over 5 m{sup 2}. The silicon sensors that will instrument the pixel volume will have to face several technology challenges. They will have to withstand doses up to 2×10{sup 16} n{sub eq}cm{sup −2}, to have a reduced inactive area at the edge of the sensors still being able to hold 1000 V bias voltage and to be relatively low cost considering the large area to be covered. N-side readout on p-type bulk is the most promising technology for satisfying the various requirements. Several sensor types have been produced in the UK, conceived for various readout systems, for studying the properties of n-in-p and n-in-n sensors before and after irradiation with test beam and laboratory measurements. The status of these studies is presented here.

  7. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    KAUST Repository

    Roques, Magali

    2015-11-13

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  8. High-Performance p-Type Black Phosphorus Transistor with Scandium Contact.

    Science.gov (United States)

    Li, Ling; Engel, Michael; Farmer, Damon B; Han, Shu-Jen; Wong, H-S Philip

    2016-04-26

    A record high current density of 580 μA/μm is achieved for long-channel, few-layer black phosphorus transistors with scandium contacts after 400 K vacuum annealing. The annealing effectively improves the on-state current and Ion/Ioff ratio by 1 order of magnitude and the subthreshold swing by ∼2.5×, whereas Al2O3 capping significantly degrades transistor performances, resulting in 5× lower on-state current and 3× lower Ion/Ioff ratio. The influences of moisture on black phosphorus metal contacts are elucidated by analyzing the hysteresis of 3-20 nm thick black phosphorus transistors with scandium and gold contacts under different conditions: as-fabricated, after vacuum annealing, and after Al2O3 capping. The optimal black phosphorus film thickness for transistors with scandium contacts is found to be ∼10 nm. Moreover, p-type performance is shown in all transistors with scandium contacts, suggesting that the Fermi level is pinned closer to the valence band regardless of the flake thickness.

  9. Design of P-Type Cladding Layers for Tunnel-Injected UVA Light Emitting Diodes

    CERN Document Server

    Zhang, Yuewei; Akyol, Fatih; Allerman, Andrew A; Moseley, Michael W; Armstrong, Andrew M; Rajan, Siddharth

    2016-01-01

    We discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that capacitance-voltage measurements can be used to estimate the compensation and doping in p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62% were achieved for tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be used to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs, and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.

  10. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  11. P-type Planet–Planet Scattering: Kepler Close Binary Configurations

    Science.gov (United States)

    Gong, Yan-Xiang

    2017-01-01

    A hydrodynamical simulation shows that a circumbinary planet will migrate inward to the edge of the disk cavity. If multiple planets form in a circumbinary disk, successive migration will lead to planet–planet scattering (PPS). PPS of Kepler-like circumbinary planets is discussed in this paper. The aim of this paper is to answer how PPS affects the formation of these planets. We find that a close binary has a significant influence on the scattering process. If PPS occurs near the unstable boundary of a binary, about 10% of the systems can be completely destroyed after PPS. In more than 90% of the systems, there is only one planet left. Unlike the eccentricity distribution produced by PPS in a single star system, the surviving planets generally have low eccentricities if PPS take place near the location of the currently found circumbinary planets. In addition, the ejected planets are generally the innermost of two initial planets. The above results depend on the initial positions of the two planets. If the initial positions of the planets are moved away from the binary, the evolution tends toward statistics similar to those around single stars. In this process, the competition between the planet–planet force and the planet-binary force makes the eccentricity distribution of surviving planets diverse. These new features of P-type PPS will deepen our understanding of the formation of these circumbinary planets.

  12. p-Type CuYO{sub 2} as hydrogen photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Trari, M.; Bouguelia, A.; Bessekhouad, Y. [Laboratoire de Stockage et de Valorisation des Energies Renouvelables, BP 32 El-Alia 16311, Algiers (Algeria)

    2006-01-23

    A new photochemical system based on a CuYO{sub 2} dispersion in aqueous S{sup 2-} or SO{sub 3}{sup 2-} solution as hole scavengers is proposed. The delafossite CuYO{sub 2}, doped with calcium, is a low p-type semiconductor with a hole mobility of 7.3x10{sup -7}m{sup 2}V{sup -1}s{sup -1}. The band gap is 3.50eV and the transition is directly allowed. The valence band edge, located at 5.23eV below vacuum, is made up from Cu-3d type typical of delafossite oxides. The flat band potential V{sub fb} (+0.17V{sub sce}) lies below the H{sub 2}O/H{sub 2} potential permitting a spontaneous H{sub 2}-formation under band gap illumination in aqueous S{sup 2-} or SO{sub 3}{sup 2-} electrolytes. p-CuYO{sub 2} loaded with n-Cu{sub 2}O exhibited a higher performance with a H{sub 2} evolution rate of 0.4cm{sup 3}h{sup -1} in 0.1MS{sup 2-} (pH 13.4). The decrease of photoactivity over time is due to the formation of yellow polysulfides S{sub n}{sup 2-} which compete with H{sub 2}O in the reduction process. (author)

  13. High-throughput search of ternary chalcogenides for p-type transparent electrodes

    Science.gov (United States)

    Shi, Jingming; Cerqueira, Tiago F. T.; Cui, Wenwen; Nogueira, Fernando; Botti, Silvana; Marques, Miguel A. L.

    2017-01-01

    Delafossite crystals are fascinating ternary oxides that have demonstrated transparent conductivity and ambipolar doping. Here we use a high-throughput approach based on density functional theory to find delafossite and related layered phases of composition ABX2, where A and B are elements of the periodic table, and X is a chalcogen (O, S, Se, and Te). From the 15 624 compounds studied in the trigonal delafossite prototype structure, 285 are within 50 meV/atom from the convex hull of stability. These compounds are further investigated using global structural prediction methods to obtain their lowest-energy crystal structure. We find 79 systems not present in the materials project database that are thermodynamically stable and crystallize in the delafossite or in closely related structures. These novel phases are then characterized by calculating their band gaps and hole effective masses. This characterization unveils a large diversity of properties, ranging from normal metals, magnetic metals, and some candidate compounds for p-type transparent electrodes. PMID:28266587

  14. Enhanced thermoelectric figure of merit of p-type half-Heuslers.

    Science.gov (United States)

    Yan, Xiao; Joshi, Giri; Liu, Weishu; Lan, Yucheng; Wang, Hui; Lee, Sangyeop; Simonson, J W; Poon, S J; Tritt, T M; Chen, Gang; Ren, Z F

    2011-02-01

    Half-Heuslers would be important thermoelectric materials due to their high temperature stability and abundance if their dimensionless thermoelectric figure of merit (ZT) could be made high enough. The highest peak ZT of a p-type half-Heusler has been so far reported about 0.5 due to the high thermal conductivity. Through a nanocomposite approach using ball milling and hot pressing, we have achieved a peak ZT of 0.8 at 700 °C, which is about 60% higher than the best reported 0.5 and might be good enough for consideration for waste heat recovery in car exhaust systems. The improvement comes from a simultaneous increase in Seebeck coefficient and a significant decrease in thermal conductivity due to nanostructures. The samples were made by first forming alloyed ingots using arc melting and then creating nanopowders by ball milling the ingots and finally obtaining dense bulk by hot pressing. Further improvement in ZT is expected when average grain sizes are made smaller than 100 nm.

  15. High-throughput search of ternary chalcogenides for p-type transparent electrodes

    Science.gov (United States)

    Shi, Jingming; Cerqueira, Tiago F. T.; Cui, Wenwen; Nogueira, Fernando; Botti, Silvana; Marques, Miguel A. L.

    2017-03-01

    Delafossite crystals are fascinating ternary oxides that have demonstrated transparent conductivity and ambipolar doping. Here we use a high-throughput approach based on density functional theory to find delafossite and related layered phases of composition ABX2, where A and B are elements of the periodic table, and X is a chalcogen (O, S, Se, and Te). From the 15 624 compounds studied in the trigonal delafossite prototype structure, 285 are within 50 meV/atom from the convex hull of stability. These compounds are further investigated using global structural prediction methods to obtain their lowest-energy crystal structure. We find 79 systems not present in the materials project database that are thermodynamically stable and crystallize in the delafossite or in closely related structures. These novel phases are then characterized by calculating their band gaps and hole effective masses. This characterization unveils a large diversity of properties, ranging from normal metals, magnetic metals, and some candidate compounds for p-type transparent electrodes.

  16. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  17. Extraction of interface state density and resistivity of suspended p-type silicon nanobridges

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiahong; Liu Qingquan; Ge Yixian; Gu Fang; Li Min; Mao Xiaoli; Cao Hongxia

    2013-01-01

    The evaluation of the influence of the bending deformation of silicon nanobridges on their electrical properties is crucial for sensing and actuating applications.A combined theory/experimental approach for determining the resistivity and the density of interface states of the bending silicon nanobridges is presented.The suspended p-type silicon nanobridge test structures were fabricated from silicon-on-insulator wafers by using a standard CMOS lithography and anisotropic wet etching release process.After that,we measured the resistance of a set of silicon nanobridges versus their length and width under different bias voltages.In conjunction with a theoretical model,we have finally extracted both the interface state density of and resistivity suspended silicon nanobridges under different bending deformations,and found that the resistivity of silicon nanobridges without bending was 9.45 mΩ·cm and the corresponding interface charge density was around 1.7445 × 1013 cm-2.The bending deformation due to the bias voltage slightly changed the resistivity of the silicon nanobridge,however,it significantly changed the distribution of interface state charges,which strongly depends on the intensity of the stress induced by bending deformation.

  18. Direct electrical communication between chemically modified enzymes and metal electrodes. 1. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Degani, Y.; Heller, A.

    1987-03-12

    Glucose-reduced glucose oxidase does not directly transfer electrons to conventional electrodes because the distance between its redox centers and the electrode surface exceeds, even on closest approach, the distance across which electrons are transferred at sufficient rates. Therefore, electrical communication between the redox centers of this enzyme and electrodes required either the presence, and diffusion to and from the enzyme's redox center, of O/sub 2/ and H/sub 2/O/sub 2/, or the presence of members of a redox couple, or the use of special electrodes like TTF/TCNQ. They show here that direct electrical communication between the redox center of a large enzyme molecule and a simple metal electrode can be established through chemical modification of the enzyme. When a sufficient number of electron-relaying centers are attached through covalent bonding to the protein of glucose oxidase, electrons are transferred from the enzyme's redox centers to relays that are closer to the periphery of the enzyme. Because some of the relays are located sufficiently close to the enzyme's surface, electrons are transferred at practical rates to the electrode. As a result, a glucose-concentration-dependent current flows in an electrochemical cell made with conventional electrodes when the electrolytic solution contains the relay-modified enzyme. Such a current does not flow when the solution contains the natural enzyme. Specifically, electrical communication is established between the FAD/FADH/sub 2/ centers of glucose oxidase and gold, platinum, or carbon electrodes through the covalent bonding of an average of 12 molecules of ferrocenecarboxylic acid per glucose oxidase molecule.

  19. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    Science.gov (United States)

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  20. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    Science.gov (United States)

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  1. Electron spin relaxation in p-type GaAs quantum wells

    Science.gov (United States)

    Zhou, Y.; Jiang, J. H.; Wu, M. W.

    2009-11-01

    We investigate electron spin relaxation in p-type GaAs quantum wells from a fully microscopic kinetic spin Bloch equation approach, with all the relevant scatterings, such as electron-impurity, electron-phonon, electron-electron Coulomb, electron-hole Coulomb and electron-hole exchange (the Bir-Aronov-Pikus (BAP) mechanism) scatterings, explicitly included. Via this approach, we examine the relative importance of the D'yakonov-Perel' (DP) and BAP mechanisms in wide ranges of temperature, hole density, excitation density and impurity density, and present a phase-diagram-like picture showing the parameter regime where the DP or BAP mechanism is more important. It is discovered that in the impurity-free case the temperature regime where the BAP mechanism is more efficient than the DP one is around the hole Fermi temperature for high hole density, regardless of excitation density. However, in the high impurity density case with the impurity density identical to the hole density, this regime is roughly from the electron Fermi temperature to the hole Fermi temperature. Moreover, we predict that for the impurity-free case, in the regime where the DP mechanism dominates the spin relaxation at all temperatures, the temperature dependence of the spin relaxation time (SRT) presents a peak around the hole Fermi temperature, which originates from the electron-hole Coulomb scattering. We also predict that at low temperature, the hole-density dependence of the electron SRT exhibits a double-peak structure in the impurity-free case, whereas it shows first a peak and then a valley in the case of identical impurity and hole densities. These intriguing behaviors are due to the contribution from holes in high subbands.

  2. Precipitation of Cu and Ni in n- and p-type Czochralski-grown silicon characterized by photoluminescence imaging

    Science.gov (United States)

    Sun, Chang; Nguyen, Hieu T.; Rougieux, Fiacre E.; Macdonald, Daniel

    2017-02-01

    Photoluminescence (PL) images and micro-PL maps were taken on Cu- or Ni-doped monocrystalline silicon wafers, to investigate the distribution of the metal precipitates. Several n-type and p-type wafers were used in which Cu or Ni were introduced in the starting melt of the ingots and precipitated during the ingot cooling (as opposed to surface contamination). The micro-PL mapping allowed investigation of the metal precipitates with a higher spatial resolution. Markedly different precipitation patterns were observed in n- and p-type samples: in both Cu- and Ni-doped n-type samples, circular central regions and edge regions were observed. In these regions, particles were distributed randomly and homogeneously. In the p-type Cu-doped and Ni-doped samples, by contrast, the precipitates occurred in lines along orientations. The difference in the precipitation behaviour in n- and p-type samples is conjectured to be caused by different concentrations of self-interstitials and vacancies remaining in the crystal during the ingot cooling: there are more vacancies in the n-type ingots but more interstitials in the p-type ingots. The dopant effects on the intrinsic point defect concentrations in silicon crystals and possible precipitation mechanisms are discussed based on the findings in this work and the literature.

  3. Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Hsien Li

    2016-04-01

    Full Text Available Considering the increasing global demand for energy and the harmful ecological impact of conventional energy sources, it is obvious that development of clean and renewable energy is a necessity. Since the Sun is our only external energy source, harnessing its energy, which is clean, non-hazardous and infinite, satisfies the main objectives of all alternative energy strategies. With attractive features, i.e., good performance, low-cost potential, simple processibility, a wide range of applications from portable power generation to power-windows, photoelectrochemical solar cells like dye-sensitized solar cells (DSCs represent one of the promising methods for future large-scale power production directly from sunlight. While the sensitization of n-type semiconductors (n-SC has been intensively studied, the use of p-type semiconductor (p-SC, e.g., the sensitization of wide bandgap p-SC and hole transport materials with p-SC have also been attracting great attention. Recently, it has been proved that the p-type inorganic semiconductor as a charge selective material or a charge transport material in organometallic lead halide perovskite solar cells (PSCs shows a significant impact on solar cell performance. Therefore the study of p-type semiconductors is important to rationally design efficient DSCs and PSCs. In this review, recent published works on p-type DSCs and PSCs incorporated with an inorganic p-type semiconductor and our perspectives on this topic are discussed.

  4. Comparison of ferromagnetism in n- and p-type magnetic semiconductor thin films of ZnCoO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.H., E-mail: yuhua@phys.ncku.edu.t [Department of Physics, National Cheng Kung University, No. 1, Ta-Shuei Road, Tainan 70101, Taiwan (China); Lee, J.C.; Min, J.F. [Department of Physics, National Cheng Kung University, No. 1, Ta-Shuei Road, Tainan 70101, Taiwan (China); Su, C.W. [Department of Applied Physics, National Chiayi University, Chiayi 60004, Taiwan (China)

    2011-07-15

    Both n- and p-type diluted magnetic semiconductor ZnCoO are made by magnetron co-sputtering with, respectively, dopants of Al and dual dopants of Al and N. The two sputtering targets are compound ZnCoO with 5% weight of Co and pure metal Al. Sputtering gases for n- and p-type films are pure Ar and N{sub 2}, respectively. These films are magnetic at room temperature and possess free electron- and hole-concentration of 5.34x10{sup 20} and 5.27x10{sup 13} cm{sup -3}. Only the n-type film exhibits anomalous Hall-effect signals. Magnetic properties of these two types of films are compared and discussed based on measurements of microstructure and magneto-transport properties. - Research highlights: n-type ZnCoO:Al and p-type ZnCoO:(Al, N) films are made and are both ferromagnetic at room temperature. Signal of anomalous Hall-effect (AHE) is clearly observed only for n-type film but not for p-type film. Photoluminescence (PL) spectrum shows a peak attributed to shallow acceptor band of N. Ferromagnetic exchange coupling between magnetic ions in n-type film is through spin polarized free electrons. Ferromagnetism in p-type film is not attributed to the free hole-carriers mediation but to the overlap of BMP.

  5. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    Science.gov (United States)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.

    2013-09-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  6. Modeling of normal incidence absorption in p-type GaAs/AlGaAs quantum well infrared detectors

    Science.gov (United States)

    Brown, Gail J.; Szmulowicz, Frank

    1995-04-01

    The absorption of infrared radiation at normal incidence in p-type GaAs/AlGaAs quantum wells, unlike in n-type, is fundamentally allowed. We have measured and theoretically modeled the bound-to-continuum absorption in these p-type materials. The infrared absorption coefficient was calculated are based on the electronic structure, wave functions and optical matrix elements obtained from an 8 X 8 envelope-function approximation (EFA) calculation. The 8 X 8 EFA Hamiltonian incorporates the coupling between the heavy, light, spin-orbit, and conduction bands. In calculating the continuum states for bound-to- continuum intersubband absorption, we do not enclose the well in an artificial box with infinite walls. A comparison of the theoretical absorption and measured photoresponse results verified the accuracy of our model and provided a basis for optimizing the design of p-type quantum wells for infrared detection.

  7. Comparison of p-type commercial electron diodes for in vivo dosimetry.

    Science.gov (United States)

    Marre, D; Marinello, G

    2004-01-01

    This paper compares the characteristics of three types of commercial p-type electron diodes specially designed for in vivo dosimetry (Scanditronix EDD2, Sun Nuclear QED 111200-0 and PTW T60010E diodes coupled with a Therados DPD510 dosimeter) in electron fields with energies from 4.5 to 21 MeV, and in conditions similar to those encountered in radiotherapy. In addition to the diodes, a NACP plane parallel ionization chamber and film dosimeters have been used in the experiments. The influence of beam direction on the diode responses (directional effect) was investigated. It was found to be the greatest for the lowest electron beam energy. At 12 MeV and an incidence of +/- 30 degrees, the variation was found to be less than 1% for the Scanditronix and Sun Nuclear diodes and less than 3% for the PTW one. The three diodes exhibited a variation in sensitivity with dose-per-pulse of less than 1% over the range 0.18-0.43 mGy/pulse. The temperature dependence was also studied. The response was linear for the three diodes between 22.2 and 40 degrees C and the sensitivity variations with temperature were (0.25+/-0.01)%/degree C, (0.28+/-0.01)%/degree C, and (0.02 +/-0.01)%/degree C for Scanditronix, Sun Nuclear, and PTW diodes, respectively. Finally the perturbation to the irradiation field induced by the presence of diodes placed at the surface of a homogeneous phantom was investigated and found to be significant, both at the surface and at the depth of maximum dose (several tens of percent) for all three diode types. There is an increase of dose right underneath the diode (close to the surface) and a dose shadow at the depth of maximum. The study shows that electron diodes can be used for in vivo dosimetry provided their characteristics are carefully established before use and taken into consideration at the time of interpretation of the results.

  8. Photoelectrochemical hydrogen-evolution over p-type chalcopyrite CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Djellal, L. [Laboratoire des Solutions Solides, Faculte de Physique, (USTHB) BP 32 El Alia 16111, Algiers (Algeria); Omeiri, S.; Bouguelia, A. [Laboratoire de Stockage et de Valorisation des Energies Renouvelables, Faculte de Chimie, (USTHB) BP 32 El Alia 16111, Algiers (Algeria); Trari, M. [Laboratoire de Stockage et de Valorisation des Energies Renouvelables, Faculte de Chimie, (USTHB) BP 32 El Alia 16111, Algiers (Algeria)], E-mail: mtrari@caramail.com

    2009-05-12

    Photocatalytic H{sub 2}-production has been realized over active CuInSe{sub 2}, synthesized by the fusion technique. The material crystallizes in the chalcopyrite structure and exhibits p-type conductivity ascribed to copper deficiency. An optical gap of 0.95 eV was determined from the reflectance diffuse spectrum. The electrical conductivity follows an Arrhenius-type law with activation energy of 23 meV in conformity with polaron hopping. The slope and the intercept of the Mott-Schottky plot gave a holes density N{sub A} of 5.9 x 10{sup 18} cm{sup -3} and a flat band potential of -0.36V{sub SCE}, in perfect agreement with the photo-onset potential V{sub on} (-0.35V{sub SCE}). Hence, the conduction band, located at -1.29V{sub SCE}, allows a spontaneous H{sub 2} liberation upon visible light. In aqueous solutions, the material is stabilized by hole consumption involving X{sup 2-} species (=S{sup 2-} and SO{sub 3}{sup 2-}). H{sub 2} formation would become thermodynamically easy in alkaline media and the best photoactivity was obtained in thiosulfate electrolyte (10{sup -2} M S{sub 2}O{sub 3}{sup 2-}, 0.5 M KOH) with an evolution rate of 0.009 ml mg{sup -1} h{sup -1}. The light induced electron transfer through the interface involves two steps mechanism where S{sub 2}O{sub 3}{sup 2-} is oxidized to SO{sub 3}{sup 2-} and SO{sub 4}{sup 2-} by successive reactions. Such results are corroborated by the semi logarithmic plots and photocurrent-photopotential characteristics. The influence of pH was studied with S{sub 2}O{sub 3}{sup 2-} The tendency towards saturation for prolonged irradiation is attributed to competitive reductions of the end products S{sub n}{sup 2-} and S{sub 2}O{sub 6}{sup 2-} with water and to the yellow color of polysulfide S{sub n}{sup 2-}.

  9. Lifetime and DLTS studies of interstitial Fe in p-type Si

    Energy Technology Data Exchange (ETDEWEB)

    Syre, M.; Holt, A. [Institute for Energy Technology (IFE), Solar Energy Department, P.O. Box 40, 2027 Kjeller (Norway); Monakov, E. [University of Oslo (UiO), Department of Physics, Blindern P.O. Box 1048, 0316 Oslo (Norway); Institute for Energy Technology (IFE), Solar Energy Department, P.O. Box 40, 2027 Kjeller (Norway); Svensson, B.G. [University of Oslo (UiO), Department of Physics, Blindern P.O. Box 1048, 0316 Oslo (Norway)

    2011-03-15

    Fe is one of the most prominent metallic impurities in solar-grade Si. In this work we have investigated the kinetics of in-diffusion and formation of the interstitial fraction (Fe{sub i}). P-type Cz-Si with a resistivity of 10 {omega}-cm has been intentionally contaminated with Fe by in-diffusion from a surface layer of FeCl{sub 3} at 700 C followed by cooling with a rate of {proportional_to} 3.3 K/s. The concentration of Fe{sub i} has been measured both by microwave photo conductance decay ({mu}-PCD) and deep level transient spectroscopy (DLTS). In the {mu}-PCD measurements, the Fe{sub i} concentration has been determined using the ef- fect of light-induced splitting of the iron-boron pairs (FeB), while in the DLTS measurements Fe{sub i} has been monitored by the donor electronic state at 0.43 eV above the valence band. We have observed a linear dependence between the minority carrier lifetime ({tau}) and the inverse Fe{sub i} concentration. This confirms Fe{sub i} as the dominating recombination centre. In the present investigations we use a material relevant for solar cells with a resistivity of 10 {omega}-cm. We have found that the concentration of interstitial iron decreases with increasing time for in-diffusion of Fe, provided identical cooling condition. This decreasing con- centration of Fe{sub i} is believed to be due to formation of more iron precipitates that serve as sinks for fast diffusing Fe{sub i}. A high temperature anneal at 1000 C for 1 minute followed by fast cooling ({proportional_to} 33 K/s) results in dissolution of the precipitates and freezing Fe into interstitial positions, where the concentration of Fe{sub i} increases with increasing in-diffusion time. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Electronic Properties of Red P-Type Tl2S5 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    G. A. Gamal; M. Abou Zied; A. A. Ebnalwaled

    2005-01-01

    @@ Single crystals of red Tl2S5 were prepared by a special modified vertical Bridgman and Stockbarger technique.This growth was performed in our laboratory. The influences of temperature on the electrical conductivity, Hall mobility, carrier concentration, and thermoelectric power (TEP) were carried out in the temperature range 277-413 K. Throughout these measurements, various physical parameters such as effective mass of charge carriers,carrier mobility, diffusion coefficient, and the relaxation time for both majority and minority carriers were found.

  11. The Growth of p-Type AIII BIII C2V I Single Crystals

    OpenAIRE

    2000-01-01

    AIIIBIIIC2VI single crystals were grown by the modified Bridgman-Stockbarger method, a procedure similar to direct freezing in our crystal growth laboratory. AIIIBIIIC2VI compounds are collected into two groups (III. group: TI, Ga, In and VI. group: Se, S, Te): 1. TlGaSe2, TlGaS2 and TlInS2 have layer structure. 2. TlInSe2, TlInTe2 and TlGaTe2 have chained structure. The main reasons such crystals grown with this method is similar to the direct freezing method because 1) quality of crystals i...

  12. Proton Pumping and Slippage Dynamics of a Eukaryotic P-Type ATPase Studied at the Single-Molecule Level

    DEFF Research Database (Denmark)

    Veshaguri, Salome

    In all eukaryotes the plasma membrane potential and secondary transport systems are energized by P-type ATPases whose regulation however remains poorly understood. Here we monitored at the single-molecule level the activity of the prototypic proton pumping P-type ATPase Arabidopsis thaliana isoform......-intuitively increased the time spent pumping. Allosteric regulation by pH gradients affected the time spent pumping and the leakage probability but surprisingly not the intrinsic pumping rate. Interestingly, ATP dilution decreased the ATP hydrolysis rates in bulk while single molecule data revealed that intrinsic...

  13. Simulation of Enhancement Mode GaN HEMTs with Threshold > 5 V using P-type Buffer

    CERN Document Server

    Bajaj, Sanyam; Krishnamoorthy, Sriram; Hung, Ting-Hsiang; Rajan, Siddharth

    2015-01-01

    A high threshold voltage enhancement-mode GaN HEMT with p-type doped buffer is discussed and simulated. Analytical expressions are derived to explain the role of buffer capacitance in designing and enhancing threshold voltage. Simulations of the proposed device with p-type buffer show threshold voltages above 5 V, and a positive shift in threshold voltage as the oxide capacitance is reduced, thus enabling threshold voltage tunability over an unprecedented range for GaN-based HEMTs. The electric field profiles, breakdown performance, on-resistance and delay tradeoffs in the proposed pGaN back HEMT device are also discussed.

  14. Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH33

    Directory of Open Access Journals (Sweden)

    Sergej Alexandrovich Filonovich, Hugo Águas, Tito Busani, António Vicente, Andreia Araújo, Diana Gaspar, Marcia Vilarigues, Joaquim Leitão, Elvira Fortunato and Rodrigo Martins

    2012-01-01

    Full Text Available We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (~20 nm films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film.

  15. Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors.

    Science.gov (United States)

    Wang, Shunfeng; Zhao, Weijie; Giustiniano, Francesco; Eda, Goki

    2016-02-14

    We report on the p-type doping effect of oxygen and ozone molecules on mono- and few-layer WSe2 and MoSe2 field effect transistors. We show that adsorption of oxygen and ozone under ambient conditions results in subtantial doping and corresponding enhancement in the hole conductivity of the devices. Ozone-induced doping is found to be rapid and efficient, saturating within minutes of exposure whereas oxygen-induced doping occurs over a period of days to reach the equivalent level of doping. Our observations reveal that the water adlayer on the material surface plays a crucial role in solubilizing oxygen and ozone and in forming a redox couple with a large chemical potential.

  16. Increased efficiency in pn-junction PbS QD solar cells via NaHS treatment of the p-type layer

    Science.gov (United States)

    Speirs, Mark J.; Balazs, Daniel M.; Dirin, Dmitry N.; Kovalenko, Maksym V.; Loi, Maria Antonietta

    2017-03-01

    Lead sulfide quantum dot (PbS QD) solar cell efficiencies have improved rapidly over the past years due in large part to intelligent band alignment considerations. A pn-junction can be formed by connecting PbS layers with contrasting ligands. However, the resulting doping concentrations are typically low and cannot be effectively controlled. Here, we present a method of chemically p-doping films of thiol capped PbS QDs. P-n junction solar cells with increased doping in the p-type layer show improved short circuit current and fill factor, leading to an improvement in the power conversion efficiency from 7.1% to 7.6%. By examining Schottky diodes, field effect transistors, and the absorption spectra of treated and untreated PbS QDs, we show that the improved efficiency is due to the increased doping concentration in the thiol capped QD layer and to denser packing of the PbS QD film.

  17. 表面活性剂改性沸石对水中酚类化合物吸附性能研究%Adsorption of Phenol Chemicals by Surfactant-Modified Zeolites

    Institute of Scientific and Technical Information of China (English)

    谢杰; 王哲; 吴德意; 李春杰

    2012-01-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently.Surfactant-modified zeolites were studied for adsorption of phenol chemicals(phenol,p-chlorphenol,bisphenol A).It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification.The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm.For the two surfactant-surfactant modified zeolites,the maximum adsorption amounts of phenol,p-chlorphenol,and bisphenol A calculated from the Langmuir equation were 37.7,52.36,90.9 mg·g-1 and 10.7,22.83,56.8 mg·g-1,respectively.When pH values of solutions were higher than the pKa values of phenol chemicals,the removal efficiencies were getting higher with the increase of pH values.The octanol/water partition coefficient(Kow) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites.Higher Kow value,which means the greater hydrophobicity of the chemicals,resulted in a higher removal.%使用表面活性剂对2种粉煤灰合成沸石进行改性处理,研究改性沸石对酚类化合物(苯酚、对氯酚和双酚A)的吸附特性.吸附试验结果表明,合成沸石经过阳离子表面活性剂十六烷基三甲基溴化铵改性后,对酚类化合物的吸附性能均有大幅提升,吸附等温线模型均较符合Langmuir模型.2种改性沸石对酚类化合物(苯酚、对氯酚和双酚A)的Langmuir理论最大吸附量分别可达37.7、52.36、90.9 mg.g-1和10.71、22.83、56.8 mg.g-1.当溶液pH值高于酚类化合物的解离系数pKa时,吸附效果随pH升高而增加.结果还表明,酚类化合物的疏水性(辛醇/水分配系数Kow)越强,改性沸石的吸附能力也越高.

  18. Ab initio studies on n-type and p-type Li4Ti5O12

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhi-Yong; Nie Zheng-Xin; Du Yan-Lan; Ouyang Chu-Ying; Shi Si-Qi; Lei Min-Sheng

    2009-01-01

    This paper studies the structure and electronic properties of Li4Ti5O12, as anode material for lithium ion batteries,from first principles calculations. The results suggest that there are two kinds of unit cell of Li4Ti5O12: n-type and p-type. The two unit cells have different structures and electronic properties: the n-type with two 16d site Li ions is metallic by electron, while the p-type with three 16d Li ions is metallic by hole. However, the Li4Ti5O12 is an insulator.It is very interesting that one n-type cell and two p-type cells constitute one Li4Ti5O12 supercell which is insulating.The results show that the intercalation potential obtained with a p-type unit cell with one additional electron is quite close to the experimental value of 1.5 V.

  19. Study of p-type ZnO and MgZnO Thin Films for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianlin [Univ. of California, Riverside, CA (United States)

    2015-07-31

    This project on study of p-type ZnO and MgZnO thin films for solid state lighting was carried out by research group of Prof. Jianlin Liu of UCR during the four-year period between August 2011 and July 2015. Tremendous progress has been made on the proposed research. This final report summarizes the important findings.

  20. Electrical band-gap narrowing in n- and p-type heavily doped silicon at 300 K

    Science.gov (United States)

    Van Cong, H.; Brunet, S.

    1986-09-01

    Based on previous results band-gap narrowing in heavily doped silicon at 300 K is investigated and expressed in terms of impurity size-and-doping effects. The results obtained for n- and p-type heavily doped silicon are compared with other theories and experiments.

  1. Comparison of action of mixed permanent chemical modifiers for cadmium and lead determination in sediments and soils by slurry sampling graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dobrowolski, Ryszard; Adamczyk, Agnieszka; Otto, Magdalena

    2010-09-15

    Slurry sampling atomic absorption spectrometry with electrothermal atomization was used to the determination of cadmium (Cd) and lead (Pb) in soils and sediments using permanent modifiers. Comparison of action of mixed permanent modifiers niobium (Nb)/iridium (Ir) and tungsten (W)/iridium (Ir) were studied in detail. The effect of amount of Ir, W and Nb on analytical signals of Cd and Pb was examined. The optimal amounts of modifiers for Cd and Pb determination were stated. Niobium carbide formation on graphite surface was studied for different pyrolysis temperatures. Finally for Cd determination in sediments and soils 200 microg of Nb mixed with 5 microg of Ir was used as permanent modifiers and 15 microg of Nb mixed with 200 microg of Ir for Pb determination. Suspensions were prepared in 5% HNO(3). The analytical procedure was optimized carefully basing on data from pyrolysis and atomization curves studies. Ammonium dihydrogen phosphate was used additionally as matrix modifier during Cd determination in samples in order to prevent interferences coming from matrix components. The analysis of CRMs confirmed the reliability of the proposed approach. The precision and accuracy of Cd and Pb determination by the described method for soils and sediments were acceptable.

  2. Towards p-type ZnO using post-growth annealing

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K.; Roro, K.T.; Botha, J.R. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2008-01-15

    The optical properties of zinc oxide (ZnO) films grown by metalorganic chemical vapor deposition on GaAs substrate are investigated. Samples were annealed in two different ambients, namely nitrogen and oxygen, and studied by photoluminescence (PL). Samples annealed in oxygen at 600 C show arsenic acceptor-related signatures. The near-band-edge emission is dominated by an excitonic feature at 3.355 eV and compensation broadens the spectra. No such changes are observed when similar samples are annealed in nitrogen. The diffusion of arsenic from the GaAs substrate appears to be a source of acceptors. This effect is enhanced in an oxygen atmosphere. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Magnetostriction and magnetoelastic quantum oscillations in P-type lead telluride

    Science.gov (United States)

    Thompson, T. E.; Aron, P. R.; Chandrasekhar, B. S.; Langenberg, D. N.

    1972-01-01

    A detailed experimental and theoretical study of quantum oscillations in the magnetostriction and Young's modulus of p-PbTe is presented. The valance band of PbTe is approximated by a spheroidal, nonparabolic model in which the effects of strain on the valance band parameters are described by a deformation potential model. Using appropriate thermodynamic derivatives of the modified Lifshitz-Kosevich expression for the oscillatory parts of the electronic free energy, it is shown that both types of oscillations arise mainly from relative shifts of the valance band maxima due to shear strains, accompanied by intervalley charge transfer. Band parameters derived from the periods, phases, and spin splitting of the oscillations are in generally good agreement with values reported by other workers. A detailed comparison is made of the experimentally observed oscillation amplitudes with those predicted by theory, and satisfactory agreement is found. The ratio of the amplitudes of the two effects yields a value of the valance band deformation potential in good agreement with a value found from piezoresistance experiments by Burke.

  4. Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides both exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity.

    Science.gov (United States)

    Ahmed, Yassir A; Yates, Edwin A; Moss, Diana J; Loeven, Markus A; Hussain, Sadaf-Ahmahni; Hohenester, Erhard; Turnbull, Jeremy E; Powell, Andrew K

    2016-10-20

    Heparin/heparan sulfate (HS) glycosaminoglycans are required for Slit-Robo cellular responses. Evidence exists for interactions between each combination of Slit, Robo and heparin/HS and for formation of a ternary complex. Heparin/HS are complex mixtures displaying extensive structural diversity. The relevance of this diversity has been studied to a limited extent using a few select chemically-modified heparins as models of HS diversity. Here we extend these studies by parallel screening of structurally diverse panels of eight chemically-modified heparin polysaccharides and numerous natural HS oligosaccharide chromatographic fractions for binding to both Drosophila Slit and Robo N-terminal domains and for activation of a chick retina axon response to the Slit fragment. Both the polysaccharides and oligosaccharide fractions displayed variability in binding and cellular activity that could not be attributed solely to increasing sulfation, extending evidence for the importance of structural diversity to natural HS as well as model modified heparins. They also displayed differences in their interactions with Slit compared to Robo, with Robo preferring compounds with higher sulfation. Furthermore, the patterns of cellular activity across compounds were different to those for binding to each protein, suggesting that biological outcomes are selectively determined in a subtle manner that does not simply reflect the sum of the separate interactions of heparin/HS with Slit and Robo.

  5. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  6. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  7. Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides both exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity† †Electronic supplementary information (ESI) available: NMR chemical shift characterisation of modified heparins, protein sequence alignment methodology and data, protein binding and activity assay dose-response curves. See DOI: 10.1039/c6mb00432f Click here for additional data file.

    Science.gov (United States)

    Ahmed, Yassir A.; Yates, Edwin A.; Moss, Diana J.; Loeven, Markus A.; Hussain, Sadaf-Ahmahni; Hohenester, Erhard; Turnbull, Jeremy E.

    2016-01-01

    Heparin/heparan sulfate (HS) glycosaminoglycans are required for Slit–Robo cellular responses. Evidence exists for interactions between each combination of Slit, Robo and heparin/HS and for formation of a ternary complex. Heparin/HS are complex mixtures displaying extensive structural diversity. The relevance of this diversity has been studied to a limited extent using a few select chemically-modified heparins as models of HS diversity. Here we extend these studies by parallel screening of structurally diverse panels of eight chemically-modified heparin polysaccharides and numerous natural HS oligosaccharide chromatographic fractions for binding to both Drosophila Slit and Robo N-terminal domains and for activation of a chick retina axon response to the Slit fragment. Both the polysaccharides and oligosaccharide fractions displayed variability in binding and cellular activity that could not be attributed solely to increasing sulfation, extending evidence for the importance of structural diversity to natural HS as well as model modified heparins. They also displayed differences in their interactions with Slit compared to Robo, with Robo preferring compounds with higher sulfation. Furthermore, the patterns of cellular activity across compounds were different to those for binding to each protein, suggesting that biological outcomes are selectively determined in a subtle manner that does not simply reflect the sum of the separate interactions of heparin/HS with Slit and Robo. PMID:27502551

  8. An Sb-doped p-type ZnO nanowire based random laser diode.

    Science.gov (United States)

    Bashar, Sunayna B; Suja, Mohammad; Morshed, Muhammad; Gao, Fan; Liu, Jianlin

    2016-02-12

    An electrically pumped Sb-doped ZnO nanowire/Ga-doped ZnO p-n homojunction random laser is demonstrated. Catalyst-free Sb-doped ZnO nanowires were grown on a Ga-doped ZnO thin film on a Si substrate by chemical vapor deposition. The morphology of the as-grown titled nanowires was observed by scanning electron microscopy. X-ray photoelectron spectroscopy results indicated the incorporation of Sb dopants. Shallow acceptor states of Sb-doped nanowires were confirmed by photoluminescence measurements. Current-voltage measurements of ZnO nanowire structures assembled from p- and n-type materials showed a typical p-n diode characteristic with a threshold voltage of about 7.5 V. Very good photoresponse was observed in the UV region operated at 0 V and different reverse biases. Random lasing behavior with a low-threshold current of around 10 mA was demonstrated at room temperature. The output power was 170 nW at 30 mA.

  9. Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells.

    Science.gov (United States)

    Weidelener, Martin; Powar, Satvasheel; Kast, Hannelore; Yu, Ze; Boix, Pablo P; Li, Chen; Müllen, Klaus; Geiger, Thomas; Kuster, Simon; Nüesch, Frank; Bach, Udo; Mishra, Amaresh; Bäuerle, Peter

    2014-11-01

    Four new donor-π-acceptor dyes differing in their acceptor group have been synthesized and employed as model systems to study the influence of the acceptor groups on the photophysical properties and in NiO-based p-type dye-sensitized solar cells. UV/Vis absorption spectra showed a broad range of absorption coverage with maxima between 331 and 653 nm. Redox potentials as well as HOMO and LUMO energies of the dyes were determined from cyclic voltammetry measurements and evaluated concerning their potential use as sensitizers in p-type dye-sensitized solar cells (p-DSCs). Quantum-chemical density functional theory calculations gave further insight into the frontier orbital distributions, which are relevant for the electronic processes in p-DSCs. In p-DSCs using an iodide/triiodide-based electrolyte, the polycyclic 9,10-dicyano-acenaphtho[1,2-b]quinoxaline (DCANQ) acceptor-containing dye gave the highest power conversion efficiency of 0.08%, which is comparable to that obtained with the perylenemonoimide (PMI)-containing dye. Interestingly, devices containing the DCANQ-based dye achieve a higher V(OC) of 163 mV compared to 158 mV for the PMI-containing dye. The result was further confirmed by impedance spectroscopic analysis showing higher recombination resistance and thus a lower recombination rate for devices containing the DCANQ dye than for PMI dye-based devices. However, the use of the strong electron-accepting tricyanofurane (TCF) group played a negative role in the device performance, yielding an efficiency of only 0.01% due to a low-lying LUMO energy level, thus resulting in an insufficient driving force for efficient dye regeneration. The results demonstrate that a careful molecular design with a proper choice of the acceptor unit is essential for development of sensitizers for p-DSCs.

  10. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P. S.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2016-11-11

    A search for Pauli-exclusion-principle-violating K electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  11. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.

    Science.gov (United States)

    Boland, Jessica L; Casadei, Alberto; Tütüncüoglu, Gözde; Matteini, Federico; Davies, Christopher L; Jabeen, Fauzia; Joyce, Hannah J; Herz, Laura M; Fontcuberta I Morral, Anna; Johnston, Michael B

    2016-04-26

    Controlled doping of GaAs nanowires is crucial for the development of nanowire-based electronic and optoelectronic devices. Here, we present a noncontact method based on time-resolved terahertz photoconductivity for assessing n- and p-type doping efficiency in nanowires. Using this technique, we measure extrinsic electron and hole concentrations in excess of 10(18) cm(-3) for GaAs nanowires with n-type and p-type doped shells. Furthermore, we show that controlled doping can significantly increase the photoconductivity lifetime of GaAs nanowires by over an order of magnitude: from 0.13 ns in undoped nanowires to 3.8 and 2.5 ns in n-doped and p-doped nanowires, respectively. Thus, controlled doping can be used to reduce the effects of parasitic surface recombination in optoelectronic nanowire devices, which is promising for nanowire devices, such as solar cells and nanowire lasers.

  12. First results on charge collection efficiency of heavily irradiated microstrip sensors fabricated on oxygenated p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Casse, G. E-mail: gcasse@hep.ph.liv.ac.uk; Allport, P.P.; Marti i Garcia, S.; Lozano, M.; Turner, P.R

    2004-02-01

    Heavy hadron irradiation leads to type inversion of n-type silicon detectors. After type inversion, the charge collected at low bias voltages by silicon microstrip detectors is higher when read out from the n-side compared to p-side read out. The n-side read out has been successfully used in combination with oxygen-enriched n-type silicon substrate to maximise the radiation hardness of microstrip detectors. Alternatively, the n-side read out can be implemented on p-type substrates reducing the complexity of fabrication. Miniature silicon microstrip detectors made on standard and oxygen-enriched p-type substrate have been produced. The charge collection properties of such detectors with and without oxygenation are here compared for the first time after severe charged hadron irradiation.

  13. Analysis of Photoluminescence Thermal Quenching: Guidance for the Design of Highly Effective p-type Doping of Nitrides

    Science.gov (United States)

    Liu, Zhiqiang; Huang, Yang; Yi, Xiaoyan; Fu, Binglei; Yuan, Guodong; Wang, Junxi; Li, Jinmin; Zhang, Yong

    2016-08-01

    A contact-free diagnostic technique for examining position of the impurity energy level of p-type dopants in nitride semiconductors was proposed based on photoluminescence thermal quenching. The Mg ionization energy was extracted by the phenomenological rate-equation model we developed. The diagnostic technique and analysis model reported here are priorities for the design of highly effective p-doping of nitrides and could also be used to explain the abnormal and seldom analyzed low characteristic temperature T0 (about 100 K) of thermal quenching in p-type nitrides systems. An In-Mg co-doped GaN system is given as an example to prove the validity of our methods. Furthermore, a hole concentration as high as 1.94 × 1018 cm-3 was achieved through In-Mg co-doping, which is nearly one order of magnitude higher than typically obtained in our lab.

  14. Perovskite Sr-doped LaCrO3 as a new p-type transparent conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongliang; Du, Yingge; Papadogianni, Alexandra; Bierwagen, Oliver; Sallis, Shawn; Piper, Louis F. J.; Bowden, Mark E.; Shutthanandan, V.; Sushko, Petr; Chambers, Scott A.

    2015-09-16

    Transparent conducting oxides (TCOs) constitute a unique class of materials which combine the seemingly mutually exclusive properties of electrical conductivity and optical transparency in a single material. TCOs are useful for a wide range of applications including solar cells, displays, light emitting diodes and transparent electronics. Simple post-transition metal oxides such as ZnO, In2O3 and SnO2 are wide gap insulators in which the ionic character generates an oxygen 2p-derived valence band (VB) and a metal s-derived conduction band (CB), resulting in large optical band gaps (>3.0 eV) and excellent n-type conductivity when donor doped. In contrast, the development of efficient p-type TCOs remains a global materials challenge. Converting n-type oxides to p-type analogs by acceptor doping is extremely difficult and these materials display poor conductivity.

  15. Identification of Acceptor States in Li-N Dual-Doped p-Type ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin-Zhu; LU Jian-Guo; YE Zhi-Zhen; HE Hai-Ping; CHEN Lan-Lan; ZHAO Bing-Hui

    2009-01-01

    @@ Li-N dual-doped p-type ZnO (ZnO:(Li,N)) thin films are prepared by pulsed laser deposition. The optical properties are studied using temperature-dependent photoluminescence. The Lizn-No complex aceeptor with an energy level of 138 meV is identified from the free-to-neutral-acceptor (e, Ao) emission. The Haynes factor is about 0.087 for the LiZn-NO complex acceptor, with the acceptor bound-exciton binding energy of 12meV. Another deeper acceptor state located at 248meV, also identified from the (e, Ao) emission, is attributed to zinc vacancy acceptor. The two acceptor states might both contribute to the observed p-type conductivity in ZnO:(Li,N).

  16. Odd-Integer Quantum Hall States and Giant Spin Susceptibility in p -Type Few-Layer WSe2

    Science.gov (United States)

    Xu, Shuigang; Shen, Junying; Long, Gen; Wu, Zefei; Bao, Zhi-qiang; Liu, Cheng-Cheng; Xiao, Xiao; Han, Tianyi; Lin, Jiangxiazi; Wu, Yingying; Lu, Huanhuan; Hou, Jianqiang; An, Liheng; Wang, Yuanwei; Cai, Yuan; Ho, K. M.; He, Yuheng; Lortz, Rolf; Zhang, Fan; Wang, Ning

    2017-02-01

    We fabricate high-mobility p -type few-layer WSe2 field-effect transistors and surprisingly observe a series of quantum Hall (QH) states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field. By tilting the magnetic field, we discover Landau level crossing effects at ultralow coincident angles, revealing that the Zeeman energy is about 3 times as large as the cyclotron energy near the valence band top at the Γ valley. This result implies the significant roles played by the exchange interactions in p -type few-layer WSe2 , in which itinerant or QH ferromagnetism likely occurs. Evidently, the Γ valley of few-layer WSe2 offers a unique platform with unusually heavy hole carriers and a substantially enhanced g factor for exploring strongly correlated phenomena.

  17. Growth of nitrogen-doped p-type ZnO thin films prepared by atomic layer epitaxy

    Institute of Scientific and Technical Information of China (English)

    LEE Chongmu; LIM Jongmin; PARK Suyoung; KIM Hyounwoo

    2006-01-01

    Nitrogen-doped, p-type ZnO thin films were grown successfully on sapphire (0001) substrates by using atomic layer epitaxy (ALE). Zn(C2H5)2[Diethylzinc,DEZn], H2O and NH3 were used as a zinc precursor, an oxidant and a doping source gas, respectively. The lowest electrical resistivity of the p-type ZnO films grown by ALE and annealed at 1000 ℃ in an oxygen atmosphere for 1 h was 18.3 Ω·m with a hole concentration of 3.71×1017cm-3 . Low temperature-photoluminescence analysis and time-dependent Hall measurement results support that the nitrogen-doped ZnO after annealing is ap-type semiconductor.

  18. Effects of air-annealing on the electrical properties of p-type tin monoxide thin-film transistors

    Science.gov (United States)

    Cho, In-Tak; U, Myeonghun; Song, Sang-Hun; Lee, Jong-Ho; Kwon, Hyuck-In

    2014-04-01

    We have investigated the effects of air-annealing on the electrical performance of the p-type tin oxide thin-film transistors (TFTs). The air-annealing of the tin oxide thin-film was made using a mini furnace at various temperatures. From the x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD) data, it is demonstrated that the phase of tin oxide partially transforms from SnO to SnO2 with an air-annealing process, and it accelerates as the annealing temperature increases. The electrical performance of the p-type tin oxide TFT with a channel thickness of 25 nm exhibits much improved electrical performance when air-annealed at 230 °C for 1 h, but a decrease of the on-current is observed with an ambipolar operation in 260 and 290 °C air-annealed devices. Based on the XPS, XRD, and Hall measurement data, the reduced hole concentration inside the channel due to the recombination with electrons from SnO2 is believed to be the reason for the electrical performance improvement in 230 °C air-annealed p-type tin oxide TFTs, and a partial formation of n-type SnO2 channel is considered as the plausible reason for the ambipolar operation in tin oxide TFTs with high annealing temperatures. Our experimental results show that there is an optimum air-annealing temperature which can improve the electrical performance in p-type tin oxide TFTs.

  19. Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission infrared detectors

    Science.gov (United States)

    Lao, Y. F.; Perera, A. G. U.; Wang, H. L.; Zhao, J. H.; Jin, Y. J.; Zhang, D. H.

    2016-03-01

    Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in infrared. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave infrared (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3-5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ0, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μm in the spectral response of p-type GaAs/AlGaAs detectors. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ0 is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ0. This implies the promise of using GaMnAs to develop MWIR IPE detectors. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.

  20. Radioisotope space power generator. Annual report, July 1, 1975--September 30, 1976. [TPM-217 P-type selenides

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N.B.; Chin, J.; Staley, H.G.; Steeger, E.J.; Gantzel, P.K.

    1977-09-01

    TPM-217 P-type selenide usefulness in thermoelectric converters depends on its dimensional, electrical and thermal stability at high temperature and its compatibility with other converter component materials in a low pressure environment. Experimental efforts have been directed at determining: the vaporization behavior at 900/sup 0/C, the partial pressures of vaporizing species versus temperature, vapor suppression coatings, thermal expansion, dimensional stability, and the high temperature compatibility of TPM-217 with proposed end cap materials.

  1. Emitter formation using laser doping technique on n- and p-type c-Si substrates

    Science.gov (United States)

    López, G.; Ortega, P.; Colina, M.; Voz, C.; Martín, I.; Morales-Vilches, A.; Orpella, A.; Alcubilla, R.

    2015-05-01

    In this work laser doping technique is used to create highly-doped regions defined in a point-like structure to form n+/p and p+/n junctions applying a pulsed Nd-YAG 1064 nm laser in the nanosecond regime. In particular, phosphorous-doped silicon carbide stacks (a-SiCx/a-Si:H (n-type)) deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and aluminum oxide (Al2O3) layers deposited by atomic layer deposition (ALD) on 2 ± 0.5 Ω cm p- and n-type FZ c-Si substrates respectively are used as dopant sources. Laser power and number of pulses per spot are explored to obtain the optimal electrical behavior of the formed junctions. To assess the quality of the p+ and n+ regions, the junctions are electrically contacted and characterized by means of dark J-V measurements. Additionally, a diluted HF treatment previous to front metallization has been explored in order to know its impact on the junction quality. The results show that fine tuning of the energy pulse is critical while the number of pulses has minor effect. In general the different HF treatments have no impact in the diode electrical behavior except for an increase of the leakage current in n+/p junctions. The high electrical quality of the junctions makes laser doping, using dielectric layers as dopant source, suitable for solar cell applications. Particularly, a potential open circuit voltage of 0.64 V (1 sun) is expected for a finished solar cell.

  2. S-Type and P-Type Habitability in Stellar Binary Systems: A Comprehensive Approach. I. Method and Applications

    CERN Document Server

    Cuntz, Manfred

    2013-01-01

    A comprehensive approach is provided to the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in case of S-type orbits the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) The consideration of a joint constraint including orbital stability and a habitable environment for a putative system planet through the stellar radiative energy fluxes ("radiative habitable zone"; RHZ) needs to be met. (2) The treatment of conservative, general and extended zones of habitability for the various systems as defined for the Solar System and beyond. (3) The providing of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for which kind of system S-type ...

  3. S-Type and P-Type Habitability in Stellar Binary Systems: A Comprehensive Approach. II. Elliptical Orbits

    CERN Document Server

    Cuntz, Manfred

    2014-01-01

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes (radiative habitable zone; RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs ...

  4. Properties and local environment of p-type and photoluminescent rare earths implanted into ZnO single crystals

    CERN Document Server

    Rita, EMC; Wahl, U; Soares, JC

    This thesis presents an experimental study of the local environment of p-type and Rare- Earth dopants implanted in ZnO single-crystals (SCs). Various nuclear and bulk property techniques were combined in the following evaluations: Implantation damage annealing was evaluated in ZnO SCs implanted with Fe, Sr and Ca. P-type dopants Cu and Ag implanted ZnO SCs were studied revealing that the solubility of Cu in substituting Zn is considerably higher than that of Ag. These results are discussed within the scope of the ZnO p-type doping problematic with these elements. Experimental proofs of the As “anti-site” behavior in ZnO were for the first time attained, i.e., the majority of As atoms are substitutional at the Zn site (SZn), possibly surrounded by two Zn vacancies (VZn). This reinforces the theoretical prediction that As acts as an acceptor in ZnO via the AsZn-2VZn complex formation. The co-doping of ZnO SC with In (donor) and As (acceptor) was addressed. The most striking result is the possible In-As “p...

  5. Modified cyanobacteria

    Science.gov (United States)

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  6. Study of p-type AlN-doped SnO2 thin films and its transparent devices

    Science.gov (United States)

    Wu, Y. J.; Liu, Y. S.; Hsieh, C. Y.; Lee, P. M.; Wei, Y. S.; Liao, C. H.; Liu, C. Y.

    2015-02-01

    The electrical properties of transparent Al-doped tin oxide (SnO2), N-doped SnO2, and AlN-doped SnO2 thin films were studied. The Al-doped tin oxide (SnO2) thin films all show n-type conduction regardless the annealing condition. The n-type conduction of the as-deposited N-doped SnO2, and AlN-doped SnO2 thin films could be converted to p-type conduction by annealing the films at an elevated temperature of 450 °C. XPS analysis verified that the substitution of N ions in the O ion sites in the annealed N-doped SnO2 and AlN-doped SnO2 thin films were responsible for the n-p conduction transition. The conduction of the annealed N-doped SnO2 and AlN-doped SnO2 thin films could be converted back to n-type conduction by thermally annealing the films at higher temperature, over 450 °C. The p-n conduction transition is related with the outgassing of N ions in the p-type N-doped SnO2 and AlN-doped SnO2 thin films. Remarkably, we found that the Al content can retard the outgassing of N ions in the p-type N-doped SnO2 and AlN-doped SnO2 thin films and prolong the p-n conduction transition temperature above 600 °C. XPS analysis revealed that the formation of the Snsbnd Nsbnd Al bond improved the stability of the N ions in the AlN-doped SnO2 thin films. I-V curve of the p-type AlN-doped SnO2/n-type fluorine-doped SnO2 junction exhibited clear p-n junction characteristics, a low leakage current under the revised bias (1.13 × 10-5 A at -5 V), and a low turn-on voltage (3.24 V). p-Type AlN-doped SnO2/n-type fluorine-doped SnO2 junction exhibited excellent transmittance (over 90%) in the visible region (470-750 nm).

  7. Fabrication of p-type conductivity in SnO{sub 2} thin films through Ga doping

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Liang, Shan-Chien

    2015-02-15

    Highlights: • P-type Ga-doped SnO{sub 2} semiconductor films were prepared by sol-gel spin coating. • Optical bandgaps of the SnO{sub 2}:Ga films are narrower than that of the SnO{sub 2} film. • SnO{sub 2}:Ga films exhibited p-type conductivity as Ga doping content higher than 10%. • A p-n heterojunction composed of p-type SnO{sub 2}:Ga and n-type ZnO:Al was fabricated. - Abstract: P-type transparent tin oxide (SnO{sub 2}) based semiconductor thin films were deposited onto alkali-free glass substrates by a sol-gel spin-coating method using gallium (Ga) as acceptor dopant. In this study, we investigated the influence of Ga doping concentration ([Ga]/[Sn] + [Ga] = 0%, 5%, 10%, 15%, and 20%) on the structural, optical and electrical properties of SnO{sub 2} thin films. XRD analysis results showed that dried Ga-doped SnO{sub 2} (SnO{sub 2}:Ga) sol-gel films annealed in oxygen ambient at 520 °C for 1 h exhibited only the tetragonal rutile phase. The average optical transmittance of as-prepared thin film samples was higher than 87.0% in the visible light region; the optical band gap energy slightly decreased from 3.92 eV to 3.83 eV with increases in Ga doping content. Hall effect measurement showed that the nature of conductivity of SnO{sub 2}:Ga thin films changed from n-type to p-type when the Ga doping level was 10%, and when it was at 15%, Ga-doped SnO{sub 2} thin films exhibited the highest mean hole concentration of 1.70 × 10{sup 18} cm{sup -3}. Furthermore, a transparent p-SnO{sub 2}:Ga (Ga doping level of 15%)/n-ZnO:Al (Al doping level of 2%) heterojunction was fabricated on alkali-free glass. The I-V curve measurement for the p-n heterojunction diode showed a typical rectifying characteristic with a forward turn-on voltage of 0.65 V.

  8. IgG from Amyotrophic Lateral Sclerosis Patients Increases Current Through P-Type Calcium Channels in Mammalian Cerebellar Purkinje Cells and in Isolated Channel Protein in Lipid Bilayer

    Science.gov (United States)

    Llinas, R.; Sugimori, M.; Cherksey, B. D.; Smith, R. Glenn; Delbono, O.; Stefani, E.; Appel, S.

    1993-12-01

    The effect of the IgG from amyotrophic lateral sclerosis (ALS) patients was tested on the voltage-dependent barium currents (IBa) in mammalian dissociated Purkinje cells and in isolated P-type calcium channels in lipid bilayers. Whole cell clamp of Purkinje cells demonstrates that ALS IgG increases the amplitude of IBa without modifying their voltage kinetics. This increased IBa could be blocked by a purified nonpeptide toxin from Agelenopsis aperta venom (purified funnel-web spider toxin) or by a synthetic polyamine analog (synthetic funnel-web spider toxin) and by a peptide toxin from the same spider venom, ω-Aga-IVA. Similar results were obtained on single-channel recordings from purified P channel protein. The addition of ALS IgG increased single-channel IBa open time without affecting slope conductance. The results described above were not seen with normal human IgG nor with boiled ALS IgG. It is concluded that ALS IgG enhances inward current through P-type calcium channels. Since P-type Ca2+ channels are present in motoneuron axon terminals, we propose that the enhanced calcium current triggered by ALS IgG may contribute to neuronal damage in ALS.

  9. 覆膜长周期光纤光栅在生化分析中的应用及研究进展%Applications and progress of nanofilm-modified long period fiber grating in biological and chemical analysis

    Institute of Scientific and Technical Information of China (English)

    张帆; 李秋顺; 姚卫国; 郑晖; 马耀宏; 董文飞

    2014-01-01

    总结了纳米薄膜修饰的长周期光纤光栅在折射率生物传感器方面的研究进展,重点介绍了纳米薄膜对长周期光纤光栅折射率传感性能的影响,详细阐述了覆膜长周期光纤光栅在生化分析检测领域的应用,并对其在折射率传感方面的应用前景作了展望。%This review focuses on the nanofilm-modified Long Period Fiber Grating ( LPFG) and makes a brief presentation for progress of its applications in refractive index biosensor .The influence of nanomembranes on refractive index sensing performance of LPFG is elaborated .Furthermore , applications of nanofilm-modified LPFG in the field of biological and chemical analysis are discussed in detail .At last , the further development and application of nanofilm-modified LPFG refractive index sensor are prospected .

  10. P-type ZnO films by phosphorus doping using plasma immersion ion-implantation technique

    Science.gov (United States)

    Nagar, S.; Chakrabarti, S.

    2013-03-01

    ZnO has been a subject of intense research in the optoelectronics community owing to its wide bandgap (3.3eV) and large exciton binding energy (60meV). However, difficulty in doping it p-type posts a hindrance in fabricating ZnO-based devices. In order to make p-type ZnO films, phosphorus implantation, using plasma immersion ion-implantation technique (2kV, 900W, 10μs pulse width) for 30 seconds, was performed on ZnO thin film deposited by RF Magnetron Sputtering (Sample A). The implanted samples were subsequently rapid thermal annealed at 700°C and 1000°C (Samples B and C) in oxygen environment for 30 seconds. Low temperature (8K) photoluminescence spectra reveal dominant donor-bound exciton (D°X) peak at 3.36eV for samples A and B. However, for Sample B the peaks around 3.31eV and 3.22eV corresponding to the free electron-acceptor (FA) and donor to acceptor pair peaks (DAP) are also observed. A dominant peak around 3.35eV, corresponding to acceptor bound exciton (A°X) peak, is detected for Sample C along with the presence of FA and DAP peaks around 3.31eV and 3.22eV. Moreover, the deep level peak around 2.5eV is higher for Sample B which may be due to implantation and acceptor related defects. However, for Sample C, the deep level peaks are very weak compared to the near band edge peaks confirming that these peaks are mainly due to intrinsic defects and not related to acceptors. These results clearly show us a promising way to achieve p-type ZnO films using phosphorus doping.

  11. Nitrogen-monoxide gas-sensing properties of transparent p-type copper-oxide nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soojeong; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-15

    We report the nitrogen-monoxide (NO) gas-sensing properties of transparent p-type copper-oxide (CuO) nanorod arrays synthesized by using the hydrothermal method with a CuO nanoparticle seed layer deposited on a glass substrate via sputtering process. We synthesized polycrystalline CuO nanorods measuring 200 to 300 nm in length and 20 to 30 nm in diameter for three controlled molarity ratios of 1:1, 1:2 and 1:4 between copper nitrate trihydrate [Cu(NO{sub 2}){sub 2}·3H{sub 2}O] and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}). The crystal structures and morphologies of the synthesized CuO nanorod arrays were examined using grazing incidence X-ray diffraction and scanning electron microscopy. The gas-sensing measurements for NO gas in dry air indicated that the CuO nanorodarray-based gas sensors synthesized under hydrothermal condition at a molarity ratio of 1:2 showed the best gas sensing response to NO gas. These CuO nanorod-array gas sensors exhibited a highly sensitive response to NO gas, with a maximum sensitivity of about 650% for 10 ppm NO in dry air at an operating temperature of 100 .deg. C. These transparent p-type CuO nanorod-array gas sensors have shown a reversible and reliable response to NO gas over a range of operating temperatures. These results indicate certain potential use of p-type oxide semiconductor CuO nanorods as sensing materials for several types of gas sensors, including p - n junction gas sensors.

  12. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    Science.gov (United States)

    Razavizadeh, Mahmoud; Jamshidi, Masoud

    2016-08-01

    Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  13. P-stop isolation study of irradiated n-in-p type silicon strip sensors for harsh radiation environment

    CERN Document Server

    Printz, Martin

    2015-01-01

    This technology is more radiation hard but also the manufacturing is more challenging compared to p-in-n type sensors due to additional process steps in order to suppress the accumulation of electrons between the readout strips. One possible isolation technique of adjacent strips is the p-stop structure which is a p-type material implantation with a certain pattern for each individual strip. However, electrical breakdown and charge collection studies indicate that the process parameters of the p-stop structure have to be carefully calibrated in order to achieve a suff...

  14. Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications.

    Science.gov (United States)

    Atahan-Evrenk, Sule; Aspuru-Guzik, Alán

    2014-01-01

    The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

  15. Thermoelectric properties of p-type Bi-Sb-Te compositionally graded thermoelectric materials with different barriers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to find more suitable materials as barriers and to improve the thermoelectric properties, p-type (BiSb)2Te3 (0.85, 0.9) two segments compositionally graded thermoelectric materials (CGTM) with different barriers were fabricated by conventional hot pressure method. Metals Fe, Co, Cu and Al were used as barriers between two segments. The effects of different barriers on thermoelectric properties of CGTM were investigated. The results show that metal Fe is more stable and suitable as the barrier.

  16. A Search of Low-Mass WIMPs with p-type Point Contact Germanium Detector in the CDEX-1 Experiment

    CERN Document Server

    Zhao, W; Kang, K J; Cheng, J P; Li, Y J; Wong, H T; Lin, S T; Chang, J P; Chen, J H; Chen, Q H; Chen, Y H; Deng, Z; Du, Q; Gong, H; Hao, X Q; He, H J; He, Q J; Huang, H X; Huang, T R; Jiang, H; Li, H B; Li, J; Li, J M; Li, X; Li, X Y; Li, Y L; Lin, F K; Liu, S K; Lü, L C; Ma, H; Ma, J L; Mao, S J; Qin, J Q; Ren, J; Ruan, X C; Sharma, V; Shen, M B; Singh, L; Singh, M K; Soma, A K; Su, J; Tang, C J; Wang, J M; Wang, L; Wang, Q; Wu, S Y; Wu, Y C; Xianyu, Z Z; Xiao, R Q; Xing, H Y; Xu, F Z; Xu, Y; Xu, X J; Xue, T; Yang, L T; Yang, S W; Yi, N; Yu, C X; Yu, H; Yu, X Z; Zeng, M; Zeng, X H; Zeng, Z; Zhang, L; Zhang, Y H; Zhao, M G; Zhou, Z Y; Zhu, J J; Zhu, W B; Zhu, X Z; Zhu, Z H

    2016-01-01

    The CDEX-1 experiment conducted a search of low-mass (< 10 GeV/c2) Weakly Interacting Massive Particles (WIMPs) dark matter at the China Jinping Underground Laboratory using a p-type point-contact germanium detector with a fiducial mass of 915 g at a physics analysis threshold of 475 eVee. We report the hardware set-up, detector characterization, data acquisition and analysis procedures of this experiment. No excess of unidentified events are observed after subtraction of known background. Using 335.6 kg-days of data, exclusion constraints on the WIMP-nucleon spin-independent and spin-dependent couplings are derived.

  17. Crystallization of P-type ATPases by the High Lipid-Detergent (HiLiDe) Method

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Wang, Kaituo; Liu, Xiangyu;

    2016-01-01

    Determining structures of membrane proteins remains a significant challenge. A technique utilizing high lipid-detergent concentrations ("HiLiDe") circumvents the major bottlenecks of current membrane protein crystallization methods. During HiLiDe, the protein-lipid-detergent ratio is varied...... in a controlled way in order to yield initial crystal hits, which may be subsequently optimized by variation of the crystallization conditions and/or utilizing secondary detergents. HiLiDe preserves the advantages of classical lipid-based methods, yet is compatible with both the vapor diffusion and batch...... crystallization techniques. The method has been applied with particular success to P-type ATPases....

  18. Crystallization of P-type ATPases by the High Lipid-Detergent (HiLiDe) Method.

    Science.gov (United States)

    Sitsel, Oleg; Wang, Kaituo; Liu, Xiangyu; Gourdon, Pontus

    2016-01-01

    Determining structures of membrane proteins remains a significant challenge. A technique utilizing high lipid-detergent concentrations ("HiLiDe") circumvents the major bottlenecks of current membrane protein crystallization methods. During HiLiDe, the protein-lipid-detergent ratio is varied in a controlled way in order to yield initial crystal hits, which may be subsequently optimized by variation of the crystallization conditions and/or utilizing secondary detergents. HiLiDe preserves the advantages of classical lipid-based methods, yet is compatible with both the vapor diffusion and batch crystallization techniques. The method has been applied with particular success to P-type ATPases.

  19. Primary defect transformations in high-resistivity p-type silicon irradiated with electrons at cryogenic temperatures

    CERN Document Server

    Makarenko, L F; Korshunov, F P; Murin, L I; Moll, M

    2009-01-01

    It has been revealed that self-interstitials formed under low intensity electron irradiationin high resistivity p-type silicon can be retained frozen up to room temperature. Low thermal mobility of the self-interstitials suggests that Frenkelpair sinsilicon can be stable at temperatures of about or higher than 100K. A broad DLTS peak with activation energy of 0.14–0.17eV can be identified as related to Frenkel pairs. This peak anneals out at temperatures of 120 140K. Experimental evidences are presented that be coming more mobile under forwardcurrent injection the self-interstitials change their charge state to a less positive one.

  20. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates

    Science.gov (United States)

    Chen, R. T.

    1983-01-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.