WorldWideScience

Sample records for chemically induced mutagenesis

  1. Chemically induced mutagenesis in Blackgram(Vigna mungo (L.Hepper

    Directory of Open Access Journals (Sweden)

    Y.Anbu Selvam,R.Elangaimannan,M.Venkatesan,P.Karthikeyan and K.Palaniraja

    2010-07-01

    Full Text Available The present investigation was carried out to study the extent of variability existed in the rice fallow blackgram varietiesnamely VBN3 and ADT 3 after induction of mutation through chemical mutagens namely EMS and colchicine. The resultsof M1 generation revealed that there was a shift in the mean for the characters Viz., plant height, number of branches perplant, number of clusters per plant, number of pods per plant,100 seed weight and seed yield per plant towards positive/negative directions.In M2, chlorophyll mutants namely, albina, xantha, chlorine, viridis and few viable mutants like giantplant, bushy plant, unifoliate leaf, narrow leaf, crinkled leaf, glabrous pod, short pod ,brown seeded, sterile plant andpigmented mutants were recorded.A significant increase in number of branches per plant, number of clusters per plant,number of pods per plant and seed yield per plant was noticed in M2 generation.The PCV and GCV showed significantlyhigher values in yield component characters such as number o f branches per plant, number of pods per cluster, number ofpods per plant and seed yield per plant in M2 generation.The yield attributing traits like number of branches per plant,number of pods per cluster,100 seed weight and seed yield per plant recorded high heritability coupled with high geneticadvance as per cent of mean in M2 generation.

  2. Dietary flavonoids bind to mono-ubiquitinated annexin A1 in nuclei, and inhibit chemical induced mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Fusao, E-mail: fhirata@wayne.edu; Harada, Takasuke; Corcoran, George B.; Hirata, Aiko

    2014-01-15

    Highlight: • Nuclear mono-ubiquitinated annexin A1 is involved in DNA damage induced mutagenesis. • Dietary flavonoids bind to and inhibit purified mono-ubiquitinated annexin A1 helicase. • Dietary flavonoids show anti-mutagenic action. • Annexin A1 may serve as a putative target of cancer chemoprevention by flavonoids. - Abstract: In order to investigate the mechanisms of anti-mutagenic action by dietary flavonoids, we investigated if they inhibit mutation of the thymidine kinase (tk) gene in L5178Ytk(±) lymphoma cells. Silibinin, quercetin and genistein suppressed mutation of the tk gene induced in L5178Ytk(±) lymphoma cells by methyl methanesulfonate (MMS) and As{sup 3+}. Flavone and flavonol were less effective. To establish that mutation of the tk gene in L5178Ytk(±) lymphoma cells by MMS and As{sup 3+} is mediated through mono-ubiquitinated annexin A1, L5178Ytk(±) lymphoma cells were treated with annexin A1 anti-sense oligonucleotide. The treatment reduced mRNA as well as protein levels of annexin A1, and suppressed mutation of the tk gene. Nuclear extracts from L5178Ytk(±) lymphoma cells catalyzed translesion DNA synthesis with an oligonucleotide template containing 8-oxo-guanosine in an annexin A1 dependent manner. This translesion DNA synthesis was inhibited by the anti-mutagenic flavonoids, silibinin, quercetin and genistein, in a concentration dependent manner, but only slightly by flavone and flavonol. Because these observations implicate involvement of annexin A1 in mutagenesis, we examined if flavonoids suppress nuclear annexin A1 helicase activity. Silibinin, quercetin and genistein inhibited ssDNA binding, DNA chain annealing and DNA unwinding activities of purified nuclear mono-ubiquitinated annexin A1. Flavone and flavonol were ineffective. The apparent direct binding of anti-mutagenic flavonoids to the annexin A1 molecule was supported by fluorescence quenching. Taken together, these findings illustrate that nuclear annexin A1 may be

  3. Molecular mechanisms of induced mutagenesis

    International Nuclear Information System (INIS)

    Genetic analysis has revealed that radiation and many chemical mutagens induce in bacteria an error-prone DNA repair process which is responsible for their mutagenic effect. The biochemical mechanism of this inducible error-prone repair has been studied by analysis of the first round of DNA synthesis on ultraviolet light-irradiated phiX174 DNA in both intact and ultraviolet light-irradiated host cells. Intracellular phiX174 DNA was extracted, subjected to isopycnic CsCl density-gradient analysis, hydroxylapatite chromatography and digestion by single-strand-specific endonuclease S1. Ultraviolet light-induced photolesions in viral DNA cause a permanent blockage of DNA synthesis in intact Escherichia coli cells. However, when host cells were irradiated and incubated to induce fully the error-prone repair system, a significant fraction of irradiated phiX174 DNA molecules can be fully replicated. Thus, inducible error-prone repair in E.coli is manifested by an increased capacity for DNA synthesis on damaged phiX174 DNA. Chloramphenicol (100 μ g/ml), which is an inhibitor of the inducible error-prone DNA repair, is also an inhibitor of this particular inducible DNA synthesis. (author)

  4. Induced Mutagenesis for Crop Improvement in Bulgaria

    International Nuclear Information System (INIS)

    Experimental mutagenesis has been investigated and applied in crop breeding in various Bulgarian agricultural research institutes during the last half century. In this paper some major accomplishments achieved in Bulgaria are highlighted. Both, physical mutagens (mainly gamma rays) and chemical mutagens (mainly EMS, NMU, NEU), have been used and their proper doses have been established. According to the information available to the author, there are more than 76 new cultivars developed using induced mutants in Bulgaria, namely: barley (5), wheat (5), durum wheat (9), maize (26), sunflower (3), lentil (4), bean (2), pea (1), chickpea and vetch (2), soybean (5), tomato (6), pepper (4), cotton (2), tobacco (2). Some of the mutant cultivars such as maize hybrid Kneja 509 and durum wheat cultivar Gergana have become leading cultivars occupying up to 50% of the growing area of the crop concerned. In durum wheat, mutant cultivars have not only covered almost all the growing areas but also doubled the yield in the past 30 years. The achievements in mutation breeding programmes have also had a significant impact on the progress of genetic research by elucidating the underlying mechanisms of induced mutations and the training of many young researchers and university students through their involvement in various research projects. A number of mutant lines with novel characteristics and mutant cultivars of economical importance together with relevant techniques used in the development and characterization of those mutant lines/cultivars are described in this paper. (author)

  5. A Report on 36 Years of Practical Work on Crop Improvement through Induced Mutagenesis

    International Nuclear Information System (INIS)

    Induced mutagenesis work was conducted from 1971 to July 2007, using both physical and chemical mutagens for improvement of a wide range of crops viz. vegetables, medicinal, pulse, oil-bearing, and ornamental crops. All classical and advanced methods were extensively used for the success of induced mutagenesis for the development of new and novel cultivars of economic importance. Being deeply engaged for the last 30 years on improvement of ornamentals through Gamma-ray induced mutagenesis, I have produced a large number of new and promising varieties in different ornamentals. A good number of ornamental mutant varieties have already been commercialized. A novel technique has been developed for management of floral chimeric sector in chrysanthemum through direct regeneration of mutated individual florets. A series of in vitro experiments were conducted and solid mutants developed through direct regeneration. In vitro mutagenesis has been successfully used for development of a salt-resistant strain in chrysanthemum, supported by biochemical analysis and field trials. (author)

  6. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  7. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons; Antimutagenesis de moduladores quimicos contra el dano inducido por neutrones termicos de reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Garcia B, A.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, Departamentos de Materiales Radiactivos, de Biologia, del Reactor y Gerencia de Aplicaciones Nucleares en la Salud, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  8. MOLECULAR MUTAGENESIS INDUCED BY GLYCIDYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    高惠兰; 左谨; 谢大英; 方福德

    1994-01-01

    Glycidyl methacrylate(GMA)is a recently recognized mutagen.In order to explore the mutagenicity and mechanism of GMA,plasmid pBR322 was used for in vitro binding,mutant screening,restriction enzyme map-ping,and DNA sequencing.To explore the mechanism by which an initial premutational event is converted into a stable heritable mutation,pBR322 and GMA-bound pBR322 were transformed into E.coli HB101,and the follow-ing results were obtainge:1)GMA-bound pBR322 induced phenotype changes in competent cells.Two stable and heritable mutants were isolated (ApRTcS and ApSTcR).2)When restriction enzyme mapping was used to analyze the mutant ApRTcS,four of seven maps showed changes,but no large DNA insertion or deletion were observed.3)The frequency of deletion and insertion forms counted about 10%.Sequence specificity and hot spot regions were evident in the sequence analysis of mutated plasmid.The above results indicate that the premutagenic lesions of plasmid induced by GMA can be converted into point mutatons in vivo.

  9. Control of mammalian cell mutagenesis and differentiation by chemicals which initiate or promote tumor formation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C. A.; Huberman, E.

    1980-01-01

    A cell-mediated mutagenesis assay was developed to predict the potential carcinogenic hazard of some environmental chemicals. In this assay, Chinese hamster V79 cells, which are susceptible to mutagenesis, are co-cultivated with cells capable of metabolizing chemical carcinogens. Use of this assay made it possible to demonstrate a relationship between the degree of carcinogenicity and mutagenicity of a series of polycyclic hydrocarbons and nitrosamines and to study the organ specificity exhibited by some chemical carcinogens. However, most short-term in vitro assays are designed to detect mutagenic activity and therefore do not detect tumor promoting agents which are devoid of this activity. By analyzing various markers of terminal differentiation in cultured human melanoma and myeloid leukemia cells, we have established a relationship between the activity of a series of tumor promoting phorbol diesters in the mouse skin and their ability to induce terminal differentiation. We suggest that measuring alterations in the differentiation characteristics of some cultured cells may represent an approach by which environmental tumor promoting agents can be studied and detected.

  10. Ultraviolet mutagenesis and inducible DNA repair in Caulobacter crescentus

    Energy Technology Data Exchange (ETDEWEB)

    Bender, R.A.

    1984-11-19

    The ability to reactivate ultraviolet (UV) damaged phage phiCbK (W-reactivation) is induced by UV irradiation of Caulobacter crescentus cells. Induction of W-reactivation potential is specific for phage phiCbK, requires protein synthesis, and is greatly reduced in the presence of the rec-526 mutation. The induction signal generated by UV irradiation is transient, lasting about 1 1/2 - 2 h at 30/sup 0/C; if chloramphenicol is present during early times after UV irradiation, induction of W-reactivation does not occur. Induction is maximal when cells are exposed to 5-10 J/m/sup 2/ of UV, a dose that also results in considerable mutagenesis of the cells. Taken together, these observations demonstrate the existence of a UV inducible, protein synthesis requiring, transiently signalled, rec-requiring DNA repair system analogous to W-reactivation in Escherichia coli. In addition, C. crescentus also has an efficient photoreactivation system that reverses UV damage in the presence of strong visible light.

  11. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Mihoko; Wang, Teresa S.-F

    2003-11-27

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.

  12. TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis.

    Science.gov (United States)

    Mahfoudhi, Emna; Talhaoui, Ibtissam; Cabagnols, Xenia; Della Valle, Véronique; Secardin, Lise; Rameau, Philippe; Bernard, Olivier A; Ishchenko, Alexander A; Abbes, Salem; Vainchenker, William; Saparbaev, Murat; Plo, Isabelle

    2016-07-01

    The family of Ten-Eleven Translocation (TET) proteins is implicated in the process of active DNA demethylation and thus in epigenetic regulation. TET 1, 2 and 3 proteins are oxygenases that can hydroxylate 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC) and further oxidize 5-hmC into 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). The base excision repair (BER) pathway removes the resulting 5-fC and 5-caC bases paired with a guanine and replaces them with regular cytosine. The question arises whether active modification of 5-mC residues and their subsequent elimination could affect the genomic DNA stability. Here, we generated two inducible cell lines (Ba/F3-EPOR, and UT7) overexpressing wild-type or catalytically inactive human TET2 proteins. Wild-type TET2 induction resulted in an increased level of 5-hmC and a cell cycle defect in S phase associated with higher level of phosphorylated P53, chromosomal and centrosomal abnormalities. Furthermore, in a thymine-DNA glycosylase (Tdg) deficient context, the TET2-mediated increase of 5-hmC induces mutagenesis characterized by GC>AT transitions in CpG context suggesting a mutagenic potential of 5-hmC metabolites. Altogether, these data suggest that TET2 activity and the levels of 5-hmC and its derivatives should be tightly controlled to avoid genetic and chromosomal instabilities. Moreover, TET2-mediated active demethylation might be a very dangerous process if used to entirely demethylate the genome and might rather be used only at specific loci. PMID:27289557

  13. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis.

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2012-02-01

    OBJECTIVE: To assess the levels and spectrum of mitochondrial DNA (mtDNA) point mutations in synovial tissue from patients with inflammatory arthritis in relation to in vivo hypoxia and oxidative stress levels. METHODS: Random Mutation Capture assay was used to quantitatively evaluate alterations of the synovial mitochondrial genome. In vivo tissue oxygen levels (tPO(2)) were measured at arthroscopy using a Licox probe. Synovial expression of lipid peroxidation (4-hydroxynonenal [4-HNE]) and mitochondrial cytochrome c oxidase subunit II (CytcO II) deficiency were assessed by immunohistochemistry. In vitro levels of mtDNA point mutations, reactive oxygen species (ROS), mitochondrial membrane potential, and markers of oxidative DNA damage (8-oxo-7,8-dihydro-2\\'-deoxyguanine [8-oxodG]) and lipid peroxidation (4-HNE) were determined in human synoviocytes under normoxia and hypoxia (1%) in the presence or absence of superoxide dismutase (SOD) or N-acetylcysteine (NAC) or a hydroxylase inhibitor (dimethyloxalylglycine [DMOG]). Patients were categorized according to their in vivo tPO(2) level (<20 mm Hg or >20 mm Hg), and mtDNA point mutations, immunochemistry features, and stress markers were compared between groups. RESULTS: The median tPO(2) level in synovial tissue indicated significant hypoxia (25.47 mm Hg). Higher frequency of mtDNA mutations was associated with reduced in vivo oxygen tension (P = 0.05) and with higher synovial 4-HNE cytoplasmic expression (P = 0.04). Synovial expression of CytcO II correlated with in vivo tPO(2) levels (P = 0.03), and levels were lower in patients with tPO(2) <20 mm Hg (P < 0.05). In vitro levels of mtDNA mutations, ROS, mitochondrial membrane potential, 8-oxo-dG, and 4-HNE were higher in synoviocytes exposed to 1% hypoxia (P < 0.05); all of these increased levels were rescued by SOD and DMOG and, with the exception of ROS, by NAC. CONCLUSION: These findings demonstrate that hypoxia-induced mitochondrial dysfunction drives

  14. Breeding of Hordeum Vulgare L. via chemical and physical Mutagenesis

    International Nuclear Information System (INIS)

    A field experiment was conducted under field conditions to compare for yield, yield components and some agronomic traits, of four selective mutants that have been obtained by using chemical mutagen (Sodium Azide) and physical mutagen ( Gamma ray, 20 KG) and their parent Arivate and Numar. The results show that the selective mutants have a high degree of genetic stability and exceeded their parents in some agronomic parameters. There fore, the two best selective mutants were accepted for registration and release under the name of Barrak and Amel as a new varieties by Nacional Committee for Registration and Release of Agricultural varieties

  15. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2015-10-01

    Full Text Available Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection.

  16. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    Energy Technology Data Exchange (ETDEWEB)

    Abel, E.L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); Boulware, S. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); Fields, T.; McIvor, E.; Powell, K.L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); DiGiovanni, J.; Vasquez, K.M. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); MacLeod, M.C., E-mail: mcmacleod@mdanderson.org [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  17. Using ultra-sensitive next generation sequencing to dissect DNA damage-induced mutagenesis.

    Science.gov (United States)

    Wang, Kaile; Ma, Xiaolu; Zhang, Xue; Wu, Dafei; Sun, Chenyi; Sun, Yazhou; Lu, Xuemei; Wu, Chung-I; Guo, Caixia; Ruan, Jue

    2016-01-01

    Next generation sequencing (NGS) technologies have dramatically improved studies in biology and biomedical science. However, no optimal NGS approach is available to conveniently analyze low frequency mutations caused by DNA damage treatments. Here, by developing an exquisite ultra-sensitive NGS (USNGS) platform "EasyMF" and incorporating it with a widely used supF shuttle vector-based mutagenesis system, we can conveniently dissect roles of lesion bypass polymerases in damage-induced mutagenesis. In this improved mutagenesis analysis pipeline, the initial steps are the same as in the supF mutation assay, involving damaging the pSP189 plasmid followed by its transfection into human 293T cells to allow replication to occur. Then "EasyMF" is employed to replace downstream MBM7070 bacterial transformation and other steps for analyzing damage-induced mutation frequencies and spectra. This pipeline was validated by using UV damaged plasmid after its replication in lesion bypass polymerase-deficient 293T cells. The increased throughput and reduced cost of this system will allow us to conveniently screen regulators of translesion DNA synthesis pathway and monitor environmental genotoxic substances, which can ultimately provide insight into the mechanisms of genome stability and mutagenesis. PMID:27122023

  18. Chemical mutagenesis--a promising technique to increase metal concentration and extraction in sunflowers.

    Science.gov (United States)

    Nehnevajova, Erika; Herzig, Rolf; Federer, Guido; Erismann, Karl-Hans; Schwitzguébel, Jean-Paul

    2007-01-01

    Since most of the metal-hyperaccumulating wild plants only produce very low biomass and many high-yielding crops accumulate only moderate amounts of metals, the current research is mainly focused on overcoming these limitations and the optimization of metal phytoextraction. The main goal of the present study was the improvement of metal concentration and extraction properties of Helianthus annuus L by chemical mutagenesis (the non-GMO approach). Sunflowers--hybrid cultivar Salut and inbred lines-were treated with the chemical mutagen ethyl methanesulfonate (EMS). The effect of chemical mutagenesis on metal concentration in and extraction by new sunflower M1 and M2 mutants was directly assessed on a metal-contaminated field in Raft, Switzerland. Mutants of the M2 generation showed a 2-3 times higher metal shoot concentration than the control plants. The best M2 sunflower "giant mutant" 14/185/04 showed a significantly enhanced metal extraction ability: 7.5 times for Cd, 9.2 times for Zn, and 8.2 times for Pb in aboveground parts, as compared to the control plants. Theoretical calculations for the phytoextraction potential of new sunflower variants note that the best sunflower mutant can produce up to 26 t dry matter per hectare and remove 13.3 kg Zn per hectare and year at the sewage sludge contaminated site of Raft; that is a gain factor of 9 compared to Zn extraction by sunflower controls. Furthermore, the use of sunflower oil and biomass for technical purposes (lubricants, biodiesel, biogas) should produce an additional value and improve the economical balance of phytoextraction.

  19. Genotoxin Induced Mutagenesis in the Model Plant Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Marcela Holá

    2013-01-01

    Full Text Available The moss Physcomitrella patens is unique for the high frequency of homologous recombination, haploid state, and filamentous growth during early stages of the vegetative growth, which makes it an excellent model plant to study DNA damage responses. We used single cell gel electrophoresis (comet assay to determine kinetics of response to Bleomycin induced DNA oxidative damage and single and double strand breaks in wild type and mutant lig4 Physcomitrella lines. Moreover, APT gene when inactivated by induced mutations was used as selectable marker to ascertain mutational background at nucleotide level by sequencing of the APT locus. We show that extensive repair of DSBs occurs also in the absence of the functional LIG4, whereas repair of SSBs is seriously compromised. From analysis of induced mutations we conclude that their accumulation rather than remaining lesions in DNA and blocking progression through cell cycle is incompatible with normal plant growth and development and leads to sensitive phenotype.

  20. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    Directory of Open Access Journals (Sweden)

    T.A. Beacham

    2015-09-01

    Full Text Available Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.

  1. The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells.

    Science.gov (United States)

    Kozmin, Stanislav G; Jinks-Robertson, Sue

    2013-03-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps.

  2. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  3. Quantitative Traits of Ion Beam Induced Mutagenesis in Triticum aestivum

    Institute of Scientific and Technical Information of China (English)

    Huan FANG; Zhen JIAO

    2012-01-01

    [Objective] The aim of this study was to elucidate the quantitative traits of plants mutagenized by ion beam. [Method] The particular variation phenotypes, a- gronomic traits, and protein and wet gluten contents of progenies derived from the same ion beam induced mutant were investigated. [Result] Morphological polymor- phism existed in some individuals. Plant height, spike length and protein content were significantly influenced by ion beam, and effective tiller number and wet gluten content were moderately influenced. Multiple comparisons of all the indices within groups indicated genomic instability among these groups. Coefficient of variation im- plied the differences within group were very low. [Conclusion] Ion beam irradiation displayed characteristics of multi-directivity and non-directiveness. It aroused multiple variations in the same mutant. Instability among progeny indicates cells had different fate even in the same irradiated tissue. It may take several generations for mutants to stabilize particular phenotypes. The effects of ion beam irradiation may be the in- terrelated direct irradiation damage, indirect irradiation damage and late effect, such as bystander effect and adaptive response.

  4. Mutagenesis and Teratogenesis Section

    International Nuclear Information System (INIS)

    Progress is reported on research with mice in the areas of radioinduced and chemical mutagenesis, cytologic studies, radiation effects on DNA synthesis, radiation effects on germ cells, mutagenicity of coal-conversion products, and others. Research on Drosophila was concerned with mutagenesis and genetics of nucleases. Studies were conducted on hamster cells with regard to cytotoxicity and mutagenicity of alkylating agents, modification of the microtubule system, protein kinase activity, and others. Research on bacteria was concerned with effects of x radiation on bacteriophage of Haemophilus influenzae, x-ray induced DNA polymerase I-directed repair synthesis in Escherichia coli, transformation by DNA polymerase II in Bacillus subtilis, and others. Research on xenopus laevis was conducted in the areas of calcium-induced cleavage of oocytes, yolk degradation in explants, and others

  5. UV-induced mutagenesis in Escherichia coli SOS response: a quantitative model.

    Directory of Open Access Journals (Sweden)

    Sandeep Krishna

    2007-03-01

    Full Text Available Escherichia coli bacteria respond to DNA damage by a highly orchestrated series of events known as the SOS response, regulated by transcription factors, protein-protein binding, and active protein degradation. We present a dynamical model of the UV-induced SOS response, incorporating mutagenesis by the error-prone polymerase, Pol V. In our model, mutagenesis depends on a combination of two key processes: damage counting by the replication forks and a long-term memory associated with the accumulation of UmuD'. Together, these provide a tight regulation of mutagenesis, resulting, we show, in a "digital" turn-on and turn-off of Pol V. Our model provides a compact view of the topology and design of the SOS network, pinpointing the specific functional role of each of the regulatory processes. In particular, we suggest that the recently observed second peak in the activity of promoters in the SOS regulon (Friedman et al., 2005, PLoS Biology 3(7: e238 is the result of positive feedback from Pol V to RecA filaments.

  6. Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagenesis.

    Science.gov (United States)

    El-Nashar, Y I; Asrar, A A

    2016-01-01

    Chemical mutagenesis is an efficient tool used in mutation-breeding programs to improve the vital characters of the floricultural crops. This study aimed to estimate the effects of different concentrations of two chemical mutagens; sodium azide (SA) and diethyl sulfate (DES). The vegetative growth and flowering characteristics in two generations (M1 and M2) of calendula plants were investigated. Seeds were treated with five different concentrations of SA and DES (at the same rates) of 1000, 2000, 3000, 4000, and 5000 ppm, in addition to a control treatment of 0 ppm. Results showed that lower concentrations of SA mutagen had significant effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements in plants of both generations. Calendula plants tended to flower earlier under low mutagen concentrations (1000 ppm), whereas higher concentrations delayed flowering significantly. Positive results on seed germination, plant height, number of branches, plant fresh weight, and leaf area were observed in the M2-generation at lower concentrations of SA (1000 ppm), as well as at 4000 ppm DES on number of leaves and inflorescences. The highest total soluble protein was detected at the concentrations of 1000 ppm SA and 2000 ppm DES. DES showed higher average of acid phosphatase activity than SA. Results indicated that lower concentrations of SA and DES mutagens had positive effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements. Thus, lower mutagen concentrations could be recommended for better floral and physio-chemical performance. PMID:27173326

  7. The role of the bacterial mismatch repair system in SOS-induced mutagenesis: a theoretical background

    International Nuclear Information System (INIS)

    A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, a mathematical model of the bacterial mismatch repair system is developed. Within this model, the key pathways of this type of repair are simulated on the basis of modern experimental data related to its mechanisms. Here we have modelled in detail five main pathways of DNA misincorporation removal with different DNA exonucleases. Using our calculations, we have tested the hypothesis that the bacterial mismatch repair system is responsible for the removal of the nucleotides misincorporated by DNA polymerase V (the UmuD'2C complex) during ultraviolet-induced SOS response. For the theoretical analysis of the mutation frequency, we have combined the proposed mathematical approach with the model of SOS-induced mutagenesis in the E.coli bacterial cell developed earlier. Our calculations support the hypothesis that methyl-directed mismatch repair influences the mutagenic effect of ultraviolet radiation

  8. Evaluation of the L5178Y mouse lymphoma cell mutagenesis assay: intralaboratory results for sixty-three coded chemicals tested at Litton Bionetics, Inc.

    Science.gov (United States)

    Myhr, B C; Caspary, W J

    1988-01-01

    The reliability of the L5178Y TK+/- forward mutation assay as a rapid screen for genotoxicity was evaluated by testing 63 coded chemicals. Replicate treatments were used, and at least two independent experiments were performed for each test condition. The test conditions consisted of no exogenous activation, activation by Aroclor 1254-induced Fischer 344 rat liver S9 homogenate, and in some cases activation by noninduced Fischer 344 rat liver S9. The results were organized into tables that show the mutant colony counts, mutant frequency, and toxicity for each test chemical treatment, positive control treatment, and solvent negative control cultures. The repeat experiments were highly consistent and yielded contradictory evaluations for only a few of the chemicals studied. Fifty-one of the chemicals (81%) were evaluated as mutagenic under one or both of the test conditions. A range in minimum effective concentrations of almost 10(6)-fold (0.008 to 5,000 micrograms/ml) was observed among the mutagenic chemicals. Nine chemicals (14%) were considered to be nonmutagenic. Three chemicals (progesterone, p-rosaniline HCl, and 1,1,1-trichloroethane) gave responses that were not easily evaluated under any test condition: evidence for mutagenesis was obtained in some experiments but not for all repeat studies. Under nonactivation conditions, specifically, the mutagenic activities of 4,4'-bis(dimethylamino)benzophenone, progesterone, and p-rosaniline HCl remained uncertain. With S9 activation, uncertain evidence for mutagenesis was obtained for 2-naphthylamine, progesterone, and 1,1,1-trichloroethane. In some cases, changes in the treatment conditions could lead to different evaluations of the mutagenic activity, and these possibilities are discussed in the descriptive evaluations of each chemical. Comparisons of the observed responses with published results were possible for 29 of the compounds and yielded highly confirmatory evaluations. PMID:3416838

  9. Optogenetic mutagenesis in Caenorhabditis elegans

    Science.gov (United States)

    Noma, Kentaro; Jin, Yishi

    2015-01-01

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations. PMID:26632265

  10. UV-induced mutagenesis of oxidation activity of ferrous ion of Thiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An excellent strain named T. f6 was isolated and screened, the dose and other condition for the UV-induced mutagenesis were studied and the richened positive mutant m+ T. f6 was applied in the column leaching of copper-contain ing sulfides. The results show that T. f6 is characterized by rapid oxidation of ferrous ion and cupric sulfide, high tolerance of toxic ion and short generation time. The best mutagenic effectiveness can be obtained under the dose of low kill rate of UV and low temperature treatment, under which the best richened m+ T. f6 can be shortened 1.4h. It was shown by the column leaching of copper that the leaching rate can be enhanced by at least 11% compared with the original one by the mutants.

  11. N-Nitrosocarbaryl-induced mutagenesis in Haemophilus influenzae strains deficient in repair and recombination.

    Science.gov (United States)

    Beattie, K L

    1975-02-01

    Mutagenesis was studied in repair- and recombination-deficient strains of Haemophilus influenzae after treatment with N-nitrosocarbaryl (NC). Three different strains of H. influenzae carrying mutations affecting excision-repair of UV-induced pyrimidine dimers exhibited normal repair of premutational lesions (as detected by decreased mutation yield resulting from post-treatment DNA synthesis delay) and normal nonreplicative mutation fixation. This indicated that neither of these phenomena are caused by the smae repair mechanism that removes UV-induced pyrimidine dimers from the DNA. The recombination-deficient mutant recI is apparently deficient in the replication-dependent mode of NC-induced mutation fixation. This conclusion is based on the following results: (I) NC-induced mutagenesis is lower in the recI strain than in rec+ cells. (2) Repair of premutational lesions (which depends on the existence of replication-dependent mutation fixation for its detection) was not detected in the recI strain. (3) When nonreplicative mutation fixation and final mutation frequency were measured in the same experiment, about I/4 to I/3 of the final mutation yield could be accounted for by nonreplicative mutation fixation in the rec+ strain, whereas all of the mutation could be accounted for in the recI strain by the nonreplicative mutation fixation. (4) When mutation fixation in strain dna9 recI was followed at the permissive (36 degrees) and nonpermissive (41 degrees) temperatures, it became apparent that in the recI strain replication-dependent mutation fixation occurs at early times, but these newly fixed mutations are unstable and disappear at later times, leaving only the mutations fixed by the nonreplicative process. The recI strain exhibits normal repair of NC-induced single-strand breaks or alkali-labile bonds in the DNA labeled before treatment, but is slow in joining discontinuties present in DNA synthesized after treatment. The results are consistent with the idea that

  12. Radiation-induced mutagenesis of antifungal metabolite producing bacillus sp. HKA-17

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Senthilkumar, M. [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-09-15

    Bacillus sp. Strain HKA-17, isolated from the surface sterilized root nodule of Glycine max, inhibited several fungal plant pathogens. It produced a diffusible extracellular antifungal metabolite that was extracted with n-butanol. The crude extract was purified through Superdex{sup TM} 75 10/300 GL FPLC column. FT-IR spectrum of the FPLC purified-antifungal metabolite confirmed the presence of peptide and glycosidic bonds in its structure. Gamma induced mutagenesis of HKA-17 was carried out at an LD{sub 99} dose (8.46 kGy) to generate a mutant library. By screening the mutant library through a duel plate assay with Alternaria alternata, we selected one mutant with enhanced biocontrol activity (HKA-17e1) and two defective mutants (HKA-17d1 and HKA-17d2). Overproducing mutant recorded the largest inhibition zone (16.25 {+-} 0.86 mm) compared to any other mutant clone as well as wild type, and could be used as a potential biocontrol agent for plant disease suppression. The effect of HKA-17 antifungal metabolite on hyphal morphology was clearly demonstrated through scanning electron microscopy. The crude extract of defective mutant HKA-17 d1 did not induce any changes in hyphal morphology of A. alternata. However, antifungal metabolites of HKA-17 induced abnormal hyphal structures such as hyphal shrivelling, the bulging and swelling of intercalary cells, fragmentation, and cell lysis.

  13. Radiation-induced mutagenesis of antifungal metabolite producing bacillus sp. HKA-17

    International Nuclear Information System (INIS)

    Bacillus sp. Strain HKA-17, isolated from the surface sterilized root nodule of Glycine max, inhibited several fungal plant pathogens. It produced a diffusible extracellular antifungal metabolite that was extracted with n-butanol. The crude extract was purified through SuperdexTM 75 10/300 GL FPLC column. FT-IR spectrum of the FPLC purified-antifungal metabolite confirmed the presence of peptide and glycosidic bonds in its structure. Gamma induced mutagenesis of HKA-17 was carried out at an LD99 dose (8.46 kGy) to generate a mutant library. By screening the mutant library through a duel plate assay with Alternaria alternata, we selected one mutant with enhanced biocontrol activity (HKA-17e1) and two defective mutants (HKA-17d1 and HKA-17d2). Overproducing mutant recorded the largest inhibition zone (16.25 ± 0.86 mm) compared to any other mutant clone as well as wild type, and could be used as a potential biocontrol agent for plant disease suppression. The effect of HKA-17 antifungal metabolite on hyphal morphology was clearly demonstrated through scanning electron microscopy. The crude extract of defective mutant HKA-17 d1 did not induce any changes in hyphal morphology of A. alternata. However, antifungal metabolites of HKA-17 induced abnormal hyphal structures such as hyphal shrivelling, the bulging and swelling of intercalary cells, fragmentation, and cell lysis

  14. Modeling nucleotide excision repair and its impact on UV-induced mutagenesis during SOS-response in bacterial cells.

    Science.gov (United States)

    Bugay, Aleksandr N; Krasavin, Evgeny A; Parkhomenko, Aleksandr Yu; Vasilyeva, Maria A

    2015-01-01

    A model of the UV-induced mutation process in Escherichia coli bacteria has been developed taking into account the whole sequence of molecular events starting from initial photo-damage and finishing with the fixation of point mutations. The wild-type phenotype bacterial cells are compared with UV-sensitive repair-deficient mutant cells. Attention is mainly paid to excision repair system functioning as regards induced mutagenesis.

  15. Obtaining unique large kernel rice using chemical mutagenesis in tissue culture

    International Nuclear Information System (INIS)

    Full text: Lines with improved characters have been received by chemical mutagenesis in rice tissue culture. The japonica rice (Oryza sativa L.) varieties 'Krasnodarskii 424', 'Dubovskii 129', 'Slavyanetz', 'Liman', 'Lomello', 'VNIIR 2471' were used for mutation induction. Nnitrozo-N-methylurea (MNH) has been used as a mutagen. Two approaches were applied: 1. Development mutants by mutagenic treatment of seeds 2. Development regenerants from somatic tissue culture. In the first case, dry seeds with removed covering glumes have been treated with a solution of NMH (exposure 24 hours, tested concentrations 0.05%; 0.1%; 0.2%). After treatment seeds have been rinsed and planted into the soil in vessels. The effect of mutagen was very much genotype dependant. The highest frequency of mutants were observed in the following concentrations of MNH: for variety VNIIR 2471 - 0.05-0.1%, for variety Slavyanetz - 0.1%; for Lomello - 0.2%; for Linman - 0.05% and 0.2%. The mutant N 95, which has been selected from variety Liman after treatment with 0.2% concentration of mutagen, had the following improved characters: vegetation period 103 days (110 days for the parent variety); plant height 93.2 cm (98.2 cm - parent variety); length of the main panicle 17.2 cm; 1000 grain mass 44.9 g (39.2 g - parent variety). Mutant line N 101 selected from the same variety Liman after treatment with 0.05% concentration of mutagen mutated also in many characters: vegetation period 103 days; plant height 106 cm; 1000 grain mass was 47.0 g. In the second experiment, a somatic callus of the 2nd passage from varieties Kransnodarskii 424, Dubovskii 129, Slavyanetz, Liman were treated with the solution of mutagen NMH (concentration: 0.05%; 0.1%; 0.2% + 0.1% PABA by 40 minutes at Certomat shaking machine (100 rev./min). The treated callus has been cultivated at MS regeneration media (4 mg 2.4 D + 20 mg /l of sucrose) and MS intermediate media (non-hormonal + PABA) to obtain regenerants. Plant

  16. U.v.-induced and N-methyl-N'-nitrosoguanidine-induced mutagenesis in Bacillus thuringiensis

    International Nuclear Information System (INIS)

    The lethal and mutagenic effects of u.v. light and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on Bacillus thuringiensis were investigated. Lethality studies demonstrated that B. thuringiensis was relatively sensitive to these agents. This bacterium was mutated at the rifampicin resistance marker by u.v. light and to a lesser extent by the direct acting alkylating agent MNNG. One mutant selected for its greater sensitivity to u.v. light expressed a higher frequency of mutagenesis after u.v. light treatment and appeared to be defective in an excision repair pathway. However, this mutant was only slightly mutable by MNNG in comparison with the wild-type strain. This unusual phenotype does not yet have a parallel among the radiation sensitive mutants described in other bacterial species. (author)

  17. U. V. -induced and N-methyl-N'-nitrosoguanidine-induced mutagenesis in Bacillus thuringiensis

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, Y.; Boutibonnes, P.

    1987-03-01

    The lethal and mutagenic effects of u.v. light and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on Bacillus thuringiensis were investigated. Lethality studies demonstrated that B. thuringiensis was relatively sensitive to these agents. This bacterium was mutated at the rifampicin resistance marker by u.v. light and to a lesser extent by the direct acting alkylating agent MNNG. One mutant selected for its greater sensitivity to u.v. light expressed a higher frequency of mutagenesis after u.v. light treatment and appeared to be defective in an excision repair pathway. However, this mutant was only slightly mutable by MNNG in comparison with the wild-type strain. This unusual phenotype does not yet have a parallel among the radiation sensitive mutants described in other bacterial species.

  18. Inducible SOS Response System of DNA Repair and Mutagenesis in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Celina Janion

    2008-01-01

    Full Text Available Chromosomal DNA is exposed to continuous damage and repair. Cells contain a number of proteins and specific DNA repair systems that help maintain its correct structure. The SOS response was the first DNA repair system described in Escherichia coli induced upon treatment of bacteria with DNA damaging agents arrest DNA replication and cell division. Induction of the SOS response involves more than forty independent SOS genes, most of which encode proteins engaged in protection, repair, replication, mutagenesis and metabolism of DNA. Under normal growth conditions the SOS genes are expressed at a basal level, which increases distinctly upon induction of the SOS response. The SOS-response has been found in many bacterial species (e.g., Salmonella typhimurium, Caulobacter crescentus, Mycobacterium tuberculosis, but not in eukaryotic cells. However, species from all kingdoms contain some SOS-like proteins taking part in DNA repair that exhibit amino acid homology and enzymatic activities related to those found in E. coli. but are not organized in an SOS system. This paper presents a brief up-to-date review describing the discovery of the SOS system, the physiology of SOS induction, methods for its determination, and the role of some SOS-induced genes.

  19. Comments on mutagenesis risk estimation

    International Nuclear Information System (INIS)

    Several hypotheses and concepts have tended to oversimplify the problem of mutagenesis and can be misleading when used for genetic risk estimation. These include: the hypothesis that radiation-induced mutation frequency depends primarily on the DNA content per haploid genome, the extension of this concept to chemical mutagenesis, the view that, since DNA is DNA, mutational effects can be expected to be qualitatively similar in all organisms, the REC unit, and the view that mutation rates from chronic irradiation can be theoretically and accurately predicted from acute irradiation data. Therefore, direct determination of frequencies of transmitted mutations in mammals continues to be important for risk estimation, and the specific-locus method in mice is shown to be not as expensive as is commonly supposed for many of the chemical testing requirements

  20. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification.

    Science.gov (United States)

    Harder, Daniel; Hirschi, Stephan; Ucurum, Zöhre; Goers, Roland; Meier, Wolfgang; Müller, Daniel J; Fotiadis, Dimitrios

    2016-07-25

    For applications in synthetic biology, for example, the bottom-up assembly of biomolecular nanofactories, modules of specific and controllable functionalities are essential. Of fundamental importance in such systems are energizing modules, which are able to establish an electrochemical gradient across a vesicular membrane as an energy source for powering other modules. Light-driven proton pumps like proteorhodopsin (PR) are excellent candidates for efficient energy conversion. We have extended the versatility of PR by implementing an on/off switch based on reversible chemical modification of a site-specifically introduced cysteine residue. The position of this cysteine residue in PR was identified by structure-based cysteine mutagenesis combined with a proton-pumping assay using E. coli cells overexpressing PR and PR proteoliposomes. The identified PR mutant represents the first light-driven proton pump that can be chemically switched on/off depending on the requirements of the molecular system. PMID:27294681

  1. Significance of CpG methylation for solar UV-induced mutagenesis and carcinogenesis in skin.

    Science.gov (United States)

    Ikehata, Hironobu; Ono, Tetsuya

    2007-01-01

    Mutations detected in the p53 gene in human nonmelanoma skin cancers show a highly UV-specific mutation pattern, a dominance of C --> T base substitutions at dipyrimidine sites plus frequent CC --> TT tandem substitutions, indicating a major involvement of solar UV in the skin carcinogenesis. These mutations also have another important characteristic of frequent occurrences at CpG dinucleotide sites, some of which actually show prominent hotspots in the p53 gene. Although mammalian solar UV-induced mutation spectra were studied intensively in the aprt gene using rodent cultured cells and the UV-specific mutation pattern was confirmed, the second characteristic of the p53 mutations in human skin cancers had not been reproduced. However, studies with transgenic mouse systems developed thereafter for mutation research, which harbor methyl CpG-abundant transgenes as mutation markers, yielded complete reproductions of the situation of the human skin cancer mutations in terms of both the UV-specific pattern and the frequent occurrence at CpG sites. In this review, we evaluate the significance of the CpG methylation for solar UV mutagenesis in the mammalian genome, which would lead to skin carcinogenesis. We propose that the UV-specific mutations at methylated CpG sites, C --> T transitions at methyl CpG-associated dipyrimidine sites, are a solar UV-specific mutation signature, and have estimated the wavelength range effective for the solar-UV-specific mutation as 310-340 nm. We also recommend the use of methyl CpG-enriched sequences as mutational targets for studies on solar-UV genotoxicity for human, rather than conventional mammalian mutational marker genes such as the aprt and hprt genes.

  2. Inducible chemical defences in animals

    OpenAIRE

    Heyttyey, Attila; Tóth, Zoltán; Buskirk, Josh

    2014-01-01

    Phenotypic plasticity is extremely widespread in the behaviour, morphology and life-history of animals. However, inducible changes in the production of defensive chemicals are described mostly in plants and surprisingly little is known about similar plasticity in chemical defences of animals. Inducible chemical defences may be common in animals because many are known to produce toxins, the synthesis of toxins is likely to be costly, and there are a few known cases of animals adjusting their t...

  3. Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis.

    Science.gov (United States)

    Vashishtha, Ashwani K; West, Ann H; Cook, Paul F

    2015-10-15

    Saccharopine reductase catalyzes the reductive amination of l-α-aminoadipate-δ-semialdehyde with l-glutamate to give saccharopine. Two mechanisms have been proposed for the reductase, one that makes use of enzyme side chains as acid-base catalytic groups, and a second, in which the reaction is catalyzed by enzyme-bound reactants. Site-directed mutagenesis was used to change acid-base candidates in the active site of the reductase to eliminate their ionizable side chain. Thus, the D126A, C154S and Y99F and several double mutant enzymes were prepared. Kinetic parameters in the direction of glutamate formation exhibited modest decreases, inconsistent with the loss of an acid-base catalyst. The pH-rate profiles obtained with all mutant enzymes decrease at low and high pH, suggesting acid and base catalytic groups are still present in all enzymes. Solvent kinetic deuterium isotope effects are all larger than those observed for wild type enzyme, and approximately equal to one another, suggesting the slow step is the same as that of wild type enzyme, a conformational change to open the site and release products (in the direction of saccharopine formation). Overall, the acid-base chemistry is likely catalyzed by bound reactants, with the exception of deprotonation of the α-amine of glutamate, which likely requires an enzyme residue. PMID:26342457

  4. Towards the development of a chimera-free in vitro induced mutagenesis system in cassava (Manihot esculenta, Crantz)

    International Nuclear Information System (INIS)

    Cassava, an herbaceous plant with starchy storage roots, has the potentials for being the cheapest source of starch for varied industries. To achieve this, the starch types must be clearly discriminated into either high preponderance of amylose or the other extreme of amylopectin content (waxy starch). Being a vegetative propagated crop with major crossing barriers, induced mutagenesis holds promise for modifying the starch characteristics of this crop. The efficiency of induced mutagenesis in a vegetative propagated crop such as cassava is severely limited by the occurrence of chimeras. To ameliorate this, the induced mutagenesis strategy must permit the regeneration of plants from one or a few cells that have been induced to mutate. We report the optimisation of protocols for the generation of plantlets from somatic embryos that were exposed to EMS. Different explants (buds and somatic embryos) of a cassava clone with high starch content were exposed to different doses (concentration and duration) of ethylmethane sulfonate (EMS) with the aim of determining the optimal doses for generating induced mutants. A wide range of reactions to EMS, from slightly reduced plantlet regeneration to lethality, was observed leading to the determination of the optimum exposure treatment. The regenerated plantlets were transplanted to pots in the greenhouse for hardening and later transferred to the field. In order to achieve homozygousity of the mutation events, the putative mutants were selfed- crosses. The immature embryos were rescued (cultured on aseptic growth media) in order to speed-up the process of generating the mutant population as well as avoid the possibility of embryo abortion. The resulting plantlets were again subsequently hardened and transferred to the field. Currently, 610 plants, constituting the putative mutant population have been established in the field in Palmira, Colombia. As a pilot assay, this work has demonstrated the feasibility of combining EMS

  5. Assessment of genetic response and character association for yield and yield components in Lentil (Lens culinaris L. population developed through chemical mutagenesis

    Directory of Open Access Journals (Sweden)

    Ruhul Amin

    2015-12-01

    Full Text Available Genetic variation is imperative to any plant improvement program. Therefore, this study was primarily based on this aspect of inducing desirable genetic variation for enhancement of the available lentil genetic diversity. The lentil seeds were treated with methyl methanesulfonate (MMS alone and in combination with dimethyl sulfoxide (DMSO for inducing polygenic variation as well as determining the impact of DMSO on mutagenecity of MMS. Comparative observations were recorded for bio-physiological damages, morphological variation, and quantitative traits to assess the genetic response of the lentil cultivar L 4076 toward the different concentrations of chemicals. Significant statistics suggested that the DMSO interfere with the extent of mutagenecity of MMS in lentil which could be attributed to either synergistic action of both or variation in MMS uptake. The outcome of mutagenesis on the character association study revealed that mutagenic treatments can modify significantly the manner of association between any two traits in lentil. The moderate doses of MMS in combination with 2% DMSO showed notable diminution in the biological damages while accelerating the rate of desirable high-yielding mutants had proved to be economical. The segregate of the selected mutants in future generations will definitely contribute to the improvement of Lentil genotype.

  6. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion

    OpenAIRE

    Batista, Rita; Saibo, Nelson; Lourenço, Tiago; Oliveira, Maria Margarida

    2008-01-01

    Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring ...

  7. The antimutagenic effect of monoterpenes against UV-irradiation-, 4NQO- and t-BOOH-induced mutagenesis in coli

    Directory of Open Access Journals (Sweden)

    Nikolić Biljana

    2011-01-01

    Full Text Available The aim of this work was to investigate the antimutagenic potential of monoterpenes from sage and basil in Escherichia coli. The mutagenic potential of monoterpenes was pre-screened with Salmonella/microsome reversion assay in strain TA100 and no mutagenic effect was detected. The antimutagenic potential against UV- 4NQO- and t-BOOH induced mutagenesis was evaluated in E. coli K12 and E. coli WP2 by reversion assays. The obtained results indicate that camphor and thujone reduce UV- and 4NQO-induced mutations; myrcene reduces t-BOOH-induced mutations, while eucalyptol and linalool reduce mutagenicity by all tested mutagens. Considering evolutionary conservation of DNA repair and antioxidative protection, the obtained results indicate that further antigenotoxicity studies should be undertaken in eukaryotes.

  8. Chemical aminoacylation of tRNAs with fluorinated amino acids for in vitro protein mutagenesis

    Directory of Open Access Journals (Sweden)

    Shijie Ye

    2010-04-01

    Full Text Available This article describes the chemical aminoacylation of the yeast phenylalanine suppressor tRNA with a series of amino acids bearing fluorinated side chains via the hybrid dinucleotide pdCpA and ligation to the corresponding truncated tRNA species. Aminoacyl-tRNAs can be used to synthesize biologically relevant proteins which contain fluorinated amino acids at specific sites by means of a cell-free translation system. Such engineered proteins are expected to contribute to our understanding of discrete fluorines’ interaction with canonical amino acids in a native protein environment and to enable the design of fluorinated proteins with arbitrary desired properties.

  9. Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane(Saccharum officinarum L.)

    Institute of Scientific and Technical Information of China (English)

    Ashok; A.Nikam; Rachayya; M.; Devarumath; Akash; Ahuja; Harinath; Babu; Mahadeo; G.Shitole; Penna; Suprasanna

    2015-01-01

    Gamma ray-induced in vitro mutagenesis and selection for salt(NaC l) tolerance were investigated in sugarcane(Saccharum officinarum L.). Embryogenic callus cultures were irradiated(10 to 80 Gy) and subjected to in vitro selection by exposure of irradiated callus to NaC l(0, 50, 100,150, 200, and 250 mmol L-1). Increasing NaC l concentrations resulted in growth reduction and increased membrane damage. Salt-selected callus lines were characterized by the accumulation of proline, glycine betaine, and Na+and K+concentration. Higher accumulation of proline and glycine betaine was observed in NaC l stressed callus irradiated at 20 Gy. Na+concentration increased and K+concentration decreased with increasing salt level. Irradiated callus showed50–60% regeneration under NaC l stress, and in vitro-regenerated plants were acclimatized in the greenhouse, with 80–85% survival. A total of 138 irradiated and salt-selected selections were grown to maturity and their agronomic performance was evaluated under normal and saline conditions. Of these, 18 mutant clones were characterized for different agro-morphological characters and some of the mutant clones exhibited improved sugar yield with increased Brix%,number of millable canes, and yield. The result suggest that radiation-induced mutagenesis offers an effective way to enhance genetic variation in sugarcane.

  10. Mutation induced extinction in finite populations: lethal mutagenesis and lethal isolation.

    Science.gov (United States)

    Wylie, C Scott; Shakhnovich, Eugene I

    2012-01-01

    Reproduction is inherently risky, in part because genomic replication can introduce new mutations that are usually deleterious toward fitness. This risk is especially severe for organisms whose genomes replicate "semi-conservatively," e.g. viruses and bacteria, where no master copy of the genome is preserved. Lethal mutagenesis refers to extinction of populations due to an unbearably high mutation rate (U), and is important both theoretically and clinically, where drugs can extinguish pathogens by increasing their mutation rate. Previous theoretical models of lethal mutagenesis assume infinite population size (N). However, in addition to high U, small N can accelerate extinction by strengthening genetic drift and relaxing selection. Here, we examine how the time until extinction depends jointly on N and U. We first analytically compute the mean time until extinction (τ) in a simplistic model where all mutations are either lethal or neutral. The solution motivates the definition of two distinct regimes: a survival phase and an extinction phase, which differ dramatically in both how τ scales with N and in the coefficient of variation in time until extinction. Next, we perform stochastic population-genetics simulations on a realistic fitness landscape that both (i) features an epistatic distribution of fitness effects that agrees with experimental data on viruses and (ii) is based on the biophysics of protein folding. More specifically, we assume that mutations inflict fitness penalties proportional to the extent that they unfold proteins. We find that decreasing N can cause phase transition-like behavior from survival to extinction, which motivates the concept of "lethal isolation." Furthermore, we find that lethal mutagenesis and lethal isolation interact synergistically, which may have clinical implications for treating infections. Broadly, we conclude that stably folded proteins are only possible in ecological settings that support sufficiently large populations

  11. Mutation induced extinction in finite populations: lethal mutagenesis and lethal isolation.

    Directory of Open Access Journals (Sweden)

    C Scott Wylie

    Full Text Available Reproduction is inherently risky, in part because genomic replication can introduce new mutations that are usually deleterious toward fitness. This risk is especially severe for organisms whose genomes replicate "semi-conservatively," e.g. viruses and bacteria, where no master copy of the genome is preserved. Lethal mutagenesis refers to extinction of populations due to an unbearably high mutation rate (U, and is important both theoretically and clinically, where drugs can extinguish pathogens by increasing their mutation rate. Previous theoretical models of lethal mutagenesis assume infinite population size (N. However, in addition to high U, small N can accelerate extinction by strengthening genetic drift and relaxing selection. Here, we examine how the time until extinction depends jointly on N and U. We first analytically compute the mean time until extinction (τ in a simplistic model where all mutations are either lethal or neutral. The solution motivates the definition of two distinct regimes: a survival phase and an extinction phase, which differ dramatically in both how τ scales with N and in the coefficient of variation in time until extinction. Next, we perform stochastic population-genetics simulations on a realistic fitness landscape that both (i features an epistatic distribution of fitness effects that agrees with experimental data on viruses and (ii is based on the biophysics of protein folding. More specifically, we assume that mutations inflict fitness penalties proportional to the extent that they unfold proteins. We find that decreasing N can cause phase transition-like behavior from survival to extinction, which motivates the concept of "lethal isolation." Furthermore, we find that lethal mutagenesis and lethal isolation interact synergistically, which may have clinical implications for treating infections. Broadly, we conclude that stably folded proteins are only possible in ecological settings that support sufficiently

  12. Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase.

    Science.gov (United States)

    Bhan, Namita; Cress, Brady F; Linhardt, Robert J; Koffas, Mattheos

    2015-08-01

    Several natural polyketides (PKs) have been associated with important pharmaceutical properties. Type III polyketide synthases (PKS) that generate aromatic PK polyketides have been studied extensively for their substrate promiscuity and product diversity. Stilbene synthase-like (STS) enzymes are unique in the type III PKS class as they possess a hydrogen bonding network, furnishing them with thioesterase-like properties, resulting in aldol condensation of the polyketide intermediates formed. Chalcone synthases (CHS) in contrast, lack this hydrogen-bonding network, resulting primarily in the Claisen condensation of the polyketide intermediates formed. We have attempted to expand the chemical space of this interesting class of compounds generated by creating structure-guided mutants of Vitis vinifera STS. Further, we have utilized a previously established workflow to quickly compare the wild-type reaction products to those generated by the mutants and identify novel PKs formed by using XCMS analysis of LC-MS and LC-MS/MS data. Based on this approach, we were able to generate 15 previously unreported PK molecules by exploring the substrate promiscuity of the wild-type enzyme and all mutants using unnatural substrates. These structures were specific to STSs and cannot be formed by their closely related CHS-like counterparts. PMID:26048582

  13. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion.

    Science.gov (United States)

    Batista, Rita; Saibo, Nelson; Lourenço, Tiago; Oliveira, Maria Margarida

    2008-03-01

    Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring during rice improvement through transgenesis versus mutation breeding. We used oligonucleotide microarrays to analyze gene expression in four different pools of four types of rice plants and respective controls: (i) a gamma-irradiated stable mutant, (ii) the M1 generation of a 100-Gy gamma-irradiated plant, (iii) a stable transgenic plant obtained for production of an anticancer antibody, and (iv) the T1 generation of a transgenic plant produced aiming for abiotic stress improvement, and all of the unmodified original genotypes as controls. We found that the improvement of a plant variety through the acquisition of a new desired trait, using either mutagenesis or transgenesis, may cause stress and thus lead to an altered expression of untargeted genes. In all of the cases studied, the observed alteration was more extensive in mutagenized than in transgenic plants. We propose that the safety assessment of improved plant varieties should be carried out on a case-by-case basis and not simply restricted to foods obtained through genetic engineering. PMID:18303117

  14. Effect of SOS-induced Pol II, Pol IV, and Pol V DNA polymerases on UV-induced mutagenesis and MFD repair in Escherichia coli cells.

    Science.gov (United States)

    Wrzesiński, Michał; Nowosielska, Anetta; Nieminuszczy, Jadwiga; Grzesiuk, Elzbieta

    2005-01-01

    Irradiation of organisms with UV light produces genotoxic and mutagenic lesions in DNA. Replication through these lesions (translesion DNA synthesis, TSL) in Escherichia coli requires polymerase V (Pol V) and polymerase III (Pol III) holoenzyme. However, some evidence indicates that in the absence of Pol V, and with Pol III inactivated in its proofreading activity by the mutD5 mutation, efficient TSL takes place. The aim of this work was to estimate the involvement of SOS-inducible DNA polymerases, Pol II, Pol IV and Pol V, in UV mutagenesis and in mutation frequency decline (MFD), a mechanism of repair of UV-induced damage to DNA under conditions of arrested protein synthesis. Using the argE3-->Arg(+) reversion to prototrophy system in E. coli AB1157, we found that the umuDC-encoded Pol V is the only SOS-inducible polymerase required for UV mutagenesis, since in its absence the level of Arg(+) revertants is extremely low and independent of Pol II and/or Pol IV. The low level of UV-induced Arg(+) revertants observed in the AB1157mutD5DumuDC strain indicates that under conditions of disturbed proofreading activity of Pol III and lack of Pol V, UV-induced lesions are bypassed without inducing mutations. The presented results also indicate that Pol V may provide substrates for MFD repair; moreover, we suggest that only those DNA lesions which result from umuDC-directed UV mutagenesis are subject to MFD repair.

  15. Retroviral expression of the hepatitis B virus x gene promotes liver cell susceptibility to carcinogen-induced site specific mutagenesis.

    Science.gov (United States)

    Sohn, S; Jaitovitch-Groisman, I; Benlimame, N; Galipeau, J; Batist, G; Alaoui-Jamali, M A

    2000-06-30

    Mutational inactivation of the tumor suppressor gene p53 is common in hepatocellular carcinomas (HCC). AGG to AGT transversion in codon 249 of exon 7 of the p53 gene occurs in over 50% of HCC from endemic regions, where both chronic infection with the hepatitis B virus (HBV) and exposure to carcinogens such as aflatoxin B1 (AFB1) prevail. In this study, we report the effect of the HBV x protein (HBx) on carcinogen-induced cytotoxicity and AGG to AGT mutation in codon 249 of the p53 gene in the human liver cell line CCL13. Expression of HBx, as revealed by its transactivation function, results in enhanced cell susceptibility to cytotoxicity induced by the AFB1 active metabolite, AFB1-8,9-epoxide, and benzo(a)pyrene diol-epoxide. Under similar conditions, expression of HBx promotes apoptosis in a subset of cell population. Exposure to AFB1-8, 9-epoxide alone induces a low frequency of AGG to AGT mutation in codon 249 of the p53 gene, as determined by an allele-specific polymerase chain reaction (AS-PCR) assay. However, expression of HBx enhances the frequency of AFB1-epoxide-induced AGG to AGT mutation compared to control cells. In summary, this study demonstrates that expression of HBx enhances liver cell susceptibility to carcinogen-induced mutagenesis, possibly through alteration of the balance between DNA repair and apoptosis, two cellular defense mechanisms against genotoxic stress. PMID:10856831

  16. 5-Azacytidine Can Induce Lethal Mutagenesis in Human Immunodeficiency Virus Type 1▿ †

    Science.gov (United States)

    Dapp, Michael J.; Clouser, Christine L.; Patterson, Steven; Mansky, Louis M.

    2009-01-01

    Ribonucleosides inhibit human immunodeficiency virus type 1 (HIV-1) replication by mechanisms that have not been fully elucidated. Here, we report the antiviral mechanism for the ribonucleoside analog 5-azacytidine (5-AZC). We hypothesized that the anti-HIV-1 activity of 5-AZC was due to an increase in the HIV-1 mutation rate following its incorporation into viral RNA during transcription. However, we demonstrate that 5-AZC's primary antiviral activity can be attributed to its effect on the early phase of HIV-1 replication. Furthermore, the antiviral activity was associated with an increase in the frequency of viral mutants, suggesting that 5-AZC's primary target is reverse transcription. Sequencing analysis showed an enrichment in G-to-C transversion mutations and further supports the idea that reverse transcription is an antiviral target of 5-AZC. These results indicate that 5-AZC is incorporated into viral DNA following reduction to 5-aza-2′-deoxycytidine. Incorporation into the viral DNA leads to an increase in mutant frequency that is consistent with lethal mutagenesis during reverse transcription as the primary antiviral mechanism of 5-AZC. Antiviral activity and increased mutation frequency were also associated with the late phase of HIV-1 replication; however, 5-AZC's effect on the late phase was less robust. These results reveal that the primary antiviral mechanism of 5-AZC can be attributed to its ability to increase the HIV-1 mutation frequency through viral-DNA incorporation during reverse transcription. Our observations indicate that 5-AZC can affect two steps in HIV-1 replication (i.e., transcription and reverse transcription) but that its primary antiviral activity is due to incorporation during reverse transcription. PMID:19726509

  17. In vivo evidence for ribavirin-induced mutagenesis of the hepatitis E virus genome

    Science.gov (United States)

    Todt, Daniel; Gisa, Anett; Radonic, Aleksandar; Nitsche, Andreas; Behrendt, Patrick; Suneetha, Pothakamuri Venkata; Pischke, Sven; Bremer, Birgit; Brown, Richard J P; Manns, Michael P; Cornberg, Markus; Bock, C Thomas; Steinmann, Eike; Wedemeyer, Heiner

    2016-01-01

    Objective Hepatitis E virus (HEV) infection can take chronic courses in immunocompromised patients potentially leading to liver cirrhosis and liver failure. Ribavirin (RBV) is currently the only treatment option for many patients, but treatment failure can occur which has been associated with the appearance of a distinct HEV polymerase mutant (G1634R). Here, we performed a detailed analysis of HEV viral intrahost evolution during chronic hepatitis E infections. Design Illumina deep sequencing was performed for the detection of intrahost variation in the HEV genome of chronically infected patients. Novel polymerase mutants were investigated in vitro using state-of-the-art HEV cell culture models. Results Together, these data revealed that (1) viral diversity differed markedly between patients but did not show major intraindividual short-term variations in untreated patients with chronic hepatitis E, (2) RBV therapy was associated with an increase in viral heterogeneity which was reversible when treatment was stopped, (3) the G1634R mutant was detectable as a minor population prior to therapy in patients who subsequently failed to achieve a sustained virological response to RBV therapy and (4) in addition to G1634R further dominant variants in the polymerase region emerged, impacting HEV replication efficiency in vitro. Conclusions In summary, this first investigation of intrahost HEV population evolution indicates that RBV causes HEV mutagenesis in treated patients and that an emergence of distinct mutants within the viral population occurs during RBV therapy. We also suggest that next-generation sequencing could be useful to guide personalised antiviral strategies. PMID:27222534

  18. Predictive mutagenesis of ligation-independent cloning (LIC) vectors for protein expression and site-specific chemical conjugation

    DEFF Research Database (Denmark)

    Vernet, Erik; Sauer, Jørgen; Andersen, Peter Andreas;

    2011-01-01

    Ligation-independent cloning (LIC) allows for cloning of DNA constructs independent of insert restriction sites and ligases. However, any required mutations are typically introduced by additional, time-consuming steps. We present a rapid, inexpensive method for mutagenesis in the 5' LIC site of e......-oxy functionalized polyethylene glycol (PEG) ligand under aniline catalysis to provide a protein selectively modified at the N-terminus....

  19. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    Science.gov (United States)

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  20. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing

    Science.gov (United States)

    Chemical mutagenesis efficiently generates phenotypic variation in otherwise homogeneous genetic backgrounds, enabling functional analysis of genes. Advances in mutation detection have brought the utility of induced mutant populations on par with those produced by insertional mutagenesis, but system...

  1. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    Science.gov (United States)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  2. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    KAUST Repository

    Caputo, Fanny

    2015-08-20

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields. © The Royal Society of Chemistry 2015.

  3. Induced mutagenesis as a source of new mutations in maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Full text: Seed samples of 9 inbreds were treated with MNU. Mutant individuals were visually selected in M2 and M3. Mutability was determined in 100 loci by crossing induced mutants with some well-known natural mutants obtained from the U.S. Association of Corn Geneticists. Only viable mutants characterised with distinct stable traits connected with kernel texture and mature plant were taken for tests. Mapping of the expected new mutants was realised through A-B translocations and marker lines. Evaluation of the mutant alleles' effect on yield and quality of biomass in inbreds and heterotic hybrids was done by the standard methods. The results show the ability of artificial mutagens to induce mutations in previously known loci. The genotype of the inbreds greatly affects the probability of mutation occurrence in a new locus. Due to the mutagen effect, independently inherited complexes of traits or naturally polygenic traits may become monogenic. This results in simplified inheritance, in an increase in heritability and thus in high effectiveness of selection. (author)

  4. Characterization of pre breeding genetic stocks of urdbean (Vigna mungo L. Hepper) induced through mutagenesis

    International Nuclear Information System (INIS)

    Pre-breeding genetic stocks using different doses of EMS, gamma rays and combination of both (EMS and Gamma rays) in two urdbean cultivar viz., PU-19 (Pant Urd-19) and PU-30 (Pant Urd-30) were induced. Out of a total 14 macro mutation selected from the different treatments of the mutagens in PU-19, narrow leaf mutant exhibited significantly higher yield/ plant as compared to the parent and some other mutants viz., Non hairy, Tall, and tendriller showed at par grain yield. All the seed and pod colour double mutations selected from the PU-30 showed significantly higher yield as compared. Such breeding stocks can be used for the further genetic enhancement of this crop. (author)

  5. Protection against aflatoxin-B1-induced liver mutagenesis by Scutellaria baicalensis.

    Science.gov (United States)

    de Boer, Johan G; Quiney, Brendan; Walter, Patrick B; Thomas, Cynthia; Hodgson, Kimberley; Murch, Susan J; Saxena, Praveen K

    2005-10-15

    We have measured the inhibition of the mutagenicity of the mycotoxin aflatoxin-B(1) in the liver of the rat by plant material of Scutellaria baicalensis, or Huang-qin. The addition of one percent dried Huang-qin to the feed of the animals reduced the mutant frequency of a subsequent administration of aflatoxin-B1 by approximately 60 and 77%, respectively, for two different batches of the plant material. The addition of Huang-qin also increased the expression of the gene for glutathione S-transferase A5 subunit by 2.5-3.0-fold, and decreased expression of P450 cytochrome 3A2 by 1.8-2.0-fold. The greater increase of the expression of the GST gene may result in the protection shown by Huang-qin. The sensitivity of the hepatic mitochondria to swelling, a measure of the mitochondrial permeability transition, is increased significantly in animals that are on a diet containing Huang-qin. This may lead to increased sensitivity to apoptosis on treatment with toxic compounds. The two batches of Huang-qin material show differences in both chemical composition and preventive potential. This study demonstrates how a combination of generating and analysis of plant varieties together with a mammalian assay for efficacy may improve the search for better plant-based prevention of cancer initiation. PMID:16202794

  6. Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 r of gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbluth, R.E.; Cuddeford, C.; Baillie, D.L.

    1985-03-01

    The authors previously established a gamma-ray dose-response curve for recessive lethal events (lethals) captured over the eT1 balancer. In this paper they analyze the nature of lethal events produced, with a frequency of 0.04 per eT1 region, at a dose of 1500 r. To do so, they developed a protocol that, in the absence of cytogenetics, allows balanced lethals to be analyzed for associated chromosomal rearrangements. A set of 35 lethal strains was chosen for the analysis. Although the dosage was relatively low, a large number of multiple-break events were observed. The fraction of lethals associated with rearrangements was found to be 0.76. Currently most X- and gamma-ray dosages used for mutagenesis in C. elegans are 6000-8000 r. From the data it was conservatively estimated that 43% of rearrangements induced with 8000 r would be accompanied by additional chromosome breaks in the genome. With 1500 r the value was 5%. The 35 lethals studied were derived from 875 screened F1's. Among these lethals there were (1) at least two unc-36 duplications, (2) at least four translocations, (3) at least six deficiencies of chromosome V (these delete about 90% of the unc-60 to unc-42 region) and (4) several unanalyzed rearrangements. Thus, it is possible to recover desired rearrangements at reasonable rates with a dose of only 1500 r. The authors suggest that the levels of ionizing radiation employed in most published C. elegans studies are excessive and efforts should be made to use reduced levels in the future.

  7. Bimatoprost-induced chemical blepharoplasty.

    Science.gov (United States)

    Sarnoff, Deborah S; Gotkin, Robert H

    2015-05-01

    We report significant changes in the appearance of the periorbital area, beyond eyelash enhancement, induced by the topical application of bimatoprost ophthalmic solution, 0.03% (Latisse®, Allergan, Inc., Irvine, CA). To our knowledge, this is the first report in the dermatology or plastic surgery literature describing the rejuvenating effect and overall improvement in the appearance of the periorbital area resulting from applying Latisse to the upper eyelid margins. To date, reports in the literature discuss side-effects and potential complications of topical bimatoprost therapy causing a constellation of findings known as PAP (prostaglandin-associated periorbitopathy). While periorbitopathy implies pathology or a state of disease, we report changes that can be perceived as an improvement in the overall appearance of the periorbital area. We, therefore, propose a name change from PAP to PAPS - prostaglandin- associated periorbital syndrome. This better describes the beneficial, as well as the possible negative effects of topical bimatoprost. Although there is a risk for periorbital disfigurement, when used bilaterally, in properly selected candidates and titrated appropriately, bimatoprost can be beneficial. The striking improvement in the appearance of some individuals warrants further research into the potential use of topical bimatoprost to achieve a "chemical blepharoplasty."

  8. In Vitro Study of Mutagenesis Induced by Crocidolite-Exposed Alveolar Macrophages NR8383 in Cocultured Big Blue Rat2 Embryonic Fibroblasts

    International Nuclear Information System (INIS)

    Asbestos-induced mutagenicity in the lung may involve reactive oxygen/nitrogen species (ROS/RNS) released by alveolar macrophages. With the aim of proposing an alternative in vitro mutagenesis test, a co culture system of rat alveolar macrophages (NR8383) and transgenic Big Blue Rat 2 embryonic fibroblasts was developed and tested with a crocidolite sample. Crocidolite exposure induced no detectable increase in ROS production from NR8383, contrasting with the oxidative burst that occurred following a brief exposure (1 hour) to zymosan, a known macrophage activator. In separated co cultures, crocidolite and zymosan induced different changes in the gene expressions involved in cellular inflammation in NR8383 and Big Blue. In particular, both particles induced up-regulation of iNOS expression in Big Blue, suggesting the formation of potentially genotoxic nitrogen species. However, crocidolite exposure in separated or mixed co cultures induced no mutagenic effects whereas an increase in Big Blue mutants was detected after exposure to zymosan in mixed co cultures. NR8383 activation by crocidolite is probably insufficient to induce in vitro mutagenic events. The mutagenesis assay based on the co culture of NR8383 and Big Blue cannot be used as an alternative in vitro method to assess the mutagenic properties of asbestos fibres.

  9. In Vitro Study of Mutagenesis Induced by Crocidolite-Exposed Alveolar Macrophages NR8383 in Cocultured Big Blue Rat2 Embryonic Fibroblasts

    Directory of Open Access Journals (Sweden)

    Yves Guichard

    2010-01-01

    Full Text Available Asbestos-induced mutagenicity in the lung may involve reactive oxygen/nitrogen species (ROS/RNS released by alveolar macrophages. With the aim of proposing an alternative in vitro mutagenesis test, a coculture system of rat alveolar macrophages (NR8383 and transgenic Big Blue Rat2 embryonic fibroblasts was developed and tested with a crocidolite sample. Crocidolite exposure induced no detectable increase in ROS production from NR8383, contrasting with the oxidative burst that occurred following a brief exposure (1 hour to zymosan, a known macrophage activator. In separated cocultures, crocidolite and zymosan induced different changes in the gene expressions involved in cellular inflammation in NR8383 and Big Blue. In particular, both particles induced up-regulation of iNOS expression in Big Blue, suggesting the formation of potentially genotoxic nitrogen species. However, crocidolite exposure in separated or mixed cocultures induced no mutagenic effects whereas an increase in Big Blue mutants was detected after exposure to zymosan in mixed cocultures. NR8383 activation by crocidolite is probably insufficient to induce in vitro mutagenic events. The mutagenesis assay based on the coculture of NR8383 and Big Blue cannot be used as an alternative in vitro method to assess the mutagenic properties of asbestos fibres.

  10. [Dot1 and Set2 Histone Methylases Control the Spontaneous and UV-Induced Mutagenesis Levels in the Saccharomyces cerevisiae Yeasts].

    Science.gov (United States)

    Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G

    2016-03-01

    In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.

  11. Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Jing; Ding, Wen-Tao; Zhang, Guo-Chang; Wang, Jing-Yu [Tianjin Univ. (China). Dept. of Biochemical Engineering

    2011-08-15

    Genome shuffling is an efficient way to improve complex phenotypes under the control of multiple genes. For the improvement of strain's performance in very high-gravity (VHG) fermentation, we developed a new method of genome shuffling. A diploid ste2/ste2 strain was subjected to EMS (ethyl methanesulfonate) mutagenesis followed by meiotic recombination-mediated genome shuffling. The resulting haploid progenies were intrapopulation sterile and therefore haploid recombinant cells with improved phenotypes were directly selected under selection condition. In VHG fermentation, strain WS1D and WS5D obtained by this approach exhibited remarkably enhanced tolerance to ethanol and osmolarity, increased metabolic rate, and 15.12% and 15.59% increased ethanol yield compared to the starting strain W303D, respectively. These results verified the feasibility of the strain improvement strategy and suggested that it is a powerful and high throughput method for development of Saccharomyces cerevisiae strains with desired phenotypes that is complex and cannot be addressed with rational approaches. (orig.)

  12. Is activation of the intra-S checkpoint in human fibroblasts an important factor in protection against UV-induced mutagenesis?

    Science.gov (United States)

    Sproul, Christopher D; Rao, Shangbang; Ibrahim, Joseph G; Kaufmann, William K; Cordeiro-Stone, Marila

    2013-11-15

    The ATR/CHK1-dependent intra-S checkpoint inhibits replicon initiation and replication fork progression in response to DNA damage caused by UV (UV) radiation. It has been proposed that this signaling cascade protects against UV-induced mutations by reducing the probability that damaged DNA will be replicated before it can be repaired. Normal human fibroblasts (NHF) were depleted of ATR or CHK1, or treated with the CHK1 kinase inhibitor TCS2312, and the UV-induced mutation frequency at the HPRT locus was measured. Despite clear evidence of S-phase checkpoint abrogation, neither ATR/CHK1 depletion nor CHK1 inhibition caused an increase in the UV-induced HPRT mutation frequency. These results question the premise that the UV-induced intra-S checkpoint plays a prominent role in protecting against UV-induced mutagenesis.

  13. Role of DNA polymerases eta, iota and zeta in UV resistance and UV-induced mutagenesis in a human cell line.

    Science.gov (United States)

    Gueranger, Quentin; Stary, Anne; Aoufouchi, Saïd; Faili, Ahmad; Sarasin, Alain; Reynaud, Claude-Agnès; Weill, Jean-Claude

    2008-09-01

    Genes coding for DNA polymerases eta, iota and zeta, or for both Pol eta and Pol iota have been inactivated by homologous recombination in the Burkitt's lymphoma BL2 cell line, thus providing for the first time the total suppression of these enzymes in a human context. The UV sensitivities and UV-induced mutagenesis on an irradiated shuttle vector have been analyzed for these deficient cell lines. The double Pol eta/iota deficient cell line was more UV sensitive than the Pol eta-deficient cell line and mutation hotspots specific to the Pol eta-deficient context appeared to require the presence of Pol iota, thus strengthening the view that Pol iota is involved in UV damage translesion synthesis and UV-induced mutagenesis. A role for Pol zeta in a damage repair process at late replicative stages is reported, which may explain the drastic UV-sensitivity phenotype observed when this polymerase is absent. A specific mutation pattern was observed for the UV-irradiated shuttle vector transfected in Pol zeta-deficient cell lines, which, in contrast to mutagenesis at the HPRT locus previously reported, strikingly resembled mutations observed in UV-induced skin cancers in humans. Finally, a Pol eta PIP-box mutant (without its PCNA binding domain) could completely restore the UV resistance in a Pol eta deficient cell line, in the absence of UV-induced foci, suggesting, as observed for Pol iota in a Pol eta-deficient background, that TLS may occur without the accumulation of microscopically visible repair factories.

  14. 酶抑制剂对V79-hCYP2E1-SULT1A1细胞酶依赖性化学诱变的影响%Effects of enzyme inhibitors on enzyme-dependent and chemical-induced mutagenesis in V79-hCYP2E1-hSULT1A1 cells

    Institute of Scientific and Technical Information of China (English)

    刘云岗; 胡克歧

    2011-01-01

    0bjective: V79-hCYP2E1-hSULT1A1 ,a genetically engineered Chinese hamster V79 cell line expressing human CYP2E1 and human sulfotransferase(SULT) 1A1 ,demonstrates mutagenic response to promutagens requiring metabolic activation by either expressed enzyme. For the purpose of investigating the effect of either enzyme alone, it is highly necessary to establish a test model wherein either of the enzymes is specifically inhibited. Methods:Using the forward mutation at Hprt locus as the end point to observe, N-nitrosodimethylamine (NDMA) and 2-nitropropane (2-NP) as CYP2E1- and SULT1A1-dependent promutagen.the effects of CYP inhibitors,trans-1,2-dichloroethylene (DCE) and 1-aminobenzotriazole (ABT),and that of SULT1 inhibitors,quercetin and pentachlorophenol (PCP) on each promutagen-induced mutagenic response were observed. Results:ABT prohibited NDMA-induced mutagenic activity by 99% with the action of 2-NP unaffected,while DCE reduced it only by 55% and simultaneously potentiated 2-NP-induced cytotoxicity. Quercetin and PCP reduced 2-NP-induced mutagenic activity by 63% and 98%, with the action of NDMA unaffected. Conclusion:Specifically and completely, ABT and PCP are capable of prohibiting CYP2El-and SULT1A1 -dependent mutagenic response, respectively, which is a test model of reliable value for investigating metabolic activation of genotoxicants.%目的:V79-hCYP2E1-hSULT1A1是一个表达人细胞色素P450(CYP)2E1和硫酸基转移酶(Sulfotransferase,SULT) 1A1的重组中国地鼠V79[Chinese hamster lung (V79)cells]细胞系,它对于需有关代谢酶活化的间接诱变剂有基因突变反应;为观察单个酶的作用,需要建立对细胞中任一酶特异抑制的模型.方法:以细胞Hprt位点的正向突变为试验终点,N-二甲基亚硝胺(N-Nitrosodimethylamine,NDMA)和2-硝基丙烷(2-Nitropropane,2-NP)为依赖CYP2E1和SULT1A1的间接诱变剂,观察CYP抑制剂反式二氯乙烯(Trans-1,2-dichloroethylene,DCE)和1-氨基苯并三唑(1

  15. The upr-1 gene encodes a catalytic subunit of the DNA polymerase zeta which is involved in damage-induced mutagenesis in Neurospora crassa.

    Science.gov (United States)

    Sakai, W; Ishii, C; Inoue, H

    2002-05-01

    The upr-1 mutant was one of the first mutagen-sensitive mutants to be isolated in Neurospora crassa. However, the function of the upr-1 gene has not yet been elucidated, although some genetic and biochemical data have been accumulated. In order to clone the upr-1 gene, we performed a chromosome walk from the mat locus, the closest genetic marker to upr-1 for which a molecular probe was available, towards the centromere, and a chromosomal contig of about 300-400 kb was constructed. Some of these clones complemented the temperature sensitivity of the un-16 mutation, which is located between mat and upr-1. The un-16 gene was sequenced, and localized in the MIPS Neurospora crassa genome database. We then searched the regions flanking un-16 for homologs of known DNA repair genes, and found a gene homologous to the REV3 gene of budding yeast. The phenotype of the upr-1 mutant is similar to that of the yeast rev3 mutant. An ncrev3 mutant carrying mutations in the N. crassa REV3 homolog was constructed using the RIP (repeat-induced point mutation) process. The spectrum of mutagen sensitivity of the ncrev3 mutant was similar to that of the upr-1 mutant. Complementation tests between the upr-1 and ncrev3 mutations indicated that the upr-1 gene is in fact identical to the ncrev3 gene. To clarify the role of the upr-1 gene in DNA repair, the frequency of MMS and 4NQO-induced mutations was assayed using the ad-8 reversion test. The upr-1 mutant was about 10 times less sensitive to both chemicals than the wild type. The expression level of the upr-1 gene is increased on exposure to UV irradiation in the uvs-2 and mus-8 mutants, which belong to postreplication repair group, as well as in the wild type. All these results suggest that the product of the upr-1 gene functions in damage-induced mutagenesis and DNA translesion synthesis in N. crassa.

  16. Inhibition of an inducible nitric oxide synthase expression by a hexane extract from perilla frutescens cv. chookyoupjaso mutant induced by mutagenesis with gamma-ray

    International Nuclear Information System (INIS)

    In earlier investigations, seeds of Perilla frutescens(L.) Britt. cv. Chookyoupjaso were irradiated with 200 Gy gamma ray to generate mutagenesis. The aim of this study is to investigate the effects of a hexane extract from Perilla frutescens(L.) Britt. cv. Chookyoupjaso mutant 45 on the actions of anti-inflammatory activity on inducible nitric oxide synthase, and an identification of the major active compound. The hexane extract from P. frutescens exhibited activity of inhibition of a NO production (IC50, 295.1μg ml-1). The hexane extract was further divided into sub-fractions by silica-gel chromatogarphy. Inhibition of the NO production by various fractions was assayed in LPS-stimulated RAW 264.7 cells. Among the seven fractions, the 5th fraction was the most effective (IC50, 19.5μg ml-1). The 5th fraction suppressed the expression of protein of iNOS in LPS-induced RAW 264.7 cells, and GC/MS analyses showed that isoegomaketone is a major bio-active compound in the 5th fraction. The result indicated that isoegomaketone has a good potential to be developed as an anti-inflammation agent

  17. Bacillus Cereus GD 55 Strain Improvement by Physical and Chemical Mutagenesis for Enhanced Production of Fibrinolytic Protease

    Directory of Open Access Journals (Sweden)

    E. VENKATA NAGA RAJU

    2013-05-01

    Full Text Available This work has been undertaken to enhance the production of industrially important fibrinolytic protease by subjecting indigenous fibrinolytic protease producing Bacillus cereus to strain improvement by random mutagenesis using ultra-violet (UV irradiation, ethyl methane sulfonate (EMS and ethidium bromide treatment. Mutants were screened on the basis of enzyme assay by spectrophotometer using folin’s phenol reagent. Ethyl methane sulfonate (EMS and ethidium bromide treated Bacillus cereus GD 55 was proved to be the best for optimum production of fibrinolytic protease. The effect of different production parameters such as carbon source, inoculum sizes, pH, temperature, nitrogen source (inorganic and organic and incubation time on fibrinolytic protease production by the mutated bacterial strain was studied. The enzyme production was assayed in submerged fermentation (SmF condition. The maximum fibrinolytic protease production was observed with fructose 1% (18.60 ± 0.62 U/ml, inoculum size level 2% (22.10 ± 0.80 U/ml, pH 8.0 (28.65 ± 0.41 U/ml, temperature 35°C (28.68 ± 0.19 U/ml, NH4NO3 1% (34.24 ± 0.12 U/ml, peptone 1% (35.68 ± 0.27 U/ml and incubation time 48 hours (38.92 ± 0.56 U/ml in the production medium. EMS&EB-15 mutant strains were found to produce 2-4 fold more enzyme. Thus these findings have more impact on enzyme economy for biotechnological applications of microbial fibrinolytic proteases.

  18. Bystander effects in UV-induced genomic instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation

    Directory of Open Access Journals (Sweden)

    Dahle Jostein

    2005-01-01

    Full Text Available Abstract Background Genomic instability is characteristic of many types of human cancer. Recently, we reported that ultraviolet radiation induced elevated mutation rates and chromosomal instability for many cell generations after ultraviolet irradiation. The increased mutation rates of unstable cells may allow them to accumulate aberrations that subsequently lead to cancer. Ultraviolet A radiation, which primarily acts by oxidative stress, and ultraviolet B radiation, which initially acts by absorption in DNA and direct damage to DNA, both produced genomically unstable cell clones. In this study, we have determined the effect of antioxidants on induction of delayed mutations by ultraviolet radiation. Delayed mutations are indicative of genomic instability. Methods Delayed mutations in the hypoxanthine phosphoribosyl transferase (hprt gene were detected by incubating the cells in medium selectively killing hprt mutants for 8 days after irradiation, followed by a 5 day period in normal medium before determining mutation frequencies. Results The UVB-induced delayed hprt mutations were strongly inhibited by the antioxidants catalase, reduced glutathione and superoxide dismutase, while only reduced glutathione had a significant effect on UVA-induced delayed mutations. Treatment with antioxidants had only minor effects on early mutation frequenies, except that reduced glutathione decreased the UVB-induced early mutation frequency by 24 %. Incubation with reduced glutathione was shown to significantly increase the intracellular amount of reduced glutathione. Conclusion The strong effects of these antioxidants indicate that genomic instability, which is induced by the fundamentally different ultraviolet A and ultraviolet B radiation, is mediated by reactive oxygen species, including hydrogen peroxide and downstream products. However, cells take up neither catalase nor SOD, while incubation with glutathione resulted in increased intracellular levels of

  19. Different efficiency of UmuDC and MucAB proteins in UV light induced mutagenesis in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, M.; Herrera, G.; Aleixandre, V.

    1986-11-01

    Two multicopy plasmids carrying either the umuDC or the mucAB operon were used to compare the efficiency of UmuDC and MucAB proteins in UV mutagenesis of Escherichia coli K12. It was found that in recA/sup +/ uvr/sup +/ bacteria, plasmid pIC80, mucAB/sup +/ mediated UV mutagenesis more efficiently than did plasmid pSE 117, umuDC/sup +/. A similar result was obtained in lex A51(Def) cells, excluding the possibility that this was due to a differential regulation by LexA of the umuDC and mucAB operons. We conclude that some structural characteristic of the UmuDC and MucAB proteins determines their different efficiency in UV mutagenesis. This characteristic could be also responsible for the observation that in the recA430 mutant, pIC80 but no pSE117 can mediate UV mutagenesis. In the recAS142 mutant pIC80 also promoted UV mutagenesis more efficiently than pSE117. In this mutant, the recombination proficiency, the protease activity toward LexA and the mutation frequency were increased by the presence of adenine in the medium. In recA/sup +/ uvrB5 bacteria, plasmid pSE117, umuDC caused both an increase in UV sensitivity as well as a reduction in the mutation frequency. These negative effects resulting from the overproduction of UmuDC proteins were higher in recA142 uvrB5 than in recA/sup +/ uvrB5 cells. In contrast, overproduction of MucAB proteins in excision-deficient bacteria containing pIC80 led to a large increase in the mutation frequency. We suggest that the functional differences between UmuDC and MucAB proteins might be due to their different dependence on the direct role of RecA protease in UV mutagenesis.

  20. Workshop on ENU Mutagenesis: Planning for Saturation, July 25-28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, Joseph H

    2002-07-25

    The goal of the conference is to enhance the development of improved technologies and new approaches to the identification of genes underlying chemically-induced mutant phenotypes. The conference brings together ENU mutagenesis experts from the United States and aborad for a small, intensive workshop to consider these issues.

  1. Laser Induced Surface Chemical Epitaxy

    Science.gov (United States)

    Stinespring, Charter D.; Freedman, Andrew

    1990-02-01

    Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) on GaAs(100) substrates under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 123 K to 473 K. Results indicate that extremely efficient conversion of admixtures of DMTe and DMCd to CdTe can be obtained using low power (5 - 10 mJ cm-2) 193 nm laser pulses at substrate temperatures of 123 K. Subsequent annealing at 473 K produces an epitaxial film.

  2. Ultraviolet radiation-induced mutability of uvrD3 strains of Escherichia coli B/r and K-12: a problem in analyzing mutagenesis data

    International Nuclear Information System (INIS)

    The involvement of the uvrD gene product in UV-induced mutagenesis in Escherichia coli was studied by comparing wild-type and uvrA or uvrB strains with their uvrD derivatives in B/r and K-12(W3110) backgrounds. Mutations per survivor (reversions to prototrophy) were compared as a function of surviving fraction and of UV fluence. While recognizing that both methods are not without problems, arguments are presented for favoring the former rather than the latter method of presenting the data when survival is less than 100%. When UV-induced mutation frequencies were plotted as a function of surviving fraction, the uvrD derivatives were less mutable than the corresponding parent strains. The B/r strains exhibited higher mutation frequencies than did the K-12(W3110) strains. A uvrB mutation increased the mutation frequency of its parental K-12 strain, but a uvrA mutation only increased the mutation frequency of its parental B/r strain at UV survivals greater than approximately 80%. Both the uvrA and uvrB mutations increased the mutation frequencies of the uvrD strains in the B/r and K-12 backgrounds, respectively. Rather different conclusions would be drawn if mutagenesis were considered as a function of UV fluence rather than of survival, a situation that calls for further work and discussion. Ideally mutation efficiencies should be compared as a function of the number of repair events per survivor, a number that is currently unobtainable. (author)

  3. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Shu-Yang Wang

    Full Text Available The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger or mutagenesis via mixed Trichoderma viride (T. viride culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA, endoglucanase (EG and β-glucosidase (BGL activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  4. Chemical bond cleavage induced by electron heating

    International Nuclear Information System (INIS)

    Gas emissions from titanium-metalloid compounds (titanium nitride and oxide) have been investigated to understand the effects of a microwave field on chemical reactions. We employed a high vacuum system (PO2 = 10−6 Pa) to observe in situ reductions. For titanium oxides, H-field heating significantly differed from conventional one in terms of oxygen emissions. For titanium nitride, the emissions were also induced by microwave heating. These tendencies were observed at temperatures above 1000 °C. A quantum chemical interpretation is provided to explain the emissions of the gases, and the experimental data is in good agreement with results predicted using the electronic energy band structure.

  5. Study of chemical and radiation induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  6. 2-DG induced modulation of chromosomal DNA profile, cell survival, mutagenesis and gene conversion in x-irradiated yeast

    International Nuclear Information System (INIS)

    Effect of post-irradiation modulation in presence of 2-deoxy-D-glucose and yeast extract, on chromosomal DNA profile, cell survival, reverse mutation (ILV+) and gene conversion (TRP+), were studied in x-irradiated stationary phase yeast cells (diploid strain D7 of Saccharomyces cerevisiae). The damage and repair in chromosomal DNA bands, resolved by using contour clamped homogeneous electric pulsed-field gel electrophoresis (PFGE) technique, was estimated by calculating intensity ratio, Ρn (Ρn=In/It; where In is the intensity of nth band in a lane and It is the sum of intensities of all bands and the well in the lane). The data indicate linear correlation between relative compactness (τ) of a chromosome [chromosome size (Kb)/length of synaptonemal complex (μm)[ and DNA damage and repair. The chromosome repair kinetics were biphasic, showing initial decrease followed by an increase in Ρn. Variations were observed among different chromosomes with respect to DNA damage, repair and post-irradiation repair modulation. 2-DG inhibited both components of chromosomal DNA repair and also repair of potentially lethal damage but enhanced frequencies of mutants. Relatively the effects on revertants were greater in cells irradiated with lower doses (50 Gy) of x-rays and post-irradiation incubation in presence of phosphate buffer having 2-DG (50 mM) and glucose (10 mM). Yeast extract increased frequencies of revertants and convertants thus promoting error-prone DNA repair. Yeast extract in combination with 2-DG showed complex effects on chromosomal DNA repair and enhanced mutagenesis further. (author). 35 refs., 8 figs., 1 tab

  7. MeIQx-induced DNA adduct formation and mutagenesis in DNA repair deficient CHO cells expressing human CYP1A1 and rapid or slow acetylator NAT2

    Science.gov (United States)

    Bendaly, Jean; Zhao, Shuang; Neale, Jason R.; Metry, Kristin J.; Doll, Mark A.; States, J. Christopher; Pierce, William M.; Hein, David W.

    2007-01-01

    2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) is one of the most potent and abundant mutagens in the western diet. Bioactivation includes N-hydroxylation catalyzed by cytochrome P450s followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). Nucleotide excision repair-deficient chinese hamster ovary (CHO) cells were constructed by stable transfection of human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. CYP1A1 and NAT2 catalytic activities were undetectable in untransfected CHO cell lines. CYP1A1 activity did not differ significantly (p > 0.05) among the CYP1A1-transfected cell lines. Cells transfected with NAT2*4 had significantly higher levels of sulfamethazine N-acetyltransferase (p = 0.0001) and N-hydroxy-MeIQx O-acetyltransferase (p = 0.0093) catalytic activity than cells transfected with NAT2*5B. Only cells transfected with both CYP1A1 and NAT2*4 showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase (hprt) mutagenesis following MeIQx treatment. dG-C8-MeIQx was the primary DNA adduct formed and levels were dose-dependent in each cell line and in the order: untransfected < transfected with CYP1A1 < transfected with CYP1A1 & NAT2*5B < transfected with CYP1A1 & NAT2*4. MeIQx DNA adduct levels were significantly higher (p < 0.001) in CYP1A1/NAT2*4 than CYP1A1/NAT2*5B cells at all concentrations of MeIQx tested. MeIQx-induced DNA adduct levels correlated very highly (r2 = 0.88) with MeIQx-induced mutants. These results strongly support extrahepatic activation of MeIQx by CYP1A1 and a robust effect of human NAT2 genetic polymorphism on MeIQx –induced DNA adducts and mutagenesis. The results provide laboratory-based support for epidemiological studies reporting higher frequency of heterocyclic amine-related cancers in rapid NAT2 acetylators. PMID:17627018

  8. DNA repair and mutagenesis of singlestranded bacteriophages

    Energy Technology Data Exchange (ETDEWEB)

    Doubleday, O.P.; Brandenburger, A.; Wagner, R. Jr.; Radman, M. (Brussels Univ. (Belgium)); Godson, G.N.

    1981-01-01

    Virtually all radiation-induced mutagenesis is believed to result from an error-prone repair activity (SOS repair) and to involve mutations occurring both at the site of radiation-induced lesions (targeted mutations) and in undamaged DNA (untargeted mutations). To examine the relative contributions of targeted and untargeted mutations to ..gamma.. and ultraviolet (UV) radiation mutagenesis we have determined the DNA sequences of 174 M13 revertant phages isolated from stocks of irradiated or unirradiated amber mutants grown in irradiated or unirradiated host bacteria. We have detected no obvious specificity of mutagenesis and find no evidence of a predominance of targeted mutations associated with either UV- or ..gamma..-irradiation of the phages or with the induction of the host SOS repair system. In particular, pyrimidine dimers do not appear to be the principal sites of UV-induced bare substitution mutagenesis, suggesting that such UV-induced mutagenesis may be untargeted or occur at sites of lesions other than pyrimidine dimers.

  9. Mechanisms of DNA repair and radio-induced mutagenesis in higher eukaryotes; Mecanismes de reparation et mutagenese radio-induite chez les eucaryotes superieurs

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D. [Centre Universitaire d' Orsay, Institut Curie, Section de Recherche, Lab. Raymond-Latarjet, UMR 2027 CNRS, 91 (France)

    2000-10-01

    Cells of higher eukaryotes possess several very efficient systems for the repair of radiation-induced lesions in DNA. Different strategies have been adopted at the cellular level to remove or even tolerate various types of lesions in order to assure survival and limit the mutagenic consequences. In mammalian cells, the main DNA repair systems comprise direct reversion of damage, excision of damage and exchange mechanisms with intact DNA. Among these, the direct ligation of single strand breaks (SSB) by a DNA ligase and the multi-enzymatic repair systems of mismatch repair, base and nucleotide excision repair as well as the repair of double strand breaks (DSB) by homologous recombination or non homologous end-joining are the most important systems. Most of these processes are error-free except the non homologous end-joining pathway used for the repair of DSB. Moreover, certain lesions can be tolerated by more or less accurately acting polymerases capable of performing trans-lesion DNA syntheses. The DNA repair systems are intimately integrated in the network of cellular regulation. Some of their components are DNA damage inducible. Radiation-induced mutagenesis is largely due to unrepaired DNA damage but also involves error-prone repair processes like the repair of DSB by non-homologous end-joining. Generally, mammalian cells are well prepared to repair radiation-induced lesions. However, some questions remain to be asked about mechanistic details and efficiencies of the systems for removing certain types of radiation-damage and about their order and timing of action. The answers to these questions would be important for radioprotection as well as radiotherapy. (author)

  10. Transcription-coupled repair: Impact on UV-induced mutagenesis in cultured rodent cells and mouse skin tumors

    International Nuclear Information System (INIS)

    UV-induced cyclobutane pyrimidine dimers (CPDs) are removed with accelerated speed from the transcribed strand of expressed genes in cultured mammalian cells by a process called transcription-coupled repair (TCR). It has been previously shown that this phenomenon has consequences for the molecular nature of the mutations induced by UV-light. Here, we review these data and show that TCR has not only a clear impact on UV-induced mutations in cultured mammalian cells but also on genes involved in tumor formation in the skin of UV-exposed mice. Mutations observed in the p53 gene in UV-induced squamous cell carcinoma are predominantly found at sites of dipyrimidines in the non-transcribed strand. In contrast, in UVC-irradiated Csb -/- Chinese hamster cells and in UVB-induced tumors in the Csb -/- mouse, almost all mutations are at positions of dipyrimidine sites in the transcribed strand of the mutated gene. Csb -/- mice appear to be susceptible to UVB-induced skin cancer in contrast to the human CSB patients. We speculate that the UVB-induced cancer susceptibility of Csb -/- mice is related to the absence of TCR as well as to a lack of a compensating global genome repair system for CPDs in mice

  11. Use of liver cell cultures in mutagenesis studies

    Energy Technology Data Exchange (ETDEWEB)

    Huberman, E.; Jones, C.A.

    1980-09-30

    A sensitive cell-mediated assay has been developed for testing the mutagenesis of liver carcinogens. Mutagenesis was detected in Chinese hamster V79 cells that were cocultivated with hepatocytes isolated after collagenase/hyaluronidase digestion of rat liver slices. Mutations were characterized by resistance to ouabain and 6-thioguanine. Seven of the nitrosamines, which are potent liver carcinogens, exhibited a mutagenic response. Mutagenesis with these carcinogens could be detected at ..mu..molar doses. The polyaromatic hydrocarbon benzo(a)pyrene, which is not a liver carcinogen, but can cause fibrosarcomas, was not mutagenic in this assay, but was mutagenic in a fibroblast-mediated assay. The liver carcinogen, aflatoxin B/sub 1/, which usually does not induce fibrosarcomas, exhibited an inverse situation; it was mutagenic for V79 cells in the presence of liver cells but not in the presence of fibroblasts. We suggest that the use of various cell types, including hepatocytes prepared by the slicing method for carcinogen metabolism, and mutable V79 cells offers a sensitive assay for determining the mutagenic potential of chemical carcinogens, and may also allow a study of their organ specificity.

  12. Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: Enhanced survival and mutagenesis

    International Nuclear Information System (INIS)

    Although the consequences of genotoxic injury include cell cycle arrest and apoptosis, cell survival responses after genotoxic injury can produce intrinsic death-resistance and contribute to the development of a transformed phenotype. Protein tyrosine phosphatases (PTPs) are integral components of key survival pathways, and are responsible for their inactivation, while PTP inhibition is often associated with enhanced cell proliferation. Our aim was to elucidate signaling events that modulate cell survival after genotoxin exposure. Diploid human lung fibroblasts (HLF) were treated with Cr(VI) (as Na2CrO4), the soluble oxyanionic dissolution product of certain particulate chromates, which are well-documented human respiratory carcinogens. In vitro soluble Cr(VI) induces a wide spectrum of DNA damage, in both the presence and absence of a broad-range PTP inhibitor, sodium orthovanadate (SOV). Notably, SOV abrogated Cr(VI)-induced clonogenic lethality. The enhanced survival of Cr(VI)-exposed cells after SOV treatment was predominantly due to a bypass of cell cycle arrest, as there was no effect of the PTP inhibitor on Cr-induced apoptosis. Moreover, the SOV effect was not due to decreased Cr uptake as evidenced by unchanged Cr-DNA adduct burden. Additionally, the bypass of Cr-induced growth arrest by SOV was accompanied by a decrease in Cr(VI)-induced expression of cell cycle inhibiting genes, and an increase in Cr(VI)-induced expression of cell cycle promoting genes. Importantly, SOV resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of certain types of DNA damage may lead to increased genomic instability, via bypass of cell cycle checkpoints

  13. Molecular mechanism of mutagenesis induced by olaquindox using a shuttle vector pSP189/mammalian cell system

    Energy Technology Data Exchange (ETDEWEB)

    Hao Lihua [Division of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100094 (China); Chen Qian [Division of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100094 (China); Xiao Xilong [Division of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100094 (China)]. E-mail: xiaoxl@cau.edu.cn

    2006-07-25

    Olaquindox, a quinoxaline 1,4-dioxide derivative from quindoxin, is widely used as an animal growth promoter in China. We tested olaquindox as a mutagen in a SV40-based shuttle vector pSP189 and African green kidney cell (Vero E6 cell line) system to define the safety of olaquindox as a food-additive for animals. When applied at 6.6 {mu}g/ml, olaquindox caused 12 times higher mutation frequency in comparison to untreated controls. More than 70% of base substitutions happened at G:C base pairs featuring G:C to T:A or G:C to A:T conversions. Frequency of point mutations for in vitro modified plasmids was also dramatically increased from the spontaneous background level. Olaquindox-induced mutations did not occur randomly along the supF shuttle vector, but instead, had a hot spot at base pair no. 155 which accounts for 37% of total mutations. Olaquindox-induced mutations also showed sequence-specificity in which most point mutations occurred at site N in a 5'-NNTTNN-3' sequence while most tandem bases deletion and rearrangement were seen at the 5'-ANGGCCNAAA-3' sequence. We conclude that olaquindox induces DNA mutation, therefore, should not be used as an additive to promote animal growth.

  14. Inducible error-prone repair in B. subtilis. Progress report, September 1, 1978-August 31, 1979. [Role in mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Yasbin, R E

    1979-01-01

    The mechanism of activation and the mode of action of the SOS system in the bacterium Bacillus subtilis is under study. Interesting aspects of the SOS system in B. subtilis are: (1) the differences between SOS functions in this bacterium and in the enteric bacteria; (2) the spontaneous activation of SOS functions in component cells; and (3) the difficulty in obtaining consistent results for mutation studies in this bacterium. In order to characterize the SOS system of B. subtilis, it was proposed to: (1) isolate bacteria mutated in genes controlling various repair function; (2) investigate inducible repair; (3) determine the role of endogeneous Bacillus prophages in SOS functions; and (4) develop a tester system for potential carcinogens from competent Bacillus subtilis cells. Research has been able to: (1) isolate strains of B. subtilis in which the endogeneous prophages have been removed or neutralized; (2) demonstrate the association of one SOS function with prophage SPB; (3) demonstrate that the survival of uv-irradiated B. subtilis is not significantly altered by the removal and neutralization of the endogeneous prophages; (4) develop competant B. subtilis into a tester system; and (5) show that DNA polymerase III is absolutely necessary for W reactivation. In addition, uv and mitomycin C resistant mutants have been isolated and inducible postreplication repair in excision-repair deficient mutants of B. subtilis has been studied. The last two results are somewaht confusing but highly exciting in regards to DNA repair mechanisms in B. subtilis.

  15. The inhibition of radiation-induced mutagenesis by the combined effects of selenium and the aminothiol WR-1065

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, A.M.; Murray, J.L. [Univ. of Chicago, IL (United States). Dept. of Radiation and Cellular Oncology; Dale, P. [Univ. of Chicago, IL (United States). Dept. of Radiation and Cellular Oncology]|[Argonne National Lab., IL (United States)] [and others

    1997-08-01

    In order to evaluate the anti-mutagenic effects of the potential chemoprotective compounds selenium and S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-1065), CHO AA8 cells were exposed to both compounds either individually or in combination prior to irradiation. Mutation frequency following exposure to 8 Gy was evaluated by quantitation of the mutations detected at the hprt locus of these cells. Protection against radiation-induced mutation was observed for both 30 nM sodium selenite or 4 mM WR-1065. In addition, the protection against mutation induction provided by the combination of these agents appeared additive. In contrast, sodium selenite did not provide protection against radiation toxicity when provided either alone or in conjunction with WR-1065. In order to evaluate the possible mechanisms of the anti-mutagenic effects observed in these cells, glutathione peroxidase (GPx) activity was evaluated following exposure to the chemopreventative compounds. The addition of sodium selenite to the culture media resulted in a 5-fold increase in GPX activity, which was unaltered by the presence of the WR-1065. Northern analysis of RNA derived from these cells indicated that selenium supplementation resulted in a marginal increase in the mRNA for the cytosolic GPx (GSHPx-1) which was insufficient to account for the stimulation of GPx activity observed in cellular extracts. These results suggest that selenium and WR-1065 offer protection via independent mechanisms and that GPX stimulation remains a possible mechanism of the anti-mutagenic effect of selenium.

  16. Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes)

    International Nuclear Information System (INIS)

    To develop a specific-locus test (SLT) system for environmental mutagenesis using vertebrate species other than the mouse, we first established a tester stock of the fish medaka (Oryzias latipes) that is homozygous recessive at three loci. The phenotypic expression of these loci can be easily recognized early in embryonic development by observation through the transparent egg membrane. We irradiated wild-type males with 137Cs gamma-rays to determine the dose-response relationships for dominant lethal and specific-locus mutations induced in sperm, spermatids, and spermatogonia. Through observation of 322,666 loci in control offspring and 374,026 loci in offspring obtained from 0.64-, 4.75-, or 9.50-Gy-irradiated gametes, specific-locus mutations were phenotypically detected during early development. These putative mutations, designated total mutation, can be recognized only in embryos of oviparous animals. The developmental fate of these mutant embryos was precisely followed. During subsequent embryonic development, a large fraction died and thus was unavailable for test-crossing, which was used to identify viable mutations. Our medaka SLT system demonstrates that the vast majority of total mutations is associated with dominant lethal mutations. Thus far only one spontaneous viable mutation has been observed, so that all doubling calculations involving this endpoint carry a large error. With these reservations, however, we conclude that the quantitative data so far obtained from the medaka SLT are quite comparable to those from the mouse SLT and, hence, indicate the validity of the medaka SLT as a possible nonmammalian test system

  17. Acute and subacute chemical-induced lung injuries: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Akira, Masanori, E-mail: Akira@kch.hosp.go.jp [Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka 591-8555 (Japan); Suganuma, Narufumi [Department of Environmental Medicine, Kochi Medical School (Japan)

    2014-08-15

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals.

  18. Acute and subacute chemical-induced lung injuries: HRCT findings

    International Nuclear Information System (INIS)

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals

  19. Role of damage-specific DNA polymerases in M13 phage mutagenesis induced by a major lipid peroxidation product trans-4-hydroxy-2-nonenal

    Energy Technology Data Exchange (ETDEWEB)

    Janowska, Beata [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw (Poland); Kurpios-Piec, Dagmara [Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw (Poland); Prorok, Paulina [Institute of Genetics and Biotechnology, Warsaw University, Pawinskiego 5a, 02-106 Warsaw (Poland); Szparecki, Grzegorz [Medical University of Warsaw, Zwirki i Wigury 61, 02-097 Warsaw (Poland); Komisarski, Marek [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw (Poland); Kowalczyk, Pawel [Interdisciplinary Centre for Mathematical and Computational Modelling, Warsaw University, Pawinskiego 5a, 02-106 Warsaw (Poland); Janion, Celina [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw (Poland); Tudek, Barbara, E-mail: tudek@ibb.waw.pl [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw (Poland); Institute of Genetics and Biotechnology, Warsaw University, Pawinskiego 5a, 02-106 Warsaw (Poland)

    2012-01-03

    One of the major lipid peroxidation products trans-4-hydroxy-2-nonenal (HNE), forms cyclic propano- or ethenoadducts bearing six- or seven-carbon atom side chains to G > C Much-Greater-Than A > T. To specify the role of SOS DNA polymerases in HNE-induced mutations, we tested survival and mutation spectra in the lacZ{alpha} gene of M13mp18 phage, whose DNA was treated in vitro with HNE, and which was grown in uvrA{sup -}Escherichia coli strains, carrying one, two or all three SOS DNA polymerases. When Pol IV was the only DNA SOS polymerase in the bacterial host, survival of HNE-treated M13 DNA was similar to, but mutation frequency was lower than in the strain containing all SOS DNA polymerases. When only Pol II or Pol V were present in host bacteria, phage survival decreased dramatically. Simultaneously, mutation frequency was substantially increased, but exclusively in the strain carrying only Pol V, suggesting that induction of mutations by HNE is mainly dependent on Pol V. To determine the role of Pol II and Pol IV in HNE induced mutagenesis, Pol II or Pol IV were expressed together with Pol V. This resulted in decrease of mutation frequency, suggesting that both enzymes can compete with Pol V, and bypass HNE-DNA adducts in an error-free manner. However, HNE-DNA adducts were easily bypassed by Pol IV and only infrequently by Pol II. Mutation spectrum established for strains expressing only Pol V, showed that in uvrA{sup -} bacteria the frequency of base substitutions and recombination increased in relation to NER proficient strains, particularly mutations at adenine sites. Among base substitutions A:T {yields} C:G, A:T {yields} G:C, G:C {yields} A:T and G:C {yields} T:A prevailed. The results suggest that Pol V can infrequently bypass HNE-DNA adducts inducing mutations at G, C and A sites, while bypass by Pol IV and Pol II is error-free, but for Pol II infrequent.

  20. Structural insights into the recovery of aldolase activity in N-acetylneuraminic acid lyase by replacement of the catalytically active lysine with γ-thialysine by using a chemical mutagenesis strategy.

    Science.gov (United States)

    Timms, Nicole; Windle, Claire L; Polyakova, Anna; Ault, James R; Trinh, Chi H; Pearson, Arwen R; Nelson, Adam; Berry, Alan

    2013-03-01

    Chemical modification has been used to introduce the unnatural amino acid γ-thialysine in place of the catalytically important Lys165 in the enzyme N-acetylneuraminic acid lyase (NAL). The Staphylococcus aureus nanA gene, encoding NAL, was cloned and expressed in E. coli. The protein, purified in high yield, has all the properties expected of a class I NAL. The S. aureus NAL which contains no natural cysteine residues was subjected to site-directed mutagenesis to introduce a cysteine in place of Lys165 in the enzyme active site. Subsequently chemical mutagenesis completely converted the cysteine into γ-thialysine through dehydroalanine (Dha) as demonstrated by ESI-MS. Initial kinetic characterisation showed that the protein containing γ-thialysine regained 17 % of the wild-type activity. To understand the reason for this lower activity, we solved X-ray crystal structures of the wild-type S. aureus NAL, both in the absence of, and in complex with, pyruvate. We also report the structures of the K165C variant, and the K165-γ-thialysine enzyme in the presence, or absence, of pyruvate. These structures reveal that γ-thialysine in NAL is an excellent structural mimic of lysine. Measurement of the pH-activity profile of the thialysine modified enzyme revealed that its pH optimum is shifted from 7.4 to 6.8. At its optimum pH, the thialysine-containing enzyme showed almost 30 % of the activity of the wild-type enzyme at its pH optimum. The lowered activity and altered pH profile of the unnatural amino acid-containing enzyme can be rationalised by imbalances of the ionisation states of residues within the active site when the pK(a) of the residue at position 165 is perturbed by replacement with γ-thialysine. The results reveal the utility of chemical mutagenesis for the modification of enzyme active sites and the exquisite sensitivity of catalysis to the local structural and electrostatic environment in NAL.

  1. Chemically induced compaction bands in geomaterials

    Science.gov (United States)

    Stefanou, Ioannis; Sulem, Jean

    2013-04-01

    Compaction bands play an important role in oil production and may provide useful information on various geological processes. Various mechanisms can be involved at different scales: the micro scale (e.g. the grain scale), the meso scale (e.g. the Representative Element Volume) and the macro scale (e.g. the structure). Moreover, hydro-chemo-mechanical couplings might play an important role in triggering instabilities in the form of compaction bands. Compaction bands can be seen as an instability of the underneath mathematical problem leading to localization of deformation [1,2,3]. Here we explore the conditions of compaction banding in quartz-based geomaterials by considering the effect of chemical dissolution and precipitation [4,5]. In due course of the loading process grain crushing affects the residual strength, the porosity and the permeability of the material. Moreover, at the micro-level, grain crushing results in an increase of the grain specific surface, which accelerates the dissolution [6]. Consequently, the silica is removed more rapidly from the grain skeleton and the overall mechanical properties are degraded due to chemical factors. The proposed model accounts for these phenomena. In particular, the diffusion of the diluted in the water silica is considered through the mass balance equation of the porous medium. The reduction of the mechanical strength of the material is described through a macroscopic failure criterion with chemical softening. The grain size reduction is related to the total energy input [7]. A grain size and porosity dependent permeability law is adopted. These degradation mechanisms are coupled with the dissolution/precipitation reaction kinetics. The obtained hydro-chemo-mechanical model is used to investigate the conditions, the material parameters and the chemical factors inducing compaction bands formation. References [1] J.W. Rudnicki, and J.R. Rice. "Conditions for the Localization of Deformation in Pressure

  2. Site-directed mutagenesis.

    Science.gov (United States)

    Bachman, Julia

    2013-01-01

    Site-directed mutagenesis is a PCR-based method to mutate specified nucleotides of a sequence within a plasmid vector. This technique allows one to study the relative importance of a particular amino acid for protein structure and function. Typical mutations are designed to disrupt or map protein-protein interactions, mimic or block posttranslational modifications, or to silence enzymatic activity. Alternatively, noncoding changes are often used to generate rescue constructs that are resistant to knockdown via RNAi.

  3. Influence of nucleotide excision repair on N-hydroxy-2-acetylaminofluorene-induced mutagenesis studied in λlacZ-transgenic mice

    NARCIS (Netherlands)

    Frijhoff, A.F.W.; Krul, C.A.M.; Vries, A. de; Kelders, M.C.J.M.; Weeda, G.; Steeg, H. van; Baan, R.A.

    1998-01-01

    To study the influence of nucleotide excision repair (NER) on mutagenesis in vivo, ERCC1+/-, XPA-/-, and wild-type (ERCC1+/+ and XPA+/+, respectively) λlacZ-transgenic mice were treated i.p. with N-hydroxy-2-acetylaminofluorene (N-OH-AAF) and lacZ mutant frequencies were determined in liver. No sign

  4. Targeted mutagenesis in Atlantic salmon (Salmo salar L. using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation.

    Directory of Open Access Journals (Sweden)

    Rolf B Edvardsen

    Full Text Available Understanding the biological function behind key proteins is of great concern in Atlantic salmon, both due to a high commercial importance and an interesting life history. Until recently, functional studies in salmonids appeared to be difficult. However, the recent discovery of targeted mutagenesis using the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated system enables performing functional studies in Atlantic salmon to a great extent. We used the CRISPR/Cas9 system to target two genes involved in pigmentation, tyrosinase (tyr and solute carrier family 45, member 2 (slc45a2. Embryos were assayed for mutation rates at the 17 somite stage, where 40 and 22% of all injected embryos showed a high degree of mutation induction for slc45a2 and tyr, respectively. At hatching this mutation frequency was also visible for both targeted genes, displaying a graded phenotype ranging from complete lack of pigmentation to partial loss and normal pigmentation. CRISPRslc45a2/Cas9 injected embryos showing a complete lack of pigmentation or just a few spots of pigments also lacked wild type sequences when assaying more than 80 (slc45a2 sequence clones from whole embryos. This indicates that CRISPR/Cas9 can induce double-allelic knockout in the F0 generation. However, types and frequency of indels might affect the phenotype. Therefore, the variation of indels was assayed in the graded pigmentation phenotypes produced by CRISPR/Cas9-slc45a2. The results show a tendency for fewer types of indels formed in juveniles completely lacking pigmentation compared to juveniles displaying partial pigmentation. Another interesting observation was a high degree of the same indel type in different juveniles. This study shows for the first time successful use of the CRISPR/Cas9 technology in a marine cold water species. Targeted double-allelic mutations were obtained and, though the level of mosaicism has to be considered, we demonstrate that F0

  5. Optimization of Combinatorial Mutagenesis

    Science.gov (United States)

    Parker, Andrew S.; Griswold, Karl E.; Bailey-Kellogg, Chris

    Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (stability, activity, immunogenicity, etc.). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries - a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 107 variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and

  6. Chemically induced intestinal damage models in zebrafish larvae.

    Science.gov (United States)

    Oehlers, Stefan H; Flores, Maria Vega; Hall, Christopher J; Okuda, Kazuhide S; Sison, John Oliver; Crosier, Kathryn E; Crosier, Philip S

    2013-06-01

    Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described.

  7. Classical mutagenesis in higher plants

    NARCIS (Netherlands)

    Koornneef, M.

    2002-01-01

    For a long time, mutagenesis research in plants focused on crop improvement and, especially for crop plants, opimised protocols were developed with barley being one of the favourite species. However, the interest in mutagenesis has shifted to basic plant research in the last 20 years, when the power

  8. Quantitative studies of the mutagenesis of Toxoplasma gondii

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferkorn, E.R.; Pfefferkorn, L.C.

    1979-06-01

    The induction of mutants resistant to 5-fluorodeoxyuridine (FUDR) was used to measure the efficiency of various physical and chemical mutagens on extracellular and intracellular Toxoplasma gondii. The frequency of resistant mutant was measured by plaque assay in human fibroblast cultures in the presence and absence of FUDR. When considered as a function of lethality, the most efficient mutagenesis was obtained with nitrosoguanidine treatment of extracellular parasites and with ethylmethane sulfonate treatment of actively growing intracellular parasites. Each of these treatments increased the frequency of FUDR-resistant mutants from less than one to more than 200 per million parasites. Ultraviolet irradiation, X-rays, and the alkylating mustard ICR-191 also induced FUDR-resistant mutants in a dose-dependent fashion.

  9. Radiation-induced chemical evolution of biomolecules

    International Nuclear Information System (INIS)

    Chemical evolution in glycilglycine (Gly2) films irradiated with 146 nm vacuum ultraviolet light was studied. It is found that quantum efficiency of chemical evolution from Gly2 to glycilglycilglycine (Gly3) is smaller than that to glycilglycilglycilglycine (Gly4) due to the multiple step of reaction. Furthermore, we have carried out measurement of soft X-ray natural circular dichroism spectra for serine and alanine films in the energy region of oxygen 1s transition and we report the splitting of 1s→π* transitions.

  10. 75 FR 76460 - Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for...

    Science.gov (United States)

    2010-12-08

    ... AGENCY Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for..., ``Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment.... ADDRESSES: The draft ``Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview...

  11. Chloroacetaldehyde-induced mutagenesis in Escherichia coli: The role of AlkB protein in repair of 3,N{sup 4}-ethenocytosine and 3,N{sup 4}-{alpha}-hydroxyethanocytosine

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewska, Agnieszka M.; Ruszel, Karol P.; Nieminuszczy, Jadwiga; Lewicka, Joanna [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, 5A Pawinskiego Str (Poland); Sokolowska, Beata [Medical Research Center, Polish Academy of Sciences, 02-106 Warsaw, 5 Pawinskiego Str (Poland); Grzesiuk, Elzbieta [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, 5A Pawinskiego Str (Poland); Kusmierek, Jaroslaw T., E-mail: jareq@ibb.waw.pl [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, 5A Pawinskiego Str (Poland)

    2010-02-03

    Etheno ({epsilon}) adducts are formed in reaction of DNA bases with various environmental carcinogens and endogenously created products of lipid peroxidation. Chloroacetaldehyde (CAA), a metabolite of carcinogen vinyl chloride, is routinely used to generate {epsilon}-adducts. We studied the role of AlkB, along with AlkA and Mug proteins, all engaged in repair of {epsilon}-adducts, in CAA-induced mutagenesis. The test system used involved pIF102 and pIF104 plasmids bearing the lactose operon of CC102 or CC104 origin (Cupples and Miller (1989) ) which allowed to monitor Lac{sup +} revertants, the latter arose by GC {yields} AT or GC {yields} TA substitutions, respectively, as a result of modification of guanine and cytosine. The plasmids were CAA-damaged in vitro and replicated in Escherichia coli of various genetic backgrounds. To modify the levels of AlkA and AlkB proteins, mutagenesis was studied in E. coli cells induced or not in adaptive response. Formation of {epsilon}C proceeds via a relatively stable intermediate, 3,N{sup 4}-{alpha}-hydroxyethanocytosine (HEC), which allowed to compare repair of both adducts. The results indicate that all three genes, alkA, alkB and mug, are engaged in alleviation of CAA-induced mutagenesis. The frequency of mutation was higher in AlkA-, AlkB- and Mug-deficient strains in comparison to alkA{sup +}, alkB{sup +}, and mug{sup +} controls. Considering the levels of CAA-induced Lac{sup +} revertants in strains harboring the pIF plasmids and induced or not in adaptive response, we conclude that AlkB protein is engaged in the repair of {epsilon}C and HEC in vivo. Using the modified TTCTT 5-mers as substrates, we confirmed in vitro that AlkB protein repairs {epsilon}C and HEC although far less efficiently than the reference adduct 3-methylcytosine. The pH optimum for repair of HEC and {epsilon}C is significantly different from that for 3-methylcytosine. We propose that the protonated form of adduct interact in active site of Alk

  12. Physical and chemical mutagenesis of early mutant of indica restorers in ''WA'' (wild abortion) hybrid rice system and genetic analysis of mutants in heterosis utilization

    International Nuclear Information System (INIS)

    The four indica restorers in the wild abortion hybrid rice system were treated with physical and chemical mutagens, and the mutation frequency in the M2 generation and the correlation between the heading date of the mutants and other characters were investigated

  13. Solution-phase parallel synthesis of a pharmacophore library of HUN-7293 analogues: a general chemical mutagenesis approach to defining structure-function properties of naturally occurring cyclic (depsi)peptides.

    Science.gov (United States)

    Chen, Yan; Bilban, Melitta; Foster, Carolyn A; Boger, Dale L

    2002-05-15

    HUN-7293 (1), a naturally occurring cyclic heptadepsipeptide, is a potent inhibitor of cell adhesion molecule expression (VCAM-1, ICAM-1, E-selectin), the overexpression of which is characteristic of chronic inflammatory diseases. Representative of a general approach to defining structure-function relationships of such cyclic (depsi)peptides, the parallel synthesis and evaluation of a complete library of key HUN-7293 analogues are detailed enlisting solution-phase techniques and simple acid-base liquid-liquid extractions for isolation and purification of intermediates and final products. Significant to the design of the studies and unique to solution-phase techniques, the library was assembled superimposing a divergent synthetic strategy onto a convergent total synthesis. An alanine scan and N-methyl deletion of each residue of the cyclic heptadepsipeptide identified key sites responsible for or contributing to the biological properties. The simultaneous preparation of a complete set of individual residue analogues further simplifying the structure allowed an assessment of each structural feature of 1, providing a detailed account of the structure-function relationships in a single study. Within this pharmacophore library prepared by systematic chemical mutagenesis of the natural product structure, simplified analogues possessing comparable potency and, in some instances, improved selectivity were identified. One potent member of this library proved to be an additional natural product in its own right, which we have come to refer to as HUN-7293B (8), being isolated from the microbial strain F/94-499709.

  14. Antimicrobials, stress and mutagenesis.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2014-10-01

    Full Text Available Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.

  15. Approaches to the evaluation of chemical-induced immunotoxicity.

    OpenAIRE

    Krzystyniak, K; Tryphonas, H; Fournier, M

    1995-01-01

    The immune system plays a crucial role in maintaining health; however, accumulating evidence indicates that this system can be the target for immunotoxic effects caused by a variety of chemicals including the environmental pollutants of polychlorinated biphenyls, chlorinated dibenzo-p-dioxins, pesticides, and heavy metals. Adverse chemical-induced immunomodulation, which is studied within the discipline of immunotoxicology, may be expressed either as immunosuppression/immunodepression or immu...

  16. The Roles of UmuD in Regulating Mutagenesis

    Directory of Open Access Journals (Sweden)

    Jaylene N. Ollivierre

    2010-01-01

    Full Text Available All organisms are subject to DNA damage from both endogenous and environmental sources. DNA damage that is not fully repaired can lead to mutations. Mutagenesis is now understood to be an active process, in part facilitated by lower-fidelity DNA polymerases that replicate DNA in an error-prone manner. Y-family DNA polymerases, found throughout all domains of life, are characterized by their lower fidelity on undamaged DNA and their specialized ability to copy damaged DNA. Two E. coli Y-family DNA polymerases are responsible for copying damaged DNA as well as for mutagenesis. These DNA polymerases interact with different forms of UmuD, a dynamic protein that regulates mutagenesis. The UmuD gene products, regulated by the SOS response, exist in two principal forms: UmuD2, which prevents mutagenesis, and UmuD2′, which facilitates UV-induced mutagenesis. This paper focuses on the multiple conformations of the UmuD gene products and how their protein interactions regulate mutagenesis.

  17. Neuro-immune interactions in chemical-induced airway hyperreactivity.

    Science.gov (United States)

    Devos, Fien C; Boonen, Brett; Alpizar, Yeranddy A; Maes, Tania; Hox, Valérie; Seys, Sven; Pollaris, Lore; Liston, Adrian; Nemery, Benoit; Talavera, Karel; Hoet, Peter H M; Vanoirbeek, Jeroen A J

    2016-08-01

    Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR. PMID:27126687

  18. Chemical changes induced by ultrasound in iron

    Science.gov (United States)

    Albertini, G.; Calbucci, V.; Cardone, F.; Petrucci, A.; Ridolfi, F.

    2014-03-01

    The focus of this work is a careful chemical investigation of structural damage produced by the exposure of an iron bar to pressure waves generated using an ultrasound machine (called the R-1-S reactor). In addition to the emission of neutron bursts, the ultrasound treatment caused the appearance of zones of macroscopic damage (˜1 mm in size) on the exterior of the bar. Reflected-light optical and environmental scanning electron microscopy (ESEM) has shown that these external damage zones are characterized by microcraters and are covered by a thin layer of cracked amorphous material. Under back scattered electron (BSE) observation, this material shows a lower brightness than the intact ferrite surface. In addition, a zone with a high density of deformed cavities (˜1300 per mm2) with irregular walls and a maximum size of 10 μm was found inside the bar. These deformed microcavities are partially filled with a material composed of a chaotic assemblage of submicron-sized (most likely amorphous) particles. A careful compositional investigation of the chaotic material inside the microcavities using the semi-quantitative data obtained with the ESEM X-ray Energy Dispersive System (EDS) has shown that it is primarily composed of carbon, manganese and chromium. These elements are also found in lower amounts within the intact ferrite matrix. In contrast, the damaged surface surrounding the craters is characterized by elements not found in the ferrite at all (i.e., O, Cl, K, Cu); elements the presence of which cannot be attributed to the occurrence of non-metallic inclusions or to contamination during fabrication. These results are also difficult to explain using the generally accepted laws of physics; however, they do appear to agree with a recent theory predicting the deformation of the local spacetime and the violation of the Local Lorentz Invariance. Such a violation should occur following the collapse of micron-sized discontinuities internal to the materials

  19. Inducing mutations in the mouse genome with the chemical mutagen ethylnitrosourea

    Directory of Open Access Journals (Sweden)

    S.M.G. Massironi

    2006-09-01

    Full Text Available When compared to other model organisms whose genome is sequenced, the number of mutations identified in the mouse appears extremely reduced and this situation seriously hampers our understanding of mammalian gene function(s. Another important consequence of this shortage is that a majority of human genetic diseases still await an animal model. To improve the situation, two strategies are currently used: the first makes use of embryonic stem cells, in which one can induce knockout mutations almost at will; the second consists of a genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes and subsequent identification of the genetic alteration(s. Several projects are now in progress making use of one or the other of these strategies. Here, we report an original effort where we mutagenized BALB/c males, with the mutagen ethylnitrosourea. Offspring of these males were screened for dominant mutations and a three-generation breeding protocol was set to recover recessive mutations. Eleven mutations were identified (one dominant and ten recessives. Three of these mutations are new alleles (Otop1mlh, Foxn1sepe and probably rodador at loci where mutations have already been reported, while 4 are new and original alleles (carc, eqlb, frqz, and Sacc. This result indicates that the mouse genome, as expected, is far from being saturated with mutations. More mutations would certainly be discovered using more sophisticated phenotyping protocols. Seven of the 11 new mutant alleles induced in our experiment have been localized on the genetic map as a first step towards positional cloning.

  20. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    2007-01-01

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  1. A model for chemically-induced mechanical loading on MEMS

    DEFF Research Database (Denmark)

    Amiot, Fabien

    2007-01-01

    The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain, and displac...

  2. Promoter analysis by saturation mutagenesis

    Directory of Open Access Journals (Sweden)

    Baliga Nitin

    2001-01-01

    Full Text Available Gene expression and regulation are mediated by DNA sequences, in most instances, directly upstream to the coding sequences by recruiting transcription factors, regulators, and a RNA polymerase in a spatially defined fashion. Few nucleotides within a promoter make contact with the bound proteins. The minimal set of nucleotides that can recruit a protein factor is called a cis-acting element. This article addresses a powerful mutagenesis strategy that can be employed to define cis-acting elements at a molecular level. Technical details including primer design, saturation mutagenesis, construction of promoter libraries, phenotypic analysis, data analysis, and interpretation are discussed.

  3. Chemical Mutagenesis of an Emissive RNA Alphabet.

    Science.gov (United States)

    Rovira, Alexander R; Fin, Andrea; Tor, Yitzhak

    2015-11-25

    An evolved fluorescent ribonucleoside alphabet comprising isomorphic purine ((tz)A, (tz)G) and pyrimidine ((tz)U, (tz)C) analogues, all derived from isothiazolo[4,3-d]pyrimidine as a common heterocyclic core, is described. Structural and biochemical analyses illustrate that the nucleosides, particularly the C-nucleosidic purine analogues, are faithful isomorphic and isofunctional surrogates of their natural counterparts and show improved features when compared to an RNA alphabet derived from thieno[3,4-d]-pyrimidine. The restoration of the nitrogen in a position equivalent to the purines' N7 leads to "isofunctional" behavior, as illustrated by the ability of adenosine deaminase to deaminate (tz)A as effectively as adenosine, the native substrate. PMID:26523462

  4. Protective effect of silymarin against chemical-induced cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Bibi Marjan Razavi

    2016-09-01

    Full Text Available Cardiac disorders remain one of the most important causes of death in the world. Oxidative stress has been suggested as one of the molecular mechanisms involved in drug-induced cardiac toxicity. Recently, several natural products have been utilized in different studies with the aim to protect the progression of oxidative stress-induced cardiac disorders. There is a large body of evidence that administration of antioxidants may be useful in ameliorating cardiac toxicity. Silymarin, a polyphenolic flavonoid has been shown to have utility in several cardiovascular disorders. In this review, various studies in scientific databases regarding the preventive effects of silymarin against cardiotoxicity induced by chemicals were introduced. Although there are many studies representing the valuable effects of silymarin in different diseases, the number of researches relating to the possible cardiac protective effects of silymarin against drugs induced toxicity is rather limited. Results of these studies show that silymarin has a broad spectrum of cardiac protective activity against toxicity induced by some chemicals including metals, environmental pollutants, oxidative agents and anticancer drugs. Further studies are needed to establish the utility of silymarin in protection against cardiac toxicity.

  5. Keratin expression in chemically induced mouse lung adenomas.

    OpenAIRE

    Gunning, W T; Goldblatt, P. J.; Stoner, G D

    1992-01-01

    Chemically induced mouse lung tumors exhibit distinctive growth patterns, characterized by an alveolar or solid appearance, a papillary appearance, or a combination of the two. Lung tumors induced in strain A/J mice by either benzo(a)pyrene (BP) or by N-nitrosoethylurea (ENU) were examined for expression of low- and high-molecular-weight cytokeratins. Simple cytokeratins (low molecular weight) were found in all epithelial cells of the normal mouse lung and in all tumor types, whereas higher-m...

  6. Chemically induced electric field: flat band potential engineering

    Science.gov (United States)

    Bak, T.; Guo, Z.; Li, W.; Atanacio, A. J.; Nowotny, J.

    2012-10-01

    The present work considers engineering of the flat band potential, FBP, of metal oxides in a controlled manner. The aim is to minimise the energy losses related to recombination. The related experimental approaches include imposition of a chemically-induced electric field using the phenomena of segregation, diffusion and the formation of multilayer systems. This paper considers several basic phenomena that allow the modification of the surface charge and the space charge at the gas/solid and solid/liquid interfaces.

  7. Laser-Induced Chemical Vapour Deposition of Silicon Carbonitride

    OpenAIRE

    Besling, W.; van der Put, P.; Schoonman, J.

    1995-01-01

    Laser-induced Chemical Vapour Deposition of silicon carbonitride coatings and powders has been investigated using hexamethyldisilazane (HMDS) and ammonia as reactants. An industrial CW CO2-laser in parallel configuration has been used to heat up the reactant gases. HMDS dissociates in the laser beam and reactive radicals are formed which increase rapidly in molecular weight by an addition mechanism. Dense polymer-like silicon carbonitride thin films and nanosized powders are formed depending ...

  8. Mutagenesis and Teratogenesis Section

    International Nuclear Information System (INIS)

    Progress is reported in the following areas of research: studies on chromosome damage and indirect indicators of genetic damage; cytogenetic, embryological, and biochemical studies of mutants in mammals; studies on mammalian gonads in relation to mutagenic effects; systems for detecting mutagenic effects of chemicals; processes in repair of damage to DNA; methods for detecting mutations that result in proteins with altered amino acid sequences; recombination in Drosophila; DNA repair processes in bacteria; development of a sensitive teratological prescreen; teratogenic end points in amphibians; and development of a method for long-term culture of Xenopus oocytes

  9. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae.

    OpenAIRE

    Seifert, H S; Chen, E Y; So, M; Heffron, F

    1986-01-01

    We have extended the method of transposon mutagenesis to the eukaryote, Saccharomyces cerevisiae. A bacterial transposon containing a selectable yeast gene can be transposed into a cloned fragment of yeast DNA in Escherichia coli, and the transposon insertion can be returned to the yeast genome by homologous recombination. Initially, the cloned yeast DNA fragment to be mutagenized was transformed into an E. coli strain containing an F factor derivative carrying the transposable element. The c...

  10. Mutagenesis in sweet potato

    International Nuclear Information System (INIS)

    Stem explants of cv. 'Gao line 14' were cultured on the MS medium supplemented with 0.01 mg BA+1.0 mg NAA+2.0 mg IAA/l. The calli thus formed were irradiated with 5 Gy from a 60Co gamma-ray. Irradiated calli were transferred to half-strength MS medium containing 2.0 mg KIN + 2.0 mg IAA/l to induce plant regeneration. An early ripening mutant with high yield and low tuber number was selected among the regenerated plants grown in a field. Embryogenic calli were obtained from stem pieces, stem-tips and leaves on MS medium supplemented with 2,4-D. (author). 1 ref

  11. Chemically induced magnetism in atomically precise gold clusters.

    Science.gov (United States)

    Krishna, Katla Sai; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Kumar, Challa S S R

    2014-03-12

    Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understanding the magnetic properties resulting from quantum size effects in such atomically precise gold clusters could lead to new fundamental discoveries and applications.

  12. Commentary on "tissue-specific mutagenesis by N-butyl-N-(4-hydroxybutyl) nitrosamine as the basis for urothelial cell carcinogenesis." He Z, Kosinska W, Zhao ZL, Wu XR, Guttenplan JB, Department of Basic Science, New York University Dental College, NY, USA.: Mutat Res 2012;742(1-2):92-5 [Epub 2011 Dec 4].

    Science.gov (United States)

    Scherr, Douglas S

    2014-02-01

    Bladder cancer is one of the few cancers that have been linked to carcinogens in the environment and tobacco smoke. Of the carcinogens tested in mouse chemical carcinogenesis models, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) is one that reproducibly causes high-grade, invasive cancers in the urinary bladder, but not in any other tissues. However, the basis for such a high-level tissue-specificity has not been explored. Using mutagenesis in lacI (Big Blue™) mice, we show here that BBN is a potent mutagen and it causes high-level of mutagenesis specifically in the epithelial cells (urothelial) of the urinary bladder. After a 2-6-week treatment of 0.05% BBN in the drinking water, mutagenesis in urothelial cells of male and female mice was about two orders of magnitude greater than the spontaneous mutation background. In contrast, mutagenesis in smooth muscle cells of the urinary bladder was about five times lower than in urothelial tissue. No appreciable increase in mutagenesis was observed in kidney, ureter, liver or forestomach. In lacI (Big Blue™) rats, BBN mutagenesis was also elevated in urothelial cells, albeit not nearly as profoundly as in mice. This provides a potential explanation as to why rats are less prone than mice to the formation of aggressive form of bladder cancer induced by BBN. Our results suggest that the propensity to BBN-triggered mutagenesis of urothelial cells underlies its heightened susceptibility to this carcinogen and that mutagenesis induced by BBN represents a novel model for initiation of bladder carcinogenesis.

  13. Molecular mechanism of LacZ gene mutagenesis induced by 9-aminoacridine%9-氨基吖啶诱导LacZ靶基因突变分子机制的研究

    Institute of Scientific and Technical Information of China (English)

    刘勇; 曹佳; 孙华明

    2001-01-01

    目的 使用我室新构建的含LacZ靶基因的λgt11DNA体外重包装致突变检测系统,研究了移码突变剂9-氨基吖啶(9-AA)诱发突变及分子突变谱,并进一步对该系统的可行性进行了评价。方法 用9-AA直接处理λgt11DNA,经体外重包装为完整噬菌体、铺皿,通过X-gal和IPTG检测突变率,使用DNA测序了解阳性克隆DNA分子改变情况。结果 9-AA能明显影响噬菌体的存活率和诱发DNA突变,突变率呈明显剂量-反应关系;9-AA主要诱发移码突变,移码突变主要集中在Gs、Cs、As、Ts重复区内且突变频率随碱基重复长度增加而增加;9-AA同时还能诱发碱基置换,碱基置换主要表现为颠换,而碱基转换主要发生于Gs碱基。结论 该致突变检测系统不仅可以快速,灵敏地筛选出外来化合物的遗传毒性,而且可以深入分析外来化合物致突变分子机制。%Objective To analyze the mechanism of molecular mutagenesisinduced by the 9-aminoacridine (9-AA) with the molecular mutation detective system of λ gt11DNA with LacZ gene and to evaluate this detective system. Methods The 9-AA-damaged λ gt11DNA was added to Lambda packaging extracts and then the repacked Lambda phage were cultured in E.coli Y1090 on a selective plate pre-supplemented with X-Gal and IPTG. The positive cloned DNA molecule was determined with DNA sequencer. Results 9-AA had an obvious effect on the survival rate of the Lambda phage and induce DNA mutation in a dose-effect manner. The 9-AA induced not only frameshift mutations, but also base substitutions. The frameshift mutation mainly occurred in the repeats of As, Cs, Gs. and Ts, and the frequency elevated linearly with the increasing amount of As, Cs, Gs, and Ts in the repeat. The 9-AA-induced base substitutions were mainly base transversion, and the base transition was only in Gs repeat. Conclusion With this mutagenesis detective system, the genetic toxicity of exogenous

  14. Role of AtPolζ, AtRev1, and AtPolη in UV light-induced mutagenesis in Arabidopsis.

    Science.gov (United States)

    Nakagawa, Mayu; Takahashi, Shinya; Tanaka, Atsushi; Narumi, Issay; Sakamoto, Ayako N

    2011-01-01

    Translesion synthesis (TLS) is a DNA damage tolerance mechanism in which DNA lesions are bypassed by specific polymerases. To investigate the role of TLS activities in ultraviolet light-induced somatic mutations, we analyzed Arabidopsis (Arabidopsis thaliana) disruptants of AtREV3, AtREV1, and/or AtPOLH genes that encode TLS-type polymerases. The mutation frequency in rev3-1 or rev1-1 mutants decreased compared with that in the wild type, suggesting that AtPolζ and AtRev1 perform mutagenic bypass events, whereas the mutation frequency in the polh-1 mutant increased, suggesting that AtPolη performs nonmutagenic bypass events with respect to ultraviolet light-induced lesions. The rev3-1 rev1-1 double mutant showed almost the same mutation frequency as the rev1-1 single mutant. The increased mutation frequency found in polh-1 was completely suppressed in the rev3-1 polh-1 double mutant, indicating that AtPolζ is responsible for the increased mutations found in polh-1. In summary, these results suggest that AtPolζ and AtRev1 are involved in the same (error-prone) TLS pathway that is independent from the other (error-free) TLS pathway mediated by AtPolη.

  15. OneClick: A Program for Designing Focused Mutagenesis Experiments

    Directory of Open Access Journals (Sweden)

    Mark Warburton

    2015-07-01

    Full Text Available OneClick is a user-friendly web-based program, developed specifically for quick-and-easy design of focused mutagenesis experiments (e.g., site-directed mutagenesis and saturation mutagenesis. Written in Perl and developed into a web application using CGI programming, OneClick offers a step-by-step experimental design, from mutagenic primer design to analysis of a mutant library. Upon input of a DNA sequence encoding the protein of interest, OneClick designs the mutagenic primers according to user input, e.g., amino acid position to mutate, type of amino acid substitutions (e.g., substitution to a group of amino acids with similar chemical property and type of mutagenic primers. OneClick has incorporated an extensive range of commercially available plasmids and DNA polymerases suitable for focused mutagenesis. Therefore, OneClick also provides information on PCR mixture preparation, thermal cycling condition, expected size of PCR product and agar plate to use during bacterial transformation. Importantly, OneClick also carries out a statistical analysis of the resultant mutant library, information of which is important for selection/screening. OneClick is a unique and invaluable tool in the field of protein engineering, allowing for systematic construction of a mutant library or a protein variant and simplifying molecular biology work. The program will be constantly updated to reflect the rapid development in the fields of molecular biology and protein engineering.

  16. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  17. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  18. Mouse Mutagenesis Using N-Ethyl-N-Nitrosourea (ENU)

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Andrew P. Salinger and Monica J. Justice1 Corresponding author ([]()) ### INTRODUCTION This protocol describes chemical mutagenesis of male mice using N-ethyl-N-nitrosourea (ENU), which is the most efficient method for obtaining mouse mutations in phenotype-driven screens. A fractionated dose of ENU, an alkylating agent, can produce a mutation rate as high as 1.5 × 10e−3 in male mouse spermatogonial stem cells. Treatment with ENU pr...

  19. Chemically Induced and Light-Independent Cryptochrome Photoreceptor Activation

    Institute of Scientific and Technical Information of China (English)

    Gesa Rosenfeldt; Rafael Mu(n)oz Viana; Henning D.Mootz; Albrecht G.Von Arnim; Alfred Batschauer

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  20. Light-induced chemical vapour deposition painting with titanium dioxide

    Science.gov (United States)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  1. Quantum measurement corrections to chemically induced dynamic nuclear polarization

    CERN Document Server

    Kominis, I K

    2013-01-01

    Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.

  2. Charged impurity-induced scatterings in chemical vapor deposited graphene

    Science.gov (United States)

    Li, Ming-Yang; Tang, Chiu-Chun; Ling, D. C.; Li, L. J.; Chi, C. C.; Chen, Jeng-Chung

    2013-12-01

    We investigate the effects of defect scatterings on the electric transport properties of chemical vapor deposited (CVD) graphene by measuring the carrier density dependence of the magneto-conductivity. To clarify the dominant scattering mechanism, we perform extensive measurements on large-area samples with different mobility to exclude the edge effect. We analyze our data with the major scattering mechanisms such as short-range static scatters, short-range screened Coulomb disorders, and weak-localization (WL). We establish that the charged impurities are the predominant scatters because there is a strong correlation between the mobility and the charge impurity density. Near the charge neutral point (CNP), the electron-hole puddles that are induced by the charged impurities enhance the inter-valley scattering, which is favorable for WL observations. Away from the CNP, the charged-impurity-induced scattering is weak because of the effective screening by the charge carriers. As a result, the local static structural defects govern the charge transport. Our findings provide compelling evidence for understanding the scattering mechanisms in graphene and pave the way for the improvement of fabrication techniques to achieve high-quality CVD graphene.

  3. Exploiting mutagenesis for wheat improvement

    International Nuclear Information System (INIS)

    The chemical mutagen, ethylmethanesulphonate, is being used to introduce into wheat novel variation that can be exploited for crop improvement. We have created mutagenised populations of diploid (Einkorn), tetraploid (Durum) and hexaploid (bread) wheat. The forward genetic approach enables the identification of high yielding or novel phenotypes that can be exploited in conventional breeding programmes. A powerful reverse genetic strategy, TILLING (Targetting Induced Local Lesions IN Genomes), allows the detection of induced point mutations in the populations of mutagenised individuals and allows gene function to be examined. Genetic redundancy in the tetraploid and hexaploid species allows them to tolerate a high level of mutation (up to one mutation per 25kbp). This mutation frequency makes it relatively easy to identify lesions in each homeologue of a particular gene which can then be combined for crop improvement or functional genomics. Novel variation created can be exploited without the regulatory restrictions imposed on genetically modified organisms. Gene targets have been selected in relation to plant architecture, primary metabolism, disease resistance and stress tolerance and over 50 TILLING mutants have so been identified, including mis-sense, non-sense and splice site mutations (author)

  4. Use of a chemically induced-colon carcinogenesis-prone Apc-mutant rat in a chemotherapeutic bioassay

    Directory of Open Access Journals (Sweden)

    Yoshimi Kazuto

    2012-10-01

    Full Text Available Abstract Background Chemotherapeutic bioassay for colorectal cancer (CRC with a rat model bearing chemically-induced CRCs plays an important role in the development of new anti-tumor drugs and regimens. Although several protocols to induce CRCs have been developed, the incidence and number of CRCs are not much enough for the efficient bioassay. Recently, we established the very efficient system to induce CRCs with a chemically induced-colon carcinogenesis-prone Apc-mutant rat, Kyoto Apc Delta (KAD rat. Here, we applied the KAD rat to the chemotherapeutic bioassay for CRC and showed the utility of the KAD rat. Methods The KAD rat has been developed by the ENU mutagenesis and carries a homozygous nonsense mutation in the Apc gene (S2523X. Male KAD rats were given a single subcutaneous injection of AOM (20 mg/kg body weight at 5 weeks of age. Starting at 1 week after the AOM injection, they were given 2% DSS in drinking water for 7 days. Tumor-bearing KAD rats were divided into experimental and control groups on the basis of the number of tumors observed by endoscopy at week 8. The 5-fluorouracil (5-FU was administrated intravenously a dose of 50 or 75 mg/kg weekly at week 9, 10, and 11. After one-week interval, the 5-FU was given again at week 13, 14, and 15. At week 16, animals were sacrificed and tumor number and volume were measured macroscopically and microscopically. Results In total 48 tumors were observed in 27 KAD rats with a 100% incidence at week 8. The maximum tolerated dose for the KAD rat was 50 mg/kg of 5-FU. Macroscopically, the number or volume of tumors in the 5-FU treated rats was not significantly different from the control. Microscopically, the number of adenocarcinoma in the 5-FU treated rats was not significantly different (p Conclusion The use of the AOM/DSS-treated tumor-bearing KAD rats could shorten the experimental period and reduce the number of animals examined in the chemotherapeutic bioassay. The

  5. Use of a chemically induced-colon carcinogenesis-prone Apc-mutant rat in a chemotherapeutic bioassay

    International Nuclear Information System (INIS)

    Chemotherapeutic bioassay for colorectal cancer (CRC) with a rat model bearing chemically-induced CRCs plays an important role in the development of new anti-tumor drugs and regimens. Although several protocols to induce CRCs have been developed, the incidence and number of CRCs are not much enough for the efficient bioassay. Recently, we established the very efficient system to induce CRCs with a chemically induced-colon carcinogenesis-prone Apc-mutant rat, Kyoto Apc Delta (KAD) rat. Here, we applied the KAD rat to the chemotherapeutic bioassay for CRC and showed the utility of the KAD rat. The KAD rat has been developed by the ENU mutagenesis and carries a homozygous nonsense mutation in the Apc gene (S2523X). Male KAD rats were given a single subcutaneous injection of AOM (20 mg/kg body weight) at 5 weeks of age. Starting at 1 week after the AOM injection, they were given 2% DSS in drinking water for 7 days. Tumor-bearing KAD rats were divided into experimental and control groups on the basis of the number of tumors observed by endoscopy at week 8. The 5-fluorouracil (5-FU) was administrated intravenously a dose of 50 or 75 mg/kg weekly at week 9, 10, and 11. After one-week interval, the 5-FU was given again at week 13, 14, and 15. At week 16, animals were sacrificed and tumor number and volume were measured macroscopically and microscopically. In total 48 tumors were observed in 27 KAD rats with a 100% incidence at week 8. The maximum tolerated dose for the KAD rat was 50 mg/kg of 5-FU. Macroscopically, the number or volume of tumors in the 5-FU treated rats was not significantly different from the control. Microscopically, the number of adenocarcinoma in the 5-FU treated rats was not significantly different (p < 0.02) from that of the control. However, the volume of adenocarcinomas was significantly lower than in the control. Anticancer effect of the 5-FU could be obtained only after the 16 weeks of experimental period. The use of the AOM/DSS-treated tumor

  6. (--Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Satoh Masamichi

    2011-04-01

    Full Text Available Abstract Background (--Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP receptor in thermal, mechanical, and chemical antinociception induced by (--pentazocine using MOP receptor knockout (MOP-KO mice. Results (--Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (--pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (--pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. In vitro binding and cyclic adenosine monophosphate assays showed that (--pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors. Conclusions The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (--pentazocine and retention of the visceral chemical antinociceptive effects of (--pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (--pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (--pentazocine.

  7. Chemically induced skin carcinogenesis: Updates in experimental models (Review).

    Science.gov (United States)

    Neagu, Monica; Caruntu, Constantin; Constantin, Carolina; Boda, Daniel; Zurac, Sabina; Spandidos, Demetrios A; Tsatsakis, Aristidis M

    2016-05-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands‑on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro‑inflammatory cytokines, and simultaneous inflammation sustained by pro‑inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  8. Increased Neuronal Hypoxic Tolerance Induced by Repetitive Chemical Hypoxia

    Institute of Scientific and Technical Information of China (English)

    李红戈; 刘昌勤; 孙圣刚

    2002-01-01

    Summary: To investigate the effects of time interval and cumulative dosage of repetitive mild cellular hypoxia on shape of neurodegeneration and neuroprotection in mice, population spike amplitude (PSA) was measured during hypoxia and posthypoxic recovery in hippocampal slices from untreated control and mice pretreated in vivo with a single or repeatedly intraperitoneal injection of 3-nitropropi onate (3-NP). Posthypoxic recovery of PSA was dose-dependent in single pretreated slices, with maximal recovery on pretreatment attained with 20 mg/kg 3-NP (82±32%, P< 0. 01). Upon 5 and 9 treatments with 20 mg/kg 3-NP (dosage interval 3 days), PSA recovered to (38±9) % with the difference being not significant vs control group and (72±45) % with the difference being signif icant (P< 0. 05 to control, P<0.05 to 5 treatments), respectively. In contrast, with 2 days time interval, recovery after 5 and 9 treatments was (30±25) % and (16±14) %, respectively (without significant difference from control). Continued neuroprotection was also observed upon increase of dosage interval to 4 and 5 days. It was suggested that repetitive chemical hypoxia is a model for neu rodegenerative disease and continued neuroprotection depending on time interval between repetitive hypoxic episodes rather than cumulative dosage. At appropriate time intervals increased neuronal hy-poxic tolerance could be induced with number of hypoxic episodes.

  9. DNA MUTAGENESIS IN PANAX GINSENG CELL CULTURES

    Directory of Open Access Journals (Sweden)

    Kiselev K.V.

    2012-08-01

    Full Text Available At the present time, it is well documented that plant tissue culture induces a number of mutations and chromosome rearrangements termed “somaclonal variations”. However, little is known about the nature and the molecular mechanisms of the tissue culture-induced mutagenesis and the effects of long-term subculturing on the rate and specific features of the mutagenesis. The aim of the present study was to investigate and compare DNA mutagenesis in different genes of Panax ginseng callus cultures of different age. It has previously been shown that the nucleotide sequences of the Agrobacterium rhizogenes rolC locus and the selective marker nptII developed mutations during long-term cultivation of transgenic cell cultures of P. ginseng. In the present work, we analyzed nucleotide sequences of selected plant gene families in a 2-year-old and 20-year-old P. ginseng 1c cell culture and in leaves of cultivated P. ginseng plants. We analysed sequence variability between the Actin genes, which are a family of house-keeping genes; the phenylalanine ammonia-lyase (PAL and dammarenediol synthase (DDS genes, which actively participate in the biosynthesis of ginsenosides; and the somatic embryogenesis receptor kinase (SERK genes, which control plant development. The frequency of point mutations in the Actin, PAL, DDS, and SERK genes in the 2-year-old callus culture was markedly higher than that in cultivated plants but lower than that in the 20-year-old callus culture of P. ginseng. Most of the mutations in the 2- and 20-year-old P. ginseng calli were A↔G and T↔C transitions. The number of nonsynonymous mutations was higher in the 2- and 20-year-old callus cultures than the number of nonsynonymous mutations in the cultivated plants of P. ginseng. Interestingly, the total number of N→G or N→C substitutions in the analyzed genes was 1.6 times higher than the total number of N→A or N→T substitutions. Using methylation-sensitive DNA fragmentation

  10. Site-directed mutagenesis in plants via gene targeting

    International Nuclear Information System (INIS)

    Many agronomically valuable phenotypes and natural variations seem to be due to point (or only a few) mutations. Thus, site-directed mutagenesis via gene targeting (GT) should be the cleanest, and most direct gene manipulation technique for future molecular breeding in plants. We chose the acetolactate synthase (ALS) gene locus of rice as a target for the introduction of point mutations. ALS catalyzes the initial step common to the biosynthesis of the branched-chain amino acids. Several point mutations in the ALS gene that confer tolerance to several ALS-inhibiting herbicides have been discovered in several plant species. Using a T-DNA-mediated GT strategy, we were able to induce two point mutations in the ALS locus that confer tolerance to the ALS-inhibiting herbicide bispyribac sodium salt (BS). After detailed analysis of GT plants, we confirmed that precise modification of the ALS locus had occurred in several plants. In addition to herbicide tolerance, tolerance against other chemicals is also a potential selectable phenotype. In this context, we are attempting to use GT to introduce point mutations into the rice gene encoding anthranilate synthase alpha subunit 2 (ASA2) -- a key enzyme in tryptophan (Trp) biosynthesis - to produce Trp-accumulating rice. In this study, gene-modified plants can be selected against the Trp analogue 5-methyl-Trp (5MT). We hope to report the phenotype of ASA2-modified plants. On the other hand, many agronomically valuable phenotypes caused by a small number of point mutations are non-selectable at the stage of transformation using current methods. If the frequency of GT can be improved substantially, co-transformation of a selectable marker gene and a non-selectable GT construct, and subsequent identification of desirable targeting events will cope with this problem. We are currently trying to improve GT efficiency in plant. (author)

  11. Genome-Wide Transposon Mutagenesis in Saccharomyces cerevisiae and Candida albicans

    Science.gov (United States)

    Xu, Tao; Bharucha, Nikë; Kumar, Anuj

    2016-01-01

    Transposon mutagenesis is an effective method for generating large sets of random mutations in target DNA, with applicability toward numerous types of genetic screens in prokaryotes, single-celled eukaryotes, and metazoans alike. Relative to methods of random mutagenesis by chemical/UV treatment, transposon insertions can be easily identified in mutants with phenotypes of interest. The construction of transposon insertion mutants is also less labor-intensive on a genome-wide scale than methods for targeted gene replacement, although transposon insertions are not precisely targeted to a specific residue, and thus coverage of the target DNA can be problematic. The collective advantages of transposon mutagenesis have been well demonstrated in studies of the budding yeast Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans, as transposon mutagenesis has been used extensively for phenotypic screens in both yeasts. Consequently, we present here protocols for the generation and utilization of transposon-insertion DNA libraries in S. cerevisiae and C. albicans. Specifically, we present methods for the large-scale introduction of transposon insertion alleles in a desired strain of S. cerevisiae. Methods are also presented for transposon mutagenesis of C. albicans, encompassing both the construction of the plasmid-based transposon-mutagenized DNA library and its introduction into a desired strain of Candida. In total, these methods provide the necessary information to implement transposon mutagenesis in yeast, enabling the construction of large sets of identifiable gene disruption mutations, with particular utility for phenotypic screening in nonstandard genetic backgrounds. PMID:21815095

  12. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characte

  13. Chemically and temperature-induced phase transformations of metal vanadates

    Science.gov (United States)

    Patridge, Christopher James

    Metal vanadates contain a diverse family of compounds due to the facile accessibility of different vanadium oxidation states and local coordination environments. Though these systems present a number of applications in catalysis and electronics, there may exist untapped physical phenomena that only reveal themselves when scaling these materials to nanoscale dimensions. Finite-size effects result from a number of factors including surface energy structural instabilities, nanostructure "self-purification," and physical constraints on mechanistic or conductive pathways. The MxV2O 5 bronze materials possess non-stoichiometry and this interesting property has hindered synthetic techniques to procure perfect crystalline material which is needed to expose the true physical properties. Through hydrothermal synthesis methods, pseudo one---dimensional nanostructures of Mx V2O5 display fascinating new properties and may be model systems for studying fundamentals associated with correlated electron dynamics in solid-state physics. Electron microscopy and powder X-ray diffraction reveal the near-perfect crystalline nanostructures. X-ray absorption spectroscopy studies show strong evidence for the localization of electron density and long-range crystal structure alignment of the nanowires. Single-nanowire electron transport measurements for the beta'-CuxV2O5 and the delta-KxV2O5 data shows novel temperature-induced reversible metal---insulator transition (MIT) near room temperature. The unprecedented magnitude (˜105) and discontinuous nature of the MIT suggests a mechanism closely associated with correlated electron motion. Additionally, the MIT can be induced by voltage ramping. The simultaneous temperature/voltage studies of single-nanowire transport support the existence of a critical threshold to overcome in order to facilitate instability in the insulating phase and transition to a metallic phase for the delta-KxV2O5 bronze. The MIT transition magnitudes of several

  14. Modifier action of the chlorophyllin of the mutagenesis induced by the ethyl-nitroso-urea (ENU) in germinal cells of Drosophila melanogaster; Accion modificadora de la clorofilina de la mutagenesis inducida por la etil-nitroso-urea (ENU) en celulas germinales de Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Morales N, I

    2006-07-01

    The cupro-sodium chlorophyllin (CCS) it is a soluble porphyrin in water that it includes in its it structures a copper atom instead of the magnesium that has the chlorophyll. Diverse experiments have demonstrated that it possesses a potent activity, reducing or inhibiting, the DNA damage caused by physical and chemical agents of direct action or insinuation. Most of the knowledge about their anti genotoxic activity has been obtained using somatic cells of different organisms, on the other hand it is known very little of their effect in germinal cells. At the moment in the Drosophila laboratory of the ININ it is investigating the protective action of the CCS in germinal cells, with these studies has been observed that its administration to females that were crossed with males irradiated with 20 Gy of gamma radiation, promotes the induction of lethal dominant in the embryonic and post-embryonic states causing a diminution in the viability egg-adult. With the test of lethal recessive bound to the sex one has evidence that it increases the basal frequency of lethal recessive and it doesn't reduce those induced by radiation. In contrast, with the present investigation when the CCS was administered to males that later on were treated with ethyl-nitroso-urea (ENU) caused a reduction of the lethal frequency in all the monitored cellular states, but only it was significant in the post-meiotic cells. On the contrary, when the CCS was administered to the female ones and then they crossed with males treaties with ENU, it was observed a tendency to increase the lethal ones in all the cellular types. With both protocols the CCS caused a diminution of the sterility. The fact that the CCS has antagonistic activities, it deserves special attention to investigate with different protocols and systems, the conditions in that this pigment can work as a true antimutagenic and/or anti carcinogenic before being able to him to propose as a chemopreventor. (Author)

  15. Spectroscopic Observation of Chemical Interaction Between Impact-induced Vapor Clouds and the Ambient Atmosphere

    Science.gov (United States)

    Sugita, S.; Heineck, J. T.; Schultz, P. H.

    2000-01-01

    Chemical reactions within impact-induced vapor clouds were observed in laboratory experiments using a spectroscopic method. The results indicate that projectile-derived carbon-rich vapor reacts intensively with atmospheric nitrogen.

  16. Chemically-induced Mouse Lung Tumors: Applications to Human Health Assessments

    Science.gov (United States)

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbe...

  17. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    Science.gov (United States)

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  18. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research

    OpenAIRE

    Liu, Yewei; YIN Ting; Feng, Yuanbo; Cona, Marlein Miranda; Huang, Gang; Liu, Jianjun; Song, Shaoli; Jiang, Yansheng; Xia, Qian; Swinnen, Johannes V; Bormans, Guy; Himmelreich, Uwe; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    Compared with transplanted tumor models or genetically engineered cancer models, chemically induced primary malignancies in experimental animals can mimic the clinical cancer progress from the early stage on. Cancer caused by chemical carcinogens generally develops through three phases namely initiation, promotion and progression. Based on different mechanisms, chemical carcinogens can be divided into genotoxic and non-genotoxic ones, or complete and incomplete ones, usually with an organ-spe...

  19. The mechanisms of UV mutagenesis.

    Science.gov (United States)

    Ikehata, Hironobu; Ono, Tetsuya

    2011-01-01

    Ultraviolet (UV) light induces specific mutations in the cellular and skin genome such as UV-signature and triplet mutations, the mechanism of which has been thought to involve translesion DNA synthesis (TLS) over UV-induced DNA base damage. Two models have been proposed: "error-free" bypass of deaminated cytosine-containing cyclobutane pyrimidine dimers (CPDs) by DNA polymerase η, and error-prone bypass of CPDs and other UV-induced photolesions by combinations of TLS and replicative DNA polymerases--the latter model has also been known as the two-step model, in which the cooperation of two (or more) DNA polymerases as misinserters and (mis)extenders is assumed. Daylight UV induces a characteristic UV-specific mutation, a UV-signature mutation occurring preferentially at methyl-CpG sites, which is also observed frequently after exposure to either UVB or UVA, but not to UVC. The wavelengths relevant to the mutation are so consistent with the composition of daylight UV that the mutation is called solar-UV signature, highlighting the importance of this type of mutation for creatures with the cytosine-methylated genome that are exposed to the sun in the natural environment. UVA has also been suggested to induce oxidative types of mutation, which would be caused by oxidative DNA damage produced through the oxidative stress after the irradiation. Indeed, UVA produces oxidative DNA damage not only in cells but also in skin, which, however, does not seem sufficient to induce mutations in the normal skin genome. In contrast, it has been demonstrated that UVA exclusively induces the solar-UV signature mutations in vivo through CPD formation.

  20. 2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline-induced DNA adduct formation and mutagenesis in DNA repair-deficient Chinese hamster ovary cells expressing human cytochrome P4501A1 and rapid or slow acetylator N-acetyltransferase 2.

    Science.gov (United States)

    Bendaly, Jean; Zhao, Shuang; Neale, Jason R; Metry, Kristin J; Doll, Mark A; States, J Christopher; Pierce, William M; Hein, David W

    2007-07-01

    2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) is one of the most potent and abundant mutagens in the western diet. Bioactivation includes N-hydroxylation catalyzed by cytochrome P450s followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). In humans, NAT2*4 allele is associated with rapid acetylator phenotype, whereas NAT2*5B allele is associated with slow acetylator phenotype. We hypothesized that rapid acetylator phenotype predisposes humans to DNA damage and mutagenesis from MeIQx. Nucleotide excision repair-deficient Chinese hamster ovary cells were constructed by stable transfection of human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. CYP1A1 and NAT2 catalytic activities were undetectable in untransfected Chinese hamster ovary cell lines. CYP1A1 activity did not differ significantly (P > 0.05) among the CYP1A1-transfected cell lines. Cells transfected with NAT2*4 had 20-fold significantly higher levels of sulfamethazine N-acetyltransferase (P = 0.0001) and 6-fold higher levels of N-hydroxy-MeIQx O-acetyltransferase (P = 0.0093) catalytic activity than cells transfected with NAT2*5B. Only cells transfected with both CYP1A1 and NAT2*4 showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase mutagenesis following MeIQx treatment. Deoxyguanosine-C8-MeIQx was the primary DNA adduct formed and levels were dose dependent in each cell line and in the following order: untransfected < transfected with CYP1A1 < transfected with CYP1A1 and NAT2*5B < transfected with CYP1A1 and NAT2*4. MeIQx DNA adduct levels were significantly higher (P < 0.001) in CYP1A1/NAT2*4 than CYP1A1/NAT2*5B cells at all concentrations of MeIQx tested. MeIQx-induced DNA adduct levels correlated very highly (r2 = 0.88) with MeIQx-induced mutants. These results strongly support extrahepatic activation of MeIQx by CYP1A1 and a robust effect of human NAT2 genetic polymorphism

  1. Hazard classification of chemicals inducing haemolytic anaemia: An EU regulatory perspective.

    NARCIS (Netherlands)

    Muller, Andre; Jacobsen, Helene; Healy, Edel; McMickan, Sinead; Istace, Fréderique; Blaude, Marie-Noëlle; Howden, Peter; Fleig, Helmut; Schulte, Agnes

    2006-01-01

    Haemolytic anaemia is often induced following prolonged exposure to chemical substances. Currently, under EU Council Directive 67/548/EEC, substances which induce such effects are classified as dangerous and assigned the risk phrase R48 'Danger of serious damage to health by prolonged exposure.' Whi

  2. Chemical products induce resistance to Xanthomonas perforans in tomato

    Directory of Open Access Journals (Sweden)

    Adriana Terumi Itako

    2015-09-01

    Full Text Available The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM (0.025 g.L−1, fluazinam (0.25 g.L−1, pyraclostrobin (0.08 g.L−1, pyraclostrobin + methiran (0.02 g.L−1 + 2.2 g.L−1, copper oxychloride (1.50 g.L−1, mancozeb + copper oxychloride (0.88 g.L−1 + 0.60 g.L−1, and oxytetracycline (0.40 g.L−1 on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar.

  3. Noise-induced multistability in chemical systems: Discrete versus continuum modeling.

    Science.gov (United States)

    Duncan, Andrew; Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek; Grima, Ramon

    2015-04-01

    The noisy dynamics of chemical systems is commonly studied using either the chemical master equation (CME) or the chemical Fokker-Planck equation (CFPE). The latter is a continuum approximation of the discrete CME approach. It has recently been shown that for a particular system, the CFPE captures noise-induced multistability predicted by the CME. This phenomenon involves the CME's marginal probability distribution changing from unimodal to multimodal as the system size decreases below a critical value. We here show that the CFPE does not always capture noise-induced multistability. In particular we find simple chemical systems for which the CME predicts noise-induced multistability, whereas the CFPE predicts monostability for all system sizes.

  4. Noise-induced multistability in chemical systems: Discrete versus continuum modeling.

    Science.gov (United States)

    Duncan, Andrew; Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek; Grima, Ramon

    2015-04-01

    The noisy dynamics of chemical systems is commonly studied using either the chemical master equation (CME) or the chemical Fokker-Planck equation (CFPE). The latter is a continuum approximation of the discrete CME approach. It has recently been shown that for a particular system, the CFPE captures noise-induced multistability predicted by the CME. This phenomenon involves the CME's marginal probability distribution changing from unimodal to multimodal as the system size decreases below a critical value. We here show that the CFPE does not always capture noise-induced multistability. In particular we find simple chemical systems for which the CME predicts noise-induced multistability, whereas the CFPE predicts monostability for all system sizes. PMID:25974443

  5. Mutagenesis as a breeding method in lentil

    International Nuclear Information System (INIS)

    promising mutant line 96-4, characterized by the highest seed yield and seed protein content, was registered as an original cultivar under the name M-17-MM. Line 96-7 (Elitsa) has been entered in tests conducted by the State Testing Commission. Experimental mutagenesis is a promising alternative method for creating genetic variability for selection in lentil. As a result of treatment with physical and chemical mutagens, many changes occurred in morphological traits. New forms with good resistance to Fusarium and Anthracnose were obtained as well as forms with higher protein content. The mutants studied exceeded the parent cultivar in productivity by 25.5 to 56.5%. (author)

  6. Experimental mutagenesis and its use

    International Nuclear Information System (INIS)

    Studies on the mutability of different hard wheat cultivars, using gamma rays, fast neutrons and chemical mutagens, showed greater mutability in cultivars of hybrid origin. New mutant hard wheat forms valuable for breeding were obtained - shorter growing season, lower nonlodging stem, better technological qualities, etc. that enrich hard wheat gene fund. High producing mutant lines with valuable economic qualities, outyielding the standard cultivar by 4-15%, were bred. (author)

  7. In vitro mutagenesis of chrysanthemum for breeding

    International Nuclear Information System (INIS)

    A protocol of in vitro mutagenesis for chrysanthemum was established. The 50% lethal dose (LD50) is about 5.0 kR for calli irradiation. Various growth, developmental, morphological, colour and abnormal shape mutations were identified in M1V4 generation. (author)

  8. Seed mutagenesis in Portulaca grandiflora (Hook)

    International Nuclear Information System (INIS)

    Betalain pigments have been used as natural additives. Despite their importance, the biochemistry and genetics of betalain synthesis remain relatively undetermined. Portulaca grandiflora represents an ideal material for genetic analysis. In the present work, seed mutagenesis was examined with a view to enhance the chance of detection of new genetic markers in this species

  9. Caspase-2 deficiency accelerates chemically induced liver cancer in mice.

    Science.gov (United States)

    Shalini, S; Nikolic, A; Wilson, C H; Puccini, J; Sladojevic, N; Finnie, J; Dorstyn, L; Kumar, S

    2016-10-01

    Aberrant cell death/survival has a critical role in the development of hepatocellular carcinoma (HCC). Caspase-2, a cell death protease, limits oxidative stress and chromosomal instability. To study its role in reactive oxygen species (ROS) and DNA damage-induced liver cancer, we assessed diethylnitrosamine (DEN)-mediated tumour development in caspase-2-deficient (Casp2(-/-)) mice. Following DEN injection in young animals, tumour development was monitored for 10 months. We found that DEN-treated Casp2(-/-) mice have dramatically elevated tumour burden and accelerated tumour progression with increased incidence of HCC, accompanied by higher oxidative damage and inflammation. Furthermore, following acute DEN injection, liver injury, DNA damage, inflammatory cytokine release and hepatocyte proliferation were enhanced in mice lacking caspase-2. Our study demonstrates for the first time that caspase-2 limits the progression of tumourigenesis induced by an ROS producing and DNA damaging reagent. Our findings suggest that after initial DEN-induced DNA damage, caspase-2 may remove aberrant cells to limit liver damage and disease progression. We propose that Casp2(-/-) mice, which are more susceptible to genomic instability, are limited in their ability to respond to DNA damage and thus carry more damaged cells resulting in accelerated tumourigenesis.

  10. Interleukin 19 reduces inflammation in chemically induced experimental colitis.

    Science.gov (United States)

    Matsuo, Yukiko; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Kuramoto, Nobuyuki; Nishiyama, Kazuhiro; Yoshida, Natsuho; Ikeda, Yoshihito; Fujimoto, Yasuyuki; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2015-12-01

    Inflammatory bowel disease results from chronic dysregulation of the mucosal immune system and aberrant activation of both the innate and adaptive immune responses. Interleukin (IL)-19, a member of the IL-10 family, functions as an anti-inflammatory cytokine. Here, we investigated the contribution of IL-19 to intestinal inflammation in a model of T cell-mediated colitis in mice. Inflammatory responses in IL-19-deficient mice were assessed using the 2,4,6-trinitrobenzene sulfonic acid (TNBS) model of acute colitis. IL-19 deficiency aggravated TNBS-induced colitis and compromised intestinal recovery in mice. Additionally, the exacerbation of TNBS-induced colonic inflammation following genetic ablation of IL-19 was accompanied by increased production of interferon-gamma, IL-12 (p40), IL-17, IL-22, and IL-33, and decreased production of IL-4. Moreover, the exacerbation of colitis following IL-19 knockout was also accompanied by increased production of CXCL1, G-CSF and CCL5. Using this model of induced colitis, our results revealed the immunopathological relevance of IL-19 as an anti-inflammatory cytokine in intestinal inflammation in mice.

  11. Hygienic grooming is induced by contact chemicals in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Aya eYanagawa

    2014-07-01

    Full Text Available In social insects, grooming is considered as a behavioral defense against pathogen and parasite infections since it contributes to remove microbes from their cuticle. However, stimuli which trigger this behavior are not well characterized yet. We examined if activating contact chemoreceptive sensilla could trigger grooming activities in Drosophila melanogaster. We monitored the grooming responses of decapitated flies to compounds known to activate the immune system e.g. dead Escherichia coli (Ec and lipopolysaccharides (LPS, and to tastants such as quinine, sucrose, and salt. LPS, quinine and Ec were quite effective in triggering grooming movements when touching the distal border of the wings and the legs, while sucrose had no effect. Contact chemoreceptors are necessary and sufficient to elicit such responses, as grooming could not be elicited by LPS in poxn mutants deprived of external taste sensilla, and as grooming was elicited by light when a channel rhodopsin receptor was expressed in bitter-sensitive cells expressing Gr33a. Contact chemoreceptors distributed along the distal border of the wings respond to these tastants by an increased spiking activity, in response to quinine, Ec, LPS, sucrose and KCl. These results demonstrate for the first time that bacterial compounds trigger grooming activities in D. melanogaster, and indicate that contact chemoreceptors located on the wings participate to the detection of such chemicals.

  12. Surface chemical reactions induced by well-controlled molecular beams: translational energy and molecular orientation control

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Michio, E-mail: okada@chem.sci.osaka-u.ac.j, E-mail: mokada@cw.osaka-u.ac.j [Renovation Center of Instruments for Science Education and Technology, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 and 1-2 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

    2010-07-07

    I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams suggest that the translational energy of the incident molecules plays a significant role. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths, and to develop new methods for the fabrication of thin films. Oriented molecular beams also demonstrate the possibility for controlling surface chemical reactions by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of achieving material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for creating new materials on surfaces with well-controlled chemical reactions. (topical review)

  13. Increased capsaicin-induced secondary hyperalgesia in patients with multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger;

    2011-01-01

    in experimental pain models to provoke peripheral and central sensitization. In patients with symptoms elicited by odorous chemicals capsaicin-induced secondary hyperalgesia and temporal summation were assessed as markers for abnormal central nociceptive processing together with neurogenic inflammation (flare).......the underlying cause of pathophysiological mechanisms triggering multiple chemical sensitivity (MCS) remains disputed.Recently, alterations in the central nervous system, for example,central sensitization, similar to various chronic pain disorders, have been suggested. Capsaicin is used...

  14. Chemically-induced Jahn-Teller ordering on manganite surfaces

    Science.gov (United States)

    Gai, Zheng; Lin, Wenzhi; Burton, J. D.; Tsymbal, Evgeny Y.; Fuchigami, K.; Shen, Jian; Snijders, P. C.; Ward, T. Z.; Jesse, Stephen; Kalinin, Sergei V.; Baddorf, A. P.

    2014-03-01

    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields, and establish their coupling to electronic properties. Here we demonstrate that measuring the sub 30 pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunneling microscopy (STM) allows the physical order parameter fields to be visualized in real space on the single atom level. Here, this local crystallographic analysis is applied to the in-situ grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistry-induced stabilization of ordered Jahn-Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level. Research was supported by MSED and CNMS, which are sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy.

  15. Chemically induced Jahn-Teller ordering on manganite surfaces.

    Science.gov (United States)

    Gai, Zheng; Lin, Wenzhi; Burton, J D; Fuchigami, K; Snijders, P C; Ward, T Z; Tsymbal, Evgeny Y; Shen, J; Jesse, Stephen; Kalinin, Sergei V; Baddorf, Arthur P

    2014-01-01

    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistry-induced stabilization of ordered Jahn-Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level. PMID:25058540

  16. Identification of essential residues in 2',3'-cyclic nucleotide 3'-phosphodiesterase. Chemical modification and site-directed mutagenesis to investigate the role of cysteine and histidine residues in enzymatic activity.

    Science.gov (United States)

    Lee, J; Gravel, M; Gao, E; O'Neill, R C; Braun, P E

    2001-05-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP; EC ) catalyzes in vitro hydrolysis of 3'-phosphodiester bonds in 2',3'-cyclic nucleotides to produce 2'-nucleotides exclusively. N-terminal deletion mapping of the C-terminal two-thirds of recombinant rat CNP1 identified a region that possesses the catalytic domain, with further truncations abolishing activity. Proteolysis and kinetic analysis indicated that this domain forms a compact globular structure and contains all of the catalytically essential features. Subsequently, this catalytic fragment of CNP1 (CNP-CF) was used for chemical modification studies to identify amino acid residues essential for activity. 5,5'-Dithiobis-(2-nitrobenzoic acid) modification studies and kinetic analysis of cysteine CNP-CF mutants revealed the nonessential role of cysteines for enzymatic activity. On the other hand, modification studies with diethyl pyrocarbonate indicated that two histidines are essential for CNPase activity. Consequently, the only two conserved histidines, His-230 and His-309, were mutated to phenylalanine and leucine. All four histidine mutants had k(cat) values 1000-fold lower than wild-type CNP-CF, but K(m) values were similar. Circular dichroism studies demonstrated that the low catalytic activities of the histidine mutants were not due to gross changes in secondary structure. Taken together, these results demonstrate that both histidines assume critical roles for catalysis. PMID:11278504

  17. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  18. Mutagenic efficiency of radiations and chemical mutagens in inducing viable mutations in rice

    International Nuclear Information System (INIS)

    Studies were undertaken to compare the effectiveness and efficiency of radiations (gamma rays and fast neutrons) and chemical mutagens (EMS and NMU) in inducing viable mutations in rice. Radiations were more effective than chemical mutagens, the most effective being fast neutrons. Mutagenic efficiency when estimated on the basis of lethality was higher for radiations but when based on sterility was higher for chemical mutagens. Fast neutrons, more effective than gamma rays, were less efficient. NMU was more effective but less efficient than EMS. (author)

  19. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  20. Chemical chaperone 4-phenylbutyrate prevents endoplasmic reticulum stress induced by T17M rhodopsin

    OpenAIRE

    Jiang, Haibo; Xiong, Siqi; Xia, Xiaobo

    2014-01-01

    Background Rhodopsin mutations are associated with the autosomal dominant form of retinitis pigmentosa. T17M mutation in rhodopsin predisposes cells to endoplasmic reticulum (ER) stress and induces cell death. This study aimed to examine whether chemical chaperone 4-phenylbutyrate prevents ER stress induced by rhodopsin T17M. Results ARPE-19 cells were transfected with myc-tagged wild-type (WT) and T17M rhodopsin constructs. Turnover of WT and T17M rhodopsin was measured by cycloheximide chas...

  1. Physico-chemical study of the focused electron beam induced deposition process

    OpenAIRE

    Bret, Tristan; Hoffmann, Patrik

    2007-01-01

    The focused electron beam induced deposition process is a promising technique for nano and micro patterning. Electrons can be focused in sub-angström dimensions, which allows atomic-scale resolution imaging, analysis, and processing techniques. Before the process can be used in controlled applications, the precise nature of the deposition mechanism must be described and modelled. The aim of this research work is to present a physical and chemical description of the focused electron beam induc...

  2. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-06-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions.

  3. Fast neutron mutagenesis in barley

    International Nuclear Information System (INIS)

    Full text: In order to conduct a deletion mutant analysis of the barley genome, seeds of cultivar 'Steptoe' were irradiated in 1992 with two doses of fast neutrons, 3.5 Gy and 4.0 Gy at the FAO/IAEA Seibersdorf SNIF facility by Dr. H. Brunner. M1 seeds were grown at Pullman, Washington, USA in the field. Approximately 500 M2 spikes were picked from each treatment and the remainder harvested in bulk. Mutation rates were determined on 1000 bulk M2 seedlings (chlorophyll deficient) and 500 M2 head rows (chlorophyll deficient and morphological) per treatment. Chlorophyll-deficient mutations were observed at a frequency of 8.1% and 9.4% on M1 spike basis and 2.2% and 2.6% on M2 seedling basis for the 3.5 and 4.0 Gy treatments, respectively. Total mutations observed in the field were 19.0% and 20.8% on M1 spike basis for the two treatments. Approximately 2,500 M2 seedlings were assayed for nitrate reductasedeficient mutants and 12,000 M2 seeds screened for waxy mutants. Although several putative mutants were identified, none have been confirmed to date. The mutation frequencies observed are similar for both treatments and appear to be approximately the same as what we have previously observed with γ-radiation treatments. The absence of nitrate reductase-deficient and waxy mutants is most likely due to the small population size screened. The morphological mutants recovered include dwarfs, sterile, necrotic, glossy, elongated outer glume, winter type and some very interesting floral mutants such as multi-ovary and branched inflorescence. Mutants affecting functions of genes for which cloned DNA segments are available will be sought in order to identify specific molecular changes that have been induced by fast neutron radiation. (author)

  4. Topical application of silymarin reduces chemical-induced irritant contact dermatitis in BALB/c mice.

    Science.gov (United States)

    Han, Mi Hwa; Yoon, Won Kee; Lee, Hyunju; Han, Sang-Bae; Lee, Kiho; Park, Song-Kyu; Yang, Kyu-Hwan; Kim, Hwan Mook; Kang, Jong Soon

    2007-12-15

    Irritant contact dermatitis (ICD) is a non-allergic local inflammatory reaction of a skin and one of the most frequent occupational health problems. Silymarin has been clinically used in Europe for a long time to treat liver diseases and also known to have anti-cancer and anti-inflammatory activities. In the present study, we report that topical application of silymarin reduces chemical-induced ICD. Topical application of 2,4-dinitrochlorobenzene (DNCB) induced an ear swelling in BALB/c mice and silymarin suppressed DNCB-induced increase in ear thickness. Prophylactic and therapeutic application of silymarin showed similar effect on DNCB-induced increase in ear thickness and skin water content. In addition, phobor ester- or croton oil-induced increase in ear thickness was also inhibited by silymarin treatment. Silymarin also blocked neutrophil accumulation into the ear induced by these irritants. Further study demonstrated that DNCB-induced tumor necrosis factor-alpha (TNF-alpha) expression in mouse ear was suppressed by silymarin. DNCB-induced expression of KC, one of the main attractors of neutrophil in mice, and adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1) and E-selectin in mouse ear were also inhibited by silymarin. Moreover, TNF-alpha-induced expression of cytokines, such as TNF-alpha and IL-1beta, and a chemokine, IL-8, were suppressed by silymarin treatment in human keratinocyte cell line, HaCaT. Silymarin also blocked TNF-alpha- and DNCB-induced NF-kappaB activation in HaCaT. Collectively, these results demonstrate that topically applied silymarin inhibits chemical-induced ICD in mice and this might be mediated, at least in part, by blocking NF-kappaB activation and consequently inhibiting the expression of cytokines and adhesion molecules. PMID:17996674

  5. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    DEFF Research Database (Denmark)

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal...

  6. Chemically-induced mouse lung tumors: applications to human health assessments [Poster 2014

    Science.gov (United States)

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the anal...

  7. Biomarkers of DNA and cytogenetic damages induced by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    This paper presents and discusses results from the studies on various biomarkers of the DNA and cytogenetic damages induced by environmental chemicals or radiation. Results of the biomonitoring studies have shown that particularly in the condition of Poland, health hazard from radiation exposure is overestimated in contradistinction to the environmental hazard

  8. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    International Nuclear Information System (INIS)

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  9. Radiosensitivity and in vitro mutagenesis in African accessions of cassava, Manihot esculenta Crantz

    International Nuclear Information System (INIS)

    Induced mutagenesis holds promise for the subtle manipulation of traits of interest in crop plants. For a vegetatively propagated crop like cassava with severe constraints posed on its genetic improvement by inherent biological systems, the adoption of this methodology seems even the more appealing. However, there is scant information on protocols for inducing mutations in this crop. We present in this report the preliminary data on the determination of radiosensitivities for some African cassava accessions. The optimal doses of gamma ray irradiation varied from as low 12 Gy to 25 Gy. The probable implication of genotypic variation in response to gamma irradiation as was found in this study buttresses the need to carry out this larger scale study in order to avail cassava scientists intending to adopt induced mutagenesis of requisite information in this regard. A modified in vitro culture medium, half strength MS without growth hormones, was also shown to greatly enhance the growth of the plantlets without producing callus. (author)

  10. Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning.

    Science.gov (United States)

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J; Lu, Haidong; Lee, Jung-Woo; Zhou, Hua; Chang, Wansoo; Mahanthappa, Mahesh K; Tsymbal, Evgeny Y; Gruverman, Alexei; Eom, Chang-Beom

    2016-04-13

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectric phase in BTO tunnel junctions. We conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications. PMID:26901570

  11. Mechanisms of uv mutagenesis in yeast and E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.; Christensen, R.; Christensen, J.R.; O' Brien, T.

    1983-01-01

    Experiments investigating ultraviolet light mutagenesis in either bakers' yeast, Saccharomyces cerevisiae, or E. coli have led to the following conclusions. First, cyclobutane pyrimidine dimers cause most mutations in both organisms; pyrimidine adducts, such as PyC, can account at best for only a small proportion. 86 percent of forward mutations induced at the E. coli lacI locus can be abolished by photoreactivation under conditions which do not alter the level of recA induction. About 75 percent of the forward mutations induced at the CAN1 locus of yeast could be removed by photoreactivation, a value that lies within the range observed previously for the reversion of CYC1 alleles (60 percent - 97 percent). Second, about 10 percent of the lacI forward mutations are untargeted, a smaller fraction than found previously for cycl-91 reversion in yeast. It is not yet clear whether the two species are really different in this respect, of whether the cycl-91 reversion site is a typical of the yeast genome at large. Third, analysis of reversion frequencies of 20 mutant alleles suggests that about 10 to 25 percent of all replication errors produced by mutagenic mechanisms in uv-irradiated yeast involve additions or deletions of base-pairs, indicating that error-prone repair does not just produce substitutions. Last, the REV1 locus in yeast is concerned with the induction of frameshift mutations at some, but not all, genetic sites, just as found previously for substitution mutations. The function of the REV3 gene is more widely, though not universally, required while the function of the RAD6 gene, like that of the recA locus in E. coli, appears to be necessary for all kinds of uv mutagenesis. E coli genes comparable to REV1 and REV3 have not yet been described; conversely, there does not yet appear to be a yeast equivalent of umuC.

  12. How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates

    Science.gov (United States)

    2016-01-01

    Protein binding often involves conformational changes. Important questions are whether a conformational change occurs prior to a binding event (‘conformational selection’) or after a binding event (‘induced fit’), and how conformational transition rates can be obtained from experiments. In this article, we present general results for the chemical relaxation rates of conformational-selection and induced-fit binding processes that hold for all concentrations of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation of large ligand concentration. These results allow to distinguish conformational-selection from induced-fit processes—also in cases in which such a distinction is not possible under pseudo-first-order conditions—and to extract conformational transition rates of proteins from chemical relaxation data. PMID:27636092

  13. How to distinguish conformational selection and induced fit based on chemical relaxation rates

    CERN Document Server

    Paul, Fabian

    2016-01-01

    Protein binding often involves conformational changes. Important questions are whether a conformational change occurs prior to a binding event ('conformational selection') or after a binding event ('induced fit'), and how conformational transition rates can be obtained from experiments. In this article, we present general results for the chemical relaxation rates of conformational-selection and induced-fit binding processes that hold for all concentrations of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation of large ligand concentration. These results allow to distinguish conformational-selection from induced-fit processes - also in cases in which such a distinction is not possible under pseudo-first-order conditions - and to extract conformational transition rates of proteins from chemical relaxation data.

  14. Capsaicin-induced neurogenic inflammation in the skin in patients with symptoms induced by odorous chemicals

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger;

    2011-01-01

    Intradermal injection of capsaicin induces the axonal release of neuropeptides, vasodilatation and flare, e.g. neurogenic inflammation. The spatial profile of neurogenic inflammation in the skin has been studied in various experimental models. Polarization spectroscopy imaging introduced recently...

  15. The relationship between chemical-induced kidney weight increases and kidney histopathology in rats.

    Science.gov (United States)

    Craig, Evisabel A; Yan, Zhongyu; Zhao, Q Jay

    2015-07-01

    The kidney is a major site of chemical excretion, which results in its propensity to exhibit chemically-induced toxicological effects at a higher rate than most other organs. Although the kidneys are often weighed in animal toxicity studies, the manner in which these kidney weight measurements are interpreted and the value of this information in predicting renal damage remains controversial. In this study we sought to determine whether a relationship exists between chemically-induced kidney weight changes and renal histopathological alterations. We also examined the relative utility of absolute and relative (kidney-to-body weight ratio) kidney weight in the prediction of renal toxicity. For this, data extracted from oral chemical exposure studies in rats performed by the National Toxicology Program were qualitatively and quantitatively evaluated. Our analysis showed a statistically significant correlation between absolute, but not relative, kidney weight and renal histopathology in chemically-treated rats. This positive correlation between absolute kidney weight and histopathology was observed even with compounds that statistically decreased terminal body weight. Also, changes in absolute kidney weight, which occurred at subchronic exposures, were able to predict the presence or absence of kidney histopathology at both subchronic and chronic exposures. Furthermore, most increases in absolute kidney weight reaching statistical significance (irrespective of the magnitude of change) were found to be relevant for the prediction of histopathological changes. Hence, our findings demonstrate that the evaluation of absolute kidney weight is a useful method for identifying potential renal toxicants.

  16. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    Science.gov (United States)

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. PMID:27136710

  17. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kostaki, Vasiliki T.; Florou, Ageliki B. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece); Prodromidis, Mamas I., E-mail: mprodrom@cc.uoi.gr [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece)

    2011-10-01

    Highlights: > Electrochemical treatment endows analytical characteristics to SPEs. > A sensitive chemical sensor for uranium is described. > Performance is due to a synergy between electrochemical treatment and ink's solvents. > The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 {mu}A for 6 min in 0.1 M H{sub 2}SO{sub 4}) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H{sub 3}BO{sub 3}, pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10{sup -9} to 10{sup -7} M U(VI) was constructed. The 3{sigma} limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10{sup -9} M U(VI) and >12% (n = 5, 5 x 10{sup -8} M U(VI)), respectively. The effect of potential interferences was also examined.

  18. Chemical interactions by low-energy electron-induced x-ray emission spectroscopy, LEXES

    CERN Document Server

    Bonnelle, C

    2002-01-01

    The possibilities presented by low-energy electron-induced x-ray emission spectroscopy to study chemical interactions in solids are discussed. Examples of change observed for the emissions between core levels as a function of the chemical environment of the emitting atoms are given. By comparing the partial densities of the valence states associated to each type of atoms in the compound, it is shown that the strength of the metal-ligand interactions can be obtained. Information on the charge densities around each type of atoms can be deduced. Application to the study of the interactions at the atomic scale to solid-solid interfaces is presented. (author)

  19. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    Energy Technology Data Exchange (ETDEWEB)

    Vesper, M.J. (Univ. of Dayton, OH (USA)); Cross, J.W. (Sogetal, Inc., Hayward, CA (USA))

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  20. Regulation of mutagenesis by exogenous biological factors in the eukaryotic cell systems

    Directory of Open Access Journals (Sweden)

    Lukash L. L.

    2013-07-01

    Full Text Available The representations of the mutations and the nature of spontaneous mutation process and mutagenesis induced by exogenous oncoviruses, DNAs and proteins-mitogens are analysed. Exogenous biological factors induce DNA damages in regulatory-informational way, acting on the cellular systems for maintenance of genetical stability. Molecular mechanisms are the same as at spontaneous mutagenesis but they are realized with the participation of alien genetical material. Among biological mutagens, the oncoviruses and mobile genetic elements (MGEs are distinguished as the strongest destabilizing factors which direct tumor transformation of somatic mammalian cells. Genetical reprogramming or changing the programs of gene expression at the differentiation of stem and progenitor cells under growth factors and citokines is probably followed by mutations and recombinations as well.

  1. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer

    Directory of Open Access Journals (Sweden)

    Kristine von Maltzan

    2016-02-01

    Full Text Available The Slug transcription factor plays an important role in ultraviolet radiation (UVR-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2 pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.

  2. Fabrication of highly ultramicroporous carbon nanofoams by SF6-catalyzed laser-induced chemical vapor deposition

    Science.gov (United States)

    Hattori, Yoshiyuki; Shuhara, Ai; Kondo, Atsushi; Utsumi, Shigenori; Tanaka, Hideki; Ohba, Tomonori; Kanoh, Hirofumi; Takahashi, Kunimitsu; Vallejos-Burgos, Fernando; Kaneko, Katsumi

    2016-05-01

    We have developed a laser-induced chemical vapor deposition (LCVD) method for preparing nanocarbons with the aid of SF6. This method would offer advantages for the production of aggregates of nanoscale foams (nanofoams) at high rates. Pyrolysis of the as-grown nanofoams induced the high surface area (1120 m2 g-1) and significantly enhanced the adsorption of supercritical H2 (16.6 mg g-1 at 77 K and 0.1 MPa). We also showed that the pyrolized nanofoams have highly ultramicroporous structures. The pyrolized nanofoams would be superior to highly microporous nanocarbons for the adsorption of supercritical gases.

  3. Chemical leucoderma induced by ear-ring stoppers made of polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    Reena Sharma

    2012-01-01

    Full Text Available We report a case of chemical leucoderma (CL in a 15-year-old girl, who developed patterned depigmentation at the back of both ear lobules after contact with plastic ear-ring stoppers made of polyvinyl chloride (PVC after continuous use for 6-7 months. Patch test with Indian standard series and cosmetic series was negative after 48 h, but she refused patch testing for extended duration as the possibility of induced depigmentation at the test site was unacceptable to her. To the best of our knowledge, this is the first report of plastic ear-ring stopper induced CL.

  4. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum.

    Science.gov (United States)

    Gao, Junping; Wang, Genhong; Ma, Sanyuan; Xie, Xiaodong; Wu, Xiangwei; Zhang, Xingtan; Wu, Yuqian; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Genome editing is one of the most powerful tools for revealing gene function and improving crop plants. Recently, RNA-guided genome editing using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system has been used as a powerful and efficient tool for genome editing in various organisms. Here, we report genome editing in tobacco (Nicotiana tabacum) mediated by the CRISPR/Cas9 system. Two genes, NtPDS and NtPDR6, were used for targeted mutagenesis. First, we examined the transient genome editing activity of this system in tobacco protoplasts, insertion and deletion (indel) mutations were observed with frequencies of 16.2-20.3% after transfecting guide RNA (gRNA) and the nuclease Cas9 in tobacco protoplasts. The two genes were also mutated using multiplexing gRNA at a time. Additionally, targeted deletions and inversions of a 1.8-kb fragment between two target sites in the NtPDS locus were demonstrated, while indel mutations were also detected at both the sites. Second, we obtained transgenic tobacco plants with NtPDS and NtPDR6 mutations induced by Cas9/gRNA. The mutation percentage was 81.8% for NtPDS gRNA4 and 87.5% for NtPDR6 gRNA2. Obvious phenotypes were observed, etiolated leaves for the psd mutant and more branches for the pdr6 mutant, indicating that highly efficient biallelic mutations occurred in both transgenic lines. No significant off-target mutations were obtained. Our results show that the CRISPR/Cas9 system is a useful tool for targeted mutagenesis of the tobacco genome.

  5. The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues.

    Science.gov (United States)

    Ehrsam, Mackenzie; Knutie, Sarah A; Rohr, Jason R

    2016-09-01

    The ability to detect chemical cues is often critical for freshwater organisms to avoid predation and find food and mates. In particular, reduced activity and avoidance of chemical cues signaling predation risk are generally adaptive behaviors that reduce prey encounter rates with predators. The present study examined the effects of the common herbicide atrazine on the ability of Cuban tree frog (Osteopilus septentrionalis) tadpoles to detect and respond to chemical cues from larval dragonfly (Libellulidae sp.) predators. Tadpoles exposed to an estimated environmental concentration of atrazine (calculated using US Environmental Protection Agency software; measured concentration, 178 μg/L) were significantly hyperactive relative to those exposed to solvent control. In addition, control tadpoles significantly avoided predator chemical cues, but tadpoles exposed to atrazine did not. These results are consistent with previous studies that have demonstrated that ecologically relevant concentrations of atrazine can induce hyperactivity and impair the olfactory abilities of other freshwater vertebrates. The authors call for additional studies examining the role of chemical contaminants in disrupting chemical communication and the quantification of subsequent impacts on the fitness and population dynamics of wildlife. Environ Toxicol Chem 2016;35:2239-2244. © 2016 SETAC.

  6. Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments.

    Science.gov (United States)

    Chusacultanachai, Sudsanguan; Yuthavong, Yongyuth

    2004-01-01

    The first important step toward a successful preparation of large and diverse DNA libraries with desired complexity is to select a suitable mutagenesis strategy. This chapter describes three different methods for random mutagenesis, the use of XL1-red cells, error-prone polymerase chain reaction (PCR), and degenerate oligonucleotides-Pfu (DOP). These mutagenesis strategies possess different benefits and pitfalls; thus, they are differentially useful for production of DNA libraries with different density and complexity. The use of XL1-red, an engineered Escherichia coli with DNA repair deficiency, is one of the simplest mutagenesis and requires no subcloning step. After plasmid encoding DNA of inter-est is transformed into the cells, the mutations are simply generated during each round of DNA replication. The mutation frequency of this method is reported to be 1 base change per 2000 nucleotides; however, it can be slightly increased by extending the culture period to allow the accumulation of more mutations. This strategy is suitable for generation of random mutations with low frequency in a large target DNA. Error-prone PCR is one of the most widely used random mutagenesis. During DNA amplification, misincorporation of nucleotides can be promoted by altering the nucleotide ratio and the concentration of divalent cations in the reaction. We discovered that, by adjusting template concentration, frequency of mutation could be controlled easily and a library with desired mutation rate could be obtained. Additionally, efficiency of subsequent cloning steps to insert the PCR product into plasmid DNA is also a key factor determining size and complexity of the libraries. DOP mutagenesis is a rapid and effective method for random mutagenesis of small DNA and peptides. This strategy uses two chemically synthesized degenerate oligonucleotides as primers. By controlling the positions and ratios of degenerate nucleotides used during oligonucleotide synthesis, it is possible to

  7. Chemical changes induced on a TiO{sub 2} surface by electron bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, L.I. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Passeggi, M.C.G. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina)], E-mail: mpggih@intec.unl.edu.ar; Ferron, J. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, (S3000AOM) Santa Fe (Argentina)

    2007-09-14

    We study the TiO{sub 2} (Ti{sup 4+}) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO{sub 2} sample is characterized by the appearance of a lower Ti oxidation state, Ti{sub 2}O{sub 3} (Ti{sup 3+}), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form.

  8. Chemical changes induced on a TiO2 surface by electron bombardment

    International Nuclear Information System (INIS)

    We study the TiO2 (Ti4+) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO2 sample is characterized by the appearance of a lower Ti oxidation state, Ti2O3 (Ti3+), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form

  9. Ion transport through chemically induced pores in protein-free phospholipid membranes.

    Science.gov (United States)

    Gurtovenko, Andrey A; Anwar, Jamshed

    2007-11-29

    We address the possibility of being able to induce the trafficking of salt ions and other solutes across cell membranes without the use of specific protein-based transporters or pumps. On the basis of realistic atomic-scale molecular dynamics simulations, we demonstrate that transmembrane ionic leakage can be initiated by chemical means, in this instance through addition of dimethyl sulfoxide (DMSO), a solvent widely used in cell biology. Our results provide compelling evidence that the small amphiphilic solute DMSO is able to induce transient defects (water pores) in membranes and to promote a subsequent diffusive pore-mediated transport of salt ions. The findings are consistent with available experimental data and offer a molecular-level explanation for the experimentally observed activities of DMSO solvent as an efficient penetration enhancer and a cryoprotectant, as well as an analgesic. Our findings suggest that transient pore formation by chemical means could emerge as an important general principle for therapeutics. PMID:17983219

  10. Management of Chimera and In Vitro Mutagenesis for Development of New Flower Color/Shape and Chlorophyll Variegated Mutants in Chrysanthemum

    International Nuclear Information System (INIS)

    Mutation breeding is an established method for crop improvement and has played a major role in the development of many new flower color/shape mutant varieties in ornamentals. The main bottleneck with vegetatively propagated plants is that the mutation appears as a chimera after treatment with physical and/or chemical mutagens. A small sector of a mutated branch or flower cannot be isolated using the available conventional propagation techniques. A novel technique has been standardized for the management of such chimeric tissues through direct shoot regeneration from chrysanthemum florets. This direct novel regeneration protocol has been successfully used not only for the isolation of chimeric mutant tissues developed through sports, but also to develop a series of new flower color/shape mutants through induced mutagenesis. Gamma radiation and tissue culture techniques have been optimized to regenerate plants from stem internodes, stem nodes, shoot tips and ray florets for in vitro management of chimera and for in vitro mutagenesis. Chimera isolation has practical importance not only for chrysanthemum but for breeding of other ornamentals also. The present technique will open up a new way for isolating new flower color/shape ornamental cultivars through retrieval of mutated cells. (author)

  11. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP receptor expression and function.

    Directory of Open Access Journals (Sweden)

    Anke Bill

    Full Text Available The human prostacyclin receptor (hIP receptor is a seven-transmembrane G protein-coupled receptor (GPCR that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  12. Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System

    OpenAIRE

    Andrew R. Bassett; Charlotte Tibbit; Chris P. Ponting; Ji-Long Liu

    2013-01-01

    Here, we present a simple and highly efficient method for generating and detecting mutations ofany gene in Drosophila melanogaster through theuse of the CRISPR/Cas9 system (clustered regularlyinterspaced palindromic repeats/CRISPR-associated). We show that injection of RNA into the Drosophila embryo can induce highly efficient mutagenesis of desired target genes in up to 88% of injected flies. These mutations can be transmitted through the germline to make stable lines. Our system provides at...

  13. PiggyBac Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice

    OpenAIRE

    Rad, Roland; Rad, Lena; Wang, Wei; Cadinanos, Juan; Vassiliou, George; Rice, Stephen; Campos, Lia S.; Yusa, Kosuke; Banerjee, Ruby; Li, Meng Amy; de la Rosa, Jorge; Strong, Alexander; Lu, Dong; Ellis, Peter; Conte, Nathalie

    2010-01-01

    Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon/transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed the unique qualities o...

  14. Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla.

    Science.gov (United States)

    Nylund, Göran M; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  15. Allergic skin inflammation induced by chemical sensitizers is controlled by the transcription factor Nrf2.

    Science.gov (United States)

    El Ali, Zeina; Gerbeix, Cédric; Hemon, Patrice; Esser, Philipp R; Martin, Stefan F; Pallardy, Marc; Kerdine-Römer, Saadia

    2013-07-01

    Allergic contact dermatitis (ACD) is induced by low-molecular weight electrophilic chemicals and metal ions. Chemical contact sensitizers trigger reactive oxygen species production and provoke electrophilic stress, leading to the accumulation of the transcription factor nuclear-related factor 2 (Nrf2) in innate immune cell types. The objective of this work was to identify the role of Nrf2 in the regulation of ACD. We used the local lymph node assay (LLNA) and the mouse ear swelling test (MEST) to study the role of Nrf2 in both the sensitization and elicitation phase in nrf2 knockout (nrf2(-/-)) and wild-type (nrf2(+/+)) mice. Five chemicals were used: two compounds known to react with cysteine residues, 2,4-dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA); one sensitizer known to exhibit mixed reactivity to cysteine and lysine residues, isophorone diisocyanate; and one reacting specifically with lysine residues, trimellitic anhydride and croton oil, a well-known irritant. In the MEST assay, DNCB (1 and 2%) induced a significant increase in ear thickness in nrf2(-/-) compared with nrf2(+/+) mice, suggesting a role for Nrf2 in the control of the inflammatory process. When DNCB was used at 0.25 and 0.5% or when mice were treated with CinA, inflammation was found only in nrf2(-/-) mice. In the LLNA, all chemical sensitizers induced an increase of lymphocyte proliferation in nrf2(-/-) compared with nrf2(+/+) mice for the same chemical concentration. These results reveal an important role for Nrf2 in controlling ACD and lymphocyte proliferation in response to sensitizers. PMID:23564646

  16. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway

    OpenAIRE

    Dou, Wei; Zhang, Jingjing; Li, Hao; Kortagere, Sandhya; Sun, Katherine; Ding, Lili; Ren, Gaiyan; WANG Zhengtao; Mani, Sridhar

    2014-01-01

    Isorhamnetin is an O-methylated flavonol present in fruit and vegetables. We recently reported the identification of isorhamnetin as an activator of the human pregnane X receptor (PXR), a known target for abrogating inflammation in inflammatory bowel disease (IBD). The current study investigated the role of isorhamnetin as a putative mouse PXR activator in ameliorating chemically induced IBD. Using two different models (Ulcerative colitis-like and Crohn’s disease-like) of experimental IBD in ...

  17. Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure

    OpenAIRE

    Croonen, Y.; Verspui, G.

    1993-01-01

    Laser induced Chemical Vapour Deposition of a wide variety of materials has been studied extensively at reduced pressures. However, for this technique to be economically and industrially applicable, processes at atmospheric pressure are preferred. A model study was made on the substrate-coating system molybdenum-titaniumnitride focussing on the feasibility to deposit TiN films locally at atmospheric pressure. The results of this study turned out to be very promising. A Nd-YAG laser beam ([MAT...

  18. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    OpenAIRE

    Tonni Grube Andersen; Nintemann, Sebastian J.; Magdalena Marek; Halkier, Barbara A.; Alexander Schulz; Meike Burow

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently ...

  19. Shock-induced solid-state chemical reactivity studies using time-resolved radiation pyrometry

    International Nuclear Information System (INIS)

    Time-resolved radiation pyrometry has been used to study materials which undergo solid-state chemical reactions due to shock loading. Shock-induced chemical reactivity in solids is fundamentally different than that in high explosives and other energetic materials because, if no volatiles are present, the reaction products end up in the condensed, rather than the vapor, state. Bulk property changes accompanying the solid-state reactions may therefore be too small to be observable with wave profile or shock-velocity measurements. However, some solid-state reactions, such as that between metallic nickel and aluminum, are exothermic enough to give rise to a measurable increase in temperature, so pyrometry can be used to detect the reactions. Unfortunately, these measurements are complicated by the large temperature increases generated by other sources. Possible mechanisms for generation of these high temperatures, and their effect on the chemical reaction, are suggested

  20. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  1. Effect of surface topography in the generation of chemical maps by laser-induced plasma spectroscopy

    Science.gov (United States)

    Lopez-Quintas, I.; Piñon, V.; Mateo, M. P.; Nicolas, G.

    2012-09-01

    The development of technologically advanced materials is propelling the improvement of surface analytical techniques. In particular, the composition and hence the properties of most of these new materials are spatial dependent. Between the techniques able to provide chemical spatial information, laser-induced plasma spectroscopy known also as laser-induced breakdown spectroscopy (LIBS) is a very promising analytical technique. During the last decade, LIBS was successfully applied to the analysis of surfaces and the generation of chemical maps of heterogeneous materials. In the LIBS analysis, several experimental factors including surface topography must be taken into account. In this work, the influence of surface roughness in LIBS signal during the point analysis and acquisition of chemical maps was studied. For this purpose, samples of stainless steel with different surface finishes were prepared and analyzed by LIBS. In order to characterize the different surfaces, confocal microscopy images were obtained. Afterwards, both topographic and spectroscopic information were combined to show the relationship between them. Additionally, in order to reveal the effect of surface topography in the acquisition of chemical maps, a three dimensional analysis of a sample exhibiting two different finishes was carried out.

  2. Radiation mutagenesis from molecular and genetic points of view

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-01-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and [gamma]-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by [gamma]-rays, [alpha]-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than [gamma]-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate [gamma]-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  3. Radiation mutagenesis from molecular and genetic points of view

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-02-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and {gamma}-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by {gamma}-rays, {alpha}-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than {gamma}-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate {gamma}-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  4. Radiation mutagenesis from molecular and genetic points of view

    International Nuclear Information System (INIS)

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and γ-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by γ-rays, α-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than γ-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate γ-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed

  5. Efficient multi-site-directed mutagenesis directly from genomic template

    Indian Academy of Sciences (India)

    Fengtao Luo; Xiaolan Du; Tujun Weng; Xuan Wen; Junlan Huang; Lin Chen

    2012-12-01

    In this article, the traditional multi-site-directed mutagenesis method based on overlap extension PCR was improved specifically for complicated templates, such as genomic sequence or complementary DNA. This method was effectively applied for multi-site-directed mutagenesis directly from mouse genomic DNA, as well as for combination, deletion or insertion of DNA fragments.

  6. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  7. Photo-induced isomerization and chemical reaction dynamics in superfluid helium droplets

    Science.gov (United States)

    Merritt, Jeremy; Douberly, Gary; Miller, Roger

    2008-03-01

    Near threshold photo-induced isomerization and photo-induced chemical reactions have long been sough after as sensitive probes of the underlying potential energy surface. One of the most important questions asked is how the initially bright quantum state couples to the reaction coordinate, and thus relates to energy transfer in general. Helium droplets have now allowed us to stabilize entrance channel clusters behind very small reaction barriers such that vibrational excitation may result in reaction. Through two examples, namely the isomerization of the 2 binary complexes of HF-HCN Douberly et al. PCCP 2005, 7,463, and the induced reaction of the gallium-HCN complex Merritt et al. JPCA 2007, DOI:10.1021/jp074981e we will show how the branching ratios for reaction and predissociation can determined and the influence of the superfluid He solvent.

  8. Hazard classification of chemicals inducing haemolytic anaemia: An EU regulatory perspective

    DEFF Research Database (Denmark)

    Muller, A.; Jacobsen, Helene; Healy, E.;

    2006-01-01

    Haemolytic anaemia is often induced following prolonged exposure to chemical substances. Currently, under EU Council Directive 67/548/EEC, substances which induce such effects are classified as dangerous and assigned the risk phrase R48 'Danger of serious damage to health by prolonged exposure......! Whilst the general classification criteria for this endpoint are outlined in Annex VI of this Directive, they do not provide specific information to assess haemolytic anaemia. This review produced by the EU Working Group on Haemolytic Anaemia provides a toxicological assessment of haemolytic anaemia...... and proposes criteria that can be used in the assessment for classification of substances which induce such effects. An overview of the primary and secondary effects of haemolytic anaemia which can occur in rodent repeated dose toxicity studies is given. A detailed analysis of the toxicological significance...

  9. Predicting oligonucleotide-directed mutagenesis failures in protein engineering.

    Science.gov (United States)

    Wassman, Christopher D; Tam, Phillip Y; Lathrop, Richard H; Weiss, Gregory A

    2004-01-01

    Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed 'cross-hybridization', as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.

  10. Moisture-induced solid state instabilities in α-chymotrypsin and their reduction through chemical glycosylation

    Directory of Open Access Journals (Sweden)

    Solá Ricardo J

    2010-08-01

    Full Text Available Abstract Background Protein instability remains the main factor limiting the development of protein therapeutics. The fragile nature (structurally and chemically of proteins makes them susceptible to detrimental events during processing, storage, and delivery. To overcome this, proteins are often formulated in the solid-state which combines superior stability properties with reduced operational costs. Nevertheless, solid protein pharmaceuticals can also suffer from instability problems due to moisture sorption. Chemical protein glycosylation has evolved into an important tool to overcome several instability issues associated with proteins. Herein, we employed chemical glycosylation to stabilize a solid-state protein formulation against moisture-induced deterioration in the lyophilized state. Results First, we investigated the consequences of moisture sorption on the stability and structural conformation of the model enzyme α-chymotrypsin (α-CT under controlled humidity conditions. Results showed that α-CT aggregates and inactivates as a function of increased relative humidity (RH. Furthermore, α-CT loses its native secondary and tertiary structure rapidly at increasing RH. In addition, H/D exchange studies revealed that α-CT structural dynamics increased at increasing RH. The magnitude of the structural changes in tendency parallels the solid-state instability data (i.e., formation of buffer-insoluble aggregates, inactivation, and loss of native conformation upon reconstitution. To determine if these moisture-induced instability issues could be ameliorated by chemical glycosylation we proceeded to modify our model protein with chemically activated glycans of differing lengths (lactose and dextran (10 kDa. The various glycoconjugates showed a marked decrease in aggregation and an increase in residual activity after incubation. These stabilization effects were found to be independent of the glycan size. Conclusion Water sorption leads to

  11. [Comparative mutagenesis of human cells in vivo and in vitro]. Progress report, January 1-December 30, 1985

    International Nuclear Information System (INIS)

    Annual progress report is made on project focusing on the comparative mutagenesis of human cells in vivo and in vitro. The study employs the HGPRT gene to explore the changes in nucleotide sequence which has occurred in spontaneous mutations or mutations induced by MNNG or ICR191. Reports on the individual projects have been abstracted and indexed for the Energy Data Base. (DT)

  12. Homemade Site Directed Mutagenesis of Whole Plasmids

    Science.gov (United States)

    Laible, Mark; Boonrod, Kajohn

    2009-01-01

    Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensive. Applying this protocol can reduce the total cost of a reaction to an eighth of what it costs using some of the commercial kits. In this video we also comment on critical steps during the process and give detailed instructions on how to design the mutagenic primers. PMID:19488024

  13. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop.

    Science.gov (United States)

    Shapter, Frances M; Cross, Michael; Ablett, Gary; Malory, Sylvia; Chivers, Ian H; King, Graham J; Henry, Robert J

    2013-01-01

    Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae), was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited understanding of its genetic diversity and breeding system was available to aid the domestication process. Next generation sequencing of deeply-pooled target amplicons estimated allelic diversity of a selected base population at 14.3 SNP/Mb and identified novel, putatively mutation-induced polymorphisms at about 2.4 mutations/Mb. A 97% lethal dose (LD₉₇) of ethyl methanesulfonate treatment was applied without inducing sterility in this polyploid species. Forward and reverse genetic screens identified beneficial alleles for the domestication trait, seed-shattering. Unique phenotypes observed in the M2 population suggest the potential for rapid accumulation of beneficial traits without recourse to a traditional cross-breeding strategy. This approach may be applicable to other wild species, unlocking their potential as new food, fibre and fuel crops.

  14. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop.

    Directory of Open Access Journals (Sweden)

    Frances M Shapter

    Full Text Available Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae, was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited understanding of its genetic diversity and breeding system was available to aid the domestication process. Next generation sequencing of deeply-pooled target amplicons estimated allelic diversity of a selected base population at 14.3 SNP/Mb and identified novel, putatively mutation-induced polymorphisms at about 2.4 mutations/Mb. A 97% lethal dose (LD₉₇ of ethyl methanesulfonate treatment was applied without inducing sterility in this polyploid species. Forward and reverse genetic screens identified beneficial alleles for the domestication trait, seed-shattering. Unique phenotypes observed in the M2 population suggest the potential for rapid accumulation of beneficial traits without recourse to a traditional cross-breeding strategy. This approach may be applicable to other wild species, unlocking their potential as new food, fibre and fuel crops.

  15. Lack of mutational hot spots during decitabine-mediated HIV-1 mutagenesis.

    Science.gov (United States)

    Rawson, Jonathan M O; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Patterson, Steven E; Mansky, Louis M

    2015-11-01

    Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1. We found that decitabine induced an ≈4.1-fold increase in the total mutation frequency of HIV-1, primarily due to a striking ≈155-fold increase in the G-to-C transversion frequency. Intriguingly, decitabine also led to an ≈29-fold increase in the C-to-G transversion frequency. G-to-C frequencies varied substantially (up to ≈80-fold) depending upon sequence position, but surprisingly, mutational hot spots (defined as upper outliers within the mutation frequency distribution) were not observed. We further found that every single guanine position examined was significantly susceptible to the mutagenic effects of decitabine. Taken together, these observations demonstrate for the first time that decitabine-mediated HIV-1 mutagenesis is promiscuous and occurs in the absence of a clear bias for mutational hot spots. These data imply that decitabine-mediated G-to-C mutagenesis is a highly effective antiviral mechanism for extinguishing HIV-1 infectivity.

  16. Molecular mechanism of mutagenesis and interaction of incident ions with organism implanted by heavy ions beam

    International Nuclear Information System (INIS)

    As a new mutagenesis technique, low energy heavy ion implantation started in China for the study of interaction effect between incident ions and organism, and great achievements have been obtained in crop breeding. The article reviewed the main biological effects induced by heavy ion implantation, including physiology, biochemistry and genetics effects, on levels of cell and chromosome, gene expression, DNA methylation, DNA damage and reparation etc. It compared the differences in mutagenesis for organism by high energy and low energy ion implantation, as well as γ ray radiation. Future investigation topics were proposed, the emphasis of researches in future was pointed out, i.e., the molecular mechanism and effects of gene differential expression of organism treated by ion implantation. (authors)

  17. Chemical cues from kingsnakes do not cause inducible defenses in house mice

    Institute of Scientific and Technical Information of China (English)

    W.Wallace STARKE III; Michael H.FERKIN

    2012-01-01

    Many rodents exhibit inducible defenses when exposed to chemical cues from mammalian predators.These responses may include delays in sexual maturation,smaller adult body size and decreases in litter size and pup weight.We exposed the hybrid juvenile offspring of field-caught and lab-descended house mice Mus musculus to the chemical cues of mouse-fed or chick-fed kingsnakes,Lampropeltis getula,for 20 days after weaning,to examine the effects of ophidian predator cues on prey development.We hypothesized that these cues would elicit inducible defenses such as alteration of growth rates,and/or the timing of reproductive development in mice.Once mature,the reproductive effort of the mice might also be impacted by producing smaller litter sizes or lighter pups or not reproducing at all.We found no effect of kingsnake cues on any of the measures.These findings support the hypothesis that inducible defenses may have evolved as a strategy to deal with specific predators.

  18. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    Science.gov (United States)

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. PMID:27130213

  19. Fluctuation Induced Structure in Chemical Reaction with Small Number of Molecules

    Science.gov (United States)

    Suzuki, Yasuhiro

    We investigate the behaviors of chemical reactions of the Lotka-Volterra model with small number of molecules; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We model it by using Abstract Rewriting System on Multisets, ARMS; ARMS is a stochastic method of simulating chemical reactions and it is based on the reaction rate equation. We confirmed that the magnitude of fluctuations on periodicity of oscillations becomes large, as the number of involved molecules is getting smaller; and these fluctuations induce another structure, which have not observed in the reactions with large number of molecules. We show that the underling mechanism through investigating the coarse grained phase space of ARMS.

  20. Self-grooming induced by sexual chemical signals in male root voles (Microtus oeconomus Pallas).

    Science.gov (United States)

    Yu, Honghao; Yue, Pengpeng; Sun, Ping; Zhao, Xinquan

    2010-03-01

    Sniffing is one-way animals collect chemical signals, and many males self-groom when they encounter the odor of opposite-sex conspecifics. We tested the hypothesis that sexual chemical signals from females can induce self-grooming behavior in male root voles (Microtus oeconomus Pallas). Specifically, we investigated the sniffing pattern of male root voles in response to odors from the head, trunk, and tail areas of lactating and non-lactating females. The self-grooming behavior of males in response to female individual odorant stimuli was documented, and the relationship between self-grooming and sniffing of odors from the head, trunk, and tails areas were analyzed. Sniffing pattern results showed that males are most interested in odors from the head area, and more interested in odors from the tail as compared to the trunk area. Males displayed different sniffing and self-grooming behaviors when they were exposed to odors from lactating females as compared to non-lactating females. Males also spent more time sniffing and engaged in more sniffing behaviors in response to odors from the lactating females' tail area as compared to the same odors from non-lactating females. Similarly, males spent more time self-grooming and engaged in more self-grooming behaviors in the presence of individual odors from lactating females as compared to individual odors from non-lactating females. Partial correlation analyses revealed that the frequency of self-grooming was significantly correlated with the frequency of tail area sniffs. Results from this experiment suggest that sexual attractiveness of lactating females is stronger than that of non-lactating females. Furthermore, the partial correlation analysis demonstrated that self-grooming in males is induced by odors from the tail area of females. Collectively, these results support the hypothesis that sexual chemical signals from females can induce self-grooming behavior in male root voles. Self-grooming may also reflect the

  1. Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma

    OpenAIRE

    Steven Haenen; Jeroen A.J. Vanoirbeek; Vanessa De Vooght; Liliane Schoofs; Benoit Nemery; Elke Clynen; Hoet, Peter H. M.

    2015-01-01

    Introduction and Aim The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the “sensitized signature” of B lymphocytes comparing TDI-sensitized mice with control mi...

  2. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    Tonneau, D.; Auvert, G.; Pauleau, Y.

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  3. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    DEFF Research Database (Denmark)

    Andersen, T. G.; Nintemann, S. J.; Marek, M.;

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true-from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased...... sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently of the investigated interactions and thus alleviate these issues. We incorporated our reporters...

  4. Fabrication of micro carbon pillar by laser-induced chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    周健; 罗迎社; 李立君; 钟琦文; 李新华; 殷水平

    2008-01-01

    Argon ion laser was used as the induced light source and ethane(C2H4) was selected as the precursor gas,in the variety ranges of laser power from 0.5 W to 4.5 W and the pressure of the precursor gas from 225×133.3 Pa to 680×133.3 Pa,the experiments of laser induced chemical vapor deposition were proceeded for fabrication of micro carbon pillar.In the experiments,the influences of power of laser and pressure of work gas on the diameter and length of micro carbon pillar were investigated,the variety on averaged growth rate of carbon pillar with the laser irradiation time and moving speed of focus was discussed.Based on experiment data,the micro carbon pillar with an aspect ratio of over 500 was built through the method of moving the focus.

  5. Aqueous suspension of anise "Pimpinella anisum" protects rats against chemically induced gastric ulcers

    Institute of Scientific and Technical Information of China (English)

    Ibrahim A Al Mofleh; Abdulqader A Alhaider; Jaber S Mossa; Mohammed O Al-Soohaibani; Syed Rafatullah

    2007-01-01

    AIM:To substantiate the claims of Unani and Arabian traditional medicine practitioners on the gastroprotective potential effect of a popular spice anise,"Pimpinella anisum L." on experimentally-induced gastric ulceration and secretion in rats.METHODS:Acute gastric ulceration in rats was produced by various noxious chemicals including 80% ethanol,0.2 mol/L NaOH,25% NaCl and indomethacin.Anti-secretory studies were undertaken using pylorusligated Shay rat technique.Levels of gastric non-protein sulfhydryls(NP-SH)and wall mucus were estimated and gastric tissue was also examined histologically.Anise aqueous suspension was used in two doses(250 and 500 mg/kg body weight)in all experiments.RESULTS:Anise significantly inhibited gastric mucosal damage induced by necrotizing agents and indomethacin.The anti-ulcer effect was further confirmed histologically.In pylorus-ligated Shay rats,anise suspension significantly reduced the basal gastric acid secretion,acidity and completely inhibited the rumenal ulceration.On the other hand,the suspension significantly replenished ethanol-induced depleted levels of gastric mucosal NP-SH and gastric wall mucus concentration.CONCLUSION:Anise aqueous suspension possesses significant cytoprotective and anti-ulcer activities against experimentally-induced gastric lesions.The anti-ulcer effect of anise is possibly prostaglandin-mediated and/or through its anti-secretory and antioxidative properties.

  6. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    2014-09-01

    Full Text Available Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.

  7. Induction of Pectinase Hyper Production by Multistep Mutagenesis Using a Fungal Isolate--Aspergillus flavipes.

    Science.gov (United States)

    Akbar, Sabika; Prasuna, R Gyana; Khanam, Rasheeda

    2014-04-01

    Aspergillus flavipes, a slow growing pectinase producing ascomycete, was isolated from soil identified and characterised in the previously done preliminary studies. Optimisation studies revealed that Citrus peel--groundnut oil cake [CG] production media is the best media for production of high levels of pectinase up to 39 U/ml using wild strain of A. flavipes. Strain improvement of this isolated strain for enhancement of pectinase production using multistep mutagenesis procedure is the endeavour of this project. For this, the wild strain of A. flavipes was treated with both physical (UV irradiation) and chemical [Colchicine, Ethidium bromide, H2O2] mutagens to obtain Ist generation mutants. The obtained mutants were assayed and differentiated basing on pectinase productivity. The better pectinase producing strains were further subjected to multistep mutagenesis to attain stability in mutants. The goal of this project was achieved by obtaining the best pectinase secreting mutant, UV80 of 45 U/ml compared to wild strain and sister mutants. This fact was confirmed by quantitatively analysing 3rd generation mutants obtained after multistep mutagenesis. PMID:26563068

  8. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    International Nuclear Information System (INIS)

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  9. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  10. Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment (External Review Draft)

    Science.gov (United States)

    This draft report provides an overview of the types of mechanisms underlying the lymphohematopoietic cancers induced by chemical agents and radiation in humans, with a primary emphasis on leukemia and leukemia-inducing agents. It focuses on how mechanistic information on human l...

  11. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Takashi Nakanishi

    Full Text Available The water flea Daphnia magna has been used as an animal model in ecology, evolution, and environmental sciences. Thanks to the recent progress in Daphnia genomics, genetic information such as the draft genome sequence and expressed sequence tags (ESTs is now available. To investigate the relationship between phenotypes and the available genetic information about Daphnia, some gene manipulation methods have been developed. However, a technique to induce targeted mutagenesis into Daphnia genome remains elusive. To overcome this problem, we focused on an emerging genome editing technique mediated by the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas system to introduce genomic mutations. In this study, we targeted a functionally conserved regulator of eye development, the eyeless gene in D. magna. When we injected Cas9 mRNAs and eyeless-targeting guide RNAs into eggs, 18-47% of the survived juveniles exhibited abnormal eye morphology. After maturation, up to 8.2% of the adults produced progenies with deformed eyes, which carried mutations in the eyeless loci. These results showed that CRISPR/Cas system could introduce heritable mutations into the endogenous eyeless gene in D. magna. This is the first report of a targeted gene knockout technique in Daphnia and will be useful in uncovering Daphnia gene functions.

  12. In vitro mutagenesis for the improvement of Josapine pineapple

    International Nuclear Information System (INIS)

    Pineapple is the most important fruit in terms of revenue earner in Malaysia. There are about 10,000 ha cultivated with this fruit and half of this is owned by estates and planted for the canning industry. The export of canned pineapple is about 2 million standard cases annually valued at RM 60 million, while the export of fresh pineapple is about 40,000 tonnes worth about RM 10 million. The industry for canning is however, an ailing industry with production on the decline since the 70s. Somaclonal variations and induced mutation using irradiation in breeding are least invasive in changes to genetic make-up of an established variety and will be useful for improving the pineapple varieties. The use of tissue culture to generate somaclones with minute genetic changes that do not damage the overall varietal identity would be the most suitable tool to improve the variety. Protocols for the production of tissue culture plantlets of pineapple using bioreactor technology has been developed and proved to be much more efficient and productive compared to conventional method. In vitro mutagenesis using adventitious buds had produced new plants with smooth leaves, vigorous growth and ornamental-like characters. A total of 30,000 plants derived from tissue culture will be planted and screened in the field for the improvement of Josapine pineapple against bacterial heart rot disease and multiple crown. (Author)

  13. Pressure-induced phase and chemical transformations of lithium peroxide (Li2O2)

    Science.gov (United States)

    Dunuwille, Mihindra; Kim, Minseob; Yoo, Choong-Shik

    2016-08-01

    We present the pressure-induced phase/chemical changes of lithium peroxide (Li2O2) to 63 GPa using diamond anvil cells, confocal micro-Raman spectroscopy, and synchrotron x-ray diffraction. The Raman data show the emergence of the major vibrational peaks associated with O2 above 30 GPa, indicating the subsequent pressure-induced reversible chemical decomposition (disassociation) in dense Li2O2. The x-ray diffraction data of Li2O2, on the other hand, show no dramatic structural change but remain well within a P63/mmc structure to 63 GPa. Nevertheless, the Rietveld refinement indicates a subtle change in the structural order parameter z of the oxygen position O (1/3, 2/3, z) at around 35 GPa, which can be considered as a second-order, isostructural phase transition. The nearest oxygen-oxygen distance collapses from 1.56 Å at ambient condition to 1.48 Å at 63 GPa, resulting in a more ionic character of this layered crystal lattice, 3Li++(LiO2)3 3 -. This structural change in turn advocates that Li2O2 decomposes to 2Li and O2, further augmented by the densification in specific molar volumes.

  14. Pressure-induced phase and chemical transformations of lithium peroxide (Li2O2).

    Science.gov (United States)

    Dunuwille, Mihindra; Kim, Minseob; Yoo, Choong-Shik

    2016-08-28

    We present the pressure-induced phase/chemical changes of lithium peroxide (Li2O2) to 63 GPa using diamond anvil cells, confocal micro-Raman spectroscopy, and synchrotron x-ray diffraction. The Raman data show the emergence of the major vibrational peaks associated with O2 above 30 GPa, indicating the subsequent pressure-induced reversible chemical decomposition (disassociation) in dense Li2O2. The x-ray diffraction data of Li2O2, on the other hand, show no dramatic structural change but remain well within a P63/mmc structure to 63 GPa. Nevertheless, the Rietveld refinement indicates a subtle change in the structural order parameter z of the oxygen position O (13, 23, z) at around 35 GPa, which can be considered as a second-order, isostructural phase transition. The nearest oxygen-oxygen distance collapses from 1.56 Å at ambient condition to 1.48 Å at 63 GPa, resulting in a more ionic character of this layered crystal lattice, 3Li(+)+(LiO2)3 (3-). This structural change in turn advocates that Li2O2 decomposes to 2Li and O2, further augmented by the densification in specific molar volumes. PMID:27586935

  15. The relationship between chemically-induced meiotic delay and aneuploidy in mouse oocytes and zygotes

    Energy Technology Data Exchange (ETDEWEB)

    Mailhes, J.B.; Marchetti, F. [Louisiana State Univ. Medical Center, Shreveport, LA (United States)

    1993-12-31

    Aneuploidy is a relatively common genetic disorder that results in human morbidity and mortality. Approximately 30% of embryonic and fetal deaths and 3.45 per thousand livebirths are associated with an abnormal number of chromosomes. Unfortunately, very little is known about the etiology and mechanism of chromosome missegregation. This situation dictates that considerable research be directed toward understanding the causes of aneuploidy. Although several hypotheses have been advanced for the etiology of aneuploidy, there still exists a paucity of information about the direct cuases and mechanisms of aneuploidy production. Without such specific knowledge, there is little hope of reducing the incidence of aneuploidy in humans. Some progress has been made. We now know that various chemicals can induce aneuploidy by interacting with certain cellular organelles, especially components of the spindle apparatus. These results have been demonstrated in various organisms and cell types both in vivo and in vitro. Since the ultimate objective of aneuploidy research is to obtain information that can be used to reduce the aneuploidy burden in humans, we have concentrated our research efforts on studying chemically-induced aneuploidy in mammalian germ cells and zygotes.

  16. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization.

    Science.gov (United States)

    Andersen, Tonni Grube; Nintemann, Sebastian J; Marek, Magdalena; Halkier, Barbara A; Schulz, Alexander; Burow, Meike

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently of the investigated interactions and thus alleviate these issues. We incorporated our reporters into the widely used split ubiquitin-, bimolecular fluorescence complementation (BiFC)- and Förster resonance energy transfer (FRET)- based methods and investigated different protein-protein interactions in yeast and plants. We demonstrate the functionality of this concept by the analysis of weakly interacting proteins from specialized metabolism in the model plant Arabidopsis thaliana. Our results illustrate that chemically induced dimerization can function as a built-in control for split-based systems that is easily implemented and allows for direct evaluation of functionality. PMID:27282591

  17. Protein engineering: single or multiple site-directed mutagenesis.

    Science.gov (United States)

    Hsieh, Pei-Chung; Vaisvila, Romualdas

    2013-01-01

    Site-directed mutagenesis techniques are invaluable tools in molecular biology to study the structural and functional properties of a protein. To expedite the time required and simplify methods for mutagenesis, we recommend two protocols in this chapter. The first method for single site-directed mutagenesis, which includes point mutations, insertions, or deletions, can be achieved by an inverse PCR strategy with mutagenic primers and the high-fidelity Phusion(®) DNA Polymerase to introduce a site-directed mutation with exceptional efficiency. The second method is for engineering multiple mutations into a gene of interest. This can be completed in one step by PCR with mutagenic primers and by assembling all mutagenized PCR products using the Gibson Assembly™ Master Mix. This method allows multiple nucleotides to be changed simultaneously, which not only saves time but also reagents compared to traditional methods of mutagenesis. PMID:23423897

  18. Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits.

    Science.gov (United States)

    Trojak-Goluch, Anna; Skomra, Urszula

    2013-12-01

    Chemically induced polyploids were obtained by the colchicine treatment of shoot tips of Humulus lupulus L. 'Sybilla'. Flow cytometry revealed that most of the treatments resulted in the production of tetraploids. The highest number of tetraploids was obtained when explants were immersed in 0.05% colchicine for 48 h. A field experiment was conducted to compare diploid and tetraploid plants and assess the effect of genome polyploidization on the morphological and chemical characteristics. Tetraploids showed significant differences in relation to diploids. They had thinner and shorter shoots. The influence of chromosome doubling was also reflected in the length, width and area of leaves. The length of female flowers in the tetraploids was significantly shorter than that observed in diploids. Tetraploids produced a diverse number of lupuline glands that were almost twice as large as those observed in diploids. The most distinct effect of genome polyploidization was a significant increase in the weight of cones and spindles. Contents of major chemical constituents of hop cones was little affected by ploidy level. Total essential oils were significantly lower than those in diploids. However there was a significant increase in the proportion of humulene, caryophyllene and farnesene, oils desired by the brewing industry. PMID:24399911

  19. Extraction of chemical-induced diseases using prior knowledge and textual information.

    Science.gov (United States)

    Pons, Ewoud; Becker, Benedikt F H; Akhondi, Saber A; Afzal, Zubair; van Mulligen, Erik M; Kors, Jan A

    2016-01-01

    We describe our approach to the chemical-disease relation (CDR) task in the BioCreative V challenge. The CDR task consists of two subtasks: automatic disease-named entity recognition and normalization (DNER), and extraction of chemical-induced diseases (CIDs) from Medline abstracts. For the DNER subtask, we used our concept recognition tool Peregrine, in combination with several optimization steps. For the CID subtask, our system, which we named RELigator, was trained on a rich feature set, comprising features derived from a graph database containing prior knowledge about chemicals and diseases, and linguistic and statistical features derived from the abstracts in the CDR training corpus. We describe the systems that were developed and present evaluation results for both subtasks on the CDR test set. For DNER, our Peregrine system reached anF-score of 0.757. For CID, the system achieved anF-score of 0.526, which ranked second among 18 participating teams. Several post-challenge modifications of the systems resulted in substantially improvedF-scores (0.828 for DNER and 0.602 for CID). RELigator is available as a web service athttp://biosemantics.org/index.php/software/religator. PMID:27081155

  20. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2008-01-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the μ-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice com...

  1. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART for genetic screens in mice.

    Directory of Open Access Journals (Sweden)

    Sean F Landrette

    Full Text Available Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease.

  2. Fluorescent protein engineering by in vivo site-directed mutagenesis

    OpenAIRE

    Ceballos, Melvys Valledor; Hu, Qinghua; Schiller, Paul,; Myers, Richard S.

    2012-01-01

    In vivo site-directed mutagenesis by ssDNA recombineering is a facile method to change the color of fluorescent proteins without cloning. Two different starting alleles of GFP were targeted for mutagenesis: gfpmut3* residing in the E. coli genome and egfp carried by a bacterial/mammalian dual expression lentiviral plasmid vector. Fluorescent protein spectra were shifted by subtle modification of the chromophore region and residues interacting with the chromophore of the fluorescent protein. E...

  3. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    OpenAIRE

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, ...

  4. Generating Novel Allelic Variation Through Activator Insertional Mutagenesis in Maize

    OpenAIRE

    Bai, Ling; Singh, Manjit; Pitt, Lauren; Sweeney, Meredith; Brutnell, Thomas P.

    2007-01-01

    The maize transposable element Activator (Ac) has been exploited as an insertional mutagen to disrupt, clone, and characterize genes in a number of plant species. To develop an Ac-based mutagenesis platform for maize, a large-scale mutagenesis was conducted targeting the pink scutellum1 locus. We selected 1092 Ac transposition events from a closely linked donor Ac, resulting in the recovery of 17 novel ps1 alleles. Multiple phenotypic classes were identified corresponding to Ac insertions in ...

  5. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening.

    Science.gov (United States)

    Ito, Yasuhiro; Nishizawa-Yokoi, Ayako; Endo, Masaki; Mikami, Masafumi; Toki, Seiichi

    2015-11-01

    Site-directed mutagenesis using genetic approaches can provide a wealth of resources for crop breeding as well as for biological research. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 endonuclease (CRISPR/Cas9) system is a novel strategy used to induce mutations in a specific genome region; the system functions in a variety of organisms, including plants. Here, we report application of the CRISPR/Cas9 system to efficient mutagenesis of the tomato genome. In this study, we targeted the tomato RIN gene, which encodes a MADS-box transcription factor regulating fruit ripening. Three regions within the gene were targeted and mutations consisting either of a single base insertion or deletion of more than three bases were found at the Cas9 cleavage sites in T0 regenerated plants. The RIN-protein-defective mutants produced incomplete-ripening fruits in which red color pigmentation was significantly lower than that of wild type, while heterologous mutants expressing the remaining wild-type gene reached full-ripening red color, confirming the important role of RIN in ripening. Several mutations that were generated at three independent target sites were inherited in the T1 progeny, confirming the applicability of this mutagenesis system in tomato.

  6. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice.

    Science.gov (United States)

    Rad, Roland; Rad, Lena; Wang, Wei; Cadinanos, Juan; Vassiliou, George; Rice, Stephen; Campos, Lia S; Yusa, Kosuke; Banerjee, Ruby; Li, Meng Amy; de la Rosa, Jorge; Strong, Alexander; Lu, Dong; Ellis, Peter; Conte, Nathalie; Yang, Fang Tang; Liu, Pentao; Bradley, Allan

    2010-11-19

    Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability. PMID:20947725

  7. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis.

    Directory of Open Access Journals (Sweden)

    David Quinto-Alemany

    Full Text Available Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP, giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC, 600 (C. albicans -5-FC or 1000 (S. cerevisiae--CSP fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.

  8. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  9. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    Tawa, Gregory J.; AbdulHameed, Mohamed Diwan M.; Yu, Xueping; Kumar, Kamal; Ippolito, Danielle L.; Lewis, John A.; Stallings, Jonathan D.; Wallqvist, Anders

    2014-01-01

    Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects. PMID:25226513

  10. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat.

    Science.gov (United States)

    Wang, Shuping; Zhang, Gaisheng; Song, Qilu; Zhang, Yingxin; Li, Zheng; Guo, Jialin; Niu, Na; Ma, Shoucai; Wang, Junwei

    2015-01-01

    Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.

  11. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat.

    Directory of Open Access Journals (Sweden)

    Shuping Wang

    Full Text Available Chemical hybridization agent (CHA-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD, which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.

  12. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  13. The Structure of Urease Activiation Complexes Examined by Flexibility Analysis, Mutagenesis, and Small-angle X-ray Scattering Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz, Soledad [Michigan State University, East Lansing; Sukuru, Sai Chetan K. [Michigan State University, East Lansing; Hausinger, Robert P. [Michigan State University, East Lansing; Kuhn, Leslie A. [Michigan State University, East Lansing; Heller, William T [ORNL

    2008-01-01

    Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC){sub 3} induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD){sub 3}, and (UreABC-UreDF){sub 3} confirm that UreD and UreF bind near UreB at the periphery of the (UreAC){sub 3} structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF){sub 3} allows CO{sub 2} and nickel ions to gain access to the nascent active site.

  14. Ligand Promiscuity of Aryl Hydrocarbon Receptor Agonists and Antagonists Revealed by Site-Directed Mutagenesis

    OpenAIRE

    Soshilov, Anatoly A; DENISON, Michael S.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse chemicals. To examine the mechanisms responsible for the promiscuity in AhR ligand binding, we determined the effects of mutations within the AhR ligand-binding domain (LBD) on the activity of diverse AhR ligands. Site-directed mutagenesis identified Ile319 of the mouse AhR and, to a lesser extent, Phe318 as residues involved in ligand-selective modulation of AhR transf...

  15. [Rapid site-directed mutagenesis on full-length plasmid DNA by using designed restriction enzyme assisted mutagenesis].

    Science.gov (United States)

    Zhang, Baozhong; Ran, Duoliang; Zhang, Xin; An, Xiaoping; Shan, Yunzhu; Zhou, Yusen; Tong, Yigang

    2009-02-01

    To use the designed restriction enzyme assisted mutagenesis technique to perform rapid site-directed mutagenesis on double-stranded plasmid DNA. The target amino acid sequence was reversely translated into DNA sequences with degenerate codons, resulting in large amount of silently mutated sequences containing various restriction endonucleases (REs). Certain mutated sequence with an appropriate RE was selected as the target DNA sequence for designing mutation primers. The full-length plasmid DNA was amplified with high-fidelity Phusion DNA polymerase and the amplified product was 5' phosphorylated by T4 polynucleotide kinase and then self-ligated. After transformation into an E. coli host the transformants were rapidly screened by cutting with the designed RE. With this strategy we successfully performed the site-directed mutagenesis on an 8 kb plasmid pcDNA3.1-pIgR and recovered the wild-type amino acid sequence of human polymeric immunoglobulin receptor (pIgR). A novel site-directed mutagenesis strategy based on DREAM was developed which exploited RE as a rapid screening measure. The highly efficient, high-fidelity Phusion DNA polymerase was applied to ensure the efficient and faithful amplification of the full-length sequence of a plasmid of up to 8 kb. This rapid mutagenesis strategy avoids using any commercial site-directed mutagenesis kits, special host strains or isotopes. PMID:19459340

  16. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  17. Lactoferrin protects against chemical-induced rat liver fibrosis by inhibiting stellate cell activation.

    Science.gov (United States)

    Tung, Yu-Tang; Tang, Ting-Yu; Chen, Hsiao-Ling; Yang, Shang-Hsun; Chong, Kowit-Yu; Cheng, Winston T K; Chen, Chuan-Mu

    2014-01-01

    Liver diseases, which can be caused by alcohol abuse, chemical intoxication, viral hepatitis infection, and autoimmune disorders, are a significant health issue because they can develop into liver fibrosis and cirrhosis. Lactoferrin (LF), a siderophilic protein with 2 iron-binding sites, has been demonstrated to possess a multitude of biological functions, including antiinflammation, anticancer, and antimicrobial effects, as well as immunomodulatory-enhancing functions. In the current study, we induced hepatotoxicity in rats with dimethylnitrosamine (DMN) to establish a situation that would enable us to evaluate the hepatoprotective effects of LF against hepatic injury. Our results showed that DMN-induced hepatic pathological damage significantly decreased the body weight and liver index, increased the mRNA and protein levels of collagen α-1(I) (ColIα-1) and α-smooth muscle actin, and increased the hydroxyproline content. However, treatment with LF significantly increased body weight and liver index, decreased the mRNA and protein levels of ColIα-1 and α-smooth muscle actin, and suppressed the hydroxyproline content when compared with the DMN-treated group. Liver histopathology also showed that low-dose LF (100mg/kg of body weight) or high-dose LF (300 mg/kg of body weight) could significantly reduce the incidences of liver lesions induced by DMN. These results suggest that the LF exhibits potent hepatoprotection against DMN-induced liver damage in rats and that the hepatoprotective effects of LF may be due to the inhibition of collagen production and to stellate cell activation. PMID:24731632

  18. Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Natalie Saini

    2013-06-01

    Full Text Available DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes.

  19. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  20. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces. PMID:26381847

  1. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.;

    Glass exhibits a significant change in microstructure and properties when subjected to high pressure, since the short- and intermediate-range structures of a glass are tunable through compression. Understanding the link between the microscopic structure and macroscopic properties of glasses under...... high pressure is important, since the glass structures frozen-in under elevated pressure may give rise to properties unattainable under ambient pressure. Chemical strengthening of glass through K+-for-Na+ ion exchange is currently receiving significant interest due to the increasing demand for stronger...... and more damage resistant glasses. However, the interplay among isostatic compression, pressure-induced changes in alkali diffusivity, compressive stress generated through ion exchange, and the resulting mechanical properties are poorly understood. In this work, we employ a specially designed gas pressure...

  2. Chemical modifications induced in bisphenol A polycarbonate by swift heavy ions

    International Nuclear Information System (INIS)

    The chemical modifications in bisphenol A polycarbonate induced by swift heavy ion irradiation are analyzed in situ by means of Fourier transform infrared (FTIR) spectroscopy. Four beams (13C, 20Ne, 48Ca, 129Xe) with energy of a few MeV/amu have been used. Irradiations were performed under vacuum with electronic stopping power in the range from 1.6 to 86 MeV mg-1 cm2. Deposited doses are less than or equal to 1 MGy. The FTIR spectra obtained after the irradiation exhibit an overall reduction of the intensities of the virgin PC typical vibration bands and the appearance of new bands. The analysis of the destruction and the new vibration bands points out that the energy deposition mechanisms are quite different depending on electronic stopping power

  3. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    Science.gov (United States)

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-11-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.

  4. Silencing of Inducible Immunoproteasome Subunit Expression by Chemically Modified siRNA and shRNA.

    Science.gov (United States)

    Gvozdeva, Olga V; Prassolov, Vladimir S; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L

    2016-08-01

    Overexpression of inducible subunits of immunoproteasome is related to pathogenesis of some chronic diseases. Specific inhibition of the immunosubunits may be used for the treatment of these diseases and RNA interference is one of the potent methods used in this area. We designed 2'-O-methyl modified siRNAs with selectively protected nuclease-sensitive sites, which efficiently silence LMP2, LMP7, and MECL-1 genes expression. To provide stable long-lasting inhibition of target genes, short-hairpin RNAs (shRNA) expressed by lentiviral vectors were constructed. Our results demonstrated that chemically modified siRNAs inhibited the expression of target genes with similar efficiency or with efficiency exceeding that of corresponding shRNAs and provide silencing effect for 5 days.

  5. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation—A Chemical Approach

    Science.gov (United States)

    Genaro-Mattos, Thiago C.; Maurício, Ângelo Q.; Rettori, Daniel; Alonso, Antonio; Hermes-Lima, Marcelo

    2015-01-01

    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects

  6. Choice of mouse strain influences the outcome in a mouse model of chemical-induced asthma.

    Directory of Open Access Journals (Sweden)

    Vanessa De Vooght

    Full Text Available BACKGROUND: The development of occupational asthma is the result of interactions between environmental factors and individual susceptibility. We assessed how our model of chemical-induced asthma is influenced by using different mouse strains. METHODOLOGY/PRINCIPAL FINDINGS: On days 1 and 8, male mice of 7 different strains (BALB/c, BP/2, A/J, C57Bl/6, DBA/2, CBA and AKR were dermally treated with toluene-2,4-diisocyanate (TDI (0.3% or vehicle (acetone/olive oil, AOO, 2:3 on each ear (20 microl. On day 15, they received an oropharyngeal instillation of TDI (0.01% or AOO (1:4. Airway reactivity to methacholine, total and differential cell counts in bronchoalveolar lavage (BAL and total serum IgE and IgG(2a levels were measured. Lymphocyte subpopulations in auricular lymph nodes and in vitro release of cytokines by ConA stimulated lymphocytes were assessed. In TDI-sensitized and challenged mice, airway hyper-reactivity was only observed in BALB/c, BP/2, A/J and AKR mice; airway inflammation was most pronounced in BALB/c mice; numbers of T-helper (CD4(+, T-activated (CD4(+CD25(+, T-cytotoxic (CD8(+ and B- lymphocytes (CD19(+ were increased in the auricular lymph nodes of BALB/c, BP/2, A/J and CBA mice; elevated concentrations of IL-4, IL-10, IL-13 and IFN-gamma were detected in supernatant of lymphocytes from BALB/c, BP/2, A/J, C57Bl/6 and CBA mice cultured with concanavaline A, along with an increase in total serum IgE. CONCLUSION: The used mouse strain has considerable and variable impacts on different aspects of the asthma phenotype. The human phenotypical characteristics of chemically-induced occupational asthma were best reproduced in Th2-biased mice and in particular in BALB/c mice.

  7. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    Directory of Open Access Journals (Sweden)

    Thiago C Genaro-Mattos

    Full Text Available Caffeic acid (CA is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its

  8. The Chemopreventive Effect of Tamoxifen Combined with Celecoxib on DMBA chemically-Induced Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Xiaoxu Liu; Huafeng Kang; Xijing Wang; Zhijun Dai; Fengjie Xue; Xinghuan Xue

    2007-01-01

    Objective: To investigate the chemopreventive effect of tamoxifen combined with a COX-2 selective inhibitor, celecoxib, on breast cancer in rats chemically induced by 7,12-dimethylben (a)anthracene (DMBA). Methods:DMBA was irrigated into the stomaches of SD female rats to build breast cancer model. A total of 120 rats were divided into four groups: control group, tamoxifen group, celecoxib group and combined group. The incidence rate, latent period, number and volume of breast cancer were detected and analyzed. Results:The tumor incidence rate of tamoxifen group (48.15%, 13/27) and celecoxib group (50.00%,14/28) were lower than that of control group (85.71%, 24/28), but higher than that of combined group (21.43%, 6/28). The tumor's latent period of tamoxifen group (97.54±1.85 d) and celecoxib group (96.79±2.89 d) were longer than that of control group (89.50±5.99 d), but shorter than that of combined group (103.67±3.39 d). The average tumor number of tamoxifen group (1.77±0.73) and celecoxib group (1.71±0.61) were less than that of control group (3.50±1.62), but more than that of combined group ( 1.17±0.42 ). The average tumor volume of tamoxifen group (1.78±0.71 cm3) and celecoxib group (2.05±1.04 cm3) were smaller than that of control group (6.42±3.96 cm3), but bigger than that of combined group (0.71±0.96 cm3) (P < 0.05 respectively).Conclusion:Celecoxib and tamoxifen are effective drugs in preventing the occurrence of rat breast cancer chemically induced by DMBA. Furthermore, combination of them has better chemopreventive effect.

  9. Chemical and explosive detection with long-wave infrared laser induced breakdown spectroscopy

    Science.gov (United States)

    Jin, Feng; Trivedi, Sudhir B.; Yang, Clayton S.; Brown, Ei E.; Kumi-Barimah, Eric; Hommerich, Uwe H.; Samuels, Alan C.

    2016-05-01

    Conventional laser induced breakdown spectroscopy (LIBS) mostly uses silicon-based detectors and measures the atomic emission in the UV-Vis-NIR (UVN) region of the spectrum. It can be used to detect the elements in the sample under test, such as the presence of lead in the solder for electronics during RoHS compliance verification. This wavelength region, however, does not provide sufficient information on the bonding between the elements, because the molecular vibration modes emit at longer wavelength region. Measuring long-wave infrared spectrum (LWIR) in a LIBS setup can instead reveal molecular composition of the sample, which is the information sought in applications including chemical and explosive detection and identification. This paper will present the work and results from the collaboration of several institutions to develop the methods of LWIR LIBS for chemical/explosive/pharmaceutical material detection/identification, such as DMMP and RDX, as fast as using a single excitation laser pulse. In our latest LIBS setup, both UVN and LWIR spectra can be collected at the same time, allowing more accurate detection and identification of materials.

  10. Suppression of SOS-inducing activity of chemical mutagens by metabolites from microbial transformation of (+)-longicyclene.

    Science.gov (United States)

    Sakata, Kazuki; Miyazawa, Mitsuo

    2010-08-25

    In this study, biotransformation of (+)-longicyclene (1) by Aspergillus niger (NBRC 4414) and the suppressive effect on umuC gene expression by chemical mutagens 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and aflatoxin B1 (AFB1) of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Initially, compound 1 was converted to three new terpenoids, (-)-(10R)-10-hydroxy-longicyclic acid (2), (+)-(10S)-10-hydroxy-longicyclic acid (3), and (+)-10-oxo-longicyclic acid (4) by A. niger , and their conversion rates were 27, 23, and 30%, respectively. The metabolites suppressed the SOS-inducing activity of furylfuramide and AFB1 in the umu test. Compounds 1-4 were hardly showing a suppressive effect on umu gene expression of the SOS responses in S. typhimurium TA1535/pSK1002 against furylfuramid. However, metabolites showed a suppressive effect against AFB1. Compound 4 had gene expression by chemical mutagen AFB1, was suppressed 53% at <1.0 mM, and was the most effective compound in this experiment. PMID:20662538

  11. Pollution-Induced Community Tolerance To Diagnose Hazardous Chemicals in Multiple Contaminated Aquatic Systems.

    Science.gov (United States)

    Rotter, Stefanie; Gunold, Roman; Mothes, Sibylle; Paschke, Albrecht; Brack, Werner; Altenburger, Rolf; Schmitt-Jansen, Mechthild

    2015-08-18

    Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA. PMID:26196040

  12. Secondary Metabolome Variability and Inducible Chemical Defenses in the Mediterranean Sponge Aplysina cavernicola.

    Science.gov (United States)

    Reverter, M; Perez, T; Ereskovsky, A V; Banaigs, B

    2016-01-01

    Secondary metabolites play a crucial role in marine invertebrate chemical ecology. Thus, it is of great importance to understand factors regulating their production and sources of variability. This work aimed to study the variability of the bromotyrosine derivatives in the Mediterranean sponge Aplysina cavernicola, and also to better understand how biotic (reproductive state) and abiotic factors (seawater temperature) could partly explain this variability. Results showed that the A. cavernicola reproductive cycle has little effect on the variability of the sponges' secondary metabolism, whereas water temperature has a significant influence on the production level of secondary metabolites. Temporal variability analysis of the sponge methanolic extracts showed that bioactivity variability was related to the presence of the minor secondary metabolite dienone, which accounted for 50 % of the bioactivity observed. Further bioassays coupled to HPLC extract fractionation confirmed that dienone was the only compound from Aplysina alkaloids to display a strong bioactivity. Both dienone production and bioactivity showed a notable increase in October 2008, after a late-summer warming episode, indicating that A. cavernicola might be able to induce chemical changes to cope with environmental stressors.

  13. High-Throughput Sequencing and Mutagenesis to Accelerate the Domestication of Microlaena stipoides as a New Food Crop

    OpenAIRE

    Shapter, Frances M.; Michael Cross; Gary Ablett; Sylvia Malory; Chivers, Ian H.; King, Graham J.; Henry, Robert J.

    2013-01-01

    Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae), was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited...

  14. A robust method for assessing chemically induced mutagenic effects in the oral cavity of transgenic Big Blue® rats.

    Science.gov (United States)

    Young, Robert R; Thompson, Chad M; Dinesdurage, Harshini R; Elbekai, Reem H; Suh, Mina; Rohr, Annette C; Proctor, Deborah M

    2015-08-01

    The Big Blue® (BB) in vivo mutation assay uses transgenic rodents to measure treatment-induced mutations in virtually any tissue. The BB assay can be conducted in rats or mice and is ideal for investigating tissue-specific mutagenic mode of action of tumor induction. Some tissues such as oral mucosa have not been thoroughly studied. Due to the small quantity and cartilaginous nature of oral cavity tissues, development of special prosection and DNA isolation methods was required to permit robust analysis of mutations in these tissues. Improved surgical methods permitted collection of adequate and reproducible quantities of tissue (∼45 mg gingiva/buccal and ∼30 mg gingiva/palate). Optimized DNA isolation methods included use of liquid nitrogen pulverization, homogenization, nuclei pelleting, digestion, and phenol/chloroform extraction, to yield sufficient quantities of DNA from these tissues. In preliminary optimization work, mutant frequency (MF) in tongue and gingiva was increased in rats exposed to the promutagen, benzo[a]pyrene, and the direct mutagen, N-ethyl-N-nitrosourea. The oral cavity carcinogen, 4-nitroquinoline-1-oxide (4-NQO; 10 ppm in drinking water; 28 days), was qualified as a positive control for mutagenesis in oral tissues since it caused significant increases in cII MFs in gingiva/palate (50.2-fold) and gingiva/buccal tissues (21.3-fold), but not in liver or bone marrow (0.9- and 1.4-fold, respectively). These results are consistent with the observation that 4-NQO primarily induces tumors in oral cavity. Results also demonstrate the utility of the BB rat mutation assay and optimized methods for investigation of oral cavity mutagenicity, and by extension, analysis of other small and cartilaginous tissues. PMID:25969955

  15. Near-Ultraviolet Mutagenesis in Superoxide Dismutase-deficient Strains of Escherichia coli.

    OpenAIRE

    Knowles, RL; Eisenstark, A.

    1994-01-01

    We compared mutagenic spectra induced by polychromatic near-ultraviolet radiation (near-UV; 300-400 nm) with superoxide anion (O2-) -dependent mutagenesis using a set of Escherichia coli tester strains. Near-UV radiation produced increased frequencies of G:C to A:T transitions, G:C to T:A and A:T to T:A transversions, and small increases in frameshift mutations in wild-type cells. Tester strains lacking superoxide dismutase (SOD) activity (sodAsodB double mutants) demonstrated high spontaneou...

  16. Modulatory influence of Phyllanthus niruri on oxidative stress, antioxidant defense and chemically induced skin tumors.

    Science.gov (United States)

    Sharma, Priyanka; Parmar, Jyoti; Verma, Preeti; Goyal, Pradeep Kumar

    2011-01-01

    The present study evaluates the modulatory potential of Phyllanthus niruri on chemically induced skin carcinogenesis, and its influence on oxidative stress and the antioxidant defense system. Oral administration of P. niruri extract (PNE), during peri- (Gr. III), post- (Gr. IV), or peri- and post- (Gr. V) initiational stages of 7,12-dimethylbenz(a) anthracene (DMBA)-croton oil–induced papillomagenesis considerably reduced tumor burden to 4.20, 4.00, and 3.33(positive control value 6.20); cumulative number of papillomas to 21, 16, and 10, respectively, (positive control value 62); and incidence of mice bearing papillomas to 50, 40, and 30%, respectively (positive control value 100%), but significantly increased the average latent period to 10.14, 10.62, and 11.60, and inhibition of tumor multiplicity to 66, 74,and 83%, respectively. Enzyme analysis of skin and liver showed a significant (p ≤ 0.05, ≤ 0.01, ≤ 0.001) elevation in antioxidant parameters such as superoxide dismutase, catalase, glutathione, and vitamin C in PNE-treated groups (Gr. III–V) when compared with the carcinogen-treated control (Gr. II). The elevated level of lipid peroxidation in the carcinogen-treated positive control group was significantly (p ≤ 0.05, ≤ 0.01, ≤ 0.001) inhibited by PNE administration. These results indicate that P. niruri extract has potentiality to reduce skin papillomas by enhancing antioxidant defense system. PMID:21609315

  17. Identification of Differently Expressed Genes in Chemical Carcinogen-induced Rat Bladder Cancers

    Institute of Scientific and Technical Information of China (English)

    Guangfu CHEN; Franky L. CHAN; Xu ZHANG; Peter S.F. CHAN

    2009-01-01

    Possible altered gene expression patterns in bladder turnout carcinogenesis in rat bladder cancers induced by BBN [N-butyl-N-(4-hydroxybutyl)nitrosamine] was examined by cDNA microarray analysis of gene expression profiles.Thirty Sprague-Dawley rats were given drinking water containing 0.05% BBN ad libitum for 24 to 28-weeks.Equal numbers of control rats were given tap water without BBN.After treatment,the rat bladders were excised for RNA extraction and histopathological examinations.Total RNAs were extracted from rat transitional cell carcinoma (TCC) tissues and micro-dissected normal rat bladder epithelia.The atlas glass rat microarray was used,which included oligonucleotides of 1081 rat genes.Some of the up-regulated genes in rat bladder TCCs were further confirmed by Northern blotting.Our results showed that the transcriptions of 30 genes were significantly elevated in the rat bladder TCCs,and these included fly proto-oncogene,Lipocortin 2,COX Ⅳ,COX Ⅴ a,and cathepsin D.Also,15 genes were significantly down-regulated in the rat bladder TCCs and they included B7.1,TNFrl,APOAI and VHL.The resuits of cDNA microarray analysis demonstrated that normal rat bladder epithelia and bladder TCC exhibited different and specific gene statement profiles.The increased expressions of the identified genes may play an important role in the chemically induced bladder carcinogenesis.

  18. Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Inflammatory bowel disease (IBD), the most important being Crohn's disease and ulcerative colitis, results from chronic dysregulation of the mucosal immune system in the gastrointestinal tract. Although the pathogenesis of IBD remains unclear, it is widely accepted that genetic, environmental, and immunological factors are involved. Recent studies suggest that intestinal epithelial defenses are important to prevent inflammation by protecting against microbial pathogens and oxidative stresses. To investigate the etiology of IBD, animal models of experimental colitis have been developed and are frequently used to evaluate new anti-inflammatory treatments for IBD. Several models of experimental colitis that demonstrate various pathophysiological aspects of the human disease have been described. In this manuscript, we review the characteristic features of IBD through a discussion of the various chemically induced experimental models of colitis (e.g. dextran sodium sulfate-, 2,4,6-trinitrobenzene sulfonic acid-, oxazolone-, acetic acid-, and indomethacin-induced models). We also summarize some regulatory and pathogenic factors demonstrated by these models that can, hopefully, be exploited to develop future therapeutic strategies against IBD.

  19. Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis.

    Science.gov (United States)

    Romualdo, Guilherme Ribeiro; Goto, Renata Leme; Henrique Fernandes, Ana Angélica; Cogliati, Bruno; Barbisan, Luis Fernando

    2016-10-01

    Although there is a concomitance of zinc deficiency and high incidence/mortality for hepatocellular carcinoma in certain human populations, there are no experimental studies investigating the modifying effects of zinc on hepatocarcinogenesis. Thus, we evaluated whether dietary zinc deficiency or supplementation alter the development of hepatocellular preneoplastic lesions (PNL). Therefore, neonatal male Balb/C mice were submitted to a diethylnitrosamine/2-acetylaminefluorene-induced hepatocarcinogenesis model. Moreover, mice were fed adequate (35 mg/kg diet), deficient (3 mg/kg) or supplemented (180 mg/kg) zinc diets. Mice were euthanized at 12 (early time-point) or 24 weeks (late time-point) after introducing the diets. At the early time-point, zinc deficiency decreased Nrf2 protein expression and GSH levels while increased p65 and p53 protein expression and the number of PNL/area. At the late time-point, zinc deficiency also decreased GSH levels while increased liver genotoxicity, cell proliferation into PNL and PNL size. In contrast, zinc supplementation increased antioxidant defense at both time-points but not altered PNL development. Our findings are the first to suggest that zinc deficiency predisposes mice to the PNL development in chemically-induced hepatocarcinogenesis. The decrease of Nrf2/GSH pathway and increase of liver genotoxicity, as well as the increase of p65/cell proliferation, are potential mechanisms to this zinc deficiency-mediated effect.

  20. Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis.

    Science.gov (United States)

    Romualdo, Guilherme Ribeiro; Goto, Renata Leme; Henrique Fernandes, Ana Angélica; Cogliati, Bruno; Barbisan, Luis Fernando

    2016-10-01

    Although there is a concomitance of zinc deficiency and high incidence/mortality for hepatocellular carcinoma in certain human populations, there are no experimental studies investigating the modifying effects of zinc on hepatocarcinogenesis. Thus, we evaluated whether dietary zinc deficiency or supplementation alter the development of hepatocellular preneoplastic lesions (PNL). Therefore, neonatal male Balb/C mice were submitted to a diethylnitrosamine/2-acetylaminefluorene-induced hepatocarcinogenesis model. Moreover, mice were fed adequate (35 mg/kg diet), deficient (3 mg/kg) or supplemented (180 mg/kg) zinc diets. Mice were euthanized at 12 (early time-point) or 24 weeks (late time-point) after introducing the diets. At the early time-point, zinc deficiency decreased Nrf2 protein expression and GSH levels while increased p65 and p53 protein expression and the number of PNL/area. At the late time-point, zinc deficiency also decreased GSH levels while increased liver genotoxicity, cell proliferation into PNL and PNL size. In contrast, zinc supplementation increased antioxidant defense at both time-points but not altered PNL development. Our findings are the first to suggest that zinc deficiency predisposes mice to the PNL development in chemically-induced hepatocarcinogenesis. The decrease of Nrf2/GSH pathway and increase of liver genotoxicity, as well as the increase of p65/cell proliferation, are potential mechanisms to this zinc deficiency-mediated effect. PMID:27544374

  1. Combination of high performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    OpenAIRE

    Müller, Ulrich; Philipp, Martine; Gervais, P. C.; Possart, Prof Dr Wulff; Wehlack, C.; Kieffer, J.; Sanctuary, Roland; Krüger, Jan-Kristian

    2010-01-01

    A combination of infrared spectroscopy and high performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight in the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, ...

  2. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

    Directory of Open Access Journals (Sweden)

    Ulrich C. Fischer

    2014-09-01

    Full Text Available A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM of (3-aminopropyltriethoxysilane (APTES is explored with three different processes: 1 a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2 a chemical process induced by oxygen plasma etching as well as 3 a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL, which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.

  3. 2012 MUTAGENESIS GORDON RESEARCH CONFERENCE, AUGUST 19-23, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Demple, Bruce

    2012-08-23

    The delicate balance among cellular pathways that control mutagenic changes in DNA will be the focus of the 2012 Mutagenesis Gordon Research Conference. Mutagenesis is essential for evolution, while genetic stability maintains cellular functions in all organisms from microbes to metazoans. Different systems handle DNA lesions at various times of the cell cycle and in different places within the nucleus, and inappropriate actions can lead to mutations. While mutation in humans is closely linked to disease, notably cancers, mutational systems can also be beneficial. The conference will highlight topics of beneficial mutagenesis, including full establishment of the immune system, cell survival mechanisms, and evolution and adaptation in microbial systems. Equal prominence will be given to detrimental mutation processes, especially those involved in driving cancer, neurological diseases, premature aging, and other threats to human health. Provisional session titles include Branching Pathways in Mutagenesis; Oxidative Stress and Endogenous DNA Damage; DNA Maintenance Pathways; Recombination, Good and Bad; Problematic DNA Structures; Localized Mutagenesis; Hypermutation in the Microbial World; and Mutation and Disease.

  4. p21 is dispensable for AID-mediated class switch recombination and mutagenesis of immunoglobulin genes during somatic hypermutation.

    Science.gov (United States)

    Shansab, Maryam; Selsing, Erik

    2011-03-01

    In B cells, activation-induced cytidine deaminase (AID) induces somatic hypermutation (SHM) at rearranged immunoglobulin (Ig) variable (V) regions. Previous studies have shown that both monoubiquitination of proliferating cell nuclear antigen (PCNA) and translesional DNA polymerase activity are important for inducing mutagenesis during SHM. Regulation of PCNA ubiquitination by p21, also known as Cdkn1a and p21(Cip1/Waf1), is an important mechanism that controls mutation loads in mammalian cells. In this study, we have assessed whether p21 has an in vivo function in regulating mutagenesis in B cells by analyzing SHM frequency in p21-deficient mice. Our results show that p21 is dispensable for SHM. This suggests that, during SHM of Ig genes, p21 does not act to regulate mutagenesis load. We also show that p21 transcript levels are the same in both wildtype and AID-deficient B cells during B cell activation, and that AID-mediated class switch recombination (CSR) is not affected by p21 deficiency; thereby indicating that p21 regulation in B cells is not altered by AID-induced DNA damage and that p21 has no affect on AID-dependent Ig gene diversification. Our results suggest that regulation of p21 in activated B cells is probably more important for maintaining proper cell cycle progression as opposed to promoting SHM of Ig genes.

  5. DNA polymerase ζ: new insight into eukaryotic mutagenesis and mammalian embryonic development

    Institute of Scientific and Technical Information of China (English)

    Feng Zhu; Ming Zhang

    2003-01-01

    Information about the mechanisms that generate mutationsin eukaryotes is likely to be useful for understanding humanhealth concerns, such as genotoxicity and cancer.Eukaryotic mutagenesis is largely the outcome of attacksby' endogenous and environmental agents. Except for DNArepair, cell cycle checkpoints and DNA damage avoidance,cells have also evolved DNA damage tolerance mechanism,by which lesion-targeted mutation might occur in thegenome during replication by specific DNA polymerases tobypass the lesions (translesion DNA synthesis, TLS), ormutation on undamaged DNA templates (untargetedmutation) might be induced. DNA polymerase ζ (poiζ),which was found firstly in budding yeast Saccharomycescerevisiae and consists of catalytic subunit scRev3 and stimulating subunit scRev7, has Received more attention in recent years. Poi ζ is a member of DNA polymerase δsubfamily, which belongs to DNA polymerase B family, and exists in almost all eukaryotes. Human homolog of the scRev3gene is located in chromosome region 6q21, and the mouse equivalent maps to chromosome 10, distal to the c-myb gene and close to the Macs gene. Alternative splicing, upstream out-of frame ATG can be found in yeast scRev3, mouse and human homologs. Furthermore, the sequence from 253-323 immediate upstream of the AUG initiator codon has the potential to form a stem-loop hairpin secondary structure in REV3 mRNA, suggesting that human REV3 protein may be expressed at low levels in human cells under normal growth conditions. The functional domain analysis showed that yeast Rev3-980 tyrosine in conserved region II is at the polymerase active site. Human REV3 amino acid residues 1 776-2 195 provide a REV7binding domain, and REV7 amino acid residues 1-211provide a bind domain for REV1, REV3 and REV7 itself.More interestingly, REV7 interacts with hMAD2 and therefore might function in the cell cycle control by affecting the activation of APC (anaphase promoting complex).Currently it has been known that

  6. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    Energy Technology Data Exchange (ETDEWEB)

    Boulware, Stephen [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); Vasquez, Karen M. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); MacLeod, Michael C., E-mail: mcmacleod@mdanderson.org [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.

  7. H-2 restriction of the T cell response to chemically induced tumors: evidence from F1 → parent chimeras

    International Nuclear Information System (INIS)

    It has been well established that T cells that react to tumor antigen on virus-induced tumors must share H-2D or H-2K specificities with the tumor. It has been impossible to perform similar studies with chemically induced tumors because each chemically induced tumor expresses a unique tumor antigen that cannot be studied in association with other H-2 types. This study provies evidence that H-2 recognition is also necessary for recognition of chemically induced tumors. We have found that F1 → parent chimeras preferentially recognize chemically induced tumors of parental H-2 type. C3H/HeJ and C57BL/6 mice were lethally irradiated and restored with (C3H x C57BL/6) F1 hybrid bone marrow. The F1 → C3H chimera but not the F1 → C57BL/6 chimera was able to respond to a C3H fibrosarcoma in mixed lymphocyte-tumor cell culture and also to neutralize the tumor in an in vivo tumor neutralization assay. On the other hand, the F1 → C57BL/6 chimera but not the F1 → C3H chimera was able to kill the C57BL/6 lymphoma EL4 in an in vitro cytotoxicity assay. Both chimeras were tolerant to C3H and C57BL/6 alloantigens but could respond normally to Con A and to BALB/c spleen cells in mixed lymphocyte cultures and cytotoxicity assay

  8. Mutagenesis and transformation of C3H.10T1/2 mouse embryo fibroblasts with ultraviolet light and 5-azacytidine

    International Nuclear Information System (INIS)

    The effects of 12-0-tetradecanoyl-phorbol-13-acetate (TPA) and protease inhibitors (PIs; antipain, leupeptin and elastatinal) on ultraviolet (UV)-induced mutagenesis and, 5-azacytidine (azaC)-induced transformation were investigated in C3H/10Tl/2 mouse embryo fibroblasts. Whereas UV failed to transform 10Tl/2 cells by itself and azaC efficiently transformed the same cells, a significant enhancement in cell saturation density and transformation was observed in the continuous presence of TPA. The magnitude of enhancement depended on the batch of serum used and was suppressed by PIs. On the other hand, under the same conditions, UV induced ouabain-resistant (Ouasup(r)) mutants in these cells in a dose dependent manner. The recovery of Ouasup(r) mutants was reduced by TPA but remained unaffected by antipain. These results suggest that mutation might only be a partial mechanism for transformation by UV and that some of the physical as well as chemical carcinogens might transform 10Tl/2 cells via non-mutational mechanism(s). (author)

  9. Mutagenesis and transformation of C3H. 10T1/2 mouse embryo fibroblasts with ultraviolet light and 5-azacytidine

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P. (Kobe Univ. (Japan). School of Medicine)

    1982-12-01

    The effects of 12-0-tetradecanoyl-phorbol-13-acetate (TPA) and protease inhibitors (PIs; antipain, leupeptin and elastatinal) on ultraviolet (UV)-induced mutagenesis and, 5-azacytidine (azaC)-induced transformation were investigated in C3H/10Tl/2 mouse embryo fibroblasts. Whereas UV failed to transform 10Tl/2 cells by itself and azaC efficiently transformed the same cells, a significant enhancement in cell saturation density and transformation was observed in the continuous presence of TPA. The magnitude of enhancement depended on the batch of serum used and was suppressed by PIs. On the other hand, under the same conditions, UV induced ouabain-resistant (Ouasup(r)) mutants in these cells in a dose dependent manner. The recovery of Ouasup(r) mutants was reduced by TPA but remained unaffected by antipain. These results suggest that mutation might only be a partial mechanism for transformation by UV and that some of the physical as well as chemical carcinogens might transform 10Tl/2 cells via non-mutational mechanism(s).

  10. In vitro mutagenesis for the improvement of vegetatively propagated plants

    International Nuclear Information System (INIS)

    A number of important crops such as banana, plantain, cassava, potato, sweet potato and sugar cane are propagated from corms, tubers and stem cuttings. Some of these plants do not produce seed, and often the size of the propagule is too big to treat large populations with mutagens. In vitro techniques allow mutagenic treatment of large numbers and multiplication of the selected genotypes in a small space and short duration under disease free conditions. After treatment with mutagens, the chimeral tissues can be separated into mutated and non-mutated sectors without loss of plants, which may occur in conventional propagation. Somaclonal variation among plants regenerated from callus and cell suspension cultures may provide additional variation to that induced through mutagenesis. In vitro methods allow induction and expression of recessive mutations in the haploids, producing homozygous doubled haploids. The availability of simple, efficient and rapid techniques for screening large plant populations for desired traits is an essential component of plant breeding. In vitro culture techniques allow selection of the desired variants from large populations of cells and plants. This may be achieved by manipulating the medium composition, e.g. selection for tolerance to salinity and drought, and by co-culturing the plant tissues with pathogens or their toxins, as in the case of selection for disease resistance. The variants thus selected can be subjected to selection in the glasshouse or field. Even though the occurrence of desired mutations is empirical and random, the combination of in vitro and mutation techniques can speed up the breeding of vegetatively propagated plants. (author). 41 refs, 3 tabs

  11. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1

    OpenAIRE

    Qidi Zhu; Yulong Song; Gaisheng Zhang; Lan Ju; Jiao Zhang; Yongang Yu; Na Niu; Junwei Wang; Shoucai Ma

    2015-01-01

    Wheat (Triticum aestivum L.), one of the world's most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther tra...

  12. Random mutagenesis of aspergillus niger and process optimization for enhanced production of glucose oxidase

    International Nuclear Information System (INIS)

    The study deals with the improvement of wild strain Aspergillus niger IIB-31 through random mutagenesis using chemical mutagens. The main aim of the work was to enhance the glucose oxidase (GOX) yield of wild strain (24.57+-0.01 U/g of cell mass) through random mutagenesis and process optimization. The wild strain of Aspergillus niger IIB-31 was treated with chemical mutagens such as Ethyl methane sulphonate (EMS) and nitrous acid for this purpose. Mutagen treated 98 variants indicating the positive results were picked and screened for the glucose oxidase production using submerged fermentation. EMS treated E45 mutant strain gave the highest glucose oxidase production (69.47 + 0.01 U/g of cell mass), which was approximately 3-folds greater than the wild strain IIB-31. The preliminary cultural conditions for the production of glucose oxidase using submerged fermentation from strain E45 were also optimized. The highest yield of GOD was obtained using 8% glucose as carbon and 0.3% peptone as nitrogen source at a medium pH of 7.0 after an incubation period of 72 hrs at 30 degree. (author)

  13. Cationic antimicrobial peptides promote microbial mutagenesis and pathoadaptation in chronic infections.

    Directory of Open Access Journals (Sweden)

    Dominique H Limoli

    2014-04-01

    Full Text Available Acquisition of adaptive mutations is essential for microbial persistence during chronic infections. This is particularly evident during chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF patients. Thus far, mutagenesis has been attributed to the generation of reactive species by polymorphonucleocytes (PMN and antibiotic treatment. However, our current studies of mutagenesis leading to P. aeruginosa mucoid conversion have revealed a potential new mutagen. Our findings confirmed the current view that reactive oxygen species can promote mucoidy in vitro, but revealed PMNs are proficient at inducing mucoid conversion in the absence of an oxidative burst. This led to the discovery that cationic antimicrobial peptides can be mutagenic and promote mucoidy. Of specific interest was the human cathelicidin LL-37, canonically known to disrupt bacterial membranes leading to cell death. An alternative role was revealed at sub-inhibitory concentrations, where LL-37 was found to induce mutations within the mucA gene encoding a negative regulator of mucoidy and to promote rifampin resistance in both P. aeruginosa and Escherichia coli. The mechanism of mutagenesis was found to be dependent upon sub-inhibitory concentrations of LL-37 entering the bacterial cytosol and binding to DNA. LL-37/DNA interactions then promote translesion DNA synthesis by the polymerase DinB, whose error-prone replication potentiates the mutations. A model of LL-37 bound to DNA was generated, which reveals amino termini α-helices of dimerized LL-37 bind the major groove of DNA, with numerous DNA contacts made by LL-37 basic residues. This demonstrates a mutagenic role for antimicrobials previously thought to be insusceptible to resistance by mutation, highlighting a need to further investigate their role in evolution and pathoadaptation in chronic infections.

  14. Radiation-induced chemical evolution of glycine to (Gly)2, (Gly)3, and (Gly)4

    International Nuclear Information System (INIS)

    Recently amino acids were detected from some meteorites. Since these amino acids were found after hydrolysis, some oligopeptides were possibly formed in space. A simulation experiment of chemical evolution from Glycine (Gly) to Glycylglycine ((Gly)2) was reported by Kaneko et al. In this work, we irradiated (Gly)2 with 8 eV vacuum ultraviolet photons or with 530 eV soft X-ray photons and examined absolute values of quantum yield of radiation-induced chemical evolution from Gly2 to Glycylglycylglycine ((Gly)3) and Glycylglycylglycylglycine ((Gly)4). Thin films of (Gly)2 were prepared on quartz plate or CuBe plate with a vacuum evaporation technique. These samples were irradiated by 8 eV photons from a Xe2* excimer lamp or by 530 eV soft X-ray photons at SPring-8 Synchrotron Radiation Facility. Irradiated samples were analyzed with a high performance liquid chromatography HPLC. Decomposition of (Gly)2 and production of Gly, (Gly)3 and (Gly)4 were observed. Quantum yield Y was defined to be N = Y N0, where N is the number of produced or decomposed molecule, and N0 is the number of (Gly)2 molecules excited by photons. Obtained results by 8 eV irradiation were summarized in Table 1. The similar magnitude of decomposition of (Gly)2 may show that yield of the primary breaking reaction upon photo-excitation is of similar magnitude. It should be noted that (Gly)3 and (Gly)4 was produced by irradiation with the yield of 10-4 without any catalysis. For soft X-ray irradiation, yield of Gly was tentatively determined to be about 40. This largervalue than that for 8 eV irradiation may originate from large energy of incident soft X-ray photons just like a result reported by Simakov et al. We will discuss in detail at the conference. (authors)

  15. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Institute of Scientific and Technical Information of China (English)

    姚日生; 李曼曼; 邓胜松; 胡华佳; 王淮; 李凤和

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  16. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Science.gov (United States)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  17. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis.

  18. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis.

  19. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis

  20. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    Science.gov (United States)

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes. PMID:18814656

  1. Influence of chemical structure on hypersensitivity reactions induced by antiepileptic drugs: the role of the aromatic ring.

    NARCIS (Netherlands)

    Handoko, K.B.; Puijenbroek, E.P. van; Bijl, A.H.; Hermens, W.A.; Rijkom, JE Zwart-van; Hekster, Y.A.; Egberts, T.C.G.

    2008-01-01

    OBJECTIVE: Antiepileptic drugs (AEDs) can cause various 'idiosyncratic' hypersensitivity reactions, i.e. the mechanism by which AEDs induce hypersensitivity is unknown. The aim of this study was to assess whether the presence of an aromatic ring as a commonality in chemical structures of AEDs can ex

  2. Influence of chemical structure on hypersensitivity reactions induced by antiepileptic drugs : the role of the aromatic ring

    NARCIS (Netherlands)

    Handoko, Kim B; van Puijenbroek, Eugène P; Bijl, Annemarie H; Hermens, Walter A J J; Zwart-van Rijkom, Jeannette E F; Hekster, Yechiel A; Egberts, Toine C G

    2008-01-01

    OBJECTIVE: Antiepileptic drugs (AEDs) can cause various 'idiosyncratic' hypersensitivity reactions, i.e. the mechanism by which AEDs induce hypersensitivity is unknown. The aim of this study was to assess whether the presence of an aromatic ring as a commonality in chemical structures of AEDs can ex

  3. The role of the tractus diagonalis in drinking behaviour induced by central chemical stimulation, water deprivation and salt injection

    NARCIS (Netherlands)

    Terpstra, G.K.; Slangen, J.L.

    1972-01-01

    The role of the tractus diagonalis in drinking behaviour induced by central chemical stimulation, 23-hr water deprivation and injection of a hypertonic sodium chloride solution was investigated by means of central and peripheral administration of atropine and methylatropine. The effect of the same d

  4. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  5. Heterologous overexpression and mutagenesis of the human bile salt export pump (ABCB11 using DREAM (Directed REcombination-Assisted Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Jan Stindt

    Full Text Available Homologous recombination in Saccharomyces cerevisiae is a well-studied process. Here, we describe a yeast-recombination-based approach to construct and mutate plasmids containing the cDNA of the human bile salt export pump (BSEP that has been shown to be unstable in E. coli. Using this approach, we constructed the necessary plasmids for a heterologous overexpression of BSEP in the yeast Pichia pastoris. We then applied a new site-directed mutagenesis method, DREAM (Directed REcombination-Assisted Mutagenesis that completely bypasses E. coli by using S. cerevisiae as the plasmid host with high mutagenesis efficiency. Finally, we show how to apply this strategy to unstable non-yeast plasmids by rapidly turning an existing mammalian BSEP expression construct into a S. cerevisiae-compatible plasmid and analyzing the impact of a BSEP mutation in several mammalian cell lines.

  6. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening

    International Nuclear Information System (INIS)

    High-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may be used in a battery of tests for detecting chemicals that could result in developmental neurotoxicity. Apoptosis contributes to nervous system development by regulating the size of the neuroprogenitor cell pool, and the balance between cellular proliferation and apoptosis during neuroprogenitor cell proliferation helps to determine the size and shape of the nervous system. Therefore, chemicals that affect apoptosis during neuronal development can have deleterious effects on the developing brain. The present study examined the utility of a high-throughput assay to detect chemical-induced apoptosis in mouse or human neuroprogenitor cells, as well as differentiated human neurons derived from induced pluripotent stem cells. Apoptosis was assessed using an assay that measures enzymatic activity of caspase-3/7 in a rapid and cost efficient manner. The results show that all three commercially available models generated a robust source of proliferating neuroprogenitor cells, and that the assay was sensitive and reproducible when used in a multi-well plate format. There were differences in the response of rodent and human neuroprogenitor cells to a set of chemicals previously shown to induce apoptosis in vitro. Neuroprogenitor cells were more sensitive to chemical-induced apoptosis than differentiated neurons, suggesting that neuroprogenitor cells are one of the cell models that should be considered for use in a developmental neurotoxicity screening battery

  7. Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen

    Energy Technology Data Exchange (ETDEWEB)

    Kermany, Mohammad [St. Jude Children' s Research Hospital; Parker, Lisan [St. Jude Children' s Research Hospital; Guo, Yun-Kai [St. Jude Children' s Research Hospital; Miller, Darla R [ORNL; Swanson, Douglas J [ORNL; Yoo, Tai-June [Neuroscience Institute, Memphis, TN; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis; Zuo, Jian [St. Jude Children' s Research Hospital

    2006-01-01

    The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured P12 mice per pedigree in P2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (P16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans.

  8. Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text.

    Science.gov (United States)

    Bravo, Àlex; Li, Tong Shu; Su, Andrew I; Good, Benjamin M; Furlong, Laura I

    2016-01-01

    Drug toxicity is a major concern for both regulatory agencies and the pharmaceutical industry. In this context, text-mining methods for the identification of drug side effects from free text are key for the development of up-to-date knowledge sources on drug adverse reactions. We present a new system for identification of drug side effects from the literature that combines three approaches: machine learning, rule- and knowledge-based approaches. This system has been developed to address the Task 3.B of Biocreative V challenge (BC5) dealing with Chemical-induced Disease (CID) relations. The first two approaches focus on identifying relations at the sentence-level, while the knowledge-based approach is applied both at sentence and abstract levels. The machine learning method is based on the BeFree system using two corpora as training data: the annotated data provided by the CID task organizers and a new CID corpus developed by crowdsourcing. Different combinations of results from the three strategies were selected for each run of the challenge. In the final evaluation setting, the system achieved the highest Recall of the challenge (63%). By performing an error analysis, we identified the main causes of misclassifications and areas for improving of our system, and highlighted the need of consistent gold standard data sets for advancing the state of the art in text mining of drug side effects.Database URL: https://zenodo.org/record/29887?ln¼en#.VsL3yDLWR_V. PMID:27307137

  9. Chemical reactions induced by oscillating external fields in weak thermal environments

    CERN Document Server

    Craven, Galen T; Hernandez, Rigoberto

    2015-01-01

    Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates pred...

  10. Growth of titanium silicate thin films by photo-induced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.M.; Fang, Q.; Zhang, J.-Y.; Wu, J.X.; Di, Y.; Chen, W.; Chen, M.L.; Boyd, Ian W

    2004-04-01

    Titanium silicate thin films have been grown on Si substrates by photo-induced chemical vapor deposition using 222-nm ultraviolet excimer lamps. Titanium tetraisopropoxide (TTIP) and tetraethoxysilane (TEOS) were used as precursors. TTIP and TEOS were dissolved together in cyclohexane and introduced into the photochemical reaction chamber through a droplet injector vaporizer. The composition of the film was controlled by changing the ratio of TTIP to TEOS in the precursor solution. High quality titanium silicate films with various Ti/Si ratios and low carbon content have been achieved as revealed by X-ray photoelectron spectroscopy measurements. The atomic percentage of Ti content in the grown silicate films is significantly larger than that in the precursor solution. The films were measured to be 30-80 nm in thickness and 1.91-2.31 in refractive index by ellipsometry. Both the growth rate and refractive index increase with increasing Ti percentage in the silicate films. The evolution of Fourier transform infrared spectra of the silicate films with solution composition shows that the Ti-O-Si absorption at approximately 920 cm{sup -1} becomes stronger, while the Ti-O absorption at approximately 430 cm{sup -1} becomes weaker with decreasing Ti percentage in the solution. A small feature at {approx}1035 cm{sup -1} related to Si-O-Si bonds is also observed in the SiO{sub 2}-rich Ti silicate film.

  11. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation.

    Science.gov (United States)

    Wang, Kai-Qiang; Luo, Shui-Zhong; Zhong, Xi-Yang; Cai, Jing; Jiang, Shao-Tong; Zheng, Zhi

    2017-01-01

    In order to elucidate the heat-induced wheat gluten gel formation mechanism, changes in chemical interactions and protein conformation were investigated during gelation. The contribution of ionic and hydrogen bonds were found to decrease from 0.746 and 4.133g/L to 0.397 and 2.733g/L, respectively, as the temperature increased from 25 to 90°C. Moreover, the free SH content remarkably decreased from 37.91 to 19.79μmol/g during gelation. Ultraviolet absorption spectra and intrinsic fluorescence spectra suggested that wheat gluten unfolded during the heating process. In addition, wheat gluten gels treated at 80 and 90°C exhibited a "steric hindrance" effect, which can be attributed to the formation of aggregates. Fourier transform infrared spectra suggested that the random coil content increased at low temperatures (40 and 50°C), whereas the content of intermolecular β-sheets due to protein aggregation increased from 38.10% to 44.28% when the gelation temperature was 90°C. PMID:27507490

  12. Characterisation of TiO 2 deposited by photo-induced chemical vapour deposition

    Science.gov (United States)

    Kaliwoh, Never; Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We report the deposition of thin TiO 2 films on crystalline Si and quartz by photo-induced chemical vapour deposition (CVD) using UV excimer lamps employing a dielectric barrier discharge in krypton chloride (KrCl ∗) to provide intense narrow band radiation at λ=222 nm. The precursor used was titanium isopropoxide (TTIP). Films from around 20-510 nm in thickness with refractive indices from 2.20 to 2.54 were grown at temperatures between 50 and 350 °C. The higher refractive index values compare favourably with the value of 2.58 recorded for the bulk material. The measured deposition rate was around 50 nm/min at 350 °C. Fourier transform infrared spectroscopy (FTIR) revealed the presence of TiO 2 through the observation of a Ti-O absorption peak and the absence of OH in films deposited at 250-350 °C indicated relatively good quality films. The phase of films deposited at 200-350 °C was anatase as determined by X-ray diffraction.

  13. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988-1999

    International Nuclear Information System (INIS)

    Acidification of south-Swedish coniferous forest soils continues and soil nutrient status is no longer sustainable in a long-term perspective. - Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl2) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed

  14. Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator

    Science.gov (United States)

    Lee, Joon Sue; Richardella, Anthony; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Samarth, Nitin

    2015-10-01

    We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disentangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al 2O3 ) as a spin detector on a back-gated (Bi,Sb ) 2Te3 channel. We observe hysteretic voltage signals as the magnetization of the detector ferromagnet is switched parallel or antiparallel to the spin polarization of the surface current. The amplitude of the detected voltage change is linearly proportional to the applied dc bias current in the (Bi,Sb ) 2Te3 channel. As the chemical potential is tuned from the bulk bands into the surface state band, we observe an enhancement of the spin-dependent voltages up to 300% within the range of the electrostatic gating. Using a simple model, we extract the spin polarization near charge neutrality (i.e., the Dirac point).

  15. Chemical protection against life shortening and radio-induced leukemias and cancers

    International Nuclear Information System (INIS)

    The advantage gained on the long term survival and the induction of leukemias and cancers in mice exposed to a single dose of ionizing radiation by a combination of radiochemical protectors, are examined. The results show clearly that chemical protective compounds protect mice against radiation-induced life-shortening, They demonstrate also that the obtained protection was improved by combination of various protectors acting in a supplementary manner. The optimum dose reduction factor obtained was 1.5 for AET and about 2 for a mixture of 5 radioprotectors. These dose reduction factors are lower than those offered with these two treatments against the acute effects of ionizing radiation. In addition, the dose effect curve for the long term survival obtained for irradiated untreated mice and for mice treated with a mixture of radioprotectors are not parallel. Thus, the dose reduction factors vary with the X-ray dose administered. The best protection was achieved for X-ray doses from 500 to 1000 R. After an exposure to 100 R (BALB/c+ mice) and 350 R (C5781 mice) of X-rays, the total incidence of leukemias and cancers was significantly lower in treated irradiated mice than in non treated mice

  16. A mint purified extract protects human keratinocytes from short-term, chemically induced oxidative stress.

    Science.gov (United States)

    Berselli, Patrizia Valeria Rita; Zava, Stefania; Montorfano, Gigliola; Corsetto, Paola Antonia; Krzyzanowska, Justyna; Oleszek, Wieslaw; Berra, Bruno; Rizzo, Angela Maria

    2010-11-10

    Oxidative stress is strictly correlated to the pathogenesis of many diseases, and a diet rich in fruits and vegetables, or adequately integrated, is currently considered to be a protective and preventive factor. This study aimed to analyze the efficacy of a 1 h preincubation with the highest nontoxic dose of a characterized Mentha longifolia extract (80 μg/mL) in protecting human keratinocytes (NCTC2544) from chemically induced oxidative stress (500 μM H2O2 for 2, 16, and 24 h). As reference synthetic pure compounds rosmarinic acid (360.31 μg/mL), a major mint phenolic constituent, and resveratrol (31.95 mg/mL), a well-known antioxidant, were used. Cellular viability was significantly protected by mint, which limited protein and DNA damage, decreased lipid peroxidation, and preserved glutathione and superoxide dismutase activity in the shorter phases of oxidative stress induction, in extents comparable to or better than those of pure compounds. These data suggest that mint use as only a flavoring has to be revised, taking into consideration its enrichment in foodstuff and cosmetics.

  17. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice.

    Science.gov (United States)

    Ye, Jian-Hong; Liu, Meng-Hua; Zhang, Xu-Lin; He, Jing-Yu

    2015-01-01

    Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography-diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones. PMID:26580602

  18. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice

    Directory of Open Access Journals (Sweden)

    Jian-Hong Ye

    2015-11-01

    Full Text Available Protective effect of Hedyotis diffusa (H. diffusa Willd against lipopolysaccharide (LPS-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography -diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and monocyte chemoattractant protein (MCP-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones.

  19. Ex vivo analysis of irradiated fingernails: chemical yields and properties of radiation-induced and mechanically-induced radicals.

    Science.gov (United States)

    Black, Paul J; Swarts, Steven G

    2010-02-01

    A qualitative and quantitative analysis of the radicals underlying the radiation-induced signal (RIS) in fingernails was conducted in an attempt to identify properties of these radicals that could be used for biodosimetry purposes. A qualitative analysis of RIS showed the presence of at least three components, two of which were observed at low doses (500 Gy). The low dose signal, obtained by reconstruction, consists of a 10 gauss singlet at g = 2.0053 and an 18 gauss doublet centered at g = 2.0044. Based on the initial slope of the dose-response curve, the chemical (radical) yields of the radicals giving rise to the singlet and doublet were 327 (+/-113) and 122 (+/-9) nmol J-1 (standard error, SE), respectively. At doses below 50 Gy, the singlet signal is the dominant component. Above this dose range, the signal intensity of the singlet rapidly dose-saturates. At doses signal that increases in its proportion of the RIS as dose increases. A third component was revealed at high dose with a spectral extent of approximately 100 gauss and displayed peaks due to g anisotropy at g = 2.056, 2.026, and 1.996. The total radical yield calculated from the initial slope of the dose-response curve averaged 458 +/- (116) nmol J-1 (SE) in irradiated nail clippings obtained from six volunteers. Such high yields indicate that nails are a strong candidate for biodosimetry at low doses. In a comparison of relative stabilities of the radicals underlying the singlet and doublet signals, the stability of the doublet signal is more sensitive to the moisture content of the nail than the singlet. This differential in radical stabilities could provide a method for removing the doublet signal under controlled exposures to high humidities (>70% relative humidity). The decay of the singlet signal in RIS varies with exposure of a nail clipping to differing ambient humidities. However, long exposures (>6 h) to relative humidities of 72-94% results in singlet intensities that approach 7.0 +/- (3

  20. Abstracts of the Conference on Mechanisms of DNA Repair and Mutagenesis on the 100. Anniversary of the Discovery of Polonium and Radium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference covered various aspects of mutagenesis and mechanisms of DNA repair. UV and ionizing radiation were use to induce DNA lesions in bacteria, yeast and cell cultures of higher organisms. This allows study of influence of mutations on particular processes in the cell. Mechanisms of resistance were also investigated. Biological investigations were performed using labelled compounds.

  1. Abstracts of the Conference on Mechanisms of DNA Repair and Mutagenesis on the 100. Anniversary of the Discovery of Polonium and Radium

    International Nuclear Information System (INIS)

    The conference covered various aspects of mutagenesis and mechanisms of DNA repair. UV and ionizing radiation were use to induce DNA lesions in bacteria, yeast and cell cultures of higher organisms. This allows study of influence of mutations on particular processes in the cell. Mechanisms of resistance were also investigated. Biological investigations were performed using labelled compounds

  2. Insertional mutagenesis using Tnt1 retrotransposon in potato

    Science.gov (United States)

    Potato is the third most important food crop in the world. However, genetics and genomics research of potato has lagged behind many major crop species due to its autotetraploidy and a highly heterogeneous genome. Insertional mutagenesis using T-DNA or transposable elements, which is available in sev...

  3. Methods for targetted mutagenesis in gram-positive bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  4. Novel quantitative methods for characterization of chemical induced functional alteration in developing neuronal cultures

    Science.gov (United States)

    ABSTRACT BODY: Thousands of chemicals lack adequate testing for adverse effects on nervous system development, stimulating research into alternative methods to screen chemicals for potential developmental neurotoxicity. Microelectrode arrays (MEA) collect action potential spiking...

  5. Chemical speciation of chlorine in atmospheric aerosol samples by high-resolution proton induced X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Chlorine is a main elemental component of atmospheric particulate matter (APM). The knowledge of the chemical form of chlorine is of primary importance for source apportionment and for estimation of health effects of APM. In this work the applicability of high-resolution wavelength dispersive proton induced X-ray emission (PIXE) spectroscopy for chemical speciation of chlorine in fine fraction atmospheric aerosols is studied. A Johansson-type crystal spectrometer with energy resolution below the natural linewidth of Cl K lines was used to record the high-resolution Kα and Kβ proton induced spectra of several reference Cl compounds and two atmospheric aerosol samples, which were collected for conventional PIXE analysis. The Kα spectra which refers to the oxidation state, showed very minor differences due to the high electronegativity of Cl. However, the Kβ spectra exhibited pronounced chemical effects which were significant enough to perform chemical speciation. The major chlorine component in two fine fraction aerosol samples collected during a 2010 winter campaign in Budapest was clearly identified as NaCl by comparing the high-resolution Cl Kβ spectra from the aerosol samples with the corresponding reference spectra. This work demonstrates the feasibility of high-resolution PIXE method for chemical speciation of Cl in aerosols. - Highlights: ► Chemical specation of Cl in aerosol samples by high resolution PIXE spectroscopy. ► Fine structure of Kα and Kβ lines of reference compounds and APM samples was given. ► Kα spectra were well aligned with each other confirming the same Cl oxidation state. ► Pronounced chemical effects were observed in the Kβ spectra. ► We showed that chemical speciation of Cl was possible on thin aerosol samples

  6. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, 30120 El Palmar, Murcia (Spain); Calaf, Joaquim [Servei de Ginecologia i Obstetricia, Hospital Universitari de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Martin, Miguel [Departament de Pediatria, d' Obstetricia i Ginecologia i de Medicina Preventiva, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Caldes, Montserrat Garcia [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)], E-mail: Montserrat.Garcia.Caldes@uab.es

    2008-04-02

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p {<=} 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p {<=} 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal

  7. A novel room temperature-induced chemical etching (RTCE) technique for the enlargement of fission tracks in Lexan polycarbonate SSNTD

    Science.gov (United States)

    Chavan, Vivek; Kalsi, P. C.; Manchanda, V. K.

    2011-02-01

    The chemical or electrochemical etching is an essential step to enlarge the ion-induced latent tracks in solid state nuclear track detectors (SSNTDs). In these methods, above ambient temperatures (˜60 °C) and moderately high concentrations of alkali are required for about 1-2 h to enlarge the latent tracks. Microwave induced chemical etching method is reported to reduce the etching time for alpha tracks from 3 to 4 h to 25 min for CR-39 detector. In the present work, a room temperature-induced chemical etching employing ethanolamine as a new etchant has been investigated for the first time to enlarge the fission tracks in Lexan polycarbonate SSNTD. The tracks developed in the Lexan detectors etched at room temperature using ethanolamine are compared with those etched with routinely used chemical etching (CE) technique in 6 N NaOH at 60 °C. The bulk etch and track etch rates are also reported. The detection efficiency of RTCE method is determined and compared with that of CE method. The RTCE technique is found to be simple, fast and convenient.

  8. A novel room temperature-induced chemical etching (RTCE) technique for the enlargement of fission tracks in Lexan polycarbonate SSNTD

    Energy Technology Data Exchange (ETDEWEB)

    Chavan, Vivek [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kalsi, P.C., E-mail: pckalsi@barc.gov.i [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Manchanda, V.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2011-02-11

    The chemical or electrochemical etching is an essential step to enlarge the ion-induced latent tracks in solid state nuclear track detectors (SSNTDs). In these methods, above ambient temperatures ({approx}60 {sup o}C) and moderately high concentrations of alkali are required for about 1-2 h to enlarge the latent tracks. Microwave induced chemical etching method is reported to reduce the etching time for alpha tracks from 3 to 4 h to 25 min for CR-39 detector. In the present work, a room temperature-induced chemical etching employing ethanolamine as a new etchant has been investigated for the first time to enlarge the fission tracks in Lexan polycarbonate SSNTD. The tracks developed in the Lexan detectors etched at room temperature using ethanolamine are compared with those etched with routinely used chemical etching (CE) technique in 6 N NaOH at 60 {sup o}C. The bulk etch and track etch rates are also reported. The detection efficiency of RTCE method is determined and compared with that of CE method. The RTCE technique is found to be simple, fast and convenient.

  9. MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction

    NARCIS (Netherlands)

    Ahlqvist, K.J.; Leoncini, S.; Pecorelli, A.; Wortmann, S.B.; Ahola, S.; Forsstrom, S.; Guerranti, R.; Felice, C. De; Smeitink, J.; Ciccoli, L.; Hamalainen, R.H.; Suomalainen, A.

    2015-01-01

    Haematopoietic progenitor cells show special sensitivity to mitochondrial DNA (mtDNA) mutagenesis, which suggests that increased mtDNA mutagenesis could underlie anemias. Here we show that elevated mtDNA mutagenesis in mice with a proof-reading deficient mtDNA polymerase (PolG) leads to incomplete m

  10. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kazama Yusuke

    2011-11-01

    Full Text Available Abstract Background Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm-1 for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Results Dry Arabidopsis thaliana seeds were irradiated with carbon (C ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm-1 at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy and glabrous (gl and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm-1 and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. Conclusions The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection

  11. Combination of high-performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Philipp, M; Gervais, P-C; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A avenue de la faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W; Wehlack, C [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany); Kieffer, J, E-mail: ulrich.mueller@uni.l [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI (United States)

    2010-08-15

    A combination of infrared spectroscopy and high-performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight into the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, an unexpected excess polarizability observed during the gelation is attributed to cooperative dipole-dipole interactions.

  12. Stress-induced chemical detection using flexible metal-organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  13. Sister chromatid exchanges in the bone marrow cells of in vivo rats induced by gamma radiation and chemical mutagens

    International Nuclear Information System (INIS)

    Sister chromatid exchanges (SCE) in the bone marrow of in vivo rats induced by gamma radiation doses and by the chemical mutagens, mitomycin C (MMC), cyclophosphamide (CP), and sulphonate-methylmethane (SMM), were studied. The purpose was to evaluate the sensitivity and reproducibility of a simplified SCE in vivo detecting system developed in our laboratory and to compare the results obtained with those reported elsewhere. Simplification consisted in administering the amounts of 5-bromo-2'-deoxyuridine (BrdU) necessary to observe the SCE, after first adsorbing the BrdU in activated carbon and then injecting it interperitoneally, into the rats. The results were a longer time in vivo ADN incorporation without convulsions in the rats, and a reduction in the time course as compared to other methods. We observed a basal rate of 3.6+-0.37 SCE/cell and that: 0.44 Gy of gamma radiation induced 7.7+-0.73 SCE/cell; 1.6 μg/g of MMC induced 8.1+-1.20 SCE/cell; 5 μg/g of CP induced 8.25+-1.5 SCE/cell, 40 μg/g of SMM induced 22.0+-5 SCE/cell and 380 μg/g of sulphonate-ethylmethane induced 8.6+-1.2 SCE/cell. This showed that all the agents were capable of inducing SCE in the bone marrow cells of rats in vivo under our conditions. We noted a greater induced efficiency for gamma radiation than the obtained by other investigators and a relatively similar efficiency in the case of chemical mutagens as reported in other studies. (author)

  14. Virtual mutagenesis of isocitrate dehydrogenase 1 involved in glioblastoma multiforme

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-dong; SHI Yan-fang; WANG Hong; WANG Jia-liang; MA Wen-bin; WANG Ren-zhi

    2011-01-01

    Background Site A132Arg mutations potentially impair the affinity of isocitrate dehydrogenase 1 (IDH1) for its substrate isocitrate (ICT),consequently reducing the production of α-ketoglutarate and leading to tumor growth through the induction of the hypoxia-inducible factor-1 (HIF-1) pathway.However,given that the roles of other active sites in IDH1 substrate binding remain unclear,we aimed to investigate IDH1 mutation pattern and its influence on enzyme function.Methods Fifteen IDH1 catalytic active site candidates were selected for in silico mutagenesis and protein homology modeling.Binding free energy of the IDH1/ICT complexes with single-site mutations was compared with that of the wild type.The affinity of 10 IDH1 catalytic active sites for the ICT substrate was further calculated.Results The IDH1 active site included seven residues from chain A (A77Thr,A94Ser,A100Arg,A132Arg,A1O9Arg,A275Asp,and A279Asp) and three residues from chain B (B214Thr,B212Lys,and B252Asp) that constituted the substrate ICT-binding site.These residues were located within 0.5 nm of ICT,indicating a potential interaction with the substrate.IDH1 changes of binding free energy (△E) suggested that the A132Arg residue from chain A contributes three hydrogen bonds to the ICT α-carboxyl and β-carboxyl groups,while the other nine residues involved in ICT binding form only one or two hydrogen bonds.Amino acid substitutes at A132Arg,A109Arg,and B212Lys sites,had the greatest effect on enzyme affinity for its substrate.Conclusions Mutations at sites A132Arg,A109Arg,and B212Lys reduced IDH1 affinity for ICT,indicating these active sites may play a central role in substrate binding.Mutations at sites A77Thr,A94Ser,and A275Asp increased the affinity of IDH1 for ICT,which may enhance IDN1 catalytic activity.Mutant IDH1 proteins with higher catalytic activity than the wild-type IDH1 could potentially be used as a novel gene therapy for glioblastoma multiforme.

  15. Mechanisms of mutagenesis and DNA repair

    International Nuclear Information System (INIS)

    The research deals with mechanisms of excision repair in Escherichia coli exposed to chemicals or ultraviolet (uv) radiation. During the past year attention has been focused on the incision proteins that initiate removal of pyrimidine dimers, benzo[a]pyrene adducts, and other bulky lesions from DNA. The product of the E. Coli uvrD gene was isolated and shown to be important in mediating closure of single strand DNA breaks promoted by the incision complex coded for by the uvrA, uvrB, and uvrC gene products. This suggests that the uvrD gene product (now known to be a helicase) is necessary either for dislodging the incision complex from the nicked DNA or for preparing a DNA primer-template configuration suitable for proper repair resynthesis

  16. Molecular Mechanism Underlying Pathogenesis of Lewisite-Induced Cutaneous Blistering and Inflammation: Chemical Chaperones as Potential Novel Antidotes.

    Science.gov (United States)

    Li, Changzhao; Srivastava, Ritesh K; Weng, Zhiping; Croutch, Claire R; Agarwal, Anupam; Elmets, Craig A; Afaq, Farrukh; Athar, Mohammad

    2016-10-01

    Lewisite is a potent arsenic-based chemical warfare agent known to induce painful cutaneous inflammation and blistering. Only a few modestly effective antidotes have so far been described in the literature. However, the discovery of effective antidotes for lewisite was hampered by the paucity of the exact molecular mechanism underlying its cutaneous pathogenesis. We investigated the molecular mechanism underlying lewisite-induced cutaneous blistering and inflammation and describe its novel antidotes. On the basis of our initial screening, we used a highly sensitive murine model that recapitulates the known human pathogenesis of arsenicals-induced cutaneous inflammation and blistering. Topically administered lewisite induced potent acute inflammation and microvesication in the skin of Ptch1(+/-)/SKH-1 mice. Even at a very low dose, lewisite up-regulates unfolded protein response signaling, inflammatory response, and apoptosis. These cutaneous lesions were associated with production of reactive oxygen species and extensive apoptosis of the epidermal keratinocytes. We confirmed that activation of reactive oxygen species-dependent unfolded protein response signaling is the underlying molecular mechanism of skin damage. Similar alterations were noticed in lewisite-treated cultured human skin keratinocytes. We discovered that chemical chaperone 4-phenyl butyric acid and antioxidant N-acetylcysteine, which significantly attenuate lewisite-mediated skin injury, can serve as potent antidotes. These data reveal a novel molecular mechanism underlying the cutaneous pathogenesis of lewisite-induced lesions. We also identified novel potential therapeutic targets for lewisite-mediated cutaneous injury. PMID:27528504

  17. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

    Science.gov (United States)

    Rochman, Chelsea M.; Hoh, Eunha; Kurobe, Tomofumi; Teh, Swee J.

    2013-01-01

    Plastic debris litters aquatic habitats globally, the majority of which is microscopic (Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants. PMID:24263561

  18. Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene co-expression modules.

    Science.gov (United States)

    Te, Jerez A; AbdulHameed, Mohamed Diwan M; Wallqvist, Anders

    2016-09-01

    Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co-expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) - a toxicogenomics database containing organ-specific gene expression data matched to dose- and time-dependent chemical exposures and adverse histopathology assessments in Sprague-Dawley rats. We proposed a protocol for selecting gene modules associated with chemical-induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical-time-dose combination, correlated with the severity of histopathological damage in a dose-dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

  19. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    Science.gov (United States)

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  20. Chemically-induced oxidative stress increases the vulnerability of PC12 cells to rotenone-induced toxicity

    NARCIS (Netherlands)

    de Groot, Martje W G D M; Westerink, Remco H S

    2014-01-01

    In vitro models, including the widely used PC12 cell line, can increase insight into cellular and molecular mechanisms underlying neurodegenerative processes. An important determinant for the vulnerability of cells for chemical insults may be the endogenous level of oxidative stress. To test this hy

  1. B-lymphocytes as key players in chemical-induced asthma.

    Directory of Open Access Journals (Sweden)

    Vanessa De Vooght

    Full Text Available T-lymphocytes and B-lymphocytes are key players in allergic asthma, with B-lymphocytes producing antigen-specific immunoglobulins E (IgE. We used a mouse model of chemical-induced asthma and transferred B-lymphocytes from sensitized animals into naïve wild type mice, B-lymphocyte knock-out (B-KO mice or severe combined immunodeficiency (SCID mice. On days 1 and 8, BALB/c mice were dermally sensitized with 0.3% toluene diisocyanate (TDI (20 µl/ear. On day 15, mice were euthanized and the auricular lymph nodes isolated. B-lymphocytes (CD19(+ were separated from the whole cell suspension and 175,000 cells were injected in the tail vein of naïve wild type, B-KO or SCID mice. Three days later, the mice received a single oropharyngeal challenge with 0.01% TDI (20 µl or vehicle (acetone/olive oil (AOO (controls. Airway reactivity to methacholine and total and differential cell counts in the bronchoalveolar lavage (BAL fluid were measured 24 hours after challenge. B-lymphocytes of AOO or TDI-sensitized mice were characterized for the expression of surface markers and production of cytokines. We found that transfer of B-cells obtained from mice dermally sensitized to toluene diisocyanate (TDI into naïve wild type mice, B-KO mice or SCID mice led, within three days, to an acute asthma-like phenotype after an airway challenge with TDI. This response was specific and independent of IgE. These B-lymphocytes showed antigen presenting capacities (CD80/CD86 and CD40 and consisted of B effector (Be2- (IL-4 and Be1-lymphocytes (IFN-γ. The transferred B-lymphocytes were visualized near large airways, 24 hours after TDI challenge. Thus, B-lymphocytes can provoke an asthmatic response without the action of T-lymphocytes and without major involvement of IgE.

  2. Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis.

    Science.gov (United States)

    Qi, Cuiling; Lan, Haimei; Ye, Jie; Li, Weidong; Wei, Ping; Yang, Yang; Guo, Simei; Lan, Tian; Li, Jiangchao; Zhang, Qianqian; He, Xiaodong; Wang, Lijing

    2014-07-01

    Slit, a neuronal guidance cue, binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit has been reported to have an important effect on tumor growth and metastasis. In the current study, we evaluated the role of Slit2 in skin tumor growth and invasion in mice using a two-step chemical carcinogenesis protocol. We found that Slit2 expression correlated with the loss of basement membrane in the samples of human skin squamous cell carcinoma at different stages of disease progression. Slit2-Tg mice developed significantly more skin tumors than wild-type mice. Furthermore, the skin tumors that occurred in Slit2-Tg mice were significantly larger than those in the wild-type mice 10 weeks after 7,12-dimethylbenz[a]anthracene initiation until the end of the experiment. We also found that pathological development of the wild-type mice was delayed compared with that of Slit2-Tg mice. To further investigate the mechanism of increasing tumors in Slit2-Tg mice, we analyzed the expression of 5-bromo-2'-deoxyuridine (BrdU) in mouse skin lesions and found that the number of BrdU-positive cells and microvessel density in skin lesions were significantly higher in Slit2-Tg mice than in wild-type mice. Histological staining of PAS and type IV collagen and the colocalization of Slit2 and type IV collagen demonstrated varying degrees of loss of the basement membrane in the skin lesions from Slit2-Tg mice that were at the stage of carcinoma in situ. However, the basement membrane was well defined in the wild-type mice. In addition, MMP2, but not MMP9, was upregulated in the skin tissue of Slit2-Tg mice. Interruption of Slit2-Robo1 signaling by the antibody R5 significantly repressed the invasive capability of the squamous cell carcinoma cell line A431. Taken together, our findings reveal that Slit2 promotes DMBA/TPA-induced skin tumorigenesis by increasing cell proliferation, microvessel density, and invasive behavior of cutaneous squamous

  3. Photon-induced electro-chemical processes in airless icy bodies analogues

    Science.gov (United States)

    Marchione, Demian; Gudipati, Murthy

    2016-10-01

    Previous laboratory studies have shown that radiation-induced ionization of impurities in water-rich ices drives the formation of ionized species resulting in charge generation and accumulation in ices [1-3]. It is expected that some of these impurity ions are decomposed into smaller volatile species and ejected into the vacuum. These processes are relevant to the chemical composition of the near-surface tenuous (thin) atmosphere of icy bodies such as the Jovian satellites like Europa.Our work aims at investigating photocurrents from organic impurity embedded water ices of several microns thick and understanding how these measurements correlate with the desorption of volatiles during UV and electron irradiation. These experiments are performed in an ultrahigh vacuum chamber around Europa's surface temperature (100 – 150 K) conditions using a low-pressure hydrogen flow-discharge lamp emitting primarily at Lyα (121.6 nm), a 2 keV electron source, and a substrate-less electrode. Photoionization of organic impurities in the water matrix results in charge pair (electron and ion) separation within the ice, and hence in detectable currents that are measured as a function of the applied bias and the temperature (5 K – 200 K). Photodesorption products are also identified by a quadrupole mass spectrometer (QMS) and correlated with conductivity measurements. We will discuss these results in the context of expected Europa's surface photoconductivity and near-surface volatile production.References:[1] M. S. Gudipati, and L. J. Allamandola, Astrophysical Journal Letters, 2003, 596(2), L195-L198.[2] M. S. Gudipati, Journal of Physical Chemistry A, 2004, 108(20), 4412-4419.[3] S. H. Cuylle, L. J. Allamandola, and H. Linnartz, Astronomy and Astrophysics, 2014, 562, A22.This work has been carried out at Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration, and funded by NASA under Planetary

  4. Molecular techniques as complementary tools in orchid mutagenesis

    International Nuclear Information System (INIS)

    Orchid breeders have always been dependent on hybridization technology to produce new orchid hybrids and varieties. The technology has proven very reliable and easy to use and has produced wide range of successful cultivars with attractive combinations of spray length, bud number, flower colour and form, vase life, fragrance, seasonality, and compactness. By introducing mutagenesis however, wide variations of flower colours, form and size can still be obtained in addition to overcoming the problem of sexual incompatibility and sterility. In addition, complementary use of molecular techniques will allow breeders to target more specific characteristic changes and cut short breeding time. PCR-based techniques used to analyse the DNA of mutagenic clones found polymorphic fragments that can be developed as molecular markers. This paper describes how mutagenesis and molecular techniques can be used to enhance orchid breeding efforts. (author)

  5. Permeability Enhancement in Fine-Grained Sediments by Chemically Induced Clay Fabric Shrinkage

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A M; Kansa, E J; Viani, B E; Blake, R G; Roberts, J J; Huber, R D

    2004-02-26

    The National Research Council [1] identified the entrapment of contaminants in fine-grained clay-bearing soils as a major impediment to the timely and cost-effective remediation of groundwater to regulatory standards. Contaminants trapped in low-permeability, low-diffusivity, high-sorptivity clays are not accessible to advective flushing by treatment fluids from permeable zones, and slowly diffuse out to recontaminate previously cleaned permeable strata. We propose to overcome this barrier to effective remediation by exploiting the ability of certain nontoxic EPA-approved chemicals (e.g., ethanol) to shrink and alter the fabric of clays, and thereby create macro-porosity and crack networks in fine-grained sediments. This would significantly reduce the distance and time scales of diffusive mass transport to advectively flushed boundaries, to yield orders of magnitude reduction in the time required to complete remediation. Given that effective solutions to this central problem of subsurface remediation do not yet exist, the cost and time benefits of successful deployment of this novel concept, both as a stand-alone technology and as an enabling pre-treatment for other remedial technologies that rely on advective delivery, is likely to be very large. This project, funded as a 1-year feasibility study by LLNL's LDRD Program, is a multi-directorate, multi-disciplinary effort that leverages expertise from the Energy & Environment Directorate, the Environmental Restoration Division, and the Manufacturing & Materials Evaluation Division of Mechanical Engineering. In this feasibility study, a ''proof-of-principle'' experiment was performed to answer the central question: ''Can clay shrinkage induced by ethanol in clay-bearing sediments overcome realistic confining stresses, crack clay, and increase its effective permeability by orders of magnitude within a time that is much smaller than the time required for diffusive mass transport of

  6. Mutagenesis of hibiscus rosa-sinensis

    International Nuclear Information System (INIS)

    Mutation induction is an alternative method to create more variation in Hibiscus rosa-sinensis. Radiosensitivity test was carried out to determine the effective doses for irradiation of stem cuttings. Stem cuttings of Hibiscus rosa-sinensis were irradiated at 10, 20, 30 and 60 Gy using a gamma cell with a Co-60 source at a dose rate of 1.66 Gys-1. Irradiated stem cuttings were planted in sand-beds and data on the number of growing shoots were taken. Increasing gamma ray doses resulted in a reduction of growing shoots on the irradiated stem cuttings. It was shown that the LD50 for the stem cuttings was 36.2 Gy and at 75% growth was 17.15 Gy. Based on these results, 20 to 30 Gy were chosen for irradiation of the stem cuttings to induce mutation in Hibiscus rosa-sinensis. Irradiated stem cuttings were then planted into sand-beds for rooting. After one month, the rooted stems were transferred into polybags and allowed to grow under 70% shade provided by plastic netting and the variants were subsequently observed. Three variants with variation in flower shapes and colours were obtained. (Author)

  7. Studies in neutron mutagenesis in maize

    International Nuclear Information System (INIS)

    Pollen grains of Bz strain of maize were exposed to 14 MeV neutrons with single or fractionated treatments, and pollinated on the recessive stock. Mutation frequency from Bz to bz was observed after harvest of F1 seeds. No clear difference in the mutation frequencies between single and fractionation series was observed. To investigate the effects of water content upon mutation frequency of neutron and gamma-rays, seeds heterozygous for the Yq2-gene were used. Moisture-stabilized (13%) seeds and seeds steeped in water for 24 hrs were exposed to neutrons or to gamma-rays, and mutation from Yq2 to yq2 was detected as color change green to yellow-green in the seedlings. In the gamma-ray treatments, the mutation frequency of wet seeds was about 1.5 times higher than that of corresponding lot of dry seeds. In the neutron treatment, on the other hand, no clear difference in frequency between wet and dry seeds was observed. It may be concluded that no change or no recovery in neutron-induced mutation was observed not only in the fractionation treatment but also in the dry and wet seeds treatments. (author)

  8. Effect of chronic administration of green tea extract on chemically induced electrocardiographic and biochemical changes in rat heart

    Directory of Open Access Journals (Sweden)

    Patil Leena

    2010-01-01

    Full Text Available Many chemicals induce cell-specific cytotoxicity. Chemicals like doxorubicin induce oxidative stress leading to cardiotoxicity causing abnormalities in ECG and increase in the biomarkers indicating toxicity. Green tea extract (GTE, Camellia sinensis (Theaceae, is reported to exert antioxidant activity mainly by means of its polyphenolic constituent, catechins. Our study was aimed to find out the effect of GTE (25, 50, 100 mg/kg/day p.o. for 30 days on doxorubicin-induced (3 mg/kg/week, i.p. for 5 weeks electrocardiographic and biochemical changes in rat heart. It is observed that GTE administered rats were less susceptible to doxorubicin-induced electrocardiographic changes and changes in biochemical markers like lactate dehydrogenase (LDH, creatine kinase (CK, and glutamic oxaloacetate transaminase (GOT in serum, and superoxide dismutase (SOD, catalase (CAT and reduced glutathione (GSH, membrane bound enzymes like Na + K + ATPase, Ca 2+ ATPase, Mg 2+ ATPase and decreased lipid peroxidation (LP in heart tissue, indicating the protection afforded by GTE administration.

  9. Photodynamic action of methylene blue: mutagenesis and synergism

    International Nuclear Information System (INIS)

    The associated mutagenesis and the interactions with physical agents in order to potencialize its biological effects are studied. The induction of mutation in bacterias due to photodynamic action of methylene blue is presented as well as the induction of single breaks in bacterial DNA and the relationship between the repair systems, especially the SOS one. The interaction of the photodynamic therapy with low intensity electric current is discussed. (M.A.C.)

  10. SOMA: a single oligonucleotide mutagenesis and cloning approach.

    Directory of Open Access Journals (Sweden)

    Thorsten Pfirrmann

    Full Text Available Modern biology research requires simple techniques for efficient and restriction site-independent modification of genetic material. Classical cloning and mutagenesis strategies are limited by their dependency on restriction sites and the use of complementary primer pairs. Here, we describe the Single Oligonucleotide Mutagenesis and Cloning Approach (SOMA that is independent of restriction sites and only requires a single mutagenic oligonucleotide to modify a plasmid. We demonstrate the broad application spectrum of SOMA with three examples. First, we present a novel plasmid that in a standardized and rapid fashion can be used as a template for SOMA to generate GFP-reporters. We successfully use such a reporter to assess the in vivo knock-down quality of morpholinos in Xenopus laevis embryos. In a second example, we show how to use a SOMA-based protocol for restriction-site independent cloning to generate chimeric proteins by domain swapping between the two human hRMD5a and hRMD5b isoforms. Last, we show that SOMA simplifies the generation of randomized single-site mutagenized gene libraries. As an example we random-mutagenize a single codon affecting the catalytic activity of the yeast Ssy5 endoprotease and identify a spectrum of tolerated and non-tolerated substitutions. Thus, SOMA represents a highly efficient alternative to classical cloning and mutagenesis strategies.

  11. W-reactivation and W-mutagenesis in bacteriophages lambda and T7: comparison of action of ultraviolet irradiation (254nm) and furocouma photosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Zavil' gel' skij, G.B.; Belogurov, A.A.; Kryuger, D.N. (AN SSSR, Moscow. Inst. Molekulyarnoj Biologii; Humboldt-Universitaet, Berlin (German Democratic Republic))

    1982-01-01

    When treating bacteriophage lambda with 8-methoxypsoralen (8-MOP) and light (lambda>320 nm), two types of photoproducts are formed in DNA: monoadducts and diadducts or interstrand linkings. If a wild-type strain of Escherichia coli is used as host, W-reactivation and W-mutagenesis (clear-mutation), approximately equal in magnitude to those of UV-irradiated phage lambda, are observed in the bacteriophage lambda treated with 8-MOP plus light. If mutant strains E coli uvrA/sup -/, recA/sup -/ and lexA/sup -/ are used as host W-reactivation and W-mutagenesis practically do not occur in phage lambda. Using the method of ''reirradiation'', it is shown that clear-mutations in 8-MOP plus light treated phage lambda are induced in the process of W-mutagenesis mainly due to the formation of diadducts (interstrand linking) in DNA. In the phage monoadducts of derived furocoumarins also have a mutageneous character but their mutagenesis effectiveness (mutation probability calculating on one photo product) is significantly inferior to that of diadducts (approximately 15-20 times). It has been demonstrated in the experiments on the determination of W-mutagenesis of phage lambda photosensitized with angelisine - an angular derivative of furocoumarins - that mainly form monoadducts in DNA. It is also shown that W-reactivation and W-mutagenesis effects are observed when sowing UV-irradiated (254 nm) phage lambda on E coli uvrA/sup -/ and wild-type strains treated with 8-MOP plus light. As to bacteriophage T7 treated with 8-MOP plus light, W-reactivation is not observed even on a wild strain E coli. Preliminary infection of cells with phage T7 that has been strongly inactivated using photosensitizer 8-MOP decreases repair's effectiveness of interstrand linkings in DNA of phage lambda.

  12. Mutagenesis and lethality following S phase irradiation of xeroderma pigmentosum and normal human diploid fibroblasts with ultraviolet light

    International Nuclear Information System (INIS)

    The mutagenic and lethal effects of u.v. light exposure in the DNA synthetic phase of the cell cycle were determined in xeroderma pigmentosum complementation group A (XP-A), hereditary adenomatosis of the colon and rectum (ACR), and a normal, foreskin derived cell strain (AG1522). For AG1522, an increased sensitivity to the cytotoxic effects of u.v. light was observed as compared to previous findings for confluent, non-proliferating cultures. XP-A fibroblasts were markedly hypersensitive and ACR fibroblasts exhibited an intermediate response. The mutagenic response of ACR fibroblasts, however, was similar to normal fibroblasts. A threshold of 1.5-2 J/m2 was observed for u.v. induced mutagenesis in normal and ACR fibroblasts. XP fibroblasts, on the other hand, were strikingly hypermutable and demonstrated little or no threshold. When S phase mutagenesis was considered as a function of survival level rather than u.v. light dose, XP fibroblasts remained significantly hypermutable as compared with normal fibroblasts at all survival levels. Previous mutagenesis results with confluent, non-proliferating cultures of XP and normal fibroblasts were reanalyzed as a function of cytotoxicity; XP hypermutability at all survival levels was also observed. (author)

  13. Bacterial Cell Wall-Induced Arthritis: Chemical Composition and Tissue Distribution of Four Lactobacillus Strains

    OpenAIRE

    Šimelyte, Egle; Rimpiläinen, Marja; Lehtonen, Leena; Zhang, Xiang; Toivanen, Paavo

    2000-01-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls...

  14. Induced mutations in chickpea (Cicer arietinum L.) I. comparative mutagenic effectiveness and efficiency of physical & chemical mutagens

    International Nuclear Information System (INIS)

    Mutagenic effectiveness usually means the rate of mutation as related to dose. Mutagenic efficiency refers to the mutation rate in relation to damage. Studies on comparative mutagenic effectiveness and efficiency of two physical (gamma rays and fast neutrons) and two chemical mutagens (NMU and EMS) on two desi (G 130 & H 214), one kabuli (C 104) and one green seeded (L 345) chickpea (Cicer arietinum L.) have been reported. The treatments included three doses each of gamma rays (400, 500 and 600 Gy) and fast neutrons (5, 10 and 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU 0.01% 20h and 0.02% 8h) and EMS (0.1% 20h and 0.2% 8h). Results indicated that chemical mutagens, particularly NMU are not only more effective but also efficient than physical mutagens in inducing mutations in chickpea. Mutagenic effectiveness and efficiency showed differential behaviour depending upon mutagen and varietal type. Chemical mutagens were more efficient than physical in inducing cholorophyll as well as viable and total number of mutations. Among the mutagens NMU was the most potent, while in the physical, gamma rays were more effective. Out of four mutagens, NMU was the most effective and efficient in inducing a high frequency and wide spectrum of chlorophyll mutations in the M2 followed by fast neutrons. While gamma rays showed least effectiveness, EMS was least efficient mutagens. Major differences in the mutagenic response of the four cultivars were observed. The varieties of desi type were more resistant towards mutagenic treatment than kabuli and green seeded type

  15. Aflatoxin B1: Mechanism of mutagenesis

    Directory of Open Access Journals (Sweden)

    Regina M. Santella

    2007-02-01

    Full Text Available

    Aflatoxins are a group of toxic and carcinogenic fungal metabolites that frequently contaminate corn, peanuts and other products. Aflatoxin B1 (AFB1, the most potent of these, is metabolized by the cytochrome P450 system into a number of hydroxylated metabolites and glutathione conjugates in the process of conversion to more hydrophilic forms for urinary excretion. Unfortunately, one of these metabolites is the aflatoxin-8,9-epoxide that is produced in two forms, endo and exo. Glutathione S-transferases (GST are able to conjugate and detoxify this reactive intermediate. Species differences in susceptibility to the effects of AFB1 are partially related to differences in expression of specific GSTs that are able to conjugate the epoxide to glutathione. The exo epoxide is able to intercalate into DNA and this is followed by reaction of the C8 position of the epoxide with the N7 position of guanine.

    NMR studies of oligonucleotide duplexes containing the adduct have demonstrated that the adduct exists with the aromatic portion intercalated on the 5' face of the guanine residue with Watson-Crick base pairing maintained.

    However, this covalent adduct is chemically unstable due to the charge on the ribose ring. As a result, the guanine can be released from the DNA leaving an apurinic site. This released guanine adduct can be detected in the urine and serves as a biomarker of exposure to AFB1. Alternatively, the ribose ring opens forming a stable formamidopyrimidine (FAPY adduct. This adduct somewhat stabilizes the DNA duplex. Time course studies in animals have demonstrated that the N7 adduct is rapidly removed, probably because it causes more distortion in the helix, while the FAPY adduct is more

  16. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

    OpenAIRE

    Rochman, Chelsea M; Eunha Hoh; Tomofumi Kurobe; Teh, Swee J

    2013-01-01

    Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine ...

  17. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  18. Heterologous Overexpression and Mutagenesis of the Human Bile Salt Export Pump (ABCB11) Using DREAM (Directed REcombination-Assisted Mutagenesis)

    OpenAIRE

    Jan Stindt; Philipp Ellinger; Claudia Stross; Verena Keitel; Dieter Häussinger; Smits, Sander H. J.; Ralf Kubitz; Lutz Schmitt

    2011-01-01

    Homologous recombination in Saccharomyces cerevisiae is a well-studied process. Here, we describe a yeast-recombination-based approach to construct and mutate plasmids containing the cDNA of the human bile salt export pump (BSEP) that has been shown to be unstable in E. coli. Using this approach, we constructed the necessary plasmids for a heterologous overexpression of BSEP in the yeast Pichia pastoris. We then applied a new site-directed mutagenesis method, DREAM (Directed REcombination-Ass...

  19. Synthetic chemical inducers and genetic decoupling enable orthogonal control of the rhaBAD promoter

    DEFF Research Database (Denmark)

    Kelly, Ciarán L; Liu, Zilei; Yoshihara, Akihide;

    2016-01-01

    BAD expression system revealed several promising inducers. These were characterised further to determine the strength, kinetics and concentration-dependence of induction; whether the inducer was used as a carbon source by E. coli; and the modality (distribution) of induction among populations of cells. L...

  20. The breeding of wheat variety 'Xifu No12' by mutagenesis

    International Nuclear Information System (INIS)

    A new wheat strain 95 γ-728 with characters of medium-short stalk, large ear, heavier grain and good quality was bred by a dry hybrid seed treatment of 60Co γ-ray irradiation. The dry hybrid seeds for the treatment were from a cross of two mutants induced by physical and chemical mutagens in 1995. The strain was tested and approved by 'Sichuan Crops Variety Examining and Approving Committee' in October 2003, and named as 'Xifu NO.12'. Course of breeding, Characteristics and yield of 'Xifu NO.12' were introduced in this paper. (authors)

  1. Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling

    Science.gov (United States)

    Choi, Yun-Ho; Lee, Ye-Na; Park, Young-Jun; Yoon, Sung-Jin; Lee, Hee-Bong

    2016-01-01

    The archaeon Sulfolobus solfataricus P1 carboxylesterase is a thermostable enzyme with a molecular mass of 33.5 kDa belonging to the mammalian hormone-sensitive lipase (HSL) family. In our previous study, we purified the enzyme and suggested the expected amino acids related to its catalysis by chemical modification and a sequence homology search. For further validating these amino acids in this study, we modified them using site-directed mutagenesis and examined the activity of the mutant enzymes using spectrophotometric analysis and then estimated by homology modeling and fluorescence analysis. As a result, it was identified that Ser151, Asp244, and His274 consist of a catalytic triad, and Gly80, Gly81, and Ala152 compose an oxyanion hole of the enzyme. In addition, it was also determined that the cysteine residues are located near the active site or at the positions inducing any conformational changes of the enzyme by their replacement with serine residues. [BMB Reports 2016; 49(6): 349-354] PMID:27222124

  2. The Load and Time Dependence of Chemical Bonding-Induced Frictional Ageing of Silica at the Nanoscale

    Science.gov (United States)

    Tian, K.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W.

    2015-12-01

    Rate and state friction (RSF) laws are empirical relationships that describe the frictional behavior of rocks and other materials in experiments, and reproduce a variety of observed natural behavior when employed in earthquake models. A pervasive observation from rock friction experiments is the linear increase of static friction with the log of contact time, or 'ageing'. Ageing is usually attributed to an increase in real area of contact associated with asperity creep. However, recent atomic force microscopy (AFM) experiments demonstrate that ageing of nanoscale silica-silica contacts is due to progressive formation of interfacial chemical bonds in the absence of plastic deformation, in a manner consistent with the multi-contact ageing behavior of rocks [Li et al., 2011]. To further investigate chemical bonding-induced ageing, we explored the influence of normal load (and thus contact normal stress) and contact time on ageing. Experiments that mimic slide-hold-slide rock friction experiments were conducted in the AFM for contact loads and hold times ranging from 23 to 393 nN and 0.1 to 100 s, respectively, all in humid air (~50% RH) at room temperature. Experiments were conducted by sequentially sliding the AFM tip on the sample at a velocity V of 0.5 μm/s, setting V to zero and holding the tip stationary for a given time, and finally resuming sliding at 0.5 μm/s to yield a peak value of friction followed by a drop to the sliding friction value. Chemical bonding-induced ageing, as measured by the peak friction minus the sliding friction, increases approximately linearly with the product of normal load and the log of the hold time. Theoretical studies of the roles of reaction energy barriers in nanoscale ageing indicate that frictional ageing depends on the total number of reaction sites and the hold time [Liu & Szlufarska, 2012]. We combine chemical kinetics analyses with contact mechanics models to explain our results, and develop a new approach for curve

  3. Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System

    Directory of Open Access Journals (Sweden)

    Andrew R. Bassett

    2013-07-01

    Full Text Available Here, we present a simple and highly efficient method for generating and detecting mutations of any gene in Drosophila melanogaster through the use of the CRISPR/Cas9 system (clustered regularly interspaced palindromic repeats/CRISPR-associated. We show that injection of RNA into the Drosophila embryo can induce highly efficient mutagenesis of desired target genes in up to 88% of injected flies. These mutations can be transmitted through the germline to make stable lines. Our system provides at least a 10-fold improvement in efficiency over previously published reports, enabling wider application of this technique. We also describe a simple and highly sensitive method of detecting mutations in the target gene by high-resolution melt analysis and discuss how the new technology enables the study of gene function.

  4. Rat epidermal keratinocyte organotypic culture (ROC) as a model for chemically induced skin irritation testing

    International Nuclear Information System (INIS)

    The potential of rat epidermal keratinocyte (REK) organotypic culture (ROC) with proper stratum corneum barrier as a model for screening skin irritants was evaluated. The test chemicals were selected from ECETOC database (1995) and the observed in vitro irritation potential was compared to ECETOC in vivo primary irritation index (PII), to EU risk phrases, and to the harmonized OECD criteria. Chemicals were applied onto the stratum corneum surface of ROC for 30 min and samples were taken from the underlying medium at 4 and 8 h after exposure. Cell membrane integrity (determined by LDH assay) and pro-inflammatory effect (determined by IL-1α release) were verified at both time points and correlated to PII values. The best correlation (R 2 = 0.831) was seen with LDH leakage test. Based on obtained data, chemicals were classified according to criteria defined by EU and OECD. From 12 chemicals, only two were incorrectly classified according to OECD criteria when using LDH leakage and IL-1α release as irritation markers. At the end of experiment, chemical-treated ROC cultures were fixed and histological changes were assessed. Typical signs for irritation were lightly stained cytoplasm, condensed nuclei, cellular vacuolization, eosinophilic cytoplasms, and blebbing. These irritation effects of chemicals were graded visually into four classes (A-D). The extent of morphological perturbations of the cultures mostly correlated with PII. The present results indicate the validity of the ROC model in predicting skin irritation potential of chemicals and show that the use of set of irritation markers with different mechanistic responses gives more information on irritation than if only one marker was used

  5. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    Science.gov (United States)

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  6. Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid tumor formation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Maura McGrail

    Full Text Available Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700-6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.

  7. 5-Azacytidine Enhances the Mutagenesis of HIV-1 by Reduction to 5-Aza-2'-Deoxycytidine.

    Science.gov (United States)

    Rawson, Jonathan M O; Daly, Michele B; Xie, Jiashu; Clouser, Christine L; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Kim, Baek; Patterson, Steven E; Mansky, Louis M

    2016-04-01

    5-Azacytidine (5-aza-C) is a ribonucleoside analog that induces the lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1) by causing predominantly G-to-C transversions during reverse transcription. 5-Aza-C could potentially act primarily as a ribonucleotide (5-aza-CTP) or as a deoxyribonucleotide (5-aza-2'-deoxycytidine triphosphate [5-aza-dCTP]) during reverse transcription. In order to determine the primary form of 5-aza-C that is active against HIV-1, Illumina sequencing was performed using proviral DNA from cells treated with 5-aza-C or 5-aza-dC. 5-Aza-C and 5-aza-dC were found to induce highly similar patterns of mutation in HIV-1 in terms of the types of mutations observed, the magnitudes of effects, and the distributions of mutations at individual sequence positions. Further, 5-aza-dCTP was detected by liquid chromatography-tandem mass spectrometry in cells treated with 5-aza-C, demonstrating that 5-aza-C was a substrate for ribonucleotide reductase. Notably, levels of 5-aza-dCTP were similar in cells treated with equivalent effective concentrations of 5-aza-C or 5-aza-dC. Lastly, HIV-1 reverse transcriptase was found to incorporate 5-aza-CTPin vitroat least 10,000-fold less efficiently than 5-aza-dCTP. Taken together, these data support the model that 5-aza-C enhances the mutagenesis of HIV-1 primarily after reduction to 5-aza-dC, which can then be incorporated during reverse transcription and lead to G-to-C hypermutation. These findings may have important implications for the design of new ribonucleoside analogs directed against retroviruses. PMID:26833151

  8. Long non-coding RNAs as surrogate indicators for chemical stress responses in human-induced pluripotent stem cells.

    Science.gov (United States)

    Tani, Hidenori; Onuma, Yasuko; Ito, Yuzuru; Torimura, Masaki

    2014-01-01

    In this study, we focused on two biological products as ideal tools for toxicological assessment: long non-coding RNAs (lncRNAs) and human-induced pluripotent stem cells (hiPSCs). lncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to cellular stresses. hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical issues associated with human embryonic stem cells. Here, we identified six novel lncRNAs (CDKN2B-AS1, MIR22HG, GABPB1-AS1, FLJ33630, LINC00152, and LINC0541471_v2) that respond to model chemical stresses (cycloheximide, hydrogen peroxide, cadmium, or arsenic) in hiPSCs. Our results indicated that the lncRNAs responded to general and specific chemical stresses. Compared with typical mRNAs such as p53-related mRNAs, the lncRNAs highly and rapidly responded to chemical stresses. We propose that these lncRNAs have the potential to be surrogate indicators of chemical stress responses in hiPSCs.

  9. Long non-coding RNAs as surrogate indicators for chemical stress responses in human-induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hidenori Tani

    Full Text Available In this study, we focused on two biological products as ideal tools for toxicological assessment: long non-coding RNAs (lncRNAs and human-induced pluripotent stem cells (hiPSCs. lncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to cellular stresses. hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical issues associated with human embryonic stem cells. Here, we identified six novel lncRNAs (CDKN2B-AS1, MIR22HG, GABPB1-AS1, FLJ33630, LINC00152, and LINC0541471_v2 that respond to model chemical stresses (cycloheximide, hydrogen peroxide, cadmium, or arsenic in hiPSCs. Our results indicated that the lncRNAs responded to general and specific chemical stresses. Compared with typical mRNAs such as p53-related mRNAs, the lncRNAs highly and rapidly responded to chemical stresses. We propose that these lncRNAs have the potential to be surrogate indicators of chemical stress responses in hiPSCs.

  10. Arsenic contamination of coarse-grained and nanostructured nitinol surfaces induced by chemical treatment in hydrofluoric acid.

    Science.gov (United States)

    Korotin, D M; Bartkowski, S; Kurmaev, E Z; Borchers, C; Müller, M; Neumann, M; Gunderov, D V; Valiev, R Z; Cholakh, S O

    2012-10-01

    XPS measurements of coarse-grained and nanostructured nitinol (Ni(50.2)Ti(49.8)) before and after chemical treatment in hydrofluoric acid (40% HF, 1 min) are presented. The nanostructured state, providing the excellent mechanical properties of nitinol, is achieved by severe plastic deformation. The near-surface layers of nitinol were studied by XPS depth profiling. According to the obtained results, a chemical treatment in hydrofluoric acid reduces the thickness of the protective TiO(2) oxide layer and induces a nickel release from the nitinol surface and an arsenic contamination, and can therefore not be recommended as conditioning to increase the roughness of NiTi-implants. A detailed evaluation of the resulting toxicological risks is given.

  11. Chemopreventive effect of Quercus infectoria against chemically induced renal toxicity and carcinogenesis

    OpenAIRE

    Rehman, Muneeb U.; Mir Tahir, Farrah Ali; Wajhul Qamar; Rehan Khan; Abdul Quaiyoom Khan; Abdul Lateef; Oday-O-Hamiza; Sarwat Sultana

    2012-01-01

    In this study we have shown that Quercus infectoria attenuates Fe- NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA promoted DEN (N-diethyl nitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC) level and PCNA expression. Fe- NTA (9 mg Fe/kg body weight, intraperitoneally) enhances renal Malondialdehyde, xanthine oxidase and hydrogen ...

  12. Chemically induced dynamic electron polarization investigation of the triplet-radical system in the solution of the triplet quencher

    Institute of Scientific and Technical Information of China (English)

    LU, Tong-Xing; CUI, Zhi-Feng; XU, Xin-Sheng; ZHANG, Xian-Yi

    2000-01-01

    The chemically induced dynamic electron polariztiion (CIDEP) of the triplet molecule/triplet quencher/2,2,6,6-te tranethyl-1-piperidinyioxyl (TEMPO) systems were measured using the high time-resolved FESR spectrometer. The competi tion between the radical-triplet pair mechanism (RTPM) and triplet mechanism (TM) or radical pair mechanism (RPM) polarization in the solution of the triplet quencher was investi gated, and the relationship between reaction rate of the radi cal-triplet pair and quenching rate of triplet was deduced.

  13. Solar and chemical reaction-induced heating in the terrestrial mesosphere and lower thermosphere

    Science.gov (United States)

    Mlynczak, Martin G.

    1992-01-01

    Airglow and chemical processes in the terrestrial mesosphere and lower thermosphere are reviewed, and initial parameterizations of the processes applicable to multidimensional models are presented. The basic processes by which absorbed solar energy participates in middle atmosphere energetics for absorption events in which photolysis occurs are illustrated. An approach that permits the heating processes to be incorporated in numerical models is presented.

  14. Analysing chemical-induced changes in macroinvertebrate communities in aquatic mesocosm experiments: a comparison of methods

    NARCIS (Netherlands)

    Szöcs, E.; Brink, van den P.J.; Lagadic, L.; Caquet, T.; Roucaute, M.; Auber, A.; Bayona, Y.; Liess, M.; Ebke, P.; Ippolito, A.; Braak, ter C.J.F.; Brock, T.C.M.; Schäfer, R.B.

    2015-01-01

    Mesocosm experiments that study the ecological impact of chemicals are often analysed using the multivariate method ‘Principal Response Curves’ (PRCs). Recently, the extension of generalised linear models (GLMs) to multivariate data was introduced as a tool to analyse community data in ecology. More

  15. Inducing fertility restoration in the genic male sterile line of rice with chemical regulators

    Institute of Scientific and Technical Information of China (English)

    WANGKaizhi

    1994-01-01

    For the first time, the fertility of rice genic male sterile line was partially restored with the application of chemical regulators at Hainan Rice Breeding Nursery on Mar 1993. A single panicle of the rice plant couldbear as many as 27 grains.

  16. Optimizing chemically induced resistance in tomato against Botrytis cinerea

    DEFF Research Database (Denmark)

    Luna, Estrella; Beardon, Emily G; Ravnskov, Sabine;

    2016-01-01

    repressed plant growth at higher concentrations of the chemicals, which was particularly pronounced in hydroponically grown plants after BABA treatment. Both seed coating with BABA, and seedling treatments with BABA or JA, did not affect AMF root colonization in soil-grown tomato. Our study has identified...

  17. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transparent substrate

    International Nuclear Information System (INIS)

    Dot array and line patterns of multi-walled carbon nanotubes (MWCNTs) were successfully grown by laser-induced chemical vapor deposition (LCVD) on a transparent substrate at room temperature. In the proposed technique, a Nd:YVO4 laser with a wavelength of 532 nm irradiates the backside of multiple catalyst layers (Ni/Al/Cr) through a transparent substrate to induce a local temperature rise, thereby allowing the direct writing of dense dot and line patterns of MWCNTs below 10 μm in size to be produced with uniform density on the controlled positions. In this LCVD method, a multiple-catalyst-layer with a Cr thermal layer is the central component for enabling the growth of dense MWCNTs with good spatial resolution.

  18. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    OpenAIRE

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Carolina H. Andrade; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop ...

  19. Increase in UV mutagenesis by heat stress on UV-irradiated E. coli cells.

    Science.gov (United States)

    Saha, Swati; Basu, Tarakdas

    2012-06-01

    When leu- auxotrophs of Escherichia coli, after UV irradiation, were grown at temperatures between 30 and 47°C, the frequency of UV-induced mutation from leu- to leu+ revertant increased as the UV dose and the temperature increased. For cells exposed to a UV dose of 45 J/m2, the mutation frequency at 47°C was 1.9 times that at 30°C; for a dose of 90 J/m2, it was 3.25 times; and for 135 J/m2, it was 4.8 times. Similar enhancement of reversion frequency was observed when the irradiated cells were grown at 30°C in the presence of a heat shock inducer, ethanol (8% v/v). Heat shock-mediated enhancement of UV mutagenesis did not occur in an E. coli mutant sigma 32 (heat shock regulator protein), but sigma 32 overexpression in the mutant strain (transformed with a sigma 32-bearing plasmid) increased the UV-induced mutation frequency. These results suggest that heat stress alone has no mutagenic property, but when applied to UV-damaged cells, it enhances the UV-induced frequency of cell mutation.

  20. Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles.

    Science.gov (United States)

    Campbell, Michael; Segear, Erika; Beers, Lee; Knauber, Donna; Suttle, Jeffrey

    2008-11-01

    Meristem dormancy in perennial plants is a developmental process that results in repression of metabolism and growth. The cessation of dormancy results in rapid growth and should be associated with the production of nascent transcripts that encode for gene products controlling for cell division and growth. Dormancy cessation was allowed to progress normally or was chemically induced using bromoethane (BE), and microarray analysis was used to demonstrate changes in specific transcripts in response to dormancy cessation before a significant increase in cell division. Comparison of normal dormancy cessation to BE-induced dormancy cessation revealed a commonality in both up and downregulated transcripts. Many transcripts that decrease as dormancy terminates are inducible by abscisic acid particularly in the conserved BURP domain proteins, which include the RD22 class of proteins and in the storage protein patatin. Transcripts that are associated with an increase in expression encoded for proteins in the oxoglutarate-dependent oxygenase family. We conclude that BE-induced cessation of dormancy initiates transcript profiles similar to the natural processes that control dormancy. PMID:18317824

  1. Mutagenesis in Newts: Protocol for Iberian Ribbed Newts.

    Science.gov (United States)

    Hayashi, Toshinori; Takeuchi, Takashi

    2016-01-01

    Newts have the remarkable capability of organ/tissue regeneration, and have been used as a unique experimental model for regenerative biology. The Iberian ribbed newt (Pleurodeles waltl) is suitable as a model animal. We have established methods for artificial insemination and efficient transgenesis using P. waltl newts. In addition to the transgenic technique, development of TALENs enables targeting mutagenesis in the newts. We have reported that TALENs efficiently disrupted targeted genes in newt embryos. In this chapter, we introduce a protocol for TALEN-mediated gene targeting in Iberian ribbed newts. PMID:26443218

  2. Chemical profiling with HPLC-FTMS of exogenous and endogenous chemicals susceptible to the administration of chotosan in an animal model of type 2 diabetes-induced dementia.

    Science.gov (United States)

    Niu, Yimin; Li, Feng; Inada, Chikako; Tanaka, Ken; Watanabe, Shiro; Fujiwara, Hironori; Sasaki-Hamada, Sachie; Oka, Jun-Ichiro; Matsumoto, Kinzo

    2015-02-01

    In our previous study, the daily administration of chotosan (CTS), a Kampo formula consisting of Uncaria and other 10 different crude drugs, ameliorated cognitive deficits in several animal models of dementia including type 2 diabetic db/db mice in a similar manner to tacrine, an acetylcholinesterase inhibitor. The present study investigated the metabonomics of CTS in db/db mice, a type 2 diabetes model, and m/m mice, a non-diabetes control strain, to identify the exogenous and endogenous chemicals susceptible to the administration of CTS using high performance liquid chromatography equipped with an orbitrap hybrid Fourier transform mass spectrometer. The results obtained revealed that the systemic administration of CTS for 20 days led to the distribution of Uncalia plant-derived alkaloids such as rhynchophylline, hirsuteine, and corynoxeine in the plasma and brains of db/db and m/m mice and induced alterations in four major metabolic pathways; i.e., (1) purine, (2) tryptophan, (3) cysteine and methionine, (4) glycerophospholipids in db/db mice. Moreover, glycerophosphocholine (GPC) levels in the plasma and brain were significantly higher in CTS-treated db/db mice than in vehicle-treated control animals. The results of the in vitro experiment using organotypic hippocampal slice cultures demonstrated that GPC (10-30 μM), as well as tacrine, protected hippocampal cells from N-methyl-d-aspartate-induced excitotoxicity in a manner that was reversible with the muscarinic receptor antagonist scopolamine, whereas GPC had no effect on the activity of acetylcholinesterase in vitro. Our results demonstrated that some CTS constituents with neuropharmacological activity were distributed in the plasma and brain tissue following the systemic administration of CTS and may subsequently have affected some metabolic pathways including glycerophospholipid metabolism and cognitive function in db/db mice. Moreover, the present metabonomic analysis suggested that GPC is a putative

  3. Bio-molecular alterations induced by a chemical or radiating stress in isolated human cells

    International Nuclear Information System (INIS)

    After having recalled some aspects of radiobiology (effects of ionizing radiations, molecular targets of radiations, cellular responses with respect to the radiation), the author discusses various aspects of radio-sensitivity: intrinsic radio-sensitivity of tumoral and normal cells, DNA injuries and in vitro radio-sensitivity, genes of susceptibility to ionizing radiations, clustered injuries. Then she reports investigations performed by infrared micro-spectroscopy: characterization of pathological lines, of biological processes, of oxidative injuries induced by xenobiotics, of injuries induced by ionizing radiations

  4. PCR-based site-specific mutagenesis of peptide antibiotics FALL-39 and its biologic activities

    Institute of Scientific and Technical Information of China (English)

    Yun-xia YANG; Yun FENG; Bo-yao WANG; Qi WU

    2004-01-01

    AIM: To construct PGEX-1λT-FALL-39 expression vector and its mutant vector, and study the relationship of function and structure. METHODS: A cDNA encoding mature FALL-39 was cloned from SPCA- 1 cell mRNA and the prokaryotic expression vector PGEX- 1λT-FALL-39 was constructed. Two kinds of polymerase chain reaction (PCR) for the site-direction mutagenesis were used to construct FALL-39 mutant expression vector, FALL-39-Lys-32 and FALL-39-Lys-24. Minimal effective concentration, minimal inhibitory concentration, and minimal bactericidal concentration were used to assay the antibacterial activities of these peptides. Effects of different solution on the antibacterial activity of FALL-39 and FALL-39-Lys-32 were observed by CFU determination. The hemolytic effects of these peptides were also examined on human red blood cells. RESULTS: Two site-specific mutants FALL-39-Lys-32 and FALL-39-Lys24 were obtained by PCR-induced mutagenesis. In comparison with two-step PCR which required two pairs of primers, one step PCR which required one pair of primers is a simple and efficient method for the PCR based site-specific mutagenesis. Using the prokaryotic expression system, the E coli-based products of recombinant FALL39 and its mutant peptides were also obtained. The antibacterial assay showed that FALL-39-Lys-32 and FALL-39-Lys24 were more potential in the antibacterial activity against E coli ML35p and Pseltdomonas aeruginosa ATCC27853 than that of FALL-39, and no increase in hemolysis was observed at the antibacterial concentrations. The antibacterial activity of FALL-39-Lys-32 against E coli was more potent than that of FALL-39 in NaCl-containing LB medium, while its activity was almost the same as FALL-39 in SO2-4 containing Medium E. CONCLUSION: PCR-based mutagensis is a useful model system for studying the structure and function relationship of antimicrobial peptides. Keeping α-helical conformation of FALL-39 and increasing net positive charge can increase the

  5. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction.

    Science.gov (United States)

    Lee, Hyosun; Nedrygailov, Ievgen I; Lee, Young Keun; Lee, Changhwan; Choi, Hongkyw; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-03-01

    Direct detection of hot electrons generated by exothermic surface reactions on nanocatalysts is an effective strategy to obtain insight into electronic excitation during chemical reactions. For this purpose, we fabricated a novel catalytic nanodiode based on a Schottky junction between a single layer of graphene and an n-type TiO2 layer that enables the detection of hot electron flows produced by hydrogen oxidation on Pt nanoparticles. By making a comparative analysis of data obtained from measuring the hot electron current (chemicurrent) and turnover frequency, we demonstrate that graphene's unique electronic structure and extraordinary material properties, including its atomically thin nature and ballistic electron transport, allow improved conductivity at the interface between the catalytic Pt nanoparticles and the support. Thereby, graphene-based nanodiodes offer an effective and facile way to approach the study of chemical energy conversion mechanisms in composite catalysts with carbon-based supports. PMID:26910271

  6. Size-Induced Enhancement of Chemical Exchange Saturation Transfer (CEST) Contrast in Liposomes

    OpenAIRE

    Zhao, Jason M.; Har-el, Yah-el; McMahon, Michael T.; Zhou, Jinyuan; Sherry, A. Dean; Sgouros, George; Bulte, Jeff W. M.; van Zijl, Peter C.M.

    2008-01-01

    Liposome-based chemical exchange saturation transfer (lipoCEST) agents have shown great sensitivity and potential for molecular magnetic resonance imaging (MRI). Here we demonstrate that the size of liposomes can be exploited to enhance the lipoCEST contrast. A concise analytical model is developed to describe the contrast dependence on size for an ensemble of liposomes. The model attributes the increased lipoCEST contrast in smaller liposomes to their larger surface-to-volume ratio, causing ...

  7. Conformational Changes in Azurin from Pseudomona aeruginosa Induced through Chemical and Physical Protocols

    OpenAIRE

    Fuentes, Lymari; Oyola, Jessica; Fernández, Mónica; Quiñones, Edwin

    2004-01-01

    Azurin from Pseudomona aeruginosa is a small copper protein with a single tryptophan (Trp) buried in the structure. The Gibbs free energies associated with the folding of holo azurin, calculated monitoring Trp fluorescence and changes in absorbance on the ligand-to-metal band, are different because these techniques probe their local environments, thereby being able to probe different conformational changes. The presence of an intermediate state was observed during the chemical denaturation of...

  8. Delivery Induced Intraperitoneal Rupture of a Cystic Ovarian Teratoma and Associated Chronic Chemical Peritonitis

    Directory of Open Access Journals (Sweden)

    Reine Nader

    2014-01-01

    Full Text Available Intraperitoneal rupture of cystic ovarian teratoma is a rare complication. We report a case in a 29-year-old female, with increased abdominal circumference 2 months after vaginal delivery. MRI/CT raised this diagnosis associated to chemical peritonitis. A malignant ovarian mass with peritoneal carcinomatosis was excluded. Laparoscopic oophorectomy was performed and histologic analysis confirmed imaging findings. This case demonstrates the interest of imaging before surgery in pelvic masses to avoid misdiagnosing and to provide adequate treatment.

  9. Detection and characterization of chemical-induced abnormal tissue and rat tumors at different stages using fluorescence spectroscopy

    Science.gov (United States)

    Chen, Wei R.; Jassemnejad, Baha; Crull, Jason; Knobbe, Edward T.; Nordquist, Robert E.

    1996-04-01

    Fluorescence spectroscopy of diseased tissues, including chemical-induced rat liver, kidney and testis lesions, as well as murine mammary tumor, was studied. The rat liver, kidney and testis tissues were excited by radiation of 350 and 366 nm, which appeared to provide the optimal differentiation between normal and lesion tissues; the tumor tissues were excited by both 350 nm and 775 nm wavelengths. In comparison with normal liver tissue, at (lambda) ex equals 366 nm, the fluorescent spectrum of liver lesion showed a clear red shift around the emission peak of 470 nm, the major native fluorescent peak of organized tissue. When excited by 350 nm wavelength, all the chemically induced lesion tissues (liver, kidney and testis) appeared to cause a significant reduction of emission intensity at the 470 nm peak. While the 775 nm excitation did not reveal any significant difference among tumor, muscle and skin tissues, the 350 nm excitation did provide some interesting features among the tumor tissues at different stages. Compared with muscle tissue, the viable tumor showed an overall reduction of emission intensity around 470 nm. In addition, the viable tumor tissue showed a secondary emission peak at 390 nm with necrotic tumor tissue having a reduced intensity. The histology of both viable and necrotic tumor tissue was examined and appeared to correlate with the results of the fluorescent spectroscopy observation.

  10. Room temperature chemically oxidized La2CuO4+y: Phase separation induced by thermal treatment

    DEFF Research Database (Denmark)

    Rial,C.; Moran, E.; Alario-Franco, M.A.;

    1997-01-01

    The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured for this m......The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured...... for this material. The thermogravimetric analysis(TGA) of La2CuO4.103(4) evidences an unexplained two-step mass loss process. Based on this observation, three samples obtained by different thermal treatments of the fully oxidized material were studied by TGA, X-ray diffraction and AC magnetic susceptibility, After......, it seems likely that the plateau observed in the TGA curve of La2CuO4.103(4) might be due to the formation on heating of a stable phase with a fixed oxygen stoichiometry, i.e. La2CuO4.086(4). The stability of this phase could be related-to the presence of one-dimensional interstitial oxygen ordering along...

  11. Laser-Shot-Induced Chemical Reactions inside Nanotubes: a TDDFT investigation

    Science.gov (United States)

    Zhang, Hong; Miyamoto, Yoshiyuki; Rubio, Angel

    2011-03-01

    We present the application of the time-dependent density functional theory (TDDFT) on ultrafast laser pulse which induces dynamics in molecules encapsulated by a nanotube. A strong laser pulse polarized perpendicular to the tube axis induces a giant bond-stretch of an HCl molecule inside both C and BN nanotubes. Depending on the initial orientation of the HCl molecule, the subsequent laser-induced dynamics is different. We also observed a radial motion of the nanotube and vacancies appear on the tube wall when the HCl is perpendicular to tube axis. Furthermore, the disintegration of HCl molecules took place when their molecular axis tilted to tube axis. These simulations are important to analyze light-induced nanochemistry and manipulation of nanostructures encapsulated in organic and inorganic nanotubes. The computational scheme used in present work was a combination of the molecular dynamics and real-time propagation of electron wave functions under presence of strong optical field [2,3]. The energy conservation rule was checked to monitor the numerical stability.

  12. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  13. Depth-resolved chemical mapping of rock coatings using Laser-Induced Breakdown Spectroscopy: Implications for geochemical investigations on Mars

    Science.gov (United States)

    Lefebvre, C.; Catalá-Espí, A.; Sobron, P.; Koujelev, A.; Léveillé, R.

    2016-07-01

    We demonstrate that Laser-Induced Breakdown Spectroscopy (LIBS) is capable of identifying the presence of natural rock coatings, and we define LIBS signatures of complex multi-layered coatings. This is illustrated by detailed LIBS analysis, in Mars-simulated conditions, of a rock collected in the Svalbard Islands, and which is analogous to some altered Martian rocks. The sample is a basaltic rock with sub-mm Ca-Mg-Fe-Si rich mineral coatings. LIBS elemental analysis of several distinct regions on the surface of the rock demonstrates the variability of chemical compositions of the various coatings, which is confirmed by complementary scanning electron microscope (SEM) analysis. Furthermore, the LIBS analysis as a function of the depth at different locations shows chemical variability, indicative of penetration through thin coatings of varying composition. Fine-scale, three-dimensional LIBS analysis is of interest for identifying and characterizing coatings on martian rocks, likely originating from aqueous processes, providing a rapid chemical composition as a function of the layers and further understanding of the formation of the deposits and on planetary evolution.

  14. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    International Nuclear Information System (INIS)

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  15. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-01

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  16. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-01

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC. PMID:27006499

  17. Effective Expression-Independent Gene Trapping and Mutagenesis Mediated by Sleeping Beauty Transposon

    Institute of Scientific and Technical Information of China (English)

    Guili Song; Qing Li; Yong Long; Perry B. Hackett; Zongbin Cui

    2012-01-01

    Expression-independent gene or polyadenylation [poly(A)] trapping is a powerful tool for genome-wide mutagenesis regardless of whether a targeted gene is expressed.Although a number of poly(A)-trap vectors have been developed for the capture and mutation of genes across a vertebrate genome,further efforts are needed to avoid the 3′-terminal insertion bias and the splice donor (SD)read-through,and to improve the mutagenicity.Here,we present a Sleeping Beauty (SB) transposon-based vector that can overcome these limitations through the inclusion of three functional cassettes required for gene-finding,gene-breaking and large-scale mutagenesis,respectively.The functional cassette contained a reporter/selective marker gene driven by a constitutive promoter in front of a strong SD signal and an AU-rich RNA-destabilizing element (ARE),which greatly reduced the SD read-through events,except that the internal ribosomal entry site (IRES) element was introduced in front of the SD signal to overcome the phenomenon of 3′-bias gene trapping.The breaking cassette consisting of an enhanced splicing acceptor (SA),a poly(A) signal coupled with a transcriptional terminator (TT) effectively disrupted the transcription of trapped genes.Moreover,the Hsp70 promoter from tilapia genome was employed to drive the inducible expression of SB11,which allows the conditional remobilization of a trap insert from a non-coding region.The combination of three cassettes led to effective capture and disruption of endogenous genes in HeLa cells.In addition,the Cre/LoxP system was introduced to delete the Hsp70-SB11 cassette for stabilization of trapped gene interruption and biosafety.Thus,this poly(A)-trap vector is an alternative and effective tool for identification and mutation of endogenous genes in cells and animals.

  18. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  19. In vitro mutagenesis of commercial fern, Asplenium nidus from spores

    International Nuclear Information System (INIS)

    Asplenium is a largest, most diverse fern genera. One of the common species is Asplenium nidus, well known as Bird's-nest fern, a medium to large fern with erect, stout, unbranched rhizomes. In creating variability of ferns for the benefit of the ornamental plant industry, in vitro mutagenesis is used. In this study, spores of Asplenium nidus were collected from frond bearing mature sporangia. Spores were cultured in modified 1/2 MS basal medium supplemented with various combinations of 6-Benzylaminopurine (BAP) and Naphtalene Acetic Acid (NAA). Spore cultures were incubated in incubation room at 24 degree C with 16 hours photoperiod (3500 lux). It was found that, the most effective combinations were 1 mg/1 BAP + 0. 1 mg/1 NAA and 2mg/1 BAP + 0. 1 mg/1 NAA. Prothallus was formed after 10 days of cultures and gametophytes were formed 1 month later. These gametophytes were irradiated with Gamma ray at doses of 0, 20, 90, 120, 150 and 180 Gy. From the preliminary result obtained from this study, for generating variations and desired phenotypic expression for Asplenium nidus, recommended doses for in vitro mutagenesis using spores are between 90 Gy to 150 Gy. Gametophytes were subcultured at monthly interval to ensure further development and propagation. Frequent monitoring for any changes in the morphology of the irradiated Asplenium nidus plants were carried out. (Author)

  20. Mechanisms of Base Substitution Mutagenesis in Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Albino Bacolla

    2014-03-01

    Full Text Available Cancer genome sequence data provide an invaluable resource for inferring the key mechanisms by which mutations arise in cancer cells, favoring their survival, proliferation and invasiveness. Here we examine recent advances in understanding the molecular mechanisms responsible for the predominant type of genetic alteration found in cancer cells, somatic single base substitutions (SBSs. Cytosine methylation, demethylation and deamination, charge transfer reactions in DNA, DNA replication timing, chromatin status and altered DNA proofreading activities are all now known to contribute to the mechanisms leading to base substitution mutagenesis. We review current hypotheses as to the major processes that give rise to SBSs and evaluate their relative relevance in the light of knowledge acquired from cancer genome sequencing projects and the study of base modifications, DNA repair and lesion bypass. Although gene expression data on APOBEC3B enzymes provide support for a role in cancer mutagenesis through U:G mismatch intermediates, the enzyme preference for single-stranded DNA may limit its activity genome-wide. For SBSs at both CG:CG and YC:GR sites, we outline evidence for a prominent role of damage by charge transfer reactions that follow interactions of the DNA with reactive oxygen species (ROS and other endogenous or exogenous electron-abstracting molecules.

  1. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1.

    Science.gov (United States)

    Zhu, Qidi; Song, Yulong; Zhang, Gaisheng; Ju, Lan; Zhang, Jiao; Yu, Yongang; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-01-01

    Wheat (Triticum aestivum L.), one of the world's most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1-induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1-induced male sterile wheat and is a valuable source of data for future research in SQ-1-induced wheat male sterility. PMID:25898130

  2. Ability of structurally diverse natural products and synthetic chemicals to induce gene expression mediated by estrogen receptors from various species.

    Science.gov (United States)

    Matthews, J B; Fertuck, K C; Celius, T; Huang, Y-W; Fong, C J; Zacharewski, T R

    2002-10-01

    The ability of 14 structurally diverse estrogenic compounds to induce reporter gene expression mediated by estrogen receptors (ERs) from different species was examined. MCF-7 cells were transiently transfected with a Gal4-regulated luciferase reporter gene (17m5-G-Luc) and Gal4-ER chimeric receptors containing the D, E and F domains of the human alpha (Gal4-hERalphadef), mouse alpha (Gal4-mERalphadef), mouse beta (Gal4-mERbetadef), chicken (Gal4-cERalphadef), green anole (Gal4-aERalphadef), Xenopus (Gal4-xERdef) or rainbow trout alpha ERs (Gal4-rtERalphadef). The efficacy of 17beta-estradiol (E2) in inducing reporter gene expression was similar among the different constructs overall, with EC(50) values ranging from 0.05 to 0.7nM. However, Gal4-rtERalphadef had an EC(50) value at 37 degrees C of 28nM, though at 20 degrees C an EC(50) value of 1nM was observed. Despite a similar response to E2 treatment among the ERs, many differences were observed in the magnitude of the response to other structurally diverse chemicals. For example, coumestrol induced Gal4-mERbetadef- and Gal4-aERdef-mediated reporter gene expression 164- and 8-fold greater, respectively, than mediated with the other Gal4-ERs. As well, in contrast to results with other Gal4-ERs, alpha-zearalenol consistently induced Gal4-rtERalphadef-mediated reporter gene activity at lower concentrations than did E2. Overall, the results demonstrate that selected estrogenic compounds exhibit a differential ability to induce reporter gene activity mediated by ERs from different vertebrate species. These data also highlight the importance of incubation temperature when examining rtERalpha-mediated activity. PMID:12477484

  3. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1.

    Directory of Open Access Journals (Sweden)

    Qidi Zhu

    Full Text Available Wheat (Triticum aestivum L., one of the world's most important food crops, is a strictly autogamous (self-pollinating species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1-induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1-induced male sterile wheat and is a valuable source of data for future research in SQ-1-induced wheat male sterility.

  4. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    Science.gov (United States)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas; Williams, Garth; Thieme, Juergen; Nykypanchuk, Dmytro; Li, Li; Muto, Atsushi; Chen-Wiegart, Yu-chen Karen

    2016-08-01

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and wide angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100-200 nm wide by 1 μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. Utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.

  5. Chemical- and radiation-induced haemorrhagic cystitis: current treatments and challenges

    OpenAIRE

    Payne, Heather; Adamson, Andrew; Bahl, Amit; Borwell, Jonathan; Dodds, David; Heath, Catherine; Huddart, Robert; McMenemin, Rhona; Patel, Prashant; Peters, John L; Thompson, Andrew

    2013-01-01

    To review the published data on predisposing risk factors for cancer treatment-induced haemorrhagic cystitis (HC) and the evidence for the different preventive and therapeutic measures that have been used in order to help clinicians optimally define and manage this potentially serious condition. Despite recognition that HC can be a significant complication of cancer treatment, there is currently a lack of UK-led guidelines available on how it should optimally be defined and managed. A systema...

  6. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity

    Directory of Open Access Journals (Sweden)

    Chung Yong-An

    2011-03-01

    Full Text Available Abstract Background Epilepsy is a common neurological disorder, which is attributed to uncontrollable abnormal hyper-excitability of neurons. We investigated the feasibility of using low-intensity, pulsed radiation of focused ultrasound (FUS to non-invasively suppress epileptic activity in an animal model (rat, which was induced by the intraperitonial injection of pentylenetetrazol (PTZ. Results After the onset of induced seizures, FUS was transcranially administered to the brain twice for three minutes each while undergoing electroencephalographic (EEG monitoring. An air-backed, spherical segment ultrasound transducer (diameter: 6 cm; radius-of-curvature: 7 cm operating at a fundamental frequency of 690 KHz was used to deliver a train of 0.5 msec-long pulses of sonication at a repetitive rate of 100 Hz to the thalamic areas of the brain. The acoustic intensity (130 mW/cm2 used in the experiment was sufficiently within the range of safety guidelines for the clinical ultrasound imaging. The occurrence of epileptic EEG bursts from epilepsy-induced rats significantly decreased after sonication when it was compared to the pre-sonication epileptic state. The PTZ-induced control group that did not receive any sonication showed a sustained number of epileptic EEG signal bursts. The animals that underwent sonication also showed less severe epileptic behavior, as assessed by the Racine score. Histological analysis confirmed that the sonication did not cause any damage to the brain tissue. Conclusions These results revealed that low-intensity, pulsed FUS sonication suppressed the number of epileptic signal bursts using acute epilepsy model in animal. Due to its non-invasiveness and spatial selectivity, FUS may offer new perspectives for a possible non-invasive treatment of epilepsy.

  7. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice

    OpenAIRE

    Jian-Hong Ye; Meng-Hua Liu; Xu-Lin Zhang; Jing-Yu He

    2015-01-01

    Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography -diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, signi...

  8. Use of silicate shells to prevent sintering during thermally induced chemical ordering of iron platinum nanoparticles

    Science.gov (United States)

    Reed, Dwayne Fitzgerald

    Its very high value of magnetocrystalline anisotropy makes the L1 0 phase of FePt a leading candidate for future high density magnetic recording systems. FePt nanoparticles can be prepared by a number of chemical methods. However, these particles have a face-centered cubic structure, with low anisotropy and are superparamagnetic. They must be heated to temperatures above 500 °C to obtain the chemically ordered L10 phase. However, during heating the particles coalesce to give twinned grains with large sizes (10-30 nm). Here we provide a solution to the sintering problem by developing a sol-gel procedure for coating the FePt particles with an amorphous silica shell. The silica shell prevents the FePt particles from agglomerating when heated to 700 °C to effect chemical ordering. FePt nanoparticles were prepared by the super-hydride reduction of platinum(II) acetylacetonate and iron(II) chloride in hot diphenyl ether in the presence of oleylamine and oleic acid capping ligands. The particles had an average diameter of 5-6 nm, a face-centered cubic structure and were superparamagnetic. The particles were coated using a microemulsion process producing a 6 nm silicon oxide shell with a single nanoparticle core-shell structure. The nanoparticles were heated to 700 °C for times of 30 min and 1hr to achieve L10 phase transformation. These samples were annealed in a tube furnace under 95% Ar/5% H2. Many procedures were found to be ineffective. They mostly consisted of biphasic reaction systems and several trials where reaction variables were altered in search of the appropriate conditions. This work has impacted the search for a higher density magnetic recording medium by allowing the study of FePt under a protected environment while achieving chemical ordering. If the L10 FePt nanoparticles will be used in magnetic recording, the particles will require a hard coating to prevent wear. In the course of the present work, it has been shown that the silicate shells

  9. Chemical inducible promoter used to obtain transgenic plants with a silent marker and organisms and cells and methods of using same for screening for mutations

    Science.gov (United States)

    Zuo, Jianru; Chua, Nam-Hai

    2007-06-12

    Disclosed is a chemically inducible promoter for transforming plants or plant cells with genes which are regulatable by adding the plants or cells to a medium containing an inducer or by removing them from such medium. The promoter is inducible by a glucocorticoid, estrogen or inducer not endogenous to plants. Such promoters may be used with any plant genes that can promote shoot regeneration and development to induce shoot formation in the presence of a glucocorticoid, estrogen or inducer. The promoter may be used with antibiotic or herbicide resistance genes or other genes which are regulatable by the presence or absence of a given inducer. Also presented are organisms or cells comprising a gene wherein the natural promoter of the gene is disrupted and the gene is placed under the control of a transgenic inducible promoter. These organisms and cells and their progeny are useful for screening for conditional gain of function and loss of function mutations.

  10. Chemopreventive effect of Quercus infectoria against chemically induced renal toxicity and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Muneeb U Rehman

    2012-06-01

    Full Text Available In this study we have shown that Quercus infectoria attenuates Fe- NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA promoted DEN (N-diethyl nitrosamine initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC level and PCNA expression. Fe- NTA (9 mg Fe/kg body weight, intraperitoneally enhances renal Malondialdehyde, xanthine oxidase and hydrogen peroxide generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolizing enzymes such as glutathione-S-transferase and quinone reductase. It also enhances blood urea nitrogen and serum creatinine. Fe-NTA also lead to increase in levels of some inflammatory markers viz NO and MPO and some proinflammatory cytokines viz PGE-2 and TNF-1. The chemopreventive efficacy of Quercus infectoria was studied in terms of xenobiotic metabolizing enzyme activities, LPO, redox status, serum toxicity markers, inflammatory and proinflammatory markers and cell proliferation in the kidney tissue. Oral administration of Quercus infectoria at doses of 75 and 150 mg/kg b wt effectively suppressed renal oxidative stress, inflammation and tumor incidence. Chemopreventive effects of Quercus infectoria were associated with up-regulation of xenobiotic metabolizing enzyme activities and down regulation of serum toxicity markers. Present study supports Quercus infectoria as a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative and inflammatory response in Wistar rat.

  11. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. PMID:27590551

  12. Inhibition of chemically induced carcinogenesis by drugs used in homeopathic medicine.

    Science.gov (United States)

    Kumar, K B Hari; Sunila, E S; Kuttan, Girija; Preethi, K C; Venugopal, C Nimita; Kuttan, Ramadasan

    2007-01-01

    Homeopathy is considered as one modality for cancer therapy. However, there are only very few clinical reports on the activity of the drugs, as well as in experimental animals. Presently we have evaluated the inhibitory effects of potentized homeopathic preparations against N'-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in rats as well as 3-methylcholanthrene-induced sarcomas in mice. We have used Ruta, Hydrastis, Lycopodium and Thuja, which are commonly employed in homeopathy for treating cancer. Administration of NDEA in rats resulted in tumor induction in the liver and elevated marker enzymes such as gamma-glutamyl transpeptidase, glutamate pyruvate transaminase, glutamate oxaloacetate transaminase and alkaline phosphatase in the serum and in liver. Concomitant administration of homeopathic drugs retarded the tumor growth and significantly reduced the elevated marker enzymes level as revealed by morphological, biochemical and histopathological evaluation. Out of the four drugs studied, Ruta 200c showed maximum inhibition of liver tumor development. Ruta 200c and phosphorus 1M were found to reduce the incidence of 3-methylcholanthrene-induced sarcomas and also increase the life span of mice harboring the tumours. These studies demonstrate that homeopathic drugs, at ultra low doses, may be able to decrease tumor induction by carcinogen administration. At present we do not know the mechanisms of action of these drugs useful against carcinogenesis. PMID:17477781

  13. Cytotoxicity and chromosome aberrations in normal human oral keratinocytes induced by chemical carcinogens: Comparison of inter-individual variations.

    Science.gov (United States)

    Tsutsui, T; Kawamoto, Y; Suzuki, N; Gladen, B C; Barrett, J C

    1991-01-01

    Normal human keratinocytes from the oral cavity were cultured in vitro in serum-free medium. Cultures from different individuals were established, and the responses of the cells to different chemicals were compared. The cells, grown at clonal densities, were treated separately with an alkylating agent (N-methyl-N'-nitro-N-nitrosoguanidine; MNNG), two arsenical salts (sodium arsenate or sodium arsenite), sodium fluoride or two polyaromatic hydrocarbons (benzo[a]pyrene or 7,12-dimethylbenz[a]-anthracene). There were no significant differences in the colony-forming efficiencies (22.8 +/- 4.2%) of control (untreated) cells from five different individuals. At selected doses, each of the chemicals reduced the colony-forming efficiencies of the treated cells. The cytotoxicity of most of the chemicals did not differ significantly among cells derived from different individuals, with the exception of sodium arsenate at two doses and sodium fluoride at the highest dose tested. Induction of chromosome aberrations by MNNG, sodium arsenite, sodium arsenate and sodium flouride was analysed with cells derived from up to nine individuals. There was little difference in the inducibilities of chromosome aberrations among cultured keratinocytes from different donors. Treatment of cells from nine donors with one dose of sodium fluoride revealed a statistically significant inter-individual variation. These findings provide a model system to study the effects of carcinogens on the target cells for oral cancers. The results can be compared with findings for cells from other epithelial tissues, since the culture conditions support the growth of keratinocytes regardless of origin. Little inter-individual variation was observed in the response of oral keratinocytes to the chemicals examined.

  14. Seizure susceptibility of neuropeptide-Y null mutant mice in amygdala kindling and chemical-induced seizure models.

    Science.gov (United States)

    Shannon, Harlan E; Yang, Lijuan

    2004-01-01

    Neuropeptide Y (NPY) administered exogenously is anticonvulsant, and, NPY null mutant mice are more susceptible to kainate-induced seizures. In order to better understand the potential role of NPY in epileptogenesis, the present studies investigated the development of amygdala kindling, post-kindling seizure thresholds, and anticonvulsant effects of carbamazepine and levetiracetam in 129S6/SvEv NPY(+/+) and NPY(-/-) mice. In addition, susceptibility to pilocarpine- and kainate-induced seizures was compared in NPY(+/+) and (-/-) mice. The rate of amygdala kindling development did not differ in the NPY(-/-) and NPY(+/+) mice either when kindling stimuli were presented once daily for at least 20 days, or, 12 times daily for 2 days. However, during kindling development, the NPY(-/-) mice had higher seizure severity scores and longer afterdischarge durations than the NPY(+/+) mice. Post-kindling, the NPY(-/-) mice had markedly lower afterdischarge thresholds and longer afterdischarge durations than NPY (+/+) mice. Carbamazepine and levetiracetam increased the seizure thresholds of both NPY (-/-) and (+/+) mice. In addition, NPY (-/-) mice had lower thresholds for both kainate- and pilocarpine-induced seizures. The present results in amygdala kindling and chemical seizure models suggest that NPY may play a more prominent role in determining seizure thresholds and severity of seizures than in events leading to epileptogenesis. In addition, a lack of NPY does not appear to confer drug-resistance in that carbamazepine and levetiracetam were anticonvulsant in both wild type (WT) and NPY null mutant mice.

  15. From cellular to chemical approach for acute neural and alternative options for age-induced functional diseases

    Institute of Scientific and Technical Information of China (English)

    Antonin; Bukovsky

    2015-01-01

    Endogenous "stem cell niche"(SCN) accompanying vessels contains immune system components which in vivo determine differentiation of multi potent stem cells toward proper cell types in given tissue. Combinations of sex steroids may represent novel chemical approach for neuronal areas of regenerative medicine,since they cause transformation of vascular smooth muscle stem cells into differentiating neuronal cells. Circulating sex steroids are present during pregnancy and can be utilized where needed,when various embryonic/fetal tissues develop from their stem cells. Utilization of induced regeneration of tissues(regenerative medicine) is expected being more effective in sudden failures of younger individuals carrying intact SCN,as compared to established chronic disorders caused by SCN alteration. An essential component of SCN are monocyte-derived cells exhibiting tissue-specific "stop effect"(SE) preventing,for instance,an aging of neuronal cells. Its alteration causes that implantation of neuronal stem cells will also result in their differentiation toward aging cells. When we repair the SE by supply of circulating mononuclear cells from young healthy individuals,we may be able to provide novel regenerative treatments of age-induced neural diseases by sex steroid combinations. Questions regarding some age-induced body alterations are also addressed.

  16. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu V. [Department of Physics, Grambling State University, RWE Jones Drive, Carver Hall 81, Grambling, LA 71245 (United States)]. E-mail: naidusv@gram.edu; Harrell, J.W. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Lawson, Jeremy [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Nikles, David E. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Williams, John R. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Isaacs-Smith, Tamara [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2005-12-15

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 x 10{sup 16} ions/cm{sup 2} at 43 {sup o}C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 {sup o}C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 x 10{sup 7} erg/cc, and thermal stability factor of 130. A much higher 375 {sup o}C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  17. Induced Phytoextraction of Lead Through Chemical Manipulation of Switchgrass and Corn; Role of Iron Supplement.

    Science.gov (United States)

    Johnson, Deayne M; Deocampo, Daniel M; El-Mayas, Hanan; Greipsson, Sigurdur

    2015-01-01

    The effects of combined chemical application of benomyl, ethylenedianinetetraacetate (EDTA), and iron (Fe) (foliar and root) on lead (Pb) phytoextraction by switchgrass (Panicum virgatum) and corn (Zea mays) was examined. Switchgrass was grown in Pb-contaminated urban topsoil with the following treatments: (C) Control, (B) benomyl, (E) EDTA, (F) foliar-Fe, (BE) benomyl + EDTA, (BF) benomyl + foliar-Fe, (FE) foliar-Fe + EDTA, (BFE) benomyl + foliar-Fe + EDTA. Corn was grown in sand-culture supplemented with Pb (500 mg kg(-1)) with the following treatments: (C) control, (B) benomyl, (E) EDTA, (F) root-Fe, (BE) benomyl + EDTA, (BF) benomyl + root-Fe, (FE) root-iron + EDTA, and, (BFE) benomyl + root-Fe + EDTA. All treatments were replicated three times and pots were arranged in a completely randomized design. Plants were analyzed for element concentration (Fe, Zn, P, and Pb) using either inductively coupled plasma (argon) atomic emission spectroscopy (ICP-AES) or graphite furnace atomic absorption spectrometer. Iron supplementation (foliar and root) affected Pb-translocation in plants. Foliar-Fe treatment increased translocation ratio of Pb (TF-Pb) significantly compared to other treatments with the exception of plants treated with benomyl and BF. Root-Fe treatment in combination with EDTA (FE) increased TF-Pb significantly compared to other treatments. Phytoextraction was improved by the combined chemical application; plants treated with BFE treatment increased Pb-total-phytoextraction by 424% compared to Control plants.

  18. HEAT-INDUCED CHEMICAL AND COLOR CHANGES OF EXTRACTIVE-FREE BLACK LOCUST (ROBINIA PSEUDOACACIA WOOD

    Directory of Open Access Journals (Sweden)

    Yao Chen,

    2012-02-01

    Full Text Available To investigate chemical and color changes of the polymeric constituents of black locust (Robinia pseudoacacia wood during heat treatment, extractive-free wood flour was conditioned to 30% initial moisture content (MC and heated for 24 h at 120 °C in either an oxygen or nitrogen atmosphere. The color change was measured using the CIELAB color system. Chemical changes of the wood components were determined by means of solid state cross-polarization/magic angle spinning 13C-nuclear magnetic resonance (CPMAS-13C-NMR, Fourier transform infrared (FTIR, diffuse reflectance UV-Vis (DRUV spectroscopy, and elemental (CHN analysis. The results showed that lightness (L* decreased, while chromaticity indexes (a* and b* and chroma (C* increased after heat treatment. There was greater color difference (ΔE* in the samples heated in the presence of oxygen compared to nitrogen. CHN analysis showed an increase in hydrogen and oxygen and a decrease in carbon content. NMR spectra confirmed the cleavage of the β-O-4 structure in the lignin, resulting in a decrease in etherified lignin units and an increase in phenolic structures. DRUV and FTIR spectra confirmed the formation of extensive conjugated structures, such as unsaturated ketones and quinones due to the cleavage of the lignin units. Formation of quinones can be attributed to heat treatment in the presence of oxygen.

  19. Mechanisms mediating environmental chemical-induced endocrine disruption in the adrenal gland

    Directory of Open Access Journals (Sweden)

    Daniel B Martinez-Arguelles

    2015-03-01

    Full Text Available Humans are continuously exposed to hundreds of man-made chemicals that pollute the environment in addition to multiple therapeutic drug treatments administered throughout life. Some of these chemicals, known as endocrine disruptors (EDs, mimic endogenous signals, thereby altering gene expression, influencing development, and promoting disease. Although EDs are eventually removed from the market or replaced with safer alternatives, new evidence suggests that early life exposure leaves a fingerprint on the epigenome, which may increase the risk of disease later in life. Epigenetic changes occurring in early life in response to environmental toxicants have been shown to affect behavior, increase cancer risk, and modify the physiology of the cardiovascular system. Thus, exposure to an ED or combination of EDs may represent a first hit to the epigenome. Only limited information is available regarding the effect of ED exposure on adrenal function. The adrenal gland controls the stress response, blood pressure, and electrolyte homeostasis. This endocrine organ therefore has an important role in physiology and is a sensitive target of EDs. We review herein the effect of ED exposure on the adrenal gland with particular focus on in utero exposure to the plasticizer di(2-ethylehyl phthalate. We discuss the challenges associated with identifying the mechanism mediating the epigenetic origins of disease and availability of biomarkers that may identify individual or population risks.

  20. Probing Seismically Melting Induced Mantle Heterogeneities in Thermal-chemical Convection Models

    Science.gov (United States)

    Heck, H. V.; Davies, H.; Nowacki, A.; Wookey, J. M.

    2015-12-01

    Two regions at the base of the Earth's mantle (the Large Low-Shear Velocity Provinces) pose a fundamental problem in understanding large-scale mantle dynamics and history. Are they dense piles of (possibly primordial) material separated from mantle circulation, or large-scale thermal features which are part of global mantle convection? Or some combination of the two? We use our numerical 3D spherical mantle convection code to perform simulations of the Earths mantle dynamical evolution. We drive the surface velocity of the model according to 200 Ma plate motion reconstructions, to arrive at Earth-like structures in the mantle at present day. Variations in bulk chemistry will be tracked in two ways: 1) by starting the calculations with a (primordial) dense layer at the base of the mantle, and 2) by tracking basalt fraction which is fractionated upon melting close to the surface. The resulting distribution of chemical heterogeneity and temperature will be converted to seismic velocities. This will be done with a thermodynamical database (Stixrude & Lithgow-Bertelloni, GJI, 2005, 2011), allowing us to compare the model with previous observations of triplications and waveform complexity near the margins of the LLSVPs. These observations have been taken as proof that strong chemical variations are present; our simulations can be used to show whether this is true, or if purely thermal convection can also cause these features. We simulate finite-frequency, 3D seismograms at ~5 s period and compare these with previous studies.

  1. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs.

    Directory of Open Access Journals (Sweden)

    Finola E Moore

    Full Text Available Zinc Finger Nucleases (ZFNs made by Context-Dependent Assembly (CoDA and Transcription Activator-Like Effector Nucleases (TALENs provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%-76.8% compared to 1.1%-3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish.

  2. Melt and Chemical Transport in the Mantle: Insights from Deglaciation-Induced Melting Perturbations in Iceland

    Science.gov (United States)

    Eason, D. E.; Ito, G.; Sinton, J. M.

    2011-12-01

    Eruptive products represent a time-averaged view of the melting region and melt migration processes, making numerous fundamental parameters of the melt system difficult to constrain. Temporal and spatial variations in melting provide potential windows into this obscure region of the Earth by preferentially sampling melts from different regions of the mantle or mixing melts over different length-scales. We present a newly extended geochemical time series from the Western Volcanic Zone (WVZ) of Iceland, which experienced a short-lived melting perturbation due to glacial unloading during the last major deglaciation (~15-10 ka). Glacial unloading during this period led to increased degrees of melting particularly in the shallow mantle, which is manifest as an observed increase in volcanic production up to 30 times the steady-state value, decreased levels of highly to moderately incompatible element ratios (e.g., a 35-50% decrease in Nb/Y, with the greatest change occurring in the northernmost WVZ), and elevated SiO2 and CaO concentrations (~0.8 wt. % and ~1.9 wt. % increase in average oxide concentrations respectively) during and immediately following deglaciation. Although eruptive productivity returns to steady-state values within ~3000 yr following deglaciation, the incompatible element concentrations in erupted lavas gradually increase throughout the post-glacial period. We exploit this short-lived melting perturbation to examine and constrain knowledge of fundamental characteristics of melt generation and transport, including mantle permeability, melt ascent rates, depth-dependent melting functions (dF/dP), and the nature of chemical transport and melt mixing in the system. Using conservation equations describing the generation and porous flow of melt in a viscous matrix, we model melt migration in the mantle during and after ice sheet removal, as well as trace element transport for both equilibrium and disequilibrium transport end members. The predicted

  3. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines

    Science.gov (United States)

    ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. We isolated 11 lethal lines that map...

  4. [Cortical diffusion characteristics of seizure induced in the horm of Ammoni: II. Chemical stimulation].

    Science.gov (United States)

    Azanza, M F; González Barón, S; Teijeira, F

    1974-01-01

    We have studied the cortical diffusion characteristics of seizures induced at cornu Ammonis by toppical application of:pentilenetetrazol (Metrazol), acetylcholine and stricnine. We have observed that cerebral cortex synchronise with cornu ammonis showing similar morphology, which is characteristic for the differents drugs applied. We have found similar characteristics in the cortical diffusion to those described in a previous paper 4 for the mechanical stimulation. Hence we must conclue that the variability of the discharges depends onto the position of the electrode in the anteroposterior axes. As far as the electrodes are situated backwards the activity is slower with spikes of higher amplitude and without cortical propagation. PMID:4470829

  5. Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge.

    Science.gov (United States)

    Mañas, A; Spérandio, M; Decker, F; Biscans, B

    2012-01-01

    This work focuses on combined scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) applied to granular sludge used for biological treatment of high-strength wastewater effluents. Mineral precipitation is shown to occur in the core of microbial granules under different operating conditions. Three dairy wastewater effluents, from three different upflow anaerobic sludge blanket (UASB) reactors and two aerobic granular sequenced batch reactors (GSBR) were evaluated. The relationship between the solid phase precipitation and the chemical composition of the wastewater was investigated with PHREEQC software (calculation of saturation indexes). Results showed that pH, Ca:P ratios and biological reactions played a major role in controlling the biomineralization phenomena. Thermodynamics calculations can be used to foresee the nature of bio-precipitates, but the location of the mineral concretions will need further investigation as it is certainly due to local microbial activity. PMID:23393959

  6. EFFECT OF PRESSURE INDUCED GRAFT COPOLYMERIZATION ON THE PHYSICO-CHEMICAL PROPERTIES OF BIO-FIBERS

    Directory of Open Access Journals (Sweden)

    Amar Singh Singha

    2010-04-01

    Full Text Available The present study deals with the surface modification of Agave americana L. fiber through graft copolymerization of methyl methacrylate under pressure in the presence of ceric ammonium nitrate as redox initiator. The various reaction parameters such as reaction time, pressure, concentration of nitric acid, initiator, and monomer, etc. were optimized to have the maximum graft yield of 13.6%. The grafted fibers were then subjected to the evaluation of different physico-chemical properties such as swelling behavior, solubility, moisture absorption under different humidity levels, resistance to acids and bases, etc. It was observed that swelling behavior, solubility behavior, and moisture absorbance decreased with increase in grafting, whereas resistance to acids and bases increased with grafting. The fibers grafted under the optimized conditions were then characterized by Fourier transform infra-red spectroscopy, scanning electron microscopy, thermogravimetric analysis, and x-ray diffraction techniques.

  7. Generation of cavitation luminescence by laser-induced exothermic chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jung Park, Han; Diebold, Gerald J. [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)

    2013-08-14

    Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxide concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.

  8. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis).

    Science.gov (United States)

    Hayes, Tyrone B; Khoury, Vicky; Narayan, Anne; Nazir, Mariam; Park, Andrew; Brown, Travis; Adame, Lillian; Chan, Elton; Buchholz, Daniel; Stueve, Theresa; Gallipeau, Sherrie

    2010-03-01

    The herbicide atrazine is one of the most commonly applied pesticides in the world. As a result, atrazine is the most commonly detected pesticide contaminant of ground, surface, and drinking water. Atrazine is also a potent endocrine disruptor that is active at low, ecologically relevant concentrations. Previous studies showed that atrazine adversely affects amphibian larval development. The present study demonstrates the reproductive consequences of atrazine exposure in adult amphibians. Atrazine-exposed males were both demasculinized (chemically castrated) and completely feminized as adults. Ten percent of the exposed genetic males developed into functional females that copulated with unexposed males and produced viable eggs. Atrazine-exposed males suffered from depressed testosterone, decreased breeding gland size, demasculinized/feminized laryngeal development, suppressed mating behavior, reduced spermatogenesis, and decreased fertility. These data are consistent with effects of atrazine observed in other vertebrate classes. The present findings exemplify the role that atrazine and other endocrine-disrupting pesticides likely play in global amphibian declines. PMID:20194757

  9. Changes in the chemical structure of polytetrafluoroethylene induced by electron beam irradiation in the molten state

    CERN Document Server

    Lappan, U; Lunkwitz, K

    2000-01-01

    Polytetrafluoroethylene (PTFE) was exposed to electron beam radiation at elevated temperature above the melting point under nitrogen atmosphere and in vacuum for comparison. Fourier-transform infrared (FTIR) spectroscopy was used to study the changes in the chemical structure. The irradiation under nitrogen atmosphere leads to the same structures as described recently for PTFE irradiated in vacuum. Trifluoromethyl branches and double bond structures were detected. The concentrations of terminal and internal double bonds are higher after irradiation under nitrogen than in vacuum. Annealing experiments have shown that the thermal oxidative stability of the radiation-modified PTFE is reduced compared to unirradiated PTFE. The reason are the formation of unstable structures such as double bonds.

  10. Chemically induced immunotoxicity in a medium-term multiorgan bioassay for carcinogenesis with Wistar rats

    International Nuclear Information System (INIS)

    A variety of chemicals can adversely affect the immune system and influence tumor development. The modifying potential of chemical carcinogens on the lymphoid organs and cytokine production of rats submitted to a medium-term initiation-promotion bioassay for carcinogenesis was investigated. Male Wistar rats were sequentially initiated with N-nitrosodiethylamine (DEN), N-methyl-N-nitrosourea (MNU), N-butyl-N-(4hydroxybutyl)nitrosamine (BBN), dihydroxy-di-n-propylnitrosamine (DHPN), and 1,2-dimethylhydrazine (DMH) during 4 weeks. Two initiated groups received phenobarbital (PB) or 2-acetylaminofluorene (2-AAF) for 25 weeks and two noninitiated groups received only PB or 2-AAF. A nontreated group was used as control. Lymphohematopoietic organs, liver, kidneys, lung, intestines, and Zymbal's gland were removed for histological analysis. Interleukin (IL)-2, IL-12, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-10, and transforming growth factor beta1 (TGF-β1) levels were determined by ELISA in spleen cell culture supernatants. At the fourth week, exposure to the initiating carcinogens resulted in cell depletion of the thymus, spleen and bone marrow, and impairment of IL-2, IL-12, and IFN-γ production. However, at the 30th week, no important alterations were observed both in lymphoid organs and cytokine production in the different groups. The results indicate that the initiating carcinogens used in the present protocol exert toxic effects on the lymphoid organs and affect the production of cytokines at the initiation step of carcinogenesis. This early and reversible depression of the immune surveillance may contribute to the survival of initiated cells facilitating the development of future neoplasia

  11. Inducible error-prone repair in B. subtilis. Progress report, May 1, 1983-April 30, 1984

    International Nuclear Information System (INIS)

    DNA repair mechanisms in Bacillus subtilis were investigated following mutagenesis via ultraviolet radiation or by chemical mutagens. A bioassay is described whereby the efficiency of repair mechanisms can be measured. DNA cloning studies to transfer the photoreactivation gene from E. coli to B. subtilis are reported. The mutation, which induces the SOS-like system in B. subtilis when grown at 450C, was characterized in order to begin delineation of the genes controlling this system, efforts directed at isolation and cloning of a DNA Polymerase III gene of B. subtilis are related. (DT)

  12. Chemically-induced alteration of UDP-glucuronic acid concentration in rat liver.

    Science.gov (United States)

    Watkins, J B; Klaassen, C D

    1983-01-01

    Since many xenobiotics alter hepatic UDP-glucuronosyltransferase activity, their effect on UDPGA concentration was determined. Rats were pretreated with: 1) microsomal enzyme inducers (7,8-benzoflavone, benzo(a)pyrene, butylated hydroxyanisole, isosafrole, 3-methylcholanthrene, phenobarbital, pregnenolone-16 alpha-carbonitrile (PCN), 2,3,7,8-tetrachlorodibenzo-p-dioxin, trans-stilbene oxide); 2) inhibitors of microsomal enzymes (cobaltous chloride, piperonyl butoxide, SKF 525-A, borneol, galactosamine); 3) hepatotoxins (allyl alcohol, aflatoxin B1, alpha-naphthylisothiocyanate, bromobenzene, cadmium chloride, carbon tetrachloride, 1,1-dichloroethylene), and 4) commonly used anesthetics (pentobarbital, urethane, diethyl ether, halothane, enflurane, methoxyflurane). Rats were decapitated before removal of the liver. All inducers except PCN and isosafrole increased UDPGA 36-85% above control. Mixed-function oxidase inhibitors had no effect whereas borneol and galactosamine reduced UDPGA 85-90%. Aflatoxin B1 and cadmium produced decreases of 59 and 25%, respectively. Hepatic UDPGA content was diminished 70-95% after exposure to the inhalation anesthetics, whereas the other anesthetics reduced UDPGA about 25%. Thus, numerous xenobiotics alter the concentration of UDPGA in rat liver, which may influence the rate of glucoronidation.

  13. Prevention of chemically induced diabetes mellitus in experimental animals by virgin argan oil.

    Science.gov (United States)

    Bellahcen, Said; Mekhfi, Hassane; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Hakkou, Abdelkader; Aziz, Mohammed; Bnouham, Mohamed

    2012-02-01

    The argan tree plays an important socioeconomic and ecologic role in South Morocco. Moreover, there is much evidence for the beneficial effects of virgin argan oil (VAO) on human health. Thus, this study investigated whether administering VAO to rats can prevent the development of diabetes. VAO extracted by a traditional method from the almonds of Argania spinosa (2 mL/kg) was administered orally (for 7 consecutive days) to rats before and during intraperitoneal alloxan administration (75 mg/kg for 5 consecutive days). An alloxan diabetic-induced untreated group and treated by table oil were used as control groups. Body mass, blood glucose and hepatic glycogen were evaluated. In the present study, subchronic treatment with VAO at a dose of 2 mL/kg, before the experimental induction of diabetes, prevented the body mass loss, induced a significant reduction of blood glucose and a significant increase of hepatic glycogen level (p argan oil should be further investigated in a human study to clarify its possible role in reducing weight loss in diabetics, and even in inhibiting the development or progression of diabetes. This antidiabetic effect could be due to the richness of VAO in tocopherols, phenolic compounds and unsaturated fatty acids.

  14. Chemical composition and hepatotoxic effect of Geranium schiedeanum in a thioacetamide-induced liver injury model

    Directory of Open Access Journals (Sweden)

    Juan Gayosso-De-Lucio

    2014-01-01

    Full Text Available One of the major components of some geraniums is geraniin, described by its discoverer as crystallizable tannin, well known as an excellent antioxidant, and also found in fruits such as pomegranate. Recently, natural antioxidants have attracted great attention from consumers over the world due to their lower toxicity than synthetics. But geraniin is not a stable compound, and also is difficult to obtain, that is why in the present study we obtained acetonylgeraniin from Geranium schideanum (Gs, a stable acetone condensate of geraniin. In the present study the effect of Gs acetone-water extract was studied in reference to postnecrotic liver regeneration induced by thioacetamide (TA in rats. Two months male rats were pretreated with daily dose of Gs extract for 4 days (300 mg/kg and the last day also were intraperitoneally injected with TA (6.6 mmol/kg. Samples of blood were obtained from rats at 0, 24, 48, 72 and 96 h following TA intoxication. The pre-treatment with the crude extract in the model of thioacetamide-induced hepatotoxicity in rats decreased and delayed liver injury by 66% at 24 h. This result suggests that Gs extract may be used as an alternative for reduction of liver damage. On the other hand, acute toxicity study revealed that the LD 50 value of the Gs extract is more than the dose 5000 mg/kg in rats, according to the Lorke method.

  15. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Li Chen

    2015-01-01

    Full Text Available Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2/Bcl-2 associated X protein (Bax in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases.

  16. Prevention of chemically induced diabetes mellitus in experimental animals by virgin argan oil.

    Science.gov (United States)

    Bellahcen, Said; Mekhfi, Hassane; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Hakkou, Abdelkader; Aziz, Mohammed; Bnouham, Mohamed

    2012-02-01

    The argan tree plays an important socioeconomic and ecologic role in South Morocco. Moreover, there is much evidence for the beneficial effects of virgin argan oil (VAO) on human health. Thus, this study investigated whether administering VAO to rats can prevent the development of diabetes. VAO extracted by a traditional method from the almonds of Argania spinosa (2 mL/kg) was administered orally (for 7 consecutive days) to rats before and during intraperitoneal alloxan administration (75 mg/kg for 5 consecutive days). An alloxan diabetic-induced untreated group and treated by table oil were used as control groups. Body mass, blood glucose and hepatic glycogen were evaluated. In the present study, subchronic treatment with VAO at a dose of 2 mL/kg, before the experimental induction of diabetes, prevented the body mass loss, induced a significant reduction of blood glucose and a significant increase of hepatic glycogen level (p < 0.001) compared with the untreated diabetic group. In conclusion, the present study shows that argan oil should be further investigated in a human study to clarify its possible role in reducing weight loss in diabetics, and even in inhibiting the development or progression of diabetes. This antidiabetic effect could be due to the richness of VAO in tocopherols, phenolic compounds and unsaturated fatty acids. PMID:21584872

  17. Mutagenesis by outer space parameters other than cosmic rays

    Science.gov (United States)

    Horneck, Gerda; Rabbow, Elke

    We have studied the ability of microorganisms to cope with the complex interplay of the parameters of space in experiments in low Earth orbit and using space simulation facilities on ground. Emphasis was laid on space parameters other than cosmic rays. The studies are directed towards understanding prebiotic chemical evolution and biological evolution processes, and interplanetary transfer of life. Effects of space vacuum: Space experiments have shown that up to 70% of bacterial and fungal spores survived short-term exposure to space vacuum. The chances of survival in space were increased when spores were embedded in chemical protectants such as sugars, or salt crystals, or when they were exposed in multilayer. During the six years lasting LDEF mission up to 80% of bacterial spores survived exposure to space vacuum. A 10-fold increased mutation rate over the spontaneous rate has been observed in spores of Bacillus subtilis after exposure to space vacuum, which is probably based on a unique molecular signature of tandem-double base change at restricted sites in the DNA. In addition, DNA strand breaks have been observed to be induced by vacuum treatment. Effects of extraterrestrial solar UV radiation: Solar UV radiation has been found to be the most deleterious factor of space. The reason for this is the highly energetic UV-C and vacuum UV radiation that is directly absorbed by the DNA and which induces specific photoproducts in the DNA that are highly mutagenic and lethal. The damaging effect of extraterrestrial solar UV radiation was even aggravated, when the spores were simultaneously exposed to both, solar UV radiation and space vacuum. In order to investigate the mutagenic potential of solar UV radiation, DNA of the Escherichia coli plasmid pUC19 was exposed to selected wavebands of UV radiation (from vacuum UV to UV-A) by use of a solar simulator and space simulation facilities. Action spectra revealed that for vacuum UV different kinds of photochemical damage

  18. Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis

    Directory of Open Access Journals (Sweden)

    Abdjad Asih Nawangsih

    2011-04-01

    Full Text Available Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis. X. oryzae pv. oryzae (Xoo causes bacterial leaf blight (BLB of rice (Oryza sativa L., a major disease that constrains production of the staple crop in many countries of the world. Identification of X. oryzae pv. oryzae (Xoo was conducted based on the disease symptoms, pathogenicity, morphological, physiological, and genetic characteristics of bacterial cultures isolated from the infected plants. Fifty bacterial isolates predicted as Xoo have been successfully isolated. They are aerobic, rod shaped, and Gram negative bacteria. The isolates were evaluated for their hypersensitivity in tobacco and pathogenicity in rice plant. Fifty isolates induced hypersensitive reaction in tobacco and showed pathogenicity symptom in rice in different length. Based on physiological test, hypersensitivity and pathogenicity reactions, three bacterial isolates strongly predicted as Xoo, i.e. STG21, STG42, and STG46, were non indole formation, non pigment fluorescent, hydrolyzed casein, catalase activity positive, but negative oxidase. Partial sequencing of 16S rRNA genes of STG21 and STG42 showed 80% and 82% homology with X. oryzae, respectively, while STG46 showed 84% homology with X. campestris. Mini-Tn5 transposon mutagenesis of STG21 generated one of the mutants (M5 lossed it’s ability to induce hypersensitive reaction in tobacco plant and deficient in pathogenicity on rice. The lesion length of rice leaf caused by the mutant M5 decreased up to 80%.

  19. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    Directory of Open Access Journals (Sweden)

    Zhiqian Yi

    2015-09-01

    Full Text Available Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  20. Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Kossakovski; Beauchamp

    2000-10-01

    Spatially resolved chemical imaging is achieved by combining a fiber-optic scanning probe microscope with laser-induced breakdown spectroscopy in a single instrument, TOPOLIBS. Elemental composition of surfaces can be mapped and correlated with topographical data. The experiment is conducted in air with minimal sample preparation. In a typical experiment, surface topography is analyzed by scanning a sharp fiber-optic probe across the sample using shear force feedback. The probe is then positioned over a feature of interest and pulsed radiation is delivered to the surface using a nitrogen laser. The pulse vaporizes material from the surface and generates a localized plasma plume. Optical emission from the plume is analyzed with a compact UV/visible spectrometer. Ablation crater size is controlled by the amount of laser power coupled into the probe. Sampling areas with submicrometer dimensions are achieved by using reduced laser power. PMID:11028639

  1. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line.

    Science.gov (United States)

    Vendramini-Costa, Débora Barbosa; Alcaide, Antonio; Pelizzaro-Rocha, Karin Juliane; Talero, Elena; Ávila-Román, Javier; Garcia-Mauriño, Sofia; Pilli, Ronaldo Aloise; de Carvalho, João Ernesto; Motilva, Virginia

    2016-06-01

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTN on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer.

  2. Chemical and Hydrostatic Pressure in Natrolites: Pressure Induced Hydration of an Aluminogermanate Natrolite

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.; Kao, C.; Seoung,D.H.,Bai,J., Kao,C.C.; Parise,J.B.; Vogt, T.

    2010-09-24

    The ambient structure and pressure-induced structural changes of a synthetic sodium aluminogermanate with a natrolite (NAT) framework topology (Na-AlGe-NAT) were characterized by using Rietveld refinements of high-resolution synchrotron X-ray powder diffraction data at ambient and high pressures. Unlike a previously established model for Na{sub 8}Al{sub 8}Ge{sub 12}O{sub 40} {center_dot} 8H{sub 2}O based on a single-crystal study, the ambient structure of the Na-AlGe-NAT is found to adopt a monoclinic space group Cc (or Fd) with a ca. 6% expanded unit cell. The refined ambient structure of Na{sub 8}Al{sub 8}Ge{sub 12}O{sub 40} {center_dot} 12H{sub 2}O indicates an increased water content of 50%, compared to the single-crystal structure. The unit-cell volume and water-content relationships observed between the two Na-AlGe-NAT structures at ambient conditions with 8 and 12 H{sub 2}O respectively seem to mirror the ones found under hydrostatic pressure between the Na{sub 8}Al{sub 8}Ge{sub 12}O{sub 40} {center_dot} 8H{sub 2}O and the parantrolite phase Na{sub 8}Al{sub 8}Ge{sub 12}O{sub 40} {center_dot} 12H{sub 2}O. Under hydrostatic pressures mediated by a pore-penetrating alcohol and water mixture, the monoclinic Na-AlGe-NAT exhibits a gradual decrease of the unit-cell volume up to ca. 2.0 GPa, where the unit-cell volume then contracts abruptly by ca. 4.6%. This is in marked contrast to what is observed in the Na-AlSi-NAT and Na-GaSi-NAT systems, where one observes a pressure-induced hydration and volume expansion due to the auxetic nature of the frameworks. Above 2 GPa, the monoclinic phase of Na-AlGe-NAT transforms into a tetragonal structure with the unit-cell composition of Na{sub 8}Al{sub 8}Ge{sub 12}O{sub 40} {center_dot} 16H{sub 2}O, revealing pressure-induced hydration and a unit cell volume contraction. Unlike in the Na-Al,Si-paranatrolite phase, however, the sodium cations in the Na-AlGe-NAT maintain a 6-fold coordination in the monoclinic structure and only

  3. Chemical- and radiation-induced haemorrhagic cystitis: current treatments and challenges.

    Science.gov (United States)

    Payne, Heather; Adamson, Andrew; Bahl, Amit; Borwell, Jonathan; Dodds, David; Heath, Catherine; Huddart, Robert; McMenemin, Rhona; Patel, Prashant; Peters, John L; Thompson, Andrew

    2013-11-01

    • To review the published data on predisposing risk factors for cancer treatment-induced haemorrhagic cystitis (HC) and the evidence for the different preventive and therapeutic measures that have been used in order to help clinicians optimally define and manage this potentially serious condition. • Despite recognition that HC can be a significant complication of cancer treatment, there is currently a lack of UK-led guidelines available on how it should optimally be defined and managed. • A systematic literature review was undertaken to evaluate the evidence for preventative measures and treatment options in the management of cancer treatment-induced HC. • There is a wide range of reported incidence due to several factors including variability in study design and quality, the type of causal agent, the grading of bleeding, and discrepancies in definition criteria. • The most frequently reported causal factors are radiotherapy to the pelvic area, where HC has been reported in up to 20% of patients, and treatment with cyclophosphamide and bacillus Calmette-Guérin, where the incidence has been reported as up to 30%. • Mesna (2-mercaptoethane sodium sulphonate), hyperhydration and bladder irrigation have been the most frequently used prophylactic measures to prevent treatment-related cystitis, but are not always effective. • Cranberry juice is widely cited as a preventative measure and sodium pentosanpolysulphate as a treatment, although the evidence for both is very limited. • The best evidence exists for intravesical hyaluronic acid as an effective preventative and active treatment, and for hyperbaric oxygen as an equally effective treatment option. • The lack of robust data and variability in treatment strategies used highlights the need for further research, as well as best practice guidance and consensus on the management of HC. PMID:24000900

  4. Saffron Aqueous Extract Inhibits the Chemically-induced Gastric Cancer Progression in the Wistar Albino Rat

    Directory of Open Access Journals (Sweden)

    S. Zahra Bathaie

    2013-01-01

    Full Text Available Objective(s: Gastric cancer is the first and second leading cause of cancer related death in Iranian men and women, respectively. Gastric cancer management is based on the surgery, radiotherapy and chemotherapy. In the present study, for the first time, the beneficial effect of saffron (Crocus sativus L. aqueous extract (SAE on the 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG-induced gastric cancer in rat was investigated. Materials and Methods: MNNG was used to induce gastric cancer and then, different concentrations of SAE were administered to rats. After sacrificing, the stomach tissue was investigated by both pathologist and flow cytometry, and several biochemical parameters was determined in the plasma (or serum and stomach of rats. Results: Pathologic data indicated the induction of cancer at different stages from hyperplasia to adenoma in rats; and the inhibition of cancer progression in the gastric tissue by SAE administration; so that, 20% of cancerous rats treated with higher doses of SAE was completely normal at the end of experiment and there was no rat with adenoma in the SAE treated groups. In addition, the results of the flow cytometry/ propidium iodide staining showed that the apoptosis/proliferation ratio was increased due to the SAE treatment of cancerous rats. Moreover, the significantly increased serum LDH and decreased plasma antioxidant activity due to cancer induction fell backwards after treatment of rats with SAE. But changes in the other parameters (Ca2+, tyrosine kinase activity and carcino-embryonic antigen were not significant. Conclusion: SAE inhibits the progression of gastric cancer in rats, in a dose dependent manner.

  5. Hepatorenal protective effect of Antistax ® against chemically-induced toxicity

    Directory of Open Access Journals (Sweden)

    Atallah F Ahmed

    2015-01-01

    Full Text Available Background: Antioxidant natural products and chemoprevention are considered nowadays as an effective approach against health various disorders and diseases induced by oxidative stress or free radicals. Objective: The aim of this study was to assess the hepato- and nephroprotective activity of a standardized red vine leaf aqueous extract AS195 (Antistax ® . Methods: The protective activity of AS195 (100 mg/kg was investigated on carbon tetrachloride (CCl 4 -intoxicated rats in comparison with silymarin. The flavonoid/proanthocyanidin nature of AS195 was identified by phytochemical and nuclear magnetic resonance (NMR analyses, while its total phenol/proanthocyanidin/flavonoid content and antioxidant activity were determined by Folin-Ciocalteau, vanillin-sulfuric acid, AlCl 3 , and 2,2-diphenyl-2-picrylhydrazyl radical scavenging assays, respectively. Results: Relative to the control CCl 4 -intoxicated group, pretreatment with AS195 could significantly suppressed the elevated serum levels of alanine aminotransferase, alkaline phosphatase, γ-glutamyl transferase, total cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, triglycerides, bilirubin, creatinine, uric acid, and calcium, whereas it significantly increased the diminished serum levels of high-density lipoprotein cholesterol, albumin and total protein. Moreover, AS195 significantly decreased malondialdehyde formation in the tissues of liver and kidney, whereas it significantly elevated and nonprotein sulfhydryl groups, compared with the intoxicated control. The improvement in biochemical parameters by AS195 was obviously observed and further confirmed by restoration of normal histological features in the two organs. Conclusions: The results of the present study revealed the capacity of AS195 to enhance the recovery from xenobiotic-induced hepatorenal toxicity initiated by free radicals.

  6. Laboratory feasibility study of fusion vessel inner wall chemical analysis by Laser Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Graphical abstract: Laser-Induced-Breakdown-Spectroscopy was used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines. Highlights: ► Description and characterization of an LIBS set-up for diagnostics in fusion machines. ► Identification of atomic composition of multilayered tiles simulating plasma facing components. ► Qualitative applicability of the Calibration Free method for quantitative analysis. ► Feasibility of large scale application in the processes of control during the tiles fabrication. ► Feasibility of erosion monitoring during operation of fusion machines. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is nowadays a well established tool for qualitative, semi-quantitative and quantitative analyses of surfaces, with micro-destructive characteristics and capabilities for stratigraphy. LIBS is an appealing technique compared with many other types of elemental analysis thanks to the set up versatility facilitating non-invasive and remote analyses, as well as suitability to diagnostics in harsh environments. In this work, LIBS capabilities were used for the determination of the atomic composition of multilayered samples simulating the tiles of plasma facing components in the next generation fusion machines such as ITER. A new experimental setup was designed and realized in order to optimize the characteristics of an LIBS system working at low pressure and remotely, as it should be for an in situ system to be applied in monitoring the erosion and redeposition phenomena occurring on the inner walls of a fusion device. The effects of time delay and laser fluence on LIBS sensitivity at reduced pressure were examined, looking for operational conditions suitable to analytical applications. The quantitative analysis of some atomic species in the superficial layer has been carried out using a Calibration Free (CF) approach in the time

  7. Cobalt surface modification during γ-Fe{sub 2}O{sub 3} nanoparticle synthesis by chemical-induced transition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junming [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-01

    In the chemical-induced transition of FeCl{sub 2} solution, the FeOOH/Mg(OH){sub 2} precursor was transformed into spinel structured γ-Fe{sub 2}O{sub 3} crystallites, coated with a FeCl{sub 3}·6H{sub 2}O layer. CoCl{sub 2} surface modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding Co(NO{sub 3}){sub 2} during the synthesis. CoFe{sub 2}O{sub 4} modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding NaOH during the surface modification with Co(NO{sub 3}){sub 2}. The CoFe{sub 2}O{sub 4} layer grew epitaxially on the γ-Fe{sub 2}O{sub 3} crystallite to form a composite crystallite, which was coated by CoCl{sub 2}·6H{sub 2}O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe{sub 2}O{sub 4} and γ-Fe{sub 2}O{sub 3} possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe{sub 2}O{sub 3}-based nanoparticles were related to the grain size. - Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles were synthesized by chemical induced transition. • CoCl{sub 2} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} during synthesization. • CoFe{sub 2}O{sub 4} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} and NaOH. • The magnetism of the nanoparticles is related to the grain size.

  8. Hemorrhagic hypotension-induced hypersensitivity of vagal pulmonary C-fibers to chemical stimulation and lung inflation in anesthetized rats.

    Science.gov (United States)

    Lin, Ruei-Lung; Lin, Yu-Jung; Xu, Fadi; Lee, Lu-Yuan

    2015-04-01

    This study was carried out to investigate whether hemorrhagic hypotension (HH) altered the sensitivity of vagal pulmonary C-fibers. The fiber activity (FA) of single vagal pulmonary C-fiber was continuously recorded in anesthetized rats before, during, and after HH was induced by bleeding from the femoral arterial catheter into a blood reservoir and lowering the mean systemic arterial pressure (MSAP) to ∼40 mmHg for 20 min. Our results showed the following. First, after MSAP reached a steady state of HH, the peak FA response to intravenous injection of capsaicin was elevated by approximately fivefold. The enhanced C-fiber sensitivity continued to increase during HH and sustained even after MSAP returned to baseline during the recovery, but slowly returned to control ∼20 min later. Second, responses of FA to intravenous injections of other chemical stimulants of pulmonary C-fibers (phenylbiguanide, lactic acid, and adenosine) and a constant-pressure lung hyperinflation were all significantly potentiated by HH. Third, infusion of sodium bicarbonate alleviated the systemic acidosis during HH, and it also attenuated, but did not completely prevent, the HH-induced C-fiber hypersensitivity. In conclusion, the pulmonary C-fiber sensitivity was elevated during HH, probably caused by the endogenous release of chemical substances (e.g., lactic acid) that were produced by tissue ischemia during HH. This enhanced C-fiber sensitivity may heighten the pulmonary protective reflexes mediated through these afferents (e.g., cough, J reflex) during hemorrhage when the body is more susceptible to other hazardous insults and pathophysiological stresses. PMID:25589016

  9. Radiosensitivity Parameters For Lethal Mutagenesis In Caenorhabditis Elegans

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, F.A.; Wilson, J.W.; Katz, R.

    1994-01-01

    For the first time track structure theory has been applied to radiobiological effects in a living organism. Data for lethal mutagenesis in Caenorhabditis elegans, obtained after irradiation with nine different types of ions of atomic number 1-57 and gamma rays have yielded radiosensitivity parameters (E{sub 0}, sigma{sub 0}, Kappa, m = 68 Gy, 2.5 x 10(exp {minus}9) cm (exp 2), 750, 2) comparable with those found for the transformation of C3HT10 1/2 cells (180 Gy, 1.15 x 10(exp {minus}10) cm(exp 2), 750, 2) but remote from those (E{sub 0} and sigma{sub 0} = approx. 2 Gy, approx. 5 x 10(exp {minus}7) cm(exp 2)) for mammalian cell survival.

  10. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

    Directory of Open Access Journals (Sweden)

    Devita Surjana

    2010-01-01

    Full Text Available Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3. Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+, an essential coenzyme in ATP production and the sole substrate of the nuclear enzyme poly-ADP-ribose polymerase-1 (PARP-1. Numerous in vitro and in vivo studies have clearly shown that PARP-1 and NAD+ status influence cellular responses to genotoxicity which can lead to mutagenesis and cancer formation. This paper will examine the role of nicotinamide in the protection from carcinogenesis, DNA repair, and maintenance of genomic stability.

  11. Scientific projection paper for mutagenesis, transformation and cell killing

    International Nuclear Information System (INIS)

    Our knowledge about mutagenesis, transformation, and cell killing by ionizing radiation consists of large bodies of data, which are potentially useful in terms of application to human risk assessment and to the constructive use of radiation, as in cancer treatment. The three end-points discussed above are united by at least five significant concepts in radiation research strategy: (1) The inter-relationships among the important end-points, mutation, carcinogenesis, and cell killing. Research on one is meaningful only in the context of information about the other two. (2) The interaction of radiations with other agents in producing these end-points. (3) The mechanisms of action of other environmental mutagenic, carcinogenic, and cytotoxic agents. (4) The use of repair deficient human mutant cells. (5) The study of radiation damage mechanisms. There is no better way to extrapolate laboratory data to the clinical and public worlds than to understand the underlying biological mechanisms that produced the data

  12. Amelioration of Glucolipotoxicity-Induced Endoplasmic Reticulum Stress by a “Chemical Chaperone” in Human THP-1 Monocytes

    Directory of Open Access Journals (Sweden)

    Raji Lenin

    2012-01-01

    Full Text Available Chronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress. Therefore, the aims of this study are (a to investigate whether glucolipotoxicity could impose ER stress and apoptosis in THP-1 human monocytes and (b to investigate whether 4-Phenyl butyric acid (PBA, a chemical chaperone could resist the glucolipotoxicity-induced ER stress and apoptosis. Cells subjected to either glucolipotoxicity or tunicamycin exhibited increased ROS generation, gene and protein (PERK, GRP-78, IRE1α, and CHOP expression of ER stress markers. In addition, these cells showed increased TRPC-6 channel expression and apoptosis as revealed by DNA damage and increased caspase-3 activity. While glucolipotoxicity/tunicamycin increased oxidative stress, ER stress, mRNA expression of TRPC-6, and programmed the THP-1 monocytes towards apoptosis, all these molecular perturbations were resisted by PBA. Since ER stress is one of the underlying causes of monocyte dysfunction in diabetes and atherosclerosis, our study emphasize that chemical chaperones such as PBA could alleviate ER stress and have potential to become novel therapeutics.

  13. A chemical screen to identify inducers of the mitochondrial unfolded protein response in C. elegans.

    Science.gov (United States)

    Rauthan, Manish; Pilon, Marc

    2015-01-01

    We previously showed that inhibition of the mevalonate pathway in C. elegans causes inhibition of protein prenylation, developmental arrest and lethality. We also showed that constitutive activation of the mitochondrial unfolded protein response, UPR(mt), is an effective way for C. elegans to become resistant to the negative effects of mevalonate pathway inhibition. This was an important finding since statins, a drug class prescribed to lower cholesterol levels in patients, act by inhibiting the mevalonate pathway, and it is therefore possible that some of their undesirable side effects could be alleviated by activating the UPR(mt). Here, we screened a chemical library and identified 4 compounds that specifically activated the UPR(mt). One of these compounds, methacycline hydrochloride (a tetracycline antibiotic) also protected C. elegans and mammalian cells from statin toxicity. Methacycline hydrochloride and ethidium bromide, a known UPR(mt) activator, were also tested in mice: only ethidium bromide significantly activate the UPR(mt) in skeletal muscles. PMID:27123370

  14. The structural, chemical, and electrical properties of He-implantation-induced nanocavities in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Seager, C.H.; Myers, S.M.; Follstaedt, D.M.; Stein, H.J.; Wampler, W.R.

    1993-11-01

    Si implanted with He to doses of about 2 {times} 10{sup 16}cm{sup {minus}2} and greater and annealed at high temperatures develops a layer of internal nanocavities near the end of the He range. Above an annealing temperature of 700 C, all the implanted He escapes from these implanted samples, and the resultant internal cavity surfaces can be shown to possess a high density of chemically reactive Si dangling orbitals. These structures, in addition to possessing a variety of interesting electronic properties, have recently been shown to hold great promise as getters for removing undesirable impurities from the silicon matrix. Here the authors describe some of the structural features of these nanocavities and studies which have been used to accurately determine the binding energy of H and Cu to Si atoms at the cavity walls. Recently, they have also demonstrated that these nanocavities capture large densities of majority carriers in n- and p-type silicon. These electrical measurements have demonstrated that the nanocavity electronic states possess both acceptor and donor levels in the Si forbidden gap. The approximate location of these levels has been determined by a variety of different types of capacitance transient spectroscopy.

  15. Structure-based design of combinatorial mutagenesis libraries.

    Science.gov (United States)

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-05-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states.

  16. Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction

    Science.gov (United States)

    Le, Hoang-Quynh; Tran, Mai-Vu; Dang, Thanh Hai; Ha, Quang-Thuy; Collier, Nigel

    2016-01-01

    The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate the progress of text mining in facilitating integrative understanding of chemicals, diseases and their relations. In this article, we describe an extension of our system (namely UET-CAM) that participated in the BioCreative V CDR. The original UET-CAM system’s performance was ranked fourth among 18 participating systems by the BioCreative CDR track committee. In the Disease Named Entity Recognition and Normalization (DNER) phase, our system employed joint inference (decoding) with a perceptron-based named entity recognizer (NER) and a back-off model with Semantic Supervised Indexing and Skip-gram for named entity normalization. In the chemical-induced disease (CID) relation extraction phase, we proposed a pipeline that includes a coreference resolution module and a Support Vector Machine relation extraction model. The former module utilized a multi-pass sieve to extend entity recall. In this article, the UET-CAM system was improved by adding a ‘silver’ CID corpus to train the prediction model. This silver standard corpus of more than 50 thousand sentences was automatically built based on the Comparative Toxicogenomics Database (CTD) database. We evaluated our method on the CDR test set. Results showed that our system could reach the state of the art performance with F1 of 82.44 for the DNER task and 58.90 for the CID task. Analysis demonstrated substantial benefits of both the multi-pass sieve coreference resolution method (F1 + 4.13%) and the silver CID corpus (F1 +7.3%). Database URL: SilverCID–The silver-standard corpus for CID relation extraction is freely online available at: https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530).

  17. Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction.

    Science.gov (United States)

    Le, Hoang-Quynh; Tran, Mai-Vu; Dang, Thanh Hai; Ha, Quang-Thuy; Collier, Nigel

    2016-07-01

    The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate the progress of text mining in facilitating integrative understanding of chemicals, diseases and their relations. In this article, we describe an extension of our system (namely UET-CAM) that participated in the BioCreative V CDR. The original UET-CAM system's performance was ranked fourth among 18 participating systems by the BioCreative CDR track committee. In the Disease Named Entity Recognition and Normalization (DNER) phase, our system employed joint inference (decoding) with a perceptron-based named entity recognizer (NER) and a back-off model with Semantic Supervised Indexing and Skip-gram for named entity normalization. In the chemical-induced disease (CID) relation extraction phase, we proposed a pipeline that includes a coreference resolution module and a Support Vector Machine relation extraction model. The former module utilized a multi-pass sieve to extend entity recall. In this article, the UET-CAM system was improved by adding a 'silver' CID corpus to train the prediction model. This silver standard corpus of more than 50 thousand sentences was automatically built based on the Comparative Toxicogenomics Database (CTD) database. We evaluated our method on the CDR test set. Results showed that our system could reach the state of the art performance with F1 of 82.44 for the DNER task and 58.90 for the CID task. Analysis demonstrated substantial benefits of both the multi-pass sieve coreference resolution method (F1 + 4.13%) and the silver CID corpus (F1 +7.3%).Database URL: SilverCID-The silver-standard corpus for CID relation extraction is freely online available at: https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530). PMID:27630201

  18. Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction

    Science.gov (United States)

    Le, Hoang-Quynh; Tran, Mai-Vu; Dang, Thanh Hai; Ha, Quang-Thuy; Collier, Nigel

    2016-01-01

    The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate the progress of text mining in facilitating integrative understanding of chemicals, diseases and their relations. In this article, we describe an extension of our system (namely UET-CAM) that participated in the BioCreative V CDR. The original UET-CAM system’s performance was ranked fourth among 18 participating systems by the BioCreative CDR track committee. In the Disease Named Entity Recognition and Normalization (DNER) phase, our system employed joint inference (decoding) with a perceptron-based named entity recognizer (NER) and a back-off model with Semantic Supervised Indexing and Skip-gram for named entity normalization. In the chemical-induced disease (CID) relation extraction phase, we proposed a pipeline that includes a coreference resolution module and a Support Vector Machine relation extraction model. The former module utilized a multi-pass sieve to extend entity recall. In this article, the UET-CAM system was improved by adding a ‘silver’ CID corpus to train the prediction model. This silver standard corpus of more than 50 thousand sentences was automatically built based on the Comparative Toxicogenomics Database (CTD) database. We evaluated our method on the CDR test set. Results showed that our system could reach the state of the art performance with F1 of 82.44 for the DNER task and 58.90 for the CID task. Analysis demonstrated substantial benefits of both the multi-pass sieve coreference resolution method (F1 + 4.13%) and the silver CID corpus (F1 +7.3%). Database URL: SilverCID–The silver-standard corpus for CID relation extraction is freely online available at: https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530). PMID:27630201

  19. Advances in Radiation Mutagenesis through Studies on Drosophila

    Science.gov (United States)

    Muller, H. J.

    1958-06-01

    The approximately linear relation between radiation dose and induced lethals known for Drosophila spermatozoa, is now extended to spermatids. Data are included regarding oogonia. The linearity principle has been confined for minute structural changes in sperm as multi-hit events, on about the 1.5 power of the dose, long known for spermatozoa, is now extended to spermatids and late oocytes, for relatively short exposures. are found to allow union of broken chromosomes. Therefore, the frequencies are lower for more dispersed exposures of varies with lethals induced in late oocytes follow the same frequency pattern and there fore are multi-hit events. Yet han spermatozoan irradiation that two broken ends derived from nonreciprocal. The following is the order of decreasing radiation mutability of different stages found by ourselves and others: spermatids, spermatozoa in females, spermatozoa 0 to 1 day before ejaculation, earlier spermatozoa, late oocytes, gonia of either sex. Lethal frequencies for these stages range over approximately an order of magnitude, gross structural changes far more widely. Of potential usefulness is our extension of genesis by anoxia, known for spermatozoa in adult males, to those in pupal males and in females, to sperion is especially marked but the increase caused by substituting oxygen for air is less marked, perhaps because of enzymatic differences. In contrast, the induction of gross structural changes in oocytes, but not in spermatids, is markedly reduced by oxygen post-treatment; it is increased by dehydration. The efficacy of induction of structural changes by treatment of spermatozoa, whether with radiation or chemical mutagen, is correlated with the conditions of sperm utilization and egg production. Improving our perspective on radiation effects, some 800,000 offspring have been scored for spontaneous visible mutations of 13 specific loci. The average point-mutation rate was 0.5 to 1.0 per locus among 10/sup 5/ germ cells. Most

  20. The effect of probiotic microorganisms and bioactive compounds on chemically induced carcinogenesis in rats.

    Science.gov (United States)

    Bertkova, I; Hijova, E; Chmelarova, A; Mojzisova, G; Petrasova, D; Strojny, L; Bomba, A; Zitnan, R

    2010-01-01

    Diet interventions and natural bioactive supplements have now been extensively studied to reduce risks of colon cancer, which is one of the major public health problem throughout the world. The objective of our investigation was to study the effects of probiotic, prebiotic, nutritional plant extract, and plant oil on selected biochemical and immunological parameters in rats with colon cancer induced by N,N dimethylhydrazine (DMH). Male and female Wistar albino rats were were fed by a high-fat (HF) diet (10% fat in the diet) and were divided into 9 groups: Control group; PRO group - HF diet supplemented with probiotic Lactobacillus plantarum to provide 3 x 109 c.f.u. of strain/1 ml of medium; PRE group - HF diet supplemented with inulin enriched with oligofructose (2% of HF diet); HES group - HF diet supplemented with plant extract of Aesculus hippocastanum L. (1% of HF diet); OIL group - HF diet comprised Linioleum virginale (2% of HF diet); and combination of probiotic microorganisms and bioactive compounds in the groups - PRO-PRE, PRO-HES, PRO-OIL, PRE-OIL. Carcinogenesis was initiated with subcutaneous injection of DMH (20 mg/kg) two times at week interval and dietary treatments were continued for the six weeks. Application of probiotic microorganisms and bioactive compounds in all treated groups significantly decreased the activities of bacterial enzymes (p<0.001), the fecal bile acids concentration (p<0.01; p<0.001) and significantly increased serum TNFalpha level (p<0.001) in comparison to the control rats. The number of coliforms was reduced in PRO, PRO-PRE, PRO-OIL and PRE-OIL groups and significantly higher count of lactobacilli (p<0.05) was observed in PRO-PRE, PRO-OIL and PRE-OIL groups in compare with the controls. In conclusion, the results of this study indicate that probiotic microorganisms and bioactive compounds could exert a preventive effect on colon carcinogenesis induced by DMH. PMID:20568896

  1. Growth of novel ceramic layers on metals via chemical and heat treatments for inducing various biological functions

    Directory of Open Access Journals (Sweden)

    Tadashi eKokubo

    2015-10-01

    Full Text Available The present authors’ systematic studies on growth of novel ceramic layers on Ti metal and its alloys by chemical and heat treatments for inducing bone-bonding bioactivity and some other biological functions are reviewed. Ti metal formed an apatite on its surface in a simulated body fluid (SBF, when heat-treated after exposure to strong acid solutions to form rutile surface layer, or to strong alkali solutions to form sodium titanate surface layer. Both types of Ti metal tightly bonded to the living bone.The alkali and heat treatment was applied to the surface Ti metal of an artificial hip joint and successfully used in the clinic since 2007. The acid and heat treatments was applied to porous Ti metal to induce osteoconductivity as well as osteoinductivity. The resulting product was successfully used in clinical trials for spinal fusion devices. For the Ti-based alloys, the alkali and heat treatment was a little modified to form calcium titanate surface layer. Bone-growth promoting Mg, Sr, and Zn ions as well as the antibacterial Ag ion were successfully incorporated into the calcium titanate layer.

  2. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2015-01-01

    The present authors' systematic studies on growth of novel ceramic layers on Ti metal and its alloys by chemical and heat treatments for inducing bone-bonding bioactivity and some other biological functions are reviewed. Ti metal formed an apatite on its surface in a simulated body fluid, when heat-treated after exposure to strong acid solutions to form rutile surface layer, or to strong alkali solutions to form sodium titanate surface layer. Both types of Ti metal tightly bonded to the living bone. The alkali and heat treatment was applied to the surface Ti metal of an artificial hip joint and successfully used in the clinic since 2007. The acid and heat treatments was applied to porous Ti metal to induce osteoconductivity as well as osteoinductivity. The resulting product was successfully used in clinical trials for spinal fusion devices. For the Ti-based alloys, the alkali and heat treatment was little modified to form calcium titanate surface layer. Bone-growth promoting Mg, Sr, and Zn ions as well as the antibacterial Ag ion were successfully incorporated into the calcium titanate layer. PMID:26579517

  3. Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo.

    Science.gov (United States)

    Deb, Paromita; Bhan, Arunoday; Hussain, Imran; Ansari, Khairul I; Bobzean, Samara A; Pandita, Tej K; Perrotti, Linda I; Mandal, Subhrangsu S

    2016-09-30

    HOXB9 is a homeobox-containing gene that plays a key role in mammary gland development and is associated with breast and other types of cancer. Here, we demonstrate that HOXB9 expression is transcriptionally regulated by estradiol (E2), in vitro and in vivo. We also demonstrate that the endocrine disrupting chemical bisphenol-A (BPA) induces HOXB9 expression in cultured human breast cancer cells (MCF7) as well as in vivo in the mammary glands of ovariectomized (OVX) rats. Luciferase assay showed that estrogen-response-elements (EREs) in the HOXB9 promoter are required for BPA-induced expression. Estrogen-receptors (ERs) and ER-co-regulators such as MLL-histone methylase (MLL3), histone acetylases, CBP/P300, bind to the HOXB9 promoter EREs in the presence of BPA, modify chromatin (histone methylation and acetylation) and lead to gene activation. In summary, our results demonstrate that BPA exposure, like estradiol, increases HOXB9 expression in breast cells both in vitro and in vivo through a mechanism that involves increased recruitment of transcription and chromatin modification factors. PMID:27182052

  4. Influence of low dietary histamine on the seizure development of chemical kindling induced by pentylenetetrazol in rats

    Institute of Scientific and Technical Information of China (English)

    Chun-lei JIN; Eiko SAKURAI; Yoshinobu KISO; Jian-hong LUO; Kazuhiko YANAI; Zhong CHEN

    2005-01-01

    Aim: To determine the role of dietary low histamine on the seizure development of pentylenetetrazol (PTZ)-induced kindling in rats. Methods: After 14 d of feeding on a low histamine diet (LH, containing 0.145 μmol/g of histamine), the rats were chemically kindled by repeated intraperitoneal injection of a subconvulsant dose of PTZ (35 mg/kg) once every 48 h, and seizure activity of kindling was recorded for 30 min. Histamine in brain samples was analyzed using a high performanceliquid chromatography system with a fluorescence spectrofluorometer. Results: The LH diet induced an increase in seizure response (seizure susceptibility) to the first trial of PTZ, and resulted in facilitation of subsequent PTZ kindling process (seizure development). The histamine levels in the cortex, hippocampus, and hypothalamus of LH-treated rats decreased significantly and these changes correlated well with seizure behavior (r = 0.875, 0.651, and 0.796, respectively). In addition,chronic kindled seizures resulted in a significant increase of the histamine content in the cortex and hypothalamus in the LH-fed groups. Conclusion: These findings indicate that the histamine in daily food could influence the brain histaminergic function, and play an important role in regulating seizure susceptibility.

  5. COL-3, a chemically modified tetracycline, inhibits lipopolysaccharide-induced microglia activation and cytokine expression in the brain.

    Science.gov (United States)

    Edan, Rawan Abdulhameed; Luqmani, Yunus A; Masocha, Willias

    2013-01-01

    Microglia activation results in release of proinflammatory molecules including cytokines, which contribute to neuronal damage in the central nervous system (CNS) if not controlled. Tetracycline antibiotics such as minocycline inhibit microglial activation and cytokine expression during CNS inflammation. In the present study we found that administration of chemically modified tetracycline-3 (COL-3), inhibits lipopolysaccharide (LPS)-induced microglial and p38 MAPK activation, as well as the increase in TNF-α, but not IL-1β expression, in the brains of BALB/c mice. COL-3 has been described to have no antibacterial activity. We observed that COL-3 had no activity against a Gram-negative bacteria, Escherichia coli; however surprisingly, COL-3 had antibacterial activity against a Gram-positive bacteria Staphylococcus aureus, with a minimum inhibitory concentration of 1 mg/ml. Our data show that COL-3 has some antibacterial activity against S. aureus, inhibits LPS-induced neuroinflammation, and displays potential as a therapeutic agent for treatment of conditions involving CNS inflammation.

  6. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice.

    Science.gov (United States)

    Delfini, Marie-Claire; Mantilleri, Annabelle; Gaillard, Stéphane; Hao, Jizhe; Reynders, Ana; Malapert, Pascale; Alonso, Serge; François, Amaury; Barrere, Christian; Seal, Rebecca; Landry, Marc; Eschallier, Alain; Alloui, Abdelkrim; Bourinet, Emmanuel; Delmas, Patrick; Le Feuvre, Yves; Moqrich, Aziz

    2013-10-31

    C-low-threshold mechanoreceptors (C-LTMRs) are unique among C-unmyelinated primary sensory neurons. These neurons convey two opposite aspects of touch sensation: a sensation of pleasantness, and a sensation of injury-induced mechanical pain. Here, we show that TAFA4 is a specific marker of C-LTMRs. Genetic labeling in combination with electrophysiological recordings show that TAFA4+ neurons have intrinsic properties of mechano-nociceptors. TAFA4-null mice exhibit enhanced mechanical and chemical hypersensitivity following inflammation and nerve injury as well as increased excitability of spinal cord lamina IIi neurons, which could be reversed by intrathecal or bath application of recombinant TAFA4 protein. In wild-type C57/Bl6 mice, intrathecal administration of TAFA4 strongly reversed carrageenan-induced mechanical hypersensitivity, suggesting a potent analgesic role of TAFA4 in pain relief. Our data provide insights into how C-LTMR-derived TAFA4 modulates neuronal excitability and controls the threshold of somatic sensation.

  7. TAFA4, a Chemokine-like Protein, Modulates Injury-Induced Mechanical and Chemical Pain Hypersensitivity in Mice

    Directory of Open Access Journals (Sweden)

    Marie-Claire Delfini

    2013-10-01

    Full Text Available C-low-threshold mechanoreceptors (C-LTMRs are unique among C-unmyelinated primary sensory neurons. These neurons convey two opposite aspects of touch sensation: a sensation of pleasantness, and a sensation of injury-induced mechanical pain. Here, we show that TAFA4 is a specific marker of C-LTMRs. Genetic labeling in combination with electrophysiological recordings show that TAFA4+ neurons have intrinsic properties of mechano-nociceptors. TAFA4-null mice exhibit enhanced mechanical and chemical hypersensitivity following inflammation and nerve injury as well as increased excitability of spinal cord lamina IIi neurons, which could be reversed by intrathecal or bath application of recombinant TAFA4 protein. In wild-type C57/Bl6 mice, intrathecal administration of TAFA4 strongly reversed carrageenan-induced mechanical hypersensitivity, suggesting a potent analgesic role of TAFA4 in pain relief. Our data provide insights into how C-LTMR-derived TAFA4 modulates neuronal excitability and controls the threshold of somatic sensation.

  8. Gadolinium chloride reduces cytochrome P450: relevance to chemical-induced hepatotoxicity.

    Science.gov (United States)

    Badger, D A; Kuester, R K; Sauer, J M; Sipes, I G

    1997-08-15

    The Kupffer cell inhibitor, gadolinium chloride (GdCl3), protects the liver from a number of toxicants that require biotransformation to elicit toxicity (i.e. 1,2-dichlorobenzene and CCl4), as well as compounds that do not (i.e. cadmium chloride and beryllium sulfate). The mechanism of this protection is thought to result from reduced secretion of inflammatory and cytotoxic products from Kupffer cells (KC). However, since other lanthanides have been shown to decrease cytochrome P450 (P450) activity, the following studies were designed to determine if GdCl3 pretreatment alters hepatic P450 levels or activity. The toxicological relevance of GdCl3-mediated alterations in P450 activity was also estimated by determining the effect of GdCl3 pretreatment on the susceptibility of primary cultured hepatocytes to CCl4 and cadmium chloride (CdCl2). Male and female Sprague-Dawley rats were given GdCl3 (i.v., 10 mg/kg). Twenty-four hours later, livers were either processed for preparation of microsomes or for primary cultures of hepatocytes. Gadolinium chloride treatment reduced total hepatic microsomal P450 as well as aniline hydroxylase activity by approximately 30% in males and 20% in females. In hepatocytes isolated from rats pretreated with GdCl3, the toxicity caused by CCl4, but not CdCl2 was reduced. Interestingly, when GdCl3 was administered in vitro to microsomes, there was no effect on either the microsomal P450 difference spectra or p-hydroxylation of aniline. However, when GdCl3 was incubated with isolated hepatocytes, the cytotoxicity of CCl4 (but not CdCl2) was partially attenuated. These results suggest that, in addition to its inhibitory effects on KC, GdCl3 produces other effects which may alter the susceptibility of hepatocytes to toxicity caused by certain chemicals.

  9. Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes

    Directory of Open Access Journals (Sweden)

    P. Ginot

    2006-01-01

    Full Text Available A 36 m long ice core down to bedrock from the Cerro Tapado glacier (5536 m a.s.l, 30°08' S, 69°55' W was analyzed to reconstruct past climatic conditions for Northern Chile. Because of the marked seasonality in the precipitation (short wet winter and extended dry summer periods in this region, major snow ablation and related post-depositional processes occur on the glacier surface during summer periods. They include predominantly sublimation and dry deposition. Assuming that, like measured during the field campaign, the enrichment of chloride was always related to sublimation, the chemical record along the ice core may be applied to reconstruct the history of such secondary processes linked to the past climatic conditions over northern Chile. For the time period 1962–1999, a mean annual net accumulation of 316 mm water equivalent (weq and 327 mm weq loss by sublimation was deduced by this method. This corresponds to an initial total annual accumulation of 539 mm weq. The annual variability of the accumulation and sublimation is related with the Southern Oscillation Index (SOI: higher net-accumulation during El-Niño years and more sublimation during La Niña years. The deepest part of the ice record shows a time discontinuity; with an ice body deposited under different climatic conditions: 290 mm higher precipitation but with reduced seasonal distribution (+470 mm in winter and –180 mm in summer and –3°C lower mean annual temperature. Unfortunately, its age is unknown. The comparison with regional proxy data however let us conclude that the glacier buildup did most likely occur after the dry mid-Holocene.

  10. Chemically induced DNA hypomethylation in breast carcinoma cells detected by the amplification of intermethylated sites

    International Nuclear Information System (INIS)

    Compromised patterns of gene expression result in genomic instability, altered patterns of gene expression and tumour formation. Specifically, aberrant DNA hypermethylation in gene promoter regions leads to gene silencing, whereas global hypomethylation events can result in chromosomal instability and oncogene activation. Potential links exist between environmental agents and DNA methylation, but the destabilizing effects of environmental exposures on the DNA methylation machinery are not understood within the context of breast cancer aetiology. We assessed genome-wide changes in methylation patterns using a unique methylation profiling technique called amplification of intermethylated sites (AIMS). This method generates easily readable fingerprints that represent the investigated cell line's methylation profile, based on the differential cleavage of DNA with methylation-specific isoschisomeric restriction endonucleases. We validated this approach by demonstrating both unique and reoccurring sites of genomic hypomethylation in four breast carcinoma cell lines treated with the cytosine analogue 5-azacytidine. Comparison of treated with control samples revealed individual bands that exhibited methylation changes, and these bands were excized and cloned, and the precise genomic location individually identified. In most cases, these regions of hypomethylation coincided with susceptible target regions previously associated with chromosome breakage, rearrangement and gene amplification. Similarly, we observed that acute benzopyrene exposure is associated with altered methylation patterns in these cell lines. These results reinforce the link between environmental exposures, DNA methylation and breast cancer, and support a role for AIMS as a rapid, affordable screening method to identify environmentally induced DNA methylation changes that occur in tumourigenesis

  11. Depletion of tumor associated macrophages slows the growth of chemically-induced mouse lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Jason M. Fritz

    2014-11-01

    Full Text Available Chronic inflammation is a risk factor for lung cancer, and low dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programming changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤ 50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of IGF-I, CXCL1, IL-6 and CCL2 diminished with clodronate liposome treatment. Tumor associated macrophages expressed markers of both M1 and M2 programming in vehicle and clodronate liposome treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2 had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  12. Effect of Cu supplementation on genomic instability in chemically-induced mammary carcinogenesis in the rat

    Directory of Open Access Journals (Sweden)

    Bobrowska Barbara

    2011-12-01

    Full Text Available Abstract Backround The aim of the present study was to assess the effect of dietary supplementation (copper or copper and resveratrol on the intensity of carcinogenesis and the frequency of microsatellite instability in a widely used model of mammary carcinogenesis induced in the rat by treatment with 7,12-dimethylbenz[a]anthracene (DMBA. Methods DNA was extracted from rat mammary cancers and normal tisues, amplified by PCR, using different polymorphic DNA markers and the reaction products were analyzed for microsatellite instability. Results It was found that irrespectively of the applied diet there was no inhibition of mammary carcinogenesis in the rats due to DMBA. Besides, in the groups supplemented with Cu (II or Cu (II and resveratrol the tumor formation was clearly accelerated. Unlike the animals that were fed with standard diet, the supplemented rats were characterized by the loss of heterozygosity of microsatellite D3Mgh9 in cancer tumors (by respectively 50 and 40%. When the animals received Cu (II and resveratrol supplemented diet the occurrence of genomic instability was additionally found in their livers in the case of microsatellite D1Mgh6 (which was stable in the animals without dietary supplementation. Conclusions Identification of the underlying mechanisms by which dietary factors affect genomic stability might prove useful in the treatment of mammary cancer as well as in the incorporation of dietary factors into mammary cancer prevention strategies.

  13. Glutathione Levels and Susceptibility to Chemically Induced Injury in Two Human Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Lawrence H. Lash

    2015-06-01

    Full Text Available More aggressive prostate cancer cells (PCCs are often resistant to chemotherapy. Differences exist in redox status and mitochondrial metabolism that may help explain this phenomenon. Two human PCC lines, PC-3 cells (more aggressive and LNCaP cells (less aggressive, were compared with regard to cellular glutathione (GSH levels, susceptibility to either oxidants or GSH depletors, and expression of several proteins involved in apoptosis and stress response to test the hypothesis that more aggressive PCCs exhibit higher GSH concentrations and are relatively resistant to cytotoxicity. PC-3 cells exhibited 4.2-fold higher GSH concentration than LNCaP cells but only modest differences in acute cytotoxicity were observed at certain time points. However, only LNCaP cells underwent diamide-induced apoptosis. PC-3 cells exhibited higher levels of Bax and caspase-8 cleavage product but lower levels of Bcl-2 than LNCaP cells. However, LNCaP cells exhibited higher expression of Fas receptor (FasR but also higher levels of several stress response and antioxidant proteins than PC-3 cells. LNCaP cells also exhibited higher levels of several mitochondrial antioxidant systems, suggesting a compensatory response. Thus, significant differences in redox status and expression of proteins involved in apoptosis and stress response may contribute to PCC aggressiveness.

  14. Cell-based assay for the detection of chemically induced cellular stress by immortalized untransformed transgenic hepatocytes

    Directory of Open Access Journals (Sweden)

    Vezzoni Paolo

    2004-03-01

    Full Text Available Abstract Background Primary hepatocytes, one of the most widely used cell types for toxicological studies, have a very limited life span and must be freshly derived from mice or even humans. Attempts to use stable cell lines maintaining the enzymatic pattern of liver cells have been so far unsatisfactory. Stress proteins (heat shock proteins, HSPs have been proposed as general markers of cellular injury and their use for environmental monitoring has been suggested. The aim of this work is to develop a bi-transgenic hepatocyte cell line in order to evaluate the ability of various organic and inorganic chemicals to induce the expression of the HSP70 driven reporter gene. We previously described transgenic mice (Hsp70/hGH secreting high levels of human Growth Hormone (hGH following exposure to toxic compounds in vivo and in vitro in primary cultures derived from different organs. In addition, we also reported another transgenic model (AT/cytoMet allowing the reproducible immortalization of untransformed hepatocytes retaining in vitro complex liver functions. Results The transgenic mouse line Hsp70/hGH was crossed with the AT/cytoMet transgenic strain permitting the reproducible immortalization of untransformed hepatocytes. From double transgenic animals we derived several stable hepatic cell lines (MMH-GH which showed a highly-differentiated phenotype as judged from the retention of epithelial cell polarity and the profile of gene expression, including hepatocyte-enriched transcription factors and detoxifying enzymes. In these cell lines, stresses induced by exposure to inorganic [Sodium Arsenite (NaAsO2 and Cadmium Chloride (CdCl2], and organic [Benzo(aPyrene (BaP, PentaChloroPhenol (PCP, TetraChloroHydroQuinone (TCHQ, 1-Chloro-2,4-DiNitro-Benzene (CDNB] compounds, specifically induced hGH release in the culture medium. Conclusions MMH-GH, an innovative model to evaluate the toxic potential of chemical and physical xenobiotics, provides a simple

  15. Laser-induced Fluorescence Spectroscopy for applications in chemical sensing and optical refrigeration

    Science.gov (United States)

    Kumi Barimah, Eric

    Laser-induced breakdown spectroscopy (LIBS) is an innovative technique that has been used as a method for fast elemental analysis in real time. Conventional ultraviolet-visible (UV-VIS) LIBS has been applied to detect the elemental composition of different materials, including explosives, pharmaceutical drugs, and biological samples. The extension of conventional LIBS to the infrared region (˜1-12 mum) promises to provide additional information on molecular emission signatures due to rotational-vibrational transitions. In this research, a pulsed Nd: YAG laser operating at 1064 nm was focused onto several sodium compounds (NaCl, NaClO3, Na2CO3 and NaClO4) and potassium compounds (KCl, KClO3, K2CO3 and KClO4) to produce an intense plasma at the target surface. Several distinct infrared (IR) atomic emission signatures were observed from all sodium and potassium containing compounds. The atomic emission lines observed from the investigated samples matched assigned transitions of neutral sodium and potassium atoms published in the National Institute of Standards and Technology (NIST) atomic database. In addition to the intense atomic lines, the rst evidence of molecular LIBS emission structures were observed at ˜10.0 m in KClO3 and NaClO3 for the chlorate anion (ClO3 --1), at ˜6.7 to 8.0 mum in KNO3 and NaNO 3 for the nitrate anion (NO3--1 ), ˜8.0 to 10.0 mum in KClO4 and NaClO4 for perchlorate anion (ClO4--1 ), and ˜6.88 mum and 11.53 mum in Na2CO3 for the carbonate anion (CO3--1 ). The observed molecular emission showed strong correlation with the conventional Fourier Transform Infrared Spectrometry (FTIR) absorption spectra of the investigated samples. IR LIBS was also applied to determine the limit of detection (LOD) for the perchlorate anion in KClO4 using the 8.0 -11.0 mum IR-LIBS emission band. The calibration curve of ClO4 in KClO4 was constructed using peak and integrated emission intensities for known concentrations of mixed KClO4/NH4NO3 samples. The

  16. Effect of exercise on chemically-induced colitis in adiponectin deficient mice

    Directory of Open Access Journals (Sweden)

    Saxena Arpit

    2012-08-01

    Full Text Available Abstract Background Inflammatory bowel diseases are associated with increased adiponectin (APN levels, which may exert pro-inflammatory effects in these individuals. Since habitual exercise may increase APN, the aim of this study was to determine how exercise training affects mice with acute colitis. Methods Male adiponectin knock out (APNKO and wild type (WT mice (C57BL/6 were randomly assigned to 4 different groups: 1 Sedentary (SED; 2 Exercise trained (ET; 3 Sedentary with dextran sodium sulfate (DSS treatment (SED + DSS; and 4 Exercise trained with DSS (ET + DSS. Exercise-trained mice ran at 18 m/min for 60 min, 5d/wk for 4 weeks. Subsequently, the ET + DSS and the SED + DSS mice received 2% DSS in their drinking water for 5 days (d, followed by 5d of regular water. Results The clinical symptoms of acute colitis (diarrhea, stool haemoccult, and weight loss were unaffected by exercise and there was no difference between the APNKO and WT mice (p > 0.05 except on day 39. However, the clinical symptoms of the DSS-treated APNKO mice were worse than WT mice treated with DSS and had increased susceptibility to intestinal inflammation due to increased local STAT3 activation, higher IL-6, TNF-α, IL-1β and IL-10 levels, and as a result had increased intestinal epithelial cell proliferation (p  Conclusions Exercise training may contribute in alleviating the symptoms of acute colitis and APN deficiency may exacerbate the intestinal inflammation in DSS-induced colitis.

  17. Chemopreventive potential of Annona muricata L leaves on chemically-induced skin papillomagenesis in mice.

    Science.gov (United States)

    Hamizah, Sulaiman; Roslida, A H; Fezah, O; Tan, K L; Tor, Y S; Tan, C I

    2012-01-01

    Annona muricata L (Annonaceae), commonly known as soursop has a long, rich history in herbal medicine with a lengthy recorded indigenous use. It had also been found to be a promising new anti-tumor agent in numerous in vitro studies. The present investigation concerns chemopreventive effects in a two-stage model of skin papillomagenesis. Chemopreventive effects of an ethanolic extract of A. muricata leaves (AMLE) was evaluated in 6-7 week old ICR mice given a single topical application of 7,12-dimethylbenza(α)anthracene (DMBA 100 μg/100 μl acetone) and promotion by repeated application of croton oil (1% in acetone/ twice a week) for 10 weeks. Morphological tumor incidence, burden and volume were measured, with histological evaluation of skin tissue. Topical application of AMLE at 30, 100 and 300 mg/kg significantly reduced DMBA/croton oil induced mice skin papillomagenesis in (i) peri-initiation protocol (AMLE from 7 days prior to 7 days after DMBA), (ii) promotion protocol (AMLE 30 minutes after croton oil), or (iii) both peri-initiation and promotion protocol (AMLE 7 days prior to 7 day after DMBA and AMLE 30 minutes after croton oil throughout the experimental period), in a dose dependent manner (p<0.05) as compared to carcinogen-treated control. Furthermore, the average latent period was significantly increased in the AMLE-treated group. Interestingly, At 100 and 300 mg/ kg, AMLE completely inhibited the tumor development in all stages. Histopathological study revealed that tumor growth from the AMLE-treated groups showed only slight hyperplasia and absence of keratin pearls and rete ridges. The results, thus suggest that the A.muricata leaves extract was able to suppress tumor initiation as well as tumor promotion even at lower dosage.

  18. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    Energy Technology Data Exchange (ETDEWEB)

    Yedidi, Ravikiran S. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Muhuhi, Joseck M. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Liu, Zhigang [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Bencze, Krisztina Z. [Department of Chemistry, Fort Hays State University, Hays, KS 67601 (United States); Koupparis, Kyriacos [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); O’Connor, Carrie E.; Kovari, Iulia A. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Spaller, Mark R. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Kovari, Ladislau C., E-mail: kovari@med.wayne.edu [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States)

    2013-09-06

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.

  19. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    International Nuclear Information System (INIS)

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC50: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the 15N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC50: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of 15N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV

  20. Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line

    OpenAIRE

    Matos, MT; Duarte, CB; Gonçalo, Margarida; Lopes, MC

    2005-01-01

    The intracellular mechanisms involved in the early phase of dendritic cell (DC) activation upon contact with chemical sensitizers are not well known. The strong skin sensitizer 2,4-dinitrofluorobenzene (DNFB) was shown to induce the activation of mitogen-activated protein kinases (MAPK) in DC. In the present study, we investigated a putative role for oxidative stress in DNFB-induced MAPK activation and upregulation of the costimulatory molecule CD40. In a DC line generated from fetal mouse sk...