WorldWideScience

Sample records for chemically induced mutagenesis

  1. Chemical and radiation-induced mutagenesis of the rat liver chromosomes

    International Nuclear Information System (INIS)

    It was shown that radiation and chemical mutagenesis in rat liver cells is determined chiefly by long-lived premutational potential changes. The intensification of intrachromosomal processes under the action of an inducer of gene activity - phenobarbital - does not modify the yield of chromosome aberrations, both under the action of radiation and under the action of an alkylating agent -dipin. The facts obtained support the hypothesis that the chemical nature of the premutational changes differs from the primary molecular damages to DNA. (author)

  2. Influence of duration of exposition in the Chernobyl zone on spontaneous and chemically induced mutagenesis

    International Nuclear Information System (INIS)

    The cycle of researches according to influence of an exposition of laboratory mice of line Af in a zone of Chernobyl disaster on spontaneous and chemically induced mutagenesis has been performed. The frequency of micronucleated erythrocytes in the mouse bone marrow was increase in term of an exposition in a zone of Chernobyl disaster with 1 till 4 months in comparison with the control. (authors)

  3. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons

    International Nuclear Information System (INIS)

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  4. Induced mutagenesis of plasmid and chromosomal genes inserted into the plasmid DNA. II. Mutagenic action of chemical factors

    International Nuclear Information System (INIS)

    Following the study of the mutagenic action of UV and γ-radiation on plasmid DNA in vitro, they investigated the induction of mutations under the influence of chemical mutagens on the same DNA of plasmid RSF2124, determining the synthesis of colicine E1 and resistance to ampicillin. The inactivating action of the mutagen was assessed from the yield of transformants resistant to the antibiotic and the mutagenic effect from the loss by colonies of transformants that were capable of releasing colicine into the external medium. In these experiments they mainly used chemical compounds whose mutagenic effect if well known in other systems (transforming and transfecting DNA, microbial viruses). As a result all mutagens tested for their activity were divided into four groups: first group, those exceeding the level of mutagenesis by more than 100-fold above the spontaneous background (hydroxylamine, O-methylhydroxylamine); second group, those exceeding it by a factor of 10 (UV radiation (λ = 254 nm), W-mutagenesis, ionizing radiation, nitrous acid, mitomycin C); third group, those exceeding it by a factor of <10 (indirect UV mutagenesis, nitrous acid, β-chloroethyldiethylamine hydrochloride, nitrosoguanidine); fourth group, no mutagenic effect (acridine orange, ethyl methane sulfonate, sodium azide, 0-β-diethylaminoethylhydroxylamine)

  5. Chemically induced mutagenesis in Blackgram(Vigna mungo (L.Hepper

    Directory of Open Access Journals (Sweden)

    Y.Anbu Selvam,R.Elangaimannan,M.Venkatesan,P.Karthikeyan and K.Palaniraja

    2010-07-01

    Full Text Available The present investigation was carried out to study the extent of variability existed in the rice fallow blackgram varietiesnamely VBN3 and ADT 3 after induction of mutation through chemical mutagens namely EMS and colchicine. The resultsof M1 generation revealed that there was a shift in the mean for the characters Viz., plant height, number of branches perplant, number of clusters per plant, number of pods per plant,100 seed weight and seed yield per plant towards positive/negative directions.In M2, chlorophyll mutants namely, albina, xantha, chlorine, viridis and few viable mutants like giantplant, bushy plant, unifoliate leaf, narrow leaf, crinkled leaf, glabrous pod, short pod ,brown seeded, sterile plant andpigmented mutants were recorded.A significant increase in number of branches per plant, number of clusters per plant,number of pods per plant and seed yield per plant was noticed in M2 generation.The PCV and GCV showed significantlyhigher values in yield component characters such as number o f branches per plant, number of pods per cluster, number ofpods per plant and seed yield per plant in M2 generation.The yield attributing traits like number of branches per plant,number of pods per cluster,100 seed weight and seed yield per plant recorded high heritability coupled with high geneticadvance as per cent of mean in M2 generation.

  6. Dietary flavonoids bind to mono-ubiquitinated annexin A1 in nuclei, and inhibit chemical induced mutagenesis

    International Nuclear Information System (INIS)

    Highlight: • Nuclear mono-ubiquitinated annexin A1 is involved in DNA damage induced mutagenesis. • Dietary flavonoids bind to and inhibit purified mono-ubiquitinated annexin A1 helicase. • Dietary flavonoids show anti-mutagenic action. • Annexin A1 may serve as a putative target of cancer chemoprevention by flavonoids. - Abstract: In order to investigate the mechanisms of anti-mutagenic action by dietary flavonoids, we investigated if they inhibit mutation of the thymidine kinase (tk) gene in L5178Ytk(±) lymphoma cells. Silibinin, quercetin and genistein suppressed mutation of the tk gene induced in L5178Ytk(±) lymphoma cells by methyl methanesulfonate (MMS) and As3+. Flavone and flavonol were less effective. To establish that mutation of the tk gene in L5178Ytk(±) lymphoma cells by MMS and As3+ is mediated through mono-ubiquitinated annexin A1, L5178Ytk(±) lymphoma cells were treated with annexin A1 anti-sense oligonucleotide. The treatment reduced mRNA as well as protein levels of annexin A1, and suppressed mutation of the tk gene. Nuclear extracts from L5178Ytk(±) lymphoma cells catalyzed translesion DNA synthesis with an oligonucleotide template containing 8-oxo-guanosine in an annexin A1 dependent manner. This translesion DNA synthesis was inhibited by the anti-mutagenic flavonoids, silibinin, quercetin and genistein, in a concentration dependent manner, but only slightly by flavone and flavonol. Because these observations implicate involvement of annexin A1 in mutagenesis, we examined if flavonoids suppress nuclear annexin A1 helicase activity. Silibinin, quercetin and genistein inhibited ssDNA binding, DNA chain annealing and DNA unwinding activities of purified nuclear mono-ubiquitinated annexin A1. Flavone and flavonol were ineffective. The apparent direct binding of anti-mutagenic flavonoids to the annexin A1 molecule was supported by fluorescence quenching. Taken together, these findings illustrate that nuclear annexin A1 may be a novel and

  7. Dietary flavonoids bind to mono-ubiquitinated annexin A1 in nuclei, and inhibit chemical induced mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Fusao, E-mail: fhirata@wayne.edu; Harada, Takasuke; Corcoran, George B.; Hirata, Aiko

    2014-01-15

    Highlight: • Nuclear mono-ubiquitinated annexin A1 is involved in DNA damage induced mutagenesis. • Dietary flavonoids bind to and inhibit purified mono-ubiquitinated annexin A1 helicase. • Dietary flavonoids show anti-mutagenic action. • Annexin A1 may serve as a putative target of cancer chemoprevention by flavonoids. - Abstract: In order to investigate the mechanisms of anti-mutagenic action by dietary flavonoids, we investigated if they inhibit mutation of the thymidine kinase (tk) gene in L5178Ytk(±) lymphoma cells. Silibinin, quercetin and genistein suppressed mutation of the tk gene induced in L5178Ytk(±) lymphoma cells by methyl methanesulfonate (MMS) and As{sup 3+}. Flavone and flavonol were less effective. To establish that mutation of the tk gene in L5178Ytk(±) lymphoma cells by MMS and As{sup 3+} is mediated through mono-ubiquitinated annexin A1, L5178Ytk(±) lymphoma cells were treated with annexin A1 anti-sense oligonucleotide. The treatment reduced mRNA as well as protein levels of annexin A1, and suppressed mutation of the tk gene. Nuclear extracts from L5178Ytk(±) lymphoma cells catalyzed translesion DNA synthesis with an oligonucleotide template containing 8-oxo-guanosine in an annexin A1 dependent manner. This translesion DNA synthesis was inhibited by the anti-mutagenic flavonoids, silibinin, quercetin and genistein, in a concentration dependent manner, but only slightly by flavone and flavonol. Because these observations implicate involvement of annexin A1 in mutagenesis, we examined if flavonoids suppress nuclear annexin A1 helicase activity. Silibinin, quercetin and genistein inhibited ssDNA binding, DNA chain annealing and DNA unwinding activities of purified nuclear mono-ubiquitinated annexin A1. Flavone and flavonol were ineffective. The apparent direct binding of anti-mutagenic flavonoids to the annexin A1 molecule was supported by fluorescence quenching. Taken together, these findings illustrate that nuclear annexin A1 may be

  8. Molecular mechanisms of induced mutagenesis

    International Nuclear Information System (INIS)

    Genetic analysis has revealed that radiation and many chemical mutagens induce in bacteria an error-prone DNA repair process which is responsible for their mutagenic effect. The biochemical mechanism of this inducible error-prone repair has been studied by analysis of the first round of DNA synthesis on ultraviolet light-irradiated phiX174 DNA in both intact and ultraviolet light-irradiated host cells. Intracellular phiX174 DNA was extracted, subjected to isopycnic CsCl density-gradient analysis, hydroxylapatite chromatography and digestion by single-strand-specific endonuclease S1. Ultraviolet light-induced photolesions in viral DNA cause a permanent blockage of DNA synthesis in intact Escherichia coli cells. However, when host cells were irradiated and incubated to induce fully the error-prone repair system, a significant fraction of irradiated phiX174 DNA molecules can be fully replicated. Thus, inducible error-prone repair in E.coli is manifested by an increased capacity for DNA synthesis on damaged phiX174 DNA. Chloramphenicol (100 μ g/ml), which is an inhibitor of the inducible error-prone DNA repair, is also an inhibitor of this particular inducible DNA synthesis. (author)

  9. Induced Mutagenesis for Crop Improvement in Bulgaria

    International Nuclear Information System (INIS)

    Experimental mutagenesis has been investigated and applied in crop breeding in various Bulgarian agricultural research institutes during the last half century. In this paper some major accomplishments achieved in Bulgaria are highlighted. Both, physical mutagens (mainly gamma rays) and chemical mutagens (mainly EMS, NMU, NEU), have been used and their proper doses have been established. According to the information available to the author, there are more than 76 new cultivars developed using induced mutants in Bulgaria, namely: barley (5), wheat (5), durum wheat (9), maize (26), sunflower (3), lentil (4), bean (2), pea (1), chickpea and vetch (2), soybean (5), tomato (6), pepper (4), cotton (2), tobacco (2). Some of the mutant cultivars such as maize hybrid Kneja 509 and durum wheat cultivar Gergana have become leading cultivars occupying up to 50% of the growing area of the crop concerned. In durum wheat, mutant cultivars have not only covered almost all the growing areas but also doubled the yield in the past 30 years. The achievements in mutation breeding programmes have also had a significant impact on the progress of genetic research by elucidating the underlying mechanisms of induced mutations and the training of many young researchers and university students through their involvement in various research projects. A number of mutant lines with novel characteristics and mutant cultivars of economical importance together with relevant techniques used in the development and characterization of those mutant lines/cultivars are described in this paper. (author)

  10. A Report on 36 Years of Practical Work on Crop Improvement through Induced Mutagenesis

    International Nuclear Information System (INIS)

    Induced mutagenesis work was conducted from 1971 to July 2007, using both physical and chemical mutagens for improvement of a wide range of crops viz. vegetables, medicinal, pulse, oil-bearing, and ornamental crops. All classical and advanced methods were extensively used for the success of induced mutagenesis for the development of new and novel cultivars of economic importance. Being deeply engaged for the last 30 years on improvement of ornamentals through Gamma-ray induced mutagenesis, I have produced a large number of new and promising varieties in different ornamentals. A good number of ornamental mutant varieties have already been commercialized. A novel technique has been developed for management of floral chimeric sector in chrysanthemum through direct regeneration of mutated individual florets. A series of in vitro experiments were conducted and solid mutants developed through direct regeneration. In vitro mutagenesis has been successfully used for development of a salt-resistant strain in chrysanthemum, supported by biochemical analysis and field trials. (author)

  11. A Chemical Mutagenesis Screen Identifies Mouse Models with ERG Defects.

    Science.gov (United States)

    Charette, Jeremy R; Samuels, Ivy S; Yu, Minzhong; Stone, Lisa; Hicks, Wanda; Shi, Lan Ying; Krebs, Mark P; Naggert, Jürgen K; Nishina, Patsy M; Peachey, Neal S

    2016-01-01

    Mouse models provide important resources for many areas of vision research, pertaining to retinal development, retinal function and retinal disease. The Translational Vision Research Models (TVRM) program uses chemical mutagenesis to generate new mouse models for vision research. In this chapter, we report the identification of mouse models for Grm1, Grk1 and Lrit3. Each of these is characterized by a primary defect in the electroretinogram. All are available without restriction to the research community. PMID:26427409

  12. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  13. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons; Antimutagenesis de moduladores quimicos contra el dano inducido por neutrones termicos de reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Garcia B, A.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, Departamentos de Materiales Radiactivos, de Biologia, del Reactor y Gerencia de Aplicaciones Nucleares en la Salud, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  14. Tissue culture regeneration and radiation induced mutagenesis in banana

    International Nuclear Information System (INIS)

    Radiation induced mutagenesis is an important tool for banana genetic improvement. At BARC, protocols for shoo-tip multiplication of commercial banana varieties have been developed and transferred to user agencies for commercial production. Excellent embryogenic cell suspensions were established in banana cvs. Rasthali and Rajeli, and were maintained at low temperatures for long-term storage. Normal plantlets were successfully regenerated from these cell suspensions. The cell suspensions and shoot-tip cultures were gamma-irradiated for mutagenesis. The mutagenized populations were field screened and a few interesting mutants have been isolated. The existence of genetic variation was confirmed using DNA markers. Further evaluation of these mutants is in progress. (author)

  15. Enhancing genetic diversity through induced mutagenesis in vegetatively propagated plants

    International Nuclear Information System (INIS)

    Conventionally, crop improvement strategies rely not only on the availability of heritable genetic variations within utilisable genetic backgrounds but also on the transferability of the traits they control through hybridizations between the parental stocks. Procedures for producing hybrids of sexually reproducing plants are routine while for vegetatively propagated plants, hybridizations are usually impractical. The improvement of crops that lack botanical seeds necessitate therefore alternative strategies for generating and utilizing genetic variations. Induced mutagenesis generates allelic variants of genes that modulate the expression of traits. Some of the major drawbacks to the widespread use of induced mutations for vegetatively propagated plants include the difficulties of heterozygosity of the genetic backgrounds; the incidence of chimeras; and the confounding effects of linkage drags in putative mutants. In general, the inherent inefficiencies of the economies of time and space associated with induced mutagenesis are further exacerbated in vegetatively propagated crops mostly on account of the need for continual propagation. We highlight the mitigating roles on these drawbacks of the judicious integration of validated biotechnologies and other high throughput forward genetics assays in induced mutagenesis pipelines. Using cassava and banana as models, we demonstrate the use of cellular and tissue biology to achieve homozygosity, minimise or eliminate chimeras, and significantly shorten the duration of the generation of mutants. Additionally, the use of these biotechnologies to attain significantly reduced propagation footprints while evaluating putative mutants without compromising population size is also presented. We also posit that molecular biology approaches, especially reverse genetics and transcriptome assays, contributes significantly to enhancing the efficiency levels of the induced mutagenesis processes. The implications for crop improvement and

  16. Enhancing Genetic Diversity Through Induced Mutagenesis in Vegetatively Propagated Plants

    International Nuclear Information System (INIS)

    Conventionally, crop improvement strategies rely not only on the availability of heritable genetic variations within utilizable genetic backgrounds, but also on the transferability of the traits they control through hybridizations between the parental stocks. Procedures for producing hybrids of sexually reproducing plants are routine, while for vegetatively propagated plants, hybridizations are usually impractical. Therefore, the improvement of crops that lack botanical seeds necessitates alternative strategies for generating and utilizing genetic variations. Induced mutagenesis generates allelic variants of genes that modulate the expression of traits. Some of the major drawbacks to the widespread use of induced mutations for vegetatively propagated plants include the difficulties of heterozygosity of the genetic backgrounds, the incidence of chimeras and the confounding effects of linkage drags in putative mutants. In general, the inherent inefficiencies of time and space economies associated with induced mutagenesis are further exacerbated in vegetatively propagated crops mostly on account of the need for continual propagation. We highlight the mitigating roles on these drawbacks of judicious integration of validated biotechnologies and other high throughput forward genetics assays in induced mutagenesis pipelines. Using cassava and banana as models, we demonstrate the use of cell and tissue biology to achieve homozygosity, minimize or eliminate chimeras, and significantly shorten the duration of the generation of mutants. Additionally, use of these biotechnologies to attain significantly reduced propagation footprints while evaluating putative mutants without compromising population size is also presented. We also posit that molecular biology approaches, especially reverse genetics and transcriptome assays, contribute significantly to enhancing the efficiency levels of the induced mutagenesis processes. The implications for crop improvement and functional

  17. Induced mutagenesis in rice in Colombia

    International Nuclear Information System (INIS)

    Three rice varieties (CICA-8, Oryzica-I and Oryzica-2) were treated with gamma rays to induce blast resistant mutants. Mutant lines were selected from CICA-8 and Oryzica-1 that in the preliminary test showed yield differences between the original variety and the selected lines. Although blast infection scores were similar for the checks and the mutant lines, the lines are useful for non-endemic blast areas because of their good agronomic traits. (author). 1 ref., 3 tabs

  18. MOLECULAR MUTAGENESIS INDUCED BY GLYCIDYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    高惠兰; 左谨; 谢大英; 方福德

    1994-01-01

    Glycidyl methacrylate(GMA)is a recently recognized mutagen.In order to explore the mutagenicity and mechanism of GMA,plasmid pBR322 was used for in vitro binding,mutant screening,restriction enzyme map-ping,and DNA sequencing.To explore the mechanism by which an initial premutational event is converted into a stable heritable mutation,pBR322 and GMA-bound pBR322 were transformed into E.coli HB101,and the follow-ing results were obtainge:1)GMA-bound pBR322 induced phenotype changes in competent cells.Two stable and heritable mutants were isolated (ApRTcS and ApSTcR).2)When restriction enzyme mapping was used to analyze the mutant ApRTcS,four of seven maps showed changes,but no large DNA insertion or deletion were observed.3)The frequency of deletion and insertion forms counted about 10%.Sequence specificity and hot spot regions were evident in the sequence analysis of mutated plasmid.The above results indicate that the premutagenic lesions of plasmid induced by GMA can be converted into point mutatons in vivo.

  19. Control of mammalian cell mutagenesis and differentiation by chemicals which initiate or promote tumor formation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C. A.; Huberman, E.

    1980-01-01

    A cell-mediated mutagenesis assay was developed to predict the potential carcinogenic hazard of some environmental chemicals. In this assay, Chinese hamster V79 cells, which are susceptible to mutagenesis, are co-cultivated with cells capable of metabolizing chemical carcinogens. Use of this assay made it possible to demonstrate a relationship between the degree of carcinogenicity and mutagenicity of a series of polycyclic hydrocarbons and nitrosamines and to study the organ specificity exhibited by some chemical carcinogens. However, most short-term in vitro assays are designed to detect mutagenic activity and therefore do not detect tumor promoting agents which are devoid of this activity. By analyzing various markers of terminal differentiation in cultured human melanoma and myeloid leukemia cells, we have established a relationship between the activity of a series of tumor promoting phorbol diesters in the mouse skin and their ability to induce terminal differentiation. We suggest that measuring alterations in the differentiation characteristics of some cultured cells may represent an approach by which environmental tumor promoting agents can be studied and detected.

  20. Creating Sunflower Mutant Lines (Helianthus Annuus L.) Using Induced Mutagenesis

    International Nuclear Information System (INIS)

    Immature sunflower zygotic embryos of sunflower fertility restorer line 374 R were treated with ultrasound and gamma radiation before plating embryos to culture medium. All plants were isolated and self-pollinated for several generations. New sunflower forms with inherited morphological and biochemical changes were obtained. The genetic changes occurring during the mutation procedure included fourteen morphological and biochemical characters. In comparison to the check line 374 R, decreasing of the mean value of the indexes was registered for 33 % of the total number of characters and vise verse, significant increasing was observed for 60 %. Mutation for resistance to the local population of Orobanche cumana race A-E was obtained from the susceptible Bulgarian control line 374 R. Two investigated mutant lines possessed 100 % resistance to Orobanche and stable inheritance in the next generations. Our results showed that induced mutagenesis in sunflower can be successfully used to develop new lines useful for heterosis breeding

  1. A report on 36 years practical work on crop improvement through induced mutagenesis

    International Nuclear Information System (INIS)

    Physical and/or chemical mutagens cause random changes in the nuclear DNA or cytoplasmic organelles, resulting in gene, chromosomal or genomic mutations. The author will share his life time experience and achievement on induced mutagenesis. The author initiated induced mutagenesis work in 1971 till July 2007 and used both physical (X-ray and Gamma rays) and chemical (EMS, MMS, Colchicine) mutagens for improvement of vegetables (Trichosanthes anguina L, T. cucumarina , Cucurbita maxima L, Cephalandra indica, Luffa acutangula Roxb., Lagenaria ciceraria), medicinal (Trigonella foenum-graecum L, Mentha citrate Ehrh), pulse (Winged Bean (Psophocarpus tetragonolobus L. D.C.), oil bearing (Jatropha curcas L, Rosa damascene, Cymbopogon flexuosus (Nees) Wats) and ornamental (Bougainvillea, Chrysanthemum, Dahlia, Gladiolus, Hibiscus, Lantana depressa Naud, Rose, Tuberose, Narcissus etc.) crops. All classical and advanced mutagenesis methods have been extensively used for the development of new and novel cultivars of economic importance. Early flowering, late flowering, dwarf, yellow fruit color, crinkled leaf, short thick fruit, increased branching, increased pod and seed number, seed size, seed color (green, brown, chocolate color) high fruit-, seed-, oil- and punicic acidyielding mutants have been developed in T. anguina, T. fornum-graecum, Winged Bean and in J.curcas containing 'curcas oil', an efficient substitute fuel for diesel engines. Induction of flower color and chlorophyll variegated mutants in L. depressa proved the efficiency of mutation technique for domestication of wild relatives. Author was deeply engaged for the last 30 years for improvement of ornamentals and has been most successful to produce quite a large number of new promising mutant varieties in different ornamentals. Colchicine has been successfully used to develop new flower color in chrysanthemum and rose and high yielding strains in T. anguina. A novel direct in vitro regeneration technique has

  2. Quantitative mutagenesis by chemicals and by radiations: prerequisites for the establishment of rad-equivalences

    International Nuclear Information System (INIS)

    The lesions produced in the genetic material by chemical mutagens, on the one hand, and radiations, on the other, are very similar. In both cases, they are either lesions in DNA or changes in the bonds between this DNA and the proteins which surround it. The lesions are sufficiently similar to elicit, in both cases, the activity of the same repair systems. The similarity between chemical and radiation induced mutagenesis can be demonstrated by checking that a strain which is hyper-sensitive to radiation because it lacks some repair system, is also hyper-sensitive to most chemical mutagens. These similarities between the lesions suggest that one can establish an equivalence between the 'dose' of a chemical and a dose of radiation, on the basis of the effects produced on some biological systems of reference. Once such equivalence has been established, one could extrapolate the rules of radiation protection to protection against that chemical. Is this principle applicable, and under which conditions. What prerequisites must be fulfilled. The goal of this paper is to answer these questions

  3. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    OpenAIRE

    Alexandro Rodríguez-Rojas; Olga Makarova; Uta Müller; Jens Rolff

    2015-01-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the ...

  4. Development of an inducible transposon system for efficient random mutagenesis in Clostridium acetobutylicum.

    Science.gov (United States)

    Zhang, Ying; Xu, Shu; Chai, Changsheng; Yang, Sheng; Jiang, Weihong; Minton, Nigel P; Gu, Yang

    2016-04-01

    Clostridium acetobutylicum is an industrially important Gram-positive organism, which is capable of producing economically important chemicals in the ABE (Acetone, Butanol and Ethanol) fermentation process. Renewed interests in the ABE process necessitate the availability of additional genetics tools to facilitate the derivation of a greater understanding of the underlying metabolic and regulatory control processes in operation through forward genetic strategies. In this study, a xylose inducible, mariner-based, transposon system was developed and shown to allow high-efficient random mutagenesis in the model strain ATCC 824. Of the thiamphenicol resistant colonies obtained, 91.9% were shown to be due to successful transposition of the catP-based mini-transposon element. Phenotypic screening of 200 transposon clones revealed a sporulation-defective clone with an insertion in spo0A, thereby demonstrating that this inducible transposon system can be used for forward genetic studies in C. acetobutylicum. PMID:27001972

  5. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis.

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2012-02-01

    OBJECTIVE: To assess the levels and spectrum of mitochondrial DNA (mtDNA) point mutations in synovial tissue from patients with inflammatory arthritis in relation to in vivo hypoxia and oxidative stress levels. METHODS: Random Mutation Capture assay was used to quantitatively evaluate alterations of the synovial mitochondrial genome. In vivo tissue oxygen levels (tPO(2)) were measured at arthroscopy using a Licox probe. Synovial expression of lipid peroxidation (4-hydroxynonenal [4-HNE]) and mitochondrial cytochrome c oxidase subunit II (CytcO II) deficiency were assessed by immunohistochemistry. In vitro levels of mtDNA point mutations, reactive oxygen species (ROS), mitochondrial membrane potential, and markers of oxidative DNA damage (8-oxo-7,8-dihydro-2\\'-deoxyguanine [8-oxodG]) and lipid peroxidation (4-HNE) were determined in human synoviocytes under normoxia and hypoxia (1%) in the presence or absence of superoxide dismutase (SOD) or N-acetylcysteine (NAC) or a hydroxylase inhibitor (dimethyloxalylglycine [DMOG]). Patients were categorized according to their in vivo tPO(2) level (<20 mm Hg or >20 mm Hg), and mtDNA point mutations, immunochemistry features, and stress markers were compared between groups. RESULTS: The median tPO(2) level in synovial tissue indicated significant hypoxia (25.47 mm Hg). Higher frequency of mtDNA mutations was associated with reduced in vivo oxygen tension (P = 0.05) and with higher synovial 4-HNE cytoplasmic expression (P = 0.04). Synovial expression of CytcO II correlated with in vivo tPO(2) levels (P = 0.03), and levels were lower in patients with tPO(2) <20 mm Hg (P < 0.05). In vitro levels of mtDNA mutations, ROS, mitochondrial membrane potential, 8-oxo-dG, and 4-HNE were higher in synoviocytes exposed to 1% hypoxia (P < 0.05); all of these increased levels were rescued by SOD and DMOG and, with the exception of ROS, by NAC. CONCLUSION: These findings demonstrate that hypoxia-induced mitochondrial dysfunction drives

  6. Breeding of Hordeum Vulgare L. via chemical and physical Mutagenesis

    International Nuclear Information System (INIS)

    A field experiment was conducted under field conditions to compare for yield, yield components and some agronomic traits, of four selective mutants that have been obtained by using chemical mutagen (Sodium Azide) and physical mutagen ( Gamma ray, 20 KG) and their parent Arivate and Numar. The results show that the selective mutants have a high degree of genetic stability and exceeded their parents in some agronomic parameters. There fore, the two best selective mutants were accepted for registration and release under the name of Barrak and Amel as a new varieties by Nacional Committee for Registration and Release of Agricultural varieties

  7. Effect of induced mutagenesis in rice tissue culture

    International Nuclear Information System (INIS)

    The influence of chemical mutagens and ionising radiation on growth, regenerative capacity of rice callus culture and the effect o9f mutagens on frequency and spectrum of mutant regenerants, derived from calli and determination of approximate semi-lethal dose of each mutagen on rice calli was studied. Intact mature de-husked grains and pieces of primordial particles of four varieties were used as explants in the experiment. Organogenesis was induced using MS media supplemented with agar. After thirty days calluses were subjected to varying concentrations/dosage of mutagens. The effect of mutagens on growth of callus was stimulative in low concentration/doses at short exposure, but in higher concentration/doses at longer exposure it was oppressive. In x-radiation treatment all the studied doses showed only stimulative effect on growth. The effect of mutagenic treatment on regenerative capacity was negative. No specificity was found even between two chemical mutagens of their action on studied characters

  8. The influence of glycerol on γ-induced mutagenesis in Salmonella typhimurium cells

    International Nuclear Information System (INIS)

    A study was made of the modifying effect of glycerol on the survival rate and γ-radiation-induced mutagenesis of Salmonella typhimurium cells TA98, TA100 and TA102. The DMF value, with respect to the survival rate, was 2.05-0.20. The dependence of the yield of γ-radiation-induced mutants on radiation dose was described by the curve with a maximum; the mutation frequency M(D) was well described by a gradual function M(D)=kDx. DMF values of the induced mutagenesis amounted to 2 for strains TA100 and TA102, and 1.5 for strain TA98

  9. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    International Nuclear Information System (INIS)

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  10. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    Energy Technology Data Exchange (ETDEWEB)

    Abel, E.L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); Boulware, S. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); Fields, T.; McIvor, E.; Powell, K.L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); DiGiovanni, J.; Vasquez, K.M. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); MacLeod, M.C., E-mail: mcmacleod@mdanderson.org [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  11. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2015-10-01

    Full Text Available Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection.

  12. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    Science.gov (United States)

    Rodríguez-Rojas, Alexandro; Makarova, Olga; Müller, Uta; Rolff, Jens

    2015-10-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection. PMID:26430769

  13. Induced Mutagenesis in Mungbean (Vigna radiata (L.) Wilczek)

    International Nuclear Information System (INIS)

    A wide range of viable morphological and physiological mutants were observed in M2 and M3 progenies of mungbean (Vigna radiata (L.) Wilczek) cultivars (Vaibhav and Kopargaon-1) raised from seeds treated with different concentrations of sodium azide, ethyl methane sulfonate and different doses of gamma radiation. The most striking type of mutants obtained in the M3 progeny included plant habit, leaf structure, flower type, pod type, seed type, early-maturing and high-yielding and Lhb mutants. Some of these mutants are new and are being reported for the first time in this crop. The true breeding mutant lines of M3 generation were compared with their parent cultivar (control) to assess whether the induced genetic variability was statistically significant. These mutants can be better fitted in new cropping patterns, with improved agronomic management and good yielding ability, or can be used in the genetic improvement of mungbean crop. Chemical mutagens were more efficient than physical ones in inducing viable and total number of mutations. Along with simple viable mutations, multiple mutagenic effects on two or more characters were also found in all the mutagenic treatments. Differences in the mutation frequency and spectrum depends on the interaction of three factors such as mutagen, plant genotype, and physiological state of the organism at the moment of treatment. The Kopargaon-1 cultivar was more resistant towards mutagenic treatment than Vaibhav cultivar. All mutants were analyzed for their protein, albumin and globulin contents by Lowry's method and for protein banding patterns employing SDS Polyacrylamide Gel Electrophoresis. Mungbean mutants with high as well as low protein contents ranging from 29.3% to 14.75% vis-a-vis 22.2% in the control were isolated. Results showed that early flowering mutant and Lhb mutant differed between each other as well as with other mutants and controls in their protein-banding pattern. Our results indicated that mutational

  14. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    Science.gov (United States)

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-01-01

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms. PMID:26446369

  15. Using ultra-sensitive next generation sequencing to dissect DNA damage-induced mutagenesis.

    Science.gov (United States)

    Wang, Kaile; Ma, Xiaolu; Zhang, Xue; Wu, Dafei; Sun, Chenyi; Sun, Yazhou; Lu, Xuemei; Wu, Chung-I; Guo, Caixia; Ruan, Jue

    2016-01-01

    Next generation sequencing (NGS) technologies have dramatically improved studies in biology and biomedical science. However, no optimal NGS approach is available to conveniently analyze low frequency mutations caused by DNA damage treatments. Here, by developing an exquisite ultra-sensitive NGS (USNGS) platform "EasyMF" and incorporating it with a widely used supF shuttle vector-based mutagenesis system, we can conveniently dissect roles of lesion bypass polymerases in damage-induced mutagenesis. In this improved mutagenesis analysis pipeline, the initial steps are the same as in the supF mutation assay, involving damaging the pSP189 plasmid followed by its transfection into human 293T cells to allow replication to occur. Then "EasyMF" is employed to replace downstream MBM7070 bacterial transformation and other steps for analyzing damage-induced mutation frequencies and spectra. This pipeline was validated by using UV damaged plasmid after its replication in lesion bypass polymerase-deficient 293T cells. The increased throughput and reduced cost of this system will allow us to conveniently screen regulators of translesion DNA synthesis pathway and monitor environmental genotoxic substances, which can ultimately provide insight into the mechanisms of genome stability and mutagenesis. PMID:27122023

  16. Using ultra-sensitive next generation sequencing to dissect DNA damage-induced mutagenesis

    Science.gov (United States)

    Wang, Kaile; Ma, Xiaolu; Zhang, Xue; Wu, Dafei; Sun, Chenyi; Sun, Yazhou; Lu, Xuemei; Wu, Chung-I; Guo, Caixia; Ruan, Jue

    2016-01-01

    Next generation sequencing (NGS) technologies have dramatically improved studies in biology and biomedical science. However, no optimal NGS approach is available to conveniently analyze low frequency mutations caused by DNA damage treatments. Here, by developing an exquisite ultra-sensitive NGS (USNGS) platform “EasyMF” and incorporating it with a widely used supF shuttle vector-based mutagenesis system, we can conveniently dissect roles of lesion bypass polymerases in damage-induced mutagenesis. In this improved mutagenesis analysis pipeline, the initial steps are the same as in the supF mutation assay, involving damaging the pSP189 plasmid followed by its transfection into human 293T cells to allow replication to occur. Then “EasyMF” is employed to replace downstream MBM7070 bacterial transformation and other steps for analyzing damage-induced mutation frequencies and spectra. This pipeline was validated by using UV damaged plasmid after its replication in lesion bypass polymerase-deficient 293T cells. The increased throughput and reduced cost of this system will allow us to conveniently screen regulators of translesion DNA synthesis pathway and monitor environmental genotoxic substances, which can ultimately provide insight into the mechanisms of genome stability and mutagenesis. PMID:27122023

  17. Inducible Mutagenesis and Biofilm Formation in Streptococcus uberis

    OpenAIRE

    Varhimo, Emilia

    2010-01-01

    The evolutionary success of bacteria depends on genetic variability. This variability may be the result of beneficial mutations in the genome or from the uptake of genetic elements that increase viability under stress conditions. Bacteria are repeatedly exposed to agents such as antibiotics and host immune responses, which may induce in bacteria a variety of survival strategies, including mutagenic mechanisms. The development of antibiotic resistance is one of the serious consequences of thes...

  18. DNA damage and mutagenesis of lambda phage induced by gamma-rays

    International Nuclear Information System (INIS)

    Lambda phage DNA was gamma irradiated in aqueous solution and strand breakage determined. Twice as much minor structural damage per lethal hit was found in this DNA compared with DNA from irradiated phage suspensions. The in vitro irradiated DNA was repackaged into infectious particles. Induction of mutations in the cI or cII cistron was scored using SOS-induced host cells. In vitro prepared particles were found to have second-order kinetics for mutagenesis induced by gamma rays indicating two pre-mutational events were necessary to produce a mutation, but bacteria-free phage suspensions ('lys-phage') showed single hit kinetics for mutagenesis after irradiation. Increase in the mutation rate in the phage particles was mainly due to minor lesions, i.e. ssb, als and unidentified base damage. In lys-phage, mutagenesis might be enhanced by clustered DNA damage - configuration not existing in pack-phage. Loss of infectivity was analysed in comparison with structural damage. All lesions contributed to biological inactivation. Minor lesions were tolerated by lambda phage to a limited extent. Major lesions (e.g. dsb) contributed most to infectivity loss and were considered lethal events. (U.K.)

  19. Quantitative Traits of Ion Beam Induced Mutagenesis in Triticum aestivum

    Institute of Scientific and Technical Information of China (English)

    Huan FANG; Zhen JIAO

    2012-01-01

    [Objective] The aim of this study was to elucidate the quantitative traits of plants mutagenized by ion beam. [Method] The particular variation phenotypes, a- gronomic traits, and protein and wet gluten contents of progenies derived from the same ion beam induced mutant were investigated. [Result] Morphological polymor- phism existed in some individuals. Plant height, spike length and protein content were significantly influenced by ion beam, and effective tiller number and wet gluten content were moderately influenced. Multiple comparisons of all the indices within groups indicated genomic instability among these groups. Coefficient of variation im- plied the differences within group were very low. [Conclusion] Ion beam irradiation displayed characteristics of multi-directivity and non-directiveness. It aroused multiple variations in the same mutant. Instability among progeny indicates cells had different fate even in the same irradiated tissue. It may take several generations for mutants to stabilize particular phenotypes. The effects of ion beam irradiation may be the in- terrelated direct irradiation damage, indirect irradiation damage and late effect, such as bystander effect and adaptive response.

  20. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  1. Mutagenesis and Teratogenesis Section

    International Nuclear Information System (INIS)

    Progress is reported on research with mice in the areas of radioinduced and chemical mutagenesis, cytologic studies, radiation effects on DNA synthesis, radiation effects on germ cells, mutagenicity of coal-conversion products, and others. Research on Drosophila was concerned with mutagenesis and genetics of nucleases. Studies were conducted on hamster cells with regard to cytotoxicity and mutagenicity of alkylating agents, modification of the microtubule system, protein kinase activity, and others. Research on bacteria was concerned with effects of x radiation on bacteriophage of Haemophilus influenzae, x-ray induced DNA polymerase I-directed repair synthesis in Escherichia coli, transformation by DNA polymerase II in Bacillus subtilis, and others. Research on xenopus laevis was conducted in the areas of calcium-induced cleavage of oocytes, yolk degradation in explants, and others

  2. UV-induced mutagenesis in Escherichia coli SOS response: a quantitative model.

    Directory of Open Access Journals (Sweden)

    Sandeep Krishna

    2007-03-01

    Full Text Available Escherichia coli bacteria respond to DNA damage by a highly orchestrated series of events known as the SOS response, regulated by transcription factors, protein-protein binding, and active protein degradation. We present a dynamical model of the UV-induced SOS response, incorporating mutagenesis by the error-prone polymerase, Pol V. In our model, mutagenesis depends on a combination of two key processes: damage counting by the replication forks and a long-term memory associated with the accumulation of UmuD'. Together, these provide a tight regulation of mutagenesis, resulting, we show, in a "digital" turn-on and turn-off of Pol V. Our model provides a compact view of the topology and design of the SOS network, pinpointing the specific functional role of each of the regulatory processes. In particular, we suggest that the recently observed second peak in the activity of promoters in the SOS regulon (Friedman et al., 2005, PLoS Biology 3(7: e238 is the result of positive feedback from Pol V to RecA filaments.

  3. Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagenesis.

    Science.gov (United States)

    El-Nashar, Y I; Asrar, A A

    2016-01-01

    Chemical mutagenesis is an efficient tool used in mutation-breeding programs to improve the vital characters of the floricultural crops. This study aimed to estimate the effects of different concentrations of two chemical mutagens; sodium azide (SA) and diethyl sulfate (DES). The vegetative growth and flowering characteristics in two generations (M1 and M2) of calendula plants were investigated. Seeds were treated with five different concentrations of SA and DES (at the same rates) of 1000, 2000, 3000, 4000, and 5000 ppm, in addition to a control treatment of 0 ppm. Results showed that lower concentrations of SA mutagen had significant effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements in plants of both generations. Calendula plants tended to flower earlier under low mutagen concentrations (1000 ppm), whereas higher concentrations delayed flowering significantly. Positive results on seed germination, plant height, number of branches, plant fresh weight, and leaf area were observed in the M2-generation at lower concentrations of SA (1000 ppm), as well as at 4000 ppm DES on number of leaves and inflorescences. The highest total soluble protein was detected at the concentrations of 1000 ppm SA and 2000 ppm DES. DES showed higher average of acid phosphatase activity than SA. Results indicated that lower concentrations of SA and DES mutagens had positive effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements. Thus, lower mutagen concentrations could be recommended for better floral and physio-chemical performance. PMID:27173326

  4. The role of the bacterial mismatch repair system in SOS-induced mutagenesis: a theoretical background

    International Nuclear Information System (INIS)

    A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, a mathematical model of the bacterial mismatch repair system is developed. Within this model, the key pathways of this type of repair are simulated on the basis of modern experimental data related to its mechanisms. Here we have modelled in detail five main pathways of DNA misincorporation removal with different DNA exonucleases. Using our calculations, we have tested the hypothesis that the bacterial mismatch repair system is responsible for the removal of the nucleotides misincorporated by DNA polymerase V (the UmuD'2C complex) during ultraviolet-induced SOS response. For the theoretical analysis of the mutation frequency, we have combined the proposed mathematical approach with the model of SOS-induced mutagenesis in the E.coli bacterial cell developed earlier. Our calculations support the hypothesis that methyl-directed mismatch repair influences the mutagenic effect of ultraviolet radiation

  5. Induction of novel genetic recombinants through chemical mutagenesis of microspores in Indian Mustard B. juncea

    International Nuclear Information System (INIS)

    The microspore embryogenesis and DH production protocol developed in our lab [In Vitro Cellular and Development Biology - Plant. 2005, 41: 266-273] was used for microspores isolation and their chemical mutagenesis to widen the genetic base of three widely cultivated B. juncea species, Pusa Bold, Varuna and Bio- 902. The regenerated three to four leaf growth stage plantlets were diploidized, hardened and transplanted to develop doubled haploid plants. The microspores of genotype BIO-902 treated with either ENU/EMS did not produce any embryos while the control produced 85.4 ± 10.9 embryos/ Petri dish. Treatment with 5.0 μM ENU/EMS resulted in maximum embryo induction from the other two genotypes, Pusa Bold and Varuna. Irrespective of the concentration used, EMS mutated microspores produced embryos with higher frequency (239) as compared to those treated with ENU (106). The control embryos exhibited 85 to 90% germination against the mutant microspore derived embryos (16.7 to 31.5%). Overall lower concentrations of EMS (1.0 to 2.5 μM) compared to that of ENU (2.5 to 5.0 μM) promoted higher frequency of positive mutants with promising yield potential. Both EMS and ENU generated considerable variability for agro morphological and biochemical traits; appressed pod phenotype, number of pods, leaf size, total glucosinolate content and FA profile. Desirable phenotypes with reduced glucosinolate ( 100 μM) per g oil free meal were recovered from 2.5 to 5.0 μM EMS mutagenesis. Mutants with 45% oleic acid (against 40-45% erucic and 15-20% oleic in controls) were obtained in mutagenized plants from EMS (2.5 μM) and ENU (5.0 μM ). Useful variability was identified in mutant plants for their disease response to the most devastating fungal diseases Albugo candida (DI 0.6-2.0) and Alternaria brassicae (DI 1.3- 2.6) under artificial inoculation. (author)

  6. Role of the supX gene in ultraviolet light-induced mutagenesis in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Salmonella typhimurium strains with sup X mutations are more sensitive than wild type to killing by ultraviolet irradiation. Studies with strains bearing the leuD21 mutation revealed that inactivation of the supX locus by a nonsense mutation or a deletion results in a complete lack of ability to produce induced Leu+ reversion mutations after UV irradiation. Suppression of the nonsense supX mutation or the presence of an Escherichia coli K-12 F'-borne supX+ allele restored the capacity for induced reversions and increased cell survival after UV irradiation. Introduction of plasmid pKM101 into supX mutant strains also restored their capacity for UV mutagenesis as well as increased survival. The possible nature of the supX gene product and mechanisms by which it may affect expression of the inducible SOS error-prone repair system are considered

  7. Evaluation of the L5178Y mouse lymphoma cell mutagenesis assay: intralaboratory results for sixty-three coded chemicals tested at Litton Bionetics, Inc.

    Science.gov (United States)

    Myhr, B C; Caspary, W J

    1988-01-01

    The reliability of the L5178Y TK+/- forward mutation assay as a rapid screen for genotoxicity was evaluated by testing 63 coded chemicals. Replicate treatments were used, and at least two independent experiments were performed for each test condition. The test conditions consisted of no exogenous activation, activation by Aroclor 1254-induced Fischer 344 rat liver S9 homogenate, and in some cases activation by noninduced Fischer 344 rat liver S9. The results were organized into tables that show the mutant colony counts, mutant frequency, and toxicity for each test chemical treatment, positive control treatment, and solvent negative control cultures. The repeat experiments were highly consistent and yielded contradictory evaluations for only a few of the chemicals studied. Fifty-one of the chemicals (81%) were evaluated as mutagenic under one or both of the test conditions. A range in minimum effective concentrations of almost 10(6)-fold (0.008 to 5,000 micrograms/ml) was observed among the mutagenic chemicals. Nine chemicals (14%) were considered to be nonmutagenic. Three chemicals (progesterone, p-rosaniline HCl, and 1,1,1-trichloroethane) gave responses that were not easily evaluated under any test condition: evidence for mutagenesis was obtained in some experiments but not for all repeat studies. Under nonactivation conditions, specifically, the mutagenic activities of 4,4'-bis(dimethylamino)benzophenone, progesterone, and p-rosaniline HCl remained uncertain. With S9 activation, uncertain evidence for mutagenesis was obtained for 2-naphthylamine, progesterone, and 1,1,1-trichloroethane. In some cases, changes in the treatment conditions could lead to different evaluations of the mutagenic activity, and these possibilities are discussed in the descriptive evaluations of each chemical. Comparisons of the observed responses with published results were possible for 29 of the compounds and yielded highly confirmatory evaluations. PMID:3416838

  8. Ultaviolet-induced frameshift mutagenesis in Salmonella typhimurium: absence of an effect of mutation frequency decline

    International Nuclear Information System (INIS)

    Enhanced yields of UV-induced back mutants to prototrophy are observed when irradiated cells of the Salmonella typhimurium frameshift strain LT2 hisC3076(R46) are plated on defined medium containing broth (2.5%, v/v) rather than a trace (0.02 μg/ml) of the required nutrient (histidine). This broth effect is not abolished, and is in fact augmented, in an excision-deficient derivative of hisC3076(R46) carrying the uvr-302 mutation. Since similar broth effects on UV-induced base-pair substitution mutagenesis have usually been attributed to inhibition of mutation frequency decline (MFD), and since MFD is in turn thought to reflect the activity of an intact excision-repair system, we sought to determine whether or not UV-induced premutational lesions leading to the production of frameshifts are susceptible to MFD. Results with the doubly auxotrophic strain LT2 hisC3076 leuA150 (pKM101) showed that in a population of cells actually undergoing MFD (as judged by a rapid loss of UV-induced reversions of the base-pair substitution marker (leuA150)), no concomitant loss of UV-induced reversions of the frameshift hisC3076 marker could be detected. (orig.)

  9. UV-induced mutagenesis of oxidation activity of ferrous ion of Thiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An excellent strain named T. f6 was isolated and screened, the dose and other condition for the UV-induced mutagenesis were studied and the richened positive mutant m+ T. f6 was applied in the column leaching of copper-contain ing sulfides. The results show that T. f6 is characterized by rapid oxidation of ferrous ion and cupric sulfide, high tolerance of toxic ion and short generation time. The best mutagenic effectiveness can be obtained under the dose of low kill rate of UV and low temperature treatment, under which the best richened m+ T. f6 can be shortened 1.4h. It was shown by the column leaching of copper that the leaching rate can be enhanced by at least 11% compared with the original one by the mutants.

  10. Radiation-induced mutagenesis of antifungal metabolite producing bacillus sp. HKA-17

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Senthilkumar, M. [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-09-15

    Bacillus sp. Strain HKA-17, isolated from the surface sterilized root nodule of Glycine max, inhibited several fungal plant pathogens. It produced a diffusible extracellular antifungal metabolite that was extracted with n-butanol. The crude extract was purified through Superdex{sup TM} 75 10/300 GL FPLC column. FT-IR spectrum of the FPLC purified-antifungal metabolite confirmed the presence of peptide and glycosidic bonds in its structure. Gamma induced mutagenesis of HKA-17 was carried out at an LD{sub 99} dose (8.46 kGy) to generate a mutant library. By screening the mutant library through a duel plate assay with Alternaria alternata, we selected one mutant with enhanced biocontrol activity (HKA-17e1) and two defective mutants (HKA-17d1 and HKA-17d2). Overproducing mutant recorded the largest inhibition zone (16.25 {+-} 0.86 mm) compared to any other mutant clone as well as wild type, and could be used as a potential biocontrol agent for plant disease suppression. The effect of HKA-17 antifungal metabolite on hyphal morphology was clearly demonstrated through scanning electron microscopy. The crude extract of defective mutant HKA-17 d1 did not induce any changes in hyphal morphology of A. alternata. However, antifungal metabolites of HKA-17 induced abnormal hyphal structures such as hyphal shrivelling, the bulging and swelling of intercalary cells, fragmentation, and cell lysis.

  11. Radiation-induced mutagenesis of antifungal metabolite producing bacillus sp. HKA-17

    International Nuclear Information System (INIS)

    Bacillus sp. Strain HKA-17, isolated from the surface sterilized root nodule of Glycine max, inhibited several fungal plant pathogens. It produced a diffusible extracellular antifungal metabolite that was extracted with n-butanol. The crude extract was purified through SuperdexTM 75 10/300 GL FPLC column. FT-IR spectrum of the FPLC purified-antifungal metabolite confirmed the presence of peptide and glycosidic bonds in its structure. Gamma induced mutagenesis of HKA-17 was carried out at an LD99 dose (8.46 kGy) to generate a mutant library. By screening the mutant library through a duel plate assay with Alternaria alternata, we selected one mutant with enhanced biocontrol activity (HKA-17e1) and two defective mutants (HKA-17d1 and HKA-17d2). Overproducing mutant recorded the largest inhibition zone (16.25 ± 0.86 mm) compared to any other mutant clone as well as wild type, and could be used as a potential biocontrol agent for plant disease suppression. The effect of HKA-17 antifungal metabolite on hyphal morphology was clearly demonstrated through scanning electron microscopy. The crude extract of defective mutant HKA-17 d1 did not induce any changes in hyphal morphology of A. alternata. However, antifungal metabolites of HKA-17 induced abnormal hyphal structures such as hyphal shrivelling, the bulging and swelling of intercalary cells, fragmentation, and cell lysis

  12. Inducing cold tolerance in Malagasy rice varieties IR 58614, Malady and Rojofotsy through in vitro mutagenesis

    International Nuclear Information System (INIS)

    The use of induced mutagenesis to develop cold tolerant mutants from Malagasy rice varieties was investigated with the aim of developing rice mutants that could be planted during the cold seasons in the country. The strategy involved the induction of calli from mature rice embryos and exposing the calli to different doses of gamma rays. The efficacy of different media compositions were evaluated both for callus induction and for plantlet regeneration. Selections for cold tolerance were carried out by attempting to induce the irradiated calli to regenerate at 12 deg. C. The putative mutants were evaluated for agronomic performance under controlled environments and field conditions. Data are presented on the optimal media compositions for both callus induction and plant regeneration for both indica and japonica rice varieties. In all, 3 cold tolerant induced mutants with high yield and seed set were identified. The implications of the findings and suggestions for the integration of the mutants into Malagasy rice agriculture in order to achieve 2 crops per year are discussed. (author)

  13. Physical and chemical mutagenesis on a mycophagous nematode Aphelenchoides composticola (M.T. Franklin, 1957)

    International Nuclear Information System (INIS)

    Chemical mutagens as EMS, acriflavine, acridine, colchicine, nitrous acide and physical mutagens, such as X rays, have been used on the gonochoric mycophagous Nematode Aphelenchoides composticola. They show a nematicid activity due, to their toxicity on treated Nematodes and to the induction of lethal mutations affecting particularly early stages of gametogenesis. They produce abnormal strains dwarfs or giants (up to 25% of the population). Concentrations of chemical mutagens varying from 0.2 to 0.5% correspond to the optimal production of abnormalities. Similar results were obtained by irradiation near to 2000r. The action of the mutagens shows some differences: EMS and X rays generally produce dwarfs, whereas acriflavine, acridine, colchicine or nitrous acid induced only giants. Abnormal strains appear: in the F1, generation by X rays or acridine treatments; in the F2 or F3 generation by acriflavine, colchicine, nitrous acid or EMS action. The abnormal strains could be either variants or mutants and from these we select: four dwarfs B, C, D, E, induced by EMS 0.5% for 24 hours appearing in the F3 generation; or dwarf F induced by irradiation of 1500r appearing in the F1 generation. All these selected mutants are autosomal recessive single factors D and C controlled by two alleles of the some locus

  14. Obtaining unique large kernel rice using chemical mutagenesis in tissue culture

    International Nuclear Information System (INIS)

    Full text: Lines with improved characters have been received by chemical mutagenesis in rice tissue culture. The japonica rice (Oryza sativa L.) varieties 'Krasnodarskii 424', 'Dubovskii 129', 'Slavyanetz', 'Liman', 'Lomello', 'VNIIR 2471' were used for mutation induction. Nnitrozo-N-methylurea (MNH) has been used as a mutagen. Two approaches were applied: 1. Development mutants by mutagenic treatment of seeds 2. Development regenerants from somatic tissue culture. In the first case, dry seeds with removed covering glumes have been treated with a solution of NMH (exposure 24 hours, tested concentrations 0.05%; 0.1%; 0.2%). After treatment seeds have been rinsed and planted into the soil in vessels. The effect of mutagen was very much genotype dependant. The highest frequency of mutants were observed in the following concentrations of MNH: for variety VNIIR 2471 - 0.05-0.1%, for variety Slavyanetz - 0.1%; for Lomello - 0.2%; for Linman - 0.05% and 0.2%. The mutant N 95, which has been selected from variety Liman after treatment with 0.2% concentration of mutagen, had the following improved characters: vegetation period 103 days (110 days for the parent variety); plant height 93.2 cm (98.2 cm - parent variety); length of the main panicle 17.2 cm; 1000 grain mass 44.9 g (39.2 g - parent variety). Mutant line N 101 selected from the same variety Liman after treatment with 0.05% concentration of mutagen mutated also in many characters: vegetation period 103 days; plant height 106 cm; 1000 grain mass was 47.0 g. In the second experiment, a somatic callus of the 2nd passage from varieties Kransnodarskii 424, Dubovskii 129, Slavyanetz, Liman were treated with the solution of mutagen NMH (concentration: 0.05%; 0.1%; 0.2% + 0.1% PABA by 40 minutes at Certomat shaking machine (100 rev./min). The treated callus has been cultivated at MS regeneration media (4 mg 2.4 D + 20 mg /l of sucrose) and MS intermediate media (non-hormonal + PABA) to obtain regenerants. Plant

  15. U.v.-induced and N-methyl-N'-nitrosoguanidine-induced mutagenesis in Bacillus thuringiensis

    International Nuclear Information System (INIS)

    The lethal and mutagenic effects of u.v. light and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on Bacillus thuringiensis were investigated. Lethality studies demonstrated that B. thuringiensis was relatively sensitive to these agents. This bacterium was mutated at the rifampicin resistance marker by u.v. light and to a lesser extent by the direct acting alkylating agent MNNG. One mutant selected for its greater sensitivity to u.v. light expressed a higher frequency of mutagenesis after u.v. light treatment and appeared to be defective in an excision repair pathway. However, this mutant was only slightly mutable by MNNG in comparison with the wild-type strain. This unusual phenotype does not yet have a parallel among the radiation sensitive mutants described in other bacterial species. (author)

  16. Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light

    International Nuclear Information System (INIS)

    In targeted mutagenesis of lambda phage by ultraviolet light, the mutations are caused by radiation-induced lesions in the phage DNA. Of 62 mutations in the lambda cI gene that were sequenced, 41 of the targeted mutations were transitions, with similar numbers of C.G to T.A and T.A to C.G base changes. The remaining 21 mutations were about equally divided among eight transversions, seven frameshifts (5 additions and 2 deletions), and six double events with either two nearby base changes or a base change and a nearby frameshift. Of the 62 mutations, 60 could be associated with -Pyr-Pyr- sequences in the DNA, sites of likely photoproducts. For more information on this point, lambda phage were irradiated with 313 nm light in the presence of acetophenone for which the major photoproduct is reported to be the thymine-thymine cyclobutyl dimer, with no measurable Pyr(6-4)Pyo photoproducts. Of 22 mutations sequenced, 19 were transversions and only one was a transition, permitting the conclusion that thymine-thymine cyclobutyl dimers are not the primary cause of ultraviolet light-induced transitions. A consideration of all the data strongly suggests that Pyr(6-4)Pyo photoproducts are mutagenic lesions. (author)

  17. Comments on mutagenesis risk estimation

    International Nuclear Information System (INIS)

    Several hypotheses and concepts have tended to oversimplify the problem of mutagenesis and can be misleading when used for genetic risk estimation. These include: the hypothesis that radiation-induced mutation frequency depends primarily on the DNA content per haploid genome, the extension of this concept to chemical mutagenesis, the view that, since DNA is DNA, mutational effects can be expected to be qualitatively similar in all organisms, the REC unit, and the view that mutation rates from chronic irradiation can be theoretically and accurately predicted from acute irradiation data. Therefore, direct determination of frequencies of transmitted mutations in mammals continues to be important for risk estimation, and the specific-locus method in mice is shown to be not as expensive as is commonly supposed for many of the chemical testing requirements

  18. Mutagenesis applied to improve fruit trees. Techniques, methods and evaluation of radiation-induced mutations

    International Nuclear Information System (INIS)

    Improvement of fruit tree cultivars is an urgent need for a modern and industrialized horticulture on which is based the economic importance of many countries. Both the cross breeding and the mutation breeding are regarded as the methods to be used for creating new varieties. Research carried out at the CNEN Agriculture Laboratory on mutagenesis to improve vegetatively propagated plants, under the FAO-IAEA Co-ordinated Research Programme, has dealt with methods of exposure, types of radiations, conditions during and after the irradiation, mechanisms of mutation induction, methodology of isolation of somatic mutations and evaluation of radiation-induced mutations in fruit trees. Problems associated with these aspects have been evaluated, which is very important for the more efficient use of radiation in the mutation breeding. Mutants of agronomical importance (plant size reduction, early ripening, fruit colour change, nectarine fruit, self-thinning fruit) have been isolated in cherry, grape, apple, olive and peach and they are ready to be released. (author)

  19. Application of somaclonal variation and in vitro induced mutagenesis in crop improvement

    International Nuclear Information System (INIS)

    Manipulating genetic variability is one of the major tasks of plant breeders. Somaclonal variation, gametoclonal variation and in vitro induced mutagenesis can be used to create variability from which crop plants can be improved. In vitro techniques for the culture of protoplasts, somatic tissues, pollens/microspores, ovules and embryos have been used to create new genetic variation in the breeding lines. The process of in vitro selection has been applied to several cell culture systems to generate mutants with useful agronomic traits such as tolerance to biotic and abiotic stresses. Cell and tissue culture techniques have been used to obtain salt tolerant plants employing two in vitro culture approaches including selection of mutant cell lines (somaclones) and in vitro screening of plant germplasm for salt tolerance. Our study of evaluation of resistance to powdery mildew (Leveillula taurica) in wild and cultivated sainfoin (Onobrychis viciifolia) indicated a very low variability for reaction to the disease. Induced mutation via ethyl methane sulfonate (EMS) in sainfoin was also not effective in creating variability for resistance to the powdery mildew. In durum wheat, in vitro selection for salt tolerance was carried out and the resulting in vitro derived salt-tolerant genotypes were compared with those of field-selected under saline field conditions. In vitro screening method was comparable to that of field-selected one in recognizing salt tolerance genotypes in durum wheat. Field screening procedures in saline soils are confronted by high spatial and temporal variability problems and the preliminary germplasm assessments can be hence undertaken under either control environments or in vitro conditions, and then the selected genotypes can be evaluated under saline field conditions. (author)

  20. Photosensitization induced by the antibacterial fluoroquinolone Rufloxacin leads to mutagenesis in yeast.

    Science.gov (United States)

    Serrentino, Maria-Elisabetta; Catalfo, Alfio; Angelin, Anne-Reynaud; de Guidi, Guido; Sage, Evelyne

    2010-10-13

    Rufloxacin (RFX) is an antibacterial fluoroquinolone that exhibits UVA photosensitization properties. Photosensitization reactions lead to the formation of oxidative damage, mainly via singlet oxygen. Here we explore the phototoxic and photomutagenic potency of RFX using a panel of yeast (Saccharomyces cerevisiae) mutants affected in different DNA repair pathways. Yeast mutants provide a sensitive tool to identify the photodamage and the DNA repair pathways that cope with it. Cell viability test at increasing dose of UVA shows that both the DNA repair deficient and wild type cells are equally sensitive to RFX-induced photosensitization, demonstrating that phototoxic effect is not due to DNA injury. Photomutagenicity of RFX is evaluated by measuring the frequency of forward Can(R) mutations. The mutation induction is low in wild type cells. A high increase in mutation frequency is observed in strains affected in Ogg1 gene, compared to wild type and other base excision repair deficient strains. The mutation spectrum photomediated by RFX in wild type cells reveals a bias in favour of GC>TA transversions, whereas transition and frameshift mutations are less represented. Altogether data demonstrates that 8-oxo-7,8-dihydroguanine (8-oxoGua) is by far the major DNA damage produced by RFX photosensitization, leading to mutagenesis. We also explore the role played by DNA mismatch repair, translesion synthesis and post-replication repair in the prevention of mutagenic effects due to RFX exposure. In addition, we show that most of RFX photodegradation products are not mutagenic. This study defines the phototoxic and photomutagenic properties of antibacterial RFX and point out possible unwanted side effects in skin under sunlight. PMID:20696178

  1. Development and utilisation of genetic variability through induced mutagenesis in sunflower (Helianthus annuus L.)

    International Nuclear Information System (INIS)

    Sunflower is one of the important oilseed crop ranking 4th in India after groundnut, rapeseed-mustard, and soybean. Genetic improvement through induced mutagenesis could pave the way to develop desirable varieties/hybrids for higher seed and oil yields, better nutrition, and environmental stresses. Studies on mutation breeding at Bhabha Atomic Research Centre (BARC), Mumbai, India, were initiated with the objective of isolation of black seed coat mutant from zebra stripped seedcoat variety 'Surya' whose yield potential is equivalent to hybrids. Besides 7 black seed coat mutants, large number of morphological mutants was isolated. Prominent among them are fasciation mutation with 125 leaves against 30-35 in parent and extreme dwarf mutant with 11cm plant height against 180cm of parent. Both the mutations are controlled by single recessive gene each. One of dwarf mutant of 'Surya' grows 90cm with sturdy stem. This is being exploited to develop dwarf hybrid/varieties. Besides, variations in number, shape, and size of ray florets were also isolated. In seed coat color black, white, and brown coloured mutations were isolated. Black seed coat mutants were exploited to develop high yielding variety. Sib mating of 7 black seed coat mutants resulted into the development of various high yielding genotypes. Seed yield of one of the black seed coat mutant genotype TAS 82 (1348 Kg/ha) was superior by 17.42%, 12.05% and 53.53% over checks PKVSF9 (1148Kg/ha), Surya (1203 Kg/ha) and Morden (878 Kg/ha) respectively. Oil yield was also found superior over check varieties. Other morphological characters of TAS 82 were similar to parent variety 'Surya'. Besides, TAS 82 was found relatively tolerant to sunflower necrosis disease (SND) and tolerant to low rainfall conditions. Based on these superior characters, TAS 82 was identified for release in the state of Maharashtra and notified by Government of India. (author)

  2. Inducible chemical defences in animals

    OpenAIRE

    Heyttyey, Attila; Tóth, Zoltán; Buskirk, Josh

    2014-01-01

    Phenotypic plasticity is extremely widespread in the behaviour, morphology and life-history of animals. However, inducible changes in the production of defensive chemicals are described mostly in plants and surprisingly little is known about similar plasticity in chemical defences of animals. Inducible chemical defences may be common in animals because many are known to produce toxins, the synthesis of toxins is likely to be costly, and there are a few known cases of animals adjusting their t...

  3. Towards the development of a chimera-free in vitro induced mutagenesis system in cassava (Manihot esculenta, Crantz)

    International Nuclear Information System (INIS)

    Cassava, an herbaceous plant with starchy storage roots, has the potentials for being the cheapest source of starch for varied industries. To achieve this, the starch types must be clearly discriminated into either high preponderance of amylose or the other extreme of amylopectin content (waxy starch). Being a vegetative propagated crop with major crossing barriers, induced mutagenesis holds promise for modifying the starch characteristics of this crop. The efficiency of induced mutagenesis in a vegetative propagated crop such as cassava is severely limited by the occurrence of chimeras. To ameliorate this, the induced mutagenesis strategy must permit the regeneration of plants from one or a few cells that have been induced to mutate. We report the optimisation of protocols for the generation of plantlets from somatic embryos that were exposed to EMS. Different explants (buds and somatic embryos) of a cassava clone with high starch content were exposed to different doses (concentration and duration) of ethylmethane sulfonate (EMS) with the aim of determining the optimal doses for generating induced mutants. A wide range of reactions to EMS, from slightly reduced plantlet regeneration to lethality, was observed leading to the determination of the optimum exposure treatment. The regenerated plantlets were transplanted to pots in the greenhouse for hardening and later transferred to the field. In order to achieve homozygousity of the mutation events, the putative mutants were selfed- crosses. The immature embryos were rescued (cultured on aseptic growth media) in order to speed-up the process of generating the mutant population as well as avoid the possibility of embryo abortion. The resulting plantlets were again subsequently hardened and transferred to the field. Currently, 610 plants, constituting the putative mutant population have been established in the field in Palmira, Colombia. As a pilot assay, this work has demonstrated the feasibility of combining EMS

  4. The effect of essential oil of basil (Ocimum basilicum L.) on UV-induced mutagenesis in Escherichia coli and Saccharomyces cerevisiae

    OpenAIRE

    Stanojević Jasna; Berić Tanja; Opačić Biljana; Vuković-Gačić Branka; Simić Draga; Knežević-Vukčević Jelena

    2008-01-01

    The antimutagenic potential of essential oil (EO) of basil (Ocimum basilicum L.) and its major constituent linalool were studied with the E. coli K12 and S.cerevisiae D7 assays. In the E. coli assay, EO and linalool inhibited UV-induced mutagenesis in a repair-proficient strain, but had no effect on spontaneous mutagenesis in repair-proficient, nucleotide excision repair-deficient, and mismatch-deficient strains. By testing participation of different mechanisms involved in antimutagenesis, it...

  5. Assessment of genetic response and character association for yield and yield components in Lentil (Lens culinaris L. population developed through chemical mutagenesis

    Directory of Open Access Journals (Sweden)

    Ruhul Amin

    2015-12-01

    Full Text Available Genetic variation is imperative to any plant improvement program. Therefore, this study was primarily based on this aspect of inducing desirable genetic variation for enhancement of the available lentil genetic diversity. The lentil seeds were treated with methyl methanesulfonate (MMS alone and in combination with dimethyl sulfoxide (DMSO for inducing polygenic variation as well as determining the impact of DMSO on mutagenecity of MMS. Comparative observations were recorded for bio-physiological damages, morphological variation, and quantitative traits to assess the genetic response of the lentil cultivar L 4076 toward the different concentrations of chemicals. Significant statistics suggested that the DMSO interfere with the extent of mutagenecity of MMS in lentil which could be attributed to either synergistic action of both or variation in MMS uptake. The outcome of mutagenesis on the character association study revealed that mutagenic treatments can modify significantly the manner of association between any two traits in lentil. The moderate doses of MMS in combination with 2% DMSO showed notable diminution in the biological damages while accelerating the rate of desirable high-yielding mutants had proved to be economical. The segregate of the selected mutants in future generations will definitely contribute to the improvement of Lentil genotype.

  6. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion

    OpenAIRE

    Batista, Rita; Saibo, Nelson; Lourenço, Tiago; Oliveira, Maria Margarida

    2008-01-01

    Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring ...

  7. Induced mutagenesis of plasmids and chromosomal genes inserted into plasmid DNA 1. Mutagenic effects of irradiations

    International Nuclear Information System (INIS)

    Effect of two physical agents: UV- and γ-radiation has been considered in comparison. DNA of RSF2124 plasmid, determining colcine synthesis and ampicillin resistance, was used as a model. Mutagenous effect is taken into account according to the appearance of Col--mutants, which are not capable of colicine synthesis. Lethal effect is determined according to ampicillin marker inactivation. After reisolation of plasmid DNA from mutant transformant, new traits and antibiotic resistance are preserved during subsequent transformations and reseedings of transformed colonies, which proves mutational nature of the transformations. Under short-wave UV irradiation (lambda=254 nm) of RSF2124 DNA a clear mutagenous effect is detected: relative amount of Col--mutants at the optimum for mutagenesis doses increased by a factor of 10. Under conditions of W-reactivation (additional UV-irradiation of recipient cells of wild C600 type) of lethal injuries an increase in mutagenous effect was observed, which is reliable for 95%. A distinct increase in mutagenesis (approximately by a factor of 4) is observed during UV-irradiation in small doses of only one recipient cell (a so-called indirect UV-mutagenesis). Thus, according to its ability to W- and indirect UV-mutagenesis plasmid DNA behaves as DNA of moderate phages, which can testify to their evolution relationship. Treatment of plasmid DNA with acridine orange before UV-irradiation protected only from lethal injuries. γ-irradiation of 60Co at inactivation approximately 10-2 increased by an order the yield of Col--mutants. The presence of the plasmid in a cell did not affect its UV-resistance

  8. Spontaneous mutability and light-induced mutagenesis in Salmonella typhimurium: effects of an R-plasmid

    International Nuclear Information System (INIS)

    The UV-protecting plasmid R46 was transferred by conjugation to a genetically marked mouse-virulent Salmonella typhimurium strain, not derived from LT2; in this host the plasmid conferred UV protection and enhanced UV mutagenesis just as it does in LT2 lines. Tra-derivatives of R46 encountered during transduction retained UV-protecting and mutagenesis-enhancing ability. Stored strains carrying the R46-derived plasmids with strong mutator effect but not UV-protecting had lost most of their original streptomycin resistance but were slightly resistant to spectinomycin; attempts to transfer such plasmids failed. R46 enhanced the weak mutagenic effect of visible light on several his and trp mutants of strain LT2, including some whose frequency of spontaneous reversion was not increased by the plasmid. A mutagenic effect was produced by visible-light irradiation of hisG46(R46), either growing cells or nonmultiplying (histidine-deprived cells at 100C). Presence of catalase or cyanide during irradiation did not prevent mutagenesis, which excludes some hypothetical mechanisms. Visible-light irradiation of hisG46 or hisG46(R46) under strict anaerobiosis had little or no mutagenic effect (controls showed that revertants if produced would have been detected). This is as expected if visible-light irradiation in air causes photodynamic damage to DNA and mutations are produced during error-prone, plasmid-enhanced repair

  9. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation

    OpenAIRE

    Shrivastav, Nidhi; Li, Deyu; Essigmann, John M.

    2009-01-01

    The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA les...

  10. The antimutagenic effect of monoterpenes against UV-irradiation-, 4NQO- and t-BOOH-induced mutagenesis in coli

    Directory of Open Access Journals (Sweden)

    Nikolić Biljana

    2011-01-01

    Full Text Available The aim of this work was to investigate the antimutagenic potential of monoterpenes from sage and basil in Escherichia coli. The mutagenic potential of monoterpenes was pre-screened with Salmonella/microsome reversion assay in strain TA100 and no mutagenic effect was detected. The antimutagenic potential against UV- 4NQO- and t-BOOH induced mutagenesis was evaluated in E. coli K12 and E. coli WP2 by reversion assays. The obtained results indicate that camphor and thujone reduce UV- and 4NQO-induced mutations; myrcene reduces t-BOOH-induced mutations, while eucalyptol and linalool reduce mutagenicity by all tested mutagens. Considering evolutionary conservation of DNA repair and antioxidative protection, the obtained results indicate that further antigenotoxicity studies should be undertaken in eukaryotes.

  11. Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane(Saccharum officinarum L.)

    Institute of Scientific and Technical Information of China (English)

    Ashok; A.Nikam; Rachayya; M.; Devarumath; Akash; Ahuja; Harinath; Babu; Mahadeo; G.Shitole; Penna; Suprasanna

    2015-01-01

    Gamma ray-induced in vitro mutagenesis and selection for salt(NaC l) tolerance were investigated in sugarcane(Saccharum officinarum L.). Embryogenic callus cultures were irradiated(10 to 80 Gy) and subjected to in vitro selection by exposure of irradiated callus to NaC l(0, 50, 100,150, 200, and 250 mmol L-1). Increasing NaC l concentrations resulted in growth reduction and increased membrane damage. Salt-selected callus lines were characterized by the accumulation of proline, glycine betaine, and Na+and K+concentration. Higher accumulation of proline and glycine betaine was observed in NaC l stressed callus irradiated at 20 Gy. Na+concentration increased and K+concentration decreased with increasing salt level. Irradiated callus showed50–60% regeneration under NaC l stress, and in vitro-regenerated plants were acclimatized in the greenhouse, with 80–85% survival. A total of 138 irradiated and salt-selected selections were grown to maturity and their agronomic performance was evaluated under normal and saline conditions. Of these, 18 mutant clones were characterized for different agro-morphological characters and some of the mutant clones exhibited improved sugar yield with increased Brix%,number of millable canes, and yield. The result suggest that radiation-induced mutagenesis offers an effective way to enhance genetic variation in sugarcane.

  12. Mutation induced extinction in finite populations: lethal mutagenesis and lethal isolation.

    Science.gov (United States)

    Wylie, C Scott; Shakhnovich, Eugene I

    2012-01-01

    Reproduction is inherently risky, in part because genomic replication can introduce new mutations that are usually deleterious toward fitness. This risk is especially severe for organisms whose genomes replicate "semi-conservatively," e.g. viruses and bacteria, where no master copy of the genome is preserved. Lethal mutagenesis refers to extinction of populations due to an unbearably high mutation rate (U), and is important both theoretically and clinically, where drugs can extinguish pathogens by increasing their mutation rate. Previous theoretical models of lethal mutagenesis assume infinite population size (N). However, in addition to high U, small N can accelerate extinction by strengthening genetic drift and relaxing selection. Here, we examine how the time until extinction depends jointly on N and U. We first analytically compute the mean time until extinction (τ) in a simplistic model where all mutations are either lethal or neutral. The solution motivates the definition of two distinct regimes: a survival phase and an extinction phase, which differ dramatically in both how τ scales with N and in the coefficient of variation in time until extinction. Next, we perform stochastic population-genetics simulations on a realistic fitness landscape that both (i) features an epistatic distribution of fitness effects that agrees with experimental data on viruses and (ii) is based on the biophysics of protein folding. More specifically, we assume that mutations inflict fitness penalties proportional to the extent that they unfold proteins. We find that decreasing N can cause phase transition-like behavior from survival to extinction, which motivates the concept of "lethal isolation." Furthermore, we find that lethal mutagenesis and lethal isolation interact synergistically, which may have clinical implications for treating infections. Broadly, we conclude that stably folded proteins are only possible in ecological settings that support sufficiently large populations

  13. Mutation induced extinction in finite populations: lethal mutagenesis and lethal isolation.

    Directory of Open Access Journals (Sweden)

    C Scott Wylie

    Full Text Available Reproduction is inherently risky, in part because genomic replication can introduce new mutations that are usually deleterious toward fitness. This risk is especially severe for organisms whose genomes replicate "semi-conservatively," e.g. viruses and bacteria, where no master copy of the genome is preserved. Lethal mutagenesis refers to extinction of populations due to an unbearably high mutation rate (U, and is important both theoretically and clinically, where drugs can extinguish pathogens by increasing their mutation rate. Previous theoretical models of lethal mutagenesis assume infinite population size (N. However, in addition to high U, small N can accelerate extinction by strengthening genetic drift and relaxing selection. Here, we examine how the time until extinction depends jointly on N and U. We first analytically compute the mean time until extinction (τ in a simplistic model where all mutations are either lethal or neutral. The solution motivates the definition of two distinct regimes: a survival phase and an extinction phase, which differ dramatically in both how τ scales with N and in the coefficient of variation in time until extinction. Next, we perform stochastic population-genetics simulations on a realistic fitness landscape that both (i features an epistatic distribution of fitness effects that agrees with experimental data on viruses and (ii is based on the biophysics of protein folding. More specifically, we assume that mutations inflict fitness penalties proportional to the extent that they unfold proteins. We find that decreasing N can cause phase transition-like behavior from survival to extinction, which motivates the concept of "lethal isolation." Furthermore, we find that lethal mutagenesis and lethal isolation interact synergistically, which may have clinical implications for treating infections. Broadly, we conclude that stably folded proteins are only possible in ecological settings that support sufficiently

  14. Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase.

    Science.gov (United States)

    Bhan, Namita; Cress, Brady F; Linhardt, Robert J; Koffas, Mattheos

    2015-08-01

    Several natural polyketides (PKs) have been associated with important pharmaceutical properties. Type III polyketide synthases (PKS) that generate aromatic PK polyketides have been studied extensively for their substrate promiscuity and product diversity. Stilbene synthase-like (STS) enzymes are unique in the type III PKS class as they possess a hydrogen bonding network, furnishing them with thioesterase-like properties, resulting in aldol condensation of the polyketide intermediates formed. Chalcone synthases (CHS) in contrast, lack this hydrogen-bonding network, resulting primarily in the Claisen condensation of the polyketide intermediates formed. We have attempted to expand the chemical space of this interesting class of compounds generated by creating structure-guided mutants of Vitis vinifera STS. Further, we have utilized a previously established workflow to quickly compare the wild-type reaction products to those generated by the mutants and identify novel PKs formed by using XCMS analysis of LC-MS and LC-MS/MS data. Based on this approach, we were able to generate 15 previously unreported PK molecules by exploring the substrate promiscuity of the wild-type enzyme and all mutants using unnatural substrates. These structures were specific to STSs and cannot be formed by their closely related CHS-like counterparts. PMID:26048582

  15. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion.

    Science.gov (United States)

    Batista, Rita; Saibo, Nelson; Lourenço, Tiago; Oliveira, Maria Margarida

    2008-03-01

    Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring during rice improvement through transgenesis versus mutation breeding. We used oligonucleotide microarrays to analyze gene expression in four different pools of four types of rice plants and respective controls: (i) a gamma-irradiated stable mutant, (ii) the M1 generation of a 100-Gy gamma-irradiated plant, (iii) a stable transgenic plant obtained for production of an anticancer antibody, and (iv) the T1 generation of a transgenic plant produced aiming for abiotic stress improvement, and all of the unmodified original genotypes as controls. We found that the improvement of a plant variety through the acquisition of a new desired trait, using either mutagenesis or transgenesis, may cause stress and thus lead to an altered expression of untargeted genes. In all of the cases studied, the observed alteration was more extensive in mutagenized than in transgenic plants. We propose that the safety assessment of improved plant varieties should be carried out on a case-by-case basis and not simply restricted to foods obtained through genetic engineering. PMID:18303117

  16. The wavelength dependence of ultraviolet light-induced cell killing and mutagenesis in L5178Y mouse lymphoma cells

    International Nuclear Information System (INIS)

    The wavelength dependence of ultraviolet radiation-induced cell killing and mutagenicity in L5178Y mouse lymphoma cells has been determined from 235 nm to 313 nm. Cells were irradiated in phosphate buffered saline at 200C. The amount of cell killing was determined by cloning in soft agar medium immediately after irradiation. Mutation frequency was determined, after a 3-day expression time, by cloning in soft agar medium in the presence and the absence of 5-bromo-2' deoxyuridine (BrdUrd). The endpoint used to quantitate lethal effects was the exposure necessary to reduce the surviving fraction to 10%, while the endpoint for mutagenesis was the exposure necessary to increase the frequency of BrdUrd-resistant colonies ten-fold over the background level. Data were corrected for quantum energy and the action spectra for cell killing and mutagenesis were plotted as relative biological effectiveness per quantum vs wavelength, relative to the effect at 265.2 nm. Both action spectra show broad maxima at 270 nm, and are very similar to the action spectra determined by Rothman and Setlow (1979) for pyrimidine dimer formation and cell killing in V-79 cells. (author)

  17. The effect of essential oil of basil (Ocimum basilicum L.) on UV-induced mutagenesis in Escherichia coli and Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The antimutagenic potential of essential oil (EO) of basil (Ocimum basilicum L.) and its major constituent linalool were studied with the E. coli K12 and S. cerevisiae D7 assays. In the E. coli assay, EO and linalool inhibited UV-induced mutagenesis in a repair-proficient strain, but had no effect on spontaneous mutagenesis in repair-proficient, nucleotide excision repair-deficient, and mismatch-deficient strains. By testing participation of different mechanisms involved in antimutagenesis, it was concluded that the antimutagenic effect against UV-induced mutagenesis involved decrease of protein synthesis and cell proliferation which led to increased efficiency of nucleotide excision repair. An antimutagenic effect of basil derivatives in S. cerevisiae was not detected. (author)

  18. Predictive mutagenesis of ligation-independent cloning (LIC) vectors for protein expression and site-specific chemical conjugation

    DEFF Research Database (Denmark)

    Vernet, Erik; Sauer, Jørgen; Andersen, Peter Andreas;

    2011-01-01

    Ligation-independent cloning (LIC) allows for cloning of DNA constructs independent of insert restriction sites and ligases. However, any required mutations are typically introduced by additional, time-consuming steps. We present a rapid, inexpensive method for mutagenesis in the 5' LIC site...

  19. Lethal Mutagenesis of Bacteria

    OpenAIRE

    Bull, James J; Wilke, Claus O.

    2008-01-01

    Lethal mutagenesis, the killing of a microbial pathogen with a chemical mutagen, is a potential broad-spectrum antiviral treatment. It operates by raising the genomic mutation rate to the point that the deleterious load causes the population to decline. Its use has been limited to RNA viruses because of their high intrinsic mutation rates. Microbes with DNA genomes, which include many viruses and bacteria, have not been considered for this type of treatment because their low intrinsic mutatio...

  20. Laser-induced chemical reactions

    International Nuclear Information System (INIS)

    A classical model for the interaction of laser radiation with a molecular system is derived. This model is used to study the enhancement of a chemical reaction via a collision induced absorption. It was found that an infrared laser will in general enhance the rate of a chemical reaction, even if the reactants are infrared inactive. Results for an illustrative analytically solvable model are presented, as well as results from classical trajectory studies on a number of systems. The collision induced absorption spectrum in these systems can be written as the Fourier transform of a particular dipole correlation function. This is used to obtain the collision induced absorption spectrum for a state-selected, mono-energetic reactive collision system. Examples treated are a one-dimensional barrier problem, reactive and nonreactive collisions of H + H2, and a modified H + H2 potential energy surface which leads to a collision intermediate. An extension of the classical model to treat laser-induced electronically nonadiabatic collision processes is constructed. The model treats all degrees of freedom, molecular, electronic and radiation, in a dynamically consistent framework within classical mechanics. Application is made to several systems. Several interesting phenomena are discovered including a Franck-Condon-like effect causing maxima in the reaction probability at energies much below the classical threshold, laser de-enhancement of chemical reactions and an isotope effect. In order to assess the validity of the classical model for electronically nonadiabatic process (without a laser field), a model problem involving energy transfer in a collinear atom-diatom system is studied, and the results compared to the available quantum mechanical calculation. The calculations are in qualitative agreement

  1. 5-Azacytidine Can Induce Lethal Mutagenesis in Human Immunodeficiency Virus Type 1▿ †

    Science.gov (United States)

    Dapp, Michael J.; Clouser, Christine L.; Patterson, Steven; Mansky, Louis M.

    2009-01-01

    Ribonucleosides inhibit human immunodeficiency virus type 1 (HIV-1) replication by mechanisms that have not been fully elucidated. Here, we report the antiviral mechanism for the ribonucleoside analog 5-azacytidine (5-AZC). We hypothesized that the anti-HIV-1 activity of 5-AZC was due to an increase in the HIV-1 mutation rate following its incorporation into viral RNA during transcription. However, we demonstrate that 5-AZC's primary antiviral activity can be attributed to its effect on the early phase of HIV-1 replication. Furthermore, the antiviral activity was associated with an increase in the frequency of viral mutants, suggesting that 5-AZC's primary target is reverse transcription. Sequencing analysis showed an enrichment in G-to-C transversion mutations and further supports the idea that reverse transcription is an antiviral target of 5-AZC. These results indicate that 5-AZC is incorporated into viral DNA following reduction to 5-aza-2′-deoxycytidine. Incorporation into the viral DNA leads to an increase in mutant frequency that is consistent with lethal mutagenesis during reverse transcription as the primary antiviral mechanism of 5-AZC. Antiviral activity and increased mutation frequency were also associated with the late phase of HIV-1 replication; however, 5-AZC's effect on the late phase was less robust. These results reveal that the primary antiviral mechanism of 5-AZC can be attributed to its ability to increase the HIV-1 mutation frequency through viral-DNA incorporation during reverse transcription. Our observations indicate that 5-AZC can affect two steps in HIV-1 replication (i.e., transcription and reverse transcription) but that its primary antiviral activity is due to incorporation during reverse transcription. PMID:19726509

  2. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing

    Science.gov (United States)

    Chemical mutagenesis efficiently generates phenotypic variation in otherwise homogeneous genetic backgrounds, enabling functional analysis of genes. Advances in mutation detection have brought the utility of induced mutant populations on par with those produced by insertional mutagenesis, but system...

  3. Cellular and molecular analysis of mutagenesis induced by charged particles of defined linear energy transfer

    Science.gov (United States)

    Zhu, L. X.; Waldren, C. A.; Vannias, D.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Mutation induction by charged particles of defined linear energy transfer (LET) and gamma rays was scored using human-hamster hybrid AL cells. The LET values for charged particles accelerated at the Radiological Research Accelerator Facility ranged from 10 keV/microm protons to 150 keV/microm 4He ions. The induced mutant fractions at both the S1 and HGPRT loci were dependent on the dose and LET. In addition, for each dose examined, the mutant yield at the S1 locus was 30-60 fold higher than at the corresponding HGPRT locus. To determine whether the mutation spectrum was comparably dependent on dose and LET, independent S1- and HGPRT- mutants induced by 150 keV/microm 4He ions and gamma rays were isolated, and their DNA was analyzed by both Southern blotting and multiplex PCR methods. While the majority of radiation-induced mutants showed deletions of varying sizes, the relative percentage of large deletions was found to be related to both the dose and LET of the radiation examined. Using a mutation system that can detect multilocus changes, results of the present study show that radiation-induced chromosomal loss can be in the millions of base pairs.

  4. Timing of the uv mutagenesis in yeast: a pedigree analysis of induced recessive mutation

    International Nuclear Information System (INIS)

    The mechanism of uv-induced mutation in eukaryotes was studied in individual yeast cells by a procedure that combined pedigree analysis and tetrad analysis. The technique involved the induction of recessive lethals and semilethals in G1 diploid cells. Induced frequencies were 25 and 61% at survival levels of 90 and 77%, respectively. No evidence of gross chromosome aberrations was detected. Recessive mutations that affect only one strand or that affect both strands of the DNA molecule are induced much at random among a population of cells, and both types can occur within the same cell. However, the data confirm that two-strand mutations are in the majority after a low level of irradiation. The simplest explanation involves a mechanism whereby most mutations are fixed in both strands prior to the first round of post-irradiation DNA replication. The recessive mutational consequences of irradiation are exhausted at the conclusion of the first post-irradiation cell division, although dominant-lethal sectoring continues at a high level through the second post-irradiation division. It is concluded that pyrimidine dimers that persist to the second round of DNA replication are rare or ineffective

  5. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    Science.gov (United States)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  6. Changes in DNA base sequence induced by gamma-ray mutagenesis of lambda phage and prophage

    International Nuclear Information System (INIS)

    Mutations in the cI (repressor) gene were induced by gamma-ray irradiation of lambda phage and of prophage, and 121 mutations were sequenced. Two-thirds of the mutations in irradiated phage assayed in recA host cells (no induction of the SOS response) were G:C to A:T transitions; it is hypothesized that these may arise during DNA replication from adenine mispairing with a cytosine product deaminated by irradiation. For irradiated phage assayed in host cells in which the SOS response had been induced, 85% of the mutations were base substitutions, and in 40 of the 41 base changes, a preexisting base pair had been replaced by an A:T pair; these might come from damaged bases acting as AP (apurinic or apyrimidinic) sites. The remaining mutations were 1 and 2 base deletions. In irradiated prophage, base change mutations involved the substitution of both A:T and of G:C pairs for the preexisting pairs; the substitution of G:C pairs shows that some base substitution mechanism acts on the cell genome but not on the phage. In the irradiated prophage, frameshifts and a significant number of gross rearrangements were also found

  7. Induced mutagenesis as a source of new mutations in maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Full text: Seed samples of 9 inbreds were treated with MNU. Mutant individuals were visually selected in M2 and M3. Mutability was determined in 100 loci by crossing induced mutants with some well-known natural mutants obtained from the U.S. Association of Corn Geneticists. Only viable mutants characterised with distinct stable traits connected with kernel texture and mature plant were taken for tests. Mapping of the expected new mutants was realised through A-B translocations and marker lines. Evaluation of the mutant alleles' effect on yield and quality of biomass in inbreds and heterotic hybrids was done by the standard methods. The results show the ability of artificial mutagens to induce mutations in previously known loci. The genotype of the inbreds greatly affects the probability of mutation occurrence in a new locus. Due to the mutagen effect, independently inherited complexes of traits or naturally polygenic traits may become monogenic. This results in simplified inheritance, in an increase in heritability and thus in high effectiveness of selection. (author)

  8. Induced mutagenesis for the development of high yielding varieties in mustard

    International Nuclear Information System (INIS)

    Variation for resistance to Alternaria brassicae (Berk.) Sacc. was induced in the oleiferous Brassica campestris cultivar yellow sarson, 'YS 52' using gamma rays. Variations were identified and isolated from the M2 population. Screening in the subsequent generations (M3-M4) confirmed the varying degrees of field resistance of the mutants. A total of 8 mutants of mustard developed by gamma irradiation was compared with the parental line and a released variety 'Sampad' as a check. Maximum plant height, highest number of pods and primary branches/plant were recorded in mutant '17-5-83'. The mutants '17-5-83' and '70-7-82' gave 45 and 21 per cent more grain yield respectively than the parent cultivar 'YS 52'. The mutant '17-5-83' appeared resistant while the mutants '70-7-82' and '53-11-82' were found to be moderately resistant against the disease. (author). 6 refs., 2 tables

  9. Characterization of Pre-breeding Genetic Stocks of Urdbean (Vigna mungo L. Hepper) Induced Through Mutagenesis

    International Nuclear Information System (INIS)

    Pre-breeding genetic stocks using different doses of EMS, Gamma-rays and combination of both (EMS and Gamma-rays) were induced in two urdbean cultivars viz., PU-19 (Pant Urd-19) and PU-30 (Pant Urd-30). Out of a total 14 of macro mutations selected from the different treatments of the mutagens in PU-19, narrow leaf mutant exhibited significantly a higher yield/plant as compared to the parent and some other mutants viz., non-hairy, tall, and tendriller showed at par grain yield. All the seed and pod color double mutations selected from the PU-30 showed significantly higher yield. Such breeding stocks can be used for the further genetic enhancement of this crop. (author)

  10. Changes in DNA sequence induced by gamma ray mutagenesis of lambda phage

    International Nuclear Information System (INIS)

    Forward mutations in the cI (repressor) gene of lambda bacteriophage were induced by irradiating the free phage in concentrated broth with gamma rays. The mutations were characterized by sequencing the DNA. About 20% were frameshifts, 50% were transversions and 30% transitions. In nearly all the transversions and transitions, either an A or a T had been substituted for the original base on the sequenced strand. The data are consistent with a roughly equal frequency of substitution at each base. Sequencing is now in progress of 100 forward mutations in the cI gene generated by irradiating lambda prophage integrated into the genome of E. coli host cells. These should be characteristic of mutations in the bacterial chromosome. Preliminary results suggest that the mutational spectrum may be different, with more gross DNA rearrangements

  11. Characterization of pre breeding genetic stocks of urdbean (Vigna mungo L. Hepper) induced through mutagenesis

    International Nuclear Information System (INIS)

    Pre-breeding genetic stocks using different doses of EMS, gamma rays and combination of both (EMS and Gamma rays) in two urdbean cultivar viz., PU-19 (Pant Urd-19) and PU-30 (Pant Urd-30) were induced. Out of a total 14 macro mutation selected from the different treatments of the mutagens in PU-19, narrow leaf mutant exhibited significantly higher yield/ plant as compared to the parent and some other mutants viz., Non hairy, Tall, and tendriller showed at par grain yield. All the seed and pod colour double mutations selected from the PU-30 showed significantly higher yield as compared. Such breeding stocks can be used for the further genetic enhancement of this crop. (author)

  12. Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 r of gamma-radiation

    International Nuclear Information System (INIS)

    The authors previously established a gamma-ray dose-response curve for recessive lethal events (lethals) captured over the eT1 balancer. In this paper they analyze the nature of lethal events produced, with a frequency of 0.04 per eT1 region, at a dose of 1500 r. To do so, they developed a protocol that, in the absence of cytogenetics, allows balanced lethals to be analyzed for associated chromosomal rearrangements. A set of 35 lethal strains was chosen for the analysis. Although the dosage was relatively low, a large number of multiple-break events were observed. The fraction of lethals associated with rearrangements was found to be 0.76. Currently most X- and gamma-ray dosages used for mutagenesis in C. elegans are 6000-8000 r. From the data it was conservatively estimated that 43% of rearrangements induced with 8000 r would be accompanied by additional chromosome breaks in the genome. With 1500 r the value was 5%. The 35 lethals studied were derived from 875 screened F1's. Among these lethals there were (1) at least two unc-36 duplications, (2) at least four translocations, (3) at least six deficiencies of chromosome V (these delete about 90% of the unc-60 to unc-42 region) and (4) several unanalyzed rearrangements. Thus, it is possible to recover desired rearrangements at reasonable rates with a dose of only 1500 r. The authors suggest that the levels of ionizing radiation employed in most published C. elegans studies are excessive and efforts should be made to use reduced levels in the future

  13. In Vitro Study of Mutagenesis Induced by Crocidolite-Exposed Alveolar Macrophages NR8383 in Cocultured Big Blue Rat2 Embryonic Fibroblasts

    International Nuclear Information System (INIS)

    Asbestos-induced mutagenicity in the lung may involve reactive oxygen/nitrogen species (ROS/RNS) released by alveolar macrophages. With the aim of proposing an alternative in vitro mutagenesis test, a co culture system of rat alveolar macrophages (NR8383) and transgenic Big Blue Rat 2 embryonic fibroblasts was developed and tested with a crocidolite sample. Crocidolite exposure induced no detectable increase in ROS production from NR8383, contrasting with the oxidative burst that occurred following a brief exposure (1 hour) to zymosan, a known macrophage activator. In separated co cultures, crocidolite and zymosan induced different changes in the gene expressions involved in cellular inflammation in NR8383 and Big Blue. In particular, both particles induced up-regulation of iNOS expression in Big Blue, suggesting the formation of potentially genotoxic nitrogen species. However, crocidolite exposure in separated or mixed co cultures induced no mutagenic effects whereas an increase in Big Blue mutants was detected after exposure to zymosan in mixed co cultures. NR8383 activation by crocidolite is probably insufficient to induce in vitro mutagenic events. The mutagenesis assay based on the co culture of NR8383 and Big Blue cannot be used as an alternative in vitro method to assess the mutagenic properties of asbestos fibres.

  14. In Vitro Study of Mutagenesis Induced by Crocidolite-Exposed Alveolar Macrophages NR8383 in Cocultured Big Blue Rat2 Embryonic Fibroblasts

    Directory of Open Access Journals (Sweden)

    Yves Guichard

    2010-01-01

    Full Text Available Asbestos-induced mutagenicity in the lung may involve reactive oxygen/nitrogen species (ROS/RNS released by alveolar macrophages. With the aim of proposing an alternative in vitro mutagenesis test, a coculture system of rat alveolar macrophages (NR8383 and transgenic Big Blue Rat2 embryonic fibroblasts was developed and tested with a crocidolite sample. Crocidolite exposure induced no detectable increase in ROS production from NR8383, contrasting with the oxidative burst that occurred following a brief exposure (1 hour to zymosan, a known macrophage activator. In separated cocultures, crocidolite and zymosan induced different changes in the gene expressions involved in cellular inflammation in NR8383 and Big Blue. In particular, both particles induced up-regulation of iNOS expression in Big Blue, suggesting the formation of potentially genotoxic nitrogen species. However, crocidolite exposure in separated or mixed cocultures induced no mutagenic effects whereas an increase in Big Blue mutants was detected after exposure to zymosan in mixed cocultures. NR8383 activation by crocidolite is probably insufficient to induce in vitro mutagenic events. The mutagenesis assay based on the coculture of NR8383 and Big Blue cannot be used as an alternative in vitro method to assess the mutagenic properties of asbestos fibres.

  15. Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Jing; Ding, Wen-Tao; Zhang, Guo-Chang; Wang, Jing-Yu [Tianjin Univ. (China). Dept. of Biochemical Engineering

    2011-08-15

    Genome shuffling is an efficient way to improve complex phenotypes under the control of multiple genes. For the improvement of strain's performance in very high-gravity (VHG) fermentation, we developed a new method of genome shuffling. A diploid ste2/ste2 strain was subjected to EMS (ethyl methanesulfonate) mutagenesis followed by meiotic recombination-mediated genome shuffling. The resulting haploid progenies were intrapopulation sterile and therefore haploid recombinant cells with improved phenotypes were directly selected under selection condition. In VHG fermentation, strain WS1D and WS5D obtained by this approach exhibited remarkably enhanced tolerance to ethanol and osmolarity, increased metabolic rate, and 15.12% and 15.59% increased ethanol yield compared to the starting strain W303D, respectively. These results verified the feasibility of the strain improvement strategy and suggested that it is a powerful and high throughput method for development of Saccharomyces cerevisiae strains with desired phenotypes that is complex and cannot be addressed with rational approaches. (orig.)

  16. 酶抑制剂对V79-hCYP2E1-SULT1A1细胞酶依赖性化学诱变的影响%Effects of enzyme inhibitors on enzyme-dependent and chemical-induced mutagenesis in V79-hCYP2E1-hSULT1A1 cells

    Institute of Scientific and Technical Information of China (English)

    刘云岗; 胡克歧

    2011-01-01

    0bjective: V79-hCYP2E1-hSULT1A1 ,a genetically engineered Chinese hamster V79 cell line expressing human CYP2E1 and human sulfotransferase(SULT) 1A1 ,demonstrates mutagenic response to promutagens requiring metabolic activation by either expressed enzyme. For the purpose of investigating the effect of either enzyme alone, it is highly necessary to establish a test model wherein either of the enzymes is specifically inhibited. Methods:Using the forward mutation at Hprt locus as the end point to observe, N-nitrosodimethylamine (NDMA) and 2-nitropropane (2-NP) as CYP2E1- and SULT1A1-dependent promutagen.the effects of CYP inhibitors,trans-1,2-dichloroethylene (DCE) and 1-aminobenzotriazole (ABT),and that of SULT1 inhibitors,quercetin and pentachlorophenol (PCP) on each promutagen-induced mutagenic response were observed. Results:ABT prohibited NDMA-induced mutagenic activity by 99% with the action of 2-NP unaffected,while DCE reduced it only by 55% and simultaneously potentiated 2-NP-induced cytotoxicity. Quercetin and PCP reduced 2-NP-induced mutagenic activity by 63% and 98%, with the action of NDMA unaffected. Conclusion:Specifically and completely, ABT and PCP are capable of prohibiting CYP2El-and SULT1A1 -dependent mutagenic response, respectively, which is a test model of reliable value for investigating metabolic activation of genotoxicants.%目的:V79-hCYP2E1-hSULT1A1是一个表达人细胞色素P450(CYP)2E1和硫酸基转移酶(Sulfotransferase,SULT) 1A1的重组中国地鼠V79[Chinese hamster lung (V79)cells]细胞系,它对于需有关代谢酶活化的间接诱变剂有基因突变反应;为观察单个酶的作用,需要建立对细胞中任一酶特异抑制的模型.方法:以细胞Hprt位点的正向突变为试验终点,N-二甲基亚硝胺(N-Nitrosodimethylamine,NDMA)和2-硝基丙烷(2-Nitropropane,2-NP)为依赖CYP2E1和SULT1A1的间接诱变剂,观察CYP抑制剂反式二氯乙烯(Trans-1,2-dichloroethylene,DCE)和1-氨基苯并三唑(1

  17. Inhibition of an inducible nitric oxide synthase expression by a hexane extract from perilla frutescens cv. chookyoupjaso mutant induced by mutagenesis with gamma-ray

    International Nuclear Information System (INIS)

    In earlier investigations, seeds of Perilla frutescens(L.) Britt. cv. Chookyoupjaso were irradiated with 200 Gy gamma ray to generate mutagenesis. The aim of this study is to investigate the effects of a hexane extract from Perilla frutescens(L.) Britt. cv. Chookyoupjaso mutant 45 on the actions of anti-inflammatory activity on inducible nitric oxide synthase, and an identification of the major active compound. The hexane extract from P. frutescens exhibited activity of inhibition of a NO production (IC50, 295.1μg ml-1). The hexane extract was further divided into sub-fractions by silica-gel chromatogarphy. Inhibition of the NO production by various fractions was assayed in LPS-stimulated RAW 264.7 cells. Among the seven fractions, the 5th fraction was the most effective (IC50, 19.5μg ml-1). The 5th fraction suppressed the expression of protein of iNOS in LPS-induced RAW 264.7 cells, and GC/MS analyses showed that isoegomaketone is a major bio-active compound in the 5th fraction. The result indicated that isoegomaketone has a good potential to be developed as an anti-inflammation agent

  18. Bacillus Cereus GD 55 Strain Improvement by Physical and Chemical Mutagenesis for Enhanced Production of Fibrinolytic Protease

    Directory of Open Access Journals (Sweden)

    E. VENKATA NAGA RAJU

    2013-05-01

    Full Text Available This work has been undertaken to enhance the production of industrially important fibrinolytic protease by subjecting indigenous fibrinolytic protease producing Bacillus cereus to strain improvement by random mutagenesis using ultra-violet (UV irradiation, ethyl methane sulfonate (EMS and ethidium bromide treatment. Mutants were screened on the basis of enzyme assay by spectrophotometer using folin’s phenol reagent. Ethyl methane sulfonate (EMS and ethidium bromide treated Bacillus cereus GD 55 was proved to be the best for optimum production of fibrinolytic protease. The effect of different production parameters such as carbon source, inoculum sizes, pH, temperature, nitrogen source (inorganic and organic and incubation time on fibrinolytic protease production by the mutated bacterial strain was studied. The enzyme production was assayed in submerged fermentation (SmF condition. The maximum fibrinolytic protease production was observed with fructose 1% (18.60 ± 0.62 U/ml, inoculum size level 2% (22.10 ± 0.80 U/ml, pH 8.0 (28.65 ± 0.41 U/ml, temperature 35°C (28.68 ± 0.19 U/ml, NH4NO3 1% (34.24 ± 0.12 U/ml, peptone 1% (35.68 ± 0.27 U/ml and incubation time 48 hours (38.92 ± 0.56 U/ml in the production medium. EMS&EB-15 mutant strains were found to produce 2-4 fold more enzyme. Thus these findings have more impact on enzyme economy for biotechnological applications of microbial fibrinolytic proteases.

  19. Bystander effects in UV-induced genomic instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation

    Directory of Open Access Journals (Sweden)

    Dahle Jostein

    2005-01-01

    Full Text Available Abstract Background Genomic instability is characteristic of many types of human cancer. Recently, we reported that ultraviolet radiation induced elevated mutation rates and chromosomal instability for many cell generations after ultraviolet irradiation. The increased mutation rates of unstable cells may allow them to accumulate aberrations that subsequently lead to cancer. Ultraviolet A radiation, which primarily acts by oxidative stress, and ultraviolet B radiation, which initially acts by absorption in DNA and direct damage to DNA, both produced genomically unstable cell clones. In this study, we have determined the effect of antioxidants on induction of delayed mutations by ultraviolet radiation. Delayed mutations are indicative of genomic instability. Methods Delayed mutations in the hypoxanthine phosphoribosyl transferase (hprt gene were detected by incubating the cells in medium selectively killing hprt mutants for 8 days after irradiation, followed by a 5 day period in normal medium before determining mutation frequencies. Results The UVB-induced delayed hprt mutations were strongly inhibited by the antioxidants catalase, reduced glutathione and superoxide dismutase, while only reduced glutathione had a significant effect on UVA-induced delayed mutations. Treatment with antioxidants had only minor effects on early mutation frequenies, except that reduced glutathione decreased the UVB-induced early mutation frequency by 24 %. Incubation with reduced glutathione was shown to significantly increase the intracellular amount of reduced glutathione. Conclusion The strong effects of these antioxidants indicate that genomic instability, which is induced by the fundamentally different ultraviolet A and ultraviolet B radiation, is mediated by reactive oxygen species, including hydrogen peroxide and downstream products. However, cells take up neither catalase nor SOD, while incubation with glutathione resulted in increased intracellular levels of

  20. Different efficiency of UmuDC and MucAB proteins in UV light induced mutagenesis in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, M.; Herrera, G.; Aleixandre, V.

    1986-11-01

    Two multicopy plasmids carrying either the umuDC or the mucAB operon were used to compare the efficiency of UmuDC and MucAB proteins in UV mutagenesis of Escherichia coli K12. It was found that in recA/sup +/ uvr/sup +/ bacteria, plasmid pIC80, mucAB/sup +/ mediated UV mutagenesis more efficiently than did plasmid pSE 117, umuDC/sup +/. A similar result was obtained in lex A51(Def) cells, excluding the possibility that this was due to a differential regulation by LexA of the umuDC and mucAB operons. We conclude that some structural characteristic of the UmuDC and MucAB proteins determines their different efficiency in UV mutagenesis. This characteristic could be also responsible for the observation that in the recA430 mutant, pIC80 but no pSE117 can mediate UV mutagenesis. In the recAS142 mutant pIC80 also promoted UV mutagenesis more efficiently than pSE117. In this mutant, the recombination proficiency, the protease activity toward LexA and the mutation frequency were increased by the presence of adenine in the medium. In recA/sup +/ uvrB5 bacteria, plasmid pSE117, umuDC caused both an increase in UV sensitivity as well as a reduction in the mutation frequency. These negative effects resulting from the overproduction of UmuDC proteins were higher in recA142 uvrB5 than in recA/sup +/ uvrB5 cells. In contrast, overproduction of MucAB proteins in excision-deficient bacteria containing pIC80 led to a large increase in the mutation frequency. We suggest that the functional differences between UmuDC and MucAB proteins might be due to their different dependence on the direct role of RecA protease in UV mutagenesis.

  1. Bacterial Stationary-State Mutagenesis and Mammalian Tumorigenesis as Stress-Induced Cellular Adaptations and the Role of Epigenetics

    OpenAIRE

    Karpinets, TV; Greenwood, DJ; Pogribny, IP; Samatova, NF

    2006-01-01

    Mechanisms of cellular adaptation may have some commonalities across different organisms. Revealing these common mechanisms may provide insight in the organismal level of adaptation and suggest solutions to important problems related to the adaptation. An increased rate of mutations, referred as the mutator phenotype, and beneficial nature of these mutations are common features of the bacterial stationary-state mutagenesis and of the tumorigenic transformations in mammalian cells. We argue th...

  2. Workshop on ENU Mutagenesis: Planning for Saturation, July 25-28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, Joseph H

    2002-07-25

    The goal of the conference is to enhance the development of improved technologies and new approaches to the identification of genes underlying chemically-induced mutant phenotypes. The conference brings together ENU mutagenesis experts from the United States and aborad for a small, intensive workshop to consider these issues.

  3. Roles of RecA protease and recombinase activities of Escherichia coli in spontaneous and UV-induced mutagenesis and in Weigle repair

    International Nuclear Information System (INIS)

    The RecA protein has a second, direct role in the mutagenesis of Escherichia coli and bacteriophage lambda in addition to its first, indirect role of inducing the SOS system by enhancing the proteolytic cleavage of the LexA repressor protein. The need for RecA protease and recombinase functions in the direct role was examined in cells containing split-phenotype RecA mutations, in the absence of LexA protein. Spontaneous mutation of E. coli (his----his+) required both the protease and recombinase activities. The mutation frequency increased with increasing RecA protease strength. In contrast, UV-induced mutation of E. coli required only the RecA protease activity. Weigle repair and mutation of UV-irradiated phage S13 required only RecA protease activity, and even weak activity was highly effective; RecA recombinase activity was not required. RecA+ protein inhibited RecA (Prtc [protease constitutive] Rec+) protein in effecting spontaneous mutation of E. coli. We discuss the nature of the direct role of the RecA protein in spontaneous mutation and in repair and mutagenesis of UV-damaged DNA and also the implications of our results for the theory that SOS-mutable cryptic lesions might be responsible for the enhanced spontaneous mutation in Prtc Rec+ strains

  4. Chloroacetaldehyde-induced mutagenesis in Escherichia coli: The role of AlkB protein in repair of 3,N4-ethenocytosine and 3,N4-α-hydroxyethanocytosine

    International Nuclear Information System (INIS)

    Etheno (ε) adducts are formed in reaction of DNA bases with various environmental carcinogens and endogenously created products of lipid peroxidation. Chloroacetaldehyde (CAA), a metabolite of carcinogen vinyl chloride, is routinely used to generate ε-adducts. We studied the role of AlkB, along with AlkA and Mug proteins, all engaged in repair of ε-adducts, in CAA-induced mutagenesis. The test system used involved pIF102 and pIF104 plasmids bearing the lactose operon of CC102 or CC104 origin (Cupples and Miller (1989) ) which allowed to monitor Lac+ revertants, the latter arose by GC → AT or GC → TA substitutions, respectively, as a result of modification of guanine and cytosine. The plasmids were CAA-damaged in vitro and replicated in Escherichia coli of various genetic backgrounds. To modify the levels of AlkA and AlkB proteins, mutagenesis was studied in E. coli cells induced or not in adaptive response. Formation of εC proceeds via a relatively stable intermediate, 3,N4-α-hydroxyethanocytosine (HEC), which allowed to compare repair of both adducts. The results indicate that all three genes, alkA, alkB and mug, are engaged in alleviation of CAA-induced mutagenesis. The frequency of mutation was higher in AlkA-, AlkB- and Mug-deficient strains in comparison to alkA+, alkB+, and mug+ controls. Considering the levels of CAA-induced Lac+ revertants in strains harboring the pIF plasmids and induced or not in adaptive response, we conclude that AlkB protein is engaged in the repair of εC and HEC in vivo. Using the modified TTCTT 5-mers as substrates, we confirmed in vitro that AlkB protein repairs εC and HEC although far less efficiently than the reference adduct 3-methylcytosine. The pH optimum for repair of HEC and εC is significantly different from that for 3-methylcytosine. We propose that the protonated form of adduct interact in active site of AlkB protein.

  5. Cell transformation and mutagenesis

    International Nuclear Information System (INIS)

    This chapter summarizes the studies of the dose-effect relationships of cell transformation and of mutation for heavy ions with various charges, velocities and LET values. In cell transformation studies, carbon particles consistently gave a higher frequency of transformation per viable cell than x rays. For the same cell line, the RBE is about the same for both cell killings and oncogenic transformation for a given quality of ionizing radiation. In cocarcinogenesis studies, neon irradiation showed an enhancement effect on the viral transformation of cells. To explain the enhanced transformation, it has been suggested that radiation produces strand breaks in cellular DNA that promote the attachment of viral genomes during DNA repair synthesis. In mutagenesis studies, high-LET heavy ions could not effectively induce ouabain resistant mutations

  6. Laser Induced Surface Chemical Epitaxy

    Science.gov (United States)

    Stinespring, Charter D.; Freedman, Andrew

    1990-02-01

    Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) on GaAs(100) substrates under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 123 K to 473 K. Results indicate that extremely efficient conversion of admixtures of DMTe and DMCd to CdTe can be obtained using low power (5 - 10 mJ cm-2) 193 nm laser pulses at substrate temperatures of 123 K. Subsequent annealing at 473 K produces an epitaxial film.

  7. Ultraviolet radiation-induced mutability of uvrD3 strains of Escherichia coli B/r and K-12: a problem in analyzing mutagenesis data

    International Nuclear Information System (INIS)

    The involvement of the uvrD gene product in UV-induced mutagenesis in Escherichia coli was studied by comparing wild-type and uvrA or uvrB strains with their uvrD derivatives in B/r and K-12(W3110) backgrounds. Mutations per survivor (reversions to prototrophy) were compared as a function of surviving fraction and of UV fluence. While recognizing that both methods are not without problems, arguments are presented for favoring the former rather than the latter method of presenting the data when survival is less than 100%. When UV-induced mutation frequencies were plotted as a function of surviving fraction, the uvrD derivatives were less mutable than the corresponding parent strains. The B/r strains exhibited higher mutation frequencies than did the K-12(W3110) strains. A uvrB mutation increased the mutation frequency of its parental K-12 strain, but a uvrA mutation only increased the mutation frequency of its parental B/r strain at UV survivals greater than approximately 80%. Both the uvrA and uvrB mutations increased the mutation frequencies of the uvrD strains in the B/r and K-12 backgrounds, respectively. Rather different conclusions would be drawn if mutagenesis were considered as a function of UV fluence rather than of survival, a situation that calls for further work and discussion. Ideally mutation efficiencies should be compared as a function of the number of repair events per survivor, a number that is currently unobtainable. (author)

  8. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Shu-Yang Wang

    Full Text Available The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger or mutagenesis via mixed Trichoderma viride (T. viride culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA, endoglucanase (EG and β-glucosidase (BGL activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  9. Chemical bond cleavage induced by electron heating

    International Nuclear Information System (INIS)

    Gas emissions from titanium-metalloid compounds (titanium nitride and oxide) have been investigated to understand the effects of a microwave field on chemical reactions. We employed a high vacuum system (PO2 = 10−6 Pa) to observe in situ reductions. For titanium oxides, H-field heating significantly differed from conventional one in terms of oxygen emissions. For titanium nitride, the emissions were also induced by microwave heating. These tendencies were observed at temperatures above 1000 °C. A quantum chemical interpretation is provided to explain the emissions of the gases, and the experimental data is in good agreement with results predicted using the electronic energy band structure.

  10. Study of chemical and radiation induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  11. 2-DG induced modulation of chromosomal DNA profile, cell survival, mutagenesis and gene conversion in x-irradiated yeast

    International Nuclear Information System (INIS)

    Effect of post-irradiation modulation in presence of 2-deoxy-D-glucose and yeast extract, on chromosomal DNA profile, cell survival, reverse mutation (ILV+) and gene conversion (TRP+), were studied in x-irradiated stationary phase yeast cells (diploid strain D7 of Saccharomyces cerevisiae). The damage and repair in chromosomal DNA bands, resolved by using contour clamped homogeneous electric pulsed-field gel electrophoresis (PFGE) technique, was estimated by calculating intensity ratio, Ρn (Ρn=In/It; where In is the intensity of nth band in a lane and It is the sum of intensities of all bands and the well in the lane). The data indicate linear correlation between relative compactness (τ) of a chromosome [chromosome size (Kb)/length of synaptonemal complex (μm)[ and DNA damage and repair. The chromosome repair kinetics were biphasic, showing initial decrease followed by an increase in Ρn. Variations were observed among different chromosomes with respect to DNA damage, repair and post-irradiation repair modulation. 2-DG inhibited both components of chromosomal DNA repair and also repair of potentially lethal damage but enhanced frequencies of mutants. Relatively the effects on revertants were greater in cells irradiated with lower doses (50 Gy) of x-rays and post-irradiation incubation in presence of phosphate buffer having 2-DG (50 mM) and glucose (10 mM). Yeast extract increased frequencies of revertants and convertants thus promoting error-prone DNA repair. Yeast extract in combination with 2-DG showed complex effects on chromosomal DNA repair and enhanced mutagenesis further. (author). 35 refs., 8 figs., 1 tab

  12. MeIQx-induced DNA adduct formation and mutagenesis in DNA repair deficient CHO cells expressing human CYP1A1 and rapid or slow acetylator NAT2

    Science.gov (United States)

    Bendaly, Jean; Zhao, Shuang; Neale, Jason R.; Metry, Kristin J.; Doll, Mark A.; States, J. Christopher; Pierce, William M.; Hein, David W.

    2007-01-01

    2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) is one of the most potent and abundant mutagens in the western diet. Bioactivation includes N-hydroxylation catalyzed by cytochrome P450s followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). Nucleotide excision repair-deficient chinese hamster ovary (CHO) cells were constructed by stable transfection of human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. CYP1A1 and NAT2 catalytic activities were undetectable in untransfected CHO cell lines. CYP1A1 activity did not differ significantly (p > 0.05) among the CYP1A1-transfected cell lines. Cells transfected with NAT2*4 had significantly higher levels of sulfamethazine N-acetyltransferase (p = 0.0001) and N-hydroxy-MeIQx O-acetyltransferase (p = 0.0093) catalytic activity than cells transfected with NAT2*5B. Only cells transfected with both CYP1A1 and NAT2*4 showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase (hprt) mutagenesis following MeIQx treatment. dG-C8-MeIQx was the primary DNA adduct formed and levels were dose-dependent in each cell line and in the order: untransfected < transfected with CYP1A1 < transfected with CYP1A1 & NAT2*5B < transfected with CYP1A1 & NAT2*4. MeIQx DNA adduct levels were significantly higher (p < 0.001) in CYP1A1/NAT2*4 than CYP1A1/NAT2*5B cells at all concentrations of MeIQx tested. MeIQx-induced DNA adduct levels correlated very highly (r2 = 0.88) with MeIQx-induced mutants. These results strongly support extrahepatic activation of MeIQx by CYP1A1 and a robust effect of human NAT2 genetic polymorphism on MeIQx –induced DNA adducts and mutagenesis. The results provide laboratory-based support for epidemiological studies reporting higher frequency of heterocyclic amine-related cancers in rapid NAT2 acetylators. PMID:17627018

  13. Use of liver cell cultures in mutagenesis studies

    Energy Technology Data Exchange (ETDEWEB)

    Huberman, E.; Jones, C.A.

    1980-09-30

    A sensitive cell-mediated assay has been developed for testing the mutagenesis of liver carcinogens. Mutagenesis was detected in Chinese hamster V79 cells that were cocultivated with hepatocytes isolated after collagenase/hyaluronidase digestion of rat liver slices. Mutations were characterized by resistance to ouabain and 6-thioguanine. Seven of the nitrosamines, which are potent liver carcinogens, exhibited a mutagenic response. Mutagenesis with these carcinogens could be detected at ..mu..molar doses. The polyaromatic hydrocarbon benzo(a)pyrene, which is not a liver carcinogen, but can cause fibrosarcomas, was not mutagenic in this assay, but was mutagenic in a fibroblast-mediated assay. The liver carcinogen, aflatoxin B/sub 1/, which usually does not induce fibrosarcomas, exhibited an inverse situation; it was mutagenic for V79 cells in the presence of liver cells but not in the presence of fibroblasts. We suggest that the use of various cell types, including hepatocytes prepared by the slicing method for carcinogen metabolism, and mutable V79 cells offers a sensitive assay for determining the mutagenic potential of chemical carcinogens, and may also allow a study of their organ specificity.

  14. Transcription-coupled repair: Impact on UV-induced mutagenesis in cultured rodent cells and mouse skin tumors

    International Nuclear Information System (INIS)

    UV-induced cyclobutane pyrimidine dimers (CPDs) are removed with accelerated speed from the transcribed strand of expressed genes in cultured mammalian cells by a process called transcription-coupled repair (TCR). It has been previously shown that this phenomenon has consequences for the molecular nature of the mutations induced by UV-light. Here, we review these data and show that TCR has not only a clear impact on UV-induced mutations in cultured mammalian cells but also on genes involved in tumor formation in the skin of UV-exposed mice. Mutations observed in the p53 gene in UV-induced squamous cell carcinoma are predominantly found at sites of dipyrimidines in the non-transcribed strand. In contrast, in UVC-irradiated Csb -/- Chinese hamster cells and in UVB-induced tumors in the Csb -/- mouse, almost all mutations are at positions of dipyrimidine sites in the transcribed strand of the mutated gene. Csb -/- mice appear to be susceptible to UVB-induced skin cancer in contrast to the human CSB patients. We speculate that the UVB-induced cancer susceptibility of Csb -/- mice is related to the absence of TCR as well as to a lack of a compensating global genome repair system for CPDs in mice

  15. Enhancement of Biocontrol Activities and Cyclic Lipopeptides Production by Chemical Mutagenesis of Bacillus subtilis XF-1, a Biocontrol Agent of Plasmodiophora brassicae and Fusarium solani

    OpenAIRE

    Li, Xing-Yu; Yang, Jing-Jing; Mao, Zi-Chao; Ho, Hon-Hing; Wu, Yi-Xing; He, Yue-qiu

    2014-01-01

    Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N′-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P....

  16. Mechanisms of mutagenesis for lambda phage

    International Nuclear Information System (INIS)

    The principal experimental results are determination of the changes in DNA base sequence resulting from forward mutations in the cI (repressor) gene of lambda phage induced by various agents. For phage irradiated with ultraviolet light and assayed in lightly irradiated host cells to induce Weigle mutagenesis (targeted mutagenesis), two-thirds of the mutations are transitions. Most transitions seem to arise at the sites of Py(6-4)Pyo photoproducts, not at the more widely studied cyclobutane pyrimidine dimers. The other mutations induced by ultraviolet are equally divided among transversions, frameshifts and double mutation events. The latter, two closely spaced base changes or a base change plus a frameshift, should rarely revert and may be the deletions induced by ultraviolet which have been previously reported. Unirradiated phage assayed in host cells heavily irradiated with ultraviolet light (nontargeted mutagenesis) show mainly frameshift mutations. These frameshifts may arise from low intracellular activity of DNA polymerase I when the enzyme binds to host DNA damaged by irradiation of the cells. Mismatch repair greatly reduced the numbers of mutations from bromouracil (which induces transitions by base mispairing) and acridines which induce frameshifts at runs of G.C base pairs). Only when mismatch repair activity is saturated by the number of improperly stacked bases in the DNA does a high level of mutagenesis occur

  17. Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: Enhanced survival and mutagenesis

    International Nuclear Information System (INIS)

    Although the consequences of genotoxic injury include cell cycle arrest and apoptosis, cell survival responses after genotoxic injury can produce intrinsic death-resistance and contribute to the development of a transformed phenotype. Protein tyrosine phosphatases (PTPs) are integral components of key survival pathways, and are responsible for their inactivation, while PTP inhibition is often associated with enhanced cell proliferation. Our aim was to elucidate signaling events that modulate cell survival after genotoxin exposure. Diploid human lung fibroblasts (HLF) were treated with Cr(VI) (as Na2CrO4), the soluble oxyanionic dissolution product of certain particulate chromates, which are well-documented human respiratory carcinogens. In vitro soluble Cr(VI) induces a wide spectrum of DNA damage, in both the presence and absence of a broad-range PTP inhibitor, sodium orthovanadate (SOV). Notably, SOV abrogated Cr(VI)-induced clonogenic lethality. The enhanced survival of Cr(VI)-exposed cells after SOV treatment was predominantly due to a bypass of cell cycle arrest, as there was no effect of the PTP inhibitor on Cr-induced apoptosis. Moreover, the SOV effect was not due to decreased Cr uptake as evidenced by unchanged Cr-DNA adduct burden. Additionally, the bypass of Cr-induced growth arrest by SOV was accompanied by a decrease in Cr(VI)-induced expression of cell cycle inhibiting genes, and an increase in Cr(VI)-induced expression of cell cycle promoting genes. Importantly, SOV resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of certain types of DNA damage may lead to increased genomic instability, via bypass of cell cycle checkpoints

  18. Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: Enhanced survival and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dongsoon; Camilli, Tura C. [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Chun, Gina; Lal, Madhu; Wright, Kristen [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Program in Molecular Medicine, George Washington University Medical Center, Washington, DC (United States); O' Brien, Travis J. [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Program in Molecular Medicine, George Washington University Medical Center, Washington, DC (United States); GW Cancer Institute, George Washington University Medical Center, Washington, DC (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Department of Medicine, George Washington University Medical Center, Washington, DC (United States); Program in Molecular Medicine, George Washington University Medical Center, Washington, DC (United States); GW Cancer Institute, George Washington University Medical Center, Washington, DC (United States); Ceryak, Susan [Department of Pharmacology and Physiology, George Washington University Medical Center, Washington, DC (United States); Department of Medicine, George Washington University Medical Center, Washington, DC (United States); Program in Molecular Medicine, George Washington University Medical Center, Washington, DC (United States); GW Cancer Institute, George Washington University Medical Center, Washington, DC (United States)], E-mail: phmsmc@gwumc.edu

    2009-01-15

    Although the consequences of genotoxic injury include cell cycle arrest and apoptosis, cell survival responses after genotoxic injury can produce intrinsic death-resistance and contribute to the development of a transformed phenotype. Protein tyrosine phosphatases (PTPs) are integral components of key survival pathways, and are responsible for their inactivation, while PTP inhibition is often associated with enhanced cell proliferation. Our aim was to elucidate signaling events that modulate cell survival after genotoxin exposure. Diploid human lung fibroblasts (HLF) were treated with Cr(VI) (as Na{sub 2}CrO{sub 4}), the soluble oxyanionic dissolution product of certain particulate chromates, which are well-documented human respiratory carcinogens. In vitro soluble Cr(VI) induces a wide spectrum of DNA damage, in both the presence and absence of a broad-range PTP inhibitor, sodium orthovanadate (SOV). Notably, SOV abrogated Cr(VI)-induced clonogenic lethality. The enhanced survival of Cr(VI)-exposed cells after SOV treatment was predominantly due to a bypass of cell cycle arrest, as there was no effect of the PTP inhibitor on Cr-induced apoptosis. Moreover, the SOV effect was not due to decreased Cr uptake as evidenced by unchanged Cr-DNA adduct burden. Additionally, the bypass of Cr-induced growth arrest by SOV was accompanied by a decrease in Cr(VI)-induced expression of cell cycle inhibiting genes, and an increase in Cr(VI)-induced expression of cell cycle promoting genes. Importantly, SOV resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of certain types of DNA damage may lead to increased genomic instability, via bypass of cell cycle checkpoints.

  19. Transposon Mutagenesis To Improve the Growth of Recombinant Saccharomyces cerevisiae on d-Xylose▿

    OpenAIRE

    Ni, Haiying; Laplaza, José M.; Jeffries, Thomas W.

    2007-01-01

    Saccharomyces cerevisiae L2612 transformed with genes for xylose reductase and xylitol dehydrogenase (XYL1 and XYL2) grows well on glucose but very poorly on d-xylose. When a gene for d-xylulokinase (XYL3 or XKS1) is overexpressed, growth on glucose is unaffected, but growth on xylose is blocked. Spontaneous or chemically induced mutants of this engineered yeast that would grow on xylose could, however, be obtained. We therefore used insertional transposon mutagenesis to identify two loci tha...

  20. Induced mutagenesis in finger-millet (Eleusine coracana Gaertn.) with gamma-rays and ethyl methane sulphonate

    International Nuclear Information System (INIS)

    The seeds of CO-1 variety were treated with gamma-rays and EMS, each in 5 doses, 10 to 50 kR and 0.5 to 2.5% respectively. The chlorophyll mutation rate was characterized by linearity at low to medium doses and saturation as well as erratic behavior at high doses. As per mutation rate, estimated on the basis of M2 plants, EMS induced as high frequency. The spectrum consisted of albina, chlorina zantha, albo-viridis, tigrina (3 types) and striata (2 types), with tigrina being predominant. The treatments varied in their spectrum, with 2.0% yielding the widest spectrum of mutants. (author)

  1. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice

    OpenAIRE

    Chai, Y.; Calaf, G M; Zhou, H.; Ghandhi, S A; Elliston, C. D.; Wen, G.; Nohmi, T; Amundson, S A; Hei, T K

    2012-01-01

    Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in ...

  2. Inducible error-prone repair in B. subtilis. Progress report, September 1, 1978-August 31, 1979. [Role in mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Yasbin, R E

    1979-01-01

    The mechanism of activation and the mode of action of the SOS system in the bacterium Bacillus subtilis is under study. Interesting aspects of the SOS system in B. subtilis are: (1) the differences between SOS functions in this bacterium and in the enteric bacteria; (2) the spontaneous activation of SOS functions in component cells; and (3) the difficulty in obtaining consistent results for mutation studies in this bacterium. In order to characterize the SOS system of B. subtilis, it was proposed to: (1) isolate bacteria mutated in genes controlling various repair function; (2) investigate inducible repair; (3) determine the role of endogeneous Bacillus prophages in SOS functions; and (4) develop a tester system for potential carcinogens from competent Bacillus subtilis cells. Research has been able to: (1) isolate strains of B. subtilis in which the endogeneous prophages have been removed or neutralized; (2) demonstrate the association of one SOS function with prophage SPB; (3) demonstrate that the survival of uv-irradiated B. subtilis is not significantly altered by the removal and neutralization of the endogeneous prophages; (4) develop competant B. subtilis into a tester system; and (5) show that DNA polymerase III is absolutely necessary for W reactivation. In addition, uv and mitomycin C resistant mutants have been isolated and inducible postreplication repair in excision-repair deficient mutants of B. subtilis has been studied. The last two results are somewaht confusing but highly exciting in regards to DNA repair mechanisms in B. subtilis.

  3. Enhancement of Biocontrol Activities and Cyclic Lipopeptides Production by Chemical Mutagenesis of Bacillus subtilis XF-1, a Biocontrol Agent of Plasmodiophora brassicae and Fusarium solani.

    Science.gov (United States)

    Li, Xing-Yu; Yang, Jing-Jing; Mao, Zi-Chao; Ho, Hon-Hing; Wu, Yi-Xing; He, Yue-Qiu

    2014-12-01

    Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P. brassicae. Four mutants exhibited inhibition activity significantly higher than the wild type. The cell extracts of these mutants and the XF-1 were subjected to matrix-assisted laser desorption ionization-time of flight mass spectra analysis, and three families of cyclic lipopeptides (CLPs) fengycin, surfactin and iturin were identified from the parental strain and the screened mutants. However, the relative contents and compound diversity changed after mutagenesis, and there was slight variation in the surfactin and fengycin. Notably, only 5 iturin components were discovered from the wild strain XF-1, but 13 were obtained from the mutant strains, and the relative CLPs contents of all mutant strains increased substantially. The results suggested that CLPs might be one of main biocontrol mechanisms of the clubroot disease by XF-1. The 4 mutants are far more effective than the parental strain, and they would be promising biocontrol candidates not only against P. brassicae but probably other plant diseases caused by fungi. PMID:25320450

  4. 2004 Mutagenesis Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  5. Symposium on molecular and cellular mechanisms of mutagenesis

    International Nuclear Information System (INIS)

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents

  6. The inhibition of radiation-induced mutagenesis by the combined effects of selenium and the aminothiol WR-1065

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, A.M.; Murray, J.L. [Univ. of Chicago, IL (United States). Dept. of Radiation and Cellular Oncology; Dale, P. [Univ. of Chicago, IL (United States). Dept. of Radiation and Cellular Oncology]|[Argonne National Lab., IL (United States)] [and others

    1997-08-01

    In order to evaluate the anti-mutagenic effects of the potential chemoprotective compounds selenium and S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-1065), CHO AA8 cells were exposed to both compounds either individually or in combination prior to irradiation. Mutation frequency following exposure to 8 Gy was evaluated by quantitation of the mutations detected at the hprt locus of these cells. Protection against radiation-induced mutation was observed for both 30 nM sodium selenite or 4 mM WR-1065. In addition, the protection against mutation induction provided by the combination of these agents appeared additive. In contrast, sodium selenite did not provide protection against radiation toxicity when provided either alone or in conjunction with WR-1065. In order to evaluate the possible mechanisms of the anti-mutagenic effects observed in these cells, glutathione peroxidase (GPx) activity was evaluated following exposure to the chemopreventative compounds. The addition of sodium selenite to the culture media resulted in a 5-fold increase in GPX activity, which was unaltered by the presence of the WR-1065. Northern analysis of RNA derived from these cells indicated that selenium supplementation resulted in a marginal increase in the mRNA for the cytosolic GPx (GSHPx-1) which was insufficient to account for the stimulation of GPx activity observed in cellular extracts. These results suggest that selenium and WR-1065 offer protection via independent mechanisms and that GPX stimulation remains a possible mechanism of the anti-mutagenic effect of selenium.

  7. Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes)

    International Nuclear Information System (INIS)

    To develop a specific-locus test (SLT) system for environmental mutagenesis using vertebrate species other than the mouse, we first established a tester stock of the fish medaka (Oryzias latipes) that is homozygous recessive at three loci. The phenotypic expression of these loci can be easily recognized early in embryonic development by observation through the transparent egg membrane. We irradiated wild-type males with 137Cs gamma-rays to determine the dose-response relationships for dominant lethal and specific-locus mutations induced in sperm, spermatids, and spermatogonia. Through observation of 322,666 loci in control offspring and 374,026 loci in offspring obtained from 0.64-, 4.75-, or 9.50-Gy-irradiated gametes, specific-locus mutations were phenotypically detected during early development. These putative mutations, designated total mutation, can be recognized only in embryos of oviparous animals. The developmental fate of these mutant embryos was precisely followed. During subsequent embryonic development, a large fraction died and thus was unavailable for test-crossing, which was used to identify viable mutations. Our medaka SLT system demonstrates that the vast majority of total mutations is associated with dominant lethal mutations. Thus far only one spontaneous viable mutation has been observed, so that all doubling calculations involving this endpoint carry a large error. With these reservations, however, we conclude that the quantitative data so far obtained from the medaka SLT are quite comparable to those from the mouse SLT and, hence, indicate the validity of the medaka SLT as a possible nonmammalian test system

  8. Acute and subacute chemical-induced lung injuries: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Akira, Masanori, E-mail: Akira@kch.hosp.go.jp [Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka 591-8555 (Japan); Suganuma, Narufumi [Department of Environmental Medicine, Kochi Medical School (Japan)

    2014-08-15

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals.

  9. Acute and subacute chemical-induced lung injuries: HRCT findings

    International Nuclear Information System (INIS)

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals

  10. Chemically induced compaction bands in geomaterials

    Science.gov (United States)

    Stefanou, Ioannis; Sulem, Jean

    2013-04-01

    Compaction bands play an important role in oil production and may provide useful information on various geological processes. Various mechanisms can be involved at different scales: the micro scale (e.g. the grain scale), the meso scale (e.g. the Representative Element Volume) and the macro scale (e.g. the structure). Moreover, hydro-chemo-mechanical couplings might play an important role in triggering instabilities in the form of compaction bands. Compaction bands can be seen as an instability of the underneath mathematical problem leading to localization of deformation [1,2,3]. Here we explore the conditions of compaction banding in quartz-based geomaterials by considering the effect of chemical dissolution and precipitation [4,5]. In due course of the loading process grain crushing affects the residual strength, the porosity and the permeability of the material. Moreover, at the micro-level, grain crushing results in an increase of the grain specific surface, which accelerates the dissolution [6]. Consequently, the silica is removed more rapidly from the grain skeleton and the overall mechanical properties are degraded due to chemical factors. The proposed model accounts for these phenomena. In particular, the diffusion of the diluted in the water silica is considered through the mass balance equation of the porous medium. The reduction of the mechanical strength of the material is described through a macroscopic failure criterion with chemical softening. The grain size reduction is related to the total energy input [7]. A grain size and porosity dependent permeability law is adopted. These degradation mechanisms are coupled with the dissolution/precipitation reaction kinetics. The obtained hydro-chemo-mechanical model is used to investigate the conditions, the material parameters and the chemical factors inducing compaction bands formation. References [1] J.W. Rudnicki, and J.R. Rice. "Conditions for the Localization of Deformation in Pressure

  11. Targeted mutagenesis in Atlantic salmon (Salmo salar L. using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation.

    Directory of Open Access Journals (Sweden)

    Rolf B Edvardsen

    Full Text Available Understanding the biological function behind key proteins is of great concern in Atlantic salmon, both due to a high commercial importance and an interesting life history. Until recently, functional studies in salmonids appeared to be difficult. However, the recent discovery of targeted mutagenesis using the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated system enables performing functional studies in Atlantic salmon to a great extent. We used the CRISPR/Cas9 system to target two genes involved in pigmentation, tyrosinase (tyr and solute carrier family 45, member 2 (slc45a2. Embryos were assayed for mutation rates at the 17 somite stage, where 40 and 22% of all injected embryos showed a high degree of mutation induction for slc45a2 and tyr, respectively. At hatching this mutation frequency was also visible for both targeted genes, displaying a graded phenotype ranging from complete lack of pigmentation to partial loss and normal pigmentation. CRISPRslc45a2/Cas9 injected embryos showing a complete lack of pigmentation or just a few spots of pigments also lacked wild type sequences when assaying more than 80 (slc45a2 sequence clones from whole embryos. This indicates that CRISPR/Cas9 can induce double-allelic knockout in the F0 generation. However, types and frequency of indels might affect the phenotype. Therefore, the variation of indels was assayed in the graded pigmentation phenotypes produced by CRISPR/Cas9-slc45a2. The results show a tendency for fewer types of indels formed in juveniles completely lacking pigmentation compared to juveniles displaying partial pigmentation. Another interesting observation was a high degree of the same indel type in different juveniles. This study shows for the first time successful use of the CRISPR/Cas9 technology in a marine cold water species. Targeted double-allelic mutations were obtained and, though the level of mosaicism has to be considered, we demonstrate that F0

  12. Optimization of Combinatorial Mutagenesis

    Science.gov (United States)

    Parker, Andrew S.; Griswold, Karl E.; Bailey-Kellogg, Chris

    Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (stability, activity, immunogenicity, etc.). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries - a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 107 variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and

  13. Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes).

    OpenAIRE

    Shima, A; Shimada, A

    1991-01-01

    To develop a specific-locus test (SLT) system for environmental mutagenesis using vertebrate species other than the mouse, we first established a tester stock of the fish medaka (Oryzias latipes) that is homozygous recessive at three loci. The phenotypic expression of these loci can be easily recognized early in embryonic development by observation through the transparent egg membrane. We irradiated wild-type males with 137Cs gamma-rays to determine the dose-response relationships for dominan...

  14. Mechanisms of chemical-induced porphyrinopathies

    Energy Technology Data Exchange (ETDEWEB)

    Silbergeld, E.K. Fowler, B.A.

    1987-01-01

    This book contains 45 selections. Some of the titles are: Genetic Regulation of the Heme Pathway; Porphyrins in Urine as an Indication of Exposure to Chlorinated Hydrocarbons; Mechanisms of PCB-induced Porphyria and Yusho Disease; and Lead-Induced Abnormalities of Porphyrin Metabolism: The Relationship with Iron Deficiency.

  15. Quantitative studies of the mutagenesis of Toxoplasma gondii

    International Nuclear Information System (INIS)

    The induction of mutants resistant to 5-fluorodeoxyuridine (FUDR) was used to measure the efficiency of various physical and chemical mutagens on extracellular and intracellular Toxoplasma gondii. The frequency of resistant mutant was measured by plaque assay in human fibroblast cultures in the presence and absence of FUDR. When considered as a function of lethality, the most efficient mutagenesis was obtained with nitrosoguanidine treatment of extracellular parasites and with ethylmethane sulfonate treatment of actively growing intracellular parasites. Each of these treatments increased the frequency of FUDR-resistant mutants from less than one to more than 200 per million parasites. Ultraviolet irradiation, X-rays, and the alkylating mustard ICR-191 also induced FUDR-resistant mutants in a dose-dependent fashion

  16. Optimization of combinatorial mutagenesis.

    Science.gov (United States)

    Parker, Andrew S; Griswold, Karl E; Bailey-Kellogg, Chris

    2011-11-01

    Protein engineering by combinatorial site-directed mutagenesis evaluates a portion of the sequence space near a target protein, seeking variants with improved properties (e.g., stability, activity, immunogenicity). In order to improve the hit-rate of beneficial variants in such mutagenesis libraries, we develop methods to select optimal positions and corresponding sets of the mutations that will be used, in all combinations, in constructing a library for experimental evaluation. Our approach, OCoM (Optimization of Combinatorial Mutagenesis), encompasses both degenerate oligonucleotides and specified point mutations, and can be directed accordingly by requirements of experimental cost and library size. It evaluates the quality of the resulting library by one- and two-body sequence potentials, averaged over the variants. To ensure that it is not simply recapitulating extant sequences, it balances the quality of a library with an explicit evaluation of the novelty of its members. We show that, despite dealing with a combinatorial set of variants, in our approach the resulting library optimization problem is actually isomorphic to single-variant optimization. By the same token, this means that the two-body sequence potential results in an NP-hard optimization problem. We present an efficient dynamic programming algorithm for the one-body case and a practically-efficient integer programming approach for the general two-body case. We demonstrate the effectiveness of our approach in designing libraries for three different case study proteins targeted by previous combinatorial libraries--a green fluorescent protein, a cytochrome P450, and a beta lactamase. We found that OCoM worked quite efficiently in practice, requiring only 1 hour even for the massive design problem of selecting 18 mutations to generate 10⁷ variants of a 443-residue P450. We demonstrate the general ability of OCoM in enabling the protein engineer to explore and evaluate trade-offs between quality and

  17. Radiation-induced chemical evolution of biomolecules

    International Nuclear Information System (INIS)

    Chemical evolution in glycilglycine (Gly2) films irradiated with 146 nm vacuum ultraviolet light was studied. It is found that quantum efficiency of chemical evolution from Gly2 to glycilglycilglycine (Gly3) is smaller than that to glycilglycilglycilglycine (Gly4) due to the multiple step of reaction. Furthermore, we have carried out measurement of soft X-ray natural circular dichroism spectra for serine and alanine films in the energy region of oxygen 1s transition and we report the splitting of 1s→π* transitions.

  18. Chloroacetaldehyde-induced mutagenesis in Escherichia coli: The role of AlkB protein in repair of 3,N{sup 4}-ethenocytosine and 3,N{sup 4}-{alpha}-hydroxyethanocytosine

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewska, Agnieszka M.; Ruszel, Karol P.; Nieminuszczy, Jadwiga; Lewicka, Joanna [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, 5A Pawinskiego Str (Poland); Sokolowska, Beata [Medical Research Center, Polish Academy of Sciences, 02-106 Warsaw, 5 Pawinskiego Str (Poland); Grzesiuk, Elzbieta [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, 5A Pawinskiego Str (Poland); Kusmierek, Jaroslaw T., E-mail: jareq@ibb.waw.pl [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, 5A Pawinskiego Str (Poland)

    2010-02-03

    Etheno ({epsilon}) adducts are formed in reaction of DNA bases with various environmental carcinogens and endogenously created products of lipid peroxidation. Chloroacetaldehyde (CAA), a metabolite of carcinogen vinyl chloride, is routinely used to generate {epsilon}-adducts. We studied the role of AlkB, along with AlkA and Mug proteins, all engaged in repair of {epsilon}-adducts, in CAA-induced mutagenesis. The test system used involved pIF102 and pIF104 plasmids bearing the lactose operon of CC102 or CC104 origin (Cupples and Miller (1989) ) which allowed to monitor Lac{sup +} revertants, the latter arose by GC {yields} AT or GC {yields} TA substitutions, respectively, as a result of modification of guanine and cytosine. The plasmids were CAA-damaged in vitro and replicated in Escherichia coli of various genetic backgrounds. To modify the levels of AlkA and AlkB proteins, mutagenesis was studied in E. coli cells induced or not in adaptive response. Formation of {epsilon}C proceeds via a relatively stable intermediate, 3,N{sup 4}-{alpha}-hydroxyethanocytosine (HEC), which allowed to compare repair of both adducts. The results indicate that all three genes, alkA, alkB and mug, are engaged in alleviation of CAA-induced mutagenesis. The frequency of mutation was higher in AlkA-, AlkB- and Mug-deficient strains in comparison to alkA{sup +}, alkB{sup +}, and mug{sup +} controls. Considering the levels of CAA-induced Lac{sup +} revertants in strains harboring the pIF plasmids and induced or not in adaptive response, we conclude that AlkB protein is engaged in the repair of {epsilon}C and HEC in vivo. Using the modified TTCTT 5-mers as substrates, we confirmed in vitro that AlkB protein repairs {epsilon}C and HEC although far less efficiently than the reference adduct 3-methylcytosine. The pH optimum for repair of HEC and {epsilon}C is significantly different from that for 3-methylcytosine. We propose that the protonated form of adduct interact in active site of Alk

  19. Physical and chemical mutagenesis of early mutant of indica restorers in ''WA'' (wild abortion) hybrid rice system and genetic analysis of mutants in heterosis utilization

    International Nuclear Information System (INIS)

    The four indica restorers in the wild abortion hybrid rice system were treated with physical and chemical mutagens, and the mutation frequency in the M2 generation and the correlation between the heading date of the mutants and other characters were investigated

  20. Antimicrobials, stress and mutagenesis.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2014-10-01

    Full Text Available Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.

  1. Mutagenesis of ultraviolet-irradiated lambda phage by host cell irradiation: induction of Weigle mutagenesis is not an all-or-none process

    International Nuclear Information System (INIS)

    Ultraviolet mutagenesis of lambda phage to clear plaque formers is the same in the total phage population and in subpopulations of phage which have also mutated to gam- or at an amber codon. This is true for phage assayed in host cells in which Weigle mutagenesis has been either partially induced by low levels of ultraviolet irradiation, or fully induced by higher levels. If induction of Weigle mutagenesis were all-or-none, clear plaque formers in phage subpopulations selected for another mutation elsewhere would come mainly from induced cells; then the clear plaque mutation rate would always be that for fully induced host cells. Therefore, induction requires more than one lesion in host cell DNA. Although thymine starvation of cells induces synthesis of recA protein, it does not induce Weigle mutagenesis; in fact starvation inhibits induction of this process on subsequent ultraviolet irradiation of the cells. (orig.) 891 AJ/orig. 892 BRE

  2. Approaches to the evaluation of chemical-induced immunotoxicity.

    OpenAIRE

    Krzystyniak, K; Tryphonas, H; Fournier, M

    1995-01-01

    The immune system plays a crucial role in maintaining health; however, accumulating evidence indicates that this system can be the target for immunotoxic effects caused by a variety of chemicals including the environmental pollutants of polychlorinated biphenyls, chlorinated dibenzo-p-dioxins, pesticides, and heavy metals. Adverse chemical-induced immunomodulation, which is studied within the discipline of immunotoxicology, may be expressed either as immunosuppression/immunodepression or immu...

  3. Neuro-immune interactions in chemical-induced airway hyperreactivity.

    Science.gov (United States)

    Devos, Fien C; Boonen, Brett; Alpizar, Yeranddy A; Maes, Tania; Hox, Valérie; Seys, Sven; Pollaris, Lore; Liston, Adrian; Nemery, Benoit; Talavera, Karel; Hoet, Peter H M; Vanoirbeek, Jeroen A J

    2016-08-01

    Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR. PMID:27126687

  4. Chemical changes induced by ultrasound in iron

    Science.gov (United States)

    Albertini, G.; Calbucci, V.; Cardone, F.; Petrucci, A.; Ridolfi, F.

    2014-03-01

    The focus of this work is a careful chemical investigation of structural damage produced by the exposure of an iron bar to pressure waves generated using an ultrasound machine (called the R-1-S reactor). In addition to the emission of neutron bursts, the ultrasound treatment caused the appearance of zones of macroscopic damage (˜1 mm in size) on the exterior of the bar. Reflected-light optical and environmental scanning electron microscopy (ESEM) has shown that these external damage zones are characterized by microcraters and are covered by a thin layer of cracked amorphous material. Under back scattered electron (BSE) observation, this material shows a lower brightness than the intact ferrite surface. In addition, a zone with a high density of deformed cavities (˜1300 per mm2) with irregular walls and a maximum size of 10 μm was found inside the bar. These deformed microcavities are partially filled with a material composed of a chaotic assemblage of submicron-sized (most likely amorphous) particles. A careful compositional investigation of the chaotic material inside the microcavities using the semi-quantitative data obtained with the ESEM X-ray Energy Dispersive System (EDS) has shown that it is primarily composed of carbon, manganese and chromium. These elements are also found in lower amounts within the intact ferrite matrix. In contrast, the damaged surface surrounding the craters is characterized by elements not found in the ferrite at all (i.e., O, Cl, K, Cu); elements the presence of which cannot be attributed to the occurrence of non-metallic inclusions or to contamination during fabrication. These results are also difficult to explain using the generally accepted laws of physics; however, they do appear to agree with a recent theory predicting the deformation of the local spacetime and the violation of the Local Lorentz Invariance. Such a violation should occur following the collapse of micron-sized discontinuities internal to the materials

  5. Inducing mutations in the mouse genome with the chemical mutagen ethylnitrosourea

    Directory of Open Access Journals (Sweden)

    S.M.G. Massironi

    2006-09-01

    Full Text Available When compared to other model organisms whose genome is sequenced, the number of mutations identified in the mouse appears extremely reduced and this situation seriously hampers our understanding of mammalian gene function(s. Another important consequence of this shortage is that a majority of human genetic diseases still await an animal model. To improve the situation, two strategies are currently used: the first makes use of embryonic stem cells, in which one can induce knockout mutations almost at will; the second consists of a genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes and subsequent identification of the genetic alteration(s. Several projects are now in progress making use of one or the other of these strategies. Here, we report an original effort where we mutagenized BALB/c males, with the mutagen ethylnitrosourea. Offspring of these males were screened for dominant mutations and a three-generation breeding protocol was set to recover recessive mutations. Eleven mutations were identified (one dominant and ten recessives. Three of these mutations are new alleles (Otop1mlh, Foxn1sepe and probably rodador at loci where mutations have already been reported, while 4 are new and original alleles (carc, eqlb, frqz, and Sacc. This result indicates that the mouse genome, as expected, is far from being saturated with mutations. More mutations would certainly be discovered using more sophisticated phenotyping protocols. Seven of the 11 new mutant alleles induced in our experiment have been localized on the genetic map as a first step towards positional cloning.

  6. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    2007-01-01

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  7. Investiation of viral mutagenesis in X-irradiated host cells

    International Nuclear Information System (INIS)

    The basic cellular mechanism of radiation-caused carcinogenesis is unknown. The induction by radiation of mutational changes in the genetic material (DNA) is believed to play a significant role in malignant transformation. It has been hypothesized that radiation-induced mutagenesis may occur as a result of induced mutagenic, or so-called error-prone, processes such as error-prone DNA synthesis and DNA repair. Abundant evidence indicates the presence of an inducible mutagenic repair system in the bacterium Escherichia coli. A similar inducible mutagenic repair system may exist in mammalian cells. Its apparent presence in uv-irradiated cells has been detected using an experimental system which involves utilization of herpes simplex virus (HSV) as a probe for DNA repair and mutagenesis in irradiated host monkey kidney cells. A system has been developed in which the production of HSV mutants capable of growing in the presence of 5'-iododeoxycytidine (ICdR) is used as a measure of viral mutagenicity. The purpose of this study was to use this mutagenesis system to determine whether x irradiation of host cells would lead to increased mutatgenesis of virus grown in these cells as compared with unirradiated cells. Attention is focused on mutagenesis of unirradiated virus in order to establish the existence of possible ionizing radiation-induced error-prone DNA synthesis

  8. Chemical Mutagenesis of an Emissive RNA Alphabet.

    Science.gov (United States)

    Rovira, Alexander R; Fin, Andrea; Tor, Yitzhak

    2015-11-25

    An evolved fluorescent ribonucleoside alphabet comprising isomorphic purine ((tz)A, (tz)G) and pyrimidine ((tz)U, (tz)C) analogues, all derived from isothiazolo[4,3-d]pyrimidine as a common heterocyclic core, is described. Structural and biochemical analyses illustrate that the nucleosides, particularly the C-nucleosidic purine analogues, are faithful isomorphic and isofunctional surrogates of their natural counterparts and show improved features when compared to an RNA alphabet derived from thieno[3,4-d]-pyrimidine. The restoration of the nitrogen in a position equivalent to the purines' N7 leads to "isofunctional" behavior, as illustrated by the ability of adenosine deaminase to deaminate (tz)A as effectively as adenosine, the native substrate. PMID:26523462

  9. A model for chemically-induced mechanical loading on MEMS

    DEFF Research Database (Denmark)

    Amiot, Fabien

    2007-01-01

    The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain, and...... displacements). As these phenomena usually arise from species adsorption, adsorbate modification or surface reconstruction, they are surface-related by nature and thus require some dedicated mechanical modeling. The accompanying mechanical modeling proposed herein is intended to represent the chemical part of...... drawn from the energy balance in the accompanying model, highlighting the role of surface functionalization parameters in micromechanical sensors engineering....

  10. A mariner transposon vector adapted for mutagenesis in oral streptococci

    DEFF Research Database (Denmark)

    Nilsson, Martin; Christiansen, Natalia; Høiby, Niels;

    2014-01-01

    ATs-pWV01, a selectable kanamycin resistance gene, a Himar1 transposase gene regulated by a xylose-inducible promoter, and an erythromycin resistance gene flanked by himar inverted repeats. The pMN100 plasmid was transformed into Streptococcus mutans UA159 and transposon mutagenesis was performed via a...... protocol established to perform high numbers of separate transpositions despite a low frequency of transposition. The distribution of transposon inserts in 30 randomly picked mutants suggested that mariner transposon mutagenesis is unbiased in S. mutans. A generated transposon mutant library containing...

  11. Keratin expression in chemically induced mouse lung adenomas.

    OpenAIRE

    Gunning, W T; Goldblatt, P. J.; Stoner, G D

    1992-01-01

    Chemically induced mouse lung tumors exhibit distinctive growth patterns, characterized by an alveolar or solid appearance, a papillary appearance, or a combination of the two. Lung tumors induced in strain A/J mice by either benzo(a)pyrene (BP) or by N-nitrosoethylurea (ENU) were examined for expression of low- and high-molecular-weight cytokeratins. Simple cytokeratins (low molecular weight) were found in all epithelial cells of the normal mouse lung and in all tumor types, whereas higher-m...

  12. Laser-Induced Chemical Vapour Deposition of Silicon Carbonitride

    OpenAIRE

    Besling, W.; van der Put, P.; Schoonman, J.

    1995-01-01

    Laser-induced Chemical Vapour Deposition of silicon carbonitride coatings and powders has been investigated using hexamethyldisilazane (HMDS) and ammonia as reactants. An industrial CW CO2-laser in parallel configuration has been used to heat up the reactant gases. HMDS dissociates in the laser beam and reactive radicals are formed which increase rapidly in molecular weight by an addition mechanism. Dense polymer-like silicon carbonitride thin films and nanosized powders are formed depending ...

  13. Mutagenesis and Teratogenesis Section

    International Nuclear Information System (INIS)

    Progress is reported in the following areas of research: studies on chromosome damage and indirect indicators of genetic damage; cytogenetic, embryological, and biochemical studies of mutants in mammals; studies on mammalian gonads in relation to mutagenic effects; systems for detecting mutagenic effects of chemicals; processes in repair of damage to DNA; methods for detecting mutations that result in proteins with altered amino acid sequences; recombination in Drosophila; DNA repair processes in bacteria; development of a sensitive teratological prescreen; teratogenic end points in amphibians; and development of a method for long-term culture of Xenopus oocytes

  14. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae.

    OpenAIRE

    Seifert, H S; Chen, E Y; So, M; Heffron, F

    1986-01-01

    We have extended the method of transposon mutagenesis to the eukaryote, Saccharomyces cerevisiae. A bacterial transposon containing a selectable yeast gene can be transposed into a cloned fragment of yeast DNA in Escherichia coli, and the transposon insertion can be returned to the yeast genome by homologous recombination. Initially, the cloned yeast DNA fragment to be mutagenized was transformed into an E. coli strain containing an F factor derivative carrying the transposable element. The c...

  15. Mutagenesis and DNA repair in mammalian cells

    International Nuclear Information System (INIS)

    Two aspects of DNA damage and repair in mammalian cells were investigated. Using a lambda phage shuttle vector, a system was developed to study mutations arising in the DNA of mammalian cells. This system was used to determine the spectrum of mutations induced in cellular DNA by ultraviolet light. Also, the repair of base pair mismatches in DNA was studied by the development of a method to detect a DNA mismatch repair activity in extracts made from cultured human cells. In order to study mutations arising in mammalian cells, stable mouse L cell lines were established with multiple copies of lambda phage vector which contains the supF gene of E. coli as a target for mutagenesis. Rescue of viable phage from high molecular weight mouse cell DNA using lambda in vitro packaging extracts was efficient and yielded a negligible background of phage with mutations in the supF gene. From mouse cells exposed to 12 J/m2 of 254 nm ultraviolet (UV) light, 78,510 phage were rescued of which eight were found to have mutant supF genes. DNA sequence analysis of the mutants suggests that the primary site of UV mutagenesis in mammalian cells is at pyrimidine-cytosine (Py-C) sequences, and that the most frequent mutation at this site is a C to T transition

  16. Mutagenesis in sweet potato

    International Nuclear Information System (INIS)

    Stem explants of cv. 'Gao line 14' were cultured on the MS medium supplemented with 0.01 mg BA+1.0 mg NAA+2.0 mg IAA/l. The calli thus formed were irradiated with 5 Gy from a 60Co gamma-ray. Irradiated calli were transferred to half-strength MS medium containing 2.0 mg KIN + 2.0 mg IAA/l to induce plant regeneration. An early ripening mutant with high yield and low tuber number was selected among the regenerated plants grown in a field. Embryogenic calli were obtained from stem pieces, stem-tips and leaves on MS medium supplemented with 2,4-D. (author). 1 ref

  17. Molecular fundamentals of chromosomal mutagenesis

    International Nuclear Information System (INIS)

    Precise quantitative correlation between the yield of chromosome structure damages and the yield of DNA damages is shown when comparing data on molecular and cytogenetic investigations carried out in cultural Mammalia cells. As the chromosome structure damage is to be connected with the damage of its carcass structure, then it is natural that DNA damage in loop regions is not to affect considerably the structure, while DNA damage lying on the loop base and connected with the chromosome carcass is to play a determining role in chromosomal mutagenesis. This DNA constitutes 1-2% from the total quantity of nuclear DNA. If one accepts that damages of these regions of DNA are ''hot'' points of chromosomal mutagenesis, then it becomes clear why 1-2% of preparation damages in a cell are realized in chromosome structural damages

  18. The involvement of cell cycle checkpoint-mutations in the mutagenesis induced in Drosophila by a longer wavelength light band of solar UV.

    Science.gov (United States)

    Toyoshima, Megumi; Takinami, Syogo; Hieda, Kotaro; Fursawa, Yoshiya; Negishi, Tomoe

    2002-03-01

    Solar ultraviolet radiation is considered to be injurious rather than necessary for most organisms living on the earth. It is reported that the risk of skin cancer in humans increases by the depletion of the ozone layer. We have examined the genotoxicity of solar ultraviolet, especially the longer wavelength light, using Drosophila. Recently, we have demonstrated that light of wavelength up to 340 nm is mutagenic on Drosophila larvae. Using an excision repair-deficient Drosophila strain (mus201), we have obtained results suggesting that the lesion caused in larvae by the 320 nm-light irradiation may be similar to the damage induced by irradiation at 310 nm, and that light of 330 and 340 nm may induce damage different from that induced by 310 and 320 nm-light. To examine the difference in DNA damage induced by light of a particular wavelength, we performed monochromatic irradiation on larvae of two Drosophila strains; one excision repair-deficient (mei-9) and another postreplication repair-deficient (mei-41). 310 and 320 nm-light was more mutagenic in the mei-9 strain than in mei-41, whereas 330 and 340 nm-light was more mutagenic in mei-41 than in mei-9. It is demonstrated that the mei-41 gene is a homologue of the human atm gene which is responsible for a cell cycle checkpoint. This result suggests that 310-320 nm-light induces DNA damage that is subject to nucleotide excision repair (NER) and that 330-360 nm-light causes damage to be recognized by the cell cycle checkpoint but it is not repairable by NER. PMID:12659514

  19. PIXE and PIXE-induced XRF for chemical specification

    International Nuclear Information System (INIS)

    Wavelength dispersive X-ray spectra with fine structures in the PIXE and PIXE-induced XRF spectra have been proved to be very much useful for chemical specification of condensed matters. The fine structures have been reproduced theoretically by introducing molecular orbital calculations, the shake-off and resonant orbital rearrangement (ROR) processes, together with the direct Coulomb interaction between projectiles and target atoms, and the self-absorption of emitted X-rays through the targets. Comparison between observed and theoretical spectra is given here for F and S atoms

  20. Chemical modification of polyurethanes by radiation-induced grafting

    International Nuclear Information System (INIS)

    Basic methods of radiation-induced modification of polyurethanes for biomedical applications and of their characterization are briefly described. The most important works found in literature on radiation grafting of polyurethanes are discussed. The radiation grafting of polyetherurethane films and tubings by the preswelling method using various monomers and their physico-chemical characterization are discussed in detail with respect to the antithrombogenic properties of the materials. Novel applications for radiation-modified polyurethanes as drug delivery systems or antiinfectious materials are briefly mentioned. 52 references

  1. Commentary on "tissue-specific mutagenesis by N-butyl-N-(4-hydroxybutyl) nitrosamine as the basis for urothelial cell carcinogenesis." He Z, Kosinska W, Zhao ZL, Wu XR, Guttenplan JB, Department of Basic Science, New York University Dental College, NY, USA.: Mutat Res 2012;742(1-2):92-5 [Epub 2011 Dec 4].

    Science.gov (United States)

    Scherr, Douglas S

    2014-02-01

    Bladder cancer is one of the few cancers that have been linked to carcinogens in the environment and tobacco smoke. Of the carcinogens tested in mouse chemical carcinogenesis models, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) is one that reproducibly causes high-grade, invasive cancers in the urinary bladder, but not in any other tissues. However, the basis for such a high-level tissue-specificity has not been explored. Using mutagenesis in lacI (Big Blue™) mice, we show here that BBN is a potent mutagen and it causes high-level of mutagenesis specifically in the epithelial cells (urothelial) of the urinary bladder. After a 2-6-week treatment of 0.05% BBN in the drinking water, mutagenesis in urothelial cells of male and female mice was about two orders of magnitude greater than the spontaneous mutation background. In contrast, mutagenesis in smooth muscle cells of the urinary bladder was about five times lower than in urothelial tissue. No appreciable increase in mutagenesis was observed in kidney, ureter, liver or forestomach. In lacI (Big Blue™) rats, BBN mutagenesis was also elevated in urothelial cells, albeit not nearly as profoundly as in mice. This provides a potential explanation as to why rats are less prone than mice to the formation of aggressive form of bladder cancer induced by BBN. Our results suggest that the propensity to BBN-triggered mutagenesis of urothelial cells underlies its heightened susceptibility to this carcinogen and that mutagenesis induced by BBN represents a novel model for initiation of bladder carcinogenesis. PMID:24445298

  2. Radiation mutagenesis in selection of apple trees

    International Nuclear Information System (INIS)

    After X-radiation of grafts of antonovka apple trees, three groups of morphological mutants, namely, weak-, average- and violently-growing, have been revealed. Although the mutation spectrum has some indefinite character a dose of 6 kR causes, more frequently and in a greater number, the weak-growing mutants, and a dose of 2 kR, the violently-growing ones. Mutants of each group differ in the precociousness (precocious and latefruiting), type of fruiting (nospur and spur) and yield (high- and low-yielding). Using the method of radiation mutagenesis it is possible to rise the frequency and spectrum of somatic mutability of antonovka apple trees and to induce forms having valuable features

  3. OneClick: A Program for Designing Focused Mutagenesis Experiments

    Directory of Open Access Journals (Sweden)

    Mark Warburton

    2015-07-01

    Full Text Available OneClick is a user-friendly web-based program, developed specifically for quick-and-easy design of focused mutagenesis experiments (e.g., site-directed mutagenesis and saturation mutagenesis. Written in Perl and developed into a web application using CGI programming, OneClick offers a step-by-step experimental design, from mutagenic primer design to analysis of a mutant library. Upon input of a DNA sequence encoding the protein of interest, OneClick designs the mutagenic primers according to user input, e.g., amino acid position to mutate, type of amino acid substitutions (e.g., substitution to a group of amino acids with similar chemical property and type of mutagenic primers. OneClick has incorporated an extensive range of commercially available plasmids and DNA polymerases suitable for focused mutagenesis. Therefore, OneClick also provides information on PCR mixture preparation, thermal cycling condition, expected size of PCR product and agar plate to use during bacterial transformation. Importantly, OneClick also carries out a statistical analysis of the resultant mutant library, information of which is important for selection/screening. OneClick is a unique and invaluable tool in the field of protein engineering, allowing for systematic construction of a mutant library or a protein variant and simplifying molecular biology work. The program will be constantly updated to reflect the rapid development in the fields of molecular biology and protein engineering.

  4. Mouse Mutagenesis Using N-Ethyl-N-Nitrosourea (ENU)

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Andrew P. Salinger and Monica J. Justice1 Corresponding author ([]()) ### INTRODUCTION This protocol describes chemical mutagenesis of male mice using N-ethyl-N-nitrosourea (ENU), which is the most efficient method for obtaining mouse mutations in phenotype-driven screens. A fractionated dose of ENU, an alkylating agent, can produce a mutation rate as high as 1.5 × 10e−3 in male mouse spermatogonial stem cells. Treatment with ENU pr...

  5. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    SudinBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, “Toxicity testing in the 21st Century: A Vision and A Strategy”. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular “virtual tissue” model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  6. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  7. Chemically Induced and Light-Independent Cryptochrome Photoreceptor Activation

    Institute of Scientific and Technical Information of China (English)

    Gesa Rosenfeldt; Rafael Mu(n)oz Viana; Henning D.Mootz; Albrecht G.Von Arnim; Alfred Batschauer

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  8. Light-induced chemical vapour deposition painting with titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P

    2003-03-15

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  9. Quantum measurement corrections to chemically induced dynamic nuclear polarization

    CERN Document Server

    Kominis, I K

    2013-01-01

    Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.

  10. Light-induced chemical vapour deposition painting with titanium dioxide

    Science.gov (United States)

    Halary-Wagner, E.; Bret, T.; Hoffmann, P.

    2003-03-01

    Light-induced chemical vapour deposits of titanium dioxide are obtained from titanium tetra-isopropoxide (TTIP) in an oxygen and nitrogen atmosphere with a long pulse (250 ns) 308 nm XeCl excimer laser using a mask projection set-up. The demonstrated advantages of this technique are: (i) selective area deposition, (ii) precise control of the deposited thickness and (iii) low temperature deposition, enabling to use a wide range of substrates. A revolving mask system enables, in a single reactor load, to deposit shapes of controlled heights, which overlap to build up a complex pattern. Interferential multi-coloured deposits are achieved, and the process limitations (available colours and resolution) are discussed.

  11. Ion beam induced conductivity in chemically vapor deposited diamond films

    International Nuclear Information System (INIS)

    Polycrystalline diamond films deposited by the microwave plasma chemical vapor deposition (CVD) technique onto quartz substrates have been irradiated with 100 keV C and 320 keV Xe ions at room temperature and at 200 degree C. The dose dependence of the electrical conductivity measured in situ exhibited complicated, nonmonotonic behavior. High doses were found to induce an increase of up to ten orders of magnitude in the electrical conductivity of the film. The dose dependence of the conductivity for the CVD films was found to be very similar to that measured for natural, type IIa, single-crystal diamonds irradiated under identical conditions. This result suggests that the conduction mechanism in ion beam irradiated polycrystalline CVD diamond films is not dominated by grain boundaries and graphitic impurities as one might have expected, but rather is determined by the intrinsic properties of diamond itself

  12. Targeted mutagenesis using CRISPR/Cas system in medaka

    OpenAIRE

    Satoshi Ansai; Masato Kinoshita

    2014-01-01

    ABSTRACT Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system-based RNA-guided endonuclease (RGEN) has recently emerged as a simple and efficient tool for targeted genome editing. In this study, we showed successful targeted mutagenesis using RGENs in medaka, Oryzias latipes. Somatic and heritable mutations were induced with high efficiency at the targeted genomic sequence on the DJ-1 gene in embryos that had been injected with the single guide RNA...

  13. A role for ultraviolet A in solar mutagenesis.

    OpenAIRE

    Drobetsky, E A; Turcotte, J.; Châteauneuf, A

    1995-01-01

    It is well established that exposure to solar UVB (290-320 nm) gives rise to mutations in oncogenes and tumor suppressor genes that initiate the molecular cascade toward skin cancer. Although UVA (320-400 nm) has also been implicated in multistage photocarcinogenesis, its potential contribution to sunlight mutagenesis remains poorly characterized. We have determined the DNA sequence specificity of mutations induced by UVB (lambda > 290 nm), and by UVA (lambda > 350 nm), at the adenine phospho...

  14. Melatonin Prevents Chemical-Induced Haemopoietic Cell Death

    Directory of Open Access Journals (Sweden)

    Sara Salucci

    2014-04-01

    Full Text Available Melatonin (MEL, a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death.

  15. Domestication of Cuphea through mutagenesis

    International Nuclear Information System (INIS)

    Cuphea plants have promising characteristics as unique source of medium chain fatty acids. Although several groups of researchers in the world are working to domesticate this promising plant species, it still has many unfavorable wild characters, preventing it from becoming a practical agricultural crop at the present stage. In the present research, mutation breeding methods were adopted to domesticate the species in hope of inducing genetic modifications, but retaining its fatty acid constitution. Among the problematic characters, indeterminate growth pattern and non-uniform maturity, dormancy/germination, shattering of seeds and other plant morphology or plant-architecture traits must be modified to adapt it to the modern agricultural system. Several species of Cuphea were evaluated as the initial material. Problems of seed germination and those encountered in soaking the seeds in water or aqueous chemical mutagen solution could be solved and several promising and interesting mutant lines could be obtained. (author). 15 refs, 5 tabs

  16. Charged impurity-induced scatterings in chemical vapor deposited graphene

    Science.gov (United States)

    Li, Ming-Yang; Tang, Chiu-Chun; Ling, D. C.; Li, L. J.; Chi, C. C.; Chen, Jeng-Chung

    2013-12-01

    We investigate the effects of defect scatterings on the electric transport properties of chemical vapor deposited (CVD) graphene by measuring the carrier density dependence of the magneto-conductivity. To clarify the dominant scattering mechanism, we perform extensive measurements on large-area samples with different mobility to exclude the edge effect. We analyze our data with the major scattering mechanisms such as short-range static scatters, short-range screened Coulomb disorders, and weak-localization (WL). We establish that the charged impurities are the predominant scatters because there is a strong correlation between the mobility and the charge impurity density. Near the charge neutral point (CNP), the electron-hole puddles that are induced by the charged impurities enhance the inter-valley scattering, which is favorable for WL observations. Away from the CNP, the charged-impurity-induced scattering is weak because of the effective screening by the charge carriers. As a result, the local static structural defects govern the charge transport. Our findings provide compelling evidence for understanding the scattering mechanisms in graphene and pave the way for the improvement of fabrication techniques to achieve high-quality CVD graphene.

  17. Exploiting mutagenesis for wheat improvement

    International Nuclear Information System (INIS)

    The chemical mutagen, ethylmethanesulphonate, is being used to introduce into wheat novel variation that can be exploited for crop improvement. We have created mutagenised populations of diploid (Einkorn), tetraploid (Durum) and hexaploid (bread) wheat. The forward genetic approach enables the identification of high yielding or novel phenotypes that can be exploited in conventional breeding programmes. A powerful reverse genetic strategy, TILLING (Targetting Induced Local Lesions IN Genomes), allows the detection of induced point mutations in the populations of mutagenised individuals and allows gene function to be examined. Genetic redundancy in the tetraploid and hexaploid species allows them to tolerate a high level of mutation (up to one mutation per 25kbp). This mutation frequency makes it relatively easy to identify lesions in each homeologue of a particular gene which can then be combined for crop improvement or functional genomics. Novel variation created can be exploited without the regulatory restrictions imposed on genetically modified organisms. Gene targets have been selected in relation to plant architecture, primary metabolism, disease resistance and stress tolerance and over 50 TILLING mutants have so been identified, including mis-sense, non-sense and splice site mutations (author)

  18. Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed

    OpenAIRE

    Rasher, Douglas B; Hay, Mark E.

    2014-01-01

    Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemica...

  19. Use of a chemically induced-colon carcinogenesis-prone Apc-mutant rat in a chemotherapeutic bioassay

    International Nuclear Information System (INIS)

    Chemotherapeutic bioassay for colorectal cancer (CRC) with a rat model bearing chemically-induced CRCs plays an important role in the development of new anti-tumor drugs and regimens. Although several protocols to induce CRCs have been developed, the incidence and number of CRCs are not much enough for the efficient bioassay. Recently, we established the very efficient system to induce CRCs with a chemically induced-colon carcinogenesis-prone Apc-mutant rat, Kyoto Apc Delta (KAD) rat. Here, we applied the KAD rat to the chemotherapeutic bioassay for CRC and showed the utility of the KAD rat. The KAD rat has been developed by the ENU mutagenesis and carries a homozygous nonsense mutation in the Apc gene (S2523X). Male KAD rats were given a single subcutaneous injection of AOM (20 mg/kg body weight) at 5 weeks of age. Starting at 1 week after the AOM injection, they were given 2% DSS in drinking water for 7 days. Tumor-bearing KAD rats were divided into experimental and control groups on the basis of the number of tumors observed by endoscopy at week 8. The 5-fluorouracil (5-FU) was administrated intravenously a dose of 50 or 75 mg/kg weekly at week 9, 10, and 11. After one-week interval, the 5-FU was given again at week 13, 14, and 15. At week 16, animals were sacrificed and tumor number and volume were measured macroscopically and microscopically. In total 48 tumors were observed in 27 KAD rats with a 100% incidence at week 8. The maximum tolerated dose for the KAD rat was 50 mg/kg of 5-FU. Macroscopically, the number or volume of tumors in the 5-FU treated rats was not significantly different from the control. Microscopically, the number of adenocarcinoma in the 5-FU treated rats was not significantly different (p < 0.02) from that of the control. However, the volume of adenocarcinomas was significantly lower than in the control. Anticancer effect of the 5-FU could be obtained only after the 16 weeks of experimental period. The use of the AOM/DSS-treated tumor

  20. Chemically induced skin carcinogenesis: Updates in experimental models (Review)

    Science.gov (United States)

    NEAGU, MONICA; CARUNTU, CONSTANTIN; CONSTANTIN, CAROLINA; BODA, DANIEL; ZURAC, SABINA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  1. Chemically induced skin carcinogenesis: Updates in experimental models (Review).

    Science.gov (United States)

    Neagu, Monica; Caruntu, Constantin; Constantin, Carolina; Boda, Daniel; Zurac, Sabina; Spandidos, Demetrios A; Tsatsakis, Aristidis M

    2016-05-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands‑on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro‑inflammatory cytokines, and simultaneous inflammation sustained by pro‑inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  2. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Previous studies of radiation induced chemical reactions of CO-H2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH3) and radical scavenger (O2) on the products yields were also carried out on the CO-H2-CH4 mixture. (author)

  3. Mutagenesis for the domestication of Cuphea

    International Nuclear Information System (INIS)

    Cuphea is a herbaceous summer annual plant native to Central America. Its seed oil contains high amounts of medium chain fatty acids, depending on the species with C8, C10 and C12, respectively, amounting to sometimes more than 80% of the total fatty acids. The report summarizes over 10 years' research on the domestication of this genus. From extensive tests on the production potentials, some of these on a worldwide scale, a few most promising genotypes of the section Heterodon have been selected from among 45 species and 180 accessions for further genetic improvements. Chemical mutagenesis was effective in promoting the domestication programme and mutants have been obtained with, e.g. non-sticky hairiness, monoculm stem, and determinate growth by stem fasciation. However, the most desired mutation to indehiscent fruits has not yet been discovered within the selected productive Cuphea species. This problem of early seed dispersal in Cuphea may alternatively necessitate technical solutions, which also have been developed with a vacuum picking machine for multiple harvests. From the findings presented, some general considerations are deduced regarding the mutability of traits characterizing interspecific variation as well as regarding the need for improving the genetic background of mutants by recurrent selection procedures. (author). 17 refs, 2 figs, 9 tabs

  4. Site-directed mutagenesis in plants via gene targeting

    International Nuclear Information System (INIS)

    Many agronomically valuable phenotypes and natural variations seem to be due to point (or only a few) mutations. Thus, site-directed mutagenesis via gene targeting (GT) should be the cleanest, and most direct gene manipulation technique for future molecular breeding in plants. We chose the acetolactate synthase (ALS) gene locus of rice as a target for the introduction of point mutations. ALS catalyzes the initial step common to the biosynthesis of the branched-chain amino acids. Several point mutations in the ALS gene that confer tolerance to several ALS-inhibiting herbicides have been discovered in several plant species. Using a T-DNA-mediated GT strategy, we were able to induce two point mutations in the ALS locus that confer tolerance to the ALS-inhibiting herbicide bispyribac sodium salt (BS). After detailed analysis of GT plants, we confirmed that precise modification of the ALS locus had occurred in several plants. In addition to herbicide tolerance, tolerance against other chemicals is also a potential selectable phenotype. In this context, we are attempting to use GT to introduce point mutations into the rice gene encoding anthranilate synthase alpha subunit 2 (ASA2) -- a key enzyme in tryptophan (Trp) biosynthesis - to produce Trp-accumulating rice. In this study, gene-modified plants can be selected against the Trp analogue 5-methyl-Trp (5MT). We hope to report the phenotype of ASA2-modified plants. On the other hand, many agronomically valuable phenotypes caused by a small number of point mutations are non-selectable at the stage of transformation using current methods. If the frequency of GT can be improved substantially, co-transformation of a selectable marker gene and a non-selectable GT construct, and subsequent identification of desirable targeting events will cope with this problem. We are currently trying to improve GT efficiency in plant. (author)

  5. Genome-Wide Transposon Mutagenesis in Saccharomyces cerevisiae and Candida albicans

    Science.gov (United States)

    Xu, Tao; Bharucha, Nikë; Kumar, Anuj

    2016-01-01

    Transposon mutagenesis is an effective method for generating large sets of random mutations in target DNA, with applicability toward numerous types of genetic screens in prokaryotes, single-celled eukaryotes, and metazoans alike. Relative to methods of random mutagenesis by chemical/UV treatment, transposon insertions can be easily identified in mutants with phenotypes of interest. The construction of transposon insertion mutants is also less labor-intensive on a genome-wide scale than methods for targeted gene replacement, although transposon insertions are not precisely targeted to a specific residue, and thus coverage of the target DNA can be problematic. The collective advantages of transposon mutagenesis have been well demonstrated in studies of the budding yeast Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans, as transposon mutagenesis has been used extensively for phenotypic screens in both yeasts. Consequently, we present here protocols for the generation and utilization of transposon-insertion DNA libraries in S. cerevisiae and C. albicans. Specifically, we present methods for the large-scale introduction of transposon insertion alleles in a desired strain of S. cerevisiae. Methods are also presented for transposon mutagenesis of C. albicans, encompassing both the construction of the plasmid-based transposon-mutagenized DNA library and its introduction into a desired strain of Candida. In total, these methods provide the necessary information to implement transposon mutagenesis in yeast, enabling the construction of large sets of identifiable gene disruption mutations, with particular utility for phenotypic screening in nonstandard genetic backgrounds. PMID:21815095

  6. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characte

  7. Chemically and temperature-induced phase transformations of metal vanadates

    Science.gov (United States)

    Patridge, Christopher James

    Metal vanadates contain a diverse family of compounds due to the facile accessibility of different vanadium oxidation states and local coordination environments. Though these systems present a number of applications in catalysis and electronics, there may exist untapped physical phenomena that only reveal themselves when scaling these materials to nanoscale dimensions. Finite-size effects result from a number of factors including surface energy structural instabilities, nanostructure "self-purification," and physical constraints on mechanistic or conductive pathways. The MxV2O 5 bronze materials possess non-stoichiometry and this interesting property has hindered synthetic techniques to procure perfect crystalline material which is needed to expose the true physical properties. Through hydrothermal synthesis methods, pseudo one---dimensional nanostructures of Mx V2O5 display fascinating new properties and may be model systems for studying fundamentals associated with correlated electron dynamics in solid-state physics. Electron microscopy and powder X-ray diffraction reveal the near-perfect crystalline nanostructures. X-ray absorption spectroscopy studies show strong evidence for the localization of electron density and long-range crystal structure alignment of the nanowires. Single-nanowire electron transport measurements for the beta'-CuxV2O5 and the delta-KxV2O5 data shows novel temperature-induced reversible metal---insulator transition (MIT) near room temperature. The unprecedented magnitude (˜105) and discontinuous nature of the MIT suggests a mechanism closely associated with correlated electron motion. Additionally, the MIT can be induced by voltage ramping. The simultaneous temperature/voltage studies of single-nanowire transport support the existence of a critical threshold to overcome in order to facilitate instability in the insulating phase and transition to a metallic phase for the delta-KxV2O5 bronze. The MIT transition magnitudes of several

  8. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of...... two laser beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  9. Improvement of soybean variety 'Bragg' through mutagenesis

    International Nuclear Information System (INIS)

    Full text: Variety 'Bragg' (Jackson x D49-2491) of soybean (Glycine max. (L.) Merrill) was found to be high yielding and widely adaptable throughout India. Its yield stability, however, is unsatisfactory, probably due to low germinability necessitating use of higher seed rate. With the main objective to rectify this defect, mutagenesis involving chemical as well as physical mutagens was used. Dry seeds were treated with EMS or MMS (0.2, 0.4 and 0.6%), or gamma rays (15, 20 and 25 kR) with and without additional exposure to UV (2 hrs at 260 nm) in 1982. In M2, a mutation frequency ranging from 2.24 to 22.85% was observed. Screening of M2 and of subsequent generations yielded a broad spectrum of mutations. Some of the mutants are agronomically useful. Among them, mutant 'T214' resulting from 25 kR gamma rays + UV, was found to possess better germinability (+15%), earliness (5 days) and high yield during both rainy and post-rainy seasons in 1986 and 1987, when compared with the parent variety 'Bragg'. The mutant has smaller seed-size (TGW 125 g) than the parent (145 g). In soybean, large-seeded varieties were reported to have poorer seed germinability. Thus, the better germinability of the mutant might be related to its reduced seed size. Seeds of the mutant show a light brown colour of the hilum in contrast to the black hilum of 'Bragg'. In other characters the mutant is similar to 'Bragg'. The mutant should have potential for commercial cultivation in India. For confirmation of its agronomically superior performance, it is undergoing national evaluation in multilocational trials under 'All India Co-ordinated Research Project on Soybean (ICAR)'. The strain has been named 'NRC-2'. (author)

  10. Modifier action of the chlorophyllin of the mutagenesis induced by the ethyl-nitroso-urea (ENU) in germinal cells of Drosophila melanogaster; Accion modificadora de la clorofilina de la mutagenesis inducida por la etil-nitroso-urea (ENU) en celulas germinales de Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Morales N, I

    2006-07-01

    The cupro-sodium chlorophyllin (CCS) it is a soluble porphyrin in water that it includes in its it structures a copper atom instead of the magnesium that has the chlorophyll. Diverse experiments have demonstrated that it possesses a potent activity, reducing or inhibiting, the DNA damage caused by physical and chemical agents of direct action or insinuation. Most of the knowledge about their anti genotoxic activity has been obtained using somatic cells of different organisms, on the other hand it is known very little of their effect in germinal cells. At the moment in the Drosophila laboratory of the ININ it is investigating the protective action of the CCS in germinal cells, with these studies has been observed that its administration to females that were crossed with males irradiated with 20 Gy of gamma radiation, promotes the induction of lethal dominant in the embryonic and post-embryonic states causing a diminution in the viability egg-adult. With the test of lethal recessive bound to the sex one has evidence that it increases the basal frequency of lethal recessive and it doesn't reduce those induced by radiation. In contrast, with the present investigation when the CCS was administered to males that later on were treated with ethyl-nitroso-urea (ENU) caused a reduction of the lethal frequency in all the monitored cellular states, but only it was significant in the post-meiotic cells. On the contrary, when the CCS was administered to the female ones and then they crossed with males treaties with ENU, it was observed a tendency to increase the lethal ones in all the cellular types. With both protocols the CCS caused a diminution of the sterility. The fact that the CCS has antagonistic activities, it deserves special attention to investigate with different protocols and systems, the conditions in that this pigment can work as a true antimutagenic and/or anti carcinogenic before being able to him to propose as a chemopreventor. (Author)

  11. CD-REST: a system for extracting chemical-induced disease relation in literature.

    Science.gov (United States)

    Xu, Jun; Wu, Yonghui; Zhang, Yaoyun; Wang, Jingqi; Lee, Hee-Jin; Xu, Hua

    2016-01-01

    Mining chemical-induced disease relations embedded in the vast biomedical literature could facilitate a wide range of computational biomedical applications, such as pharmacovigilance. The BioCreative V organized a Chemical Disease Relation (CDR) Track regarding chemical-induced disease relation extraction from biomedical literature in 2015. We participated in all subtasks of this challenge. In this article, we present our participation system Chemical Disease Relation Extraction SysTem (CD-REST), an end-to-end system for extracting chemical-induced disease relations in biomedical literature. CD-REST consists of two main components: (1) a chemical and disease named entity recognition and normalization module, which employs the Conditional Random Fields algorithm for entity recognition and a Vector Space Model-based approach for normalization; and (2) a relation extraction module that classifies both sentence-level and document-level candidate drug-disease pairs by support vector machines. Our system achieved the best performance on the chemical-induced disease relation extraction subtask in the BioCreative V CDR Track, demonstrating the effectiveness of our proposed machine learning-based approaches for automatic extraction of chemical-induced disease relations in biomedical literature. The CD-REST system provides web services using HTTP POST request. The web services can be accessed fromhttp://clinicalnlptool.com/cdr The online CD-REST demonstration system is available athttp://clinicalnlptool.com/cdr/cdr.html. Database URL:http://clinicalnlptool.com/cdr;http://clinicalnlptool.com/cdr/cdr.html. PMID:27016700

  12. Is Weigle-mutagenesis in uv-irradiated bacteriophage lambda a myth

    International Nuclear Information System (INIS)

    It is argued that Weigle-mutagenesis, a higher mutation frequency observed when uv-irradiated are allowed to infect uv-irradiated bacteria, is often a trivial artifact rather than a manifestation of an error-prone bacterial DNA repair. It may occur due to the slower replication of irradiated phages which results in more replication taking place when a mutator polymerase activity has become induced and expressed than is the case with intact phages. The mutator polymerase activity is inducible in recA+ cells but it is not under the control of the lexA repressor. Weigle-mutagenesis under these conditions is untargeted and is not a good model for bacterial uv mutagenesis. 12 references

  13. Spectroscopic Observation of Chemical Interaction Between Impact-induced Vapor Clouds and the Ambient Atmosphere

    Science.gov (United States)

    Sugita, S.; Heineck, J. T.; Schultz, P. H.

    2000-01-01

    Chemical reactions within impact-induced vapor clouds were observed in laboratory experiments using a spectroscopic method. The results indicate that projectile-derived carbon-rich vapor reacts intensively with atmospheric nitrogen.

  14. Comparison of Skeletal Effects of Ovariectomy Versus Chemically Induced Ovarian Failure in Mice

    OpenAIRE

    Wright, Laura E; Christian, Patricia J.; Rivera, Zelieann; Van Alstine, William G.; L Funk, Janet; L Bouxsein, Mary; Hoyer, Patricia B.

    2008-01-01

    Bone loss associated with menopause leads to an increase in skeletal fragility and fracture risk. Relevant animal models can be useful for evaluating the impact of ovarian failure on bone loss. A chemically induced model of menopause in which mice gradually undergo ovarian failure yet retain residual ovarian tissue has been developed using the chemical 4-vinylcyclohexene diepoxide (VCD). This study was designed to compare skeletal effects of VCD-induced ovarian failure to those associated wit...

  15. Chemically-induced Mouse Lung Tumors: Applications to Human Health Assessments

    Science.gov (United States)

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbe...

  16. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research

    OpenAIRE

    Liu, Yewei; YIN Ting; Feng, Yuanbo; Cona, Marlein Miranda; Huang, Gang; Liu, Jianjun; Song, Shaoli; Jiang, Yansheng; Xia, Qian; Swinnen, Johannes V; Bormans, Guy; Himmelreich, Uwe; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    Compared with transplanted tumor models or genetically engineered cancer models, chemically induced primary malignancies in experimental animals can mimic the clinical cancer progress from the early stage on. Cancer caused by chemical carcinogens generally develops through three phases namely initiation, promotion and progression. Based on different mechanisms, chemical carcinogens can be divided into genotoxic and non-genotoxic ones, or complete and incomplete ones, usually with an organ-spe...

  17. Chlorine Dioxide Induced Multiple Chemical Sensitivity: MMPI Validity Problems.

    Science.gov (United States)

    Tentoni, Stuart C.

    This paper discusses Minnesota Multiphasic Personality Inventory (MMPI) data obtained from individuals exposed to chlorine dioxide in the workplace who developed Multiple Chemical Sensitivity Syndrome. The paper explores current research on chlorine dioxide exposed persons who were misdiagnosed on the basis of MMPI interpretations. Difficulties…

  18. IR Laser-induced Chemical Vapour Deposition of Polyselenocarbosilane Films

    Czech Academy of Sciences Publication Activity Database

    Santos, M.; Díaz, L.; Pola, Josef

    - : -, 2006, s. 1-2. [Reunión Nacional de Espectroscopia (RNE) y IV Congresso Ibérico de Espectroscopia (CIE) /20./. Ciúdad Real (ES), 10.09.2006-14.09.2006] Institutional research plan: CEZ:AV0Z40720504 Keywords : chemical vapour deposition Subject RIV: CH - Nuclear ; Quantum Chemistry

  19. 2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline-induced DNA adduct formation and mutagenesis in DNA repair-deficient Chinese hamster ovary cells expressing human cytochrome P4501A1 and rapid or slow acetylator N-acetyltransferase 2.

    Science.gov (United States)

    Bendaly, Jean; Zhao, Shuang; Neale, Jason R; Metry, Kristin J; Doll, Mark A; States, J Christopher; Pierce, William M; Hein, David W

    2007-07-01

    2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) is one of the most potent and abundant mutagens in the western diet. Bioactivation includes N-hydroxylation catalyzed by cytochrome P450s followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). In humans, NAT2*4 allele is associated with rapid acetylator phenotype, whereas NAT2*5B allele is associated with slow acetylator phenotype. We hypothesized that rapid acetylator phenotype predisposes humans to DNA damage and mutagenesis from MeIQx. Nucleotide excision repair-deficient Chinese hamster ovary cells were constructed by stable transfection of human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. CYP1A1 and NAT2 catalytic activities were undetectable in untransfected Chinese hamster ovary cell lines. CYP1A1 activity did not differ significantly (P > 0.05) among the CYP1A1-transfected cell lines. Cells transfected with NAT2*4 had 20-fold significantly higher levels of sulfamethazine N-acetyltransferase (P = 0.0001) and 6-fold higher levels of N-hydroxy-MeIQx O-acetyltransferase (P = 0.0093) catalytic activity than cells transfected with NAT2*5B. Only cells transfected with both CYP1A1 and NAT2*4 showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase mutagenesis following MeIQx treatment. Deoxyguanosine-C8-MeIQx was the primary DNA adduct formed and levels were dose dependent in each cell line and in the following order: untransfected < transfected with CYP1A1 < transfected with CYP1A1 and NAT2*5B < transfected with CYP1A1 and NAT2*4. MeIQx DNA adduct levels were significantly higher (P < 0.001) in CYP1A1/NAT2*4 than CYP1A1/NAT2*5B cells at all concentrations of MeIQx tested. MeIQx-induced DNA adduct levels correlated very highly (r2 = 0.88) with MeIQx-induced mutants. These results strongly support extrahepatic activation of MeIQx by CYP1A1 and a robust effect of human NAT2 genetic polymorphism

  20. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    Science.gov (United States)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2013-11-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  1. Chemical products induce resistance to Xanthomonas perforans in tomato

    Directory of Open Access Journals (Sweden)

    Adriana Terumi Itako

    2015-09-01

    Full Text Available The bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons. This study aimed to evaluate, under greenhouse conditions, the efficacy of leaf-spraying chemicals (acibenzolar-S-methyl (ASM (0.025 g.L−1, fluazinam (0.25 g.L−1, pyraclostrobin (0.08 g.L−1, pyraclostrobin + methiran (0.02 g.L−1 + 2.2 g.L−1, copper oxychloride (1.50 g.L−1, mancozeb + copper oxychloride (0.88 g.L−1 + 0.60 g.L−1, and oxytetracycline (0.40 g.L−1 on control of bacterial spot. Tomatoes Santa Clara and Gisele cultivars were pulverized 3 days before inoculation with Xanthomonas perforans. The production of enzymes associated with resistance induction (peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and protease was quantified from leaf samples collected 24 hours before and 24 hours after chemical spraying and at 1, 2, 4, 6, and 8 days after bacterial inoculation. All products tested controlled bacterial spot, but only ASM, pyraclostrobin, and pyraclostrobin + metiram increased the production of peroxidase in the leaves of the two tomato cultivars, and increased the production of polyphenol oxidase and β-1,3-glucanase in the Santa Clara cultivar.

  2. Photodynamic action of the methylene blue: mutagenesis and sinergism

    International Nuclear Information System (INIS)

    Two aspects of photodynamic therapy were studied: the associated mutagenesis and the interactions with physical agents, in order to increase its biological effects. The photodynamic action with methylene blue in the mutagenesis and sinergism is studied. (L.M.J.)

  3. Mutagenesis as a breeding method in lentil

    International Nuclear Information System (INIS)

    promising mutant line 96-4, characterized by the highest seed yield and seed protein content, was registered as an original cultivar under the name M-17-MM. Line 96-7 (Elitsa) has been entered in tests conducted by the State Testing Commission. Experimental mutagenesis is a promising alternative method for creating genetic variability for selection in lentil. As a result of treatment with physical and chemical mutagens, many changes occurred in morphological traits. New forms with good resistance to Fusarium and Anthracnose were obtained as well as forms with higher protein content. The mutants studied exceeded the parent cultivar in productivity by 25.5 to 56.5%. (author)

  4. Noise-induced multistability in chemical systems: Discrete versus continuum modeling.

    Science.gov (United States)

    Duncan, Andrew; Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek; Grima, Ramon

    2015-04-01

    The noisy dynamics of chemical systems is commonly studied using either the chemical master equation (CME) or the chemical Fokker-Planck equation (CFPE). The latter is a continuum approximation of the discrete CME approach. It has recently been shown that for a particular system, the CFPE captures noise-induced multistability predicted by the CME. This phenomenon involves the CME's marginal probability distribution changing from unimodal to multimodal as the system size decreases below a critical value. We here show that the CFPE does not always capture noise-induced multistability. In particular we find simple chemical systems for which the CME predicts noise-induced multistability, whereas the CFPE predicts monostability for all system sizes. PMID:25974443

  5. Experimental mutagenesis and its use

    International Nuclear Information System (INIS)

    Studies on the mutability of different hard wheat cultivars, using gamma rays, fast neutrons and chemical mutagens, showed greater mutability in cultivars of hybrid origin. New mutant hard wheat forms valuable for breeding were obtained - shorter growing season, lower nonlodging stem, better technological qualities, etc. that enrich hard wheat gene fund. High producing mutant lines with valuable economic qualities, outyielding the standard cultivar by 4-15%, were bred. (author)

  6. Chicken models of retroviral insertional mutagenesis

    Czech Academy of Sciences Publication Activity Database

    Pečenka, Vladimír; Karafiát, Vít; Dvořák, Michal

    New York: Springer, 2011 - (Dupuy, A.; Largaespada, D.), s. 77-112 ISBN 978-1-4419-7655-0 R&D Projects: GA ČR GA301/09/1727 Institutional research plan: CEZ:AV0Z50520514 Keywords : insertional mutagenesis * chicken model * MAV retroviruses Subject RIV: EB - Genetics ; Molecular Biology

  7. Seed mutagenesis in Portulaca grandiflora (Hook)

    International Nuclear Information System (INIS)

    Betalain pigments have been used as natural additives. Despite their importance, the biochemistry and genetics of betalain synthesis remain relatively undetermined. Portulaca grandiflora represents an ideal material for genetic analysis. In the present work, seed mutagenesis was examined with a view to enhance the chance of detection of new genetic markers in this species

  8. Chicken models of retroviral insertional mutagenesis

    Czech Academy of Sciences Publication Activity Database

    Pečenka, Vladimír; Karafiát, Vít; Dvořák, Michal

    New York : Springer, 2011 - (Dupuy, A.; Largaespada, D.), s. 77-112 ISBN 978-1-4419-7655-0 R&D Projects: GA ČR GA301/09/1727 Institutional research plan: CEZ:AV0Z50520514 Keywords : insertional mutagenesis * chicken model * MAV retroviruses Subject RIV: EB - Genetics ; Molecular Biology

  9. In vitro mutagenesis of chrysanthemum for breeding

    International Nuclear Information System (INIS)

    A protocol of in vitro mutagenesis for chrysanthemum was established. The 50% lethal dose (LD50) is about 5.0 kR for calli irradiation. Various growth, developmental, morphological, colour and abnormal shape mutations were identified in M1V4 generation. (author)

  10. Effect of umuC mutations on targeted and untargeted ultraviolet mutagenesis in bacteriophage lambda

    International Nuclear Information System (INIS)

    Mutagenesis of phage lambda towards clear-plaque (c+ → c) results in two classes of mutants that can be distinguished genetically and morphologically. Indirect mutagenesis, i.e. mutagenesis of unirradiated phage lambdac+ stimulated by the ultraviolet irradiation of the Escherichia coli host, results in mixed bursts (c/c+) of turbid wild-type and clear=plaque mutant phages. Pure bursts of lambdac mutants are induced by irradiation of the phage genome. Irradiation of both phages and host bacteria stimulates the production of the two classes of mutant clones. It is shown that three different mutant alleles of the E. coli umuC gene only prevent the appearance of pure bursts of clear-plaque mutants, while mixed bursts are produced at least as frequently in umuC mutants as in the umuC+ parent. (author)

  11. Tradescantia bioassays as monitoring systems for environmental mutagenesis: a review

    International Nuclear Information System (INIS)

    Since the early studies on the genetic effects of chemical and physical agents, species and clones of Tradescantia have been used as experimental subjects, by virtue of a series of favorable genetic characteristics. Bearing just six pairs (2n = 12) of large, easily observable chromosomes, cells from almost every part of the plant, from the root tips to the developing pollen tube, yield excellent material for cytogenetic studies. As a consequence of the intensive use of Tradescantia in genetic studies, a series of genetic characteristics have been found that offer opportunities for the detection of agents affecting the stability of the genome. At least five such characteristics have been selected as endpoints for the establishment of assays to evaluate mutagenesis. Three of these, root-tip mitosis, pollen-tube, and microspore mitosis are essentially chromosome aberration assays, wherein one observes and evaluates the visible damage in the chromosomes. A fourth, the stamen-hair mutation assay (Trad-SHM), is a point mutation mitotic assay based on the expression of a recessive gene for flower color in heterozygous plants. The fifth assay is a cytogenetic test based on the formation of micronuclei (Trad-MCN) that result from chromosome breakage in the meiotic pollen mother cells. This article examines the characteristics and fundamentals of the Trad-MCN and the Trad-SHM assays and reviews the results obtained to date with these systems in the assessment of environmental mutagenesis. (author)

  12. Chemical consequences of laser-induced breakdown in molecular gases

    Czech Academy of Sciences Publication Activity Database

    Babánková, Dagmar; Civiš, Svatopluk; Juha, Libor

    2006-01-01

    Roč. 30, č. 2-3 (2006), s. 75-88. ISSN 0079-6727 R&D Projects: GA ČR GA203/06/1278; GA MŠk LC510; GA MŠk LC528; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : laser spark * laser-induced dielectric breakdown * laser-plasma chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.500, year: 2006

  13. Spin Manipulation in Graphene by Chemically Induced Pseudospin Polarization

    Science.gov (United States)

    Van Tuan, Dinh; Roche, Stephan

    2016-03-01

    Spin manipulation is one of the most critical challenges to realize spin-based logic devices and spintronic circuits. Graphene has been heralded as an ideal material to achieve spin manipulation, but so far new paradigms and demonstrators are limited. Here we show that certain impurities such as fluorine adatoms, which locally break sublattice symmetry without the formation of strong magnetic moment, could result in a remarkable variability of spin transport characteristics. The impurity resonance level is found to be associated with a long-range sublattice pseudospin polarization, which by locally decoupling spin and pseudospin dynamics provokes a huge spin lifetime electron-hole asymmetry. In the dilute impurity limit, spin lifetimes could be tuned electrostatically from 100 ps to several nanoseconds, providing a protocol to chemically engineer an unprecedented spin device functionality.

  14. Altered Acer Rubrum Fecundity Induced By Chemical Climate Change

    Science.gov (United States)

    Deforest, J. L.; Peters, A.

    2014-12-01

    Red maple (Acer rubrum L.) is becoming the most dominating tree in North American eastern deciduous forests. Concurrently, human activities have altered the chemical climate of terrestrial ecosystems via acidic deposition, which increases the available of nitrogen (N), while decreasing phosphorus (P) availability. Once a minor forest component prior to European settlement, the abundance of red maple may be a symptom of the modern age. The current paradigm explaining red maple's rise to prominence concerns fire suppression that excludes competitors. However, this still does not explain why red maple is unique compared to other functionally similar trees. The objective of this study was to investigate the interactive influence of acid rain mitigation on the fecundity of red maple. Objectives were achieved by measuring flowering, seed production, germination, and growth from red maple on plots that have been experimentally manipulated to increase soil pH, P, or both in three unglaciated eastern deciduous hardwood forests. At least 50% of the red maple population is seed bearing in our control soils, however the median percent of seed-bearing trees declined to zero when mitigating soils from acidic deposition. This can be explained by the curious fact that red maple is polygamodioecious, or has labile sex-expression, in which an individual tree can change its sex-expression in response to the environment. Furthermore, seed-bearing trees in the mitigated plots grew less, produced less seeds, and germinated at lower rates than their counterparts in control soils. Our results provide evidence that chemical climate change could be the primary contributing factor accelerating the dominance of red maple in eastern North American forests. Our observations can provide a boarder conceptual framework for understanding how nutrient limitations can be applied beyond plant productivity towards explaining distribution changes in vegetation.

  15. Hygienic grooming is induced by contact chemicals in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Aya Yanagawa

    2014-07-01

    Full Text Available In social insects, grooming is considered as a behavioral defense against pathogen and parasite infections since it contributes to remove microbes from their cuticle. However, stimuli which trigger this behavior are not well characterized yet. We examined if activating contact chemoreceptive sensilla could trigger grooming activities in Drosophila melanogaster. We monitored the grooming responses of decapitated flies to compounds known to activate the immune system e.g. dead Escherichia coli (Ec and lipopolysaccharides (LPS, and to tastants such as quinine, sucrose, and salt. LPS, quinine and Ec were quite effective in triggering grooming movements when touching the distal border of the wings and the legs, while sucrose had no effect. Contact chemoreceptors are necessary and sufficient to elicit such responses, as grooming could not be elicited by LPS in poxn mutants deprived of external taste sensilla, and as grooming was elicited by light when a channel rhodopsin receptor was expressed in bitter-sensitive cells expressing Gr33a. Contact chemoreceptors distributed along the distal border of the wings respond to these tastants by an increased spiking activity, in response to quinine, Ec, LPS, sucrose and KCl. These results demonstrate for the first time that bacterial compounds trigger grooming activities in D. melanogaster, and indicate that contact chemoreceptors located on the wings participate to the detection of such chemicals.

  16. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. PMID:25407640

  17. Chemical Changes Induced by Irradiation in Meats and Meat Components

    International Nuclear Information System (INIS)

    The acceptability of meats preserved by irradiation has been hampered by the formation of an irradiation flavour and odour. This flavour and odour is believed to be due to the volatile chemical compounds produced by radiation impact on the protein and lipid molecules. The analysis of the volatile compounds has been accomplished, employing programmed cryogenic temperature gas chromatography for separation of the complex mixtures obtained, and rapid scanning mass spectrometry for identification of the individually separated components. Comprehensive analyses of the volatiles from irradiated ground beef, pork, mutton, lamb, and veal, as well as the volatile irradiation degradation products of several amino acids and proteins, animal fats, methyl esters of fatty acids, and triglycerides have been made. The results of the analysis of the irradiated component meat substances are compared with those obtained from the irradiation of meat itself, and of separate meat fractions, thus establishing the contribution of each fraction to the total. Mechanisms are postulated for the formation of the volatile components from each fraction and for interactions among intermediates from different fractions. (author)

  18. Increased capsaicin-induced secondary hyperalgesia in patients with multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger;

    2011-01-01

    the underlying cause of pathophysiological mechanisms triggering multiple chemical sensitivity (MCS) remains disputed.Recently, alterations in the central nervous system, for example,central sensitization, similar to various chronic pain disorders, have been suggested. Capsaicin is used in...... experimental pain models to provoke peripheral and central sensitization. In patients with symptoms elicited by odorous chemicals capsaicin-induced secondary hyperalgesia and temporal summation were assessed as markers for abnormal central nociceptive processing together with neurogenic inflammation (flare)....

  19. Identification of essential residues in 2',3'-cyclic nucleotide 3'-phosphodiesterase. Chemical modification and site-directed mutagenesis to investigate the role of cysteine and histidine residues in enzymatic activity.

    Science.gov (United States)

    Lee, J; Gravel, M; Gao, E; O'Neill, R C; Braun, P E

    2001-05-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP; EC ) catalyzes in vitro hydrolysis of 3'-phosphodiester bonds in 2',3'-cyclic nucleotides to produce 2'-nucleotides exclusively. N-terminal deletion mapping of the C-terminal two-thirds of recombinant rat CNP1 identified a region that possesses the catalytic domain, with further truncations abolishing activity. Proteolysis and kinetic analysis indicated that this domain forms a compact globular structure and contains all of the catalytically essential features. Subsequently, this catalytic fragment of CNP1 (CNP-CF) was used for chemical modification studies to identify amino acid residues essential for activity. 5,5'-Dithiobis-(2-nitrobenzoic acid) modification studies and kinetic analysis of cysteine CNP-CF mutants revealed the nonessential role of cysteines for enzymatic activity. On the other hand, modification studies with diethyl pyrocarbonate indicated that two histidines are essential for CNPase activity. Consequently, the only two conserved histidines, His-230 and His-309, were mutated to phenylalanine and leucine. All four histidine mutants had k(cat) values 1000-fold lower than wild-type CNP-CF, but K(m) values were similar. Circular dichroism studies demonstrated that the low catalytic activities of the histidine mutants were not due to gross changes in secondary structure. Taken together, these results demonstrate that both histidines assume critical roles for catalysis. PMID:11278504

  20. Chemically-induced Jahn-Teller ordering on manganite surfaces

    Science.gov (United States)

    Gai, Zheng; Lin, Wenzhi; Burton, J. D.; Tsymbal, Evgeny Y.; Fuchigami, K.; Shen, Jian; Snijders, P. C.; Ward, T. Z.; Jesse, Stephen; Kalinin, Sergei V.; Baddorf, A. P.

    2014-03-01

    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields, and establish their coupling to electronic properties. Here we demonstrate that measuring the sub 30 pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunneling microscopy (STM) allows the physical order parameter fields to be visualized in real space on the single atom level. Here, this local crystallographic analysis is applied to the in-situ grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistry-induced stabilization of ordered Jahn-Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level. Research was supported by MSED and CNMS, which are sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy.

  1. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  2. Hormonal Factors of Anti-Mutagenesis Regulation

    OpenAIRE

    RZA, Mekhtizadeh Emin

    2009-01-01

    The genetic activity of phytohormones (Phs) was studied. The investigation was conducted with 4 plants (Allium fistulosum, Lycopersicon esculentum, Triticum aestivum, and Gossypium hirsutum). The action of Phs on plant genetic processes was evaluated by chromosome aberration testing. It was observed that the exogenic Phs exerted a stabilizing effect on spontaneous plant mutagenesis. The use of Phs before and after the action of mutagenic factors contributed to an increase in the anti-mutation...

  3. Results and perspectives of mutagenesis applied to durum wheat

    International Nuclear Information System (INIS)

    A review is made of the main aspects and problems of mutagenesis applied to the breeding of durum wheat (Triticum turgidum ssp. durum). Features and type of action of the main physical and chemical mutagens are considered: a comparison is also made between the two classes of mutagens, on the basis of results so far achieved. Mentions is then made of methods of treatment; parts of plant which can be treated; growing of treated material in segregating generations: data to be successively recorded. Methods of estimating mutation frequency and the problem of arising chimerical tissues and its possible overcoming are also discussed. Examination is made of some special effects of mutagens, namely: induction of translocations; diploidization of polyploids; induction of haploids and aneuploids; genetic analysis of specific loci; induction of male sterility. Finally, results are reviewed concerning induction and utilization, either as varieties or in cross breeding programmes, of mutants for characters of agronomic interest. (Bagnara, D.)

  4. Preparation Of Polystyrene Nanoparticles Using Both GAMMA Radiation And Chemical Induced Emulsion Polymerization

    International Nuclear Information System (INIS)

    Polystyrene nanoparticles were synthesized by radiation-induced polymerization and chemical emulsion polymerization. Compared with the chemical emulsion polymerization, the radiation process easily prepared the polystyrene (PS) nanoparticles at room temperature and without the pollutant of chemical initiator. The effects of various polymerization parameters in both systems such as total dose for radiation polymerization, monomer concentration, sodium dodecyl sulfate (SDS) stabilizer content on the particle size and size distribution were systematically investigated. The diameter of a polymer particle and its distribution were measured on a Marvern Zetasizer. Monomer conversion was studied gravimetric ally and the structure of PS was analyzed by Differential Scanning Calorimeter (DSC) and Fourier Transform Infrared (FT-IR) Spectrophotometer

  5. Mutagenic efficiency of radiations and chemical mutagens in inducing viable mutations in rice

    International Nuclear Information System (INIS)

    Studies were undertaken to compare the effectiveness and efficiency of radiations (gamma rays and fast neutrons) and chemical mutagens (EMS and NMU) in inducing viable mutations in rice. Radiations were more effective than chemical mutagens, the most effective being fast neutrons. Mutagenic efficiency when estimated on the basis of lethality was higher for radiations but when based on sterility was higher for chemical mutagens. Fast neutrons, more effective than gamma rays, were less efficient. NMU was more effective but less efficient than EMS. (author)

  6. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    International Nuclear Information System (INIS)

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  7. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  8. Chemical chaperone 4-phenylbutyrate prevents endoplasmic reticulum stress induced by T17M rhodopsin

    OpenAIRE

    Jiang, Haibo; Xiong, Siqi; Xia, Xiaobo

    2014-01-01

    Background Rhodopsin mutations are associated with the autosomal dominant form of retinitis pigmentosa. T17M mutation in rhodopsin predisposes cells to endoplasmic reticulum (ER) stress and induces cell death. This study aimed to examine whether chemical chaperone 4-phenylbutyrate prevents ER stress induced by rhodopsin T17M. Results ARPE-19 cells were transfected with myc-tagged wild-type (WT) and T17M rhodopsin constructs. Turnover of WT and T17M rhodopsin was measured by cycloheximide chas...

  9. Physico-chemical study of the focused electron beam induced deposition process

    OpenAIRE

    Bret, Tristan; Hoffmann, Patrik

    2007-01-01

    The focused electron beam induced deposition process is a promising technique for nano and micro patterning. Electrons can be focused in sub-angström dimensions, which allows atomic-scale resolution imaging, analysis, and processing techniques. Before the process can be used in controlled applications, the precise nature of the deposition mechanism must be described and modelled. The aim of this research work is to present a physical and chemical description of the focused electron beam induc...

  10. Fast neutron mutagenesis in barley

    International Nuclear Information System (INIS)

    Full text: In order to conduct a deletion mutant analysis of the barley genome, seeds of cultivar 'Steptoe' were irradiated in 1992 with two doses of fast neutrons, 3.5 Gy and 4.0 Gy at the FAO/IAEA Seibersdorf SNIF facility by Dr. H. Brunner. M1 seeds were grown at Pullman, Washington, USA in the field. Approximately 500 M2 spikes were picked from each treatment and the remainder harvested in bulk. Mutation rates were determined on 1000 bulk M2 seedlings (chlorophyll deficient) and 500 M2 head rows (chlorophyll deficient and morphological) per treatment. Chlorophyll-deficient mutations were observed at a frequency of 8.1% and 9.4% on M1 spike basis and 2.2% and 2.6% on M2 seedling basis for the 3.5 and 4.0 Gy treatments, respectively. Total mutations observed in the field were 19.0% and 20.8% on M1 spike basis for the two treatments. Approximately 2,500 M2 seedlings were assayed for nitrate reductasedeficient mutants and 12,000 M2 seeds screened for waxy mutants. Although several putative mutants were identified, none have been confirmed to date. The mutation frequencies observed are similar for both treatments and appear to be approximately the same as what we have previously observed with γ-radiation treatments. The absence of nitrate reductase-deficient and waxy mutants is most likely due to the small population size screened. The morphological mutants recovered include dwarfs, sterile, necrotic, glossy, elongated outer glume, winter type and some very interesting floral mutants such as multi-ovary and branched inflorescence. Mutants affecting functions of genes for which cloned DNA segments are available will be sought in order to identify specific molecular changes that have been induced by fast neutron radiation. (author)

  11. Radiosensitivity and in vitro mutagenesis in African accessions of cassava, Manihot esculenta Crantz

    International Nuclear Information System (INIS)

    Induced mutagenesis holds promise for the subtle manipulation of traits of interest in crop plants. For a vegetatively propagated crop like cassava with severe constraints posed on its genetic improvement by inherent biological systems, the adoption of this methodology seems even the more appealing. However, there is scant information on protocols for inducing mutations in this crop. We present in this report the preliminary data on the determination of radiosensitivities for some African cassava accessions. The optimal doses of gamma ray irradiation varied from as low 12 Gy to 25 Gy. The probable implication of genotypic variation in response to gamma irradiation as was found in this study buttresses the need to carry out this larger scale study in order to avail cassava scientists intending to adopt induced mutagenesis of requisite information in this regard. A modified in vitro culture medium, half strength MS without growth hormones, was also shown to greatly enhance the growth of the plantlets without producing callus. (author)

  12. Topical application of silymarin reduces chemical-induced irritant contact dermatitis in BALB/c mice.

    Science.gov (United States)

    Han, Mi Hwa; Yoon, Won Kee; Lee, Hyunju; Han, Sang-Bae; Lee, Kiho; Park, Song-Kyu; Yang, Kyu-Hwan; Kim, Hwan Mook; Kang, Jong Soon

    2007-12-15

    Irritant contact dermatitis (ICD) is a non-allergic local inflammatory reaction of a skin and one of the most frequent occupational health problems. Silymarin has been clinically used in Europe for a long time to treat liver diseases and also known to have anti-cancer and anti-inflammatory activities. In the present study, we report that topical application of silymarin reduces chemical-induced ICD. Topical application of 2,4-dinitrochlorobenzene (DNCB) induced an ear swelling in BALB/c mice and silymarin suppressed DNCB-induced increase in ear thickness. Prophylactic and therapeutic application of silymarin showed similar effect on DNCB-induced increase in ear thickness and skin water content. In addition, phobor ester- or croton oil-induced increase in ear thickness was also inhibited by silymarin treatment. Silymarin also blocked neutrophil accumulation into the ear induced by these irritants. Further study demonstrated that DNCB-induced tumor necrosis factor-alpha (TNF-alpha) expression in mouse ear was suppressed by silymarin. DNCB-induced expression of KC, one of the main attractors of neutrophil in mice, and adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1) and E-selectin in mouse ear were also inhibited by silymarin. Moreover, TNF-alpha-induced expression of cytokines, such as TNF-alpha and IL-1beta, and a chemokine, IL-8, were suppressed by silymarin treatment in human keratinocyte cell line, HaCaT. Silymarin also blocked TNF-alpha- and DNCB-induced NF-kappaB activation in HaCaT. Collectively, these results demonstrate that topically applied silymarin inhibits chemical-induced ICD in mice and this might be mediated, at least in part, by blocking NF-kappaB activation and consequently inhibiting the expression of cytokines and adhesion molecules. PMID:17996674

  13. Mutations induction on the characters of wheat by physical and chemical mutagens

    International Nuclear Information System (INIS)

    Physical and chemical mutagenesis induces variability on genetical materials and after selectivity can be obtained mutants with improved and positive features. Induced mutations were produced from ionizing radiation sources and chemical agents. Throughout several years were obtained improved features materials, comparing with parents. In the wheat C 178 from physical mutagenesis, was obtained the line MF/3 by consecutive radiations: 15 kR and 10 kR. This line had a plant height of 25 % shorter than parent and better production features. After an experimental work and field tests in the years 1988-1996 the line MK3 4/3(LBZxL1376) treated wth dMS 0.004M present a new cultivar with these characteristics: protein content 11.6 %, yield 6 % higher than control and good agronomic type. (authors)

  14. Chemically-induced mouse lung tumors: applications to human health assessments [Poster 2014

    Science.gov (United States)

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the anal...

  15. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    DEFF Research Database (Denmark)

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal...

  16. A review on chemical effects in aqueous solution induced by plasma with glow discharge

    International Nuclear Information System (INIS)

    Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE

  17. Cleavage enhancement of specific chemical bonds in DNA-Cisplatin complexes induced by X-rays

    International Nuclear Information System (INIS)

    The chemical bond transformation of cisplatin-DNA complexes can be probed efficiently by XPS which provides a concomitant X-ray irradiation source as well. The presence to Pt could considerably increase formation of the SE induced by X-ray and that the further interaction of these LEE with DNA leads to the enhancement of bond cleavages.

  18. Biomarkers of DNA and cytogenetic damages induced by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    This paper presents and discusses results from the studies on various biomarkers of the DNA and cytogenetic damages induced by environmental chemicals or radiation. Results of the biomonitoring studies have shown that particularly in the condition of Poland, health hazard from radiation exposure is overestimated in contradistinction to the environmental hazard

  19. Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning.

    Science.gov (United States)

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J; Lu, Haidong; Lee, Jung-Woo; Zhou, Hua; Chang, Wansoo; Mahanthappa, Mahesh K; Tsymbal, Evgeny Y; Gruverman, Alexei; Eom, Chang-Beom

    2016-04-13

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectric phase in BTO tunnel junctions. We conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications. PMID:26901570

  20. Molecular processes as basis for plasmid-mediated bacterial UV-light resistance and mutagenesis

    International Nuclear Information System (INIS)

    The increase of UV-resistance and UV-induced mutagenesis by lambda 1 pint intmid as well as molecular-genetic mechanisms of plasmid participation in reparation and DNA replication and its degradation after UV-irradiation in plasmid cells on pKM101 plasmid model have been investigated. Data testifying to the necessity of intmid integration in chromosome as obligatory stage of intmid participation in increasing UV-resistance of bacterial cells are obtained. It has been found that intmid raises UV-resistance of cells and increases respectively the UV-induced reverants efficiency. On the basis of the experiment data the conclusion is drawn that the intmid capacity to raise UV-resistance and, possibly, mutagenesis is bound not only with its integration into chromosome but also with pol A+ chromosome replication by dependendent imtmid replication complex. It is shown that pKM101 plasmid ensures functioning in E coli cells of inducible, chloroamphenicol-resistant DNA replication, highly resistant to UV-light harmful effect and that the volume of excision reparation in E. coli cells carrying pKM101 plasmid is increased as compared with the volume of reparation in plasmid legs cells. The combination of the data obtained gives grounds to the authors to assume that inducible replication, inducible reparation of DNA and inducible decrease of DNA degradation determined by pKM101 plasmid may serve as recA+lexA+ basis dependent increase of UV-resistance and mutagenesis and that these processes provide the possibility of functioning of integrative replication mechanism of plasmid participation in ensuring UV-resistance and mutagenesis of plants

  1. Improvement of Biocatalysts for Industrial and Environmental Purposes by Saturation Mutagenesis

    Directory of Open Access Journals (Sweden)

    Francesca Valetti

    2013-10-01

    Full Text Available Laboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation mutagenesis. Here we will present and discuss this approach in its many facets, also tackling the issue of randomization, statistical evaluation of library completeness and throughput efficiency of screening methods. Successful recent applications covering different classes of enzymes will be presented referring to the literature and to research lines pursued in our group. The focus is put on saturation mutagenesis as a tool for designing novel biocatalysts specifically relevant to production of fine chemicals for improving bulk enzymes for industry and engineering technical enzymes involved in treatment of waste, detoxification and production of clean energy from renewable sources.

  2. Chemical prevention of light-induced degradation in amorphous silicon films

    Science.gov (United States)

    Kobayashi, Hikaru; Kasama, Yoshiko; Fujinaga, Tetsushi; Takahashi, Masao; Koinuma, Hideomi

    2002-07-01

    The most serious problem for hydrogenated amorphous silicon (a-Si:H) solar cells is light induced-degradation due to the formation of defect states. A simple room temperature chemical method, i.e. the immersion of a-Si:H in crown-ether-containing KCN solutions under a positive bias, has been found to prevent light-induced deterioration of a-Si:H films. The prevention is attributed to the selective reaction of cyanide ions (CN -) with defect and defect precursor states. The inclusion of crown-ether completely prevents contamination of a-Si:H by K + ions, and the applied positive bias enhances inward migration of CN - ions. The experimental results suggest that this chemical reaction is useful to block the light-induced degradation of a-Si:H solar cells and systems.

  3. Capsaicin-induced neurogenic inflammation in the skin in patients with symptoms induced by odorous chemicals

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger; Serup, Jørgen; Elberling, Jesper

    2011-01-01

    Intradermal injection of capsaicin induces the axonal release of neuropeptides, vasodilatation and flare, e.g. neurogenic inflammation. The spatial profile of neurogenic inflammation in the skin has been studied in various experimental models. Polarization spectroscopy imaging introduced recently...

  4. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kostaki, Vasiliki T.; Florou, Ageliki B. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece); Prodromidis, Mamas I., E-mail: mprodrom@cc.uoi.gr [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina (Greece)

    2011-10-01

    Highlights: > Electrochemical treatment endows analytical characteristics to SPEs. > A sensitive chemical sensor for uranium is described. > Performance is due to a synergy between electrochemical treatment and ink's solvents. > The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 {mu}A for 6 min in 0.1 M H{sub 2}SO{sub 4}) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H{sub 3}BO{sub 3}, pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10{sup -9} to 10{sup -7} M U(VI) was constructed. The 3{sigma} limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10{sup -9} M U(VI) and >12% (n = 5, 5 x 10{sup -8} M U(VI)), respectively. The effect of potential interferences was also examined.

  5. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets.

    OpenAIRE

    Goldsmith, H L; Bell, D N; Braovac, S; Steinberg, A.; McIntosh, F

    1995-01-01

    Both chemical and physical effects of red cells have been implicated in the spontaneous aggregation of platelets in sheared whole blood (WB). To determine whether the chemical effect is due to ADP leaking from the red cells, a previously described technique for measuring the concentration and size of single platelets and aggregates was used to study the shear-induced aggregation of platelets in WB flowing through 1.19-mm-diameter polyethylene tubing in the presence and absence of the ADP scav...

  6. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    Energy Technology Data Exchange (ETDEWEB)

    Vesper, M.J. (Univ. of Dayton, OH (USA)); Cross, J.W. (Sogetal, Inc., Hayward, CA (USA))

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  7. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation

    Science.gov (United States)

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Background Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. Methodology/Principal Findings A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant–pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. Conclusions/Significance The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of

  8. Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments.

    Science.gov (United States)

    Chusacultanachai, Sudsanguan; Yuthavong, Yongyuth

    2004-01-01

    The first important step toward a successful preparation of large and diverse DNA libraries with desired complexity is to select a suitable mutagenesis strategy. This chapter describes three different methods for random mutagenesis, the use of XL1-red cells, error-prone polymerase chain reaction (PCR), and degenerate oligonucleotides-Pfu (DOP). These mutagenesis strategies possess different benefits and pitfalls; thus, they are differentially useful for production of DNA libraries with different density and complexity. The use of XL1-red, an engineered Escherichia coli with DNA repair deficiency, is one of the simplest mutagenesis and requires no subcloning step. After plasmid encoding DNA of inter-est is transformed into the cells, the mutations are simply generated during each round of DNA replication. The mutation frequency of this method is reported to be 1 base change per 2000 nucleotides; however, it can be slightly increased by extending the culture period to allow the accumulation of more mutations. This strategy is suitable for generation of random mutations with low frequency in a large target DNA. Error-prone PCR is one of the most widely used random mutagenesis. During DNA amplification, misincorporation of nucleotides can be promoted by altering the nucleotide ratio and the concentration of divalent cations in the reaction. We discovered that, by adjusting template concentration, frequency of mutation could be controlled easily and a library with desired mutation rate could be obtained. Additionally, efficiency of subsequent cloning steps to insert the PCR product into plasmid DNA is also a key factor determining size and complexity of the libraries. DOP mutagenesis is a rapid and effective method for random mutagenesis of small DNA and peptides. This strategy uses two chemically synthesized degenerate oligonucleotides as primers. By controlling the positions and ratios of degenerate nucleotides used during oligonucleotide synthesis, it is possible to

  9. Mutagenesis of lambda phage by tif-expression or host-irradiation functions is largely independent of damage in the phage DNA

    International Nuclear Information System (INIS)

    The survival and mutagenesis of UV-irradiated phage lambda, as well as bacterial mutagenesis, are enhanced in tif mutants of Escherichia coli when these strains are grown at 430C (Castellazzi et al., 1972). This was interpreted on the basis of a hypothesis (the SOS hypothesis) according to which the UV-inducible phenomena connected with reactivation and mutagenesis of UV-irradiated bacteriophages (Weigle, 1953; Radman, 1975) are constitutively expressed in tif-bacteria at high temperature (Witkin, 1974). In unpublished experiments with phage T3 we found that the survival of UV-irradiated phage is also better at 430C than at 320C in tif + cells and this made us reexamine the significance and nature of tif expression and examine its effects on both unirradiated and UV-irradiated phage lambda. Our results indicate that tif-induced mutagenesis and possibly reactivation of UV-irradiated phage lambda should be reinterpreted. (orig./AJ)

  10. Management of Chimera and In Vitro Mutagenesis for Development of New Flower Color/Shape and Chlorophyll Variegated Mutants in Chrysanthemum

    International Nuclear Information System (INIS)

    Mutation breeding is an established method for crop improvement and has played a major role in the development of many new flower color/shape mutant varieties in ornamentals. The main bottleneck with vegetatively propagated plants is that the mutation appears as a chimera after treatment with physical and/or chemical mutagens. A small sector of a mutated branch or flower cannot be isolated using the available conventional propagation techniques. A novel technique has been standardized for the management of such chimeric tissues through direct shoot regeneration from chrysanthemum florets. This direct novel regeneration protocol has been successfully used not only for the isolation of chimeric mutant tissues developed through sports, but also to develop a series of new flower color/shape mutants through induced mutagenesis. Gamma radiation and tissue culture techniques have been optimized to regenerate plants from stem internodes, stem nodes, shoot tips and ray florets for in vitro management of chimera and for in vitro mutagenesis. Chimera isolation has practical importance not only for chrysanthemum but for breeding of other ornamentals also. The present technique will open up a new way for isolating new flower color/shape ornamental cultivars through retrieval of mutated cells. (author)

  11. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer

    Directory of Open Access Journals (Sweden)

    Kristine von Maltzan

    2016-02-01

    Full Text Available The Slug transcription factor plays an important role in ultraviolet radiation (UVR-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2 pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.

  12. PiggyBac Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice

    OpenAIRE

    Rad, Roland; Rad, Lena; Wang, Wei; Cadinanos, Juan; Vassiliou, George; Rice, Stephen; Campos, Lia S.; Yusa, Kosuke; Banerjee, Ruby; Li, Meng Amy; de la Rosa, Jorge; Strong, Alexander; Lu, Dong; Ellis, Peter; Conte, Nathalie

    2010-01-01

    Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon/transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed the unique qualities o...

  13. Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System

    OpenAIRE

    Andrew R. Bassett; Charlotte Tibbit; Chris P. Ponting; Ji-Long Liu

    2013-01-01

    Here, we present a simple and highly efficient method for generating and detecting mutations ofany gene in Drosophila melanogaster through theuse of the CRISPR/Cas9 system (clustered regularlyinterspaced palindromic repeats/CRISPR-associated). We show that injection of RNA into the Drosophila embryo can induce highly efficient mutagenesis of desired target genes in up to 88% of injected flies. These mutations can be transmitted through the germline to make stable lines. Our system provides at...

  14. Fabrication of highly ultramicroporous carbon nanofoams by SF6-catalyzed laser-induced chemical vapor deposition

    Science.gov (United States)

    Hattori, Yoshiyuki; Shuhara, Ai; Kondo, Atsushi; Utsumi, Shigenori; Tanaka, Hideki; Ohba, Tomonori; Kanoh, Hirofumi; Takahashi, Kunimitsu; Vallejos-Burgos, Fernando; Kaneko, Katsumi

    2016-05-01

    We have developed a laser-induced chemical vapor deposition (LCVD) method for preparing nanocarbons with the aid of SF6. This method would offer advantages for the production of aggregates of nanoscale foams (nanofoams) at high rates. Pyrolysis of the as-grown nanofoams induced the high surface area (1120 m2 g-1) and significantly enhanced the adsorption of supercritical H2 (16.6 mg g-1 at 77 K and 0.1 MPa). We also showed that the pyrolized nanofoams have highly ultramicroporous structures. The pyrolized nanofoams would be superior to highly microporous nanocarbons for the adsorption of supercritical gases.

  15. Chemical leucoderma induced by ear-ring stoppers made of polyvinyl chloride

    Directory of Open Access Journals (Sweden)

    Reena Sharma

    2012-01-01

    Full Text Available We report a case of chemical leucoderma (CL in a 15-year-old girl, who developed patterned depigmentation at the back of both ear lobules after contact with plastic ear-ring stoppers made of polyvinyl chloride (PVC after continuous use for 6-7 months. Patch test with Indian standard series and cosmetic series was negative after 48 h, but she refused patch testing for extended duration as the possibility of induced depigmentation at the test site was unacceptable to her. To the best of our knowledge, this is the first report of plastic ear-ring stopper induced CL.

  16. Targeted mutagenesis using CRISPR/Cas system in medaka

    Directory of Open Access Journals (Sweden)

    Satoshi Ansai

    2014-04-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas system-based RNA-guided endonuclease (RGEN has recently emerged as a simple and efficient tool for targeted genome editing. In this study, we showed successful targeted mutagenesis using RGENs in medaka, Oryzias latipes. Somatic and heritable mutations were induced with high efficiency at the targeted genomic sequence on the DJ-1 gene in embryos that had been injected with the single guide RNA (sgRNA transcribed by a T7 promoter and capped RNA encoding a Cas9 nuclease. The sgRNAs that were designed for the target genomic sequences without the 5′ end of GG required by the T7 promoter induced the targeted mutations. This suggests that the RGEN can target any sequence adjacent to an NGG protospacer adjacent motif (PAM sequence, which occurs once every 8 bp. The off-target alterations at 2 genomic loci harboring double mismatches in the 18-bp targeting sequences were induced in the RGEN-injected embryos. However, we also found that the off-target effects could be reduced by lower dosages of sgRNA. Taken together, our results suggest that CRISPR/Cas-mediated RGENs may be an efficient and flexible tool for genome editing in medaka.

  17. Ion transport through chemically induced pores in protein-free phospholipid membranes.

    Science.gov (United States)

    Gurtovenko, Andrey A; Anwar, Jamshed

    2007-11-29

    We address the possibility of being able to induce the trafficking of salt ions and other solutes across cell membranes without the use of specific protein-based transporters or pumps. On the basis of realistic atomic-scale molecular dynamics simulations, we demonstrate that transmembrane ionic leakage can be initiated by chemical means, in this instance through addition of dimethyl sulfoxide (DMSO), a solvent widely used in cell biology. Our results provide compelling evidence that the small amphiphilic solute DMSO is able to induce transient defects (water pores) in membranes and to promote a subsequent diffusive pore-mediated transport of salt ions. The findings are consistent with available experimental data and offer a molecular-level explanation for the experimentally observed activities of DMSO solvent as an efficient penetration enhancer and a cryoprotectant, as well as an analgesic. Our findings suggest that transient pore formation by chemical means could emerge as an important general principle for therapeutics. PMID:17983219

  18. Chemical changes induced on a TiO2 surface by electron bombardment

    International Nuclear Information System (INIS)

    We study the TiO2 (Ti4+) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO2 sample is characterized by the appearance of a lower Ti oxidation state, Ti2O3 (Ti3+), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form

  19. Chemical changes induced on a TiO{sub 2} surface by electron bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, L.I. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Passeggi, M.C.G. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina)], E-mail: mpggih@intec.unl.edu.ar; Ferron, J. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica, INTEC (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, (S3000AOM) Santa Fe (Argentina)

    2007-09-14

    We study the TiO{sub 2} (Ti{sup 4+}) chemical reduction induced by electron bombardment using Auger electron spectroscopy and factor analysis. We show that the electron irradiation of a TiO{sub 2} sample is characterized by the appearance of a lower Ti oxidation state, Ti{sub 2}O{sub 3} (Ti{sup 3+}), followed by a further deposition of carbon, which is present inevitably in the environment even under ultra-high vacuum conditions. The appearance of C over the surface is found to be a complex mechanism which affects the reduction process through passivation of the electron-induced oxygen desorption and formation of titanium carbide. For very high irradiation doses, we also found that the chemical changes on the surface are stopped due to the deposition of carbon in a graphitic form.

  20. Allergic skin inflammation induced by chemical sensitizers is controlled by the transcription factor Nrf2.

    Science.gov (United States)

    El Ali, Zeina; Gerbeix, Cédric; Hemon, Patrice; Esser, Philipp R; Martin, Stefan F; Pallardy, Marc; Kerdine-Römer, Saadia

    2013-07-01

    Allergic contact dermatitis (ACD) is induced by low-molecular weight electrophilic chemicals and metal ions. Chemical contact sensitizers trigger reactive oxygen species production and provoke electrophilic stress, leading to the accumulation of the transcription factor nuclear-related factor 2 (Nrf2) in innate immune cell types. The objective of this work was to identify the role of Nrf2 in the regulation of ACD. We used the local lymph node assay (LLNA) and the mouse ear swelling test (MEST) to study the role of Nrf2 in both the sensitization and elicitation phase in nrf2 knockout (nrf2(-/-)) and wild-type (nrf2(+/+)) mice. Five chemicals were used: two compounds known to react with cysteine residues, 2,4-dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA); one sensitizer known to exhibit mixed reactivity to cysteine and lysine residues, isophorone diisocyanate; and one reacting specifically with lysine residues, trimellitic anhydride and croton oil, a well-known irritant. In the MEST assay, DNCB (1 and 2%) induced a significant increase in ear thickness in nrf2(-/-) compared with nrf2(+/+) mice, suggesting a role for Nrf2 in the control of the inflammatory process. When DNCB was used at 0.25 and 0.5% or when mice were treated with CinA, inflammation was found only in nrf2(-/-) mice. In the LLNA, all chemical sensitizers induced an increase of lymphocyte proliferation in nrf2(-/-) compared with nrf2(+/+) mice for the same chemical concentration. These results reveal an important role for Nrf2 in controlling ACD and lymphocyte proliferation in response to sensitizers. PMID:23564646

  1. Selective light induced chemical vapour deposition of titanium dioxide thin films

    OpenAIRE

    Wagner, Estelle; Hoffmann, Patrik

    2005-01-01

    Light Induced Chemical Vapour Deposition (LICVD) of titanium dioxide thin films is studied in this work. It is shown that this technique enables to deposit locally and selectively a chosen crystalline phase with a precise controlled thickness at low substrate temperature, allowing even the use of polymer substrates. A home made LICVD reactor was set up, consisting of a main chamber in which the substrate was placed on a temperature controlled plate and could be irradiated perpendicularly thro...

  2. Selective light induced chemical vapour deposition of titanium dioxide thin films

    OpenAIRE

    Wagner, Estelle

    2003-01-01

    Light Induced Chemical Vapour Deposition (LICVD) of titanium dioxide thin films is studied in this work. It is shown that this technique enables to deposit locally and selectively a chosen crystalline phase with a precise controlled thickness at low substrate temperature, allowing even the use of polymer substrates. A home made LICVD reactor was set up, consisting of a main chamber in which the substrate was placed on a temperature controlled plate and could be irradiated perpendicularly thro...

  3. Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure

    OpenAIRE

    Croonen, Y.; Verspui, G.

    1993-01-01

    Laser induced Chemical Vapour Deposition of a wide variety of materials has been studied extensively at reduced pressures. However, for this technique to be economically and industrially applicable, processes at atmospheric pressure are preferred. A model study was made on the substrate-coating system molybdenum-titaniumnitride focussing on the feasibility to deposit TiN films locally at atmospheric pressure. The results of this study turned out to be very promising. A Nd-YAG laser beam ([MAT...

  4. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    OpenAIRE

    Tonni Grube Andersen; Nintemann, Sebastian J.; Magdalena Marek; Halkier, Barbara A.; Alexander Schulz; Meike Burow

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently ...

  5. CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura.

    Science.gov (United States)

    Bi, Hong-Lun; Xu, Jun; Tan, An-Jiang; Huang, Yong-Ping

    2016-06-01

    Custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system provide attractive genome editing tools for insect functional genetics. The targeted gene mutagenesis mediated by the CRISPR/Cas9 system has been achieved in several insect orders including Diptera, Lepidoptera and Coleoptera. However, little success has been reported in agricultural pests due to the lack of genomic information and embryonic microinjection techniques in these insect species. Here we report that the CRISPR/Cas9 system induced efficient gene mutagenesis in an important Lepidopteran pest Spodoptera litura. We targeted the S. litura Abdominal-A (Slabd-A) gene which is an important embryonic development gene and plays a significant role in determining the identities of the abdominal segments of insects. Direct injection of Cas9 messenger RNA and Slabd-A-specific single guide RNA (sgRNA) into S. litura embryos successfully induced the typical abd-A deficient phenotype, which shows anomalous segmentation and ectopic pigmentation during the larval stage. A polymerase chain reaction-based analysis revealed that the Cas9/sgRNA complex effectively induced a targeted mutagenesis in S. litura. These results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in Lepidopteran pests such as S. litura. PMID:27061764

  6. Radiation mutagenesis from molecular and genetic points of view

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-01-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and [gamma]-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by [gamma]-rays, [alpha]-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than [gamma]-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate [gamma]-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  7. Radiation mutagenesis from molecular and genetic points of view

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-02-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and {gamma}-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by {gamma}-rays, {alpha}-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than {gamma}-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate {gamma}-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  8. Radiation mutagenesis from molecular and genetic points of view

    International Nuclear Information System (INIS)

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and γ-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by γ-rays, α-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than γ-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate γ-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed

  9. Shock-induced solid-state chemical reactivity studies using time-resolved radiation pyrometry

    International Nuclear Information System (INIS)

    Time-resolved radiation pyrometry has been used to study materials which undergo solid-state chemical reactions due to shock loading. Shock-induced chemical reactivity in solids is fundamentally different than that in high explosives and other energetic materials because, if no volatiles are present, the reaction products end up in the condensed, rather than the vapor, state. Bulk property changes accompanying the solid-state reactions may therefore be too small to be observable with wave profile or shock-velocity measurements. However, some solid-state reactions, such as that between metallic nickel and aluminum, are exothermic enough to give rise to a measurable increase in temperature, so pyrometry can be used to detect the reactions. Unfortunately, these measurements are complicated by the large temperature increases generated by other sources. Possible mechanisms for generation of these high temperatures, and their effect on the chemical reaction, are suggested

  10. Blood chemical changes and renal histological alterations induced by gentamicin in rats

    Science.gov (United States)

    Alarifi, Saud; Al-Doaiss, Amin; Alkahtani, Saad; Al-Farraj, S.A.; Al-Eissa, Mohammed Saad; Al-Dahmash, B.; Al-Yahya, Hamad; Mubarak, Mohammed

    2011-01-01

    Gentamicin is an effective widely used antibiotic, but the risk of nephrotoxicity and oxidative damage limit its long-term use. Hence, the current study aims to elucidate such hazardous effects. To achieve the study aim male Wistar albino rats (Rattus norvegicus) were exposed to gentamicin to investigate the resultant blood chemical changes and renal histological alterations. In comparison with control rats, gentamicin produced outstanding tubular, glomerular and interstitial alterations that included degeneration, necrosis, cytolysis and cortical tubular desquamation together with mesangial hypercellularity, endothelial cell proliferation and blood capillary congestion. Compared with control animals significant blood chemical changes (P < 0.05) including free radicals, ALT, AST, ALP, serum creatinine and serum urea were recorded in gentamicin-injected animals. The findings revealed that exposure to gentamicin can induce significant histological alterations in the kidney as well as remarkable blood chemical changes that might indicate marked renal failure. PMID:23961168

  11. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  12. A crowdsourcing workflow for extracting chemical-induced disease relations from free text.

    Science.gov (United States)

    Li, Tong Shu; Bravo, Àlex; Furlong, Laura I; Good, Benjamin M; Su, Andrew I

    2016-01-01

    Relations between chemicals and diseases are one of the most queried biomedical interactions. Although expert manual curation is the standard method for extracting these relations from the literature, it is expensive and impractical to apply to large numbers of documents, and therefore alternative methods are required. We describe here a crowdsourcing workflow for extracting chemical-induced disease relations from free text as part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers on the CrowdFlower platform were shown each potential chemical-induced disease relation highlighted in the original source text and asked to make binary judgments about whether the text supported the relation. Worker responses were aggregated through voting, and relations receiving four or more votes were predicted as true. On the official evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505F-score (0.475 precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with named entity recognition. The total crowdsourcing cost was $1290.67 ($2.58 per abstract) and took a total of 7 h. A qualitative error analysis revealed that 46.66% of sampled errors were due to task limitations and gold standard errors, indicating that performance can still be improved. All code and results are publicly available athttps://github.com/SuLab/crowd_cid_relexDatabase URL:https://github.com/SuLab/crowd_cid_relex. PMID:27087308

  13. Efficient multi-site-directed mutagenesis directly from genomic template

    Indian Academy of Sciences (India)

    Fengtao Luo; Xiaolan Du; Tujun Weng; Xuan Wen; Junlan Huang; Lin Chen

    2012-12-01

    In this article, the traditional multi-site-directed mutagenesis method based on overlap extension PCR was improved specifically for complicated templates, such as genomic sequence or complementary DNA. This method was effectively applied for multi-site-directed mutagenesis directly from mouse genomic DNA, as well as for combination, deletion or insertion of DNA fragments.

  14. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  15. Cranberry Resistance to Dodder Parasitism: Induced Chemical Defenses and Behavior of a Parasitic Plant.

    Science.gov (United States)

    Tjiurutue, Muvari Connie; Sandler, Hilary A; Kersch-Becker, Monica F; Theis, Nina; Adler, Lynn A

    2016-02-01

    Parasitic plants are common in many ecosystems, where they can structure community interactions and cause major economic damage. For example, parasitic dodder (Cuscuta spp.) can cause up to 80-100 % yield loss in heavily infested cranberry (Vaccinium macrocarpon) patches. Despite their ecological and economic importance, remarkably little is known about how parasitic plants affect, or are affected by, host chemistry. To examine chemically-mediated interactions between dodder and its cranberry host, we conducted a greenhouse experiment asking whether: (1) dodder performance varies with cranberry cultivar; (2) cultivars differ in levels of phytohormones, volatiles, or phenolics, and whether such variation correlates with dodder parasitism; (3) dodder parasitism induced changes in phytohormones, volatiles, or phenolics, and whether the level of inducible response varied among cultivars. We used five cranberry cultivars to assess host attractiveness to dodder and dodder performance. Dodder performance did not differ across cultivars, but there were marginally significant differences in host attractiveness to dodder, with fewer dodder attaching to Early Black than to any other cultivar. Dodder parasitism induced higher levels of salicylic acid (SA) across cultivars. Cultivars differed in overall levels of flavonols and volatile profiles, but not phenolic acids or proanthocyanidins, and dodder attachment induced changes in several flavonols and volatiles. While cultivars differed slightly in resistance to dodder attachment, we did not find evidence of chemical defenses that mediate these interactions. However, induction of several defenses indicates that parasitism alters traits that could influence subsequent interactions with other species, thus shaping community dynamics. PMID:26905738

  16. [Comparative mutagenesis of human cells in vivo and in vitro]. Progress report, January 1-December 30, 1985

    International Nuclear Information System (INIS)

    Annual progress report is made on project focusing on the comparative mutagenesis of human cells in vivo and in vitro. The study employs the HGPRT gene to explore the changes in nucleotide sequence which has occurred in spontaneous mutations or mutations induced by MNNG or ICR191. Reports on the individual projects have been abstracted and indexed for the Energy Data Base. (DT)

  17. The mutagenesis and breeding of high productive strains of streptomyces jingyangensis '5406'

    International Nuclear Information System (INIS)

    The purpose of these experiments is to explore the mutagenesis rhythm and breed high productive strains of actinomycete '5406'. The single colony agar pieces of strain F358 were treated with fast neutron and 60Co-γ ray irradiation Two mutants have been selected from 20025 treated single colonies. The output of cytokinins from them is higher than from strain F358. The original strain 'Mu-Tan-al' rejuvenated by freezing was treated with several physical and chemical mutagens. The mutagenesis rhythm has been summed up tentatively. Eight mutants obtained from 93014 treated single colonies produced more '5406' antibiotics than that of strain 'Mu-Tan-al,. The effect of mutant 'N2-10-Ra3' was the best

  18. Photo-induced isomerization and chemical reaction dynamics in superfluid helium droplets

    Science.gov (United States)

    Merritt, Jeremy; Douberly, Gary; Miller, Roger

    2008-03-01

    Near threshold photo-induced isomerization and photo-induced chemical reactions have long been sough after as sensitive probes of the underlying potential energy surface. One of the most important questions asked is how the initially bright quantum state couples to the reaction coordinate, and thus relates to energy transfer in general. Helium droplets have now allowed us to stabilize entrance channel clusters behind very small reaction barriers such that vibrational excitation may result in reaction. Through two examples, namely the isomerization of the 2 binary complexes of HF-HCN Douberly et al. PCCP 2005, 7,463, and the induced reaction of the gallium-HCN complex Merritt et al. JPCA 2007, DOI:10.1021/jp074981e we will show how the branching ratios for reaction and predissociation can determined and the influence of the superfluid He solvent.

  19. Moisture-induced solid state instabilities in α-chymotrypsin and their reduction through chemical glycosylation

    Directory of Open Access Journals (Sweden)

    Solá Ricardo J

    2010-08-01

    Full Text Available Abstract Background Protein instability remains the main factor limiting the development of protein therapeutics. The fragile nature (structurally and chemically of proteins makes them susceptible to detrimental events during processing, storage, and delivery. To overcome this, proteins are often formulated in the solid-state which combines superior stability properties with reduced operational costs. Nevertheless, solid protein pharmaceuticals can also suffer from instability problems due to moisture sorption. Chemical protein glycosylation has evolved into an important tool to overcome several instability issues associated with proteins. Herein, we employed chemical glycosylation to stabilize a solid-state protein formulation against moisture-induced deterioration in the lyophilized state. Results First, we investigated the consequences of moisture sorption on the stability and structural conformation of the model enzyme α-chymotrypsin (α-CT under controlled humidity conditions. Results showed that α-CT aggregates and inactivates as a function of increased relative humidity (RH. Furthermore, α-CT loses its native secondary and tertiary structure rapidly at increasing RH. In addition, H/D exchange studies revealed that α-CT structural dynamics increased at increasing RH. The magnitude of the structural changes in tendency parallels the solid-state instability data (i.e., formation of buffer-insoluble aggregates, inactivation, and loss of native conformation upon reconstitution. To determine if these moisture-induced instability issues could be ameliorated by chemical glycosylation we proceeded to modify our model protein with chemically activated glycans of differing lengths (lactose and dextran (10 kDa. The various glycoconjugates showed a marked decrease in aggregation and an increase in residual activity after incubation. These stabilization effects were found to be independent of the glycan size. Conclusion Water sorption leads to

  20. Homemade Site Directed Mutagenesis of Whole Plasmids

    Science.gov (United States)

    Laible, Mark; Boonrod, Kajohn

    2009-01-01

    Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensive. Applying this protocol can reduce the total cost of a reaction to an eighth of what it costs using some of the commercial kits. In this video we also comment on critical steps during the process and give detailed instructions on how to design the mutagenic primers. PMID:19488024

  1. High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop.

    Directory of Open Access Journals (Sweden)

    Frances M Shapter

    Full Text Available Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae, was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited understanding of its genetic diversity and breeding system was available to aid the domestication process. Next generation sequencing of deeply-pooled target amplicons estimated allelic diversity of a selected base population at 14.3 SNP/Mb and identified novel, putatively mutation-induced polymorphisms at about 2.4 mutations/Mb. A 97% lethal dose (LD₉₇ of ethyl methanesulfonate treatment was applied without inducing sterility in this polyploid species. Forward and reverse genetic screens identified beneficial alleles for the domestication trait, seed-shattering. Unique phenotypes observed in the M2 population suggest the potential for rapid accumulation of beneficial traits without recourse to a traditional cross-breeding strategy. This approach may be applicable to other wild species, unlocking their potential as new food, fibre and fuel crops.

  2. Molecular mechanism of mutagenesis and interaction of incident ions with organism implanted by heavy ions beam

    International Nuclear Information System (INIS)

    As a new mutagenesis technique, low energy heavy ion implantation started in China for the study of interaction effect between incident ions and organism, and great achievements have been obtained in crop breeding. The article reviewed the main biological effects induced by heavy ion implantation, including physiology, biochemistry and genetics effects, on levels of cell and chromosome, gene expression, DNA methylation, DNA damage and reparation etc. It compared the differences in mutagenesis for organism by high energy and low energy ion implantation, as well as γ ray radiation. Future investigation topics were proposed, the emphasis of researches in future was pointed out, i.e., the molecular mechanism and effects of gene differential expression of organism treated by ion implantation. (authors)

  3. Study on mutagenesis of Signal grass (Brachiaria decumbens) by gamma irradiation

    International Nuclear Information System (INIS)

    Before starting experiments on induced mutation breeding of crops it is essential to carry out radiosensitivity test when determining the optimum doses of every plant genotype. Factors such as moisture content and oxsigen availability could influence mutagenesis process through ionizing radiation. Many methodologies could be used for determining the effect of radiation on seed of plants such as the 'Sandwich blotter technique' and 'Sand bed technique'. Different species have different sensitivity to mutagenic agents. Even varieties of the same species show variations in sensitivity to irradiation. Brachiaria clecumbens was found to be less sensitive to gamma radiation. At a dose of 800 Gy, the percentage reduction in growth was around 40%. Early result has shown that the optimum doses for mutagenesis was between 700 to 900 Gy

  4. Self-organized subwavelength ripple by nanosecond laser induced chemical vapor deposition

    International Nuclear Information System (INIS)

    Polymeric hydrogenated amorphous carbon (α-C:H) thin films were prepared by laser induced chemical vapor deposited method using a KrF excimer laser (λ = 248 nm, Ofwhm = 25 ns) with different laser intensities. Field emission scanning electron microscopy and atomic force microscopy were used to investigate the surface morphology of the films. It was found that the surface morphologies were affected by the laser intensity significantly. Self-organized subwavelength fine ripples perpendicular to the laser beam polarization with periodicities of about 200 nm were observed and a reasonable explanation was proposed for the formation of the ripples. Raman spectroscopy and Fourier transform infrared spectroscopy were used to study the structure of the α-C:H films. The results suggested that there was oxygen in the films, which came from the ambient contamination and the incomposited impurities during and after deposition. The relationships between the composition and chemical bond types were discussed in detail. - Highlights: • Polymeric α-C:H thin films prepared by laser induced CVD with the laser wavelength of 248 nm • Fine ripples with periodicities of about 200 nm observed on the surface of the films • Composition and chemical bonds studied by Raman and Fourier transform infrared spectroscopy

  5. Histopathological image analysis of chemical-induced hepatocellular hypertrophy in mice.

    Science.gov (United States)

    Asaoka, Yoshiji; Togashi, Yuko; Mutsuga, Mayu; Imura, Naoko; Miyoshi, Tomoya; Miyamoto, Yohei

    2016-04-01

    Chemical-induced hepatocellular hypertrophy is frequently observed in rodents, and is mostly caused by the induction of phase I and phase II drug metabolic enzymes and peroxisomal lipid metabolic enzymes. Liver weight is a sensitive and commonly used marker for detecting hepatocellular hypertrophy, but is also increased by a number of other factors. Histopathological observations subjectively detect changes such as hepatocellular hypertrophy based on the size of a hepatocyte. Therefore, quantitative microscopic observations are required to evaluate histopathological alterations objectively. In the present study, we developed a novel quantitative method for an image analysis of hepatocellular hypertrophy using liver sections stained with hematoxylin and eosin, and demonstrated its usefulness for evaluating hepatocellular hypertrophy induced by phenobarbital (a phase I and phase II enzyme inducer) and clofibrate (a peroxisomal enzyme inducer) in mice. The algorithm of this imaging analysis was designed to recognize an individual hepatocyte through a combination of pixel-based and object-based analyses. Hepatocellular nuclei and the surrounding non-hepatocellular cells were recognized by the pixel-based analysis, while the areas of the recognized hepatocellular nuclei were then expanded until they ran against their expanding neighboring hepatocytes and surrounding non-hepatocellular cells by the object-based analysis. The expanded area of each hepatocellular nucleus was regarded as the size of an individual hepatocyte. The results of this imaging analysis showed that changes in the sizes of hepatocytes corresponded with histopathological observations in phenobarbital and clofibrate-treated mice, and revealed a correlation between hepatocyte size and liver weight. In conclusion, our novel image analysis method is very useful for quantitative evaluations of chemical-induced hepatocellular hypertrophy. PMID:26776450

  6. Chemical cues from kingsnakes do not cause inducible defenses in house mice

    Institute of Scientific and Technical Information of China (English)

    W.Wallace STARKE III; Michael H.FERKIN

    2012-01-01

    Many rodents exhibit inducible defenses when exposed to chemical cues from mammalian predators.These responses may include delays in sexual maturation,smaller adult body size and decreases in litter size and pup weight.We exposed the hybrid juvenile offspring of field-caught and lab-descended house mice Mus musculus to the chemical cues of mouse-fed or chick-fed kingsnakes,Lampropeltis getula,for 20 days after weaning,to examine the effects of ophidian predator cues on prey development.We hypothesized that these cues would elicit inducible defenses such as alteration of growth rates,and/or the timing of reproductive development in mice.Once mature,the reproductive effort of the mice might also be impacted by producing smaller litter sizes or lighter pups or not reproducing at all.We found no effect of kingsnake cues on any of the measures.These findings support the hypothesis that inducible defenses may have evolved as a strategy to deal with specific predators.

  7. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    Science.gov (United States)

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. PMID:27130213

  8. Chemical ordering in magnetic FePd/Pd(001) epitaxial thin films induced by annealing

    International Nuclear Information System (INIS)

    Chemically disordered FePd epitaxial layers are grown at room temperature by molecular beam epitaxy on a Pd(001) buffer layer and then annealed in order to induce the chemically ordered L10 (AuCu I) structure. Contrary to what is observed in the case of ordering during growth above room temperature, the ordered structure appears here with the three possible variants of the L10 phase. The ratio of the three different variant volumes is set by the residual epitaxial strain in the layer before annealing. It thus explains that for long annealing times, the long-range order parameter associated with the L10 variant with c along the (100) growth direction saturates at a value close to 0.65, and never reaches unity. Magnetic consequences of the ordering are studied

  9. Chemical effects induced by low-energy particle beams in fluorozirconate glasses

    International Nuclear Information System (INIS)

    The modification of the chemical structure of fluorozirconate glasses (ZBLAN) with Ar ion and atom beams of low energy (2-10keV) has been studied in comparison with the damage produced in the starting polycrystalline ZrF4 and BaF2. A variety of reduced chemical states of Zr is produced in ZrF4 as well as in ZBLAN glasses, including metallic Zr0State. A strong enhancement of the amount of the metallic Zr formed under irradiation is observed in ZBLAN, while it is present only as trace in the irradiated pure ZrF4 samples. The reported effect is tentatively attributed to the presence of Ba ions in the glass network which could prompt the self-trapping of radiation-induced defects at the Zr sites, involving their progressive reduction

  10. Fluctuation Induced Structure in Chemical Reaction with Small Number of Molecules

    Science.gov (United States)

    Suzuki, Yasuhiro

    We investigate the behaviors of chemical reactions of the Lotka-Volterra model with small number of molecules; hence the occurrence of random fluctuations modifies the deterministic behavior and the law of mass action is replaced by a stochastic model. We model it by using Abstract Rewriting System on Multisets, ARMS; ARMS is a stochastic method of simulating chemical reactions and it is based on the reaction rate equation. We confirmed that the magnitude of fluctuations on periodicity of oscillations becomes large, as the number of involved molecules is getting smaller; and these fluctuations induce another structure, which have not observed in the reactions with large number of molecules. We show that the underling mechanism through investigating the coarse grained phase space of ARMS.

  11. Molecular mechanisms of mutagenesis and DNA repair

    International Nuclear Information System (INIS)

    Most organisms including man have evolved ways to handle damage produce in DNA by environmental agents including chemical mutagens and carcinogens. The process of repair of some types of damage is highly regulated in a tissue and cell line-specific fashion and varies from organism to organism. Thus, the ultimate biological effects of the lesions depend not only on the extent of their formation but on the efficiency of their removal as well. The research objectives of this laboratory are to elucidate the mechanism and regulation of repair of damage in DNA produced by simple alkylating mutagens and carcinogens, as well as the mutagenic changes in DNA produced as a result of persistence of unrepaired lesions. Specifically, the current topics of the authors research are (1) to elucidate the enzymatic mechanism of the human repair enzyme, DNA-O6-methylguanine methyltransferase, and to determine the molecular mechanism of its regulation and (2) to study the nature of mutations induced by the presence of alkylated bases and ionizing radiation-damaged bases in DNA using shuttle plasmids that replicate both in human cells and E. coli. The following report on last year's experiments bear upon the first objective

  12. Changes in ultraweak luminescence from living fish induced by three chemicals

    International Nuclear Information System (INIS)

    Ultraweak luminescence is a ubiquitous phenomenon in biological systems, which differs from bioluminescence of luciferin-luciferase. This low-intensity emission is inherently associated with the following important process such as oxidative metabolism, cell division, carcinogenesis, photosynthesis, and cell death. In general, ultraweak luminescence may be classified as two kinds, namely spontaneous and induced. Zebra fish is a recommended specimen for toxicity and toxicological test. The purpose of this, the changes before and after the treatment with three chemicals: uranium oxides, sodium azide or cyclophosphamide and their correlations between the dose and effect

  13. Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma

    OpenAIRE

    Steven Haenen; Jeroen A.J. Vanoirbeek; Vanessa De Vooght; Liliane Schoofs; Benoit Nemery; Elke Clynen; Hoet, Peter H. M.

    2015-01-01

    Introduction and Aim The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the “sensitized signature” of B lymphocytes comparing TDI-sensitized mice with control mi...

  14. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    Tonneau, D.; Auvert, G.; Pauleau, Y.

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  15. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  16. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N2 and H2O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  17. Hazard classification of chemicals inducing haemolytic anaemia: An EU regulatory perspective

    DEFF Research Database (Denmark)

    Muller, A.; Jacobsen, Helene; Healy, E.;

    2006-01-01

    such effects is then performed and correlated with the general classification criteria used for this endpoint. This review intends to give guidance when carrying out an assessment for classification for this endpoint and to allow for better transparency in the decision-making process on when to......Haemolytic anaemia is often induced following prolonged exposure to chemical substances. Currently, under EU Council Directive 67/548/EEC, substances which induce such effects are classified as dangerous and assigned the risk phrase R48 'Danger of serious damage to health by prolonged exposure......! Whilst the general classification criteria for this endpoint are outlined in Annex VI of this Directive, they do not provide specific information to assess haemolytic anaemia. This review produced by the EU Working Group on Haemolytic Anaemia provides a toxicological assessment of haemolytic anaemia and...

  18. Induction of Pectinase Hyper Production by Multistep Mutagenesis Using a Fungal Isolate--Aspergillus flavipes.

    Science.gov (United States)

    Akbar, Sabika; Prasuna, R Gyana; Khanam, Rasheeda

    2014-04-01

    Aspergillus flavipes, a slow growing pectinase producing ascomycete, was isolated from soil identified and characterised in the previously done preliminary studies. Optimisation studies revealed that Citrus peel--groundnut oil cake [CG] production media is the best media for production of high levels of pectinase up to 39 U/ml using wild strain of A. flavipes. Strain improvement of this isolated strain for enhancement of pectinase production using multistep mutagenesis procedure is the endeavour of this project. For this, the wild strain of A. flavipes was treated with both physical (UV irradiation) and chemical [Colchicine, Ethidium bromide, H2O2] mutagens to obtain Ist generation mutants. The obtained mutants were assayed and differentiated basing on pectinase productivity. The better pectinase producing strains were further subjected to multistep mutagenesis to attain stability in mutants. The goal of this project was achieved by obtaining the best pectinase secreting mutant, UV80 of 45 U/ml compared to wild strain and sister mutants. This fact was confirmed by quantitatively analysing 3rd generation mutants obtained after multistep mutagenesis. PMID:26563068

  19. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    2014-09-01

    Full Text Available Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.

  20. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents.

    Science.gov (United States)

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W; Battelli, Lori A; Kashon, Michael L; Ma, Qiang

    2016-02-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genome-wide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  1. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents

    Science.gov (United States)

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W.; Battelli, Lori A.; Kashon, Michael L.

    2016-01-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genomewide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  2. Aqueous suspension of anise "Pimpinella anisum" protects rats against chemically induced gastric ulcers

    Institute of Scientific and Technical Information of China (English)

    Ibrahim A Al Mofleh; Abdulqader A Alhaider; Jaber S Mossa; Mohammed O Al-Soohaibani; Syed Rafatullah

    2007-01-01

    AIM:To substantiate the claims of Unani and Arabian traditional medicine practitioners on the gastroprotective potential effect of a popular spice anise,"Pimpinella anisum L." on experimentally-induced gastric ulceration and secretion in rats.METHODS:Acute gastric ulceration in rats was produced by various noxious chemicals including 80% ethanol,0.2 mol/L NaOH,25% NaCl and indomethacin.Anti-secretory studies were undertaken using pylorusligated Shay rat technique.Levels of gastric non-protein sulfhydryls(NP-SH)and wall mucus were estimated and gastric tissue was also examined histologically.Anise aqueous suspension was used in two doses(250 and 500 mg/kg body weight)in all experiments.RESULTS:Anise significantly inhibited gastric mucosal damage induced by necrotizing agents and indomethacin.The anti-ulcer effect was further confirmed histologically.In pylorus-ligated Shay rats,anise suspension significantly reduced the basal gastric acid secretion,acidity and completely inhibited the rumenal ulceration.On the other hand,the suspension significantly replenished ethanol-induced depleted levels of gastric mucosal NP-SH and gastric wall mucus concentration.CONCLUSION:Anise aqueous suspension possesses significant cytoprotective and anti-ulcer activities against experimentally-induced gastric lesions.The anti-ulcer effect of anise is possibly prostaglandin-mediated and/or through its anti-secretory and antioxidative properties.

  3. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  4. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    International Nuclear Information System (INIS)

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  5. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Takashi Nakanishi

    Full Text Available The water flea Daphnia magna has been used as an animal model in ecology, evolution, and environmental sciences. Thanks to the recent progress in Daphnia genomics, genetic information such as the draft genome sequence and expressed sequence tags (ESTs is now available. To investigate the relationship between phenotypes and the available genetic information about Daphnia, some gene manipulation methods have been developed. However, a technique to induce targeted mutagenesis into Daphnia genome remains elusive. To overcome this problem, we focused on an emerging genome editing technique mediated by the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas system to introduce genomic mutations. In this study, we targeted a functionally conserved regulator of eye development, the eyeless gene in D. magna. When we injected Cas9 mRNAs and eyeless-targeting guide RNAs into eggs, 18-47% of the survived juveniles exhibited abnormal eye morphology. After maturation, up to 8.2% of the adults produced progenies with deformed eyes, which carried mutations in the eyeless loci. These results showed that CRISPR/Cas system could introduce heritable mutations into the endogenous eyeless gene in D. magna. This is the first report of a targeted gene knockout technique in Daphnia and will be useful in uncovering Daphnia gene functions.

  6. In vitro mutagenesis for the improvement of Josapine pineapple

    International Nuclear Information System (INIS)

    Pineapple is the most important fruit in terms of revenue earner in Malaysia. There are about 10,000 ha cultivated with this fruit and half of this is owned by estates and planted for the canning industry. The export of canned pineapple is about 2 million standard cases annually valued at RM 60 million, while the export of fresh pineapple is about 40,000 tonnes worth about RM 10 million. The industry for canning is however, an ailing industry with production on the decline since the 70s. Somaclonal variations and induced mutation using irradiation in breeding are least invasive in changes to genetic make-up of an established variety and will be useful for improving the pineapple varieties. The use of tissue culture to generate somaclones with minute genetic changes that do not damage the overall varietal identity would be the most suitable tool to improve the variety. Protocols for the production of tissue culture plantlets of pineapple using bioreactor technology has been developed and proved to be much more efficient and productive compared to conventional method. In vitro mutagenesis using adventitious buds had produced new plants with smooth leaves, vigorous growth and ornamental-like characters. A total of 30,000 plants derived from tissue culture will be planted and screened in the field for the improvement of Josapine pineapple against bacterial heart rot disease and multiple crown. (Author)

  7. Protein engineering: single or multiple site-directed mutagenesis.

    Science.gov (United States)

    Hsieh, Pei-Chung; Vaisvila, Romualdas

    2013-01-01

    Site-directed mutagenesis techniques are invaluable tools in molecular biology to study the structural and functional properties of a protein. To expedite the time required and simplify methods for mutagenesis, we recommend two protocols in this chapter. The first method for single site-directed mutagenesis, which includes point mutations, insertions, or deletions, can be achieved by an inverse PCR strategy with mutagenic primers and the high-fidelity Phusion(®) DNA Polymerase to introduce a site-directed mutation with exceptional efficiency. The second method is for engineering multiple mutations into a gene of interest. This can be completed in one step by PCR with mutagenic primers and by assembling all mutagenized PCR products using the Gibson Assembly™ Master Mix. This method allows multiple nucleotides to be changed simultaneously, which not only saves time but also reagents compared to traditional methods of mutagenesis. PMID:23423897

  8. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  9. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART for genetic screens in mice.

    Directory of Open Access Journals (Sweden)

    Sean F Landrette

    Full Text Available Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease.

  10. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART) for genetic screens in mice.

    Science.gov (United States)

    Landrette, Sean F; Cornett, Jonathan C; Ni, Thomas K; Bosenberg, Marcus W; Xu, Tian

    2011-01-01

    Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB) transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease. PMID:22039523

  11. A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression.

    Science.gov (United States)

    Watson, Gerald B; Chouinard, Scott W; Cook, Kevin R; Geng, Chaoxian; Gifford, Jim M; Gustafson, Gary D; Hasler, James M; Larrinua, Ignacio M; Letherer, Ted J; Mitchell, Jon C; Pak, William L; Salgado, Vincent L; Sparks, Thomas C; Stilwell, Geoff E

    2010-05-01

    Strains of Drosophila melanogaster with resistance to the insecticides spinosyn A, spinosad, and spinetoram were produced by chemical mutagenesis. These spinosyn-resistant strains were not cross-resistant to other insecticides. The two strains that were initially characterized were subsequently found to have mutations in the gene encoding the nicotinic acetylcholine receptor (nAChR) subunit Dalpha6. Subsequently, additional spinosyn-resistant alleles were generated by chemical mutagenesis and were also found to have mutations in the gene encoding Dalpha6, providing convincing evidence that Dalpha6 is a target site for the spinosyns in D. melanogaster. Although a spinosyn-sensitive receptor could not be generated in Xenopus laevis oocytes simply by expressing Dalpha6 alone, co-expression of Dalpha6 with an additional nAChR subunit, Dalpha5, and the chaperone protein ric-3 resulted in an acetylcholine- and spinosyn-sensitive receptor with the pharmacological properties anticipated for a native nAChR. PMID:19944756

  12. The relationship between chemically-induced meiotic delay and aneuploidy in mouse oocytes and zygotes

    Energy Technology Data Exchange (ETDEWEB)

    Mailhes, J.B.; Marchetti, F. [Louisiana State Univ. Medical Center, Shreveport, LA (United States)

    1993-12-31

    Aneuploidy is a relatively common genetic disorder that results in human morbidity and mortality. Approximately 30% of embryonic and fetal deaths and 3.45 per thousand livebirths are associated with an abnormal number of chromosomes. Unfortunately, very little is known about the etiology and mechanism of chromosome missegregation. This situation dictates that considerable research be directed toward understanding the causes of aneuploidy. Although several hypotheses have been advanced for the etiology of aneuploidy, there still exists a paucity of information about the direct cuases and mechanisms of aneuploidy production. Without such specific knowledge, there is little hope of reducing the incidence of aneuploidy in humans. Some progress has been made. We now know that various chemicals can induce aneuploidy by interacting with certain cellular organelles, especially components of the spindle apparatus. These results have been demonstrated in various organisms and cell types both in vivo and in vitro. Since the ultimate objective of aneuploidy research is to obtain information that can be used to reduce the aneuploidy burden in humans, we have concentrated our research efforts on studying chemically-induced aneuploidy in mammalian germ cells and zygotes.

  13. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization.

    Science.gov (United States)

    Andersen, Tonni Grube; Nintemann, Sebastian J; Marek, Magdalena; Halkier, Barbara A; Schulz, Alexander; Burow, Meike

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true- from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased sensitivity and renders analysis of weak or transient interactions difficult to perform. In this work, we describe the development of reporters that can be chemically induced to dimerize independently of the investigated interactions and thus alleviate these issues. We incorporated our reporters into the widely used split ubiquitin-, bimolecular fluorescence complementation (BiFC)- and Förster resonance energy transfer (FRET)- based methods and investigated different protein-protein interactions in yeast and plants. We demonstrate the functionality of this concept by the analysis of weakly interacting proteins from specialized metabolism in the model plant Arabidopsis thaliana. Our results illustrate that chemically induced dimerization can function as a built-in control for split-based systems that is easily implemented and allows for direct evaluation of functionality. PMID:27282591

  14. Pressure-induced phase and chemical transformations of lithium peroxide (Li2O2).

    Science.gov (United States)

    Dunuwille, Mihindra; Kim, Minseob; Yoo, Choong-Shik

    2016-08-28

    We present the pressure-induced phase/chemical changes of lithium peroxide (Li2O2) to 63 GPa using diamond anvil cells, confocal micro-Raman spectroscopy, and synchrotron x-ray diffraction. The Raman data show the emergence of the major vibrational peaks associated with O2 above 30 GPa, indicating the subsequent pressure-induced reversible chemical decomposition (disassociation) in dense Li2O2. The x-ray diffraction data of Li2O2, on the other hand, show no dramatic structural change but remain well within a P63/mmc structure to 63 GPa. Nevertheless, the Rietveld refinement indicates a subtle change in the structural order parameter z of the oxygen position O (13, 23, z) at around 35 GPa, which can be considered as a second-order, isostructural phase transition. The nearest oxygen-oxygen distance collapses from 1.56 Å at ambient condition to 1.48 Å at 63 GPa, resulting in a more ionic character of this layered crystal lattice, 3Li(+)+(LiO2)3 (3-). This structural change in turn advocates that Li2O2 decomposes to 2Li and O2, further augmented by the densification in specific molar volumes. PMID:27586935

  15. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice.

    Science.gov (United States)

    Rad, Roland; Rad, Lena; Wang, Wei; Cadinanos, Juan; Vassiliou, George; Rice, Stephen; Campos, Lia S; Yusa, Kosuke; Banerjee, Ruby; Li, Meng Amy; de la Rosa, Jorge; Strong, Alexander; Lu, Dong; Ellis, Peter; Conte, Nathalie; Yang, Fang Tang; Liu, Pentao; Bradley, Allan

    2010-11-19

    Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability. PMID:20947725

  16. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis.

    Directory of Open Access Journals (Sweden)

    David Quinto-Alemany

    Full Text Available Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP, giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC, 600 (C. albicans -5-FC or 1000 (S. cerevisiae--CSP fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.

  17. Generating Novel Allelic Variation Through Activator Insertional Mutagenesis in Maize

    OpenAIRE

    Bai, Ling; Singh, Manjit; Pitt, Lauren; Sweeney, Meredith; Brutnell, Thomas P.

    2007-01-01

    The maize transposable element Activator (Ac) has been exploited as an insertional mutagen to disrupt, clone, and characterize genes in a number of plant species. To develop an Ac-based mutagenesis platform for maize, a large-scale mutagenesis was conducted targeting the pink scutellum1 locus. We selected 1092 Ac transposition events from a closely linked donor Ac, resulting in the recovery of 17 novel ps1 alleles. Multiple phenotypic classes were identified corresponding to Ac insertions in ...

  18. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    OpenAIRE

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, ...

  19. Fluorescent protein engineering by in vivo site-directed mutagenesis

    OpenAIRE

    Ceballos, Melvys Valledor; Hu, Qinghua; Schiller, Paul,; Myers, Richard S.

    2012-01-01

    In vivo site-directed mutagenesis by ssDNA recombineering is a facile method to change the color of fluorescent proteins without cloning. Two different starting alleles of GFP were targeted for mutagenesis: gfpmut3* residing in the E. coli genome and egfp carried by a bacterial/mammalian dual expression lentiviral plasmid vector. Fluorescent protein spectra were shifted by subtle modification of the chromophore region and residues interacting with the chromophore of the fluorescent protein. E...

  20. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in μ-opioid receptor knockout mice

    OpenAIRE

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2008-01-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the μ-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice com...

  1. Extraction of chemical-induced diseases using prior knowledge and textual information.

    Science.gov (United States)

    Pons, Ewoud; Becker, Benedikt F H; Akhondi, Saber A; Afzal, Zubair; van Mulligen, Erik M; Kors, Jan A

    2016-01-01

    We describe our approach to the chemical-disease relation (CDR) task in the BioCreative V challenge. The CDR task consists of two subtasks: automatic disease-named entity recognition and normalization (DNER), and extraction of chemical-induced diseases (CIDs) from Medline abstracts. For the DNER subtask, we used our concept recognition tool Peregrine, in combination with several optimization steps. For the CID subtask, our system, which we named RELigator, was trained on a rich feature set, comprising features derived from a graph database containing prior knowledge about chemicals and diseases, and linguistic and statistical features derived from the abstracts in the CDR training corpus. We describe the systems that were developed and present evaluation results for both subtasks on the CDR test set. For DNER, our Peregrine system reached anF-score of 0.757. For CID, the system achieved anF-score of 0.526, which ranked second among 18 participating teams. Several post-challenge modifications of the systems resulted in substantially improvedF-scores (0.828 for DNER and 0.602 for CID). RELigator is available as a web service athttp://biosemantics.org/index.php/software/religator. PMID:27081155

  2. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    International Nuclear Information System (INIS)

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo[a]pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 μM Na2SeO3 (selenium) or with 7 μM α-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism

  3. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borek, C.; Ong, A.; Mason, H.; Donahue, L.; Biaglow, J.E.

    1986-03-01

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo(a)pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 ..mu..M Na/sup 2/SeO/sup 3/ (selenium) or with 7 ..mu..M ..cap alpha..-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism.

  4. The Structure of Urease Activation Complexes Examined by Flexibility Analysis, Mutagenesis, and Small-angle X-ray Scattering Approaches

    International Nuclear Information System (INIS)

    Conformational changes of Klebsiella aerogenes urease apoprotein (UreABC)3 induced upon binding of the UreD and UreF accessory proteins were examined by a combination of flexibility analysis, mutagenesis, and small-angle X-ray scattering (SAXS). ProFlex analysis of urease provided evidence that the major domain of UreB can move in a hinge-like motion to account for prior chemical cross-linking results. Rigidification of the UreB hinge region, accomplished through a G11P mutation, reduced the extent of urease activation, in part by decreasing the nickel content of the mutant enzyme, and by sequestering a portion of the urease apoprotein in a novel activation complex that includes all of the accessory proteins. SAXS analyses of urease, (UreABC-UreD)3, and (UreABC-UreDF)3 confirm that UreD and UreF bind near UreB at the periphery of the (UreAC)3 structure. This study supports an activation model in which a domain-shifted UreB conformation in (UreABC-UreDF)3 allows CO2 and nickel ions to gain access to the nascent active site

  5. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  6. Exposure to Gulf War Illness chemicals induces functional muscarinic receptor maladaptations in muscle nociceptors.

    Science.gov (United States)

    Cooper, B Y; Johnson, R D; Nutter, T J

    2016-05-01

    Chronic pain is a component of the multisymptom disease known as Gulf War Illness (GWI). There is evidence that pain symptoms could have been a consequence of prolonged and/or excessive exposure to anticholinesterases and other GW chemicals. We previously reported that rats exposed, for 8 weeks, to a mixture of anticholinesterases (pyridostigmine bromide, chlorpyrifos) and a Nav (voltage activated Na(+) channel) deactivation-inhibiting pyrethroid, permethrin, exhibited a behavior pattern that was consistent with a delayed myalgia. This myalgia-like behavior was accompanied by persistent changes to Kv (voltage activated K(+)) channel physiology in muscle nociceptors (Kv7, KDR). In the present study, we examined how exposure to the above agents altered the reactivity of Kv channels to a muscarinic receptor (mAChR) agonist (oxotremorine-M). Comparisons between muscle nociceptors harvested from vehicle and GW chemical-exposed rats revealed that mAChR suppression of Kv7 activity was enhanced in exposed rats. Yet in these same muscle nociceptors, a Stromatoxin-insensitive component of the KDR (voltage activated delayed rectifier K(+) channel) exhibited decreased sensitivity to activation of mAChR. We have previously shown that a unique mAChR-induced depolarization and burst discharge (MDBD) was exaggerated in muscle nociceptors of rats exposed to GW chemicals. We now provide evidence that both muscle and vascular nociceptors of naïve rats exhibit MDBD. Examination of the molecular basis of the MDBD in naïve animals revealed that while the mAChR depolarization was independent of Kv7, the action potential burst was modulated by Kv7 status. mAChR depolarizations were shown to be dependent, in part, on TRPA1. We argue that dysfunction of the MDBD could be a functional convergence point for maladapted ion channels and receptors consequent to exposure to GW chemicals. PMID:27058124

  7. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    International Nuclear Information System (INIS)

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury

  8. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  9. [Rapid site-directed mutagenesis on full-length plasmid DNA by using designed restriction enzyme assisted mutagenesis].

    Science.gov (United States)

    Zhang, Baozhong; Ran, Duoliang; Zhang, Xin; An, Xiaoping; Shan, Yunzhu; Zhou, Yusen; Tong, Yigang

    2009-02-01

    To use the designed restriction enzyme assisted mutagenesis technique to perform rapid site-directed mutagenesis on double-stranded plasmid DNA. The target amino acid sequence was reversely translated into DNA sequences with degenerate codons, resulting in large amount of silently mutated sequences containing various restriction endonucleases (REs). Certain mutated sequence with an appropriate RE was selected as the target DNA sequence for designing mutation primers. The full-length plasmid DNA was amplified with high-fidelity Phusion DNA polymerase and the amplified product was 5' phosphorylated by T4 polynucleotide kinase and then self-ligated. After transformation into an E. coli host the transformants were rapidly screened by cutting with the designed RE. With this strategy we successfully performed the site-directed mutagenesis on an 8 kb plasmid pcDNA3.1-pIgR and recovered the wild-type amino acid sequence of human polymeric immunoglobulin receptor (pIgR). A novel site-directed mutagenesis strategy based on DREAM was developed which exploited RE as a rapid screening measure. The highly efficient, high-fidelity Phusion DNA polymerase was applied to ensure the efficient and faithful amplification of the full-length sequence of a plasmid of up to 8 kb. This rapid mutagenesis strategy avoids using any commercial site-directed mutagenesis kits, special host strains or isotopes. PMID:19459340

  10. Novel patterns of ultraviolet mutagenesis and Weigle reactivation in Staphylococcus aureus and phage phi II

    International Nuclear Information System (INIS)

    The effects of u.v. irradiation on the survival of Staphylococcus aureus and its phage phi11 were studied. The recA and uvr mutations affected their survival like synonymous mutations in Escherichia coli. Weigle reactivation (W-reactivation) of phi11 occurred in wild-type S. aureus and in a uvr mutant. Reactivation was recA-dependent and was accompanied by u.v.-induced mutagenesis in a temperature-sensitive mutant of phi11. Bacterial mutation to streptomycin resistance was induced by u.v. and was also recA-dependent. In S. aureus, as in E. coli, u.v. was a more effective mutagen in the uvr genetic background. However, a dose-squared response for u.v.-induced mutation of wild-type and uvr strains of S. aureus to streptomycin resistance, and of a trp auxotroph to tryptophan independence, was found only with u.v. doses below 1 J m-2. In relation to the Uvr mechanism of DNA repair, u.v. mutagenesis in S. aureus may involve both repairable and non-repairable lesions. As in E. Coli, the uvr genetic background reduced the u.v. dose required for maximal W-reactivation of u.v.-irradiated phage. However, there was no enhancement of W-reactivation by post-irradiation broth incubation of S. aureus. The results are compatible with a non-inducible mechanism for this phenomenon. (author)

  11. Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Natalie Saini

    2013-06-01

    Full Text Available DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes.

  12. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  13. Mutagenesis as a Functional Genomics Platform for Pharmaceutical Alkaloid Biosynthetic Gene Discovery in Opium Poppy

    International Nuclear Information System (INIS)

    Opium poppy (Papaver somniferum) accumulates the analgesic benzyl-isoquinoline alkaloids morphine, codeine and thebaine, and remains one of the world's most important medicinal plants. The development of varieties that accumulate valuable compounds, such as thebaine and codeine, but not morphine precludes the illicit synthesis of heroin (O,O-diacetylmorphine) and has led to the establishment of alternative cash crops. Novel cDNAs encoding a growing number of biosynthetic enzymes have been isolated, and various -omics resources including EST databases and DNA microarray chips have been established. However, the full potential of functional genomics as a tool for gene discovery in opium poppy remains limited by the relative inefficiency of genetic transformation protocols, which also restricts the application of metabolic engineering for both experimental and commercial purposes. We are establishing an effective functional genomics initiative based on induced mutagenesis and recently developed reverse genetics methodology, such as TILLING (Targeting Induced Local Lesions IN Genomes), with the aim of identifying biosynthetic genes that can be used to engineer opium poppy for the production of copious levels of high-value pharmaceutical alkaloids. Mutagenesis involves the treatment of seeds with ethyl methane sulfonate (EMS) or by fast-neutron bombardment (FNB). In preliminary experiments with EMS-treated seeds, the screening of 1,250 independent M2 plants led to the isolation of four mutants that displayed two distinctly altered alkaloid profiles. Two lines accumulated the central pathway intermediate reticuline and relatively low levels of morphine, codeine and thebaine compared to wild-type plants. Two other lines showed the unusual accumulation in the latex of the antimicrobial alkaloid sanguinarine, which is the product of a branch pathway distinct from that leading to morphine. The present status of -omics resources and functional genomics platforms available to

  14. Mutagenesis as a functional genomics platform for pharmaceutical alkaloid biosynthetic gene discovery in opium poppy

    International Nuclear Information System (INIS)

    Opium poppy (Papaver somniferum) accumulates the analgesic alkaloids morphine, codeine and thebaine, and remains one of the world's most important medicinal plants. The development of varieties that accumulate valuable compounds, such as thebaine and codeine, but not morphine precludes the illicit synthesis of heroin (O,O-diacetylmorphine) and has created opportunities to establish alternative cash crops. Novel cDNAs encoding more than a dozen biosynthetic enzymes have been isolated, and substantial EST databases and DNA microarray chips have been established. The full potential of functional genomics as a tool for gene discovery in opium poppy remains limited by the relative inefficiency of genetic transformation protocols, which also restricts the application of metabolic engineering for both experimental and commercial purposes. We are establishing an effective functional genomics initiative based on induced mutagenesis and TILLING (Targeting Induced Local Lesions IN Genomes) and with the aim of identifying biosynthetic genes that can be used to engineer opium poppy to produce copious levels of high-value pharmaceutical alkaloids. Mutagenesis involves the treatment of seeds by fast-neutron bombardment (FNB) or with ethyl methane sulfonate (EMS). Mutagenized opium poppy plants are cultivated in a secure underground growth facility in partnership with a Canadian biotechnology company. In preliminary experiments with EMS-treated seeds, the screening of 1,250 independent M2 plants led to the isolation of four mutants that displayed two distinctly altered alkaloid profiles. Two lines accumulated the central pathway intermediate (S)- reticuline and only low levels of morphine, codeine and thebaine. Two other lines showed the unusual accumulation of the antimicrobial alkaloid sanguinarine, which is the product of a branch pathway distinct from that leading to morphine, in the latex. The present status of -omics resources and functional genomics platforms available to

  15. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.;

    Glass exhibits a significant change in microstructure and properties when subjected to high pressure, since the short- and intermediate-range structures of a glass are tunable through compression. Understanding the link between the microscopic structure and macroscopic properties of glasses under...... high pressure is important, since the glass structures frozen-in under elevated pressure may give rise to properties unattainable under ambient pressure. Chemical strengthening of glass through K+-for-Na+ ion exchange is currently receiving significant interest due to the increasing demand for stronger...... and more damage resistant glasses. However, the interplay among isostatic compression, pressure-induced changes in alkali diffusivity, compressive stress generated through ion exchange, and the resulting mechanical properties are poorly understood. In this work, we employ a specially designed gas...

  16. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    Science.gov (United States)

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-11-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.

  17. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    Science.gov (United States)

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces. PMID:26381847

  18. Chemical modifications induced in bisphenol A polycarbonate by swift heavy ions

    International Nuclear Information System (INIS)

    The chemical modifications in bisphenol A polycarbonate induced by swift heavy ion irradiation are analyzed in situ by means of Fourier transform infrared (FTIR) spectroscopy. Four beams (13C, 20Ne, 48Ca, 129Xe) with energy of a few MeV/amu have been used. Irradiations were performed under vacuum with electronic stopping power in the range from 1.6 to 86 MeV mg-1 cm2. Deposited doses are less than or equal to 1 MGy. The FTIR spectra obtained after the irradiation exhibit an overall reduction of the intensities of the virgin PC typical vibration bands and the appearance of new bands. The analysis of the destruction and the new vibration bands points out that the energy deposition mechanisms are quite different depending on electronic stopping power

  19. In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Li, Cong; Wu, Xingwei; Zhang, Chenfei; Ding, Hongbin; Hu, Jiansheng; Luo, Guang-Nan

    2014-09-01

    Lithium conditioning can significantly improve the plasma confinement of EAST tokamak by reducing the amount of hydrogen and impurities recycled from the wall, but the details of this mechanism and approaches that reduce the concentrations of hydrogen and impurities recycle still remain unclear. In this paper, we studied lithiated tungsten via a cascaded-arc plasma simulator. An in situ laser-induced breakdown spectroscopy (LIBS) diagnostic system has been developed to chemically image the three-dimensional distribution of lithium and impurities on the surface of lithiated tungsten co-deposition layer for the first time. The results indicate that lithium has a strong ability to draw hydrogen and oxygen. The impurity components from the co-deposition processes present more intensity on the surface of co-deposition layer. This work improves the understanding of lithiated tungsten mechanism and is useful for using LIBS as a wall-diagnostic technique for EAST.

  20. In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cong; Wu, Xingwei; Zhang, Chenfei [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian 116024 (China); Ding, Hongbin, E-mail: hding@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, School of Physics and Optical Electronic Technology, Dalian University of Technology, Dalian 116024 (China); Hu, Jiansheng; Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)

    2014-09-15

    Lithium conditioning can significantly improve the plasma confinement of EAST tokamak by reducing the amount of hydrogen and impurities recycled from the wall, but the details of this mechanism and approaches that reduce the concentrations of hydrogen and impurities recycle still remain unclear. In this paper, we studied lithiated tungsten via a cascaded-arc plasma simulator. An in situ laser-induced breakdown spectroscopy (LIBS) diagnostic system has been developed to chemically image the three-dimensional distribution of lithium and impurities on the surface of lithiated tungsten co-deposition layer for the first time. The results indicate that lithium has a strong ability to draw hydrogen and oxygen. The impurity components from the co-deposition processes present more intensity on the surface of co-deposition layer. This work improves the understanding of lithiated tungsten mechanism and is useful for using LIBS as a wall-diagnostic technique for EAST.

  1. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  2. High-Throughput Sequencing and Mutagenesis to Accelerate the Domestication of Microlaena stipoides as a New Food Crop

    OpenAIRE

    Shapter, Frances M.; Michael Cross; Gary Ablett; Sylvia Malory; Chivers, Ian H.; King, Graham J.; Henry, Robert J.

    2013-01-01

    Global food demand, climatic variability and reduced land availability are driving the need for domestication of new crop species. The accelerated domestication of a rice-like Australian dryland polyploid grass, Microlaena stipoides (Poaceae), was targeted using chemical mutagenesis in conjunction with high throughput sequencing of genes for key domestication traits. While M. stipoides has previously been identified as having potential as a new grain crop for human consumption, only a limited...

  3. The Chemopreventive Effect of Tamoxifen Combined with Celecoxib on DMBA chemically-Induced Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Xiaoxu Liu; Huafeng Kang; Xijing Wang; Zhijun Dai; Fengjie Xue; Xinghuan Xue

    2007-01-01

    Objective: To investigate the chemopreventive effect of tamoxifen combined with a COX-2 selective inhibitor, celecoxib, on breast cancer in rats chemically induced by 7,12-dimethylben (a)anthracene (DMBA). Methods:DMBA was irrigated into the stomaches of SD female rats to build breast cancer model. A total of 120 rats were divided into four groups: control group, tamoxifen group, celecoxib group and combined group. The incidence rate, latent period, number and volume of breast cancer were detected and analyzed. Results:The tumor incidence rate of tamoxifen group (48.15%, 13/27) and celecoxib group (50.00%,14/28) were lower than that of control group (85.71%, 24/28), but higher than that of combined group (21.43%, 6/28). The tumor's latent period of tamoxifen group (97.54±1.85 d) and celecoxib group (96.79±2.89 d) were longer than that of control group (89.50±5.99 d), but shorter than that of combined group (103.67±3.39 d). The average tumor number of tamoxifen group (1.77±0.73) and celecoxib group (1.71±0.61) were less than that of control group (3.50±1.62), but more than that of combined group ( 1.17±0.42 ). The average tumor volume of tamoxifen group (1.78±0.71 cm3) and celecoxib group (2.05±1.04 cm3) were smaller than that of control group (6.42±3.96 cm3), but bigger than that of combined group (0.71±0.96 cm3) (P < 0.05 respectively).Conclusion:Celecoxib and tamoxifen are effective drugs in preventing the occurrence of rat breast cancer chemically induced by DMBA. Furthermore, combination of them has better chemopreventive effect.

  4. Choice of mouse strain influences the outcome in a mouse model of chemical-induced asthma.

    Directory of Open Access Journals (Sweden)

    Vanessa De Vooght

    Full Text Available BACKGROUND: The development of occupational asthma is the result of interactions between environmental factors and individual susceptibility. We assessed how our model of chemical-induced asthma is influenced by using different mouse strains. METHODOLOGY/PRINCIPAL FINDINGS: On days 1 and 8, male mice of 7 different strains (BALB/c, BP/2, A/J, C57Bl/6, DBA/2, CBA and AKR were dermally treated with toluene-2,4-diisocyanate (TDI (0.3% or vehicle (acetone/olive oil, AOO, 2:3 on each ear (20 microl. On day 15, they received an oropharyngeal instillation of TDI (0.01% or AOO (1:4. Airway reactivity to methacholine, total and differential cell counts in bronchoalveolar lavage (BAL and total serum IgE and IgG(2a levels were measured. Lymphocyte subpopulations in auricular lymph nodes and in vitro release of cytokines by ConA stimulated lymphocytes were assessed. In TDI-sensitized and challenged mice, airway hyper-reactivity was only observed in BALB/c, BP/2, A/J and AKR mice; airway inflammation was most pronounced in BALB/c mice; numbers of T-helper (CD4(+, T-activated (CD4(+CD25(+, T-cytotoxic (CD8(+ and B- lymphocytes (CD19(+ were increased in the auricular lymph nodes of BALB/c, BP/2, A/J and CBA mice; elevated concentrations of IL-4, IL-10, IL-13 and IFN-gamma were detected in supernatant of lymphocytes from BALB/c, BP/2, A/J, C57Bl/6 and CBA mice cultured with concanavaline A, along with an increase in total serum IgE. CONCLUSION: The used mouse strain has considerable and variable impacts on different aspects of the asthma phenotype. The human phenotypical characteristics of chemically-induced occupational asthma were best reproduced in Th2-biased mice and in particular in BALB/c mice.

  5. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    Directory of Open Access Journals (Sweden)

    Thiago C Genaro-Mattos

    Full Text Available Caffeic acid (CA is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its

  6. Near-Ultraviolet Mutagenesis in Superoxide Dismutase-deficient Strains of Escherichia coli.

    OpenAIRE

    Knowles, RL; Eisenstark, A.

    1994-01-01

    We compared mutagenic spectra induced by polychromatic near-ultraviolet radiation (near-UV; 300-400 nm) with superoxide anion (O2-) -dependent mutagenesis using a set of Escherichia coli tester strains. Near-UV radiation produced increased frequencies of G:C to A:T transitions, G:C to T:A and A:T to T:A transversions, and small increases in frameshift mutations in wild-type cells. Tester strains lacking superoxide dismutase (SOD) activity (sodAsodB double mutants) demonstrated high spontaneou...

  7. Chemical and explosive detection with long-wave infrared laser induced breakdown spectroscopy

    Science.gov (United States)

    Jin, Feng; Trivedi, Sudhir B.; Yang, Clayton S.; Brown, Ei E.; Kumi-Barimah, Eric; Hommerich, Uwe H.; Samuels, Alan C.

    2016-05-01

    Conventional laser induced breakdown spectroscopy (LIBS) mostly uses silicon-based detectors and measures the atomic emission in the UV-Vis-NIR (UVN) region of the spectrum. It can be used to detect the elements in the sample under test, such as the presence of lead in the solder for electronics during RoHS compliance verification. This wavelength region, however, does not provide sufficient information on the bonding between the elements, because the molecular vibration modes emit at longer wavelength region. Measuring long-wave infrared spectrum (LWIR) in a LIBS setup can instead reveal molecular composition of the sample, which is the information sought in applications including chemical and explosive detection and identification. This paper will present the work and results from the collaboration of several institutions to develop the methods of LWIR LIBS for chemical/explosive/pharmaceutical material detection/identification, such as DMMP and RDX, as fast as using a single excitation laser pulse. In our latest LIBS setup, both UVN and LWIR spectra can be collected at the same time, allowing more accurate detection and identification of materials.

  8. Secondary Metabolome Variability and Inducible Chemical Defenses in the Mediterranean Sponge Aplysina cavernicola.

    Science.gov (United States)

    Reverter, M; Perez, T; Ereskovsky, A V; Banaigs, B

    2016-01-01

    Secondary metabolites play a crucial role in marine invertebrate chemical ecology. Thus, it is of great importance to understand factors regulating their production and sources of variability. This work aimed to study the variability of the bromotyrosine derivatives in the Mediterranean sponge Aplysina cavernicola, and also to better understand how biotic (reproductive state) and abiotic factors (seawater temperature) could partly explain this variability. Results showed that the A. cavernicola reproductive cycle has little effect on the variability of the sponges' secondary metabolism, whereas water temperature has a significant influence on the production level of secondary metabolites. Temporal variability analysis of the sponge methanolic extracts showed that bioactivity variability was related to the presence of the minor secondary metabolite dienone, which accounted for 50 % of the bioactivity observed. Further bioassays coupled to HPLC extract fractionation confirmed that dienone was the only compound from Aplysina alkaloids to display a strong bioactivity. Both dienone production and bioactivity showed a notable increase in October 2008, after a late-summer warming episode, indicating that A. cavernicola might be able to induce chemical changes to cope with environmental stressors. PMID:26757731

  9. Influence of physical, chemical and inducer treatments on menaquinone-7 biosynthesis by Bacillus subtilis MTCC 2756

    Directory of Open Access Journals (Sweden)

    Alka Puri

    2015-06-01

    Full Text Available Effects of physical and chemical treatment on nutrient mobility, their utilization for menaquinone-7 (MK-7 biosynthesis; growth of microbial cells has been investigated in the present research. Bacillus subtilis MTCC 2756 fermented medium was supplied with 1-naphthol and hypoxanthine resulted in a significant increase in MK-7 production. Ultrasonication, electric shock, heat shock, and tween 80 were used for inducer uptake by Bacillus subtilis and menaquinone-7 production. Induction of Bacillus subtilis (at 16 hours of fermentation using 1-naphthol (2 mg/ml, along with tween 80 (0.1% was found to increase the MK-7 production by 3 fold i.e. 14.4 µg/ml as compared to the untreated fermentation medium. The ultrasonicated (ultrasonic power 33 W, treatment time 4 min and frequency 36 KHz microbial cells yielded higher biomass and 2.5 fold increase in the MK-7 production i.e.10.3 µg/ml than control. 1-naphthol along with physical or chemical treatment is required for maximum MK-7 production by Bacillus subtilis.

  10. Pollution-Induced Community Tolerance To Diagnose Hazardous Chemicals in Multiple Contaminated Aquatic Systems.

    Science.gov (United States)

    Rotter, Stefanie; Gunold, Roman; Mothes, Sibylle; Paschke, Albrecht; Brack, Werner; Altenburger, Rolf; Schmitt-Jansen, Mechthild

    2015-08-18

    Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA. PMID:26196040

  11. Agrobacterium tumefaciens-mediated transformation: An efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae.

    Science.gov (United States)

    Liu, Ning; Chen, Guo-Qing; Ning, Guo-Ao; Shi, Huan-Bin; Zhang, Chu-Long; Lu, Jian-Ping; Mao, Li-Juan; Feng, Xiao-Xiao; Liu, Xiao-Hong; Su, Zhen-Zhu; Lin, Fu-Cheng

    2016-01-01

    The endophytic filamentous fungus Harpophora oryzae is a beneficial endosymbiont isolated from the wild rice. H. oryzae could not only effectively improve growth rate and biomass yield of rice crops, but also induce systemic resistance against the rice blast fungus, Magnaporthe oryzae. In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was employed and optimized to modify the H. oryzae genes by either random DNA fragment integration or targeted gene replacement. Our results showed that co-cultivation of H. oryzae conidia with A. tumefaciens in the presence of acetosyringone for 48 h at 22 °C could lead to a relatively highest frequency of transformation, and 200 μM acetosyringone (AS) pre-cultivation of A. tumefaciens is also suggested. ATMT-mediated knockout mutagenesis was accomplished with the gene-deletion cassettes using a yeast homologous recombination method with a yeast-Escherichia-Agrobacterium shuttle vector pKOHo. Using the ATMT-mediated knockout mutagenesis, we successfully deleted three genes of H. oryzae (HoATG5, HoATG7, and HoATG8), and then got the null mutants ΔHoatg5, ΔHoatg7, and ΔHoatg8. These results suggest that ATMT is an efficient tool for gene modification including randomly insertional mutagenesis and gene deletion mutagenesis in H. oryzae. PMID:26686612

  12. Genotoxin Induced Mutagenesis in the Model Plant Physcomitrella patens

    Czech Academy of Sciences Publication Activity Database

    Holá, Marcela; Kozák, Jaroslav; Vágnerová, Radka; Angelis, Karel

    -, ID 535049 (2013). ISSN 2314-6133 R&D Projects: GA ČR GA13-06595S; GA MŠk(CZ) LD13006 Institutional support: RVO:61389030 ; RVO:61388963 Keywords : DNA-DAMAGE * COMET ASSAY * ARABIDOPSIS-THALIANA Subject RIV: EB - Genetics ; Molecular Biology

  13. Heavy ions irradiation-induced mutagenesis on edible seaweeds

    International Nuclear Information System (INIS)

    The effects of heavy ions irradiation on the growth and maturation of edible seaweed mutant, Asakusanori Porphyra tenera, were analyzed. Irradiation of gametophytic blades, haploid phase of P. tenera, to 50 Gy of helium ion beam suppressed their aging, in spite of no effect by that to 10, 25, 100 and 200 Gy of helium ion beam. Irradiation of P. tenera blades to 10∼200 Gy of helium ion beam showed no significant difference in their production of carpospore and further development to conchocelis. Irradiation of P. tenera blades to 50 Gy of carbon ion beam accelerated their development to conchocelis, whereas the blades suffering that to 100 and 200 Gy of carbon ion beam were suspended their maturation. (author)

  14. Heavy ions irradiation-induced mutagenesis on edible seaweeds

    International Nuclear Information System (INIS)

    The effects of heavy ions irradiation on both diploid and haploid phases of edible seaweeds were analyzed. Exposure of diploid conchocelis of a layer Asakusanori Porphyra tenera mutant to 2.5 Gy of carbon ion beam elicited an intense inhibition of its growth, whereas an administration dose-dependent growth inhibition was observed by 3 other particles such as helium, argon and neon ions between 2.5 and 100 Gy. Irradiation of P. tenera haploid gametophytic blades with 2.5∼100 Gy of 4 different heavy ion particles showed no significant difference in their production of carpospore and further development to conchocelis. Results indicate that the sensitivity of layer to heavy ions irradiation varies in diploid and haploid phases, and layer diploid suffers different effects from carbon ion and other ions tested. (author)

  15. A robust method for assessing chemically induced mutagenic effects in the oral cavity of transgenic Big Blue® rats.

    Science.gov (United States)

    Young, Robert R; Thompson, Chad M; Dinesdurage, Harshini R; Elbekai, Reem H; Suh, Mina; Rohr, Annette C; Proctor, Deborah M

    2015-08-01

    The Big Blue® (BB) in vivo mutation assay uses transgenic rodents to measure treatment-induced mutations in virtually any tissue. The BB assay can be conducted in rats or mice and is ideal for investigating tissue-specific mutagenic mode of action of tumor induction. Some tissues such as oral mucosa have not been thoroughly studied. Due to the small quantity and cartilaginous nature of oral cavity tissues, development of special prosection and DNA isolation methods was required to permit robust analysis of mutations in these tissues. Improved surgical methods permitted collection of adequate and reproducible quantities of tissue (∼45 mg gingiva/buccal and ∼30 mg gingiva/palate). Optimized DNA isolation methods included use of liquid nitrogen pulverization, homogenization, nuclei pelleting, digestion, and phenol/chloroform extraction, to yield sufficient quantities of DNA from these tissues. In preliminary optimization work, mutant frequency (MF) in tongue and gingiva was increased in rats exposed to the promutagen, benzo[a]pyrene, and the direct mutagen, N-ethyl-N-nitrosourea. The oral cavity carcinogen, 4-nitroquinoline-1-oxide (4-NQO; 10 ppm in drinking water; 28 days), was qualified as a positive control for mutagenesis in oral tissues since it caused significant increases in cII MFs in gingiva/palate (50.2-fold) and gingiva/buccal tissues (21.3-fold), but not in liver or bone marrow (0.9- and 1.4-fold, respectively). These results are consistent with the observation that 4-NQO primarily induces tumors in oral cavity. Results also demonstrate the utility of the BB rat mutation assay and optimized methods for investigation of oral cavity mutagenicity, and by extension, analysis of other small and cartilaginous tissues. PMID:25969955

  16. Chemical modification of polycarbonate induced by 1.4 GeV Ar ions

    International Nuclear Information System (INIS)

    Polycarbonate foil stacks were irradiated with 1.4 GeV Ar ions at room temperature. The induced modifications in chemical structure were studied by Fourier transform infrared (FTIR) and ultraviolet/visible absorption (UV/VIS) spectroscopies. FTIR measurements reveal that material degradation through bond breaking are the main effects. Significant reduction in absorbance of the typical infrared bands is observed at energy densities higher than 8x1022 eV/cm3. Alkyne end groups are produced by the irradiations and the electronic energy loss threshold for production of the alkyne end group is found to be below 0.61 keV/nm. UV/VIS measurements indicate a shifting of the absorption edge from ultraviolet towards visible and a strong increase of absorbance in the ultraviolet and visible regions. The irradiation induced changes in absorbance at wavelengths of 380, 450 and 500 nm follow roughly linear relationship with fluence and scale rather good with the square of electronic energy loss. The results are briefly discussed

  17. Modulatory influence of Phyllanthus niruri on oxidative stress, antioxidant defense and chemically induced skin tumors.

    Science.gov (United States)

    Sharma, Priyanka; Parmar, Jyoti; Verma, Preeti; Goyal, Pradeep Kumar

    2011-01-01

    The present study evaluates the modulatory potential of Phyllanthus niruri on chemically induced skin carcinogenesis, and its influence on oxidative stress and the antioxidant defense system. Oral administration of P. niruri extract (PNE), during peri- (Gr. III), post- (Gr. IV), or peri- and post- (Gr. V) initiational stages of 7,12-dimethylbenz(a) anthracene (DMBA)-croton oil–induced papillomagenesis considerably reduced tumor burden to 4.20, 4.00, and 3.33(positive control value 6.20); cumulative number of papillomas to 21, 16, and 10, respectively, (positive control value 62); and incidence of mice bearing papillomas to 50, 40, and 30%, respectively (positive control value 100%), but significantly increased the average latent period to 10.14, 10.62, and 11.60, and inhibition of tumor multiplicity to 66, 74,and 83%, respectively. Enzyme analysis of skin and liver showed a significant (p ≤ 0.05, ≤ 0.01, ≤ 0.001) elevation in antioxidant parameters such as superoxide dismutase, catalase, glutathione, and vitamin C in PNE-treated groups (Gr. III–V) when compared with the carcinogen-treated control (Gr. II). The elevated level of lipid peroxidation in the carcinogen-treated positive control group was significantly (p ≤ 0.05, ≤ 0.01, ≤ 0.001) inhibited by PNE administration. These results indicate that P. niruri extract has potentiality to reduce skin papillomas by enhancing antioxidant defense system. PMID:21609315

  18. Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Inflammatory bowel disease (IBD), the most important being Crohn's disease and ulcerative colitis, results from chronic dysregulation of the mucosal immune system in the gastrointestinal tract. Although the pathogenesis of IBD remains unclear, it is widely accepted that genetic, environmental, and immunological factors are involved. Recent studies suggest that intestinal epithelial defenses are important to prevent inflammation by protecting against microbial pathogens and oxidative stresses. To investigate the etiology of IBD, animal models of experimental colitis have been developed and are frequently used to evaluate new anti-inflammatory treatments for IBD. Several models of experimental colitis that demonstrate various pathophysiological aspects of the human disease have been described. In this manuscript, we review the characteristic features of IBD through a discussion of the various chemically induced experimental models of colitis (e.g. dextran sodium sulfate-, 2,4,6-trinitrobenzene sulfonic acid-, oxazolone-, acetic acid-, and indomethacin-induced models). We also summarize some regulatory and pathogenic factors demonstrated by these models that can, hopefully, be exploited to develop future therapeutic strategies against IBD.

  19. Identification of Differently Expressed Genes in Chemical Carcinogen-induced Rat Bladder Cancers

    Institute of Scientific and Technical Information of China (English)

    Guangfu CHEN; Franky L. CHAN; Xu ZHANG; Peter S.F. CHAN

    2009-01-01

    Possible altered gene expression patterns in bladder turnout carcinogenesis in rat bladder cancers induced by BBN [N-butyl-N-(4-hydroxybutyl)nitrosamine] was examined by cDNA microarray analysis of gene expression profiles.Thirty Sprague-Dawley rats were given drinking water containing 0.05% BBN ad libitum for 24 to 28-weeks.Equal numbers of control rats were given tap water without BBN.After treatment,the rat bladders were excised for RNA extraction and histopathological examinations.Total RNAs were extracted from rat transitional cell carcinoma (TCC) tissues and micro-dissected normal rat bladder epithelia.The atlas glass rat microarray was used,which included oligonucleotides of 1081 rat genes.Some of the up-regulated genes in rat bladder TCCs were further confirmed by Northern blotting.Our results showed that the transcriptions of 30 genes were significantly elevated in the rat bladder TCCs,and these included fly proto-oncogene,Lipocortin 2,COX Ⅳ,COX Ⅴ a,and cathepsin D.Also,15 genes were significantly down-regulated in the rat bladder TCCs and they included B7.1,TNFrl,APOAI and VHL.The resuits of cDNA microarray analysis demonstrated that normal rat bladder epithelia and bladder TCC exhibited different and specific gene statement profiles.The increased expressions of the identified genes may play an important role in the chemically induced bladder carcinogenesis.

  20. Ion-beam-induced epitaxial crystallization of implanted and chemical vapor deposited amorphous silicon

    Science.gov (United States)

    La Ferla, A.; Priolo, F.; Spinella, C.; Rimini, E.; Baroetto, F.; Ferla, G.

    1989-03-01

    The dependence of ion-beam enhanced epitaxial growth of amorphous Si layers on impurities either dissolved in the film or present at the film-substrate interface is considered. In the case of ion implanted layers, electrically active dopants, like B, P, As at concentrations above 1 × 10 20/cm 3, enhance the rate by a factor of 2 with respect to the undoped layer. The enhancement shows also a weak dependence on the dopant concentration. Inert impurities, like Ar, which prevent pure thermal regrowth, do not show any appreciable influence on the ion-beam-induced growth rate. Chemical vapor deposited Si layers with a thin native interfacial oxide layer can also be epitaxially regrown under ion irradiation. A critical fluence is needed before the interfacial oxide breaks down and broadens, allowing the epitaxial crystallization to take place. This process is characterized by an activation energy of 0.44 eV. The complex phenomenon of ion-beam-induced crystallization involves a dynamical interaction between production and annealing of point defects. The presence of electrically active dopants probably influences the lifetime of point defects. Impurities which prevent thermal regrowth are instead dissolved by ballistic effects and/or radiation-enhanced mixing.

  1. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    Energy Technology Data Exchange (ETDEWEB)

    Boulware, Stephen [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); Vasquez, Karen M. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); MacLeod, Michael C., E-mail: mcmacleod@mdanderson.org [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.

  2. DNA polymerase ζ: new insight into eukaryotic mutagenesis and mammalian embryonic development

    Institute of Scientific and Technical Information of China (English)

    Feng Zhu; Ming Zhang

    2003-01-01

    Information about the mechanisms that generate mutationsin eukaryotes is likely to be useful for understanding humanhealth concerns, such as genotoxicity and cancer.Eukaryotic mutagenesis is largely the outcome of attacksby' endogenous and environmental agents. Except for DNArepair, cell cycle checkpoints and DNA damage avoidance,cells have also evolved DNA damage tolerance mechanism,by which lesion-targeted mutation might occur in thegenome during replication by specific DNA polymerases tobypass the lesions (translesion DNA synthesis, TLS), ormutation on undamaged DNA templates (untargetedmutation) might be induced. DNA polymerase ζ (poiζ),which was found firstly in budding yeast Saccharomycescerevisiae and consists of catalytic subunit scRev3 and stimulating subunit scRev7, has Received more attention in recent years. Poi ζ is a member of DNA polymerase δsubfamily, which belongs to DNA polymerase B family, and exists in almost all eukaryotes. Human homolog of the scRev3gene is located in chromosome region 6q21, and the mouse equivalent maps to chromosome 10, distal to the c-myb gene and close to the Macs gene. Alternative splicing, upstream out-of frame ATG can be found in yeast scRev3, mouse and human homologs. Furthermore, the sequence from 253-323 immediate upstream of the AUG initiator codon has the potential to form a stem-loop hairpin secondary structure in REV3 mRNA, suggesting that human REV3 protein may be expressed at low levels in human cells under normal growth conditions. The functional domain analysis showed that yeast Rev3-980 tyrosine in conserved region II is at the polymerase active site. Human REV3 amino acid residues 1 776-2 195 provide a REV7binding domain, and REV7 amino acid residues 1-211provide a bind domain for REV1, REV3 and REV7 itself.More interestingly, REV7 interacts with hMAD2 and therefore might function in the cell cycle control by affecting the activation of APC (anaphase promoting complex).Currently it has been known that

  3. 2012 MUTAGENESIS GORDON RESEARCH CONFERENCE, AUGUST 19-23, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Demple, Bruce

    2012-08-23

    The delicate balance among cellular pathways that control mutagenic changes in DNA will be the focus of the 2012 Mutagenesis Gordon Research Conference. Mutagenesis is essential for evolution, while genetic stability maintains cellular functions in all organisms from microbes to metazoans. Different systems handle DNA lesions at various times of the cell cycle and in different places within the nucleus, and inappropriate actions can lead to mutations. While mutation in humans is closely linked to disease, notably cancers, mutational systems can also be beneficial. The conference will highlight topics of beneficial mutagenesis, including full establishment of the immune system, cell survival mechanisms, and evolution and adaptation in microbial systems. Equal prominence will be given to detrimental mutation processes, especially those involved in driving cancer, neurological diseases, premature aging, and other threats to human health. Provisional session titles include Branching Pathways in Mutagenesis; Oxidative Stress and Endogenous DNA Damage; DNA Maintenance Pathways; Recombination, Good and Bad; Problematic DNA Structures; Localized Mutagenesis; Hypermutation in the Microbial World; and Mutation and Disease.

  4. Combination of high performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    OpenAIRE

    Müller, Ulrich; Philipp, Martine; Gervais, P. C.; Possart, Prof Dr Wulff; Wehlack, C.; Kieffer, J.; Sanctuary, Roland; Krüger, Jan-Kristian

    2010-01-01

    A combination of infrared spectroscopy and high performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight in the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, ...

  5. Mutagenesis and transformation of C3H.10T1/2 mouse embryo fibroblasts with ultraviolet light and 5-azacytidine

    International Nuclear Information System (INIS)

    The effects of 12-0-tetradecanoyl-phorbol-13-acetate (TPA) and protease inhibitors (PIs; antipain, leupeptin and elastatinal) on ultraviolet (UV)-induced mutagenesis and, 5-azacytidine (azaC)-induced transformation were investigated in C3H/10Tl/2 mouse embryo fibroblasts. Whereas UV failed to transform 10Tl/2 cells by itself and azaC efficiently transformed the same cells, a significant enhancement in cell saturation density and transformation was observed in the continuous presence of TPA. The magnitude of enhancement depended on the batch of serum used and was suppressed by PIs. On the other hand, under the same conditions, UV induced ouabain-resistant (Ouasup(r)) mutants in these cells in a dose dependent manner. The recovery of Ouasup(r) mutants was reduced by TPA but remained unaffected by antipain. These results suggest that mutation might only be a partial mechanism for transformation by UV and that some of the physical as well as chemical carcinogens might transform 10Tl/2 cells via non-mutational mechanism(s). (author)

  6. Mutagenesis and transformation of C3H. 10T1/2 mouse embryo fibroblasts with ultraviolet light and 5-azacytidine

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P. (Kobe Univ. (Japan). School of Medicine)

    1982-12-01

    The effects of 12-0-tetradecanoyl-phorbol-13-acetate (TPA) and protease inhibitors (PIs; antipain, leupeptin and elastatinal) on ultraviolet (UV)-induced mutagenesis and, 5-azacytidine (azaC)-induced transformation were investigated in C3H/10Tl/2 mouse embryo fibroblasts. Whereas UV failed to transform 10Tl/2 cells by itself and azaC efficiently transformed the same cells, a significant enhancement in cell saturation density and transformation was observed in the continuous presence of TPA. The magnitude of enhancement depended on the batch of serum used and was suppressed by PIs. On the other hand, under the same conditions, UV induced ouabain-resistant (Ouasup(r)) mutants in these cells in a dose dependent manner. The recovery of Ouasup(r) mutants was reduced by TPA but remained unaffected by antipain. These results suggest that mutation might only be a partial mechanism for transformation by UV and that some of the physical as well as chemical carcinogens might transform 10Tl/2 cells via non-mutational mechanism(s).

  7. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

    Directory of Open Access Journals (Sweden)

    Ulrich C. Fischer

    2014-09-01

    Full Text Available A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM of (3-aminopropyltriethoxysilane (APTES is explored with three different processes: 1 a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2 a chemical process induced by oxygen plasma etching as well as 3 a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL, which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.

  8. H-2 restriction of the T cell response to chemically induced tumors: evidence from F1 → parent chimeras

    International Nuclear Information System (INIS)

    It has been well established that T cells that react to tumor antigen on virus-induced tumors must share H-2D or H-2K specificities with the tumor. It has been impossible to perform similar studies with chemically induced tumors because each chemically induced tumor expresses a unique tumor antigen that cannot be studied in association with other H-2 types. This study provies evidence that H-2 recognition is also necessary for recognition of chemically induced tumors. We have found that F1 → parent chimeras preferentially recognize chemically induced tumors of parental H-2 type. C3H/HeJ and C57BL/6 mice were lethally irradiated and restored with (C3H x C57BL/6) F1 hybrid bone marrow. The F1 → C3H chimera but not the F1 → C57BL/6 chimera was able to respond to a C3H fibrosarcoma in mixed lymphocyte-tumor cell culture and also to neutralize the tumor in an in vivo tumor neutralization assay. On the other hand, the F1 → C57BL/6 chimera but not the F1 → C3H chimera was able to kill the C57BL/6 lymphoma EL4 in an in vitro cytotoxicity assay. Both chimeras were tolerant to C3H and C57BL/6 alloantigens but could respond normally to Con A and to BALB/c spleen cells in mixed lymphocyte cultures and cytotoxicity assay

  9. In vitro mutagenesis for the improvement of vegetatively propagated plants

    International Nuclear Information System (INIS)

    A number of important crops such as banana, plantain, cassava, potato, sweet potato and sugar cane are propagated from corms, tubers and stem cuttings. Some of these plants do not produce seed, and often the size of the propagule is too big to treat large populations with mutagens. In vitro techniques allow mutagenic treatment of large numbers and multiplication of the selected genotypes in a small space and short duration under disease free conditions. After treatment with mutagens, the chimeral tissues can be separated into mutated and non-mutated sectors without loss of plants, which may occur in conventional propagation. Somaclonal variation among plants regenerated from callus and cell suspension cultures may provide additional variation to that induced through mutagenesis. In vitro methods allow induction and expression of recessive mutations in the haploids, producing homozygous doubled haploids. The availability of simple, efficient and rapid techniques for screening large plant populations for desired traits is an essential component of plant breeding. In vitro culture techniques allow selection of the desired variants from large populations of cells and plants. This may be achieved by manipulating the medium composition, e.g. selection for tolerance to salinity and drought, and by co-culturing the plant tissues with pathogens or their toxins, as in the case of selection for disease resistance. The variants thus selected can be subjected to selection in the glasshouse or field. Even though the occurrence of desired mutations is empirical and random, the combination of in vitro and mutation techniques can speed up the breeding of vegetatively propagated plants. (author). 41 refs, 3 tabs

  10. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1

    OpenAIRE

    Qidi Zhu; Yulong Song; Gaisheng Zhang; Lan Ju; Jiao Zhang; Yongang Yu; Na Niu; Junwei Wang; Shoucai Ma

    2015-01-01

    Wheat (Triticum aestivum L.), one of the world's most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther tra...

  11. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling.

    Science.gov (United States)

    Gérando, H Máté de; Fayolle-Guichard, F; Rudant, L; Millah, S K; Monot, F; Ferreira, Nicolas Lopes; López-Contreras, A M

    2016-06-01

    Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet. PMID:26852409

  12. Random mutagenesis of aspergillus niger and process optimization for enhanced production of glucose oxidase

    International Nuclear Information System (INIS)

    The study deals with the improvement of wild strain Aspergillus niger IIB-31 through random mutagenesis using chemical mutagens. The main aim of the work was to enhance the glucose oxidase (GOX) yield of wild strain (24.57+-0.01 U/g of cell mass) through random mutagenesis and process optimization. The wild strain of Aspergillus niger IIB-31 was treated with chemical mutagens such as Ethyl methane sulphonate (EMS) and nitrous acid for this purpose. Mutagen treated 98 variants indicating the positive results were picked and screened for the glucose oxidase production using submerged fermentation. EMS treated E45 mutant strain gave the highest glucose oxidase production (69.47 + 0.01 U/g of cell mass), which was approximately 3-folds greater than the wild strain IIB-31. The preliminary cultural conditions for the production of glucose oxidase using submerged fermentation from strain E45 were also optimized. The highest yield of GOD was obtained using 8% glucose as carbon and 0.3% peptone as nitrogen source at a medium pH of 7.0 after an incubation period of 72 hrs at 30 degree. (author)

  13. Differences in temporal aspects of mutagenesis and cytotoxicity in Chinese hamster cells treated with methylating agents and thymidine.

    Science.gov (United States)

    Peterson, A R; Peterson, H

    1982-03-01

    Equitoxic concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MeMes) produced different frequencies of 8-azaguanine-resistant mutants and different amounts of N7-methylguanine, O6-methylguanine (m6G), and N3-methyladenine in the DNA of V79 Chinese hamster cells. Thus, neither the cytotoxicities nor the mutagenicities of these methylating agents could be attributed solely to nitrogen or to oxygen methylations in the DNA. However, MNNG produced 12-fold more m6G and 5-fold more mutants than did MeMes, indicating that a substantial part of the MNNG-induced mutations resulted from m6G--thymine mispairing during DNA replication. The expression as mutants of mutagenic oxygen methylations in the DNA of cells treated with MNNG was enhanced by thymidine (dThd) and deoxycytidine (dCyd), but these nucleosides did not significantly enhance MeMes-induced mutagenesis. The cytotoxicities of MNNG and MeMes were also increased by 10 microM dThd in proportion to the amount of m6G in the DNA. These increases in cytotoxicity were abolished by dCyd, which did not greatly reduce the dThd-induced enhancements of mutagenesis. Moreover, when dThd was present only during the 2-hr treatment with MNNG, maximal cytotoxicity occurred, but MNNG-induced mutagenesis was not increased. Maximal mutagenesis occurred when the dThd was present throughout the first doubling time of the MNNG-treated cells. Thus, the expression of the cytotoxicity and the mutagenicity associated with m6G in the DNA of V79 cells occurred by quite different mechanisms. PMID:6951203

  14. Chemically induced renormalization phenomena in Pb-based relaxor ferroelectrics under high pressure

    International Nuclear Information System (INIS)

    The pressure-induced phase transition sequence in PbSc0.5Ta0.5O3 (PST) and PbSc0.5Nb0.5O3 (PSN) heavily doped with homo- and heterovalent cations on the A- or B-site of the perovskite-type structure (ABO3) was analysed by in situ synchrotron x-ray diffraction and Raman spectroscopy up to pressures of 25 GPa. We focused on the structural phenomena occurring above the first pressure-induced phase transition at pc1 from a relaxor state to a non-polar rhombohedral phase with antiphase tilting of the BO6 octahedra. The samples studied were PST doped with Nb5+ and Sn4+ on the B-site, PST doped with Ba2+ and La3+ on the A-site and PSN doped with Sr2+ and La3+ on the A-site. All of them exhibit a second pressure-induced phase transition at pc2, similar to pure PST and PSN. The second transition involves the development of either order of antiparallel Pb2+ displacements and complementary a+b−b− octahedral tilts, or a−b−b− (0 ≤ a 5+ for Ta5+ as well as the coupled substitution of Sn4+ for Sc3+ + Ta5+ on the octahedral B sites increases the second critical pressure. The doping by Nb5+ also reduces the length of coherence of antipolar Pb2+ order developed at pc2. The isovalent substitution of the larger Ba2+ for Pb2+ on the A-site suppresses the antipolar Pb2+ order due to the induced local elastic stresses and thus significantly increases pc2. The substitution of smaller cations for Pb2+ on the A-site generally favours the development of long-range order of antiparallel Pb2+ displacements because of the chemically enhanced a−a−a− octahedral tilts. However, this ordering is less when the dopant is aliovalent, due to the charge imbalance on the A-site. For all of the relaxors studied here, the dynamic compressibility estimated from the pressure derivative of the wavenumber of the soft mode associated with the first phase transition is larger in the pressure interval between pc1 and pc2 than above pc2. The dynamic compressibility of the phase above pc2

  15. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Institute of Scientific and Technical Information of China (English)

    姚日生; 李曼曼; 邓胜松; 胡华佳; 王淮; 李凤和

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  16. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis

  17. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis

  18. Evaluation of sensitivity for positive tone non-chemically and chemically amplified resists using ionized radiation: EUV, x-ray, electron and ion induced reactions

    Science.gov (United States)

    Oshima, Akihiro; Oyama, Tomoko Gowa; Washio, Masakazu; Tagawa, Seiichi

    2013-03-01

    The different exposure sources induce a different energy deposition in resist materials. Linear energy transfer (LET) effect for resist sensitivity is very important issue from the viewpoint of radiation induced chemical reactions for high-volume nanofabrication. The sensitivities of positive tone non-chemically (non-CA, ZEP) and chemically amplified (CA, UV-3) resist materials are evaluated using various ionized radiation such as EUV, soft X-rays, EB and various ion beams. Since the notations of sensitivity of resist vary with exposure sources, in order to evaluate systematically, the resist sensitivity were estimated in terms of absorbed dose in resist materials. Highly-monochromated EUV and soft X-rays (6.7 nm - 3.1 nm) from the BL27SU of the SPring-8, high energy ion beams (C6+, Ne10+, Mg12+, Si14+ , Ar18+, Kr36+ and Xe54+) with 6 MeV/u from MEXP of HIMAC, EB from low energy EB accelerator (Hamamatsu Photonics, EB-engine®, 100 kV) and EB lithography system (30 keV and 75keV) were used for the exposure. For non-CA and CA resist materials, it was found that LET effects for sensitivity would be hardly observed except for heavier ion beams. Especially, in the case of the high energy ion beam less than Si14+ with 6 MeV/u, it is suggested that the radiation induced chemical reaction would be equivalent to EUV, soft X-ray and EB exposure. Hence, it indicates that the resist sensitivity could be systematically evaluated by absorbed dose in resist materials.

  19. Radiation-induced chemical evolution of glycine to (Gly)2, (Gly)3, and (Gly)4

    International Nuclear Information System (INIS)

    Recently amino acids were detected from some meteorites. Since these amino acids were found after hydrolysis, some oligopeptides were possibly formed in space. A simulation experiment of chemical evolution from Glycine (Gly) to Glycylglycine ((Gly)2) was reported by Kaneko et al. In this work, we irradiated (Gly)2 with 8 eV vacuum ultraviolet photons or with 530 eV soft X-ray photons and examined absolute values of quantum yield of radiation-induced chemical evolution from Gly2 to Glycylglycylglycine ((Gly)3) and Glycylglycylglycylglycine ((Gly)4). Thin films of (Gly)2 were prepared on quartz plate or CuBe plate with a vacuum evaporation technique. These samples were irradiated by 8 eV photons from a Xe2* excimer lamp or by 530 eV soft X-ray photons at SPring-8 Synchrotron Radiation Facility. Irradiated samples were analyzed with a high performance liquid chromatography HPLC. Decomposition of (Gly)2 and production of Gly, (Gly)3 and (Gly)4 were observed. Quantum yield Y was defined to be N = Y N0, where N is the number of produced or decomposed molecule, and N0 is the number of (Gly)2 molecules excited by photons. Obtained results by 8 eV irradiation were summarized in Table 1. The similar magnitude of decomposition of (Gly)2 may show that yield of the primary breaking reaction upon photo-excitation is of similar magnitude. It should be noted that (Gly)3 and (Gly)4 was produced by irradiation with the yield of 10-4 without any catalysis. For soft X-ray irradiation, yield of Gly was tentatively determined to be about 40. This largervalue than that for 8 eV irradiation may originate from large energy of incident soft X-ray photons just like a result reported by Simakov et al. We will discuss in detail at the conference. (authors)

  20. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    Science.gov (United States)

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes. PMID:18814656

  1. Heterologous overexpression and mutagenesis of the human bile salt export pump (ABCB11 using DREAM (Directed REcombination-Assisted Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Jan Stindt

    Full Text Available Homologous recombination in Saccharomyces cerevisiae is a well-studied process. Here, we describe a yeast-recombination-based approach to construct and mutate plasmids containing the cDNA of the human bile salt export pump (BSEP that has been shown to be unstable in E. coli. Using this approach, we constructed the necessary plasmids for a heterologous overexpression of BSEP in the yeast Pichia pastoris. We then applied a new site-directed mutagenesis method, DREAM (Directed REcombination-Assisted Mutagenesis that completely bypasses E. coli by using S. cerevisiae as the plasmid host with high mutagenesis efficiency. Finally, we show how to apply this strategy to unstable non-yeast plasmids by rapidly turning an existing mammalian BSEP expression construct into a S. cerevisiae-compatible plasmid and analyzing the impact of a BSEP mutation in several mammalian cell lines.

  2. Evaluation of Yield and Chemical Characteristics of some Peanut Mutants Induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    This study was conducted to evaluate some promising mutants in peanut for yielding ability over three generation (M5, M6 and M7) and to evaluate yield attributes as will as chemical characteristics of these mutants in M7 generation induced by 100 Gy gamma radiation. The obtained results showed that the increase of yield / plot over three generation as a percentage of control was 5% for mutant 7, 10.2 % for mutant 10; 22% for mutant 9 and 22.9% for mutant 8. This increase in yield may be due to increase of one or more of yield attributes for most mutant lines. The significant increase for. No .of pods and seeds/ plant, weight of pods and seeds/ plant and 100- seed weight in M7 as compared to the control. For saturated fatty acid composition, results revealed that total saturated fatty acids ranged from 17.79% for mutant 8 to 21.75 for mutant 2 compared to 24.21% for control. Reduction of total saturated fatty acid was noticed for different mutants compared to that of the original variety. However, for total unsaturated fatty acids, results indicated that total unsaturated fatty acid composition ranged from 77.95% for mutant 9 to 82.09% for mutant 8 compared to 75.49% for control. Higher total unsaturated fatty acids for all mutant lines were obtained than that of the control, however, total saturated (TS)/ total unsaturated (TU) ratio was decreased for all mutants compared to control. The physical and chemical contents of Peanut oils showed that the refractive indices were ranged from 1.4620 to 1.4718 specific gravity were in range of 0.9146 to 0.9177. Acid value was range from 0.54 to 0.89% lodine value was ranged from 94.56 to 101.85. Saponification value was ranged from 185.2 to 190.7 and unsaponifiable matter was ranged from 0.98 to 1.33. The peroxide values ranged from 1.15 to 2.33 meq/kg oil. Also, fortified yoghurt made with replaced mutant peanut oil by 50% as milk fat substitute. Data showed that chemical composition and organolyptic properties had the

  3. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vignaux, G. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Chabbert, C.; Gaboyard-Niay, S.; Travo, C. [INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, F-34090,France (France); Machado, M.L. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); Denise, P. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Comoz, F. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Hitier, M. [CHRU Caen, Service d' Otorhinolaryngologie, Caen, F-14000,France (France); Landemore, G. [CHRU Caen, Laboratoire d' anatomopathologie, Caen, F-14000 (France); Philoxène, B. [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France); Besnard, S., E-mail: besnard-s@phycog.org [INSERM, ERI27, Caen, F-14000 (France); Univ Caen, Caen, F-14000 (France); CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 (France)

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  4. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemical and radiations

    International Nuclear Information System (INIS)

    We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 α-tocopherol-induced sacromas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification. (author)

  5. Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening

    International Nuclear Information System (INIS)

    High-throughput methods are useful for rapidly screening large numbers of chemicals for biological activity, including the perturbation of pathways that may lead to adverse cellular effects. In vitro assays for the key events of neurodevelopment, including apoptosis, may be used in a battery of tests for detecting chemicals that could result in developmental neurotoxicity. Apoptosis contributes to nervous system development by regulating the size of the neuroprogenitor cell pool, and the balance between cellular proliferation and apoptosis during neuroprogenitor cell proliferation helps to determine the size and shape of the nervous system. Therefore, chemicals that affect apoptosis during neuronal development can have deleterious effects on the developing brain. The present study examined the utility of a high-throughput assay to detect chemical-induced apoptosis in mouse or human neuroprogenitor cells, as well as differentiated human neurons derived from induced pluripotent stem cells. Apoptosis was assessed using an assay that measures enzymatic activity of caspase-3/7 in a rapid and cost efficient manner. The results show that all three commercially available models generated a robust source of proliferating neuroprogenitor cells, and that the assay was sensitive and reproducible when used in a multi-well plate format. There were differences in the response of rodent and human neuroprogenitor cells to a set of chemicals previously shown to induce apoptosis in vitro. Neuroprogenitor cells were more sensitive to chemical-induced apoptosis than differentiated neurons, suggesting that neuroprogenitor cells are one of the cell models that should be considered for use in a developmental neurotoxicity screening battery

  6. Abstracts of the Conference on Mechanisms of DNA Repair and Mutagenesis on the 100. Anniversary of the Discovery of Polonium and Radium

    International Nuclear Information System (INIS)

    The conference covered various aspects of mutagenesis and mechanisms of DNA repair. UV and ionizing radiation were use to induce DNA lesions in bacteria, yeast and cell cultures of higher organisms. This allows study of influence of mutations on particular processes in the cell. Mechanisms of resistance were also investigated. Biological investigations were performed using labelled compounds

  7. Abstracts of the Conference on Mechanisms of DNA Repair and Mutagenesis on the 100. Anniversary of the Discovery of Polonium and Radium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference covered various aspects of mutagenesis and mechanisms of DNA repair. UV and ionizing radiation were use to induce DNA lesions in bacteria, yeast and cell cultures of higher organisms. This allows study of influence of mutations on particular processes in the cell. Mechanisms of resistance were also investigated. Biological investigations were performed using labelled compounds.

  8. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice.

    Science.gov (United States)

    Ye, Jian-Hong; Liu, Meng-Hua; Zhang, Xu-Lin; He, Jing-Yu

    2015-01-01

    Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography-diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones. PMID:26580602

  9. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice

    Directory of Open Access Journals (Sweden)

    Jian-Hong Ye

    2015-11-01

    Full Text Available Protective effect of Hedyotis diffusa (H. diffusa Willd against lipopolysaccharide (LPS-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography -diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and monocyte chemoattractant protein (MCP-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones.

  10. Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text

    Science.gov (United States)

    Bravo, Àlex; Li, Tong Shu; Su, Andrew I.; Good, Benjamin M.; Furlong, Laura I.

    2016-01-01

    Drug toxicity is a major concern for both regulatory agencies and the pharmaceutical industry. In this context, text-mining methods for the identification of drug side effects from free text are key for the development of up-to-date knowledge sources on drug adverse reactions. We present a new system for identification of drug side effects from the literature that combines three approaches: machine learning, rule- and knowledge-based approaches. This system has been developed to address the Task 3.B of Biocreative V challenge (BC5) dealing with Chemical-induced Disease (CID) relations. The first two approaches focus on identifying relations at the sentence-level, while the knowledge-based approach is applied both at sentence and abstract levels. The machine learning method is based on the BeFree system using two corpora as training data: the annotated data provided by the CID task organizers and a new CID corpus developed by crowdsourcing. Different combinations of results from the three strategies were selected for each run of the challenge. In the final evaluation setting, the system achieved the highest Recall of the challenge (63%). By performing an error analysis, we identified the main causes of misclassifications and areas for improving of our system, and highlighted the need of consistent gold standard data sets for advancing the state of the art in text mining of drug side effects. Database URL: https://zenodo.org/record/29887?ln¼en#.VsL3yDLWR_V PMID:27307137

  11. Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text.

    Science.gov (United States)

    Bravo, Àlex; Li, Tong Shu; Su, Andrew I; Good, Benjamin M; Furlong, Laura I

    2016-01-01

    Drug toxicity is a major concern for both regulatory agencies and the pharmaceutical industry. In this context, text-mining methods for the identification of drug side effects from free text are key for the development of up-to-date knowledge sources on drug adverse reactions. We present a new system for identification of drug side effects from the literature that combines three approaches: machine learning, rule- and knowledge-based approaches. This system has been developed to address the Task 3.B of Biocreative V challenge (BC5) dealing with Chemical-induced Disease (CID) relations. The first two approaches focus on identifying relations at the sentence-level, while the knowledge-based approach is applied both at sentence and abstract levels. The machine learning method is based on the BeFree system using two corpora as training data: the annotated data provided by the CID task organizers and a new CID corpus developed by crowdsourcing. Different combinations of results from the three strategies were selected for each run of the challenge. In the final evaluation setting, the system achieved the highest Recall of the challenge (63%). By performing an error analysis, we identified the main causes of misclassifications and areas for improving of our system, and highlighted the need of consistent gold standard data sets for advancing the state of the art in text mining of drug side effects.Database URL: https://zenodo.org/record/29887?ln¼en#.VsL3yDLWR_V. PMID:27307137

  12. A study on the improving efficiency for laser-induced chemical reaction process

    International Nuclear Information System (INIS)

    The laser-induced photoreaction process is a very useful technology in environmental aspects as well as atomic energy industry. In this study various factors which affect to the reaction process has been investigated for the increment of efficiency of reaction process. Palladium and silver have been chosen as samples for the reaction and the reaction processes have been monitored very carefully. For palladium nitric acid was identified as the best solvent for the reaction, while oxalic acid was the best reducing agent. As the concentration of the reducing agent increases, the reactivity of the samples were increased. When more laser energy was illuminated to the samples, reactivity increased, too. The wavelength of the laser beam used for the reaction was 3rd harmonic of Nd:YAG laser(355 nm). For silver case perchloric acid and ethanol were the best combination for the optimal reaction condition. As a result of the analysis of the reaction products, pure palladium and silver were the products, not any other forms of chemicals. (author). 12 refs., 3 tabs., 26 figs

  13. Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator

    Science.gov (United States)

    Lee, Joon Sue; Richardella, Anthony; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Samarth, Nitin

    2015-10-01

    We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disentangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al 2O3 ) as a spin detector on a back-gated (Bi,Sb ) 2Te3 channel. We observe hysteretic voltage signals as the magnetization of the detector ferromagnet is switched parallel or antiparallel to the spin polarization of the surface current. The amplitude of the detected voltage change is linearly proportional to the applied dc bias current in the (Bi,Sb ) 2Te3 channel. As the chemical potential is tuned from the bulk bands into the surface state band, we observe an enhancement of the spin-dependent voltages up to 300% within the range of the electrostatic gating. Using a simple model, we extract the spin polarization near charge neutrality (i.e., the Dirac point).

  14. Heuristic model of chemically induced electron spin polarization in two dimensions

    International Nuclear Information System (INIS)

    Graphical abstract: Like its three-dimensional predecessor, and unlike previous 2D models, this model handles all singlet-triplet mixing rates (Q) and, as illustrated below, gives the time evolution of the polarization. - Abstract: A heuristic model of chemically induced electron spin polarization (CIDEP) that breaks the polarization mechanism into its component steps, with each step governed by an appropriate solution of the diffusion equation, is extended from a three to a two-dimensional system. The required solution of the 2D diffusion equation is provided by a relatively simple analytic approximation to the usual infinite series solution. The model yields the polarization and its time development for weak to strong singlet-triplet mixing in the radical pairs, whereas previous models are limited to very weak or very strong mixing. Its results agree with a variational solution of an integral equation of Monchick and are encouraging for observation of CIDEP in dimensionally restricted systems. The method also may be applicable to other diffusion-controlled, spin-dependent chemistry in spatially restricted environments.

  15. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988-1999

    International Nuclear Information System (INIS)

    Acidification of south-Swedish coniferous forest soils continues and soil nutrient status is no longer sustainable in a long-term perspective. - Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl2) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed

  16. Modification of tolerance of oats to crown rust induced by chemical mutagens

    International Nuclear Information System (INIS)

    Seeds of crown rust (Puccinia coronata) susceptible cultivated oats (Avena sativa) were treated with the mutagenic chemical ethyl methanesulphonate (EMS), and pure lines derived from these treated seeds were tested in later generations for the relative amount of reduction in yield and seed weight caused by crown rust infection. In the absence of crown rust, the yield of most of the treated lines was greatly reduced. The overall means of the treated lines for both yield and seed weight response to infection were significantly lower than the control, but 10 lines significantly exceeded the control for yield response and 15 exceeded it for seed weight response. Recurrent EMS treatment of once-treated lines rated as tolerant resulted in groups of lines that were more tolerant, on the average, than groups of lines from recurrently treated lines rated as susceptible. A few of the recurrently treated individual lines derived from tolerant parents had a higher degree of tolerance than their parental lines. EMS treatment of diploid (A. strigosa) and tetraploid (A. abyssinica) oats resulted in groups of lines showing significant genetic variance for response to crown rust, indicating that treatment had induced real genetic change. A few diploid lines were a little more tolerant than their control, but none of the tetraploid lines showed any consistent improvement. (author)

  17. Chemical reactions induced by oscillating external fields in weak thermal environments

    CERN Document Server

    Craven, Galen T; Hernandez, Rigoberto

    2015-01-01

    Chemical reaction rates must increasingly be determined in systems that evolve under the control of external stimuli. In these systems, when a reactant population is induced to cross an energy barrier through forcing from a temporally varying external field, the transition state that the reaction must pass through during the transformation from reactant to product is no longer a fixed geometric structure, but is instead time-dependent. For a periodically forced model reaction, we develop a recrossing-free dividing surface that is attached to a transition state trajectory [T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301 (2005)]. We have previously shown that for single-mode sinusoidal driving, the stability of the time-varying transition state directly determines the reaction rate [G. T. Craven, T. Bartsch, and R. Hernandez, J. Chem. Phys. 141, 041106 (2014)]. Here, we extend our previous work to the case of multi-mode driving waveforms. Excellent agreement is observed between the rates pred...

  18. [Revision of th distribution of chromosome aberrations induced by chemical mutagens using the BUDR label].

    Science.gov (United States)

    Chebotarev, A N; Chernyshova, N A

    1990-08-01

    Cell distribution was analysed with the help of the BrDU label for the number of chromosome aberrations and breaks induced by one-center (thiophosphamide and phosphamide) and two-center (dipine and fotrine) mutagens at the stage G0 in the Ist mitosis of human lymphocytes harvested at different times of culturing (from 56 to 96 h). The comparison was made between the type of aberration distribution in cells and the dependence of their frequency on the harvesting point for various mutagens. Poisson aberration distribution in cells for two-center mutagens was found to correspond to their constant frequency observed at different times of harvesting. On the other hand, for one-center mutagens, a geometrical distribution of chromosome breaks corresponded to an exponential decrease in their frequency in time. It is suggested that two-center chemical mutagens and ionizing radiation cause largely short-live damages which are realized into chromosome aberrations rather quickly (during one cell cycle). One-center mutagens, however, cause such damages that the probability of their transformation into chromosome aberrations is decreasing rather slowly in time, under the exponential law, and their realization into chromosome aberrations can occur in subsequent cell cycle. PMID:2258036

  19. Preparation of intact chloroplasts by chemically induced lysis of the green alga Dunaliella marina.

    Science.gov (United States)

    Kombrink, E; Wöber, G

    1980-07-01

    A method for the isolation in high yield of intact chloroplasts from the unicellular green alga Dunaliella marina (Volvocales) is described. This procedure uses chemically induced lysis of cells with the polycationic macromolecules, DEAE-dextran (M=500,000) or poly-D,L-lysine (M=30,000-70,000). Reaction conditions were optimized with respect to obtaining a high yield of intact chloroplasts, after isopycnic centrifugation in a linear sucrose density gradient, by varying the concentration of polycation and the temperature and pH of incubation. Broken chloroplasts devoid of the stromal marker enzymes fructosebisphosphate phosphatase and ribulosebisphosphate carboxylase, but containing mitochondrial (fumarase) and microbody (catalase) contamination, were banded at a bouyant density of 1.18 g cm(-3). Intact chloroplasts, as indicated by their retention of alkaline fructosebisphosphate phosphatase and ribulosebisphosphate carboxylase, were found in 30% yield (chlorophyll in intact cells, 100%) at an equilibrium density of 1.24 g cm(-3). Contamination by cytoplasmic material (pyruvate kinase), mitochondria, and microbodies was less than 8% each. PMID:24306242

  20. Growth of titanium silicate thin films by photo-induced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.M.; Fang, Q.; Zhang, J.-Y.; Wu, J.X.; Di, Y.; Chen, W.; Chen, M.L.; Boyd, Ian W

    2004-04-01

    Titanium silicate thin films have been grown on Si substrates by photo-induced chemical vapor deposition using 222-nm ultraviolet excimer lamps. Titanium tetraisopropoxide (TTIP) and tetraethoxysilane (TEOS) were used as precursors. TTIP and TEOS were dissolved together in cyclohexane and introduced into the photochemical reaction chamber through a droplet injector vaporizer. The composition of the film was controlled by changing the ratio of TTIP to TEOS in the precursor solution. High quality titanium silicate films with various Ti/Si ratios and low carbon content have been achieved as revealed by X-ray photoelectron spectroscopy measurements. The atomic percentage of Ti content in the grown silicate films is significantly larger than that in the precursor solution. The films were measured to be 30-80 nm in thickness and 1.91-2.31 in refractive index by ellipsometry. Both the growth rate and refractive index increase with increasing Ti percentage in the silicate films. The evolution of Fourier transform infrared spectra of the silicate films with solution composition shows that the Ti-O-Si absorption at approximately 920 cm{sup -1} becomes stronger, while the Ti-O absorption at approximately 430 cm{sup -1} becomes weaker with decreasing Ti percentage in the solution. A small feature at {approx}1035 cm{sup -1} related to Si-O-Si bonds is also observed in the SiO{sub 2}-rich Ti silicate film.

  1. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation.

    Science.gov (United States)

    Wang, Kai-Qiang; Luo, Shui-Zhong; Zhong, Xi-Yang; Cai, Jing; Jiang, Shao-Tong; Zheng, Zhi

    2017-01-01

    In order to elucidate the heat-induced wheat gluten gel formation mechanism, changes in chemical interactions and protein conformation were investigated during gelation. The contribution of ionic and hydrogen bonds were found to decrease from 0.746 and 4.133g/L to 0.397 and 2.733g/L, respectively, as the temperature increased from 25 to 90°C. Moreover, the free SH content remarkably decreased from 37.91 to 19.79μmol/g during gelation. Ultraviolet absorption spectra and intrinsic fluorescence spectra suggested that wheat gluten unfolded during the heating process. In addition, wheat gluten gels treated at 80 and 90°C exhibited a "steric hindrance" effect, which can be attributed to the formation of aggregates. Fourier transform infrared spectra suggested that the random coil content increased at low temperatures (40 and 50°C), whereas the content of intermolecular β-sheets due to protein aggregation increased from 38.10% to 44.28% when the gelation temperature was 90°C. PMID:27507490

  2. Chemical protection against life shortening and radio-induced leukemias and cancers

    International Nuclear Information System (INIS)

    The advantage gained on the long term survival and the induction of leukemias and cancers in mice exposed to a single dose of ionizing radiation by a combination of radiochemical protectors, are examined. The results show clearly that chemical protective compounds protect mice against radiation-induced life-shortening, They demonstrate also that the obtained protection was improved by combination of various protectors acting in a supplementary manner. The optimum dose reduction factor obtained was 1.5 for AET and about 2 for a mixture of 5 radioprotectors. These dose reduction factors are lower than those offered with these two treatments against the acute effects of ionizing radiation. In addition, the dose effect curve for the long term survival obtained for irradiated untreated mice and for mice treated with a mixture of radioprotectors are not parallel. Thus, the dose reduction factors vary with the X-ray dose administered. The best protection was achieved for X-ray doses from 500 to 1000 R. After an exposure to 100 R (BALB/c+ mice) and 350 R (C5781 mice) of X-rays, the total incidence of leukemias and cancers was significantly lower in treated irradiated mice than in non treated mice

  3. Characterisation of TiO 2 deposited by photo-induced chemical vapour deposition

    Science.gov (United States)

    Kaliwoh, Never; Zhang, Jun-Ying; Boyd, Ian W.

    2002-01-01

    We report the deposition of thin TiO 2 films on crystalline Si and quartz by photo-induced chemical vapour deposition (CVD) using UV excimer lamps employing a dielectric barrier discharge in krypton chloride (KrCl ∗) to provide intense narrow band radiation at λ=222 nm. The precursor used was titanium isopropoxide (TTIP). Films from around 20-510 nm in thickness with refractive indices from 2.20 to 2.54 were grown at temperatures between 50 and 350 °C. The higher refractive index values compare favourably with the value of 2.58 recorded for the bulk material. The measured deposition rate was around 50 nm/min at 350 °C. Fourier transform infrared spectroscopy (FTIR) revealed the presence of TiO 2 through the observation of a Ti-O absorption peak and the absence of OH in films deposited at 250-350 °C indicated relatively good quality films. The phase of films deposited at 200-350 °C was anatase as determined by X-ray diffraction.

  4. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    Science.gov (United States)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  5. Methods for targetted mutagenesis in gram-positive bacteria

    Science.gov (United States)

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  6. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids.

    OpenAIRE

    Nakabeppu, Yusaku; Sakumi, Kunihiko; Sakamoto, Katsumi; Tsuchimoto, Daisuke; Tsuzuki, Teruhisa; Nakatsu, Yoshimichi

    2006-01-01

    KEYWORDS CLASSIFICATION: adverse effects;Animals;chemistry;deficiency;DNA Damage;DNA Glycosylases;DNA Repair;DNA Repair Enzymes;Enzymes;genetics;Genomics;Guanine;Hydrolases;Intestinal Neoplasms;Japan;Liver Neoplasms;metabolism;mechanisms of carcinogenesis;Mice;Mutagenesis;Mutation;Neoplasms;Nucleic Acids;Oxidation-Reduction;Oxidative Stress;Phosphoric Monoester Hydrolases;Skin Neoplasms;Ultraviolet Rays.

  7. Insertional mutagenesis using Tnt1 retrotransposon in potato

    Science.gov (United States)

    Potato is the third most important food crop in the world. However, genetics and genomics research of potato has lagged behind many major crop species due to its autotetraploidy and a highly heterogeneous genome. Insertional mutagenesis using T-DNA or transposable elements, which is available in sev...

  8. In vitro mutagenesis for Alternaria resistance in sunflower (Helianthus annuus L.)

    International Nuclear Information System (INIS)

    An attempt was made to find out the possibility of inducing variability for Alternaria leaf spot resistance in sunflower variety Morden through in vitro mutagenesis. The explant of Morden variety was subjected to callus induction. The callus was treated with appropriate chemical mutagen viz., EMS with concentration of 0.1%,0.2% and 0.3% and also with Alternaria toxin/culture filtrate concentration of 0.5%, 1.0%, 1.5%, 2.0% and 2.5%. The resistant calli would be regenerated. Virulent Alternaria helianthi sunflower pathotype toxin was used. In the present study, between the two auxins, NAA was observed as a potent auxin in enhancing the embryogenic callus induction (48.0 %). An enhanced callusing (82.1%) was observed in MS + B5 vitamins medium supplemented with NAA (1.5 mg/l) and BAP (1.0 mg/l). A week old embryogenic calli from MS + B5 vitamin + NAA (1.5 mg/l + BAP (1.0 mg/l), when cultured in BAP (1, 1.5 and 2.0 mg/l) containing MS + B5 vitamins medium showed greening response. Embryogenic calli turned greening / greening and browning when BAP was replaced by kinetin (1, 1.5 and 2.00 mg/l) containing MS + B5 vitamins. When Alternaria toxin was inoculated browning and blackening response of callus was observed irrespective of media composition and % concentration of EMS. In concluding, the mutated embryogenic calli with greening response when cultured with different concentration of Alternaria toxin for the combinations MS + B5 1.0 mg/l, MS + B5 + Kn 1.0 mg/l and MS + B5 1.0 mg/l + Kn 1.0 mg/l with 0.1% concentration of EMS produce no callus regeneration. This might be due to the fact that mutated embryogenic calli did not produce any virulent genetic modification for Alternaria resistance. (author)

  9. Role of RecA protein in untargeted UV mutagenesis of bacteriophage lambda: evidence for the requirement for the dinB gene

    International Nuclear Information System (INIS)

    Untargeted UV mutagenesis of bacteriophage lambda--i.e., the increased recovery of lambda mutants when unirradiated lambda infects UV-irradiated Escherichia coli--is thought to be mediated by a transient decrease in DNA replication fidelity, generating mutations in the newly synthesized strands. Using the bacteriophage lambda cI857----lambda c mutation system, we provide evidence that the RecA protein, shown previously to be required for this mutagenic pathway, is no longer needed when the LexA protein is inactivated by mutation. We suggest that the error-prone DNA replication responsible for UV-induced untargeted mutagenesis is turned on by the presence of replication-blocking lesions in the host cell DNA and that the RecA protein is required only to derepress the relevant din gene(s). This is in contrast to mutagenesis of irradiated bacteria or irradiated phage lambda, in which activated RecA protein has a second role in mutagenesis in addition to the cleavage of the LexA protein. Among the tested din genes, the dinB gene product (in addition to the uvrA and uvrB gene products) was found to be required for untargeted mutagenesis of bacteriophage lambda. To our knowledge, a phenotype associated with the dinB gene has not been reported previously

  10. Chemical speciation of chlorine in atmospheric aerosol samples by high-resolution proton induced X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Chlorine is a main elemental component of atmospheric particulate matter (APM). The knowledge of the chemical form of chlorine is of primary importance for source apportionment and for estimation of health effects of APM. In this work the applicability of high-resolution wavelength dispersive proton induced X-ray emission (PIXE) spectroscopy for chemical speciation of chlorine in fine fraction atmospheric aerosols is studied. A Johansson-type crystal spectrometer with energy resolution below the natural linewidth of Cl K lines was used to record the high-resolution Kα and Kβ proton induced spectra of several reference Cl compounds and two atmospheric aerosol samples, which were collected for conventional PIXE analysis. The Kα spectra which refers to the oxidation state, showed very minor differences due to the high electronegativity of Cl. However, the Kβ spectra exhibited pronounced chemical effects which were significant enough to perform chemical speciation. The major chlorine component in two fine fraction aerosol samples collected during a 2010 winter campaign in Budapest was clearly identified as NaCl by comparing the high-resolution Cl Kβ spectra from the aerosol samples with the corresponding reference spectra. This work demonstrates the feasibility of high-resolution PIXE method for chemical speciation of Cl in aerosols. - Highlights: ► Chemical specation of Cl in aerosol samples by high resolution PIXE spectroscopy. ► Fine structure of Kα and Kβ lines of reference compounds and APM samples was given. ► Kα spectra were well aligned with each other confirming the same Cl oxidation state. ► Pronounced chemical effects were observed in the Kβ spectra. ► We showed that chemical speciation of Cl was possible on thin aerosol samples

  11. MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction

    NARCIS (Netherlands)

    Ahlqvist, K.J.; Leoncini, S.; Pecorelli, A.; Wortmann, S.B.; Ahola, S.; Forsstrom, S.; Guerranti, R.; Felice, C. De; Smeitink, J.; Ciccoli, L.; Hamalainen, R.H.; Suomalainen, A.

    2015-01-01

    Haematopoietic progenitor cells show special sensitivity to mitochondrial DNA (mtDNA) mutagenesis, which suggests that increased mtDNA mutagenesis could underlie anemias. Here we show that elevated mtDNA mutagenesis in mice with a proof-reading deficient mtDNA polymerase (PolG) leads to incomplete m

  12. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kazama Yusuke

    2011-11-01

    Full Text Available Abstract Background Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm-1 for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Results Dry Arabidopsis thaliana seeds were irradiated with carbon (C ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm-1 at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy and glabrous (gl and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm-1 and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. Conclusions The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection

  13. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, 30120 El Palmar, Murcia (Spain); Calaf, Joaquim [Servei de Ginecologia i Obstetricia, Hospital Universitari de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Martin, Miguel [Departament de Pediatria, d' Obstetricia i Ginecologia i de Medicina Preventiva, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Caldes, Montserrat Garcia [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)], E-mail: Montserrat.Garcia.Caldes@uab.es

    2008-04-02

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p {<=} 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p {<=} 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal

  14. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    International Nuclear Information System (INIS)

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p ≤ 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p ≤ 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal cells

  15. A novel room temperature-induced chemical etching (RTCE) technique for the enlargement of fission tracks in Lexan polycarbonate SSNTD

    Science.gov (United States)

    Chavan, Vivek; Kalsi, P. C.; Manchanda, V. K.

    2011-02-01

    The chemical or electrochemical etching is an essential step to enlarge the ion-induced latent tracks in solid state nuclear track detectors (SSNTDs). In these methods, above ambient temperatures (˜60 °C) and moderately high concentrations of alkali are required for about 1-2 h to enlarge the latent tracks. Microwave induced chemical etching method is reported to reduce the etching time for alpha tracks from 3 to 4 h to 25 min for CR-39 detector. In the present work, a room temperature-induced chemical etching employing ethanolamine as a new etchant has been investigated for the first time to enlarge the fission tracks in Lexan polycarbonate SSNTD. The tracks developed in the Lexan detectors etched at room temperature using ethanolamine are compared with those etched with routinely used chemical etching (CE) technique in 6 N NaOH at 60 °C. The bulk etch and track etch rates are also reported. The detection efficiency of RTCE method is determined and compared with that of CE method. The RTCE technique is found to be simple, fast and convenient.

  16. A novel room temperature-induced chemical etching (RTCE) technique for the enlargement of fission tracks in Lexan polycarbonate SSNTD

    Energy Technology Data Exchange (ETDEWEB)

    Chavan, Vivek [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kalsi, P.C., E-mail: pckalsi@barc.gov.i [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Manchanda, V.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2011-02-11

    The chemical or electrochemical etching is an essential step to enlarge the ion-induced latent tracks in solid state nuclear track detectors (SSNTDs). In these methods, above ambient temperatures ({approx}60 {sup o}C) and moderately high concentrations of alkali are required for about 1-2 h to enlarge the latent tracks. Microwave induced chemical etching method is reported to reduce the etching time for alpha tracks from 3 to 4 h to 25 min for CR-39 detector. In the present work, a room temperature-induced chemical etching employing ethanolamine as a new etchant has been investigated for the first time to enlarge the fission tracks in Lexan polycarbonate SSNTD. The tracks developed in the Lexan detectors etched at room temperature using ethanolamine are compared with those etched with routinely used chemical etching (CE) technique in 6 N NaOH at 60 {sup o}C. The bulk etch and track etch rates are also reported. The detection efficiency of RTCE method is determined and compared with that of CE method. The RTCE technique is found to be simple, fast and convenient.

  17. Genetic basis of mutagenesis and carcinogenesis

    International Nuclear Information System (INIS)

    This study aims to investigate the genes important for susceptibility to mutagens and carcinogens whether they be physical, chemical or biological agents; to identify, characterize and determine the chromosomal assignment of these genes; and to investigate the linkage relationships of homologous genes in man, mouse and other species. Comparative mapping data are used to extrapolate biological and biomedical data from laboratory animals to man. These studies are being pursued utilizing somatic cell hybrids for the genetic dissection of complex polygenic traits by isolating their component parts, and the determination of gene-chromosonal assignments due to preferential chromosome segregation

  18. Cytogenetic damages induced in vivo in human lymphocytes by environmental chemicals or radiation

    International Nuclear Information System (INIS)

    The importance of various environmental exposures has been evident in variation in cancer incidence and mortality. Benzene is considered to be a human carcinogen, is clastogenic to rodents and humans, and it affects the immune response. Workers in various industrial plants, are exposed to benzene and benzene related compounds as a result of various activities in which benzene is processed, generated or used. Major sources of environmental exposure to benzene related compounds, continue to be active and passive smoking, auto exhaust, and driving or riding in automobiles. Benzene is of a particular interest, not only because of its known toxicity, but also because this was to be the parent compound and a model for extensive programs of metabolism of a variety of aromatic chemicals. Ionizing radiation is an unavoidable physical agent that is presented in environment, and public opinion is well aware against radiation risk and strongly against it. The aim of the presentation was comparison between cytogenetic damages induced in vivo by environmental chemicals with those of radiation. Results from biomonitoring survey on genotoxicity in human blood cells of benzene and benzene related compounds were compared to damages detected in lymphocytes of persons who had been accidentally exposed to gamma radiation. In the groups, that had been occupationally or environmentally exposed to benzene related compound, total aberration frequencies, or percent of aberrant cells ranged between 0 - 0.16 aberrations/cell or 16% of aberrant cells respectively. A multivariate regression analysis confirmed: (i) a significant association between cytogenetic damage and exposure to benzene related compound, (ii) a possible association between cytogenetic damage and cancer, (iii) a significant influence of smoking habit. In 1996 few persons were suspected of accidental exposure to gamma radiation. To estimate the absorbed doses, lymphocytes from their blood have been analyzed for the presence of

  19. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Directory of Open Access Journals (Sweden)

    Melemedjian Ohannes K

    2008-03-01

    Full Text Available Abstract Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG, which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients.

  20. Combination of high-performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Philipp, M; Gervais, P-C; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A avenue de la faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W; Wehlack, C [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany); Kieffer, J, E-mail: ulrich.mueller@uni.l [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI (United States)

    2010-08-15

    A combination of infrared spectroscopy and high-performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight into the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, an unexpected excess polarizability observed during the gelation is attributed to cooperative dipole-dipole interactions.

  1. Stress-induced chemical detection using flexible metal-organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  2. Direct spatiotemporal analysis of femtosecond laser-induced plasma-mediated chemical reactions

    International Nuclear Information System (INIS)

    Localized, micron to millimetre-scale plasmas resulting from the fleeting interaction between ultrashort laser pulses and matter have been studied extensively in inert atmospheres. In spite of recent interest in reactive plasmas as a nanofabrication tool, ultrashort pulsed laser ablation in reactive gas atmospheres has undergone little study. In this study, we develop a methodology combining time-resolved optical emission spectroscopy and spectrally filtered time-gated fast photography to directly observe and analyse plasma-mediated chemical reactions that occur when laser ablation is performed in reactive gases. Specifically, we compare the ablation of silicon dioxide in an atmosphere of xenon difluoride gas to its ablation in nitrogen and xenon atmospheres. We show that when xenon difluoride molecules are collisionally driven into an excited state by the silicon plasma produced during laser-induced decomposition of the solid substrate, the gas undergoes dissociation. The resulting fluorine radicals react spontaneously with the silicon plasma to produce volatile fluorinated silicon compounds. In particular, mass spectroscopy shows that the primary reaction byproduct is SiF2 with small amounts of SiF and SiF4. The high spatial and temporal resolution of our methodology reveals a slowly expanding plume having an atomic silicon core with a XeF∗ shell that persists for less than 300 ns. As the silicon is fluorinated, the optical emission due to excited silicon is quenched. The absence of a silicon signal after 300 ns establishes this as the upper limit of the reaction lifetime given the conditions of the experiment. (letter)

  3. Mutagenesis in sunflower (Helianthus annuus L.) breeding

    International Nuclear Information System (INIS)

    Seeds of two inbred lines, one with a low, the other with a medium seed oil content, were treated with gamma rays. Plant damage in M1 was observed as well as a decrease in germination and a reduction in plant height. During plant development, deviations were observed in the leaves, petioles, branches and heads. Earliness, plant height and branching patterns were observed in the M2 generation. A considerable variation in breeding is necessary to increase the oil yield. This depends on several quantitative components. Preliminary data in M2 show that changes were induced; screening is continuing. (author). 8 refs, 5 tabs

  4. Sister chromatid exchanges in the bone marrow cells of in vivo rats induced by gamma radiation and chemical mutagens

    International Nuclear Information System (INIS)

    Sister chromatid exchanges (SCE) in the bone marrow of in vivo rats induced by gamma radiation doses and by the chemical mutagens, mitomycin C (MMC), cyclophosphamide (CP), and sulphonate-methylmethane (SMM), were studied. The purpose was to evaluate the sensitivity and reproducibility of a simplified SCE in vivo detecting system developed in our laboratory and to compare the results obtained with those reported elsewhere. Simplification consisted in administering the amounts of 5-bromo-2'-deoxyuridine (BrdU) necessary to observe the SCE, after first adsorbing the BrdU in activated carbon and then injecting it interperitoneally, into the rats. The results were a longer time in vivo ADN incorporation without convulsions in the rats, and a reduction in the time course as compared to other methods. We observed a basal rate of 3.6+-0.37 SCE/cell and that: 0.44 Gy of gamma radiation induced 7.7+-0.73 SCE/cell; 1.6 μg/g of MMC induced 8.1+-1.20 SCE/cell; 5 μg/g of CP induced 8.25+-1.5 SCE/cell, 40 μg/g of SMM induced 22.0+-5 SCE/cell and 380 μg/g of sulphonate-ethylmethane induced 8.6+-1.2 SCE/cell. This showed that all the agents were capable of inducing SCE in the bone marrow cells of rats in vivo under our conditions. We noted a greater induced efficiency for gamma radiation than the obtained by other investigators and a relatively similar efficiency in the case of chemical mutagens as reported in other studies. (author)

  5. Mechanisms of mutagenesis and DNA repair

    International Nuclear Information System (INIS)

    The research deals with mechanisms of excision repair in Escherichia coli exposed to chemicals or ultraviolet (uv) radiation. During the past year attention has been focused on the incision proteins that initiate removal of pyrimidine dimers, benzo[a]pyrene adducts, and other bulky lesions from DNA. The product of the E. Coli uvrD gene was isolated and shown to be important in mediating closure of single strand DNA breaks promoted by the incision complex coded for by the uvrA, uvrB, and uvrC gene products. This suggests that the uvrD gene product (now known to be a helicase) is necessary either for dislodging the incision complex from the nicked DNA or for preparing a DNA primer-template configuration suitable for proper repair resynthesis

  6. A mutagenesis-derived broad-spectrum disease resistance locus in wheat.

    Science.gov (United States)

    Campbell, Jackie; Zhang, Hongtao; Giroux, Michael J; Feiz, Leila; Jin, Yue; Wang, Meinan; Chen, Xianming; Huang, Li

    2012-07-01

    Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. Breeding durable disease resistance cultivars rely largely on continually introgressing new resistance genes, especially the genes with different defense mechanisms, into adapted varieties. Here, we describe a new resistance gene obtained by mutagenesis. The mutant, MNR220 (mutagenesis-derived new resistance), enhances resistance to three rusts and powdery mildew, with the characteristics of delayed disease development at the seedling stage and completed resistance at the adult plant stage. Genetic analysis demonstrated that the resistance in MNR220 is conferred by a single semidominant gene mapped on the short arm of chromosome 2B. Gene expression profiling of several pathogenesis-related genes indicated that MNR220 has an elevated and rapid pathogen-induced response. In addition to its potential use in breeding for resistance to multiple diseases, high-resolution mapping and cloning of the disease resistance locus in MNR220 may lead to a better understanding of the regulation of defense responses in wheat. PMID:22446929

  7. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

    Science.gov (United States)

    Rochman, Chelsea M.; Hoh, Eunha; Kurobe, Tomofumi; Teh, Swee J.

    2013-01-01

    Plastic debris litters aquatic habitats globally, the majority of which is microscopic (Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants. PMID:24263561

  8. Exact Solution to the Extended Zwanzig Model for Quasi-Sigmoidal Chemically Induced Denaturation Profiles: Specific Heat and Configurational Entropy

    OpenAIRE

    Aguilar-Pineda, G. E.; Olivares-Quiroz, L.

    2014-01-01

    Temperature and chemically induced denaturation comprise two of the most characteristic mechanisms to achieve the passage from the native state N to any of the unstructured states Dj in the denatured ensemble in proteins and peptides. In this work we present a full analytical solution for the configurational partition function qs of a homopolymer chain poly-X in the extended Zwanzig model (EZM) for a quasisigmoidal denaturation profile. This solution is built up from an EZM exact solution in...

  9. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    Science.gov (United States)

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  10. Synthetic chemical inducers and genetic decoupling enable orthogonal control of the rhaBAD promoter

    DEFF Research Database (Denmark)

    Kelly, Ciarán L; Liu, Zilei; Yoshihara, Akihide;

    2016-01-01

    External control of gene expression is crucial in synthetic biology and biotechnology research and applications, and is commonly achieved using inducible promoter systems. The E. coli rhamnose-inducible rhaBAD promoter has properties superior to more commonly-used inducible expression systems, but......BAD expression system revealed several promising inducers. These were characterised further to determine the strength, kinetics and concentration-dependence of induction; whether the inducer was used as a carbon source by E. coli; and the modality (distribution) of induction among populations of cells. L...

  11. A comparison of the chemical and liver extract-induced hepatic differentiation of adipose derived stem cells.

    Science.gov (United States)

    Nhung, Truong Hai; Nam, Nguyen Hai; Nguyen, Nguyen Thi Kim; Nghia, Huynh; Van Thanh, Nguyen; Ngoc, Phan Kim; Van Pham, Phuc

    2015-11-01

    Adipose-derived stem cells (ADSCs) have been put forward as promising therapeutics for end-stage liver disease (ESLD). In the present study, we compared the effects of defined chemicals and liver extract on the hepatic differentiation of ADSCs. ADSCs were isolated according to the method described in our previously published study. Subsequently, the differentiation of ADSCs was induced separately by chemicals (including hepatic growth factor (HGF), fibroblast growth factor (FGF), and oncostatin M (OSM)) and liver extract (30 μg/ml) in a total period of 21 d. The efficiency of hepatic differentiation was evaluated by changes in the cell morphology, gene expression, and cellular function. The results showed that the liver extract promoted the hepatic differentiation of ADSCs to a significantly greater extent than the chemicals. In the group of ADSCs treated with liver extract, changes in the cell morphology began sooner, and the expression of alpha-FP and albumin genes was higher than that in the chemically treated group. The ADSCs in both the groups stained positive for anti-alpha trypsin (AAT) and albumin markers. The cells also exhibited glycogen storage capacity. Therefore, we concluded that the liver extract could efficiently induce the differentiation of ADSCs into hepatocyte-like cells. This study reveals the potential of mesenchymal stem cell differentiation in the liver extract, which supports further preclinical and clinical research on the application of ADSCs in ESLD treatment. PMID:26275888

  12. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases

    Directory of Open Access Journals (Sweden)

    Kentaro Ishida

    2015-10-01

    Full Text Available Programmable nucleases, such as zinc finger nucleases (ZFNs, transcription activator like effector nucleases (TALENs, and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9, hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9.

  13. Molecular techniques as complementary tools in orchid mutagenesis

    International Nuclear Information System (INIS)

    Orchid breeders have always been dependent on hybridization technology to produce new orchid hybrids and varieties. The technology has proven very reliable and easy to use and has produced wide range of successful cultivars with attractive combinations of spray length, bud number, flower colour and form, vase life, fragrance, seasonality, and compactness. By introducing mutagenesis however, wide variations of flower colours, form and size can still be obtained in addition to overcoming the problem of sexual incompatibility and sterility. In addition, complementary use of molecular techniques will allow breeders to target more specific characteristic changes and cut short breeding time. PCR-based techniques used to analyse the DNA of mutagenic clones found polymorphic fragments that can be developed as molecular markers. This paper describes how mutagenesis and molecular techniques can be used to enhance orchid breeding efforts. (author)

  14. Noise-induced multistability in chemical systems: Discrete versus continuum modeling

    Czech Academy of Sciences Publication Activity Database

    Duncan, A.; Liao, S.; Vejchodský, Tomáš; Erban, R.; Grima, R.

    2015-01-01

    Roč. 91, č. 4 (2015), s. 042111. ISSN 1539-3755 EU Projects: European Commission(XE) 328008 - STOCHDETBIOMODEL Institutional support: RVO:67985840 Keywords : chemical master equation * chemical Fokker-Planck equation * multimodality Subject RIV: BA - General Mathematics Impact factor: 2.288, year: 2014 http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042111

  15. Studies in neutron mutagenesis in maize

    International Nuclear Information System (INIS)

    Pollen grains of Bz strain of maize were exposed to 14 MeV neutrons with single or fractionated treatments, and pollinated on the recessive stock. Mutation frequency from Bz to bz was observed after harvest of F1 seeds. No clear difference in the mutation frequencies between single and fractionation series was observed. To investigate the effects of water content upon mutation frequency of neutron and gamma-rays, seeds heterozygous for the Yq2-gene were used. Moisture-stabilized (13%) seeds and seeds steeped in water for 24 hrs were exposed to neutrons or to gamma-rays, and mutation from Yq2 to yq2 was detected as color change green to yellow-green in the seedlings. In the gamma-ray treatments, the mutation frequency of wet seeds was about 1.5 times higher than that of corresponding lot of dry seeds. In the neutron treatment, on the other hand, no clear difference in frequency between wet and dry seeds was observed. It may be concluded that no change or no recovery in neutron-induced mutation was observed not only in the fractionation treatment but also in the dry and wet seeds treatments. (author)

  16. Mutagenesis of hibiscus rosa-sinensis

    International Nuclear Information System (INIS)

    Mutation induction is an alternative method to create more variation in Hibiscus rosa-sinensis. Radiosensitivity test was carried out to determine the effective doses for irradiation of stem cuttings. Stem cuttings of Hibiscus rosa-sinensis were irradiated at 10, 20, 30 and 60 Gy using a gamma cell with a Co-60 source at a dose rate of 1.66 Gys-1. Irradiated stem cuttings were planted in sand-beds and data on the number of growing shoots were taken. Increasing gamma ray doses resulted in a reduction of growing shoots on the irradiated stem cuttings. It was shown that the LD50 for the stem cuttings was 36.2 Gy and at 75% growth was 17.15 Gy. Based on these results, 20 to 30 Gy were chosen for irradiation of the stem cuttings to induce mutation in Hibiscus rosa-sinensis. Irradiated stem cuttings were then planted into sand-beds for rooting. After one month, the rooted stems were transferred into polybags and allowed to grow under 70% shade provided by plastic netting and the variants were subsequently observed. Three variants with variation in flower shapes and colours were obtained. (Author)

  17. B-lymphocytes as key players in chemical-induced asthma.

    Directory of Open Access Journals (Sweden)

    Vanessa De Vooght

    Full Text Available T-lymphocytes and B-lymphocytes are key players in allergic asthma, with B-lymphocytes producing antigen-specific immunoglobulins E (IgE. We used a mouse model of chemical-induced asthma and transferred B-lymphocytes from sensitized animals into naïve wild type mice, B-lymphocyte knock-out (B-KO mice or severe combined immunodeficiency (SCID mice. On days 1 and 8, BALB/c mice were dermally sensitized with 0.3% toluene diisocyanate (TDI (20 µl/ear. On day 15, mice were euthanized and the auricular lymph nodes isolated. B-lymphocytes (CD19(+ were separated from the whole cell suspension and 175,000 cells were injected in the tail vein of naïve wild type, B-KO or SCID mice. Three days later, the mice received a single oropharyngeal challenge with 0.01% TDI (20 µl or vehicle (acetone/olive oil (AOO (controls. Airway reactivity to methacholine and total and differential cell counts in the bronchoalveolar lavage (BAL fluid were measured 24 hours after challenge. B-lymphocytes of AOO or TDI-sensitized mice were characterized for the expression of surface markers and production of cytokines. We found that transfer of B-cells obtained from mice dermally sensitized to toluene diisocyanate (TDI into naïve wild type mice, B-KO mice or SCID mice led, within three days, to an acute asthma-like phenotype after an airway challenge with TDI. This response was specific and independent of IgE. These B-lymphocytes showed antigen presenting capacities (CD80/CD86 and CD40 and consisted of B effector (Be2- (IL-4 and Be1-lymphocytes (IFN-γ. The transferred B-lymphocytes were visualized near large airways, 24 hours after TDI challenge. Thus, B-lymphocytes can provoke an asthmatic response without the action of T-lymphocytes and without major involvement of IgE.

  18. Photodynamic action of methylene blue: mutagenesis and synergism

    International Nuclear Information System (INIS)

    The associated mutagenesis and the interactions with physical agents in order to potencialize its biological effects are studied. The induction of mutation in bacterias due to photodynamic action of methylene blue is presented as well as the induction of single breaks in bacterial DNA and the relationship between the repair systems, especially the SOS one. The interaction of the photodynamic therapy with low intensity electric current is discussed. (M.A.C.)

  19. Permeability Enhancement in Fine-Grained Sediments by Chemically Induced Clay Fabric Shrinkage

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A M; Kansa, E J; Viani, B E; Blake, R G; Roberts, J J; Huber, R D

    2004-02-26

    The National Research Council [1] identified the entrapment of contaminants in fine-grained clay-bearing soils as a major impediment to the timely and cost-effective remediation of groundwater to regulatory standards. Contaminants trapped in low-permeability, low-diffusivity, high-sorptivity clays are not accessible to advective flushing by treatment fluids from permeable zones, and slowly diffuse out to recontaminate previously cleaned permeable strata. We propose to overcome this barrier to effective remediation by exploiting the ability of certain nontoxic EPA-approved chemicals (e.g., ethanol) to shrink and alter the fabric of clays, and thereby create macro-porosity and crack networks in fine-grained sediments. This would significantly reduce the distance and time scales of diffusive mass transport to advectively flushed boundaries, to yield orders of magnitude reduction in the time required to complete remediation. Given that effective solutions to this central problem of subsurface remediation do not yet exist, the cost and time benefits of successful deployment of this novel concept, both as a stand-alone technology and as an enabling pre-treatment for other remedial technologies that rely on advective delivery, is likely to be very large. This project, funded as a 1-year feasibility study by LLNL's LDRD Program, is a multi-directorate, multi-disciplinary effort that leverages expertise from the Energy & Environment Directorate, the Environmental Restoration Division, and the Manufacturing & Materials Evaluation Division of Mechanical Engineering. In this feasibility study, a ''proof-of-principle'' experiment was performed to answer the central question: ''Can clay shrinkage induced by ethanol in clay-bearing sediments overcome realistic confining stresses, crack clay, and increase its effective permeability by orders of magnitude within a time that is much smaller than the time required for diffusive mass transport of

  20. W-reactivation and W-mutagenesis in bacteriophages lambda and T7: comparison of action of ultraviolet irradiation (254nm) and furocouma photosensitization

    International Nuclear Information System (INIS)

    When treating bacteriophage lambda with 8-methoxypsoralen (8-MOP) and light (lambda>320 nm), two types of photoproducts are formed in DNA: monoadducts and diadducts or interstrand linkings. If a wild-type strain of Escherichia coli is used as horst, W-reactivation and W-mutagenesis (clear-mutation), approximately equal in magnitude to those of UV-irradiated phage lambda, are observed in the bacteriophage lambda treated with 8-MOP plus light. If mutant strains E coli uvrA-, recA- and lexA- are used as host W-reactivation and W-mutagenesis practically do not occur in phage lambda. Using the method of ''reirradiation'', it is shown that clear-mutations in 8-MOP plus light treated phage lambda are induced in the process of W-mutagenesis mainly due to the formation of diadducts (interstrand linking) in DNA. In the phage monoadducts of derived furocoumarins also have a mutageneous character but their mutagenesis effectiveness (mutation probability calculating on one photo product) is significantly inferior to that of diadducts (approximately 15-20 times). It has been demonstrated in the experiments on the determination of W-mutagenesis of phage lambda photosensitized with angelisine - an angular derivative of furocoumarins - that mainly formi monoadducts in DNA. It is also shown that W-reactivation and W-mutagenesis effects are observed when sowing UV-irradiated (254 nm) phage lambda on E coli uvrA- and wild-type strains treated with 8-MOP plus light. As to bacteriophage T7 treated with 8-MOP plus light, W-reactivation is not observed even on a wild strain E coli. Preliminary infection of cells with phage T7 that has been strongly inactivated using photosensitizer 8-MOP decreases repair's effectiveness of interstrand linkings in DNA of phage lambda

  1. Effect of chronic administration of green tea extract on chemically induced electrocardiographic and biochemical changes in rat heart

    Directory of Open Access Journals (Sweden)

    Patil Leena

    2010-01-01

    Full Text Available Many chemicals induce cell-specific cytotoxicity. Chemicals like doxorubicin induce oxidative stress leading to cardiotoxicity causing abnormalities in ECG and increase in the biomarkers indicating toxicity. Green tea extract (GTE, Camellia sinensis (Theaceae, is reported to exert antioxidant activity mainly by means of its polyphenolic constituent, catechins. Our study was aimed to find out the effect of GTE (25, 50, 100 mg/kg/day p.o. for 30 days on doxorubicin-induced (3 mg/kg/week, i.p. for 5 weeks electrocardiographic and biochemical changes in rat heart. It is observed that GTE administered rats were less susceptible to doxorubicin-induced electrocardiographic changes and changes in biochemical markers like lactate dehydrogenase (LDH, creatine kinase (CK, and glutamic oxaloacetate transaminase (GOT in serum, and superoxide dismutase (SOD, catalase (CAT and reduced glutathione (GSH, membrane bound enzymes like Na + K + ATPase, Ca 2+ ATPase, Mg 2+ ATPase and decreased lipid peroxidation (LP in heart tissue, indicating the protection afforded by GTE administration.

  2. Mutagenesis and lethality following S phase irradiation of xeroderma pigmentosum and normal human diploid fibroblasts with ultraviolet light

    International Nuclear Information System (INIS)

    The mutagenic and lethal effects of u.v. light exposure in the DNA synthetic phase of the cell cycle were determined in xeroderma pigmentosum complementation group A (XP-A), hereditary adenomatosis of the colon and rectum (ACR), and a normal, foreskin derived cell strain (AG1522). For AG1522, an increased sensitivity to the cytotoxic effects of u.v. light was observed as compared to previous findings for confluent, non-proliferating cultures. XP-A fibroblasts were markedly hypersensitive and ACR fibroblasts exhibited an intermediate response. The mutagenic response of ACR fibroblasts, however, was similar to normal fibroblasts. A threshold of 1.5-2 J/m2 was observed for u.v. induced mutagenesis in normal and ACR fibroblasts. XP fibroblasts, on the other hand, were strikingly hypermutable and demonstrated little or no threshold. When S phase mutagenesis was considered as a function of survival level rather than u.v. light dose, XP fibroblasts remained significantly hypermutable as compared with normal fibroblasts at all survival levels. Previous mutagenesis results with confluent, non-proliferating cultures of XP and normal fibroblasts were reanalyzed as a function of cytotoxicity; XP hypermutability at all survival levels was also observed. (author)

  3. SOMA: a single oligonucleotide mutagenesis and cloning approach.

    Directory of Open Access Journals (Sweden)

    Thorsten Pfirrmann

    Full Text Available Modern biology research requires simple techniques for efficient and restriction site-independent modification of genetic material. Classical cloning and mutagenesis strategies are limited by their dependency on restriction sites and the use of complementary primer pairs. Here, we describe the Single Oligonucleotide Mutagenesis and Cloning Approach (SOMA that is independent of restriction sites and only requires a single mutagenic oligonucleotide to modify a plasmid. We demonstrate the broad application spectrum of SOMA with three examples. First, we present a novel plasmid that in a standardized and rapid fashion can be used as a template for SOMA to generate GFP-reporters. We successfully use such a reporter to assess the in vivo knock-down quality of morpholinos in Xenopus laevis embryos. In a second example, we show how to use a SOMA-based protocol for restriction-site independent cloning to generate chimeric proteins by domain swapping between the two human hRMD5a and hRMD5b isoforms. Last, we show that SOMA simplifies the generation of randomized single-site mutagenized gene libraries. As an example we random-mutagenize a single codon affecting the catalytic activity of the yeast Ssy5 endoprotease and identify a spectrum of tolerated and non-tolerated substitutions. Thus, SOMA represents a highly efficient alternative to classical cloning and mutagenesis strategies.

  4. Bacterial Cell Wall-Induced Arthritis: Chemical Composition and Tissue Distribution of Four Lactobacillus Strains

    OpenAIRE

    Šimelyte, Egle; Rimpiläinen, Marja; Lehtonen, Leena; Zhang, Xiang; Toivanen, Paavo

    2000-01-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls...

  5. Induced mutations in chickpea (Cicer arietinum L.) I. comparative mutagenic effectiveness and efficiency of physical & chemical mutagens

    International Nuclear Information System (INIS)

    Mutagenic effectiveness usually means the rate of mutation as related to dose. Mutagenic efficiency refers to the mutation rate in relation to damage. Studies on comparative mutagenic effectiveness and efficiency of two physical (gamma rays and fast neutrons) and two chemical mutagens (NMU and EMS) on two desi (G 130 & H 214), one kabuli (C 104) and one green seeded (L 345) chickpea (Cicer arietinum L.) have been reported. The treatments included three doses each of gamma rays (400, 500 and 600 Gy) and fast neutrons (5, 10 and 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU 0.01% 20h and 0.02% 8h) and EMS (0.1% 20h and 0.2% 8h). Results indicated that chemical mutagens, particularly NMU are not only more effective but also efficient than physical mutagens in inducing mutations in chickpea. Mutagenic effectiveness and efficiency showed differential behaviour depending upon mutagen and varietal type. Chemical mutagens were more efficient than physical in inducing cholorophyll as well as viable and total number of mutations. Among the mutagens NMU was the most potent, while in the physical, gamma rays were more effective. Out of four mutagens, NMU was the most effective and efficient in inducing a high frequency and wide spectrum of chlorophyll mutations in the M2 followed by fast neutrons. While gamma rays showed least effectiveness, EMS was least efficient mutagens. Major differences in the mutagenic response of the four cultivars were observed. The varieties of desi type were more resistant towards mutagenic treatment than kabuli and green seeded type

  6. Aflatoxin B1: Mechanism of mutagenesis

    Directory of Open Access Journals (Sweden)

    Regina M. Santella

    2007-02-01

    Full Text Available

    Aflatoxins are a group of toxic and carcinogenic fungal metabolites that frequently contaminate corn, peanuts and other products. Aflatoxin B1 (AFB1, the most potent of these, is metabolized by the cytochrome P450 system into a number of hydroxylated metabolites and glutathione conjugates in the process of conversion to more hydrophilic forms for urinary excretion. Unfortunately, one of these metabolites is the aflatoxin-8,9-epoxide that is produced in two forms, endo and exo. Glutathione S-transferases (GST are able to conjugate and detoxify this reactive intermediate. Species differences in susceptibility to the effects of AFB1 are partially related to differences in expression of specific GSTs that are able to conjugate the epoxide to glutathione. The exo epoxide is able to intercalate into DNA and this is followed by reaction of the C8 position of the epoxide with the N7 position of guanine.

    NMR studies of oligonucleotide duplexes containing the adduct have demonstrated that the adduct exists with the aromatic portion intercalated on the 5' face of the guanine residue with Watson-Crick base pairing maintained.

    However, this covalent adduct is chemically unstable due to the charge on the ribose ring. As a result, the guanine can be released from the DNA leaving an apurinic site. This released guanine adduct can be detected in the urine and serves as a biomarker of exposure to AFB1. Alternatively, the ribose ring opens forming a stable formamidopyrimidine (FAPY adduct. This adduct somewhat stabilizes the DNA duplex. Time course studies in animals have demonstrated that the N7 adduct is rapidly removed, probably because it causes more distortion in the helix, while the FAPY adduct is more

  7. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  8. Heterologous Overexpression and Mutagenesis of the Human Bile Salt Export Pump (ABCB11) Using DREAM (Directed REcombination-Assisted Mutagenesis)

    OpenAIRE

    Jan Stindt; Philipp Ellinger; Claudia Stross; Verena Keitel; Dieter Häussinger; Smits, Sander H. J.; Ralf Kubitz; Lutz Schmitt

    2011-01-01

    Homologous recombination in Saccharomyces cerevisiae is a well-studied process. Here, we describe a yeast-recombination-based approach to construct and mutate plasmids containing the cDNA of the human bile salt export pump (BSEP) that has been shown to be unstable in E. coli. Using this approach, we constructed the necessary plasmids for a heterologous overexpression of BSEP in the yeast Pichia pastoris. We then applied a new site-directed mutagenesis method, DREAM (Directed REcombination-Ass...

  9. Literature survey of chemical analysis by thermal neutron induced capture gamma ray spectrometry

    International Nuclear Information System (INIS)

    A brief discussion of the principles and techniques of chemical analysis by neutron capture gamma radiation is presented, and the widely scattered literature is collected into a single table arranged by element measured

  10. The breeding of wheat variety 'Xifu No12' by mutagenesis

    International Nuclear Information System (INIS)

    A new wheat strain 95 γ-728 with characters of medium-short stalk, large ear, heavier grain and good quality was bred by a dry hybrid seed treatment of 60Co γ-ray irradiation. The dry hybrid seeds for the treatment were from a cross of two mutants induced by physical and chemical mutagens in 1995. The strain was tested and approved by 'Sichuan Crops Variety Examining and Approving Committee' in October 2003, and named as 'Xifu NO.12'. Course of breeding, Characteristics and yield of 'Xifu NO.12' were introduced in this paper. (authors)

  11. Characterization of nonpolar lipids and steroids by using laser-induced acoustic desorption/chemical ionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z; Daiya, S; Kenttämaa, Hilkka I

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H{sub 2}O){sup +} chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H{sub 2}O) upon reaction with the ClMn(H{sub 2}O){sup +} ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H{sub 2}O ions, but less abundant adduct-2H{sub 2}O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusively the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H{sub 2}O){sup +} chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids.

  12. Chemical gastritis induced by naproxen in the absence of Helicobacter pylori infection.

    OpenAIRE

    McCarthy, C J; McDermott, M.; Hourihane, D; O'MORAIN, C

    1995-01-01

    AIM--To evaluate the histological changes that occur in the antral mucosa of healthy male subjects before and after one week of naproxen administration, using a chemical gastritis score according to the Helicobacter pylori status. METHODS--Nineteen male subjects (mean age 31 years) underwent two endoscopies: one before and the other after one week of naproxen treatment (1 g daily). Antral biopsy specimens were assessed for the presence of H pylori infection and for chemical gastritis, defined...

  13. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

    OpenAIRE

    Rochman, Chelsea M; Eunha Hoh; Tomofumi Kurobe; Teh, Swee J

    2013-01-01

    Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine ...

  14. Utilization of experimental mutagenesis to create high protein forms of field beans

    International Nuclear Information System (INIS)

    To induce mutation variations F1, F2 and F3 seeds of the crossing Prelom and Tyrnovo 13 are utilized. Just before the sowing the seeds are treated independently or in combination with gamma rays (Cs 137) and ethylmethanesulfonate (EMS) solutions. It is established that the treatment of the seeds with mutagenes favours the variability in increasing of the protein content in the hybrid population. Highest number of transgressive forms characterized by both high protein content and good productivity is createdby the combined ttreatment of F2 seeds with gamma-rays and 0.15% EMS. The application of the hybridization and the experimental mutagenesis resulted in the creation of eleven lines characterized by protein content more than 28%. 8 refs., 3 tabs. (author)

  15. Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System

    Directory of Open Access Journals (Sweden)

    Andrew R. Bassett

    2013-07-01

    Full Text Available Here, we present a simple and highly efficient method for generating and detecting mutations of any gene in Drosophila melanogaster through the use of the CRISPR/Cas9 system (clustered regularly interspaced palindromic repeats/CRISPR-associated. We show that injection of RNA into the Drosophila embryo can induce highly efficient mutagenesis of desired target genes in up to 88% of injected flies. These mutations can be transmitted through the germline to make stable lines. Our system provides at least a 10-fold improvement in efficiency over previously published reports, enabling wider application of this technique. We also describe a simple and highly sensitive method of detecting mutations in the target gene by high-resolution melt analysis and discuss how the new technology enables the study of gene function.

  16. Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid tumor formation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Maura McGrail

    Full Text Available Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700-6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.

  17. 5-Azacytidine Enhances the Mutagenesis of HIV-1 by Reduction to 5-Aza-2'-Deoxycytidine.

    Science.gov (United States)

    Rawson, Jonathan M O; Daly, Michele B; Xie, Jiashu; Clouser, Christine L; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Kim, Baek; Patterson, Steven E; Mansky, Louis M

    2016-04-01

    5-Azacytidine (5-aza-C) is a ribonucleoside analog that induces the lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1) by causing predominantly G-to-C transversions during reverse transcription. 5-Aza-C could potentially act primarily as a ribonucleotide (5-aza-CTP) or as a deoxyribonucleotide (5-aza-2'-deoxycytidine triphosphate [5-aza-dCTP]) during reverse transcription. In order to determine the primary form of 5-aza-C that is active against HIV-1, Illumina sequencing was performed using proviral DNA from cells treated with 5-aza-C or 5-aza-dC. 5-Aza-C and 5-aza-dC were found to induce highly similar patterns of mutation in HIV-1 in terms of the types of mutations observed, the magnitudes of effects, and the distributions of mutations at individual sequence positions. Further, 5-aza-dCTP was detected by liquid chromatography-tandem mass spectrometry in cells treated with 5-aza-C, demonstrating that 5-aza-C was a substrate for ribonucleotide reductase. Notably, levels of 5-aza-dCTP were similar in cells treated with equivalent effective concentrations of 5-aza-C or 5-aza-dC. Lastly, HIV-1 reverse transcriptase was found to incorporate 5-aza-CTPin vitroat least 10,000-fold less efficiently than 5-aza-dCTP. Taken together, these data support the model that 5-aza-C enhances the mutagenesis of HIV-1 primarily after reduction to 5-aza-dC, which can then be incorporated during reverse transcription and lead to G-to-C hypermutation. These findings may have important implications for the design of new ribonucleoside analogs directed against retroviruses. PMID:26833151

  18. AKT1E17K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer

    Science.gov (United States)

    Malanga, Donatella; Belmonte, Stefania; Colelli, Fabiana; Scarfò, Marzia; De Marco, Carmela; Oliveira, Duarte Mendes; Mirante, Teresa; Camastra, Caterina; Gagliardi, Monica; Rizzuto, Antonia; Mignogna, Chiara; Paciello, Orlando; Papparella, Serenella; Fagman, Henrik; Viglietto, Giuseppe

    2016-01-01

    The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype. PMID:26859676

  19. Rat epidermal keratinocyte organotypic culture (ROC) as a model for chemically induced skin irritation testing

    International Nuclear Information System (INIS)

    The potential of rat epidermal keratinocyte (REK) organotypic culture (ROC) with proper stratum corneum barrier as a model for screening skin irritants was evaluated. The test chemicals were selected from ECETOC database (1995) and the observed in vitro irritation potential was compared to ECETOC in vivo primary irritation index (PII), to EU risk phrases, and to the harmonized OECD criteria. Chemicals were applied onto the stratum corneum surface of ROC for 30 min and samples were taken from the underlying medium at 4 and 8 h after exposure. Cell membrane integrity (determined by LDH assay) and pro-inflammatory effect (determined by IL-1α release) were verified at both time points and correlated to PII values. The best correlation (R 2 = 0.831) was seen with LDH leakage test. Based on obtained data, chemicals were classified according to criteria defined by EU and OECD. From 12 chemicals, only two were incorrectly classified according to OECD criteria when using LDH leakage and IL-1α release as irritation markers. At the end of experiment, chemical-treated ROC cultures were fixed and histological changes were assessed. Typical signs for irritation were lightly stained cytoplasm, condensed nuclei, cellular vacuolization, eosinophilic cytoplasms, and blebbing. These irritation effects of chemicals were graded visually into four classes (A-D). The extent of morphological perturbations of the cultures mostly correlated with PII. The present results indicate the validity of the ROC model in predicting skin irritation potential of chemicals and show that the use of set of irritation markers with different mechanistic responses gives more information on irritation than if only one marker was used

  20. Chromosome mutagenesis in populations of aquatic biota in the Black Sea, Aegean Sea and Danube and Dnieper rivers, 1986-1989

    International Nuclear Information System (INIS)

    We studied the level of structural mutagenesis in the reproductive and somatic cells of aquatic biota of various taxa from natural populations of neustic and benthic communities in the Black and Aegean Seas and the Dnieper and Danube rivers between 1986 and 1989. The cytogenetic research covered embryos, larvae and adult worms of Nereidae, Naididae, Tubificidae and Turbellaria, adult Sagitta setosa, young Bivalvia molluscs, embryos of Mysidacea, and growing roe of Engraulis encrasicholus, Sprattus sprattus, Diplodus annularis, Mullus barbatus, Trachurus trachurus, Scophthalmus maeoticus, Abramis brama, Blicca bjoerkna, Rutilus rutilus and Stizostedion lucioperca. It was established that aquatic biota in the open waters of the Black and Aegean Seas had a lower level of chromosome mutagenesis than representatives of the fluvial communities. The intensity of mutagenesis was compared with the data published in the literature on radioactive contamination/chemical pollution of the aqueous medium in these areas. The paper sets out statistical regularities in chromosome mutagenesis (inter-individual variability in the chromosome aberration rate and distribution of chromosome damage in cells), noting different patterns of chromosome aberration distribution among cells. On the basis of a large quantity on our own data from field and experimental cytogenetic studies involving aquatic biota, the paper considers the possibility of using - for the purposes of radiochemical-ecological monitoring - chromosome damage distribution in cells as an indicator of whether mutagens are radiation-related or not. (author)

  1. Protein assay for heme oxygenase-1 (HO-1) induced by chemicals in HepG2 cells.

    Science.gov (United States)

    Miyamoto, Yohei; Ohshida, Keiyu; Sasago, Kaori

    2009-12-01

    Levels of heme oxygenase-1 (HO-1), a stress response protein, were measured to examine oxidative stress induced by several chemicals in HepG2 cells with and without S9mix using an ELISA. CdCl(2), heme, and diclofenac sodium salt (diclofenac) were used as inducers of HO-1. Acetaminophen (AAP) and cyclophosphamide (CP) were used as oxidative stress inducers. Stannic mesoporphyrin (SnMP) was used as an inhibitor of HO activity. Cytotoxicity was determined, and HO-1 levels were measured in HepG2 cells exposed to chemicals other than CP with non-metabolic activation without S9mix, and to diclofenac, AAP and CP with metabolic activation with S9mix. HO-1 levels were increased by CdCl(2) (7.5 microM), heme (10, 100 microM), and stannic mesoporphyrin (SnMP) (10 microM), but were not changed by AAP, and were decreased by diclofenac. HO-1 levels were increased by diclofenac (300 microM), and CP (36 microM), but were unaffected by AAP because of low sensitivity in HepG2 cells. The induction of HO-1 expression was first observed in cultured HepG2 cells treated with CP under conditions involving metabolic activation. These results showed the measurement of HO-1 protein levels in this system is useful when assessing oxidative stress as a tool for detecting drug toxicity. PMID:19952508

  2. Photo-induced isomerization of three nitrotoluene isomers: A matrix-isolation infrared spectroscopic and quantum-chemical study

    International Nuclear Information System (INIS)

    Graphical abstract: The photo-induced isomerization reactions of ortho-, meta- and para-nitrotoluene molecules were investigated by matrix isolation infrared spectroscopy. Besides the previously reported hydrogen atom transfer isomer of ortho-nitrotoluene, the nitrite isomers as well as the dissociation product tolyloxy radicals were formed upon UV excitation of the three nitrotoluene molecules. Infrared spectra and vibrational frequency assignments are reported. Highlights: ► Photo-induced isomerization reactions of three nitrotoluene isomers are studied. ► The nitrite isomers as well as the dissociation product tolyloxy radicals are formed. ► Infrared spectra and vibrational frequency assignments are reported. - Abstract: The photo-induced isomerization reactions of ortho-, meta- and para-nitrotoluene molecules were investigated by matrix isolation infrared spectroscopy and quantum chemical calculations. Under UV irradiation of ortho-nitrotoluene in solid argon, the hydrogen atom transfer isomer was formed, as reported previously. It was found that the hydrogen atom transfer isomer is unstable and rearranged to its nitro isomer upon annealing. In addition, the nitrite isomer as well as its dissociation product tolyloxy radical was also formed. Only the nitrite isomers and the tolyloxy radicals were formed upon UV excitation of the meta- and para-nitrotoluene molecules. Infrared spectra and vibrational frequency assignments of the newly observed nitrite isomers and tolyloxy radicals are reported, which are supported by quantum chemical calculations.

  3. Investigation of chemical vapour deposition diamond detectors by X- ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    CERN Document Server

    Olivero, P; Vittone, E; Fizzotti, F; Paolini, C; Lo Giudice, A; Barrett, R; Tucoulou, R

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the Large Hadron Collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro- beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitati...

  4. Chemopreventive effect of Quercus infectoria against chemically induced renal toxicity and carcinogenesis

    OpenAIRE

    Rehman, Muneeb U.; Mir Tahir, Farrah Ali; Wajhul Qamar; Rehan Khan; Abdul Quaiyoom Khan; Abdul Lateef; Oday-O-Hamiza; Sarwat Sultana

    2012-01-01

    In this study we have shown that Quercus infectoria attenuates Fe- NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. Fe-NTA promoted DEN (N-diethyl nitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC) level and PCNA expression. Fe- NTA (9 mg Fe/kg body weight, intraperitoneally) enhances renal Malondialdehyde, xanthine oxidase and hydrogen ...

  5. Characterization of root agravitropism induced by genetic, chemical, and developmental constraints

    International Nuclear Information System (INIS)

    The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increase with (1) currents between 8-35 mA, and (2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that (1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, (2) exogenously induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, (3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, (4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature and (5) electrically-induced curvature is apparently dependent on auxin transport. These result are discussed relative to a model to account for the lack of graviresponsiveness by these roots

  6. Chemically induced dynamic electron polarization investigation of the triplet-radical system in the solution of the triplet quencher

    Institute of Scientific and Technical Information of China (English)

    LU, Tong-Xing; CUI, Zhi-Feng; XU, Xin-Sheng; ZHANG, Xian-Yi

    2000-01-01

    The chemically induced dynamic electron polariztiion (CIDEP) of the triplet molecule/triplet quencher/2,2,6,6-te tranethyl-1-piperidinyioxyl (TEMPO) systems were measured using the high time-resolved FESR spectrometer. The competi tion between the radical-triplet pair mechanism (RTPM) and triplet mechanism (TM) or radical pair mechanism (RPM) polarization in the solution of the triplet quencher was investi gated, and the relationship between reaction rate of the radi cal-triplet pair and quenching rate of triplet was deduced.

  7. Latheo, a New Gene Involved in Associative Learning and Memory in Drosophila Melanogaster, Identified from P Element Mutagenesis

    OpenAIRE

    Boynton, S.; TULLY, T.

    1992-01-01

    Genetic dissection of learning and memory in Drosophila has been limited by the existence of ethyl methanesulfonate (EMS)-induced mutations in only a small number of X-linked genes. To remedy this shortcoming, we have begun a P element mutagenesis to screen for autosomal mutations that disrupt associative learning and/or memory. The generation of ``P-tagged'' mutant alleles will expedite molecular cloning of these new genes. Here, we describe a behavior-genetic characterization of latheo(P1),...

  8. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transparent substrate

    International Nuclear Information System (INIS)

    Dot array and line patterns of multi-walled carbon nanotubes (MWCNTs) were successfully grown by laser-induced chemical vapor deposition (LCVD) on a transparent substrate at room temperature. In the proposed technique, a Nd:YVO4 laser with a wavelength of 532 nm irradiates the backside of multiple catalyst layers (Ni/Al/Cr) through a transparent substrate to induce a local temperature rise, thereby allowing the direct writing of dense dot and line patterns of MWCNTs below 10 μm in size to be produced with uniform density on the controlled positions. In this LCVD method, a multiple-catalyst-layer with a Cr thermal layer is the central component for enabling the growth of dense MWCNTs with good spatial resolution.

  9. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    OpenAIRE

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Carolina H. Andrade; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop ...

  10. Solar and chemical reaction-induced heating in the terrestrial mesosphere and lower thermosphere

    Science.gov (United States)

    Mlynczak, Martin G.

    1992-01-01

    Airglow and chemical processes in the terrestrial mesosphere and lower thermosphere are reviewed, and initial parameterizations of the processes applicable to multidimensional models are presented. The basic processes by which absorbed solar energy participates in middle atmosphere energetics for absorption events in which photolysis occurs are illustrated. An approach that permits the heating processes to be incorporated in numerical models is presented.

  11. Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues

    Czech Academy of Sciences Publication Activity Database

    Blom, J. F.; Horňák, Karel; Šimek, Karel; Pernthaler, J.

    2010-01-01

    Roč. 12, č. 9 (2010), s. 2486-2495. ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : aggregate formation * Sphingobium sp. * chemical cues * growth state Subject RIV: EE - Microbiology, Virology Impact factor: 5.537, year: 2010

  12. Inducing fertility restoration in the genic male sterile line of rice with chemical regulators

    Institute of Scientific and Technical Information of China (English)

    WANGKaizhi

    1994-01-01

    For the first time, the fertility of rice genic male sterile line was partially restored with the application of chemical regulators at Hainan Rice Breeding Nursery on Mar 1993. A single panicle of the rice plant couldbear as many as 27 grains.

  13. Optimizing chemically induced resistance in tomato against Botrytis cinerea

    DEFF Research Database (Denmark)

    Luna, Estrella; Beardon, Emily G; Ravnskov, Sabine;

    2016-01-01

    repressed plant growth at higher concentrations of the chemicals, which was particularly pronounced in hydroponically grown plants after BABA treatment. Both seed coating with BABA, and seedling treatments with BABA or JA, did not affect AMF root colonization in soil-grown tomato. Our study has identified...

  14. Site-Directed Mutagenesis to Improve Sensitivity of a Synthetic Two-Component Signaling System.

    Science.gov (United States)

    Olshefsky, Audrey; Shehata, Laila; Kuldell, Natalie

    2016-01-01

    Two-component signaling (2CS) systems enable bacterial cells to respond to changes in their local environment, often using a membrane-bound sensor protein and a cytoplasmic responder protein to regulate gene expression. Previous work has shown that Escherichia coli's natural EnvZ/OmpR 2CS could be modified to construct a light-sensing bacterial photography system. The resulting bacterial photographs, or "coliroids," rely on a phosphotransfer reaction between Cph8, a synthetic version of EnvZ that senses red light, and OmpR. Gene expression changes can be visualized through upregulation of a LacZ reporter gene by phosphorylated OmpR. Unfortunately, basal LacZ expression leads to a detectable reporter signal even when cells are grown in the light, diminishing the contrast of the coliroids. We performed site-directed mutagenesis near the phosphotransfer site of Cph8 to isolate mutants with potentially improved image contrast. Five mutants were examined, but only one of the mutants, T541S, increased the ratio of dark/light gene expression, as measured by β-galactosidase activity. The ratio changed from 2.57 fold in the starting strain to 5.59 in the T541S mutant. The ratio decreased in the four other mutant strains we examined. The phenotype observed in the T541S mutant strain may arise because the serine sidechain is chemically similar but physically smaller than the threonine sidechain. This may minimally change the protein's local structure, but may be less sterically constrained when compared to threonine, resulting in a higher probability of a phosphotransfer event. Our initial success pairing synthetic biology and site-directed mutagenesis to optimize the bacterial photography system's performance encourages us to imagine further improvements to the performance of this and other synthetic systems, especially those based on 2CS signaling. PMID:26799494

  15. Influence of caffeine on chromosome lesions induced by chemical mutagens and radiation. 2

    International Nuclear Information System (INIS)

    The modifying influence of caffeine on γ-ray induced chromosome lesions was studied by chromosome aberration anaysis. Caffeine was applied as a pre- and post-treatment agent following seed (G1) and root meristem (G2 and S) irradiation of C.capillaris. The frequency of chromosome aberrations induced in G1 was changed neither by post- nor by pre-treatment with caffeine. This fact proves the lack of caffeine modifying effect. Applied as a post-treatment agent caffeine enhances considerably the frequency of chromosome aberrations induced in root meristem cells. This is especially valid for G2 irradiated cells, while in S cells no synergistic effect was established between induced chromosome lesions and caffeine. The enhancement of chromosome aberration frequency produced in G2 shows a clearly manifested dependence on the time (moment) of caffeine application post irradiation. Most considerable enhancement was obtained following post-treatment with caffeine immediately after irradiation. In the following intervals - 15 and 30 min - it decreases progressively, while after 60, 180 and 300 min no enhancing effect is observed. The probable causes for the manifestation and the lack of synergistic effect between chromosome lesions induced in the various mitotic cycle phases and caffeine are discussed. (author)

  16. Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles.

    Science.gov (United States)

    Campbell, Michael; Segear, Erika; Beers, Lee; Knauber, Donna; Suttle, Jeffrey

    2008-11-01

    Meristem dormancy in perennial plants is a developmental process that results in repression of metabolism and growth. The cessation of dormancy results in rapid growth and should be associated with the production of nascent transcripts that encode for gene products controlling for cell division and growth. Dormancy cessation was allowed to progress normally or was chemically induced using bromoethane (BE), and microarray analysis was used to demonstrate changes in specific transcripts in response to dormancy cessation before a significant increase in cell division. Comparison of normal dormancy cessation to BE-induced dormancy cessation revealed a commonality in both up and downregulated transcripts. Many transcripts that decrease as dormancy terminates are inducible by abscisic acid particularly in the conserved BURP domain proteins, which include the RD22 class of proteins and in the storage protein patatin. Transcripts that are associated with an increase in expression encoded for proteins in the oxoglutarate-dependent oxygenase family. We conclude that BE-induced cessation of dormancy initiates transcript profiles similar to the natural processes that control dormancy. PMID:18317824

  17. PCR-based site-specific mutagenesis of peptide antibiotics FALL-39 and its biologic activities

    Institute of Scientific and Technical Information of China (English)

    Yun-xia YANG; Yun FENG; Bo-yao WANG; Qi WU

    2004-01-01

    AIM: To construct PGEX-1λT-FALL-39 expression vector and its mutant vector, and study the relationship of function and structure. METHODS: A cDNA encoding mature FALL-39 was cloned from SPCA- 1 cell mRNA and the prokaryotic expression vector PGEX- 1λT-FALL-39 was constructed. Two kinds of polymerase chain reaction (PCR) for the site-direction mutagenesis were used to construct FALL-39 mutant expression vector, FALL-39-Lys-32 and FALL-39-Lys-24. Minimal effective concentration, minimal inhibitory concentration, and minimal bactericidal concentration were used to assay the antibacterial activities of these peptides. Effects of different solution on the antibacterial activity of FALL-39 and FALL-39-Lys-32 were observed by CFU determination. The hemolytic effects of these peptides were also examined on human red blood cells. RESULTS: Two site-specific mutants FALL-39-Lys-32 and FALL-39-Lys24 were obtained by PCR-induced mutagenesis. In comparison with two-step PCR which required two pairs of primers, one step PCR which required one pair of primers is a simple and efficient method for the PCR based site-specific mutagenesis. Using the prokaryotic expression system, the E coli-based products of recombinant FALL39 and its mutant peptides were also obtained. The antibacterial assay showed that FALL-39-Lys-32 and FALL-39-Lys24 were more potential in the antibacterial activity against E coli ML35p and Pseltdomonas aeruginosa ATCC27853 than that of FALL-39, and no increase in hemolysis was observed at the antibacterial concentrations. The antibacterial activity of FALL-39-Lys-32 against E coli was more potent than that of FALL-39 in NaCl-containing LB medium, while its activity was almost the same as FALL-39 in SO2-4 containing Medium E. CONCLUSION: PCR-based mutagensis is a useful model system for studying the structure and function relationship of antimicrobial peptides. Keeping α-helical conformation of FALL-39 and increasing net positive charge can increase the

  18. Chemical profiling with HPLC-FTMS of exogenous and endogenous chemicals susceptible to the administration of chotosan in an animal model of type 2 diabetes-induced dementia.

    Science.gov (United States)

    Niu, Yimin; Li, Feng; Inada, Chikako; Tanaka, Ken; Watanabe, Shiro; Fujiwara, Hironori; Sasaki-Hamada, Sachie; Oka, Jun-Ichiro; Matsumoto, Kinzo

    2015-02-01

    In our previous study, the daily administration of chotosan (CTS), a Kampo formula consisting of Uncaria and other 10 different crude drugs, ameliorated cognitive deficits in several animal models of dementia including type 2 diabetic db/db mice in a similar manner to tacrine, an acetylcholinesterase inhibitor. The present study investigated the metabonomics of CTS in db/db mice, a type 2 diabetes model, and m/m mice, a non-diabetes control strain, to identify the exogenous and endogenous chemicals susceptible to the administration of CTS using high performance liquid chromatography equipped with an orbitrap hybrid Fourier transform mass spectrometer. The results obtained revealed that the systemic administration of CTS for 20 days led to the distribution of Uncalia plant-derived alkaloids such as rhynchophylline, hirsuteine, and corynoxeine in the plasma and brains of db/db and m/m mice and induced alterations in four major metabolic pathways; i.e., (1) purine, (2) tryptophan, (3) cysteine and methionine, (4) glycerophospholipids in db/db mice. Moreover, glycerophosphocholine (GPC) levels in the plasma and brain were significantly higher in CTS-treated db/db mice than in vehicle-treated control animals. The results of the in vitro experiment using organotypic hippocampal slice cultures demonstrated that GPC (10-30 μM), as well as tacrine, protected hippocampal cells from N-methyl-d-aspartate-induced excitotoxicity in a manner that was reversible with the muscarinic receptor antagonist scopolamine, whereas GPC had no effect on the activity of acetylcholinesterase in vitro. Our results demonstrated that some CTS constituents with neuropharmacological activity were distributed in the plasma and brain tissue following the systemic administration of CTS and may subsequently have affected some metabolic pathways including glycerophospholipid metabolism and cognitive function in db/db mice. Moreover, the present metabonomic analysis suggested that GPC is a putative

  19. Bio-molecular alterations induced by a chemical or radiating stress in isolated human cells

    International Nuclear Information System (INIS)

    After having recalled some aspects of radiobiology (effects of ionizing radiations, molecular targets of radiations, cellular responses with respect to the radiation), the author discusses various aspects of radio-sensitivity: intrinsic radio-sensitivity of tumoral and normal cells, DNA injuries and in vitro radio-sensitivity, genes of susceptibility to ionizing radiations, clustered injuries. Then she reports investigations performed by infrared micro-spectroscopy: characterization of pathological lines, of biological processes, of oxidative injuries induced by xenobiotics, of injuries induced by ionizing radiations

  20. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction.

    Science.gov (United States)

    Lee, Hyosun; Nedrygailov, Ievgen I; Lee, Young Keun; Lee, Changhwan; Choi, Hongkyw; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-03-01

    Direct detection of hot electrons generated by exothermic surface reactions on nanocatalysts is an effective strategy to obtain insight into electronic excitation during chemical reactions. For this purpose, we fabricated a novel catalytic nanodiode based on a Schottky junction between a single layer of graphene and an n-type TiO2 layer that enables the detection of hot electron flows produced by hydrogen oxidation on Pt nanoparticles. By making a comparative analysis of data obtained from measuring the hot electron current (chemicurrent) and turnover frequency, we demonstrate that graphene's unique electronic structure and extraordinary material properties, including its atomically thin nature and ballistic electron transport, allow improved conductivity at the interface between the catalytic Pt nanoparticles and the support. Thereby, graphene-based nanodiodes offer an effective and facile way to approach the study of chemical energy conversion mechanisms in composite catalysts with carbon-based supports. PMID:26910271

  1. Size-Induced Enhancement of Chemical Exchange Saturation Transfer (CEST) Contrast in Liposomes

    OpenAIRE

    Zhao, Jason M.; Har-el, Yah-el; McMahon, Michael T.; Zhou, Jinyuan; Sherry, A. Dean; Sgouros, George; Bulte, Jeff W. M.; van Zijl, Peter C.M.

    2008-01-01

    Liposome-based chemical exchange saturation transfer (lipoCEST) agents have shown great sensitivity and potential for molecular magnetic resonance imaging (MRI). Here we demonstrate that the size of liposomes can be exploited to enhance the lipoCEST contrast. A concise analytical model is developed to describe the contrast dependence on size for an ensemble of liposomes. The model attributes the increased lipoCEST contrast in smaller liposomes to their larger surface-to-volume ratio, causing ...

  2. Conformational Changes in Azurin from Pseudomona aeruginosa Induced through Chemical and Physical Protocols

    OpenAIRE

    Fuentes, Lymari; Oyola, Jessica; Fernández, Mónica; Quiñones, Edwin

    2004-01-01

    Azurin from Pseudomona aeruginosa is a small copper protein with a single tryptophan (Trp) buried in the structure. The Gibbs free energies associated with the folding of holo azurin, calculated monitoring Trp fluorescence and changes in absorbance on the ligand-to-metal band, are different because these techniques probe their local environments, thereby being able to probe different conformational changes. The presence of an intermediate state was observed during the chemical denaturation of...

  3. Laser-induced chemical liquid deposition of discontinuous and continuous copper films

    Czech Academy of Sciences Publication Activity Database

    Ouchi, A.; Bastl, Zdeněk; Boháček, Jaroslav; Šubrt, Jan; Pola, Josef

    2007-01-01

    Roč. 201, č. 8 (2007), s. 4728-4733. ISSN 0257-8972 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : copper films * laser photolysis * Cu(II) acetylacetonate * chemical liquid deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.678, year: 2007

  4. Synthesis of High-Purity Chemical Library Reveals a Potent Inducer of Oxidative Stress

    OpenAIRE

    Cui, Jiayue; Matsumoto, Kenji; Wang, Cindy Y.; Peter, Marcus E.; Kozmin, Sergey A.

    2010-01-01

    Synthesis of high-purity biogenic heterocyclic library enabled identification of a small molecule, which potently inhibited proliferation of several cancer cell lines and induces rapid oxidative stress. This agent elicited unusual mechanism of cell death induction, which entailed activation of both caspase-dependent and independent pathways.

  5. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

    Science.gov (United States)

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-01-01

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese. PMID:27271106

  6. Room temperature chemically oxidized La2CuO4+y: Phase separation induced by thermal treatment

    DEFF Research Database (Denmark)

    Rial,C.; Moran, E.; Alario-Franco, M.A.;

    1997-01-01

    The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured for this m......The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured...... for this material. The thermogravimetric analysis(TGA) of La2CuO4.103(4) evidences an unexplained two-step mass loss process. Based on this observation, three samples obtained by different thermal treatments of the fully oxidized material were studied by TGA, X-ray diffraction and AC magnetic susceptibility, After......, it seems likely that the plateau observed in the TGA curve of La2CuO4.103(4) might be due to the formation on heating of a stable phase with a fixed oxygen stoichiometry, i.e. La2CuO4.086(4). The stability of this phase could be related-to the presence of one-dimensional interstitial oxygen ordering along...

  7. Protective Effect of Zanthoxylum nitidum Bark in Chemical and Stress Induced Gastric Mucosal Lesions in Male Albino Rats

    Directory of Open Access Journals (Sweden)

    K. Zaman

    2012-01-01

    Full Text Available Zanthoxylum nitidum (Roxb. DC (Rutaceae, called Tez-mui or Tejamool in Assamese, is a large prickly shrub occurring in North-Eastern India and its roots are used traditionally for several medicinal purposes. In the present study, the aqueous extract from the stem bark of Zanthoxylum nitidum (ZNA was evaluated for its protective effects on gastric mucosal lesions in male Wistar albino rats against acetylsalicylic acid (ASA, ethanol and water immersion restraint stress induced gastric mucosal damage. In each model, ZNA was administered orally to rats at the doses of 100 and 200 mg kg-1 body weight, prior to chemical or stress challenge, followed by determination of ulcer index. Ranitidine hydrochloride at the dose of 35 mg kg-1, p.o. served as the reference drug. The test extract exhibited dose dependent and significant amelioration of gastric mucosal lesions in chemical (ASA and ethanol as well as in stress-induced ulcers in male Wistar albino rats, thus confirming its antiulcer potential.

  8. Chemical characterization of nuclear technology materials by in situ current normalized particle induced gamma-ray emission method

    International Nuclear Information System (INIS)

    Chemical characterization of materials is the most important step in chemical quality control (CQC) exercise, which provides a means to ensure the quality of the fabricated/prepared/procured material as per the required chemical specifications. In the case of nuclear technology materials, the finished products should meet the stringent chemical specifications at major to trace concentration levels. Routine chemical characterization methods include mainly wet chemical (classical), chromatographic (IC and HPLC) and, atomic and mass spectroscopic techniques (AAS, ICP-AES and ICP-MS) and in some cases radio/nuclear analytical techniques like alpha and gamma-ray spectrometry, XRF, neutron activation analysis (NAA) and ion beam analysis (IBA) are used. If the samples are of glass, ceramic, carbide and alloy matrices, nuclear analytical techniques (NATs) namely NAA, prompt gamma-ray NAA (PGNAA) and particle induced gamma-ray emission (PIGE) have edge over wet-chemical methods due to many advantageous properties including nondestructive in nature. PIGE, an on-line technique of ion beam analysis (IBA), is capable of determining low to medium Z elements like Li, Be, B, C, N, O, F, Na, Mg, Si, Al, P and S or still higher depending on the energy of proton beam from tandem accelerators. It involves measurement of prompt gamma-rays from nuclear reactions like (p, p'γ), (p, γ), (p, nγ) and (p, αγ) for concentration of an isotope thus element in a sample. Radiochemistry Division (RCD), BARC set-up and utilized PIGE facilities at FOTIA, BARC, IOP, Bhubaneswar and BARC-TIFR using 4 and 8 MeV proton beam. An in situ current normalized PIGE method has been developed, wherein an element namely F, Li or Al is externally added to the target pellet or a thin aluminium foil is kept in front of the target. The variation of beam current, if any, is obtained by measuring simultaneously the count rate of element of interest and the in situ current normalizer

  9. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  10. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  11. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-01

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC. PMID:27006499

  12. Effective Expression-Independent Gene Trapping and Mutagenesis Mediated by Sleeping Beauty Transposon

    Institute of Scientific and Technical Information of China (English)

    Guili Song; Qing Li; Yong Long; Perry B. Hackett; Zongbin Cui

    2012-01-01

    Expression-independent gene or polyadenylation [poly(A)] trapping is a powerful tool for genome-wide mutagenesis regardless of whether a targeted gene is expressed.Although a number of poly(A)-trap vectors have been developed for the capture and mutation of genes across a vertebrate genome,further efforts are needed to avoid the 3′-terminal insertion bias and the splice donor (SD)read-through,and to improve the mutagenicity.Here,we present a Sleeping Beauty (SB) transposon-based vector that can overcome these limitations through the inclusion of three functional cassettes required for gene-finding,gene-breaking and large-scale mutagenesis,respectively.The functional cassette contained a reporter/selective marker gene driven by a constitutive promoter in front of a strong SD signal and an AU-rich RNA-destabilizing element (ARE),which greatly reduced the SD read-through events,except that the internal ribosomal entry site (IRES) element was introduced in front of the SD signal to overcome the phenomenon of 3′-bias gene trapping.The breaking cassette consisting of an enhanced splicing acceptor (SA),a poly(A) signal coupled with a transcriptional terminator (TT) effectively disrupted the transcription of trapped genes.Moreover,the Hsp70 promoter from tilapia genome was employed to drive the inducible expression of SB11,which allows the conditional remobilization of a trap insert from a non-coding region.The combination of three cassettes led to effective capture and disruption of endogenous genes in HeLa cells.In addition,the Cre/LoxP system was introduced to delete the Hsp70-SB11 cassette for stabilization of trapped gene interruption and biosafety.Thus,this poly(A)-trap vector is an alternative and effective tool for identification and mutation of endogenous genes in cells and animals.

  13. Modeling early physical and chemical events for DNA damage induced by photons and tritium beta particles

    International Nuclear Information System (INIS)

    A method has been developed to model production of single-strand breaks (SSB) and double-strand breaks (DSB) in Deoxyribo Nucleic Acid (DNA) by ionizing radiations. Modeling is carried out by Monte Carlo means and includes consideration of direct energy depositions in DNA molecules, production of chemical species following water radiolysis, diffusion of chemical species, and their interactions with each other and DNA. Computer-generated electron tracks in liquid water are used to model energy deposition and to derive the initial localization of chemical species. Atomistic representation of the DNA with a first hydration shell is used to derive direct energy depositions in DNA molecules and the resulting consequences, and to derive coordinates of reactive sites for modeling of the chemical stage of radiation damage. Diffusion of chemical species is followed in time, and the reactions of species with each other and DNA are considered to occur in an encounter-controlled manner. Time of diffusion follow-up is restricted to 10-12- 10-9 s, which yields a diffusion length of hydroxyl radicals comparable to that in the cellular environment. DNA SSB are assumed to result from any direct energy depositions in the sugar/phosphate moiety, ionizations in water molecules bound to sugar/phosphate and hydroxyl attacks on deoxyribose. DSB are assumed to result from two SSB on opposite strands separated by 10 or fewer base pairs. Photon radiations in the energy range 70 keV-1 MeV and tritium beta particles are considered. It is shown that for naked DNA in B-form (the configuration thought to be most biologically relevant) the effectiveness of tritium for SSB and DSB production is, within statistical uncertainties, comparable to photon radiation with energies in the range 70 keV-1 MeV, although a tendency for increased DSB production has been observed for 70 keV photons that represent orthovoltage X-rays and for tritium beta particles. It is predicted that hydroxyl radicals react

  14. Modeling early physical and chemical events for DNA damage induced by photons and tritium beta particles

    Energy Technology Data Exchange (ETDEWEB)

    Moiseenko, V. [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada); Waker, A.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Prestwich, W.V. [McMaster Univ., Dept. of Physics and Astronomy, Hamilton, Ontario (Canada)

    1998-02-01

    A method has been developed to model production of single-strand breaks (SSB) and double-strand breaks (DSB) in Deoxyribo Nucleic Acid (DNA) by ionizing radiations. Modeling is carried out by Monte Carlo means and includes consideration of direct energy depositions in DNA molecules, production of chemical species following water radiolysis, diffusion of chemical species, and their interactions with each other and DNA. Computer-generated electron tracks in liquid water are used to model energy deposition and to derive the initial localization of chemical species. Atomistic representation of the DNA with a first hydration shell is used to derive direct energy depositions in DNA molecules and the resulting consequences, and to derive coordinates of reactive sites for modeling of the chemical stage of radiation damage. Diffusion of chemical species is followed in time, and the reactions of species with each other and DNA are considered to occur in an encounter-controlled manner. Time of diffusion follow-up is restricted to 10{sup -12}- 10{sup -9} s, which yields a diffusion length of hydroxyl radicals comparable to that in the cellular environment. DNA SSB are assumed to result from any direct energy depositions in the sugar/phosphate moiety, ionizations in water molecules bound to sugar/phosphate and hydroxyl attacks on deoxyribose. DSB are assumed to result from two SSB on opposite strands separated by 10 or fewer base pairs. Photon radiations in the energy range 70 keV-1 MeV and tritium beta particles are considered. It is shown that for naked DNA in B-form (the configuration thought to be most biologically relevant) the effectiveness of tritium for SSB and DSB production is, within statistical uncertainties, comparable to photon radiation with energies in the range 70 keV-1 MeV, although a tendency for increased DSB production has been observed for 70 keV photons that represent orthovoltage X-rays and for tritium beta particles. It is predicted that hydroxyl

  15. Tissue culture and mutagenesis of rain lily (zephyranthes)

    International Nuclear Information System (INIS)

    There are three varieties of Zephyranthes used widely in landscaping due to their robust growth and attractive flowers in pink, yellow and white. Both in vivo and in vitro mutagenesis are an effective approach to increase the flower colour variations of Zephyranthes. In vitro propagation for the three varieties was attempted by using the induction medium developed by Sachar and Kapoor in 1959. The medium contains I ma of each indole 3-acetic acid (IAA), indole 3-butyric acid (IBA) and kinetin. Following surface sterilization of bulb scales, 17.8%, 10.5% and 10.7% of pink, white and yellow varieties respectively, were able to form small bulblets on the induction media. Further development of these bulblets into plantlets was also achieved on the same medium. Work is now being carried out to improve the efficiency of bulblet regeneration. Mutagenesis of Zephyranthes was initiated from bulbs of the pink varieties to develop new varieties with attractive combinations of flower colour and forms, shelf life and growth habits. These bulbs were irradiated using a gamma cell with a 60Co source. Three variants with different flower colour and morphology have been achieved so far and are now being propagated in the nursery. (Author)

  16. In vitro mutagenesis of commercial fern, Asplenium nidus from spores

    International Nuclear Information System (INIS)

    Asplenium is a largest, most diverse fern genera. One of the common species is Asplenium nidus, well known as Bird's-nest fern, a medium to large fern with erect, stout, unbranched rhizomes. In creating variability of ferns for the benefit of the ornamental plant industry, in vitro mutagenesis is used. In this study, spores of Asplenium nidus were collected from frond bearing mature sporangia. Spores were cultured in modified 1/2 MS basal medium supplemented with various combinations of 6-Benzylaminopurine (BAP) and Naphtalene Acetic Acid (NAA). Spore cultures were incubated in incubation room at 24 degree C with 16 hours photoperiod (3500 lux). It was found that, the most effective combinations were 1 mg/1 BAP + 0. 1 mg/1 NAA and 2mg/1 BAP + 0. 1 mg/1 NAA. Prothallus was formed after 10 days of cultures and gametophytes were formed 1 month later. These gametophytes were irradiated with Gamma ray at doses of 0, 20, 90, 120, 150 and 180 Gy. From the preliminary result obtained from this study, for generating variations and desired phenotypic expression for Asplenium nidus, recommended doses for in vitro mutagenesis using spores are between 90 Gy to 150 Gy. Gametophytes were subcultured at monthly interval to ensure further development and propagation. Frequent monitoring for any changes in the morphology of the irradiated Asplenium nidus plants were carried out. (Author)

  17. Human somatic cell mutagenesis creates genetically tractable sarcomas.

    Science.gov (United States)

    Molyneux, Sam D; Waterhouse, Paul D; Shelton, Dawne; Shao, Yang W; Watling, Christopher M; Tang, Qing-Lian; Harris, Isaac S; Dickson, Brendan C; Tharmapalan, Pirashaanthy; Sandve, Geir K; Zhang, Xiaoyang; Bailey, Swneke D; Berman, Hal; Wunder, Jay S; Izsvák, Zsuzsanna; Iszvak, Zsuzsanna; Lupien, Mathieu; Mak, Tak W; Khokha, Rama

    2014-09-01

    Creating spontaneous yet genetically tractable human tumors from normal cells presents a fundamental challenge. Here we combined retroviral and transposon insertional mutagenesis to enable cancer gene discovery starting with human primary cells. We used lentiviruses to seed gain- and loss-of-function gene disruption elements, which were further deployed by Sleeping Beauty transposons throughout the genome of human bone explant mesenchymal cells. De novo tumors generated rapidly in this context were high-grade myxofibrosarcomas. Tumor insertion sites were enriched in recurrent somatic copy-number aberration regions from multiple cancer types and could be used to pinpoint new driver genes that sustain somatic alterations in patients. We identified HDLBP, which encodes the RNA-binding protein vigilin, as a candidate tumor suppressor deleted at 2q37.3 in greater than one out of ten tumors across multiple tissues of origin. Hybrid viral-transposon systems may accelerate the functional annotation of cancer genomes by enabling insertional mutagenesis screens in higher eukaryotes that are not amenable to germline transgenesis. PMID:25129143

  18. Depth-resolved chemical mapping of rock coatings using Laser-Induced Breakdown Spectroscopy: Implications for geochemical investigations on Mars

    Science.gov (United States)

    Lefebvre, C.; Catalá-Espí, A.; Sobron, P.; Koujelev, A.; Léveillé, R.

    2016-07-01

    We demonstrate that Laser-Induced Breakdown Spectroscopy (LIBS) is capable of identifying the presence of natural rock coatings, and we define LIBS signatures of complex multi-layered coatings. This is illustrated by detailed LIBS analysis, in Mars-simulated conditions, of a rock collected in the Svalbard Islands, and which is analogous to some altered Martian rocks. The sample is a basaltic rock with sub-mm Ca-Mg-Fe-Si rich mineral coatings. LIBS elemental analysis of several distinct regions on the surface of the rock demonstrates the variability of chemical compositions of the various coatings, which is confirmed by complementary scanning electron microscope (SEM) analysis. Furthermore, the LIBS analysis as a function of the depth at different locations shows chemical variability, indicative of penetration through thin coatings of varying composition. Fine-scale, three-dimensional LIBS analysis is of interest for identifying and characterizing coatings on martian rocks, likely originating from aqueous processes, providing a rapid chemical composition as a function of the layers and further understanding of the formation of the deposits and on planetary evolution.

  19. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    International Nuclear Information System (INIS)

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  20. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1.

    Directory of Open Access Journals (Sweden)

    Qidi Zhu

    Full Text Available Wheat (Triticum aestivum L., one of the world's most important food crops, is a strictly autogamous (self-pollinating species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1-induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1-induced male sterile wheat and is a valuable source of data for future research in SQ-1-induced wheat male sterility.