WorldWideScience

Sample records for chemically cross-linked peptides

  1. Effect of chemical cross-linking on the mechanical properties of elastomeric peptides studied by single molecule force spectroscopy.

    Science.gov (United States)

    Sbrana, Francesca; Lorusso, Marina; Canale, Claudio; Bochicchio, Brigida; Vassalli, Massimo

    2011-07-28

    Mechanical properties of animal tissues are mainly provided by the assembly of single elastomeric proteins into a complex network of filaments. Even if the overall elastic properties of such a reticulated structure depend on the mechanical characteristics of the constituents, it is not the only aspect to be considered. In addition, the aggregation mechanism has to be clarified to attain a full knowledge of the molecular basis of the elastic properties of natural nanostructured materials. This aim is even more crucial in the process of rational design of biomaterials with selected mechanical properties, in which not only the mechanics of single molecules but also of their assemblies has to be cared of. In this study, this aspect was approached by means of single molecule stretching experiments. In particular, the effect of chemical cross-linking on the mechanical properties of a naturally inspired elastomeric peptide was investigated. Accordingly, we observed that, in order to preserve the elastic properties of the single filament, the two strands of the dimer have to interact with each other. The results thus confirm that the influence of the aggregation process on the mechanical properties of a molecular assembly cannot be neglected.

  2. Chemical cross-linking of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1988-01-01

    Purified elementary bodies (EBs) of Chlamydia trachomatis serovar L2 were analyzed by chemical cross-linking with disuccinimidyl selenodipropionate. The effect of the cross-linking was analyzed by immunoblotting sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated components which...

  3. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping--a novel approach to assess intermolecular protein contacts

    DEFF Research Database (Denmark)

    Bennett, K L; Kussmann, M; Björk, P;

    2000-01-01

    The intermolecular contact regions between monomers of the homodimeric DNA binding protein ParR and the interaction between the glycoproteins CD28 and CD80 were investigated using a strategy that combined chemical cross-linking with differential MALDI-MS analyses. ParR dimers were modified in vitro...... revealed the presence of an intermolecular cross-link between the receptor regions of the glycoprotein constructs, as well as a number of unexpected but nonetheless specific interactions between the fusion domains of CD28-IgG and the receptor domain of CD80-Fab. The strategy of chemical cross...

  4. Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid

    NARCIS (Netherlands)

    Oudgenoeg, G.; Hilhorst, R.; Piersma, S.R.; Boeriu, C.G.; Gruppen, H.; Hessing, M.; Voragen, A.G.J.; Laane, C.

    2001-01-01

    The tyrosine-containing peptide Gly-Tyr-Gly (GYG) was oxidatively cross-linked by horseradish peroxidase in the presence of hydrogen peroxide. As products, covalently coupled di- to pentamers of the peptide were identified by LC-MS. Oxidative cross-linking of ferulic acid with horseradish peroxidase

  5. Isolation of cross-linked peptides by diagonal strong cation exchange chromatography for protein complex topology studies by peptide fragment fingerprinting from large sequence databases.

    Science.gov (United States)

    Buncherd, Hansuk; Roseboom, Winfried; Ghavim, Behrad; Du, Weina; de Koning, Leo J; de Koster, Chris G; de Jong, Luitzen

    2014-06-27

    Knowledge of spatial proximity of amino acid residues obtained by chemical cross-linking and mass spectrometric analysis provides information about protein folding, protein-protein interactions and topology of macromolecular assemblies. We show that the use of bis(succinimidyl)-3-azidomethyl glutarate as a cross-linker provides a solution for two major analytical problems of cross-link mapping by peptide fragment fingerprinting (PFF) from complex sequence databases, i.e., low abundance of protease-generated target peptides and lack of knowledge of the masses of linked peptides. Tris(carboxyethyl)phosphine (TCEP) reduces the azido group in cross-linked peptides to an amine group in competition with cleavage of an amide bond formed in the cross-link reaction. TCEP-induced reaction products were separated by diagonal strong cation exchange (SCX) from unmodified peptides. The relation between the sum of the masses of the cleavage products and the mass of the parent cross-linked peptide enables determination of the masses of candidate linked peptides. By reversed phase LC-MS/MS analysis of secondary SCX fractions, we identified several intraprotein and interprotein cross-links in a HeLa cell nuclear extract, aided by software tools supporting PFF from the entire human sequence database. The data provide new information about interacting protein domains, among others from assemblies involved in splicing.

  6. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials.

    Science.gov (United States)

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther; Schräder, Christoph U; Wichapong, Kanin; Sippl, Wolfgang; Keeley, Fred W; Neubert, Reinhard H H; Schmelzer, Christian E H

    2013-04-01

    Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    Science.gov (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character.

  8. Epoxy Cross-Linked Collagen and Collagen-Laminin Peptide Hydrogels as Corneal Substitutes

    Directory of Open Access Journals (Sweden)

    May Griffith

    2013-08-01

    Full Text Available A bi-functional epoxy-based cross-linker, 1,4-Butanediol diglycidyl ether (BDDGE, was investigated in the fabrication of collagen based corneal substitutes. Two synthetic strategies were explored in the preparation of the cross-linked collagen scaffolds. The lysine residues of Type 1 porcine collagen were directly cross-linked using l,4-Butanediol diglycidyl ether (BDDGE under basic conditions at pH 11. Alternatively, under conventional methodology, using both BDDGE and 1-Ethyl-3-(3-dimethyl aminopropyl carbodiimide (EDC/N-hydroxysuccinimide (NHS as cross-linkers, hydrogels were fabricated under acidic conditions. In this latter strategy, Cu(BF42·XH2O was used to catalyze the formation of secondary amine bonds. To date, we have demonstrated that both methods of chemical cross-linking improved the elasticity and tensile strength of the collagen implants. Differential scanning calorimetry and biocompatibility studies indicate comparable, and in some cases, enhanced properties compared to that of the EDC/NHS controls. In vitro studies showed that human corneal epithelial cells and neuronal progenitor cell lines proliferated on these hydrogels. In addition, improvement of cell proliferation on the surfaces of the materials was observed when neurite promoting laminin epitope, IKVAV, and adhesion peptide, YIGSR, were incorporated. However, the elasticity decreased with peptide incorporation and will require further optimization. Nevertheless, we have shown that epoxy cross-linkers should be further explored in the fabrication of collagen-based hydrogels, as alternatives to or in conjunction with carbodiimide cross-linkers.

  9. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics.

    Science.gov (United States)

    Leitner, Alexander; Walzthoeni, Thomas; Kahraman, Abdullah; Herzog, Franz; Rinner, Oliver; Beck, Martin; Aebersold, Ruedi

    2010-08-01

    Chemical cross-linking of reactive groups in native proteins and protein complexes in combination with the identification of cross-linked sites by mass spectrometry has been in use for more than a decade. Recent advances in instrumentation, cross-linking protocols, and analysis software have led to a renewed interest in this technique, which promises to provide important information about native protein structure and the topology of protein complexes. In this article, we discuss the critical steps of chemical cross-linking and its implications for (structural) biology: reagent design and cross-linking protocols, separation and mass spectrometric analysis of cross-linked samples, dedicated software for data analysis, and the use of cross-linking data for computational modeling. Finally, the impact of protein cross-linking on various biological disciplines is highlighted.

  10. EGDMA-cross-linked polystyrene resin: An efficient support for gel phase peptide synthesis

    Indian Academy of Sciences (India)

    P K Ajikumar; K S Devaky

    2000-08-01

    This article illustrates the application of a 2% ethyleneglycol dimethacrylate-cross-linked polystyrene support (EGDMA-PS) in manual solid phase peptide synthesis. This copolymer has been characterised and optimised for peptide synthesis by performing the synthesis of a few model peptides and two biologically important peptides. EGDMA-cross-linked polystyrene support was prepared by the suspension polymerisation of the monomers EGDMA and styrene. EGDMA-PS resin undergoes facile swelling in a variety of solvents, both polar and nonpolar, used in peptide synthesis. The polymer was functionalised by Friedel-Crafts chloromethylation reaction. Peptides were assembled on a 2% cross-linked chloromethyl polymer support of capacity 1.63 mmol Cl/g. The biological peptides synthesised are an 11-residue peptide ATP binding site of the CDC2 kinase and a difficult sequence-a nineresidue peptide 34-42 corresponding to a portion of the hydrophobic terminus of the-amyloid protein 1-42. After synthesis, the peptides were cleaved from the support by treating with neat TFA. Purity of the peptides obtained in good yield was checked by TLC and HPLC methods and found to be fairly high.

  11. CrossWork: Software-assisted identification of cross-linked peptides

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Refsgaard, Jan; Peng, Li;

    2011-01-01

    The increased interest in chemical cross-linking for probing protein structure and interaction has led to a large increase in literature describing new cross-linkers and search programs. However, this has not led to a corresponding increase in the analysis of large and complex proteins. A major...... obstacle is that the new cross-linkers are either not readily available and/or have a low reactivity. In combination with aging search programs that are slow and have low sensitivity, or new search programs that are described but not released, these efforts do little to advance the field of cross......-linking. Here we present a method pipeline for chemical cross-linking, using two standard cross-linkers, BS3 and BS2G, combined with our freely available CrossWork search program. By this approach we generate cross-link data sufficient to derive structural information for large and complex proteins. Cross...

  12. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins.

    Science.gov (United States)

    Olszewska, Agata; Pohl, Radek; Brázdová, Marie; Fojta, Miroslav; Hocek, Michal

    2016-09-21

    Nucleotides, 2'-deoxyribonucleoside triphosphates (dNTPs), and DNA probes bearing reactive chloroacetamido group linked to nucleobase (cytosine or 7-deazadaenine) through a propargyl tether were prepared and tested in cross-linking with cysteine- or histidine-containing peptides and proteins. The chloroacetamide-modifed dNTPs proved to be good substrates for DNA polymerases in the enzymatic synthesis of modified DNA probes. Modified nucleotides and DNA reacted efficiently with cysteine and cysteine-containing peptides, whereas the reaction with histidine was sluggish and low yielding. The modified DNA efficiently cross-linked with p53 protein through alkylation of cysteine and showed potential for cross-linking with histidine (in C277H mutant of p53).

  13. Characterization of the Raptor/4E-BP1 interaction by chemical cross-linking coupled with mass spectrometry analysis.

    Science.gov (United States)

    Coffman, Kimberly; Yang, Bing; Lu, Jie; Tetlow, Ashley L; Pelliccio, Emelia; Lu, Shan; Guo, Da-Chuan; Tang, Chun; Dong, Meng-Qiu; Tamanoi, Fuyuhiko

    2014-02-21

    mTORC1 plays critical roles in the regulation of protein synthesis, growth, and proliferation in response to nutrients, growth factors, and energy conditions. One of the substrates of mTORC1 is 4E-BP1, whose phosphorylation by mTORC1 reverses its inhibitory action on eIF4E, resulting in the promotion of protein synthesis. Raptor in mTOR complex 1 is believed to recruit 4E-BP1, facilitating phosphorylation of 4E-BP1 by the kinase mTOR. We applied chemical cross-linking coupled with mass spectrometry analysis to gain insight into interactions between mTORC1 and 4E-BP1. Using the cross-linking reagent bis[sulfosuccinimidyl] suberate, we showed that Raptor can be cross-linked with 4E-BP1. Mass spectrometric analysis of cross-linked Raptor-4E-BP1 led to the identification of several cross-linked peptide pairs. Compilation of these peptides revealed that the most N-terminal Raptor N-terminal conserved domain (in particular residues from 89 to 180) of Raptor is the major site of interaction with 4E-BP1. On 4E-BP1, we found that cross-links with Raptor were clustered in the central region (amino acid residues 56-72) we call RCR (Raptor cross-linking region). Intramolecular cross-links of Raptor suggest the presence of two structured regions of Raptor: one in the N-terminal region and the other in the C-terminal region. In support of the idea that the Raptor N-terminal conserved domain and the 4E-BP1 central region are closely located, we found that peptides that encompass the RCR of 4E-BP1 inhibit cross-linking and interaction of 4E-BP1 with Raptor. Furthermore, mutations of residues in the RCR decrease the ability of 4E-BP1 to serve as a substrate for mTORC1 in vitro and in vivo.

  14. Understanding chemical reactivity for homo- and heterobifunctional protein cross-linking agents.

    Science.gov (United States)

    Chen, Fan; Nielsen, Simone; Zenobi, Renato

    2013-07-01

    Chemical cross-linking, combined with mass spectrometry, has been applied to map three-dimensional protein structures and protein-protein interactions. Proper choice of the cross-linking agent, including its reactive groups and spacer arm length, is of great importance. However, studies to understand the details of reactivity of the chemical cross-linkers with proteins are quite sparse. In this study, we investigated chemical cross-linking from the aspects of the protein structures and the cross-linking reagents involved, by using two structurally well-known proteins, glyceraldehyde 3-phosohate dehydrogenase and ribonuclease S. Chemical cross-linking reactivity was compared using a series of homo- and hetero-bifunctional cross-linkers, including bis(sulfosuccinimidyl) suberate, dissuccinimidyl suberate, bis(succinimidyl) penta (ethylene glycol), bis(succinimidyl) nona (ethylene glycol), m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester, 2-pyridyldithiol-tetraoxaoctatriacontane-N-hydrosuccinimide and succinimidyl-[(N-maleimidopropionamido)-tetracosaethyleneglycol]ester. The protein structure itself, especially the distances between target amino acid residues, was found to be a determining factor for the cross-linking efficiency. Moreover, the reactive groups of the chemical cross-linker also play an important role; a higher cross-linking reaction efficiency was found for maleimides compared to 2-pyrimidyldithiols. The reaction between maleimides and sulfhydryl groups is more favorable than that between N-hydroxysuccinimide esters and amine groups, although cysteine residues are less abundant in proteins compared to lysine residues. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling

    Science.gov (United States)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  16. Preparation of shell cross-linked nano-objects from hybrid-peptide block copolymers.

    Science.gov (United States)

    Rodríguez-Hernández, Juan; Babin, Jérôme; Zappone, Bruno; Lecommandoux, Sébastien

    2005-01-01

    Supramolecular structures formed by self-assembly of diblock copolymers in solution are stable over restricted environmental conditions: concentration, temperature, pH, or ion strength among others. To enlarge their domain of application, it appears necessary to develop stabilization strategies. We report here different strategies to stabilize the shell of micelles formed by self-assembly of amphiphilic polydiene-b-polypeptide diblock copolymers. For this purpose, covalent bonds can be formed between either amine or carboxylic acid groups distributed along the soluble peptide block and a cross-linking agent that contains respectively aldehyde or amine functions. Shell stabilization affords systems with unique properties that combine three main advantages: shape persistence, control of the porosity, and stimuli-responsive behavior. The covalent capture of such macromolecular objects has been studied by light scattering, AFM, and conductimetry measurements.

  17. Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability.

    Science.gov (United States)

    Ding, Yin; Li, Ying; Qin, Meng; Cao, Yi; Wang, Wei

    2013-10-29

    Peptide-based supramolecular hydrogels have been extensively explored in biomaterials owing to their unique bioactive, stimulus-responsive, and biocompatible features. However, peptide-based hydrogels often have low mechanical stability with storage moduli of 10-1000 Pa. They are susceptible to mechanical destruction and solvent erosion, greatly hindering their practical application. Here, we present a photo-cross-linking strategy to enhance the mechanical stability of a peptide-based hydrogel by 10(4)-fold with a storage modulus of ~100 kPa, which is one of the highest reported so far for hydrogels made of small peptide molecules. This method is based on the ruthenium-complex-catalyzed conversion of tyrosine to dityrosine upon light irradiation. The reinforcement of the hydrogel through photo-cross-linking can be achieved within 2 min thanks to the fast reaction kinetics. The enhancement of the mechanical stability was due to the formation of a densely entangled fibrous network of peptide dimers through a dityrosine linkage. We showed that in order to implement this method successfully, the peptide sequence should be rationally designed to avoid the cross talk between self-assembly and cross-linking. This method is convenient and versatile for the enhancement of the mechanical stability of tyrosine-containing peptide-based hydrogels. We anticipate that the photo-cross-linked supramolecular hydrogels with much improved mechanical stability will find broad applications in tissue engineering and drug controlled release.

  18. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions.

    Science.gov (United States)

    Toews, Judy; Rogalski, Jason C; Clark, Thomas J; Kast, Juergen

    2008-06-23

    Formaldehyde cross-linking of proteins is emerging as a novel approach to study protein-protein interactions in living cells. It has been shown to be compatible with standard techniques used in functional proteomics such as affinity-based protein enrichment, enzymatic digestion, and mass spectrometric protein identification. So far, the lack of knowledge on formaldehyde-induced protein modifications and suitable mass spectrometric methods for their targeted detection has impeded the identification of the different types of cross-linked peptides in these samples. In particular, it has remained unclear whether in vitro studies that identified a multitude of amino acid residues reacting with formaldehyde over the course of several days are suitable substitutes for the much shorter reaction times of 10-20 min used in cross-linking experiments in living cells. The current study on model peptides identifies amino-termini as well as lysine, tryptophan, and cysteine side chains, i.e. a small subset of those modified after several days, as the major reactive sites under such conditions, and suggests relative position in the peptide sequence as well as sequence microenvironment to be important factors that govern reactivity. Using MALDI-MS, mass increases of 12 Da on amino groups and 30 Da on cysteines were detected as the major reaction products, while peptide fragment ion analysis by tandem mass spectrometry was used to localize the actual modification sites on a peptide. Non-specific cross-linking was absent, and could only be detected with low yield at elevated peptide concentrations. The detailed knowledge on the constraints and products of the formaldehyde reaction with peptides after short incubation times presented in this study is expected to facilitate the targeted mass spectrometric analysis of proteins after in vivo formaldehyde cross-linking.

  19. Porous chitosan scaffold cross-linked by chemical and natural procedure applied to investigate cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Center of Micro/Nano Science and Technology, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Chung, Chia-Wei; Sung, Wei-I. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China); Chang, Nai-Jen [Institute of Biomedical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Polymeric scaffolds, made from chitosan-based films fixed by chemical (citrate) or natural method (genipin), were developed. Black-Right-Pointing-Pointer Nano-indentation with a constant harmonic frequency was applied on porous scaffolds to explore their surface mechanics. Black-Right-Pointing-Pointer The relationship between surface mechanical property and cell-surface interactions of scaffold materials was demonstrated. Black-Right-Pointing-Pointer Porous scaffolds cross-linked by genipin showed adequate cell affinity, non-toxicity, and suitable mechanical properties. - Abstract: Porous chitosan scaffold is used for tissue engineering and drug delivery, but is limited as a scaffold material due to its mechanical weakness, which restrains cell adhesion on the surface. In this study, a chemical reagent (citrate) and a natural reagent (genipin) are used as cross-linkers for the formation of chitosan-based films. Nanoindentation technique with a continuous stiffness measurement system is particularly applied on the porous scaffold surface to examine the characteristic modulus and nanohardness of a porous scaffold surface. The characteristic modulus of a genipin-cross-linked chitosan surface is Almost-Equal-To 2.325 GPa, which is significantly higher than that of an uncross-linked one ( Almost-Equal-To 1.292 GPa). The cell-scaffold surface interaction is assessed. The cell morphology and results of an MTS assay of 3T3-fibroblast cells of a genipin-cross-linked chitosan surface indicate that the enhancement of mechanical properties induced cell adhesion and proliferation on the modified porous scaffold surface. The pore size and mechanical properties of porous chitosan film can be tuned for specific applications such as tissue regeneration.

  20. Multiple and sequential data acquisition method: an improved method for fragmentation and detection of cross-linked peptides on a hybrid linear trap quadrupole Orbitrap Velos mass spectrometer.

    Science.gov (United States)

    Rudashevskaya, Elena L; Breitwieser, Florian P; Huber, Marie L; Colinge, Jacques; Müller, André C; Bennett, Keiryn L

    2013-02-05

    The identification and validation of cross-linked peptides by mass spectrometry remains a daunting challenge for protein-protein cross-linking approaches when investigating protein interactions. This includes the fragmentation of cross-linked peptides in the mass spectrometer per se and following database searching, the matching of the molecular masses of the fragment ions to the correct cross-linked peptides. The hybrid linear trap quadrupole (LTQ) Orbitrap Velos combines the speed of the tandem mass spectrometry (MS/MS) duty circle with high mass accuracy, and these features were utilized in the current study to substantially improve the confidence in the identification of cross-linked peptides. An MS/MS method termed multiple and sequential data acquisition method (MSDAM) was developed. Preliminary optimization of the MS/MS settings was performed with a synthetic peptide (TP1) cross-linked with bis[sulfosuccinimidyl] suberate (BS(3)). On the basis of these results, MSDAM was created and assessed on the BS(3)-cross-linked bovine serum albumin (BSA) homodimer. MSDAM applies a series of multiple sequential fragmentation events with a range of different normalized collision energies (NCE) to the same precursor ion. The combination of a series of NCE enabled a considerable improvement in the quality of the fragmentation spectra for cross-linked peptides, and ultimately aided in the identification of the sequences of the cross-linked peptides. Concurrently, MSDAM provides confirmatory evidence from the formation of reporter ions fragments, which reduces the false positive rate of incorrectly assigned cross-linked peptides.

  1. Grafted Cross-Linked Polyolefin Substrates for Peptide Synthesis and Assays

    DEFF Research Database (Denmark)

    1999-01-01

    suited for use in solid-phase biosystems, notably bioassays, such as immunoassays, DNA hybridization assays or PCR amplification. The grafted chains may bear substituents which are such that the polymer-grafted cross-linked polyolefin substrate is swellable by water or aqueous media, in other words...

  2. AlkB recognition of a bulky DNA base adduct stabilized by chemical cross-linking

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    E.coli AlkB is a direct DNA/RNA repair protein that oxidatively reverses N1 alkylated purines and N3 alkylated pyrimidines to regular bases.Previous crystal structures have revealed N1-methyl adenine(1-meA) recognition by AlkB and a unique base flipping mechanism,but how the AlkB active site can accommodate bulky base adducts is largely unknown.Employing a previously developed chemical cross-linking technique,we crystallized AlkB with a duplex DNA containing a caged thymine base(cagedT).The structure revealed a flexible hairpin lid and a reorganized substrate recognition loop used by AlkB to accommodate cagedT.These observations demonstrate,at the molecular level,how bulky DNA adducts may be recognized and processed by AlkB.

  3. Physicochemical characterization of chitosan/nylon6/polyurethane foam chemically cross-linked ternary blends.

    Science.gov (United States)

    Jayakumar, S; Sudha, P N

    2013-03-15

    Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components.

  4. Physicochemical characterization of chitosan/nylon6/polyurethane foam chemically cross-linked ternary blends

    Science.gov (United States)

    Jayakumar, S.; Sudha, P. N.

    2013-03-01

    Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components.

  5. DNA interstrand cross-links of an antitumor trinuclear platinum(II) complex: thermodynamic analysis and chemical probing.

    Science.gov (United States)

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor

    2011-06-06

    The trinuclear platinum compound [{trans-PtCl(NH(3))(2)}(2)(μ-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2))](4+) (BBR3464) belongs to the polynuclear class of platinum-based anticancer agents. These agents form in DNA long-range (Pt,Pt) interstrand cross-links, whose role in the antitumor effects of BBR3464 predominates. Our results show for the first time that the interstrand cross-links formed by BBR3464 between two guanine bases in opposite strands separated by two base pairs (1,4-interstrand cross-links) exist as two distinct conformers, which are not interconvertible, not only if these cross-links are formed in the 5'-5', but also in the less-usual 3'-3' direction. Analysis of the conformers by differential scanning calorimetry, chemical probes of DNA conformation, and minor groove binder Hoechst 33258 demonstrate that each of the four conformers affects DNA in a distinctly different way and adopts a different conformation. The results also support the thesis that the molecule of antitumor BBR3464 when forming DNA interstrand cross-links may adopt different global structures, including different configurations of the linker chain of BBR3464 in the minor groove of DNA. Our findings suggest that the multiple DNA interstrand cross-links available to BBR3464 may all contribute substantially to its cytotoxicity.

  6. Fast and Accurate Identification of Cross-Linked Peptides for the Structural Analysis of Large Protein Complexes and Elucidation of Interaction Networks. / Tahir, Salman; Bukowski-Wills, Jimi-Carlo; Rasmussen, Morten; Rappsilber, Juri

    DEFF Research Database (Denmark)

    Rasmussen, Morten

    Fast and Accurate Identification of Cross-Linked Peptides for the structural analysis of large protein complexes and to elucidate interaction networks. Salman Tahir Jimi-Carlo Bukowski-Wills; Morten Rasmussen; Juri RappsilberWellcome Trust Centre for Cell Biology, Edinburgh , United Kingdom   Novel...... to investigate protein structure and protein-protein interactions. When applied to single proteins or small purified protein complexes, this methodology works well. However certain challenges arise when applied to more complex samples. One of the main problems is the combinatorial increase in the search space...... Aspect: Our software efficiently and correctly identifies cross-links within large protein complexes, facilitating the construction of low-resolution 3D-models and interaction networks   .Introduction Chemical cross-linking of peptides coupled with mass spectrometry emerges as a powerful method...

  7. Effect of cross-linking with riboflavin and ultraviolet A on the chemical bonds and ultrastructure of human sclera

    Science.gov (United States)

    Jung, Gyeong-Bok; Lee, Hui-Jae; Kim, Ji-Hye; Lim, Jin Ik; Choi, Samjin; Jin, Kyung-Hyun; Park, Hun-Kuk

    2011-12-01

    This study examined the effect of the cross-linking with riboflavin-ultraviolet A (UVA) irradiation on the chemical bonds and ultrastructural changes of human sclera tissues using Raman spectroscopy and atomic force microscopy (AFM). Raman spectroscopy of the normal and cross-linked human sclera tissue revealed different types of the riboflavin-UVA and collagen interactions, which could be identified from their unique peaks, intensity, and shape. Raman spectroscopy can prove to be a powerful tool for examining the chemical bond of collagenous tissues at the molecular level. After riboflavin-UVA treatment, unlike a regular parallel arrangement of normal collagen fibrils, the AFM image revealed interlocking arrangements of collagen fibrils. The observed changes in the surface topography of the collagen fibrils, as well as in their chemical bonds in the sclera tissue, support the formation of interfibrilar cross-links in sclera tissues.

  8. The Release Behavior and Kinetic Evaluation of Tramadol HCl from Chemically Cross Linked Ter Polymeric Hydrogels

    Directory of Open Access Journals (Sweden)

    Muhammad A Malana

    2013-01-01

    Full Text Available Background and the purpose of the study: Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels.MethodsTer-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol % EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism.Results and major conclusion: Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n>0.5>1 showing swelling controlled mechanism. The mechanical strength and controlled release capability of

  9. The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels

    Directory of Open Access Journals (Sweden)

    Malana Muhammad A

    2013-01-01

    Full Text Available Abstract Background and the purpose of the study Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels. Methods Ter-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol% EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism. Results and major conclusion Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n > 0.5 > 1 showing swelling controlled mechanism. The mechanical strength and controlled

  10. A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Derrick, Jeffrey S.; Kerr, Richard A.; Nam, Younwoo; Oh, Shin Bi; Lee, Hyuck Jin; Earnest, Kaylin G.; Suh, Nayoung; Peck, Kristy L.; Ozbil, Mehmet; Korshavn, Kyle J.; Ramamoorthy, Ayyalusamy; Prabhakar, Rajeev; Merino, Edward J.; Shearer, Jason; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2015-11-25

    Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-β (Aβ) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand–peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer’s disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aβ forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aβ with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.

  11. Probing the structure of human protein disulfide isomerase by chemical cross-linking combined with mass spectrometry

    DEFF Research Database (Denmark)

    Peng, Li; Rasmussen, Morten Ib; Chailyan, Anna

    2014-01-01

    Protein disulfide-isomerase (PDI) is a four-domain flexible protein that catalyzes the formation of disulfide bonds in the endoplasmic reticulum. Here we have analyzed native PDI purified from human placenta by chemical cross-linking followed by mass spectrometry (CXMS). In addition to PDI...... the sample contained soluble calnexin and ERp72. Extensive cross-linking was observed within the PDI molecule, both intra- and inter-domain, as well as between the different components in the mixture. The high sensitivity of the analysis in the current experiments, combined with a likely promiscuous...... interaction pattern of the involved proteins, revealed relatively densely populated cross-link heat maps. The established X-ray structure of the monomeric PDI could be confirmed; however, the dimer as presented in the existing models does not seem to be prevalent in solution as modeling on the observed cross...

  12. Isolation of cross-linked peptides by diagonal strong cation exchange chromatography for protein complex topology studies by peptide fragment fingerprinting from large sequence databases

    NARCIS (Netherlands)

    H. Buncherd; W. Roseboom; B. Ghavim; W. Du; L.J. de Koning; C.G. de Koster; L. de Jong

    2014-01-01

    Knowledge of spatial proximity of amino acid residues obtained by chemical cross-linking and mass spectrometric analysis provides information about protein folding, protein-protein interactions and topology of macromolecular assemblies. We show that the use of bis(succinimidyl)-3-azidomethyl glutara

  13. Study on Chemical Cross-linking Modification of Hyaluronan and the Biocompatibility of its Derivatives

    Institute of Scientific and Technical Information of China (English)

    HU Guo-ying; LIU Xin; GU Han-qing

    2006-01-01

    Objective: Prepare cross-linked HA gels with higher mechanical stability,lower degradation velocity and desirable biocompatibility,so as to extend the usage of HA.Method: 1.Test molecular weight of HA (MrHA) by viscosimetry;2.Prepare cross-linked HA gels by DVS,GTA,DEC;3.Discuss the cross-linking and degradation procedure;4,evaluate the biocompatibility of the best HA gels.Results: The mechanical stability and durability to degradation of HA-DVS gels are superior to those of other gels,and when HA :DVS = 40:1 (g/g),at 35℃ and in 0.2M NaOH solution,the HA-DVS gel shows the best mechanical stability,and its cytotoxicity reaches class I,hemolysis ratio is lower than 5 %.Conclusion:Our HADVS gel can be used to prepare biologic scaffolds.

  14. Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil

    OpenAIRE

    Muhammad Usman Minhas; Mahmood Ahmad; Liaqat Ali; Muhammad Sohail

    2013-01-01

    Background of the Study The propose of the present work was to develop chemically cross-linked polyvinyl alcohol-co-poly(methacrylic acid) hydrogel (PVA-MAA hydrogel) for pH responsive delivery of 5-Fluorouracil (5-FU). Methods PVA based hydrogels were prepared by free radical copolymerization. PVA has been cross-linked chemically with monomer (methacrylic acid) in aqueous medium, cross-linking agent was ethylene glycol di-methacrylate (EGDMA) and benzoyl peroxide was added as reaction initia...

  15. Using Selected Chemical and Physical Factors to Cross-link a BioCo Polymer Binder - Mineral Matrix System

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2013-04-01

    Full Text Available This publication describes research on the course of the process of cross-linking new BioCo polymer binders - in the form of water-based polymer compositions of poly(acrylic acid or poly(sodium acrylate/modified polysaccharide - using selected physical and chemical factors. It has been shown that the type of cross-linking factor used influences the strength parameters of the moulding sand. The crosslinking factors selected during basic research make it possible to obtain sand strengths similar to those of samples of sands bonded with commercial binders. Microwave radiation turned out to be the most effective cross-linking factor in a binder-matrix system. It was proven that adsorption in the microwave radiation field leads to the formation of polymer lattices with hydrogen bonds which play a major role in maintaining the formed cross-linked structures in the binder-matrix system. As a result, the process improves the strength parameters of the sand, whereas the hardening process in a microwave field significantly shortens the setting time.

  16. Chemical structure and properties of interstrand cross-links formed by reaction of guanine residues with abasic sites in duplex DNA.

    Science.gov (United States)

    Catalano, Michael J; Liu, Shuo; Andersen, Nisana; Yang, Zhiyu; Johnson, Kevin M; Price, Nathan E; Wang, Yinsheng; Gates, Kent S

    2015-03-25

    A new type of interstrand cross-link resulting from the reaction of a DNA abasic site with a guanine residue on the opposing strand of the double helix was recently identified, but the chemical connectivity of the cross-link was not rigorously established. The work described here was designed to characterize the chemical structure and properties of dG-AP cross-links generated in duplex DNA. The approach involved characterization of the nucleoside cross-link "remnant" released by enzymatic digestion of DNA duplexes containing the dG-AP cross-link. We first carried out a chemical synthesis and complete spectroscopic structure determination of the putative cross-link remnant 9b composed of a 2-deoxyribose adduct attached to the exocyclic N(2)-amino group of dG. A reduced analogue of the cross-link remnant was also prepared (11b). Liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis revealed that the retention times and mass spectral properties of synthetic standards 9b and 11b matched those of the authentic cross-link remnants released by enzymatic digestion of duplexes containing the native and reduced dG-AP cross-link, respectively. These results establish the chemical connectivity of the dG-AP cross-link released from duplex DNA and provide a foundation for detection of this lesion in biological samples. The dG-AP cross-link in duplex DNA was remarkably stable, decomposing with a half-life of 22 days at pH 7 and 23 °C. The intrinsic chemical stability of the dG-AP cross-link suggests that this lesion in duplex DNA may have the power to block DNA-processing enzymes involved in transcription and replication.

  17. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  18. Development and characterization of films based on chemically cross-linked gliadins.

    Science.gov (United States)

    Hernández-Muñoz, Pilar; Kanavouras, Antonis; Lagaron, José M; Gavara, Rafael

    2005-10-19

    The aim of the present work has been to study the possibility of obtaining modified gliadin films with improved water resistance and mechanical properties by means of promoting intermolecular covalent bonds between polypeptide chains. Prior to casting films, formaldehyde, glutaraldehyde, and glyoxal were used to cross-link proteins at concentrations ranging from 1% to 4% (grams per 100 g of protein). Mechanical properties (tensile strength and elongation at break), water vapor permeability, moisture sorption isotherms, and optical properties of the films produced were evaluated as a function of the cross-linker used. Experimental results showed that some properties of gliadin films were considerably modified. Cross-linking improved the water resistance of films, avoiding their disintegration. Their water barrier properties were also enhanced, but their moisture sorption properties remained unchanged. Formaldehyde imparted greater mechanical strength to films than glutaraldehyde or glyoxal, increasing tensile strength values 10-fold. Addition of the cross-linkers at concentrations in excess of 2.5% did not further improve the mechanical or barrier properties. However, modification with glutaraldehyde or glyoxal imparted an increasingly yellowish tint to the films.

  19. Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels

    Science.gov (United States)

    Katti, Atul; Shimpi, Nilesh; Roy, Samit; Lu, Hongbing; Fabrizio, Eve F.; Dass, Amala; Capadona, Lynn A.; Leventis, Nicholas

    2006-01-01

    We describe a new mechanically strong lightweight porous composite material obtained by encapsulating the skeletal framework of amine-modified silica aerogels with polyurea. The conformal polymer coating preserves the mesoporous structure of the underlying silica framework and the thermal conductivity remains low at 0.041 plus or minus 0.001 W m(sup -1 K(sup -1). The potential of the new cross-linked silica aerogels for load-carrying applications was determined through characterization of their mechanical behavior under compression, three-point bending, and dynamic mechanical analysis (DMA). A primary glass transition temperature of 130 C was identified through DMA. At room temperature, results indicate a hyperfoam behavior where in compression cross-linked aerogels are linearly elastic under small strains (less than 4%) and then exhibit yield behavior (until 40% strain), followed by densification and inelastic hardening. At room temperature the compressive Young's modulus and the Poisson's ratio were determined to be 129 plus or minus 8 MPa and 0.18, respectively, while the strain at ultimate failure is 77% and the average specific compressive stress at ultimate failure is 3.89 x 10(exp 5) N m kg(sup -1). The specific flexural strength is 2.16 x 10(exp 4) N m kg(sup -1). Effects on the compressive behavior of strain rate and low temperature were also evaluated.

  20. Characterization of Chemical and Physical Properties of Hydroxypropylated and Cross-linked Arrowroot (Marantha arundinacea Starch

    Directory of Open Access Journals (Sweden)

    Rijanti Rahaju Maulani

    2013-12-01

    Full Text Available The modern food industry and a variety of food products require tolerant starch as raw material for processing in a broad range of techniques, from preparation to storage and distribution. Dual modification of arrowroot starch using hydroxypropylation and cross-linking was carried out to overcome the lack of native arrowroot starch in food processing application. The modifications applied were: combined propylene oxide (8%, 10%, and 12%; sodium tri meta phosphate/STMP (1%, 2%, and 3%; and sodium tri poly phosphate/STPP (4%, 5%, and 6%. These modifications significantly affected the composition of the amylose and amylopectin and the amount of phosphorus in the granules. Higher amounts of phosphate salt gave a higher phosphorus content, which increased the degree of substitution (DS and the degree of cross-link. Arrowroot starch that was modified using a concentration of 8-10% propylene oxide and 1-2% STMP : 3-5% STPP produced a starch with < 0.4% phosphorus content. A higher concentration of propylene oxide provided a higher degree of hydroxypropyl. The changed physical properties of the modified granular arrowroot starch were examined through SEM testing, and its changed crystalline patterns through X-ray diffraction measurements. Especially, provision of a high concentration of propylene oxide (12% combined with 3% STMP : 6% STPP affected the granular morphology and the crystallinity.

  1. A thixotropic hydrogel from chemically cross-linked guar gum: synthesis, characterization and rheological behaviour.

    Science.gov (United States)

    Barbucci, Rolando; Pasqui, Daniela; Favaloro, Roberto; Panariello, Giuseppe

    2008-12-08

    Polysaccharide guar gum (GG) was cross-linked in an alkaline solution with polyethylene glycol diglycidyl ether (PEGDGE) to create a new hydrogel. The GG hydrogel was examined by FT-IR spectroscopy, AFM analysis and SEM analysis. The water uptake of the GG hydrogel was measured at different pHs, and rheological studies were performed to verify the thixotropic nature of the material. Rheological studies revealed the pseudoplastic behaviour of the GG hydrogel and its thixotropic nature. AFM analysis on a sample which was subjected to shear stress showed the presence of nanoparticles in the hydrogel. When the sample was left to settle, the gel surface returned to its original homogenous morphology. The thixotropic and injectable nature of the GG hydrogel suggest its possible use in biomedical applications.

  2. Elucidation for Electro-chemical Degradation of Cross-linked Polyethylene Insulated Power Cable

    Science.gov (United States)

    Miyashita, Yoshitsugu

    The water treeing phenomenon has been recognized as an ultimate difficulty for long-term service life of cross-linked polyethylene (XLPE) insulated power cables. Elucidation of substantial mechanistic pathway of water treeing is quite important to suppress water treeing. Many factors which affect water treeing have been found, such as electrical stress, existence of water, temperature and mechanical stress, and somewhat complicated synergestic interaction between them has also been pointed out. These factors make water treeing very difficult to be understood. The author studied the role of water in this phenomenon. To obtain certain analogical evidence for water treeing, a series of experiments was conducted by employing, as substituents of water, several organic solvents which possess relatively high dielectric constant and dissimilar electrochemical behavior, respectively. Consequently, it was found that a new type of treeing in XLPE matrix could be generated by certain organic solvent without water, and such treeing became easier to incept and propagate when the solvent contained particular electrolyte. Further, it was also indicated that cation was more effective than anion on such solvent treeing. Water tree inception and propagation mechanism was discussed from these experimental results.

  3. Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries

    Science.gov (United States)

    Cheng, C. L.; Wan, C. C.; Wang, Y. Y.

    This study reports the development of a new system of porous, chemically cross-linked, gel polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer as a polymer matrix, polyethylene glycol (PEG) as a plasticizer, and polyethylene glycol dimethacrylate (PEGDMA) as a chemical cross-linking oligomer. The electrolytes are prepared by a combination of controlled evaporation and thermal polymerization of PEGDMA. PVdF-HFP/PEG/PEGDMA gel polymer electrolytes with a composition of 5/3/2 exhibit both high ambient ionic conductivity, viz., >1 mS cm -1, and a high tensile modulus of 52 MPa, because of their porous and network structures. All the blends of electrolytes are electrochemically stable up to 5 V versus Li/Li + in the presence of 1 M LiPF 6/ethylene carbonate-diethyl carbonate (EC-DEC). With these polymer electrolytes, rechargeable lithium batteries composed of carbon anode and LiCoO 2 cathode have acceptable cycleability and a good rate capability.

  4. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.

    Science.gov (United States)

    Bode, Franziska; da Silva, Marcelo Alves; Drake, Alex F; Ross-Murphy, Simon B; Dreiss, Cécile A

    2011-10-10

    This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels

  5. Cross-linking and ultrathin grafted gradation of fluorinated polymers synthesized via initiated chemical vapor deposition to prevent surface reconstruction.

    Science.gov (United States)

    Liu, Andong; Goktekin, Esma; Gleason, Karen K

    2014-12-02

    Poly(fluoroalkyl acrylate)s with long perfluorooctyl pendant groups have been found to lead to the release of biopersistent perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Those with no more than six perfluorinated carbons in pedant groups do not cause such problems. They, however, give poor dynamic water repellency due to extensive reorganization of surface fluorinated groups when exposed to the water interface. In this work, thin films exhibiting improved dynamic water repellency, as evidenced by water contact angle (WCA) measurements, were synthesized via substrate-independent initiated chemical vapor deposition (iCVD) from 1H,1H,2H,2H-perfluorooctyl acrylate (C6PFA) and divinylbenzene (DVB) using two methods: copolymerization and ultrathin grafted gradation. The copolymerization between C6PFA and the cross-linker, DVB, was confirmed by Fourier transform infrared (FTIR) spectroscopy. The cross-linking is concluded to hinder the reorganization of surface fluorinated groups. The grafted gradation, consisting of an ultrathin pC6PFA top layer and a pDVB base layer, was characterized by angle-resolved X-ray photoelectron spectroscopy (ARXPS) measurements, which indicated that the top layer of pC6PFA is water repellency. The outmost surface of this structure is fully covered by fluorinated groups, giving hydrophobicity. Concurrently, thanks to the interlayer grafting and the ultrathinness of the top layer, the fluorinated groups' tendency to migrate away from water interface is sterically blocked by the highly cross-linked pDVB base layer. The proposed approaches effectively reduced WCA hysteresis of C6PFA-based thin film to as low as 26.9° while maintaining sufficient hydrophobicity (advanced WCA of 119.6°). Due to the conformal and substrate-independent nature of iCVD technique, the films could be used to coat textured surfaces to generate superhydrophobicity.

  6. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology.

    Science.gov (United States)

    Sinz, Andrea; Arlt, Christian; Chorev, Dror; Sharon, Michal

    2015-08-01

    Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein three-dimensional-structures and for mapping protein-protein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculin-Arp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.

  7. A colourimetric method for the determination of the degree of chemical cross-linking in aspartic acid-based polymer gels

    Directory of Open Access Journals (Sweden)

    B. Gyarmati

    2015-02-01

    Full Text Available A 2,4,6-trinitrobenzenesulphonic acid (TNBS-based assay is developed to determine the degree of chemical cross-linking in aspartic acid-based polymer gels. The conventional colourimetric method for the quantitative determination of amine groups is difficult to use in polymer networks; thus, an improved method is developed to analyse polymer gels swollen in dimethyl sulfoxide (DMSO. Reaction products of the derivatizing reaction are examined by NMR. The chemical stability of the reagent is increased in DMSO, and the method shows satisfactory linearity and accuracy. The degree of chemical cross-linking in the investigated gels is close to its theoretical maximum, but the conversion of the pendant amine groups to cross-linking points is strongly dependent on the feed composition of the gels.

  8. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation

    KAUST Repository

    Choi, Seung Hak

    2010-12-13

    In this study, chemically cross-linked asymmetric P84® co-polyimide hollow fibre membranes with enhanced separation performance were fabricated, using a dry-wet spinning process with an innovative in-line cross-linking step. The chemical modification was conducted by controlled immersion of the coagulated fibre in an aqueous 1,5-diamino-2-methylpentane (DAMP) cross-linker solution before the take-up. The effect of the cross-linker concentration on the thermal, mechanical, chemical and gas transport properties of the membranes was investigated. FT-IR/ATR analysis was used to identify the chemical changes in the polymer, while DSC analysis confirmed the changes in the Tg and the specific heat of the polymer upon cross-linking. Chemical cross-linking with a 10 wt.% aqueous DAMP solution strongly enhanced the H2/CO2 ideal selectivity from 5.3 to 16.1, while the H2 permeance of the membranes decreased from 7.06 × 10−3 to 1.01 × 10−3 m3(STP) m−2 h−1 bar−1 for a feed pressure of 1 bar at 25 °C. The increase of selectivity with decreasing permeance is somewhat higher than the slope in the Robeson upper bound, evidencing the positive effect of the cross-linking on the separation performance of the fibres. Simultaneously, the cross-linking leads to improved mechanical resistance of the membranes, which could be further enhanced by an additional thermal treatment. The produced membranes are therefore more suitable for use under harsh conditions and have a better overall performance than the uncross-linked ones.

  9. Structure and kinetics of chemically cross-linked protein gels from small-angle X-ray scattering

    CERN Document Server

    Kaieda, Shuji; Halle, Bertil

    2014-01-01

    Glutaraldehyde (GA) reacts with amino groups in proteins, forming intermolecular cross-links that, at sufficiently high protein concentration, can transform a protein solution into a gel. Although GA has been used as a cross-linking reagent for decades, neither the cross-linking chemistry nor the microstructure of the resulting protein gel have been clearly established. Here we use small-angle X-ray scattering (SAXS) to characterise the microstructure and structural kinetics of gels formed by cross-linking of pancreatic trypsin inhibitor, myoglobin or intestinal fatty acid-binding protein. By comparing the scattering from gels and dilute solutions, we extract the structure factor and the pair correlation function of the gel. The protein gels are spatially heterogeneous, with dense clusters linked by sparse networks. Within the clusters, adjacent protein molecules are almost in contact, but the protein concentration in the cluster is much lower than in a crystal. At the $\\sim$ 1 nm SAXS resolution, the native ...

  10. Characterization of the deoxyguanosine-lysine cross-link of methylglyoxal.

    Science.gov (United States)

    Petrova, Katya V; Millsap, Amy D; Stec, Donald F; Rizzo, Carmelo J

    2014-06-16

    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA-protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement.

  11. Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine.

    Science.gov (United States)

    Wickramaratne, Susith; Boldry, Emily J; Buehler, Charles; Wang, Yen-Chih; Distefano, Mark D; Tretyakova, Natalia Y

    2015-01-01

    DNA-protein cross-links (DPCs) are exceptionally bulky, structurally diverse DNA adducts formed in cells upon exposure to endogenous and exogenous bis-electrophiles, reactive oxygen species, and ionizing radiation. If not repaired, DPCs can induce toxicity and mutations. It has been proposed that the protein component of a DPC is proteolytically degraded, giving rise to smaller DNA-peptide conjugates, which can be subject to nucleotide excision repair and replication bypass. In this study, polymerase bypass of model DNA-peptide conjugates structurally analogous to the lesions induced by reactive oxygen species and DNA methyltransferase inhibitors was examined. DNA oligomers containing site-specific DNA-peptide conjugates were generated by copper-catalyzed [3 + 2] Huisgen cyclo-addition between an alkyne-functionalized C5-thymidine in DNA and an azide-containing 10-mer peptide. The resulting DNA-peptide conjugates were subjected to steady-state kinetic experiments in the presence of recombinant human lesion bypass polymerases κ and η, followed by PAGE-based assays to determine the catalytic efficiency and the misinsertion frequency opposite the lesion. We found that human polymerase κ and η can incorporate A, G, C, or T opposite the C5-dT-conjugated DNA-peptide conjugates, whereas human polymerase η preferentially inserts G opposite the lesion. Furthermore, HPLC-ESI(-)-MS/MS sequencing of the extension products has revealed that post-lesion synthesis was highly error-prone, resulting in mutations opposite the adducted site or at the +1 position from the adduct and multiple deletions. Collectively, our results indicate that replication bypass of peptides conjugated to the C5 position of thymine by human translesion synthesis polymerases leads to large numbers of base substitution and frameshift mutations.

  12. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking

    DEFF Research Database (Denmark)

    Hartmann-Petersen, R; Tanaka, K; Hendil, K B

    2001-01-01

    -linking, immunoprecipitation, and blotting, we have determined that the ATPases are organized in the order S6-S6'-S10b-S8-S4-S7. Additionally, we found cross-links between the ATPase S10b and the 20S proteasome subunit alpha6. Together with the previously known interaction between S8 and alpha1 and between S4 and alpha7...

  13. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins.

    Science.gov (United States)

    Petrotchenko, Evgeniy V; Serpa, Jason J; Hardie, Darryl B; Berjanskii, Mark; Suriyamongkol, Bow P; Wishart, David S; Borchers, Christoph H

    2012-07-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including

  14. HPLC detection of loss rate and cell migration of HUVECs in a proanthocyanidin cross-linked recombinant human collagen-peptide (RHC)–chitosan scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Deng, Aipeng [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yang [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gao, Lihu; Xu, Na; Liu, Xin; Hu, Lunxiang; Chen, Junhua [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Shulin, E-mail: yshulin@njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-11-01

    Porous scaffolds with appropriate pore structure, biocompatibility, mechanical property and processability play an important role in tissue engineering. In this paper, we fabricated a recombinant human collagen-peptide (RHC)–chitosan scaffold cross-linked by premixing 30% proanthocyanidin (PA) in one-step freeze-drying. To remove the residual acetic acid, optimized 0.2 M phosphate buffer of pH 6.24 with 30% ethanol (PBSE) was selected to neutralize the lyophilized scaffold followed by three times deionized water rinse. Ninhydrin assay was used to characterize the components loss during the fabrication process. To detect the exact RHC loss under optimized neutralization condition, high performance liquid chromatography (HPLC) equipped size exclusion chromatography column was used and the total RHC loss rate through PBSE rinse was 19.5 ± 5.08%. Fourier transform infrared spectroscopy (FT-IR) indicated hydrogen bonding among RHC, chitosan and PA, it also presented a probative but not strong hydrophobic interaction between phenyl rings of polyphenols and pyrrolidine rings of proline in RHC. Further, human umbilical vein endothelial cell (HUVEC) viability analyzed by a scanning electron microscope (SEM) and acridine orange/ethidium bromide (AO/EB) fluorescence staining exhibited that this scaffold could not only promote cell proliferation on scaffold surface but also permit cells migration into the scaffold. qRT-PCR exhibited that the optimized scaffold could stimulate angiogenesis associated genes VEGF and CD31 expression. These characterizations indicated that this scaffold can be considered as an ideal candidate for tissue engineering. - Highlights: • PA cross-linked recombinant human collagen–chitosan scaffold. • Fabrication in one-step lyophilization with neutralization. • HPLC detection of RHC loss rate • HUVEC proliferation and migration in scaffold • Angiogenesis associated gene expressions were increased in scaffold cell culturing.

  15. The cross linking of EPDM and NBR rubber

    Directory of Open Access Journals (Sweden)

    Samardžija-Jovanović Suzana

    2005-01-01

    Full Text Available In the process of macromolecule cross linking, the choice of type and quantity of the components and the experimental conditions are important to obtain the new cross linked materials with better mechanical and chemical characteristics. The cross linking method depends on the rubber type and structure. Intermolecular cross linking results in the formation elastomer network. The basis of the cross linking process, between ethylene propylene diene rubber (EPDM and acrylonitrile butadiene rubber (NBR, is a chemical reaction. Fillers and other additives are present in different mass ratios in the material. The exploitation properties of the cross linked materials depend on the quantity of additive in the cross linked systems.

  16. Ligand-induced movements of inner transmembrane helices of Glut1 revealed by chemical cross-linking of di-cysteine mutants.

    Directory of Open Access Journals (Sweden)

    Mike Mueckler

    Full Text Available The relative orientation and proximity of the pseudo-symmetrical inner transmembrane helical pairs 5/8 and 2/11 of Glut1 were analyzed by chemical cross-linking of di-cysteine mutants. Thirteen functional di-cysteine mutants were created from a C-less Glut1 reporter construct containing cysteine substitutions in helices 5 and 8 or helices 2 and 11. The mutants were expressed in Xenopus oocytes and the sensitivity of each mutant to intramolecular cross-linking by two homobifunctional thiol-specific reagents was ascertained by protease cleavage followed by immunoblot analysis. Five of 9 mutants with cysteine residues predicted to lie in close proximity to each other were susceptible to cross-linking by one or both reagents. None of 4 mutants with cysteine substitutions predicted to lie on opposite faces of their respective helices was susceptible to cross-linking. Additionally, the cross-linking of a di-cysteine pair (A70C/M420C, helices 2/11 predicted to lie near the exoplasmic face of the membrane was stimulated by ethylidene glucose, a non-transported glucose analog that preferentially binds to the exofacial substrate-binding site, suggesting that the binding of this ligand stimulates the closure of helices at the exoplasmic face of the membrane. In contrast, the cross-linking of a second di-cysteine pair (T158C/L325, helices 5/8, predicted to lie near the cytoplasmic face of the membrane, was stimulated by cytochalasin B, a glucose transport inhibitor that competitively inhibits substrate efflux, suggesting that this compound recruits the transporter to a conformational state in which closure of inner helices occurs at the cytoplasmic face of the membrane. This observation provides a structural explanation for the competitive inhibition of substrate efflux by cytochalasin B. These data indicate that the binding of competitive inhibitors of glucose efflux or influx induce occluded states in the transporter in which substrate is excluded from

  17. Fast and Accurate Identification of Cross-Linked Peptides for the Structural Analysis of Large Protein Complexes and Elucidation of Interaction Networks. / Tahir, Salman; Bukowski-Wills, Jimi-Carlo; Rasmussen, Morten; Rappsilber, Juri

    DEFF Research Database (Denmark)

    Rasmussen, Morten

    Fast and Accurate Identification of Cross-Linked Peptides for the structural analysis of large protein complexes and to elucidate interaction networks. Salman Tahir Jimi-Carlo Bukowski-Wills; Morten Rasmussen; Juri RappsilberWellcome Trust Centre for Cell Biology, Edinburgh , United Kingdom   Novel...

  18. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions.

    Science.gov (United States)

    Nguyen, Le Truc; Yang, Kun-Lin

    2017-05-01

    Cascade reactions involved unstable intermediates are often encountered in biological systems. In this study, we developed combined cross-linked enzyme aggregates (combi-CLEA) to catalyze a cascade reaction which involves unstable hydrogen peroxide as an intermediate. The combi-CLEA contains two enzymes̶ glucose oxidase (GOx) and horseradish peroxidase (HRP) which are cross-linked together as solid aggregates. The first enzyme GOx catalyzes the oxidation of glucose and produces hydrogen peroxide, which is used by the second enzyme HRP to oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The apparent reaction rate of the cascade reaction reaches 10.5±0.5μM/min when the enzyme ratio is 150:1 (GOx:HRP). Interestingly, even in the presence of catalase, an enzyme that quickly decomposes hydrogen peroxide, the reaction rate only decreases by 18.7% to 8.3±0.3μM/min. This result suggests that the intermediate hydrogen peroxide is not decomposed by catalase due to a short diffusion distance between GOx and HRP in the combi-CLEA. Scanning electron microscopy images suggest that combi-CLEA particles are hollow spheres and have an average diameter around 250nm. Because of their size, combi-CLEA particles can be entrapped inside a nylon membrane for detecting glucose by using the cascade reaction.

  19. Synthesis,characterization and swelling properties of a chemically cross-linked poly(vinyl alcohol) hydrogel

    Institute of Scientific and Technical Information of China (English)

    LI Wenbo; XUE Feng; CHENG Rongshi

    2007-01-01

    A poly(vinyl alcohol) hydrogel was prepared by coupling poly(vinyl alcohol) with epichlorohydrin as the cross-linking agent.The structure of the hydrogel was characterized by FTIR and GPC techniques.Various amounts of water were added into the dry gel to swell it,and the quantity of water in various states in the partially swollen hydrogel was determined by DSC technique.The analytical results indicate that the water introduced into the dry gel first combines with the hydrophilic groups of the network chains through hydrogen bond forming non-freezable water.The weight ratio of the non-freezable water to dry gel in the hydrogels is about 0.20.After the non-freezable water is saturated,the additional water penetrates the network space and exists simultaneously both in the freezable and free water states until reaching equilibrium swelling.

  20. Analytical characterisation of glutardialdehyde cross-linking products in gelatine-gum arabic complex coacervates

    Energy Technology Data Exchange (ETDEWEB)

    Fuguet, Elisabet [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands)], E-mail: eli.fuguet@gmail.com; Platerink, Chris van [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands); Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands); Janssen, Hans-Gerd [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands); van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands)

    2007-11-26

    Encapsulates having shells of cross-linked mixtures of proteins and polysaccharides are widely used in the food and pharmaceutical industry for controlled release of actives and flavour compounds. In order to be able to predict the behaviour and the release characteristics of the microcapsules, a better understanding of the nature and extent of the cross-linking reaction is needed. Several analytical techniques were applied for the characterisation of glutardialdehyde (GDA) cross-linked encapsulates made of gelatine and gum arabic. To allow the use of sensitive, high-resolution methods such as chromatography and mass spectrometry, the sample first had to be hydrolysed. In this way, a mixture of amino acids, small peptides and the cross-link moieties was obtained. High-resolution liquid chromatography coupled to high-resolution mass spectrometry (HPLC-MS) was applied to detect possible cross-link markers through a comparison of HPLC-MS mass-chromatograms obtained for cross-linked and non-cross-linked coacervates. HPLC-MS/MS was used to identify the species responsible for the differences. Cross-linking occurred between GDA molecules and lysine and hydroxylysine {epsilon}-amino groups, and up to eight cross-link products of different nature could be identified. They included pyridinium ions and Schiff bases, and also unreacted GDA condensation products. Next, based on the insight gained in the possible chemical structures present in the cross-link markers, methods for selective labelling of these functionalities were employed to allow easier detection of related reaction products. Both liquid chromatography (LC) and gas chromatography (GC) were used in these experiments. Unfortunately, these approaches failed to detect new cross-link markers, most likely as a result of the low levels at which these are present.

  1. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking.

    Science.gov (United States)

    Cellesi, Francesco; Tirelli, Nicola; Hubbell, Jeffrey A

    2004-09-01

    We have previously described a gelation process based on the occurrence of both physical and a chemical mechanisms ('tandem process'), in which a telechelic linear poly(propylene glycol)-bl-poly(ethylene glycol)-bl-poly(propylene glycol) is first thermally gelled and subsequently covalently cross-linked by the reaction of polymer end groups at the termini of the copolymer. The quick kinetics of the reverse thermal gelation and the harmless character of the Michael-type addition between two sets of terminal groups, acrylates on one set and thiols on the other, allows irreversibly cross-linked hydrogels to be obtained in a rapid and biocompatible fashion, even when gelation was conducted in direct contact with cells. This allows in principle for an application of the tandem process in cell encapsulation. In the present work, we have optimized the macromolecular architecture and functionality of the precursors for allowing the use of the tandem process in encapsulation devices designed for calcium alginate. The mechanical, diffusional and biocompatibility properties of these materials were characterized; the comparison of mass transport properties of the tandem gels with those of calcium alginate suggests a similar or even better immunoisolation effect.

  2. Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators.

    Science.gov (United States)

    Yoo, Youngmin; Kim, Byung Gon; Pak, Kwanyong; Han, Sung Jae; Song, Heon-Sik; Choi, Jang Wook; Im, Sung Gap

    2015-08-26

    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting.

  3. Chemical modification of wheat protein-based natural polymers: grafting and cross-linking reactions with poly(ethylene oxide) diglycidyl ether and ethyl diamine.

    Science.gov (United States)

    Kurniawan, Lusiana; Qiao, Greg G; Zhang, Xiaoqing

    2007-09-01

    Mobile poly(ethylene oxide) diglycidyl ether (PEODGE) segments were chemically grafted onto a soluble wheat protein (WP), and different network structures were formed via coupling reactions with ethyl diamine (EDA) in different PEODGE/EDA (PE) ratios. When the PE ratio was 1:1, linear PEs were the predominant segments grafted onto WP chains and the whole WP-PEODGE-EDA (WPE) system was still soluble with an increased molecular weight. Reducing the amount of EDA in the systems produced insoluble cross-linked WPE networks. The broad distribution of network structures and chain mobility resulted in a broad glass transition for the WPE materials. However, the glass transition started at lower temperatures, and the materials became flexible at room temperature. The PE segments were present in all rigid, intermediate, and mobile phases in WPE networks, while the proportion of mobile WP chains was increased as a result of the plasticization effect from the mobile PE segments. The mobility of the most mobile component lipid was also restricted to some extent when forming the cross-linked WPE networks. The study demonstrated that the formation of different network structures with PE segments could significantly improve the flexibility of WP materials, vary the solubility, and modify the mechanical performance of WP-based natural polymer materials.

  4. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry

    Science.gov (United States)

    Chavez, Juan D.; Eng, Jimmy K.; Schweppe, Devin K.; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E.

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions. PMID:27997545

  5. Nanoscale Hydrophobic Recovery: A Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linked Poly(dimethylsiloxane)

    NARCIS (Netherlands)

    Hillborg, Henrik; Tomczak, Nikodem; Oláh, Attila; Schönherr, Holger; Vancso, G. Julius

    2004-01-01

    Chemical force microscopy (CFM) in water was used to map the surface hydrophobicity of UV/ozone-treated poly(dimethylsiloxane) (PDMS; Sylgard 184) as a function of the storage/recovery time. In addition to CFM pull-off force mapping, we applied indentation mapping to probe the changes in the normali

  6. INFLUENCE OF CHEMICAL CROSS-LINKING ON THE CREEP-BEHAVIOR OF ULTRA-HIGH-MOLECULAR-WEIGHT POLYETHYLENE FIBERS

    NARCIS (Netherlands)

    PENNING, JP; PRAS, HE; PENNINGS, AJ

    1994-01-01

    In this study, the effect of chemical crosslinking on the creep behavior of high-strength fibers, obtained by gel-spinning and subsequent hot-drawing of ultra-high molecular weight polyethylene (UHMWPE), is examined. In the first part of the paper, the general aspects of the creep behavior of these

  7. Discovery of novel antiviral agents directed against the influenza A virus nucleoprotein using photo-cross-linked chemical arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Kyoji [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Kondoh, Yasumitsu [Chemical Biology Core Facility, RIKEN, Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Ueda, Atsushi; Yamada, Kazunori [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Medical Genome Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Goto, Hideo [Department of Microbiology and Immunology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Watanabe, Toshiki [Department of Medical Genome Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Nakata, Tadashi [Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Osada, Hiroyuki [Chemical Biology Core Facility, RIKEN, Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Medical Genome Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2010-04-09

    The nucleoprotein (NP) of the influenza virus is expressed in the early stage of infection and plays important roles in numerous steps of viral replication. NP is relatively well conserved compared with viral surface spike proteins. This study experimentally demonstrates that NP is a novel target for the development of new antiviral drugs against the influenza virus. First, artificial analogs of mycalamide A in a chemical array bound specifically with high affinity to NP. Second, the compounds inhibited multiplication of the influenza virus. Furthermore, surface plasmon resonance imaging experiments demonstrated that the binding activity of each compound to NP correlated with its antiviral activity. Finally, it was shown that these compounds bound NP within the N-terminal 110-amino acid region but their binding abilities were dramatically reduced when the N-terminal 13-amino acid tail was deleted, suggesting that the compounds might bind to this region, which mediates the nuclear transport of NP and its binding to viral RNA. These data suggest that compound binding to the N-terminal 13-amino acid tail region may inhibit viral replication by inhibiting the functions of NP. Collectively, these results strongly suggest that chemical arrays are convenient tools for the screening of viral product inhibitors.

  8. Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane).

    Science.gov (United States)

    Hillborg, Henrik; Tomczak, Nikodem; Olàh, Attila; Schönherr, Holger; Vancso, G Julius

    2004-02-01

    Chemical force microscopy (CFM) in water was used to map the surface hydrophobicity of UV/ozone-treated poly(dimethylsiloxane) (PDMS; Sylgard 184) as a function of the storage/recovery time. In addition to CFM pull-off force mapping, we applied indentation mapping to probe the changes in the normalized modulus. These experiments were complemented by results on surface properties assessed on the micrometer scale by X-ray photoelectron spectroscopy and water contact-angle measurements. Exposure times of < or = 30 min resulted in laterally homogeneously oxidized surfaces, which are characterized by an increased modulus and a high segmental mobility of PDMS. As detected on a sub-50-nm level, the subsequent "hydrophobic recovery" was characterized by a gradual increase in the pull-off forces and a decrease in the normalized modulus, approaching the values of unexposed PDMS after 8-50 days. Lateral imaging on briefly exposed PDMS showed the appearance of liquid PDMS in the form of droplets with an increasing recovery time. Longer exposure times (60 min) led to the formation of a hydrophilic silica-like surface layer. Under these conditions, a gradual surface reconstruction within the silica-like layer occurred with time after exposure, where a hydrophilic SiOx-enriched phase formed < 100-nm-sized domains, surrounded by a more hydrophobic matrix with lower normalized modulus. These results provide new insights into the lateral homogeneity of oxidized PDMS with a resolution in the sub-50-nm range.

  9. Cross-link guided molecular modeling with ROSETTA.

    Directory of Open Access Journals (Sweden)

    Abdullah Kahraman

    Full Text Available Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods.

  10. A pseudo-atomic model for the capsid shell of bacteriophage lambda using chemical cross-linking/mass spectrometry and molecular modeling.

    Science.gov (United States)

    Singh, Pragya; Nakatani, Eri; Goodlett, David R; Catalano, Carlos Enrique

    2013-09-23

    Bacteriophage lambda is one of the most exhaustively studied of the double-stranded DNA viruses. Its assembly pathway is highly conserved among the herpesviruses and many of the bacteriophages, making it an excellent model system. Despite extensive genetic and biophysical characterization of many of the lambda proteins and the assembly pathways in which they are implicated, there is a relative dearth of structural information on many of the most critical proteins involved in lambda assembly and maturation, including that of the lambda major capsid protein. Toward this end, we have utilized a combination of chemical cross-linking/mass spectrometry and computational modeling to construct a pseudo-atomic model of the lambda major capsid protein as a monomer, as well as in the context of the assembled procapsid shell. The approach described here is generalizable and can be used to provide structural models for any biological complex of interest. The procapsid structural model is in good agreement with published biochemical data indicating that procapsid expansion exposes hydrophobic surface area and that this serves to nucleate assembly of capsid decoration protein, gpD. The model further implicates additional molecular interactions that may be critical to the assembly of the capsid shell and for the stabilization of the structure by the gpD decoration protein.

  11. Chemically Designed Molecular Interfaces in Cross-Linked Poly(ethylene glycol)/Silica Nanocomposites Reveal Strong Size-Dependent Trends in Gas Permeability

    Science.gov (United States)

    Su, Norman; Urban, Jeffrey

    2015-03-01

    Polymer nanocomposite membranes can exhibit gas separation performance that surpasses conventional polymeric membranes. While promising, the optimization of nanocomposite membranes requires a fundamental understanding of the transport mechanism and interfacial effects between the inorganic and polymer phase that is currently limited to empirical relationships. Synthesized nanocomposites often consist of poorly distributed and polydisperse inorganic nanomaterials. It is known that polymer dynamics can change drastically upon introduction of an inorganic phase, which can dramatically alter molecular transport behavior. Here, we systematically explore the role of nanoparticle sizes from 12 to 130 nm on polymer dynamics and permeability in a series of cross-linked poly(ethylene glycol)/silica nanocomposite membranes. The nanocomposites are well-dispersed and display excellent homogeneity throughout. Size-dependent broadening of the Tg indicates strong attractive interactions especially at high surface area loadings, which lead to deviations in permeability not captured by Maxwell's model. Chemical modifications of silica at this interface can yield significantly different polymer dynamics than previously observed with enhanced transport and mechanical properties.

  12. Ionic interaction of myosin loop 2 with residues located beyond the N-terminal part of actin probed by chemical cross-linking.

    Science.gov (United States)

    Pliszka, Barbara; Martin, Brian M; Karczewska, Emilia

    2008-02-01

    To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.

  13. Influence of Chemical Modification Level of Starch on Flow Properties of Gelatinized Phosphate Cross-linked and Acetylated Waxy Corn Starch Suspensions

    OpenAIRE

    朝田, 仁; 鈴木, 寛一

    2004-01-01

    Waxy corn starch was modified doubly by acetylation and cross-linking with acetic vinyl and phosphorus oxychloride (POCl3). Degree of cross-linking was varied using 0.008∼0.02% phosphorus oxychloride, and acetylated substitution was adjusted to the same degree on all starch samples. Flow properties of these starch suspensions were determined by using a capillary tube viscometer. Flow parameters of these starch suspensions were markedly changed over 1.21×10-4% (w/w) of the phosphorus content. ...

  14. Molecular Structures of Isolevuglandin-Protein Cross-Links.

    Science.gov (United States)

    Bi, Wenzhao; Jang, Geeng-Fu; Zhang, Lei; Crabb, John W; Laird, James; Linetsky, Mikhail; Salomon, Robert G

    2016-10-17

    Isolevuglandins (isoLGs) are stereo and structurally isomeric γ-ketoaldehydes produced through free radical-induced oxidation of arachidonates. Some isoLG isomers are also generated through enzymatic cyclooxygenation. Post-translational modification of proteins by isoLGs is associated with loss-of-function, cross-linking and aggregation. We now report that a low level of modification by one or two molecules of isoLG has a profound effect on the activity of a multi subunit protease, calpain-1. Modification of one or two key lysyl residues apparently suffices to abolish catalytic activity. Covalent modification of calpain-1 led to intersubunit cross-linking. Hetero- and homo-oligomers of the catalytic and regulatory subunits of calpain-1 were detected by SDS-PAGE with Western blotting. N-Acetyl-glycyl-lysine methyl ester and β-amyloid(11-17) peptide EVHHQKL were used as models for characterizing the cross-linking of protein lysyl residues resulting from adduction of iso[4]LGE2. Aminal, bispyrrole, and trispyrrole cross-links of these two peptides were identified and fully characterized by mass spectrometry. Aminal and bispyrrole dimers were both detected. Furthermore, a complex mixture of derivatives of the bispyrrole cross-link containing one or more additional atoms of oxygen was found. Interesting differences are evident in the predominant cross-link type generated in the reaction of iso[4]LGE2 with these peptides. More aminal cross-links versus bispyrrole are formed during the reaction of the dipeptide with iso[4]LGE2. In contrast, more bispyrrole versus aminal cross-links are formed during the reaction of EVHHQKL with iso[4]LGE2. It is tempting to speculate that the EVHHQKL peptide-pyrrole modification forms noncovalent aggregates that favor the production of covalent bispyrrole cross-links because β-amyloid(11-17) tends to spontaneously oligomerize.

  15. KARAKTERISTIK FISIK DAN KIMIA PATI GANYONG DAN GADUNG TERMODIFIKASI METODE IKATAN SILANG Physical and Chemical Characteristics of Canna edulis Kerr and Dioscorea hispida Dennst Modified Starch with Cross Linking Method

    OpenAIRE

    Budi Santoso; Filli Pratama; Basuni Hamzah; Rindit Pambayun

    2015-01-01

    The research aimed to know physical and chemical characteristics of Canna edulis Kerr and Dioscorea hispida Dennst unmodified and modified starch with cross-linking method. This research was divided into two stages. The first stage of the research was characterization of starch from Canna edulis Kerr and Dioscorea hispida Dennst and the second stage of the research was processing of modified starch from Canna edulis Kerr and Dioscorea hispida Dennst through crosslinking by using POCl at the c...

  16. Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of pH and Composition on Swelling and Drug Release

    Directory of Open Access Journals (Sweden)

    Syed Majid Hanif Bukhari

    2015-01-01

    Full Text Available This present work was aimed at synthesizing pH-sensitive cross-linked AA/Gelatin hydrogels by free radical polymerization. Ammonium persulfate and ethylene glycol dimethacrylate (EGDMA were used as initiator and as cross-linking agent, respectively. Different feed ratios of acrylic acid, gelatin, and EGDMA were used to investigate the effect of monomer, polymer, and degree of cross-linking on swelling and release pattern of the model drug. The swelling behavior of the hydrogel samples was studied in 0.05 M USP phosphate buffer solutions of various pH values pH 1.2, pH 5.5, pH 6.5, and pH 7.5. The prepared samples were evaluated for porosity and sol-gel fraction analysis. Pheniramine maleate used for allergy treatment was loaded as model drug in selected samples. The release study of the drug was investigated in 0.05 M USP phosphate buffer of varying pH values (1.2, 5.5, and 7.5 for 12 hrs. The release data was fitted to various kinetic models to study the release mechanism. Hydrogels were characterized by Fourier transformed infrared (FTIR spectroscopy which confirmed formation of structure. Surface morphology of unloaded and loaded samples was studied by surface electron microscopy (SEM, which confirmed the distribution of model drug in the gel network.

  17. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry

    Science.gov (United States)

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca2+ on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology.

  18. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.

    Science.gov (United States)

    De France, Kevin J; Chan, Katelyn J W; Cranston, Emily D; Hoare, Todd

    2016-02-08

    While injectable hydrogels have several advantages in the context of biomedical use, their generally weak mechanical properties often limit their applications. Herein, we describe in situ-gelling nanocomposite hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA) and rigid rod-like cellulose nanocrystals (CNCs) that can overcome this challenge. By physically incorporating CNCs into hydrazone cross-linked POEGMA hydrogels, macroscopic properties including gelation rate, swelling kinetics, mechanical properties, and hydrogel stability can be readily tailored. Strong adsorption of aldehyde- and hydrazide-modified POEGMA precursor polymers onto the surface of CNCs promotes uniform dispersion of CNCs within the hydrogel, imparts physical cross-links throughout the network, and significantly improves mechanical strength overall, as demonstrated by quartz crystal microbalance gravimetry and rheometry. When POEGMA hydrogels containing mixtures of long and short ethylene oxide side chain precursor polymers were prepared, transmission electron microscopy reveals that phase segregation occurs with CNCs hypothesized to preferentially locate within the stronger adsorbing short side chain polymer domains. Incorporating as little as 5 wt % CNCs results in dramatic enhancements in mechanical properties (up to 35-fold increases in storage modulus) coupled with faster gelation rates, decreased swelling ratios, and increased stability versus hydrolysis. Furthermore, cell viability can be maintained within 3D culture using these hydrogels independent of the CNC content. These properties collectively make POEGMA-CNC nanocomposite hydrogels of potential interest for various biomedical applications including tissue engineering scaffolds for stiffer tissues or platforms for cell growth.

  19. Collagen cross linking: Current perspectives

    Directory of Open Access Journals (Sweden)

    Srinivas K Rao

    2013-01-01

    Full Text Available Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL with riboflavin (C3R is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL in its current form.

  20. Use of {gamma}-irradiation cross-linking to improve the water vapor permeability and the chemical stability of milk protein films

    Energy Technology Data Exchange (ETDEWEB)

    Ouattara, B.; Canh, L.T.; Vachon, C.; Mateescu, M.A.; Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca

    2002-03-01

    {gamma}-irradiation was used to produce free-standing cross-linked milk proteins. Film forming solutions were prepared according to a method previously developed in our laboratory using calcium caseinate (cas) with various proportions of whey protein isolate (wpi) or whey protein concentrate (wpc). The following caseinate-whey protein (cas:wp) ratio were prepared: 100:0, 75:25, 50:50, 25:75, and 0:100. The WVP of the films was determined gravimetrically at 23 deg. C using a modified ASTM procedure. Molecular properties characterization was performed by size exclusion chromatography (SEC). Results showed significant (p{<=}0.05) reduction of the WVP of protein films for the following formulations: cas:wpi or cas:wpc (100:0); cas:wpi (25:75); cas:wpc (25:75); and cas:wpc (0:100). Mixture of cas and wpi produced a synergistic effect. The strongest combined effect was obtained for cas:wpi (25:75) formulation with permeability values of 2.07 and 1.38 g mm/m{sup 2} d mm Hg for unirradiated and irradiated samples, respectively. {gamma}-irradiation also induced a substantial increase of high molecular weight protein components in film forming solutions. The predominant fraction was {>=}10x10{sup 6} Da for irradiated film forming solutions, compared to less than 0.2x10{sup 6} Da for native unirradiated solutions.

  1. Use of /γ-irradiation cross-linking to improve the water vapor permeability and the chemical stability of milk protein films

    Science.gov (United States)

    Ouattara, B.; Canh, L. T.; Vachon, C.; Mateescu, M. A.; Lacroix, M.

    2002-03-01

    γ-irradiation was used to produce free-standing cross-linked milk proteins. Film forming solutions were prepared according to a method previously developed in our laboratory using calcium caseinate (cas) with various proportions of whey protein isolate (wpi) or whey protein concentrate (wpc). The following caseinate-whey protein (cas:wp) ratio were prepared: 100:0, 75:25, 50:50, 25:75, and 0:100. The WVP of the films was determined gravimetrically at 23°C using a modified ASTM procedure. Molecular properties characterization was performed by size exclusion chromatography (SEC). Results showed significant ( p⩽0.05) reduction of the WVP of protein films for the following formulations: cas:wpi or cas:wpc (100:0); cas:wpi (25:75); cas:wpc (25:75); and cas:wpc (0:100). Mixture of cas and wpi produced a synergistic effect. The strongest combined effect was obtained for cas:wpi (25:75) formulation with permeability values of 2.07 and 1.38 g mm/m 2 d mm Hg for unirradiated and irradiated samples, respectively. γ-irradiation also induced a substantial increase of high molecular weight protein components in film forming solutions. The predominant fraction was ⩾10×10 6 Da for irradiated film forming solutions, compared to less than 0.2×10 6 Da for native unirradiated solutions.

  2. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  3. Electrospinning formaldehyde cross-linked zein solutions

    Science.gov (United States)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  4. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  5. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA

    DEFF Research Database (Denmark)

    Steen, H; Petersen, J; Mann, M

    2001-01-01

    Protein-nucleic acid complexes are commonly studied by photochemical cross-linking. UV-induced cross-linking of protein to nucleic acid may be followed by structural analysis of the conjugated protein to localize the cross-linked amino acids and thereby identify the nucleic acid binding site. Mass....... coli single-stranded DNA binding protein (SSB) that was UV-cross-linked to a 5-iodouracil containing DNA oligomer. Two methods were optimized to circumvent the need for standard liquid chromatography and gel electrophoresis, thereby dramatically increasing the overall sensitivity of the analysis....... Enzymatic degradation of protein and oligonucleotide was combined with miniaturized sample preparation methods for enrichment and desalting of cross-linked peptide-nucleic acid heteroconjugates from complex mixtures prior to mass spectrometric analysis. Detailed characterization of the peptidic component...

  6. Chemical labeling of electrochemically cleaved peptides

    NARCIS (Netherlands)

    Roeser, Julien; Alting, Niels F. A.; Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer P. H.

    2013-01-01

    RATIONALE Cleavage of peptide bonds C-terminal to tyrosine and tryptophan after electrochemical oxidation may become a complementary approach to chemical and enzymatic cleavage. A chemical labeling approach specifically targeting reactive cleavage products is presented here and constitutes a promisi

  7. Peptide Membranes in Chemical Evolution*

    OpenAIRE

    2009-01-01

    Simple surfactants achieve remarkable long-range order in aqueous environments. This organizing potential is seen most dramatically in biological membranes where phospholipid assemblies both define cell boundaries and provide a ubiquitous structural scaffold for controlling cellular chemistry. Here we consider simple peptides that also spontaneously assemble into exceptionally ordered scaffolds, and review early data suggesting that these structures maintain the functional diversity of protei...

  8. Encoded libraries of chemically modified peptides.

    Science.gov (United States)

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries.

  9. Corneal collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Jankov II Mirko

    2010-01-01

    Full Text Available Corneal collagen cross-linking (CXL with riboflavin and ultraviolet-A (UVA is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra- and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success.

  10. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Steen, Hanno; Jensen, Ole Nørregaard

    2002-01-01

    Photochemical cross-linking is a commonly used method for studying the molecular details of protein-nucleic acid interactions. Photochemical cross-linking aids in defining nucleic acid binding sites of proteins via subsequent identification of cross-linked protein domains and amino acid residues....... Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes...... and for sequencing of peptide-nucleic acid heteroconjugates. The combination of photochemical cross-linking and MS provides a fast screening method to gain insights into the overall structure and formation of protein-oligonucleotide complexes. Because the analytical methods are continuously refined and protein...

  11. An Open Data Format for Visualization and Analysis of Cross-Linked Mass Spectrometry Results.

    Science.gov (United States)

    Hoopmann, Michael R; Mendoza, Luis; Deutsch, Eric W; Shteynberg, David; Moritz, Robert L

    2016-11-01

    Protein-protein interactions are an important element in the understanding of protein function, and chemical cross-linking shotgun mass spectrometry is rapidly becoming a routine approach to identify these specific interfaces and topographical interactions. Protein cross-link data analysis is aided by dozens of algorithm choices, but hindered by a lack of a common format for representing results. Consequently, interoperability between algorithms and pipelines utilizing chemical cross-linking remains a challenge. pepXML is an open, widely-used format for representing spectral search algorithm results that has facilitated information exchange and pipeline development for typical shotgun mass spectrometry analyses. We describe an extension of this format to incorporate cross-linking spectral search results. We demonstrate application of the extension by representing results of multiple cross-linking search algorithms. In addition, we demonstrate adapting existing pepXML-supporting software pipelines to analyze protein cross-linking results formatted in pepXML. Graphical Abstract ᅟ.

  12. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA

    DEFF Research Database (Denmark)

    Steen, H; Petersen, J; Mann, M

    2001-01-01

    of two different peptide-DNA heteroconjugates was accomplished by matrix-assisted laser desorption/ionization mass spectrometry and allowed assignment of tryptophan-54 and tryptophan-88 as candidate cross-linked residues. Sequencing of those peptide-DNA heteroconjugates by nanoelectrospray quadrupole...

  13. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    Science.gov (United States)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  14. The effect of cross-link distributions in axially-ordered, cross-linked networks

    Science.gov (United States)

    Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

    2013-07-01

    Cross-linking between the constituent chains of biopolymers has a marked effect on their materials’ properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered, cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen.

  15. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng;

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  16. Porous Cross-Linked Polyimide-Urea Networks

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  17. Femtosecond laser collagen cross-linking without traditional photosensitizers

    Science.gov (United States)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  18. Cross-linking chemistry of squid beak.

    Science.gov (United States)

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert

    2010-12-03

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.

  19. Cross-linked structure of network evolution

    Science.gov (United States)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2014-03-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  20. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  1. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.

    2010-05-25

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a structural reorganization of the polymer matrix that was observed in the non-cross-linkable, free acid polymer. Pure gas permeation isotherms and mixed gas permeabilities and selectivities show the cross-linked polymers to be much more stable to scCO2 conditioning than the free acid polymer. In fact, following scCO2 conditioning, the mixed gas CO2 permeabilities of the cross-linked polymers increased while the CO2/CH4 separation factors remained relatively unchanged. This response highlights the stability and high performance of these cross-linked membranes in aggressive environments. In addition, this response reveals the potential for the preconditioning of cross-linked polymer membranes to enhance productivity without sacrificing efficiency in practical applications which, in effect, provides another tool to \\'tune\\' membrane properties for a given separation. Finally, the dual mode model accurately describes the sorption and dilation characteristics of the cross-linked polymers. The changes in the dual mode sorption model parameters before and after the scCO2 exposure also provide insights into the alterations in the different glassy samples due to the cross-linking and scCO2 exposure. © 2010 American Chemical Society.

  2. Method of preparing cross-linked enzyme particles

    NARCIS (Netherlands)

    Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.

    2004-01-01

    The invention relates to a method of preparing cross-linked enzyme particles using a cross-linking agent. According to the invention, the enzyme particles are formed and subsequently cross-linked using a cross-linking agent having at least n reactive groups where N>=3 and a molecular weight of

  3. Method of preparing cross-linked enzyme particles

    NARCIS (Netherlands)

    Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.

    2004-01-01

    The invention relates to a method of preparing cross-linked enzyme particles using a cross-linking agent. According to the invention, the enzyme particles are formed and subsequently cross-linked using a cross-linking agent having at least n reactive groups where N>=3 and a molecular weight of >2,00

  4. Mutational Analysis of a Conserved Glutamic Acid Required for Self-Catalyzed Cross-Linking of Bacteriophage HK97 Capsids▿

    Science.gov (United States)

    Dierkes, Lindsay E.; Peebles, Craig L.; Firek, Brian A.; Hendrix, Roger W.; Duda, Robert L.

    2009-01-01

    The capsid of bacteriophage HK97 is stabilized by ∼400 covalent cross-links between subunits which form without any action by external enzymes or cofactors. Cross-linking only occurs in fully assembled particles after large-scale structural changes bring together side chains from three subunits at each cross-linking site. Isopeptide cross-links form between asparagine and lysine side chains on two subunits. The carboxylate of glutamic acid 363 (E363) from a third subunit is found ∼2.4 Å from the isopeptide bond in the partly hydrophobic pocket that contains the cross-link. It was previously reported without supporting data that changing E363 to alanine abolishes cross-linking, suggesting that E363 plays a role in cross-linking. This alanine mutant and six additional substitutions for E363 were fully characterized and the proheads produced by the mutants were tested for their ability to cross-link under a variety of conditions. Aspartic acid and histidine substitutions supported cross-linking to a significant extent, while alanine, asparagine, glutamine, and tyrosine did not, suggesting that residue 363 acts as a proton acceptor during cross-linking. These results support a chemical mechanism, not yet fully tested, that incorporates this suggestion, as well as features of the structure at the cross-link site. The chemically identical isopeptide bonds recently documented in bacterial pili have a strikingly similar chemical geometry at their cross-linking sites, suggesting a common chemical mechanism with the phage protein, but the completely different structures and folds of the two proteins argues that the phage capsid and bacterial pilus proteins have achieved shared cross-linking chemistry by convergent evolution. PMID:19091865

  5. Cytokines and growth factors cross-link heparan sulfate

    Science.gov (United States)

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  6. [Corneal collagen cross-linking for keratoconus].

    Science.gov (United States)

    Zotov, V V; Pashtaev, N P; Pozdeeva, N A

    2015-01-01

    Over the last decade, corneal collagen cross-linking (CXL) has become a conventional treatment method for progressive keratoconus. Laboratory studies have shown that CXL increases the diameter of collagen fibers and also the number of intra- and interfibrillar cross-links, thus, increasing biomechanical strength of the irradiated cornea. As confirmed by a series of clinical and randomized controlled trials, CXL is able to slow down and, perhaps, to stop the progression of keratoconus. In most post-CXL patients visual acuity improves, while keratometric readings, spherical equivalent, and higher order aberrations reduce. Although published results prove CXL effective in the treatment of progressive keratoconus, its late consequences are yet unknown. This article reviews the stages of CXL development and results of published experimental and clinical studies. Prospects for CXL modifications that do not require epithelial debridement are discussed.

  7. Characterization of Cross-Linked Lipase Aggregates

    DEFF Research Database (Denmark)

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2009-01-01

    Commercially available microbial lipases from different sources were immobilized as cross-linked enzyme aggregates (CLEAs) using different precipitants and glutaraldehyde as cross-linkers. These CLEAs were assayed based on esterification between lauric acid and n-propanol in solvent-free systems...... change upon CLEA formation. This work presents a characterization of CLEAs based on an esterification activity assay, which is useful for exploring the synthetic application potential of CLEA technology with favorable perspectives....

  8. Thermal Analyse sof Cross-Linked Polyethylene

    Directory of Open Access Journals (Sweden)

    Radek Polansky

    2007-01-01

    Full Text Available The paper summarizes results obtained during the structural analyses measurements (Differential Scanning Calorimetry DSC, Thermogravimetry TG, Thermomechanical analysis TMA and Fourier transform infrared spectroscopy FT-IR. The samples of cross-linked polyethylene cable insulation were tested via these analyses. The DSC and TG were carried out using simultaneous thermal analyzer TA Instruments SDT Q600 with connection of Fourier transform infrared spectrometer Nicolet 380. Thermomechanical analysis was carried out by TMA Q400EM TA Instruments apparatus.

  9. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  10. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

    DEFF Research Database (Denmark)

    Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter

    2005-01-01

    One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross-linking on th......One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross......-linking on the rheological behaviour of low density polyethylene was investigated by using a combination of creep test and differential scanning calorimeter (DSC) in isotherm condition. The used peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out at 150,160, and 170 degrees C...

  11. Monitoring Protein Conformation Changes as an Activating Step for Protein Interactions with Cross-linking/MS Analysis. / Chen, Zhuo; Rasmussen, Morten; Tahir, Salman; Clark, C.A.C; Barlow, Paul; Rappsilber, Juri

    DEFF Research Database (Denmark)

    Rasmussen, Morten

    Monitoring protein conformation changes as an activating step for protein interactions with cross-linking/MS analysis. Chen, Zhou; Rasmussen, Morten; Tahir, Salman; Clark, C.A.C; Barlow, Paul; Rappsilber, Juri.   Introduction Protein interactions often require conformational changes in proteins....... Chemical cross-linking of proteins coupled with mass spectrometric analysis is emerging as a versatile tool for determining low-resolution three-dimensional structures of proteins. We show in this study that this technique is also able to resolve protein conformation changes, investigating the transition......-linked peptides and manual validation were performed using in-house software. The structural information determined by validated cross-links was compared against C3 and C3b crystal structure using Pymol.   Preliminary results We portray conformation changes from C3 to C3b through observing different group...

  12. Fiber optic immunosensor for cross-linked fibrin concentration

    Science.gov (United States)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  13. Crown ether activation of cross-linked subtilisin Carlsberg crystals in organic solvents

    NARCIS (Netherlands)

    Unen, van Dirk-Jan; Sakodinskaya, Inna K.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1998-01-01

    The activity of cross-linked subtilisin Carlsberg crystals in the catalysis of peptide bond formation can be significantly enhanced by pretreatment of the enzyme crystals with crown ethers. Soaking of the enzyme crystals in a solution of crown ether in acetonitrile followed by evaporation of the sol

  14. Cross-linking for microbial keratitis

    Directory of Open Access Journals (Sweden)

    Jayesh Vazirani

    2013-01-01

    Full Text Available The success of collagen cross-linking as a clinical modality to modify the clinical course in keratoconus seems to have fueled the search for alternative applications for this treatment. Current clinical data on its efficacy is limited and laboratory data seems to indicate that it performs poorly against resistant strains of bacteria and against slow growing organisms. However, the biological plausibility of crosslinking and the lack of effective strategies in managing infections with these organisms continue to focus attention on this potential treatment. Well-conducted experimental and clinical studies with controls are required to answer the questions of its efficacy in future.

  15. Exploring the chemical space of quorum sensing peptides.

    Science.gov (United States)

    Wynendaele, Evelien; Gevaert, Bert; Stalmans, Sofie; Verbeke, Frederick; De Spiegeleer, Bart

    2015-09-01

    Quorum sensing peptides are signalling molecules that are produced by mainly gram-positive bacteria. These peptides can exert different effects, ranging from intra- and interspecies bacterial virulence to bacterial-host interactions. To better comprehend these functional differences, we explored their chemical space, bacterial species distribution and receptor-binding properties using multivariate data analyses, with information obtained from the Quorumpeps database. The quorum sensing peptides can be categorized into three main clusters, which, in turn, can be divided into several subclusters: the classification is based on characteristic chemical properties, including peptide size/compactness, hydrophilicity/lipophilicity, cyclization and the presence of (unnatural) S-containing and aromatic amino acids. Most of the bacterial species synthesize peptides located into one cluster. However, some Streptococcus, Stapylococcus, Clostridium, Bacillus and Lactobacillus species produce peptides that are distributed over more than one cluster, with the quorum sensing peptides of Bacillus subtilis even occupying the total peptide space. The AgrC, FsrC and LamC receptors are only activated by cyclic (thio)lacton or lactam quorum sensing peptides, while the lipophilic isoprenyl-modified peptides solely bind the ComP receptor in Bacillus species.

  16. Comparative study of PBI Cross Linked Utilizing Agents of Varying Steric Configurations

    DEFF Research Database (Denmark)

    Kirkebcek, Andreas; Aili, David; Li, Qingfeng;

    2016-01-01

    The high thermal and chemical stability of poly[2,2'-(m-phenylene)-5,5' bibenzimidazole] (PBI) accounts for its wise spread use in high temperature polymer electrolyte membrane fuel cells (HT- PEMFC). By doping the membrane with phosphoric acid (PA) ionic conductivity is obtained. Thus conductivity...... ionic or covalent cross linking. When considering such, little attention is devoted to explore the effect of the sterical configuration of the cross linking agent. In this contribution three different cross linking agents are utilized to evaluate how these affects final membrane properties....... is dependent on the amount of PA present within the membrane. However mechanical properties are reduced are significantly reduced due to the plasticizing effect shown by PA [1]. This effect is due to PBI chain displacement. This effect can be lessened by use of cross linking [2-4]. This can be obtained using...

  17. Plasticizer migration from cross-linked flexible PVC. 1. Effects on tribology

    Science.gov (United States)

    Pannico, M.; Persico, P.; Ambrogi, V.; Carfagna, C.

    2010-06-01

    Utilization of soft PVC is restricted by plasticizer migration that can affect material properties, as well as its toxicity. Modifying the chemical structure of PVC is one of the most effective tool to reduce the diffusion of plasticizer. In this work, a soft cross-linked PVC was obtained using a difunctional amine, namely isophoron diamine (IPDA) as the cross-linking agent. The gel content (wt %) was evaluated by weighting the insoluble portion obtained through solvent extraction technique. Thermogravimetric analysis (TGA) revealed that cross-linking reactions promote thermal degradation phenomena in the polymer matrix. Tribological properties of soft uncross-linked, cross-linked and rigid PVC were determined. Soft formulations were held in contact for 32 days with rigid PVC sheets. Plasticizer migration towards the interface causes an increase of dynamic friction compared to that of the reference rigid PVC.

  18. Chemical posttranslational modification of phage-displayed peptides.

    Science.gov (United States)

    Ng, Simon; Tjhung, Katrina F; Paschal, Beth M; Noren, Christopher J; Derda, Ratmir

    2015-01-01

    Phage-displayed peptide library has fueled the discovery of novel ligands for diverse targets. A new type of phage libraries that displays not only linear and disulfide-constrained cyclic peptides but moieties that cannot be encoded genetically or incorporated easily by bacterial genetic machinery has emerged recently. Chemical posttranslational modification of phage library is one of the simplest approaches to encode nonnatural moieties. It confers the library with new functionality and makes it possible to select and evolve molecules with properties not found in the peptides, for instance, glycopeptides recognized by carbohydrate-binding protein and peptides with photoswitching capability. To this end, we describe the newly emerging techniques to chemically modify the phage library and quantify the efficiency of the reaction with a biotin-capture assay. Finally, we provide the methods to construct N-terminal Ser peptide library that allows site-selective modification of phage.

  19. The direct peptide reactivity assay: selectivity of chemical respiratory allergens.

    Science.gov (United States)

    Lalko, Jon F; Kimber, Ian; Gerberick, G Frank; Foertsch, Leslie M; Api, Anne Marie; Dearman, Rebecca J

    2012-10-01

    It is well known that some chemicals are capable of causing allergic diseases of the skin and respiratory tract. Commonly, though not exclusively, chemical allergens are associated with the selective development of skin or respiratory sensitization. The reason for this divergence is unclear, although it is hypothesized that the nature of interactions between the chemical hapten and proteins is influential. The direct peptide reactivity assay (DPRA) has been developed as a screen for the identification of skin-sensitizing chemicals, and here we describe the use of this method to explore whether differences exist between skin and respiratory allergens with respect to their peptide-binding properties. Known skin and respiratory sensitizers were reacted with synthetic peptides containing either lysine (Lys) or cysteine (Cys) for 24 h. The samples were analyzed by HPLC/UV, and the loss of peptide from the reaction mixture was expressed as the percent depletion compared with the control. The potential for preferential reactivity was evaluated by comparing the ratio of Lys to Cys depletion (Lys:Cys ratio). The results demonstrate that the majority of respiratory allergens are reactive in the DPRA, and that in contrast to most skin-sensitizing chemicals, preferentially react with the Lys peptide. These data suggest that skin and respiratory chemical allergens can result in different protein conjugates, which may in turn influence the quality of induced immune responses. Overall, these investigations reveal that the DPRA has considerable potential to be incorporated into tiered testing approaches for the identification and characterization of chemical respiratory allergens.

  20. The Cross - linking reaction of HEC

    Institute of Scientific and Technical Information of China (English)

    XIONG Jian; YE Jun; XUAN Zhiyong; XIE Guohui

    2001-01-01

    @@ Cellulose ethers are important components for light industries such as food and papermaking industries. Its modification research is a frontline science to widen their uses and realize their industrialization. The target of modification is to make high production value, low input and meet the needs better in industries. O-(2-hydroxyethl) cellulose (HEC) is one of the best-known cellulose ether derivatives. It is mainly used as thickeners, dispersants, adhesives, extenders, and films because of its water solubility and gel-forming properties. The present research,by means of cross-linking, we study the influence on HEC about rheological behavior.This will provide a feasible scheme for cellulose ethers modification.

  1. The Cross - linking reaction of HEC

    Institute of Scientific and Technical Information of China (English)

    XIONG; Jian

    2001-01-01

    Cellulose ethers are important components for light industries such as food and papermaking industries. Its modification research is a frontline science to widen their uses and realize their industrialization. The target of modification is to make high production value, low input and meet the needs better in industries.  O-(2-hydroxyethl) cellulose (HEC) is one of the best-known cellulose ether derivatives. It is mainly used as thickeners, dispersants, adhesives, extenders, and films because of its water solubility and gel-forming properties. The present research,by means of cross-linking, we study the influence on HEC about rheological behavior.This will provide a feasible scheme for cellulose ethers modification.……

  2. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking.

    Science.gov (United States)

    Dadová, Jitka; Vrábel, Milan; Adámik, Matej; Brázdová, Marie; Pohl, Radek; Fojta, Miroslav; Hocek, Michal

    2015-11-01

    N-(3-Azidopropyl)vinylsulfonamide was developed as a new bifunctional bioconjugation reagent suitable for the cross-linking of biomolecules through copper(I)-catalyzed azide-alkyne cycloaddition and thiol Michael addition reactions under biorthogonal conditions. The reagent is easily clicked to an acetylene-containing DNA or protein and then reacts with cysteine-containing peptides or proteins to form covalent cross-links. Several examples of bioconjugations of ethynyl- or octadiynyl-modified DNA with peptides, p53 protein, or alkyne-modified human carbonic anhydrase with peptides are given.

  3. One-step electrospinning of cross-linked chitosan fibers.

    Science.gov (United States)

    Schiffman, Jessica D; Schauer, Caroline L

    2007-09-01

    Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy.

  4. Smooth muscle cell phenotype modulation and contraction on native and cross-linked polyelectrolyte multilayers.

    Science.gov (United States)

    Moussallem, Maroun D; Olenych, Scott G; Scott, Shannon L; Keller, Thomas C S; Schlenoff, Joseph B

    2009-11-09

    Smooth muscle cells convert between a motile, proliferative "synthetic" phenotype and a sessile, "contractile" phenotype. The ability to manipulate the phenotype of aortic smooth muscle cells with thin biocompatible polyelectrolyte multilayers (PEMUs) with common surface chemical characteristics but varying stiffness was investigated. The stiffness of (PAH/PAA) PEMUs was varied by heating to form covalent amide bond cross-links between the layers. Atomic force microscopy (AFM) showed that cross-linked PEMUs were thinner than those that were not cross-linked. AFM nanoindentation demonstrated that the Young's modulus ranged from 6 MPa for hydrated native PEMUs to more than 8 GPa for maximally cross-linked PEMUs. Rat aortic A7r5 smooth muscle cells cultured on native PEMUs exhibited morphology and motility of synthetic cells and expression of the synthetic phenotype markers vimentin, tropomyosin 4, and nonmuscle myosin heavy chain IIB (nmMHCIIB). In comparison, cells cultured on maximally cross-linked PEMUs exhibited the phenotype markers calponin, smooth muscle myosin heavy chain (smMHC), myocardin, transgelin, and smooth muscle alpha-actin (smActin) that are characteristic of the smooth muscle "contractile" phenotype. Consistent with those cells being "contractile", A7r5 cells grown on cross-linked PEMUs produced contractile force when stimulated with a Ca(2+) ionophore.

  5. Phage Selection of Chemically Stabilized α-Helical Peptide Ligands.

    Science.gov (United States)

    Diderich, Philippe; Bertoldo, Davide; Dessen, Pierre; Khan, Maola M; Pizzitola, Irene; Held, Werner; Huelsken, Joerg; Heinis, Christian

    2016-05-20

    Short α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion. In brief, peptides containing cysteines in position i and i + 4 are genetically encoded by phage display, the cysteines are modified with chemical bridges to impose α-helical conformations, and binders are isolated by affinity selection. We applied the strategy to affinity mature an α-helical peptide binding β-catenin. We succeeded in developing ligands with Kd's as low as 5.2 nM, having >200-fold improved affinity. The strategy is generally applicable for affinity maturation of any α-helical peptide. Compared to hydrocarbon stapled peptides, the herein evolved thioether-bridged peptide ligands can be synthesized more easily, as no unnatural amino acids are required and the cyclization reaction is more efficient and yields no stereoisomers. A further advantage of the thioether-bridged peptide ligands is that they can be expressed recombinantly as fusion proteins.

  6. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    Science.gov (United States)

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties.

  7. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    Science.gov (United States)

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  8. Identification of dityrosine cross-linked sites in oxidized human serum albumin.

    Science.gov (United States)

    Annibal, Andrea; Colombo, Graziano; Milzani, Aldo; Dalle-Donne, Isabella; Fedorova, Maria; Hoffmann, Ralf

    2016-04-15

    Reactive oxygen species (ROS) can oxidize virtually all cellular components. In proteins cysteine, methionine, tryptophan, and tyrosine residues are most prone to oxidation and their oxidized forms are thus considered as biomarkers of oxidative protein damages. Ultraviolet radiation and some endogenous ROS can produce tyrosine radicals reacting with other tyrosine residues yielding intra- or intermolecular cross-links in proteins. These 3,3'-dityrosines can be quantified by their characteristic fluorescence, but analytical methods to identify the modification sites in proteins are still missing. Although mass spectrometry (MS) is routinely used to map other post-translational modifications, the analysis of dityrosines is challenged by simultaneous fragmentations of both cross-linked peptide chains producing complex tandem mass spectra. Additionally, the fragmentation patterns differ from linear peptides. Here, we studied the fragmentation behavior of dityrosine cross-linked peptides obtained by incubating three peptides (AAVYHHFISDGVR, TEVSSNHVLIYLDK, and LVAYYTLIGASGQR) with horseradish peroxidase in the presence of hydrogen peroxide. Homo- and hetero-dimerization via dityrosine was monitored by fluorescence spectroscopy and MS. The fragmentation characteristics of dityrosine-linked peptides were studied on an ESI-LTQ-Orbitrap-MS using collision induced dissociation, which allowed localizing the cross-linked positions and provided generic rules to identify this oxidative modification. When human serum albumin oxidized with 50-fold molar excess of HOCl in phosphate buffer saline was analyzed by nanoRPC-ESI-MS/MS, an automatic database search considering all possible (in-silico generated) tyrosine-containing peptides as dynamic modifications revealed four different types of oxidatively modified tyrosine residues including dityrosines linking ten different Tyr residues. The automatic database search was confirmed by manual interpretation of each tandem mass spectrum.

  9. Chemical Crosslinking: Role in Protein and Peptide Science.

    Science.gov (United States)

    Arora, Bharti; Tandon, Rashmi; Attri, Pankaj; Bhatia, Rohit

    2017-01-01

    Chemical crosslinking refers to intermolecular or intramolecular joining of two or more molecules by a covalent bond. The reagents that are used for the purpose are referred to as 'crosslinking reagents' or 'crosslinkers'. Based on factors like reactivity and spacer length these are classified into different types, each having its own specific function and application. In recent times, chemical crosslinking has emerged as an efficient tool for the study of biomolecules like proteins. It finds its application in various studies including the attachment of proteins to a solid support for the study of membrane receptors, protein-protein complexes, protein-DNA complexes, and others. When coupled with techniques like mass spectroscopy, it has been used not only for the determination of three dimensional structures of proteins but also for the study of protein-protein interactions and determination of interesting sites. This combination of mass spectrometry techniques and bioinformatics, added yet another dimension to our present day understanding of protein chemistry. Thus, chemical crosslinking has multitude uses that it can be put to. We undertook a systematic search of bibliographic databases and search engine such as Google Scholar, Scifinder, Scopus, Mendeley etc for review of research literature. We excluded research paper which only reported synthesis of crosslinker molecules and did not involve any mass spectrometry studies. Sixty-four papers were included in the review. The majority of references were taken from last ten years as there has been an immense progress in this area in the recent years. Eleven classical papers in this field were included which talk about basic of this methodology. Thirty-two papers discussed about various types of organic groups used for designing chemical cross-linkers and various methodologies which were used to enhance the crosslinking efficiency. These papers also highlight various strategies used to enhance detection of cross-linked

  10. Evaluation of chemical cross-linking method of porcine acellular dermal matrix with oxidative chitosan oligosaccha-ride%氧化壳寡糖交联脱细胞猪真皮基质的研究

    Institute of Scientific and Technical Information of China (English)

    王磊; 但年华; 陈一宁; 但卫华

    2016-01-01

    目的:对氧化壳寡糖(OCOS)交联脱细胞真皮基质(pADM)后的性能进行评价。方法将一定质量OCOS溶于缓冲溶液中,将pADM浸没在该体系中,在特定温度下交联改性一段时间。考察反应温度、pH值、用量和反应时间对基质材料收缩温度的影响,通过红外光谱、原子力显微镜、孔隙率、热稳定性、耐酶降解性、细胞毒性等对交联前后基质材料的结构、性能进行表征。结果最优交联改性条件为反应温度37℃,反应时间16 h,OCOS用量8%,pH 8.4。最优条件下交联改性,得到的材料(OCOS-pADM)收缩温度可以达到78.4℃,红外光谱中胶原的3个特征吸收峰仍然存在,原子力显微镜下可明显观察到纵向上的D周期明暗条纹,改性后材料孔隙率变大,差示扫描量热法表征改性后材料热变性温度达80.44℃,7 d后降解率仅为7.5%±1.7%,细胞毒性评级为1级。结论改性后基质各方面性能均有所提高,胶原天然结构没有遭到破坏,细胞毒性测试中细胞形态良好,初步具备作为生物材料所需的条件。%Objective To assess the properties of porcine acellular dermal matrix(pADM) before and affer cross-linked by ox-idative chitosan oligosaccharide (OCOS). Methods A certain quatity OCOS was dissolved into buffered solution, and pADM was soaked at certain temperature for a period of time. The effect of reaction temperature, pH, OCOS dosage and reaction time on shrinkage temperature(Ts) of matrix were observed. The structure and properties of the matrix material before and after cross-linking were evaluated by infrared spectroscopy, atomic force microscopy(AFM), porosity, thermal stability, collagenase degrada-tion and cytotoxicity. Results The best reaction condition of reaction temperature was 37 ℃, reaction time was 16-hour, O-COS dosage was 8%and pH was 8.4. Under the best reaction condition, Ts of OCOS-pADM was 78.4

  11. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking

    Science.gov (United States)

    Hamacher, K.; Hübsch, A.; McCammon, J. A.

    2006-04-01

    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Gō model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  12. Swelling properties of cross-linked DNA gels.

    Science.gov (United States)

    Costa, Diana; Miguel, M Graça; Lindman, Björn

    2010-07-12

    This work represents our contribution to the field of physical chemistry of DNA gels, and concerns the synthesis and study of novel chemically cross-linked DNA gels. The use of covalent DNA gels is a very promising way to study DNA-cosolute interactions, as well as the dynamic behaviour of DNA and cationic compacting agents, like lipids, surfactants and polycations. Manipulating DNA in new ways, like DNA networks, allows a better understanding and characterization of DNA-cosolute complexes at the molecular level, and also allows us to follow the assembly structures of these complexes. The use of responsive polymer gels for targeted delivery of toxic and/or labile drugs has, during the past few years, shown to be a promising concept. The features found in the proposed system would find applications in a broader field of gel/drug interaction, for the development of controlled release and targeted delivery devices.

  13. Cross Linked Metal Particles for Low Noise Bolometer Materials

    Science.gov (United States)

    2016-12-12

    SECURITY CLASSIFICATION OF: This final report summarizes WSU’s progress from 4/2/2015 to 09/30/2016 on the project, "Cross-linked Metal Particles ...2016 Final Report: Cross-linked Metal Particles for Low-noise Bolometer Materials The views, opinions and/or findings contained in this report are...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Cross-linked Metal Particles for Low-noise Bolometer

  14. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat.

    Science.gov (United States)

    Rothamel, Daniel; Schwarz, Frank; Sager, Martin; Herten, Monika; Sculean, Anton; Becker, Jürgen

    2005-06-01

    The aim of the present study was to compare the biodegradation of differently cross-linked collagen membranes in rats. Five commercially available and three experimental membranes (VN) were included: (1) BioGide (BG) (non-cross-linked porcine type I and III collagens), (2) BioMend (BM), (3) BioMendExtend (BME) (glutaraldehyde cross-linked bovine type I collagen), (4) Ossix (OS) (enzymatic-cross-linked bovine type I collagen), (5) TutoDent (TD) (non-cross-linked bovine type I collagen, and (6-8) VN(1-3) (chemical cross-linked porcine type I and III collagens). Specimens were randomly allocated in unconnected subcutaneous pouches separated surgically on the back of 40 wistar rats, which were divided into five groups (2, 4, 8, 16, and 24 weeks), including eight animals each. After 2, 4, 8, 16, and 24 weeks of healing, the rats were sacrificed and explanted specimens were prepared for histologic and histometric analysis. The following parameters were evaluated: biodegradation over time, vascularization, tissue integration, and foreign body reaction. Highest vascularization and tissue integration was noted for BG followed by BM, BME, and VN(1); TD, VN(2), and VN(3) showed prolongated, while OS exhibited no vascularization. Subsequently, biodegradation of BG, BM, BME and VN(1) was faster than TD, VN(2), and VN(3). OS showed only a minute amount of superficial biodegradation 24 weeks following implantation. Biodegradation of TD, BM, BME, VN(2), and VN(3) was associated with the presence of inflammatory cells. Within the limits of the present study, it was concluded that cross-linking of bovine and porcine-derived collagen types I and III was associated with (i) prolonged biodegradation, (ii) decreased tissue integration and vascularization, and (iii) in case of TD, BM, BME, VN(2), and VN(3) foreign body reactions.

  15. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    Directory of Open Access Journals (Sweden)

    Long-Biao Guo

    2013-05-01

    Full Text Available This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug.

  16. Cross-linking study on skeletal muscle actin: properties of suberimidate-treated actin.

    Science.gov (United States)

    Ohara, O; Takahashi, S; Ooi, T; Fujiyoshi, Y

    1982-06-01

    Cross-linking experiments were performed on muscle skeletal actin, using imidoesters of various chain lengths. Chemical analyses on all products except one (derived from succinimidate) show evidence of the presence of intramolecular cross-links in the molecule. The detailed properties of suberimidate-treated actin (SA) are as follows: SA contains nearly 1 mol of intramolecular cross-link per mol of actin and less than 15% of intermolecularly cross-linked products. Even at a low salt concentration, SA is polymeric, exchanges slowly its bound nucleotide with free nucleotides in solution, and shows an F-actin-type CD spectrum. Electron micrographs of SA reveal that SA exists actually as fibrous polymers in solutions of low ionic strength, although the fibers seem to be less rigid than those at high salt concentration. The F-form of SA at a high salt concentration is indistinguishable from intact F-actin. SA can bind heavy meromyosin and activate the ATPase of heavy meromyosin as observed for intact F-actin. Tropomyosin binds SA only at a high salt concentration. These results show that SA possesses the properties of F-actin even in media of low salt concentration, which are favorable for depolymerization of F-actin. Thus, we may infer that the conformation of SA is frozen in the F-state of actin by the introduction of intramolecular cross-links in the protein.

  17. Preparation and in vitro evaluation of chitosan matrices cross-linked by formaldehyde vapors.

    Science.gov (United States)

    Rao, B S; Murthy, K V

    2000-10-01

    Rifampicin-chitosan matrices were prepared by a chemical cross-linking method to develop a sustained-release form. The effects of cross-linking agent (formaldehyde) on the drug release rate and release kinetics were investigated in this study. Moreover, the kinetics of rifampicin released from chitosan matrices exposed to formaldehyde vapors for predetermined time intervals were analyzed using Ritger and Peppas exponential equation. The in vitro release kinetics exhibited a non-Fickian transport model. Increasing the exposure time to formaldehyde vapors decreased the release rate of rifampicin from chitosan matrices as a result of formation of greater structural strength and tighter texture.

  18. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    OpenAIRE

    Zhao, Weifeng; Nugroho, Robertus Wahyu N.; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as...

  19. Radiation cross-linked polyolefin-insulated wire

    Science.gov (United States)

    Sano, K.; Ishitani, H.

    Because radiation cross-linked polyolefin has excellent mechanical heat resistance, its application limit can be expanded extremely by improving the resistance against heat oxidation and flame. This paper is concerning a halogen free radiation cross-linked polyolefin-insulated wire having excellent heat resistance and flameretardant property, which is used for appliances.

  20. Research Progress in Corneal Cross-linking Agents

    Institute of Scientific and Technical Information of China (English)

    Na Li; Xiujun Peng; Zhengjun Fan

    2014-01-01

    Corneal collagen cross-linking with UVA-riboflavin is cur-rently the only method for preventing the progression of kera-toconus from the pathological perspective. Topical application of a direct cross-linking agent is now attracting widespread at-tention in clinical settings..This article reviews the research progress in the application of indirect or direct cross-linking agents (e.g., riboflavin, glucose, ribose, glutaraldehyde, formaldehyde,.glyceraldehyde,.short chain aliphatic β-nitro alcohol, and genipin) in the treatment of corneal diseases and analyzes the cross-linking efficacy,.toxicity,.and merits and disadvantages of each cross-linking agent,.providing clinical information for further studies.

  1. Chemical synthesis of peptides within the insulin superfamily.

    Science.gov (United States)

    Liu, Fa; Zaykov, Alexander N; Levy, Jay J; DiMarchi, Richard D; Mayer, John P

    2016-05-01

    The synthesis of insulin has inspired fundamental advances in the art of peptide science while simultaneously revealing the structure-function relationship of this centrally important metabolic hormone. This review highlights milestones in the chemical synthesis of insulin that can be divided into two separate approaches: (i) disulfide bond formation driven by protein folding and (ii) chemical reactivity-directed sequential disulfide bond formation. Common to the two approaches are the persistent challenges presented by the hydrophobic nature of the individual A-chain and B-chain and the need for selective disulfide formation under mildly oxidative conditions. The extension and elaboration of these synthetic approaches have been ongoing within the broader insulin superfamily. These structurally similar peptides include the insulin-like growth factors and also the related peptides such as relaxin that signal through G-protein-coupled receptors. After a half-century of advances in insulin chemistry, we have reached a point where synthesis is no longer limiting structural and biological investigation within this family of peptide hormones. The future will increasingly focus on the refinement of structure to meet medicinal purposes that have long been pursued, such as the development of a glucose-sensitive insulin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  2. Solvent Composition is Critical for Carbodiimide Cross-Linking of Hyaluronic Acid as an Ophthalmic Biomaterial

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    2012-10-01

    Full Text Available Hyaluronic acid (HA is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-linked HA in relation to material processing conditions by varying the acetone/water volume ratio (from 70:30 to 95:5 at a constant 1-ethyl-3-(3-dimethyl aminopropyl carbodiimide (EDC concentration of 100 mM. Our results indicated that after the EDC treatment in the presence of an acetone/water mixture (85:15, v/v, the HA hydrogel membranes have the lowest equilibrium water content, the highest stress at break and the greatest resistance to hyaluronidase digestion. Live/Dead assays and pro-inflammatory cytokine expression analyses showed that the cross-linked HA hydrogel membranes, irrespective of the solvent composition, are compatible with human RPE cell lines without causing toxicity and inflammation. However, it should be noted that the test samples prepared by the cross-linking in the presence of acetone/water mixtures containing 70, 75, and 95 vol % of acetone slightly inhibit the metabolic activity of viable ARPE-19 cultures, probably due to the alteration in the ionic interaction between the medium nutrients and polysaccharide biomaterials. In summary, the water content, mechanical strength and RPE cell proliferative capacity strongly depends on the solvent composition for carbodiimide cross-linking of HA materials.

  3. Chemical-functional diversity in cell-penetrating peptides.

    Directory of Open Access Journals (Sweden)

    Sofie Stalmans

    Full Text Available Cell-penetrating peptides (CPPs are a promising tool to overcome cell membrane barriers. They have already been successfully applied as carriers for several problematic cargoes, like e.g. plasmid DNA and (siRNA, opening doors for new therapeutics. Although several hundreds of CPPs are already described in the literature, only a few commercial applications of CPPs are currently available. Cellular uptake studies of these peptides suffer from inconsistencies in used techniques and other experimental conditions, leading to uncertainties about their uptake mechanisms and structural properties. To clarify the structural characteristics influencing the cell-penetrating properties of peptides, the chemical-functional space of peptides, already investigated for cellular uptake, was explored. For 186 peptides, a new cell-penetrating (CP-response was proposed, based upon the scattered quantitative results for cellular influx available in the literature. Principal component analysis (PCA and a quantitative structure-property relationship study (QSPR, using chemo-molecular descriptors and our newly defined CP-response, learned that besides typical well-known properties of CPPs, i.e. positive charge and amphipathicity, the shape, structure complexity and the 3D-pattern of constituting atoms influence the cellular uptake capacity of peptides.

  4. 1,2,3,4-Diepoxybutane-Induced DNA-Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells

    OpenAIRE

    2013-01-01

    1,2,3,4-diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins ...

  5. Interrelationships among biological activity, disulfide bonds, secondary structure, and metal ion binding for a chemically synthesized 34-amino-acid peptide derived from alpha-fetoprotein.

    Science.gov (United States)

    MacColl, R; Eisele, L E; Stack, R F; Hauer, C; Vakharia, D D; Benno, A; Kelly, W C; Mizejewski, G J

    2001-10-01

    A 34-amino-acid peptide has been chemically synthesized based on a sequence from human alpha-fetoprotein. The purified peptide is active in anti-growth assays when freshly prepared in pH 7.4 buffer at 0.20 g/l, but this peptide slowly becomes inactive. This functional change is proven by mass spectrometry to be triggered by the formation of an intrapeptide disulfide bond between the two cysteine residues on the peptide. Interpeptide cross-linking does not occur. The active and inactive forms of the peptide have almost identical secondary structures as shown by circular dichroism (CD). Zinc ions bind to the active peptide and completely prevents formation of the inactive form. Cobalt(II) ions also bind to the peptide, and the UV-Vis absorption spectrum of the cobalt-peptide complex shows that: (1) a near-UV sulfur-to-metal-ion charge-transfer band had a molar extinction coefficient consistent with two thiolate bonds to Co(II); (2) the lowest-energy visible d-d transition maximum at 659 nm, also, demonstrated that the two cysteine residues are ligands for the metal ion; (3) the d-d molar extinction coefficient showed that the metal ion-ligand complex was in a distorted tetrahedral symmetry. The peptide has two cysteines, and it is speculated that the other two metal ion ligands might be the two histidines. The Zn(II)- and Co(II)-peptide complexes had similar peptide conformations as indicated by their ultraviolet CD spectra, which differed very slightly from that of the free peptide. Surprisingly, the cobalt ions acted in the reverse of the zinc ions in that, instead of stabilizing anti-growth form of the peptide, they catalyzed its loss. Metal ion control of peptide function is a saliently interesting concept. Calcium ions, in the conditions studied, apparently do not bind to the peptide. Trifluoroethanol and temperature (60 degrees C) affected the secondary structure of the peptide, and the peptide was found capable of assuming various conformations in solution

  6. Elasticity of cross-linked semiflexible biopolymers under tension.

    Science.gov (United States)

    von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette

    2013-09-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links.

  7. Cross-linking of polytetrafluoroethylene during room-temperature irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pugmire, David L [Los Alamos National Laboratory; Wetteland, Chris J [Los Alamos National Laboratory; Duncan, Wanda S [Los Alamos National Laboratory; Lakis, Rollin E [Los Alamos National Laboratory; Schwartz, Daniel S [Los Alamos National Laboratory

    2008-01-01

    Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

  8. Automated Assignment of MS/MS Cleavable Cross-Links in Protein 3D-Structure Analysis

    Science.gov (United States)

    Götze, Michael; Pettelkau, Jens; Fritzsche, Romy; Ihling, Christian H.; Schäfer, Mathias; Sinz, Andrea

    2015-01-01

    CID-MS/MS cleavable cross-linkers hold an enormous potential for an automated analysis of cross-linked products, which is essential for conducting structural proteomics studies. The created characteristic fragment ion patterns can easily be used for an automated assignment and discrimination of cross-linked products. To date, there are only a few software solutions available that make use of these properties, but none allows for an automated analysis of cleavable cross-linked products. The MeroX software fills this gap and presents a powerful tool for protein 3D-structure analysis in combination with MS/MS cleavable cross-linkers. We show that MeroX allows an automatic screening of characteristic fragment ions, considering static and variable peptide modifications, and effectively scores different types of cross-links. No manual input is required for a correct assignment of cross-links and false discovery rates are calculated. The self-explanatory graphical user interface of MeroX provides easy access for an automated cross-link search platform that is compatible with commonly used data file formats, enabling analysis of data originating from different instruments. The combination of an MS/MS cleavable cross-linker with a dedicated software tool for data analysis provides an automated workflow for 3D-structure analysis of proteins. MeroX is available at www.StavroX.com .

  9. Current status of accelerated corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Michael Mrochen

    2013-01-01

    Full Text Available Corneal cross-linking with riboflavin is a technique to stabilize or reduce corneal ectasia, in diseases such as keratoconus and post-laser-assisted in situ keratomileusis (LASIK ectasia. There is an interest by patient as well as clinicians to reduce the overall treatment time. Especially, the introduction of corneal cross-linking in combination with corneal laser surgery demands a shorter treatment time to assure a sufficient patient flow. The principles and techniques of accelerated corneal cross-linking is discussed.

  10. Effect of nordihydroguaiaretic acid cross-linking on fibrillar collagen: in vitro evaluation of fibroblast adhesion strength and migration

    Directory of Open Access Journals (Sweden)

    Ana Y. Rioja

    2017-04-01

    Full Text Available Fixation is required to reinforce reconstituted collagen for orthopedic bioprostheses such as tendon or ligament replacements. Previous studies have demonstrated that collagen fibers cross-linked by the biocompatible dicatechol nordihydroguaiaretic acid (NDGA have mechanical strength comparable to native tendons. This work focuses on investigating fibroblast behavior on fibrillar and NDGA cross-linked type I collagen to determine if NDGA modulates cell adhesion, morphology, and migration. A spinning disk device that applies a range of hydrodynamic forces under uniform chemical conditions was employed to sensitively quantify cell adhesion strength, and a radial barrier removal assay was used to measure cell migration on films suitable for these quantitative in vitro assays. The compaction of collagen films, mediated by the drying and cross-linking fabrication process, suggests a less open organization compared to native fibrillar collagen that likely allowed the collagen to form more inter-chain bonds and chemical links with NDGA polymers. Fibroblasts strongly adhered to and migrated on native and NDGA cross-linked fibrillar collagen; however, NDGA modestly reduced cell spreading, adhesion strength and migration rate. Thus, it is hypothesized that NDGA cross-linking masked some adhesion receptor binding sites either physically, chemically, or both, thereby modulating adhesion and migration. This alteration in the cell-material interface is considered a minimal trade-off for the superior mechanical and compatibility properties of NDGA cross-linked collagen compared to other fixation approaches.

  11. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    Science.gov (United States)

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  12. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    Directory of Open Access Journals (Sweden)

    Pouria Falamarzpour

    2017-02-01

    Full Text Available Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR. The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured, chemically cross-linked (cured, and uncross-linked (prepared by acetic acid films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  13. Sub- T g Cross-Linking of a Polyimide Membrane for Enhanced CO 2 Plasticization Resistance for Natural Gas Separation

    KAUST Repository

    Qiu, Wulin

    2011-08-09

    Decarboxylation-induced thermal cross-linking occurs at elevated temperatures (∼15 °C above glass transition temperature) for 6FDA-DAM:DABA polyimides, which can stabilize membranes against swelling and plasticization in aggressive feed streams. Despite this advantage, such a high temperature might result in collapse of substructure and transition layers in the asymmetric structure of a hollow fibers based on such a material. In this work, the thermal cross-linking of the 6FDA-DAM:DABA at temperatures much below the glass transition temperature (∼387 °C by DSC) was demonstrated. This sub-Tg cross-linking capability enables extension to asymmetric structures useful for large scale membranes. The resulting polymer membranes were characterized by swelling in known solvents for the un-cross-linked materials, TGA analysis, and permeation tests of aggressive gas feed stream at higher pressure. The annealing temperature and time clearly influence the degree of cross-linking of the membranes, and results in a slight difference in selectivity for membranes under various cross-linking conditions. Results indicate that the sub-Tg thermal cross-linking of 6FDA-DAM:DABA dense film membrane can be carried out completely even at a temperature as low as 330 °C. Permeabilities were tested for the polyimide membranes using both pure gases (He, O2, N2, CH4, CO2) and mixed gases (CO2/CH4). The selectivity of the cross-linked membrane can be maintained even under very aggressive CO2 operating conditions that are not possible without cross-linking. Moreover, the plasticization resistance was demonstrated up to 700 psia for pure CO 2 gas or 1000 psia for 50% CO2 mixed gas feeds. © 2011 American Chemical Society.

  14. Protein structure prediction guided by cross-linking restraints - A systematic evaluation of the impact of the cross-linking spacer length

    CERN Document Server

    Hofmann, Tommy; Meiler, Jens; Kalkhof, Stefan

    2015-01-01

    Recent development of high-resolution mass spectrometry (MS) instruments enables chemical cross-linking (XL) to become a high-throughput method for obtaining structural information about proteins. Restraints derived from XL-MS experiments have been used successfully for structure refinement and protein-protein docking. However, one formidable question is under which circumstances XL-MS data might be sufficient to determine a protein's tertiary structure de novo? Answering this question will not only include understanding the impact of XL-MS data on sampling and scoring within a de novo protein structure prediction algorithm, it must also determine an optimal cross-linker type and length for protein structure determination. While a longer cross-linker will yield more restraints, the value of each restraint for protein structure prediction decreases as the restraint is consistent with a larger conformational space. In this study, the number of cross-links and their discriminative power was systematically analyz...

  15. Covalently cross-linked polyetheretherketone proton exchange membrane for DMFC

    CSIR Research Space (South Africa)

    Luo, H

    2009-05-01

    Full Text Available -7 cm2/s) and good electrochemical stability. The results suggested that cross-linked polyetheretherketone membrane is particularly promising to be used as proton exchange membrane for the direct methanol fuel cell application....

  16. Gelation threshold of cross-linked polymer brushes.

    Science.gov (United States)

    Hoffmann, Max; Lang, Michael; Sommer, Jens-Uwe

    2011-02-01

    The cross-linking of polymer brushes is studied using the bond-fluctuation model. By mapping the cross-linking process into a two-dimensional (2D) percolation problem within the lattice of grafting points, we investigate the gelation transition in detail. We show that the particular properties of cross-linked polymer brushes can be reduced to the distribution of bonds which are formed between the grafted chains, and we propose scaling arguments to relate the gelation threshold to the chain length and the grafting density. The gelation threshold is lower than the percolation threshold for 2D bond percolation because of the longer range and broad distribution of bonds formed by the cross-linking process. We term this type of percolation problem star percolation. We observe a broad crossover from mean-field to critical percolation behavior by analyzing the cluster size distribution near the gelation threshold.

  17. Photochemical Patterning of Ionically Cross-Linked Hydrogels

    Directory of Open Access Journals (Sweden)

    Marion Bruchet

    2013-08-01

    Full Text Available Iron(III cross-linked alginate hydrogel incorporating sodium lactate undergoes photoinduced degradation, thus serving as a biocompatible positive photoresist suitable for photochemical patterning. Alternatively, surface etching of iron(III cross-linked hydrogel contacting lactic acid solution can be used for controlling the thickness of the photochemical pattering. Due to biocompatibility, both of these approaches appear potentially useful for advanced manipulation with cell cultures including growing cells on the surface or entrapping them within the hydrogel.

  18. ROLE OF CORNEAL COLLAGEN CROSS LINKING IN KERATOCONUS

    OpenAIRE

    Atul; Superna; Bhimasankar; Vijayleela

    2015-01-01

    To evaluate the outcome of collagen cross linkage using riboflavin 0.1% and ultraviolet A radiation of a wavelength 370nm . PURPOSE : To determine the effect of collagen cross linking for keratoconus on pachymetry , corneal topography, uncorrected visual acuity, specular count, IOP at 1, 3, 6 months . METHODS : The current study was designed as a prospective interventional trial of corneal collagen cross - linking in subjects w...

  19. Elasticity of cross-linked semiflexible biopolymers under tension

    CERN Document Server

    von der Heydt, Alice; Benetatos, Panayotis; Zippelius, Annette

    2013-01-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor four. The increase in differential stiffness can ...

  20. Photolytic Cross-Linking to Probe Protein-Protein and Protein-Matrix Interactions in Lyophilized Powders.

    Science.gov (United States)

    Iyer, Lavanya K; Moorthy, Balakrishnan S; Topp, Elizabeth M

    2015-09-08

    Protein structure and local environment in lyophilized formulations were probed using high-resolution solid-state photolytic cross-linking with mass spectrometric analysis (ssPC-MS). In order to characterize structure and microenvironment, protein-protein, protein-excipient, and protein-water interactions in lyophilized powders were identified. Myoglobin (Mb) was derivatized in solution with the heterobifunctional probe succinimidyl 4,4'-azipentanoate (SDA) and the structural integrity of the labeled protein (Mb-SDA) confirmed using CD spectroscopy and liquid chromatography/mass spectrometry (LC-MS). Mb-SDA was then formulated with and without excipients (raffinose, guanidine hydrochloride (Gdn HCl)) and lyophilized. The freeze-dried powder was irradiated with ultraviolet light at 365 nm for 30 min to produce cross-linked adducts that were analyzed at the intact protein level and after trypsin digestion. SDA-labeling produced Mb carrying up to five labels, as detected by LC-MS. Following lyophilization and irradiation, cross-linked peptide-peptide, peptide-water, and peptide-raffinose adducts were detected. The exposure of Mb side chains to the matrix was quantified based on the number of different peptide-peptide, peptide-water, and peptide-excipient adducts detected. In the absence of excipients, peptide-peptide adducts involving the CD, DE, and EF loops and helix H were common. In the raffinose formulation, peptide-peptide adducts were more distributed throughout the molecule. The Gdn HCl formulation showed more protein-protein and protein-water adducts than the other formulations, consistent with protein unfolding and increased matrix interactions. The results demonstrate that ssPC-MS can be used to distinguish excipient effects and characterize the local protein environment in lyophilized formulations with high resolution.

  1. Laccase-Based CLEAs: Chitosan as a Novel Cross-Linking Agent

    Directory of Open Access Journals (Sweden)

    Alexandre Arsenault

    2011-01-01

    Full Text Available Laccase from Coriolopsis Polyzona was insolubilized as cross-linked enzyme aggregates (CLEAs for the first time with chitosan as the cross-linking agent. Concentrations between 0.01 and 1.867 g/L of chitosan were used and between 0.05 and 600 mM of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride. The laccase was precipitated using ammonium sulphate and cross-linked simultaneously. Specific activity and thermal stability of these biocatalysts were measured. Activities of up to 737 U/g were obtained when 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS was used as a substrate. Moreover, the stability of these biocatalysts was improved with regards to thermal degradation compared to free laccase when exposed to denaturing conditions of high temperature and low pH. The CLEAs stability against chemical denaturants was also tested but no significant improvement was detected. The total amount of ABTS to be oxidized during thermal degradation by CLEAs and free laccase was calculated and the insolubilized enzymes were reported to oxidize more substrate than free laccase. The formation conditions were analyzed by response surface methodology in order to determine an optimal environment for the production of efficient laccase-based CLEAs using chitosan as the cross-linking agent. After 24 hours of formation at pH 3 and at 4°C without agitation, the CLEAs exhibit the best specific activity.

  2. The theory and art of corneal cross-linking

    Directory of Open Access Journals (Sweden)

    Rebecca McQuaid

    2013-01-01

    Full Text Available Before the discovery of corneal cross-linking (CXL, patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  3. Controlled delivery of valsartan by cross-linked polymeric matrices: Synthesis, in vitro and in vivo evaluation.

    Science.gov (United States)

    Sohail, Muhammad; Ahmad, Mahmood; Minhas, Muhammad Usman; Ali, Liaqat; Khalid, Ikrima; Rashid, Haroon

    2015-06-20

    The purpose of study was to develop chemically cross-linked chitosan-co-poly(AMPS) hydrogel based on low molecular weight chitosan for pH-responsive and controlled drug delivery of a model drug. Cross-linking was achieved chemically, by using free radical polymerization technique. Polymer (low molecular weight chitosan) was chemically cross-linked with monomer (2-acrylamido-2-methylpropane sulfonic acid) in aqueous medium. N, N'-Methylenebisacrylamide (MBA) was used as cross-linking agent. Sodium hydrogen sulfite (SHS) and ammonium peroxodisulphate (APS) were used as initiators in a chemical reaction. Hydrogels were characterized by FT-IR, SEM and DSC. Swelling studies and pH-sensitivity of hydrogels were studies at pH 1.2 and 7.4. Chitosan-co-poly(AMPS) hydrogels were administered to rabbits orally to evaluate its pharmacokinetic behavior. As a result of successful cross-linking of polymer and monomer, novel co-polymer has been developed, having suitable characteristics as desired for controlled release drug delivery system. Maximum swelling, drug loading and release have been observed at pH 7.4. In vivo results exhibited significant drug release and absorption at pH 7.4 in rabbits. It is concluded that highly swelling chitosan-AMPS based hydrogels were developed having pH independent swelling and pH dependent drug release properties. These hydrogels have great potential to be used for loading and controlled release of various therapeutic agents.

  4. Chemically Cross-Linked Heat-Shrinkable Polyethylene Tubes,

    Science.gov (United States)

    1986-04-10

    thickness ".-° by a tri- cellulose acetate (TAC) film. The light transmission through the irradiated samples from opposite directions and perpen...calorimetric method for the TAC film- calibration. The amount of reticulation was measured by the method of oxylene extraction after 20 hours boiling...3., 4a 20 ZD reticulation rate (%) Figure 3. Isodose curves Figure 4. Recovery rate recorded while irradiating a variation (R) and contraction

  5. 1,2,3,4-Diepoxybutane-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells.

    Science.gov (United States)

    Gherezghiher, Teshome B; Ming, Xun; Villalta, Peter W; Campbell, Colin; Tretyakova, Natalia Y

    2013-05-03

    1,2,3,4-Diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins including histones, high mobility group proteins, transcription factors, splicing factors, and tubulins were found among those covalently cross-linked to chromosomal DNA in the presence of DEB. A large portion of the cross-linked proteins are known factors involved in DNA binding, transcriptional regulation, cell signaling, DNA repair, and DNA damage response. HPLC-ESI(+)-MS/MS analysis of total proteolytic digests revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, confirming that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA. However, relatively high concentrations of DEB were required to achieve significant DPC formation, indicating that it is a poor cross-linking agent as compared to antitumor nitrogen mustards and platinum compounds.

  6. Synthesis, Optimization, Property, Characterization, and Application of Dialdehyde Cross-Linking Guar Gum

    Directory of Open Access Journals (Sweden)

    Tang Hongbo

    2016-01-01

    Full Text Available Dialdehyde cross-linking guar gum (DCLGG, as a novel material, was synthesized using phosphorus oxychloride as a cross-linking reagent, sodium periodate as an oxidant, and ethanol as a solvent through keeping the original particle form of guar gum. The process parameters such as the reaction temperature, reaction time, pH, amount of sodium periodate, and amount of ethanol were optimized by the response surface methodology in order to obtain the regression model of the oxidization. The covalent binding of L-asparagine onto the surfaces of DCLGG was further investigated. The results showed that the best technological conditions for preparing DCLGG were as follows: reaction temperature = 40°C, reaction time = 3.0 h, pH = 4.0, and amount of ethanol = 74.5%. The swelling power of DCLGG was intermediate between cross-linking guar gum and dialdehyde guar gum. The cross-linking and dialdehyde oxidization reduced the viscosity of GG. The cross-liking reduced the melting enthalpy of GG. However, the oxidization increased melting enthalpy of ACLGG. The thermal stability of GG was increased by cross-linking or oxidization. The variation of the onset decomposition temperature and end decomposition temperature of GG was not consistent with thermal stability of GG. L-asparagine could be chemically bound well by DCLGG through forming Schiff base under the weak acidity. The maximum adsorption capacity of L-asparagine on DCLGG with aldehyde content of 56.2% reached 21.9 mg/g.

  7. Quantitative assessment of fibrinogen cross-linking by epsilon aminocaproic acid in patients with end-stage liver disease.

    Science.gov (United States)

    Quach, Thien; Tippens, Melissa; Szlam, Fania; Van Dyke, Rebecca; Levy, Jerrold H; Csete, Marie

    2004-01-01

    Analysis of the effectiveness of antifibrinolytic therapy for liver transplant recipients is hampered by lack of quantitative assays for assessing drug effects. We adapted chemical engineering tools used in polymerization studies to quantify fibrinogen cross-linking by plasma from liver transplant patients obtained before and after epsilon aminocaproic acid (EACA) therapy. A target fluorescein isothiocyanate-fibrinogen (FITC-fibrinogen) molecule was constructed; it fluoresces in a quantifiable pattern when in solution, and undergoes cross-linking in the presence of plasmin inhibitors. Cross-linking quenches the fluorescent signal, and the quenching is a quantifiable endpoint. Thus fluorescence from this reporter molecule can be used to assess functional improvement in fibrinogen cross-linking as a result of antifibrinolytic therapies, and it is sensitive to picomolar amounts of plasmin inhibitors and activators. Cross-linking of FITC-fibrinogen by patient plasma, before and after EACA therapy, was assessed using fluorescence spectrometry. Fluorescence patterns from FITC-fibrinogen indicated no significant cross-linking of the target fibrinogen as a consequence of EACA in posttreatment plasma. When the fibrinogen-FITC target was assayed without plasma in the presence of EACA at concentrations that bracket therapeutic levels (100 and 400 microg/ml), significant fluorescence quenching (target FITC-fibrinogen cross-linking) was achieved. These results suggest that fibrinogen-FITC fluorescence is sensitive enough to detect EACA activity in clinically relevant ranges, but that EACA given in usual doses is insufficient to promote fibrinogen cross-linking in patients with end-stage liver disease.

  8. Collagen/elastin hydrogels cross-linked by squaric acid.

    Science.gov (United States)

    Skopinska-Wisniewska, J; Kuderko, J; Bajek, A; Maj, M; Sionkowska, A; Ziegler-Borowska, M

    2016-03-01

    Hydrogels based on collagen and elastin are very valuable materials for medicine and tissue engineering. They are biocompatible; however their mechanical properties and resistance for enzymatic degradation need to be improved by cross-linking. Up to this point many reagents have been tested but more secure reactants are still sought. Squaric acid (SqAc), 3,4-dihydroxy 3-cyclobutene 1,2-dione, is a strong, cyclic acid, which reacts easily with amine groups. The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5%, 10% and 20% of SqAc and neutralized via dialysis against deionized water were tested. Cross-linked, 3-D, transparent hydrogels were created. The cross-linked materials are stiffer and more resistant to enzymatic degradation than those that are unmodified. The pore size, swelling ability and surface polarity are reduced due to 5% and 10% of SqAc addition. At the same time, the cellular response is not significantly affected by the cross-linking. Therefore, squaric acid would be regarded as a safe, effective cross-linking agent.

  9. Generation of Guanine – Thymidine Cross-links in DNA by Peroxynitrite/Carbon Dioxide

    OpenAIRE

    Yun, Byeong Hwa; Geacintov, Nicholas E.; Shafirovich, Vladimir

    2011-01-01

    Nitrosoperoxycarbonate derived from the combination of carbon dioxide and peroxynitrite, is an important chemical mediator of inflammation. In aqueous solutions, it rapidly decomposes to the reactive species CO3•− and •NO2 radicals that are known to initiate the selective oxidation and nitration of guanine in DNA. We have previously demonstrated that the reactions of carbonate radical anions with guanine in 2′-deoxyoligoribonucleotides generate a previously unknown intrastrand cross-linked gu...

  10. Single-molecule dynamics of lysozyme processing distinguishes linear and cross-linked peptidoglycan substrates.

    Science.gov (United States)

    Choi, Yongki; Moody, Issa S; Sims, Patrick C; Hunt, Steven R; Corso, Brad L; Seitz, David E; Blaszczak, Larry C; Blaszcazk, Larry C; Collins, Philip G; Weiss, Gregory A

    2012-02-01

    The dynamic processivity of individual T4 lysozyme molecules was monitored in the presence of either linear or cross-linked peptidoglycan substrates. Single-molecule monitoring was accomplished using a novel electronic technique in which lysozyme molecules were tethered to single-walled carbon nanotube field-effect transistors through pyrene linker molecules. The substrate-driven hinge-bending motions of lysozyme induced dynamic electronic signals in the underlying transistor, allowing long-term monitoring of the same molecule without the limitations of optical quenching or bleaching. For both substrates, lysozyme exhibited processive low turnover rates of 20-50 s(-1) and rapid (200-400 s(-1)) nonproductive motions. The latter nonproductive binding events occupied 43% of the enzyme's time in the presence of the cross-linked peptidoglycan but only 7% with the linear substrate. Furthermore, lysozyme catalyzed the hydrolysis of glycosidic bonds to the end of the linear substrate but appeared to sidestep the peptide cross-links to zigzag through the wild-type substrate.

  11. Recent Advances in Chemical Modification of Peptide Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Eriks Rozners

    2012-01-01

    Full Text Available Peptide nucleic acid (PNA has become an extremely powerful tool in chemistry and biology. Although PNA recognizes single-stranded nucleic acids with exceptionally high affinity and sequence selectivity, there is considerable ongoing effort to further improve properties of PNA for both fundamental science and practical applications. The present paper discusses selected recent studies that improve on cellular uptake and binding of PNA to double-stranded DNA and RNA. The focus is on chemical modifications of PNA's backbone and heterocyclic nucleobases. The paper selects representative recent studies and does not attempt to provide comprehensive coverage of the broad and vibrant field of PNA modification.

  12. Cross-Linking and Mass Spectrometry Methodologies to Facilitate Structural Biology: Finding a Path through the Maze

    Energy Technology Data Exchange (ETDEWEB)

    Merkley, Eric D.; Cort, John R.; Adkins, Joshua N.

    2013-09-01

    Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature. These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.

  13. Cross-linking and mass spectrometry methodologies to facilitate structural biology: finding a path through the maze.

    Science.gov (United States)

    Merkley, Eric D; Cort, John R; Adkins, Joshua N

    2013-09-01

    Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature. These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.

  14. Angiotensin I-converting enzyme inhibitor derived from cross-linked oyster protein.

    Science.gov (United States)

    Xie, Cheng-Liang; Kim, Jin-Soo; Ha, Jong-Myung; Choung, Se-Young; Choi, Yeung-Joon

    2014-01-01

    Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE) inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50) of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR). The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  15. Angiotensin I-Converting Enzyme Inhibitor Derived from Cross-Linked Oyster Protein

    Directory of Open Access Journals (Sweden)

    Cheng-Liang Xie

    2014-01-01

    Full Text Available Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50 of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR. The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  16. Extreme dryness and DNA-protein cross-links

    Science.gov (United States)

    Bieger-Dose, A.; Dose, K.; Meffert, R.; Mehler, M.; Risi, S.

    Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32p by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.

  17. Computer simulation of randomly cross-linked polymer networks

    CERN Document Server

    Williams, T P

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneiti...

  18. Determination of the 1-ethyl-3-[(3-dimethylamino)propyl]-carbodiimide- induced cross-link between the beta and epsilon subunits of Escherichia coli F1-ATPase.

    Science.gov (United States)

    Dallmann, H G; Flynn, T G; Dunn, S D

    1992-09-15

    The zero-length cross-link between the inhibitory epsilon subunit and one of three catalytic beta subunits of Escherichia coli F1-ATPase (alpha 3 beta 3 gamma delta epsilon), induced by a water-soluble carbodiimide, 1-ethyl-3-[(3-dimethylamino) propyl]-carbodiimide (EDC), has been determined at the amino acid level. Lability of cross-linked beta-epsilon to base suggested an ester cross-link rather than the expected amide. A 10-kDa cross-linked CNBr fragment derived from beta-epsilon was identified by electrophoresis on high percentage polyacrylamide gels. Sequence analysis of this peptide revealed the constituent peptides to be Asp-380 to Met-431 of beta and Glu-96 to Met-138 of epsilon. Glu-381 of beta was absent from cycle 2 indicating that it was one of the cross-linked residues, but no potential cross-linked residue in epsilon was identified in this analysis. A form of epsilon containing a methionine residue in place of Val-112 (epsilon V112M) was produced by site-directed mutagenesis. epsilon V112M was incorporated into F1-ATPase which was then cross-linked with EDC. An 8-kDa cross-linked CNBr fragment of beta-epsilon V112M was shown to contain the peptide of epsilon between residues Glu-96 and Met-112 and the peptide of beta between residues Asp-380 and Met-431. Again residue Glu-381 of beta was notably reduced and no missing residue from the epsilon peptide could be identified, but the peptide sequence limited the possible choices to Ser-106, Ser-107, or Ser-108. Furthermore, an epsilon mutant in which Ser-108 was replaced by cysteine could no longer be cross-linked to a beta subunit in F1-ATPase by EDC. Both mutant forms of epsilon supported growth of an uncC-deficient E. coli strain and inhibited F1-ATPase. These results indicate that the EDC-induced cross-link between the beta and epsilon subunits of F1-ATPase is an ester linkage between beta-Glu-381 and, likely, epsilon-Ser-108. As these residues must be located immediately adjacent to one another in F1

  19. Carcinogenesis switched on by DNA cross-link between complementary bases aroused by aflatoxin and N-nitroso compounds

    Institute of Scientific and Technical Information of China (English)

    DAI Qianhuan; LU Ping; PENG Shaohua; ZHANG Qingrong

    2003-01-01

    The di-region theory put forward by Dai Qianhuan, a molecular mechanism of chemical carcinogenesis, concluded that the carcinogenesis induced by most of the environmental carcinogens is switched on by the cross-linking between DNA complementary bases aroused by the bifunctional alkylation of their metabolic intermediates. It was evidenced in this paper with DNA filter elution method that one carcinogenic mycotoxin, aflatoxin G1, four carcinogenic N-nitroso compounds, N-nitrosodiethyl-amine, N-nitrosodibutyl-amine, N-nitrosomorpholine and N-nitrosopyrrolidine, one carcinogenic diazo color, 4-dimethylaminodiazobenzene and one carcinogenic nitrogen-containing heterocyclic compound, quinoline, all induced DNA interstrands cross-linking with dosage correlation after metabolic activation. However, the non-carcinogens in corresponding series for control, aflatoxin B2, N-nitroso-diphenylamine, 4′-bromo-4-dimethylaminodiazobenzene and isoquinoline, cannot induce DNA interstrands cross-linking at all in the same condition. A method for the determination of cross-linking ratio between DNA complementary bases in total DNA interstrands cross-linking, which has no monitoring measure as yet, has been established for the first time based upon a 24 hour repairing experiment. The DNA complementary pair cross-linking ratio induced by a metabolized carcinogen is correlated with its carcinogenic potential. It may be concluded that the mutations including point and frameshift mutagenesis induced by aflatoxin and other carcinogens are switched on by their corresponding cross-linking base pair between complementary bases. Therefore, the di-region theory is a reasonable molecular mechanism for chemical, endogenous and physical carcinogenesis.

  20. Investigation of cross-linking characteristics of novel hole-transporting materials for solution-processed phosphorescent OLEDs

    Science.gov (United States)

    Lee, Jaemin; Ameen, Shahid; Lee, Changjin

    2016-04-01

    After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.

  1. [Use of native and cross-linked collagen membranes for guided tissue and bone regeneration].

    Science.gov (United States)

    Schwarz, Frank; Sager, Martin; Rothamel, Daniel; Herten, Monika; Sculean, Anton; Becker, Jürgen

    2006-01-01

    A material which is used as a barrier for GBR/GTR procedures has to satisfy several physicochemical characteristics such as biocompatibility, tissue integration, barrier function, and dimensional stability. Recently, many investigations reported on the use of products derived from type I and type III porcine or bovine collagen. Collagen membranes are predominantly resorbed by enzymatic activity (protease and collagenase). To decrease resorption, various physical and chemical cross-linking techniques have been used. Although nowadays cross-linking of collagen seems to be a commonly used procedure, its impact on physicochemical properties of the membrane is still unknown. The aim of the present literature review is to evaluate the potential use of different collagen membranes for GBR/GTR procedures.

  2. Physically Cross-linked Polymer Binder Induced by Reversible Acid-Base Interaction for High-Performance Silicon Composite Anodes.

    Science.gov (United States)

    Lim, Sanghyun; Chu, Hodong; Lee, Kukjoo; Yim, Taeeun; Kim, Young-Jun; Mun, Junyoung; Kim, Tae-Hyun

    2015-10-28

    Silicon is greatly promising for high-capacity anode materials in lithium-ion batteries (LIBs) due to their exceptionally high theoretical capacity. However, it has a big challenge of severe volume changes during charge and discharge, resulting in substantial deterioration of the electrode and restricting its practical application. This conflict requires a novel binder system enabling reliable cyclability to hold silicon particles without severe disintegration of the electrode. Here, a physically cross-linked polymer binder induced by reversible acid-base interaction is reported for high performance silicon-anodes. Chemical cross-linking of polymer binders, mainly based on acidic polymers including poly(acrylic acid) (PAA), have been suggested as effective ways to accommodate the volume expansion of Si-based electrodes. Unlike the common chemical cross-linking, which causes a gradual and nonreversible fracturing of the cross-linked network, a physically cross-linked binder based on PAA-PBI (poly(benzimidazole)) efficiently holds the Si particles even after the large volume changes due to its ability to reversibly reconstruct ionic bonds. The PBI-containing binder, PAA-PBI-2, exhibited large capacity (1376.7 mAh g(-1)), high Coulombic efficiency (99.1%) and excellent cyclability (751.0 mAh g(-1) after 100 cycles). This simple yet efficient method is promising to solve the failures relating with pulverization and isolation from the severe volume changes of the Si electrode, and advance the realization of high-capacity LIBs.

  3. Advanced Corneal Cross-Linking System with Fluorescence Dosimetry

    Directory of Open Access Journals (Sweden)

    Marc D. Friedman

    2012-01-01

    Full Text Available Purpose. This paper describes an advanced system that combines corneal cross-linking with riboflavin with fluorescence dosimetry, the ability to measure riboflavin diffusion within the cornea both before and during UVA treatment. Methods and Results. A corneal cross-linking system utilizing a digital micromirror device (DMD was assembled and used to measure diffusion coefficients of 0.1% riboflavin in 20% dextran in porcine eyes. A value of (3.3±0.2×10−7 cm2/s was obtained for the stroma. Diffusion coefficients for the transepithelial formulation of 0.1% riboflavin in 0.44% saline and 0.02% BAK were also measured to be 4.7±0.3×10−8 cm2/s for epithelium only and (4.6±0.4×10−7 cm2/s for stroma only. Riboflavin consumption during a UVA treatment was also demonstrated. Conclusion. A new advanced corneal cross-linking system with fluorescence dosimetry of riboflavin has been demonstrated. It is hoped that this method may play a significant role in determining the underlying mechanisms of corneal cross-linking and assist with the development of additional riboflavin formulations. Moreover, dosimetry may prove valuable in providing a method to account for the biological differences between individuals, potentially informing cornea-specific UVA treatment doses in real time.

  4. Simulation of Fracture Nucleation in Cross-Linked Polymer Networks

    Science.gov (United States)

    Moller, J. C.; Barr, S. A.; Schultz, E. J.; Breitzman, T. D.; Berry, R. J.

    2013-02-01

    A novel atomistic simulation method is developed whereby polymer systems can undergo strain-rate-controlled deformation while bond scission is enabled. The aim is to provide insight into the nanoscale origins of fracture. Various highly cross-linked epoxy systems including various resin chain lengths and levels of nonreactive dilution were examined. Consistent with the results of physical experiments, cured resin strength increased and ductility decreased with increasing cross-link density. An analysis of dihedral angle activity shows the locations in the molecular network that are most absorptive of mechanical energy. Bond scission occurred principally at cross-link sites as well as between phenyl rings in the bisphenol moiety. Scissions typically occurred well after yield and were accompanied by steady increases in void size and dihedral angle motion between bisphenol moieties and at cross-link sites. The methods developed here could be more broadly applied to explore and compare the atomistic nature of deformation for various polymers such that mechanical and fracture properties could be tuned in a rational way. This method and its results could become part of a solution system that spans multiple length and time scales and that could more completely represent such mechanical events as fracture.

  5. The Database of Ribosomal Cross-links: an update.

    OpenAIRE

    Baranov, P V; Kubarenko, A V; Gurvich, O L; Shamolina, T A; Brimacombe, R

    1999-01-01

    The Database of Ribosomal Cross-links (DRC) was created in 1997. Here we describe new data incorporated into this database and several new features of the DRC. The DRC is freely available via World Wide Web at http://visitweb.com/database/ or http://www. mpimg-berlin-dahlem.mpg.de/ approximately ag_ribo/ag_brimacombe/drc/

  6. Elasticity of Rigidly Cross-Linked Networks of Athermal Filaments

    NARCIS (Netherlands)

    Zagar, Goran; Onck, Patrick R.; Van der Giessen, Erik

    2011-01-01

    Actin filaments assemble into network-like structures and play an important role in various cellular mechanical processes. It is known that the response of actin networks cross-linked by stiff proteins is characterized by two distinct regimes: (i) a linear stress strain response for small deformatio

  7. Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite.

    Science.gov (United States)

    Mathesan, Santhosh; Rath, Amrita; Ghosh, Pijush

    2016-02-01

    The self-folding behavior in response to external stimuli observed in hydrogels is potentially used in biomedical applications. However, the use of hydrogels is limited because of its reduced mechanical properties. These properties are enhanced when the hydrogels are cross-linked and reinforced with nanoparticles. In this work, molecular dynamics (MD) simulation is applied to perform uniaxial tension and pull out tests to understand the mechanism contributing towards the enhanced mechanical properties. Also, nanomechanical characterization is performed using quasi static nanoindentation experiments to determine the Young's modulus of hydrogels in the presence of nanoparticles. The stress-strain responses for chitosan (CS), chitosan reinforced with hydroxyapatite (HAP) and cross-linked chitosan are obtained from uniaxial tension test. It is observed that the Young's modulus and maximum stress increase as the HAP content increases and also with cross-linking process. Load displacement plot from pullout test is compared for uncross-linked and cross-linked chitosan chains on hydroxyapatite surface. MD simulation reveals that the variation in the dihedral conformation of chitosan chains and the evolution of internal structural variables are associated with mechanical properties. Additional results reveal that the formation of hydrogen bonds and electrostatic interactions is responsible for the above variations in different systems.

  8. Scleral lens tolerance after corneal cross-linking for keratoconus

    NARCIS (Netherlands)

    Visser, Esther Simone; Soeters, Nienke; Tahzib, Nayyirih G.

    2015-01-01

    Purpose. Subjective and objective evaluation of scleral lens tolerance and fitting before and after corneal cross-linking (CXL) for progressive keratoconus. Methods. In this prospective cohort, evaluations were made of 18 unilateral eyes in patients who underwent CXL and had been wearing scleral len

  9. Lactoferrin binding to transglutaminase cross-linked casein micelles

    NARCIS (Netherlands)

    Anema, S.G.; de Kruif, C.G.

    2012-01-01

    Casein micelles in skim milk were either untreated (untreated milk) or were cross-linked using transglutaminase (TGA-milk). Added lactoferrin (LF) bound to the casein micelles and followed Langmuir adsorption isotherms. The adsorption level was the same in both milks and decreased the micellar zeta

  10. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  11. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Science.gov (United States)

    2010-04-01

    .... Pentaerythritol. Polyoxypropylene ethers of 4,4′-isopropylide-nediphenol (containing an average of 2-7.5 moles of...-pentanediol. (3) Cross-linking agents: Butyl acrylate. Butyl methacrylate. Ethyl acrylate. Ethylhexyl acrylate... the production of the resins or added thereto to impart desired technical or physical...

  12. Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts

    NARCIS (Netherlands)

    Sheldon, R.A.

    2007-01-01

    The key to obtaining an optimum performance of an enzyme is often a question of devising an effective method for its immobilization. In the present review, we describe a novel, versatile and effective methodology for enzyme immobilization as CLEAs (cross-linked enzyme aggregates). The method is

  13. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, M.J.T.

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  14. Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry

    NARCIS (Netherlands)

    Zhang, Tao; Niu, Xiaoyu; Yuan, Tao; Tessari, Marco; de Vries, Marcel P.; Permentier, Hjalmar P.; Bischoff, Rainer

    2016-01-01

    Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp r

  15. Oegylated and cross-linking carbazole dendrons and dendrimers: Synthesis, characterization, assembly and thin film fabrication

    Science.gov (United States)

    Felipe, Mary Jane Legaspi

    2011-12-01

    OEGylated macromolecules by combining the LB technique and electrochemical cross-linking. The behavior of these OEGylated systems at the air-water interface varies with carbazole dendron generation, the length of the OEG units and the surface pressure applied upon compression. Chapter 5 describes the synthesis and self-assembly behavior of a new series of OEGylated "Janus-type" carbazole dendrimers wherein ordering of these dendrimers was found to depend on the dendrimer generation as well as the solution concentration. Cross-linking the carbazole superstructures was successfully done in situ via chemical oxidation of the carbazole moieties and reduction of the Au ions to zero valent Au.

  16. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels.

    Science.gov (United States)

    Yuan, Shaopeng; Hollinger, Martin; Lachowicz-Scroggins, Marrah E; Kerr, Sheena C; Dunican, Eleanor M; Daniel, Brian M; Ghosh, Sudakshina; Erzurum, Serpel C; Willard, Belinda; Hazen, Stanley L; Huang, Xiaozhu; Carrington, Stephen D; Oscarson, Stefan; Fahy, John V

    2015-02-25

    Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates.

  17. Cross-linked carbon nanotubes buckygel actuators: an in-depth study

    Science.gov (United States)

    Gendron, David; Bubak, Grzegorz; Ceseracciu, Luca; Ansaldo, Alberto; Ricci, Davide

    2015-04-01

    Recently, materials that can convert electrical energy into mechanical work have drawn great attention. Applications in robotics, tactile or optical displays and microelectrochemical systems are currently investigated. Likewise, interest in actuators devices is increasing toward applications where low voltage and low weight properties are required. One way to achieve such prerequisites is to combine the mechanical and electronic properties of carbon nanotubes (CNTs) with the stability and conductivity of ionic liquids. Indeed, the CNTs can be dispersed in ionic liquids to form hybrid composites also named bucky gels, thanks to the non-covalent (π-π stacking and cation-π) interactions. In our previous studies, we demonstrated an improvement in actuator performance whilst using cross-linked CNTs. Indeed, our preliminary results showed an increase in the capacitance together with a faster response of the actuator. At the time, these results were explained by an actuation mechanism model. Herein, we designed new experiments in order to allow us to get a deeper insight in the effect the crosslinking process on the carbon nanotubes properties. Thus, we present a set of electromechanical and electrochemical data that shed light on the chemical modification of the CNTs, the different cross-linking strategies and also on the uses of cross-linked CNTS polymer blends. Finally, corresponding bucky gels actuators performances will also be discussed.

  18. Evaluation of ultrasonic atomization as a new approach to prepare ionically cross-linked chitosan microparticles.

    Science.gov (United States)

    Albertini, Beatrice; Passerini, Nadia; Rodriguez, Lorenzo

    2005-07-01

    Ultrasonic atomization was evaluated as a new approach for the preparation of ionically cross-linked controlled-release chitosan microparticles loaded with theophylline as the model drug, using tripolyphosphate (TPP) as counter-ion. It was possible to nebulize both 2% and 3% (w/v) chitosan solutions as a function of their viscosity, usually not processed by employing the conventional nebulizer. The results of the chitosan molecular characterization using the SEC-MALS analysis revealed that ultrasonic atomization caused a certain depolymerization, probably due to the main chain scission of the 1,4-glycosidic bond; however, Fourier transform-infrared spectroscopy revealed the absence of other chemical modifications. The ultrasonic atomization allowed preparation of TPP cross-linked chitosan microparticles mostly ranging between 50 and 200 mum. As regards manufacturing parameters, the linking time and washing medium were found to affect the properties of the microparticles, while the stirring rate of the TPP solution did not show any influence. The evaluation of the formulation variables revealed that chitosan concentration strongly affected both the feasibility of the ultrasonic atomization and the drug release. All the microparticles showed an encapsulation efficiency of > 50 % and, after an initial burst effect, a controlled release of drug for 48 h. In conclusion, the ultrasonic atomization could be proposed as a robust and innovative single-step procedure with scale-up potential to successfully prepare ionically cross-linked chitosan microparticles.

  19. Cross-linked multilayer-dye films deposited onto silica surfaces with high affinity for pepsin

    Science.gov (United States)

    Bucatariu, Florin; Ghiorghita, Claudiu-Augustin; Cocarta, Ana-Irina; Dragan, Ecaterina Stela

    2016-12-01

    Cross-linked thin films based on pH-responsive polymers with a specific ligand inside the organic layer are useful materials in separation processes or in fabrication of controlled delivery systems. Herein, we report the step-by-step deposition of polymer multilayers based on poly(ethyleneimine) (PEI), poly(acrylic acid) (PAA) and poly(sodium methacrylate) (PMAA) followed by the Congo red (CR) immobilization onto composite Daisogel silica microparticles and silicon wafers. The non-crosslinked composites were not stable in extreme basic medium (pH = 13), while thermal and chemical cross-linked samples with CR inside were stable over a wide range of pH. The interaction properties of different proteins [pepsin (PEP), lysozyme, trypsin, bovine serum albumin] with modified solid surfaces were followed by potentiometric titrations, UV and AFM measurements. Only the PEP macromolecules were sorbed onto the Daisogel composite microparticles with CR inside the cross-linked multilayer. The maximum sorbed amount was nearly 200 mg PEP/g Daisogel//(PEI/PAA)4.5 + CR. This high sorbed amount was in accordance with the AFM images, the average high and roughness increased drastically after the sorption of PEP.

  20. Factor XIII A-Subunit V34L Variant Affects Thrombus Cross-Linking in a Murine Model of Thrombosis.

    Science.gov (United States)

    Duval, Cédric; Ali, Majid; Chaudhry, Waleed W; Ridger, Victoria C; Ariëns, Robert A S; Philippou, Helen

    2016-02-01

    Factor XIII (FXIII) cross-links fibrin upon activation by thrombin. Activation involves cleavage at residue 37 by thrombin, releasing an activation peptide. A common polymorphism (valine to leucine variant at residue 34, V34L), located in the activation peptide, has been associated with increased activation rates and paradoxically a protective effect in cardiovascular disease. There is, currently, no data available on the effects of V34L from in vivo models of thrombosis. We examined the effect of FXIII V34L on clot formation and cross-linking in vivo. We generated a panel of full-length recombinant human FXIII-A2 variants with amino acid substitutions in the activation peptide to investigate the effect of these variants on activation rate, and we used wild-type, V34L, and alanine to glycine variant at residue 33 variants to study the effects of varying FXIII activation rate on thrombus formation in a murine model of FeCl3 injury. FXIII activation assay showed that residues 29, 30, 33, and 34 play a critical role in thrombin interaction. Full-length recombinant human FXIII-A2 V34L has significant effects on clot formation, structure, and lysis in vitro, using turbidity assay. This variant influenced fibrin cross-linking but not size of the thrombus in vivo. Mutations in the activation peptide of full-length recombinant FXIII regulate activation rates by thrombin, and V34L influences in vivo thrombus formation by increased cross-linking of the clot. © 2016 American Heart Association, Inc.

  1. Fabrication and properties of irradiation-cross-linked poly(vinyl alcohol)/clay aerogel composites.

    Science.gov (United States)

    Chen, Hong-Bing; Liu, Bo; Huang, Wei; Wang, Jun-Sheng; Zeng, Guang; Wu, Wen-Hao; Schiraldi, David A

    2014-09-24

    Poly(vinyl alcohol) (PVOH)/clay aerogel composites were fabricated by an environmentally friendly freeze-drying of the aqueous precursor suspensions, followed by cross-linking induced by gamma irradiation without chemical additives. The influences of cross-linking conditions, i.e., absorbed dose and polymer loading as well as density on the aerogel structure and properties, were investigated. The absorbed dose of 30 kGy was found to be the optimum dose for fabricating strong PVOH composites; the compressive modulus of an aerogel prepared from an aqueous suspension containing 2 wt % PVOH/8 wt % clay increased 10-fold, and that containing 1 wt % PVOH/9 wt % clay increased 12 times upon cross-linking with a dose of 30 kGy. Increasing the solids concentration led to an increase in the mechanical strength, in accordance with the changes in microstructure from layered structure to network structure. The increase of absorbed dose also led to decreased porous size of the network structure. Cross-linking and the increase of the PVOH lead to decreased thermal stability. The strengthened PVOH/clay aerogels possess very low flammability, as measured by cone calorimetry, with heat, smoke, and volatile products release value decreasing as increasing clay content. The mechanism of flame retardation in these materials was investigated with weight loss, FTIR, WAXD, and SEM of the burned residues. The proposed mechanism is that with decreasing fuel content (increasing clay content), increased heat and mass transport barriers are developed; simultaneously low levels of thermal conductivity are maintained during the burning.

  2. Chitosan-cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge.

    Science.gov (United States)

    Biazar, Esmaeil; Keshel, Saeed Heidari

    2013-01-01

    The aim of this study was to produce a chitosan-cross-linked nanofibrous biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit. The artificial nerve scaffold designed by electrospinning method and cross-linked with chitosan by chemical method. Afterwards, the scaffolds were evaluated by microscopic, physical, and mechanical analyses and cell culture assays with Schwann cells. The conduits were implanted into a 10 mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently good mechanical properties to serve as a nerve guide. Cellular experiments showed a better cell adhesion, growth, and proliferation inside the cross-linked nanofibrous scaffolds compared with un-cross-linked ones, also Schwann cells well attached on chitosan-cross-linked nanofibrous surface. The in vivo results demonstrated that in the nanofibrous graft, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. This neural conduit appears to have the right organization for testing in vivo nerve tissue engineering studies.

  3. Effects of cross-linking modification with phosphoryl chloride (POCl3) on pysiochemical properties of barely starch

    OpenAIRE

    2016-01-01

    Chemical methods are one of the comon method in starch modification. This study aimed at investigating of cross-link affection of phosphoryl chloride with two different levels 0.5 and 1g.kg-1 in order to enhance funciotnal proeprties and physiochemical changes on extracted starch from barely variety Bahman which cultivates in Chahr-Mahal Bakhtiari Province of Iran. Obtained results indicated that cross-linking leads to reduce sweeling power of strach granuls compred to natural starch and th...

  4. Transient Anisocoria after Corneal Collagen Cross-Linking

    Science.gov (United States)

    Kymionis, George D.; Grentzelos, Michael A.; Stojanovic, Nela; Paraskevopoulos, Theodore A.; Detorakis, Efstathios T.

    2014-01-01

    Purpose. To report a case with transient anisocoria after corneal collagen cross-linking (CXL). Methods. Case report. Results. A 24-year-old male underwent corneal collagen cross-linking (CXL) in his right eye for keratoconus. At the end of the procedure, the pupil of the treated eye was irregular and dilated, while the pupil of the fellow eye was round, regular, and reactive (anisocoria). The following day, pupils were round, regular, and reactive in both eyes. Conclusion. Anisocoria may be a transient and innocuous complication after CXL. A possible cause for this complication might be the anesthetic drops used before and during the surgical procedure or/and the ultraviolet A irradiation during the treatment. PMID:25276451

  5. Transient Anisocoria after Corneal Collagen Cross-Linking

    Directory of Open Access Journals (Sweden)

    George D. Kymionis

    2014-01-01

    Full Text Available Purpose. To report a case with transient anisocoria after corneal collagen cross-linking (CXL. Methods. Case report. Results. A 24-year-old male underwent corneal collagen cross-linking (CXL in his right eye for keratoconus. At the end of the procedure, the pupil of the treated eye was irregular and dilated, while the pupil of the fellow eye was round, regular, and reactive (anisocoria. The following day, pupils were round, regular, and reactive in both eyes. Conclusion. Anisocoria may be a transient and innocuous complication after CXL. A possible cause for this complication might be the anesthetic drops used before and during the surgical procedure or/and the ultraviolet A irradiation during the treatment.

  6. Generation of guanine-thymidine cross-links in DNA by peroxynitrite/carbon dioxide.

    Science.gov (United States)

    Yun, Byeong Hwa; Geacintov, Nicholas E; Shafirovich, Vladimir

    2011-07-18

    Nitrosoperoxycarbonate derived from the combination of carbon dioxide and peroxynitrite is an important chemical mediator of inflammation. In aqueous solutions, it rapidly decomposes to the reactive species CO(3)(•-) and (•)NO(2) radicals that are known to initiate the selective oxidation and nitration of guanine in DNA. We have previously demonstrated that the reactions of carbonate radical anions with guanine in 2'-deoxyoligoribonucleotides generate a previously unknown intrastrand cross-linked guanine-thymine product G*-T* with a covalent bond between the C8 (G*) and the thymine N3 (T*) atoms (Crean Nucleic Acids Res. 2008, 36, 742-755). In this work, we demonstrate that G*-T* cross-linked products are also formed when peroxynitrite (0.1 mM) reacts with native DNA in aqueous solutions (pH 7.5-7.7) containing 25 mM carbon dioxide/bicarbonate, in addition to the well-known nitration/oxidation products of guanine such as 8-nitroguanine (8-nitro-G), 5-guanidino-4-nitroimidazole (NIm), 8-oxo-7,8-dehydroguanine (8-oxo-G), and spiroiminodihydantoin (Sp). The yields of these products, after enzymatic digestion with P1 nuclease and alkaline phosphatase to the nucleotide level and reversed phase HPLC separation, were compared with those obtained with the uniformly, isotopically labeled (15)N,(13)C-labeled 2'-deoxy oligoribonucleotides 5'-dGpT and 5'-dGpCpT. The d(G*pT*) and d(G*-T*) cross-linked products derived from the di- and trioligonucleotides, respectively, were used as standards for identifying the analogous lesions in calf thymus DNA by isotope dilution LC-MS/MS methods in the selected reaction monitoring mode. The NIm and 8-nitro-G are the major products formed (∼0.05% each), and lesser amounts of 8-oxo-G (∼0.02%) and d(G*pT*) and d(G*-T*) enzymatic digestion products (∼0.002% each) were found. It is shown that the formation of d(G*pT*) enzyme digestion product can arise only from intrastrand cross-links, whereas d(G*-T*) can arise from both interstrand

  7. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.

    Science.gov (United States)

    Han, Chu; Percival, Stephen J; Zhang, Bo

    2016-09-06

    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  8. Relative toxicities of DNA cross-links and monoadducts: new insights from studies of decarbamoyl mitomycin C and mitomycin C.

    Science.gov (United States)

    Palom, Yolanda; Suresh Kumar, Gopinatha; Tang, Li-Qian; Paz, Manuel M; Musser, Steven M; Rockwell, Sara; Tomasz, Maria

    2002-11-01

    Mitomycin C (MC), a cytotoxic anticancer drug and bifunctional DNA DNA alkylating agent, induces cross-linking of the complementary strands of DNA. The DNA interstrand cross-links (ICLs) are thought to be the critical cytotoxic lesions produced by MC. Decarbamoyl mitomycin C (DMC) has been regarded as a monofunctional mitomycin, incapable of causing ICLs. Paradoxically, DMC is slightly more toxic than MC to hypoxic EMT6 mouse mammary tumor cells as well as to CHO cells. To resolve this paradox, EMT6 cells were treated with MC or DMC under hypoxia at equimolar concentrations and the resulting DNA adducts were analyzed using HPLC and UV detection. MC treatment generated both intrastrand and interstrand cross-link adducts and four monoadducts, as shown previously. DMC generated two stereoisomeric monoadducts and two stereoisomeric ICL adducts, all of which were structurally characterized; one was identical with that formed with MC, the other was new and unique to DMC. Overall, adduct frequencies were strikingly higher (20-30-fold) with DMC than with MC. Although DMC monoadducts greatly exceeded DMC cross-link adducts ( approximately 10:1 ratio), the latter were equal or higher in number than the cross-link adducts from MC. DMC displayed a much higher monoadduct:cross-link ratio than MC. The similar cytotoxicities of the two drug show a correlation with their similar DNA cross-link adduct frequencies, but not with their total adduct or monoadduct frequencies. This provides specific experimental evidence that the ICLs rather than the monoadducts are critical factors in the cell death induced by MC. In vitro, overall alkylation of calf thymus DNA by DMC was much less efficient than by MC. Nevertheless, ICLs formed with DMC were clearly detectable. The chemical pathway of the cross-linking was shown to be analogous to that occurring with MC. These results also suggest that the differential sensitivity of Fanconi's Anemia cells to MC and DMC is related to factors other

  9. Reliable Identification of Cross-Linked Products in Protein Interaction Studies by 13C-Labeled p-Benzoylphenylalanine

    Science.gov (United States)

    Pettelkau, Jens; Ihling, Christian H.; Frohberg, Petra; van Werven, Lars; Jahn, Olaf; Sinz, Andrea

    2014-09-01

    We describe the use of the 13C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a 13C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.

  10. Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection.

    Science.gov (United States)

    McCormick, Alison A; Corbo, Tina A; Wykoff-Clary, Sherri; Palmer, Kenneth E; Pogue, Gregory P

    2006-01-01

    Chemical conjugation of CTL peptides to tobacco mosaic virus (TMV) has shown promise as a molecular adjuvant scaffold for augmentation of cellular immune responses to peptide vaccines. This study demonstrates the ease of generating complex multipeptide vaccine formulations using chemical conjugation to TMV for improved vaccine efficacy. We have tested a model foreign antigen target-the chicken ovalbumin-derived CTL peptide (Ova peptide), as well as mouse melanoma-associated CTL epitopes p15e and tyrosinase-related protein 2 (Trp2) peptides that are self-antigen targets. Ova peptide fusions to TMV, as bivalent formulations with peptides encoding additional T-help or cellular uptake via the integrin-receptor binding RGD peptide, showed improved vaccine potency evidenced by significantly enhanced numbers of antigen-reactive T cells measured by in vitro IFNgamma cellular analysis. We measured the biologically relevant outcome of vaccination in protection of mice from EG.7-Ova tumor challenge, which was achieved with only two doses of vaccine ( approximately 600 ng peptide) given without adjuvant. The p15e peptide alone or Trp2 peptide alone, or as a bivalent formulation with T-help or RGD uptake epitopes, was unable to stimulate effective tumor protection. However, a vaccine with both CTL peptides fused together onto TMV generated significantly improved survival. Interestingly, different bivalent vaccine formulations were required to improve vaccine efficacy for Ova or melanoma tumor model systems.

  11. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    Energy Technology Data Exchange (ETDEWEB)

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Kruppa, Gary Hermann; Sale, Kenneth L.; Young, Malin M.; Novak, Petr

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurement using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.

  12. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    Science.gov (United States)

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs.

  13. Graft copolymerization onto polybutadiene: Cross-linking and thermal degradation of vinyl polymers and copolymers

    Science.gov (United States)

    Jiang, Dayue (David)

    This work consists of three parts. In Part I, the graft copolymerization of methyl methacrylate, methyl acrylate, methacylic acid and acrylic acid onto polybutadiene and its copolymers by benzoyl peroxide, BPO, or 2, 2'azobis(2-methylpropionitrile), AIBN, initiation were explored. The results show that these monomers can be grafted onto butadiene region of butadiene-containing polymers. The extent of both graft copolymerization and homopolymerization are dependent on the time and temperature of the reaction and the concentration of all of the reactants. One must specify the monomer, initiator and solvent for the efficient graft copolymerization. The methyl methacrylate adds directly to the radical sites which are formed on the backbone by the interaction of the polymer and the primary radical form the initiator, while for the other three monomers, the graft copolymerization occurs by addition of macro-radical to the double bonds. In Part II, the cross-linking of polybutadiene, butadiene-styrene copolymers, and polystyrene by irradiation, thermal and chemical processes, and Friedel-Crafts chemistry and the effect of cross-linking on the thermal stability were investigated. The proof of cross-linking of the polymer comes from the insolubility of the product after the cross-linking reaction and is characterized by gel content and swelling ratio. The results show that the thermal stability of the polymer can be improved by cross-linking. In Part III, the thermal degradation of three vinyl polymers, poly(vinylsulfonic acid) and its sodium salt and poly(vinylphosphonic acid) were studied by combination technique: TGA/FTIR. The results show that TGA/FTIR combined with analysis of residues provides an excellent opportunity to understand the degradation pathway of the compounds. The observation of foaming indicates that the char which is formed contains carbon as well as the inorganic salts which have been observed. The carbon is in a partially graphitized form. The salts

  14. Generation of Guanine – Thymidine Cross-links in DNA by Peroxynitrite/Carbon Dioxide

    Science.gov (United States)

    Yun, Byeong Hwa; Geacintov, Nicholas E.; Shafirovich, Vladimir

    2011-01-01

    Nitrosoperoxycarbonate derived from the combination of carbon dioxide and peroxynitrite, is an important chemical mediator of inflammation. In aqueous solutions, it rapidly decomposes to the reactive species CO3•− and •NO2 radicals that are known to initiate the selective oxidation and nitration of guanine in DNA. We have previously demonstrated that the reactions of carbonate radical anions with guanine in 2′-deoxyoligoribonucleotides generate a previously unknown intrastrand cross-linked guanine-thymine product G*-T* with a covalent bond between the C8 (G*) and thymine N3 (T*) atoms (Crean et al., Nucleic Acids Res., 2008, 36, 742–755). In this work we demonstrate that G*-T* cross-linked products are also formed when peroxynitrite (0.1 mM) reacts with native DNA in aqueous solutions (pH 7.5–7.7) containing 25 mM carbon dioxide/bicarbonate, in addition to the well known nitration/oxidation products of guanine such as 8-nitroguanine (8-nitroG), 5-guanidino-4-nitroimidazole (NIm), 8-oxo-7,8-dehydroguanine (8-oxoG) and spiroiminodihydantoin (Sp). The yields of these products, after enzymatic digestion with P1 nuclease and alkaline phosphatase to the nucleotide level, and reversed phase HPLC separation, were compared with those obtained with the uniformly, isotopically labeled 15N,13C-labeled 2′-deoxy oligoribonucleotides 5′-dGpT and 5′-dGpCpT. The d(G*pT*) and d(G*-T*) cross-linked products derived from the di- and tri-oligonucleotides, respectively, were used as standards for identifying the analogous lesions in calf thymus DNA by isotope dilution LC-MS/MS methods in the selected reaction-monitoring mode. The Nim and 8nitroG are the major products formed (~ 0.05% each), and lesser amounts of 8-oxoG (~ 0.02%), and d(G*pT*) and d(G*-T*) enzymatic digestion products (~ 0.002% each) were found. It is shown that the formation of d(G*pT*) enzyme digestion product can arise only from intrastrand cross-links, whereas d(G*-T*) can arise from both

  15. Surface-gradient cross-linked polyethylene acetabular cups: oxidation resistance and wear against smooth and rough femoral balls.

    Science.gov (United States)

    Shen, Fu-Wen; McKellop, Harry

    2005-01-01

    Two methods were developed and evaluated for cross-linking the bearing surface of a polyethylene acetabular cup to a limited depth, in order to improve its resistance to wear without degrading the mechanical properties of the bulk of the component. In the first method, low-energy electron beams were used to cross-link only the bearing surface of the cups to a maximum depth of about 2 mm. The cups then were annealed at 100 degrees C in vacuum for 3 or 6 days to reduce the residual free radicals, and the resultant resistance to oxidation was compared by artificially aging the cups at 80 degrees C in air. Chemically cross-linked surface layers were produced by coating the bearing surfaces of the cups with a thin layer of polyethylene powder mixed with 1% weight peroxide, and compressing them at 6.9 MPa (1000 psi) and 170 degrees C. This resulted in a cross-linked surface layer that extended about 3 mm deep, with a gradual transition to conventional (noncross-linked) polyethylene in the bulk of the implant. In hip simulator wear tests with highly polished (implant quality) femoral balls, both types of surface cross-linking were found to improve markedly the wear resistance of the acetabular cups. In tests with roughened femoral balls, the wear rates were much higher and were comparable to those obtained with similarly roughened balls against noncross-linked polyethylene cups in a previous study, indicating that the full benefit of cross-linking may not be realized under conditions of severe third-body abrasion. Nevertheless, these results show a promising approach for optimizing the wear resistance and the bulk mechanical properties of polyethylene components in total joint arthroplasty.

  16. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle forma...... provided a sensor with a very broad measurement range that seems to be influenced by the chemical design of the sensor. Cell experiments show that the sensor is capable of monitoring the pH distributions in HeLa cells.......A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle...... formation. The copolymer, poly(ethylene glycol)-b-poly(2-aminoethyl methacrylate)-b-poly(styrene) (PEG-b-PAEMA-b-PS), was synthesized by isolated macroinitiator atom transfer radical polymerization that forms micelles spontaneously in water. The PAEMA shell of the micelle was hereafter cross...

  17. Comparative Study of One-Step Cross-Linked Electrospun Chitosan-Based Membranes

    Directory of Open Access Journals (Sweden)

    Yanet E. Aguirre-Chagala

    2017-01-01

    Full Text Available Chitosan membranes are widely applied for tissue engineering; however, a major drawback is their low resistance in aqueous phases and therefore the structure collapses impeding their long-term use. Although there is extensive research, because of chitosan’s importance as a biomaterial, studies involving chitosan-based membranes are still needed. Herein, a detailed investigation of diverse chemical routes to cross-link fibers in situ by electrospinning process is described. In case of using genipin as cross-linker, a close relationship with the content and the mean diameter values is reported, suggesting a crucial effect over the design of nanostructures. Also, the physical resistance is enhanced for the combination of two types of methods, such as chemical and physical methods. Cross-linked fibers upon exposure to long wave ultraviolet A (UVA light change their morphology, but not their chemical composition. When they are incubated in aqueous phase for 70 days, they show an extensive improvement of their macrostructural integrity which makes them attractive candidates for tissue engineering application. As a result, the thermal properties of these materials reveal less crystallinity and higher temperature of degradation.

  18. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  19. Macrophage response to cross-linked and conventional UHMWPE.

    Science.gov (United States)

    Sethi, Rajiv K; Neavyn, Mark J; Rubash, Harry E; Shanbhag, Arun S

    2003-07-01

    To prevent wear debris-induced osteolysis and aseptic loosening, cross-linked ultra-high molecular weight polyethylene's (UHMWPE) with improved wear resistance have been developed. Hip simulator studies have demonstrated very low wear rates with these new materials leading to their widespread clinical use. However, the biocompatibility of this material is not known. We studied the macrophage response to cross-linked UHMWPE (XLPE) and compared it to conventional UHMWPE (CPE) as well as other clinically used orthopaedic materials such as titanium-alloy (TiAlV) and cobalt-chrome alloy (CoCr). Human peripheral blood monocytes and murine macrophages, as surrogates for cells mediating peri-implant inflammation, were cultured onto custom designed lipped disks fabricated from the test materials to isolate cells. Culture supernatants were collected at 24 and 48h and analyzed for cytokines such as IL-1alpha, IL-1beta, TNF-alpha and IL-6. Total RNA was extracted from adherent cells and gene expression was analyzed using qualitative RT-PCR. In both in vitro models, macrophages cultured on cross-linked and conventional polyethylene released similar levels of cytokines, which were also similar to levels on control tissue culture dishes. Macrophages cultured on TiAlV and CoCr-alloy released significantly higher levels of cytokines. Human monocytes from all donors varied in the magnitude of cytokines released when cultured on identical surfaces. The variability in individual donor responses to TiAlV and CoCr surfaces may reflect how individuals respond differently to similar stimuli and perhaps reveal a predisposed sensitivity to particular materials.

  20. LFQProfiler and RNP(xl): Open-Source Tools for Label-Free Quantification and Protein-RNA Cross-Linking Integrated into Proteome Discoverer.

    Science.gov (United States)

    Veit, Johannes; Sachsenberg, Timo; Chernev, Aleksandar; Aicheler, Fabian; Urlaub, Henning; Kohlbacher, Oliver

    2016-09-02

    Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability. Here, we present two open-source plugins for PD providing additional functionality: LFQProfiler for label-free quantification of peptides and proteins, and RNP(xl) for UV-induced peptide-RNA cross-linking data analysis. LFQProfiler interacts with existing PD nodes for peptide identification and validation and takes care of the entire quantitative part of the workflow. We show that it performs at least on par with other state-of-the-art software solutions for label-free quantification in a recently published benchmark ( Ramus, C.; J. Proteomics 2016 , 132 , 51 - 62 ). The second workflow, RNP(xl), represents the first software solution to date for identification of peptide-RNA cross-links including automatic localization of the cross-links at amino acid resolution and localization scoring. It comes with a customized integrated cross-link fragment spectrum viewer for convenient manual inspection and validation of the results.

  1. DNA interstrand cross-linking by a mycotoxic diepoxide.

    Science.gov (United States)

    Millard, J T; Katz, J L; Goda, J; Frederick, E D; Pierce, S E; Speed, T J; Thamattoor, D M

    2004-06-01

    The diepoxide mycotoxin (2R, 3R, 8R, 9R)-4,6-decadiyne-2,3:8,9-diepoxy-1,10-diol (repandiol) was both isolated from the mushroom Hydnum repandum and synthesized de novo. Repandiol was found to form interstrand cross-links within a restriction fragment of DNA, linking deoxyguanosines on opposite strands primarily within the 5'-GNC and 5'-GNNC sequences preferred by diepoxyoctane. However, repandiol was a significantly less efficient cross-linker than either of the diepoxyalkanes (diepoxyoctane and diepoxybutane) to which it was compared.

  2. Newer protocols and future in collagen cross-linking

    Directory of Open Access Journals (Sweden)

    Arthur B Cummings

    2013-01-01

    Full Text Available Corneal Cross-Linking (CXL is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored

  3. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  4. Cooperative assembly of Zn cross-linked artificial tripeptides with pendant hydroxyquinoline ligands.

    Science.gov (United States)

    Zhang, Meng; Gallagher, Joy A; Coppock, Matthew B; Pantzar, Lisa M; Williams, Mary Elizabeth

    2012-11-01

    An artificial peptide with three pendant hydroxyquinoline (hq) ligands on a palindromic backbone was designed and used to form multimetallic assemblies. Reaction of the tripeptide with zinc acetate led to a highly fluorescent tripeptide duplex with three Zn(II) coordinative cross-links. The binding process was monitored using spectrophotometric absorbance and emission titrations; NMR spectroscopy and mass spectrometry confirmed the identity and stoichiometry of the product structure. Titrations monitoring duplex formation of the zinc-tripeptide structure had a sigmoidal shape, equilibrium constant larger than the monomeric analogue, and a Hill coefficient >1, all of which indicate positive cooperativity. Photophysical characterization of the quantum yield, excited state lifetime, and polarization anisotropy are compared with the monometallic zinc-hq analogue. A higher than expected quantum yield for the trimetallic complex suggests a structure in which the central chromophore is shielded from solvent by π-stacking with neighboring Zn(II) complexes.

  5. Differential Enzymatic 16O/18O Labelling for the Detection of Cross-Linked Nucleic Acid-Protein Heteroconjugates.

    Science.gov (United States)

    Flett, Fiona J; Sachsenberg, Timo; Kohlbacher, Oliver; Mackay, C Logan; Interthal, Heidrun

    2017-09-08

    Cross-linking of nucleic acids to proteins in combination with mass spectrometry permits the precise identification of interacting residues between nucleic acid-protein complexes. However, the mass spectrometric identification and characterisation of cross-linked nucleic acid-protein heteroconjugates within a complex sample is challenging. Here we establish a novel enzymatic differential 16O/18O labelling approach, which uniquely labels heteroconjugates. We have developed an automated data analysis workflow based on OpenMS for the identification of differentially isotopically labelled heteroconjugates against a complex background. We validated our method using synthetic model DNA oligonucleotide-peptide heteroconjugates which were subjected to the labelling reaction and analysed by high resolution FT-ICR mass spectrometry.

  6. Peptide Conjugation to a Polymer Coating via Native Chemical Ligation of Azlactones for Cell Culture.

    Science.gov (United States)

    Schmitt, Samantha K; Trebatoski, David J; Krutty, John D; Xie, Angela W; Rollins, Benjamin; Murphy, William L; Gopalan, Padma

    2016-03-14

    Conjugation of biomolecules for stable presentation is an essential step toward reliable chemically defined platforms for cell culture studies. In this work, we describe the formation of a stable and site-specific amide bond via the coupling of a cysteine terminated peptide at low concentration to an azlactone containing copolymer coating. A copolymer of polyethylene glycol methyl ether methacrylate-ran-vinyl azlactone-ran-glycidyl methacrylate P(PEGMEMA-r-VDM-r-GMA) was used to form a thin coating (20-30 nm) on silicon and polycarbonate substrates. The formation and stability of coating-peptide bonds for peptides containing free thiols and amines were quantified by X-ray photoelectron spectroscopy (XPS) after exposure to cell culture conditions. Peptides containing a thiol as the only nucleophile coupled via a thioester bond; however, the bond was labile under cell culture conditions and almost all the bound peptides were displaced from the surface over a period of 2 days. Coupling with N-terminal primary amine peptides resulted in the formation of an amide bond with low efficiency (chemical ligation. Through a combination of XPS and cell culture studies, we show that the cysteine terminated peptides undergo a native chemical ligation process at low peptide concentration in aqueous media, short reaction time, and at room temperature resulting in the stable presentation of peptides beyond 2 weeks for cell culture studies.

  7. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  8. Cross-linked comb-shaped anion exchange membranes with high base stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, NW; Wang, LZ; Hickner, M

    2014-01-01

    A unique one-step cross-linking strategy that connects quaternary ammonium centers using Grubbs II-catalyzed olefin metathesis was developed. The cross-linked anion exchange membranes showed swelling ratios of less than 10% and hydroxide conductivities of 18 to 40 mS cm(- 1). Cross-linking improved the membranes' stability to hydroxide degradation compared to their non-cross-linked analogues.

  9. Cross-linking e segmento de anel corneano intraestromal

    Directory of Open Access Journals (Sweden)

    Adimara da Candelaria Renesto

    2011-02-01

    Full Text Available O cross-linking corneano é um procedimento usado para a estabilização mecânica e aumento da rigidez corneana em pacientes com ceratocone (reduzindo a possibilidade de progressão, e também em processos inflamatórios de afinamento corneano. Os segmentos de anéis corneanos intraestromais têm como princípio o aplanamento central da córnea. Inicialmente utilizados para correção de baixa miopia, a principal indicação atual é em pacientes com ceratocone, para melhorar a acuidade visual não corrigida, a acuidade visual corrigida e permitir uma melhor tolerância ao uso de lentes de contato como também retardar a necessidade de um transplante de córnea. O objetivo deste artigo é revisar algumas publicações relacionadas ao cross-linking corneano e à inserção do segmento de anel intraestromal, apresentando suas indicações, resultados e complicações relatadas até o momento.

  10. Phosphate uptake studies of cross-linked chitosan bead materials.

    Science.gov (United States)

    Mahaninia, Mohammad H; Wilson, Lee D

    2017-01-01

    A systematic experimental study is reported that provides a molecular based understanding of cross-linked chitosan beads and their adsorption properties in aqueous solution containing phosphate dianion (HPO4(2-)) species. Synthetically modified chitosan using epichlorohydrin and glutaraldehyde cross-linkers result in surface modified beads with variable hydrophile-lipophile character and tunable HPO4(2-) uptake properties. The kinetic and thermodynamic adsorption properties of cross-linked chitosan beads with HPO4(2-) species were studied in aqueous solution. Complementary structure and physicochemical characterization of chitosan beads via potentiometry, Raman spectroscopy, DSC, and dye adsorption measurements was carried out to establish structure-property relationships. The maximum uptake (Qm) of bead systems with HPO4(2-) at equilibrium was 52.1mgg(-1); whereas, kinetic uptake results for chitosan bead/phosphate systems are relatively rapid (0.111-0.113min(-1)) with an intraparticle diffusion rate-limiting step. The adsorption process follows a multi-step pathway involving inner- and outer-sphere complexes with significant changes in hydration. Phosphate uptake strongly depends on the composition and type of cross-linker used for preparation of chitosan beads. The adsorption isotherms and structural characterization of bead systems illustrate the role of surface charge, hydrophile-lipophile balance, adsorption site accessibility, and hydration properties of the chitosan bead surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Adsorption of methyl orange onto protonated cross-linked chitosan

    Directory of Open Access Journals (Sweden)

    Ruihua Huang

    2017-01-01

    Full Text Available The adsorption of methyl orange (MO from aqueous solutions on protonated cross-linked chitosan was studied in a batch system. The results showed that the adsorption of MO onto protonated cross-linked chitosan was affected significantly by initial MO concentration, adsorbent dosage, adsorption temperature, and contact time. The pH value of solution had a minor impact on the adsorption of MO in a pH range of 1.0–9.1. The equilibrium isotherms at different temperatures (293, 303, and 313 K and pH values (4.5, 6.7, and 9.1 were investigated. Langmuir model was able to describe these Equilibrium data fitted perfectly. The maximum monolayer adsorption capacities obtained from the Langmuir model were 89.29, 130.9, and 180.2 mg/g at 293, 303, and 313 K, respectively. Adsorption kinetics at different concentrations (100, 200 and 300 mg/L and pH values (4.5, 6.7 and 9.1 were also studied. The kinetics was correlated well with the pseudo second-order model.

  12. Microbial Keratitis After Collagen Cross-linking Treatment

    Directory of Open Access Journals (Sweden)

    Banu Torun Acar

    2012-07-01

    Full Text Available A 33-year-old woman presented with pain, redness, and diminution of vision that occurred 2 days after collagen cross-linking had been performed for keratoconus in the right eye. Culture results from the patient's contact lens and corneal scrapings were positive for Staphylococcus epidermidis. According to the results of antibiotic susceptibility testing, the patient was treated with hourly topical fortified vancomycin and exocin. Before collagen cross-linking, the best-corrected visual acuity (BCVA was 4/10, the manifest refraction was -7.00 -1.755 3°. Four months after the procedure, the BCVA was 4/10, the manifest refraction was -5.50 -1.75 10°. Slit-lamp examination revealed a mild residual haze in the upper midperipheral cornea, and stromal opacities had disappeared. Collagen crosslinking is less invasive compared to other methods for treatment of keratoconus, but epithelial debridement and bandage contact lens wearing may lead to the development of bacterial keratitis. (Turk J Oph thal mol 2012; 42: 300-2

  13. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment

    Directory of Open Access Journals (Sweden)

    Ramsés González-Estrada

    2015-06-01

    Full Text Available In the present study, wheat water extractable arabinoxylans (WEAX were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg−1 WEAX, respectively and a Fourier Transform Infra-Red (FT-IR spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g−1 and 440 kDa, respectively. The gelation of WEAX (1% w/v with and without D. hansenii (1 × 107 CFU∙cm−2 was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young’s modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film.

  14. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins.

    Directory of Open Access Journals (Sweden)

    Pantelis Georgiades

    Full Text Available Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria.

  15. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    Science.gov (United States)

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  16. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    Science.gov (United States)

    2015-01-15

    capacities (IECs). Solution cast membranes were thermally cross- linked to form anion exchange membranes. Cross-linking was achieved by taking advantage...distribution is unlimited. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers The views...Box 12211 Research Triangle Park, NC 27709-2211 Anion Exchnage Membrane, Polymer synthesis, Morphology, Anion Conductivity REPORT DOCUMENTATION PAGE

  17. Small Strain Topological Effects of Biopolymer Networks with Rigid Cross-Links

    NARCIS (Netherlands)

    Zagar, G.; Onck, P. R.; Van der Giessen, E.; Garikipati, K; Arruda, EM

    2010-01-01

    Networks of cross-linked filamentous biopolymers form topological structures characterized by L, T and X cross-link types of connectivity 2, 3 and 4, respectively. The distribution of cross-links over these three types proofs to be very important for the initial elastic shear stiffness of isotropic

  18. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde Damink, L.H.H.; Dijkstra, P.J.; Luyn, van M.J.A.; Wachem, van P.B.; Nieuwenhuis, P.; Feijen, J.

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  19. Effect of Microwave Radiation on Enzymatic and Chemical Peptide Bond Synthesis on Solid Phase

    Directory of Open Access Journals (Sweden)

    Alessandra Basso

    2009-01-01

    Full Text Available Peptide bond synthesis was performed on PEGA beads under microwave radiations. Classical chemical coupling as well as thermolysin catalyzed synthesis was studied, and the effect of microwave radiations on reaction kinetics, beads' integrity, and enzyme activity was assessed. Results demonstrate that microwave radiations can be profitably exploited to improve reaction kinetics in solid phase peptide synthesis when both chemical and biocatalytic strategies are used.

  20. Cross-linking of rabbit skeletal muscle troponin subunits: labeling of cysteine-98 of troponin C with 4-maleimidobenzophenone and analysis of products formed in the binary complex with troponin T and the ternary complex with troponins I and T.

    Science.gov (United States)

    Leszyk, J; Collins, J H; Leavis, P C; Tao, T

    1988-09-06

    The sulfhydryl-specific, heterobifunctional, photoactivatable cross-linker 4-maleimidobenzophenone (BPMal) was used to study the interaction of rabbit skeletal muscle troponin subunits TnC, TnT, and TnI. TnC was labeled at Cys-98 by the maleimide moiety of BPMal and then mixed with either TnT alone or TnI plus TnT, in the presence of Ca2+. Upon photolysis, TnI and/or TnT formed covalent cross-links with TnC. The cross-linked TnC-TnT heterodimer obtained from the binary complex was digested into progressively smaller cross-linked peptides that were purified by HPLC and then characterized by amino acid analysis and sequencing. An initial cross-linked CNBr fraction contained the expected peptide CB9 (residues 84-135) of TnC, plus CNBr peptides spanning residues 152-230 of TnT. Results from a peptic digest of the CNBr cross-linked fraction permitted the identification of residues 159-197 as the most highly cross-linked region in TnT. A final subtilisin digest yielded a heterogeneous cross-linked fraction, which suggested that an especially high degree of cross-links was formed in the vicinity of residues 175-178 (Met-Lys-Lys-Lys) of TnT. Although this region of TnT had previously been implicated in binding, we show here for the first time that it is close to Cys-98 of TnC. In an analogous study on the binary complex of TnC and TnI [Leszyk, J., Collins, J. H., Leavis, P. C., & Tao, T. (1987) Biochemistry 26, 7042-7047], we previously showed that Cys-98 of TnC was cross-linked mainly to CN4, the "inhibitory region", of TnI.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Cross-linked hyaluronic acid in pressure ulcer prevention.

    Science.gov (United States)

    Beniamino, P; Vadalà, M; Laurino, C

    2016-07-02

    Long-term bedridden patients are at high risk of acquring pressure ulcers (PUs). In this group of patients, prevention is necessary to cut the health costs, improve quality of life and reduce the mortality. Here, we evaluated the effectiveness of a cross-linked hyaluronic acid (HA) as plastic bulking-agent filling and remodelling the deep dermis and subcutaneous space of the skin areas exposed to the risk of necrosis. Our work hypothesis has been to inflate a sub-dermal elastic cushion, filled with a natural ECM component, with the aim to induce a stronger tissue background resistant to the ulcerative process. All the patients had an increased risk of PUs, at the sacral, ileum or heel skin. Patients were being nursed accordingly to the standard orthopaedic ward management with a pressure relieveing air mattress. The standard protocol consisted in body mobilisation every 3 hours, 24 hours a day and accurate cleaning of the skin with liquid soap and water without any towel friction and without adding any cream or lotion for the skin protection. Our filling protocol enclosed: accurate disinfection of the skin to be injected with povidone-iodine solution, followed by a local anaesthesia with 28G 13 mm needle, injecting 1.5 ml of 1% xylocaine. Then slow, deep, subcutaneous injection of cross-linked HA was performed with a 18G long needle, in order to deliver a homogeneous, soft gel layer underneath and around the whitish erythematous skin edges at risk of ulceration. Patients' tolerability of the compound and adverse events were also recorded. There were 15 patients (78-94 years old) who participated in the study. All tolerated the procedure very well and no serious side effects were declared. No skin pressure ulceration was detected in the four weeks follow-up Conclusion: We have demonstrated the safety and tolerability of a cross-linked HA subdermal injection in PUs prevention. The compound stratifies in a soft, elastic, interstitial bulk into the deep dermis, thus

  2. Biocatalytic cross-linking of pectic polysaccharides for designed food functionality

    DEFF Research Database (Denmark)

    Zaidel, Dayang Norulfairuz Abang; Meyer, Anne S.

    2012-01-01

    Recent research has demonstrated how cross-linking of pectic polysaccharides to obtain gel formation can be promoted by enzymatic catalysis reactions, and provide opportunities for functional upgrading of pectic polysaccharides present in agro-industrial sidestreams. This review highlights...... the mechanisms of formation of functional pectic polysaccharide cross-links, including covalent cross-links (notably phenolic esters and uronyl ester linkages) and non-covalent, ionic cross-links (which involve calcium and borate ester links). The treatise examines how such cross-links can be designed via...

  3. Stiffening of semiflexible biopolymers and cross-linked networks

    CERN Document Server

    Van Dillen, T; Van der Giessen, E

    2006-01-01

    We study the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear. Filamental constituents immersed in a fluid undergo thermally excited bending motions. Pulling out these undulations results in an increase in the axial stiffness. We analyze this stiffening behavior of 2D semiflexible filaments in detail: we first investigate the average, {static} force-extension relation by considering the initially present undulated configuration that is pulled straight under a tensile force, and compare this result with the average response in which undulation dynamics is allowed during pulling, as derived earlier by MacKintosh and coworkers. We will show that the resulting mechanical behavior is rather similar, but with the axial stiffness being a factor 2 to 4 larger in the dynamic model. Furthermore, we study the stretching contribution in case of extensible filaments and show that, for 2D filaments, the mechanical response is dominated by {...

  4. Conventional Versus Cross-Linked Polyethylene for Total Hip Arthroplasty.

    Science.gov (United States)

    Surace, Michele F; Monestier, Luca; Vulcano, Ettore; Harwin, Steven F; Cherubino, Paolo

    2015-09-01

    The clinical and radiographic outcomes of 88 patients who underwent primary total hip arthroplasty with either conventional polyethylene or cross-linked polyethylene (XLPE) from the same manufacturer were compared. There were no significant differences between the 2 subpopulations regarding average age, gender, side affected, or prosthetic stem and cup size. The average follow-up was 104 months (range, 55 to 131 months). To the authors' knowledge, this is the longest follow-up for this particular insert. Clinical and radiographic evaluations were performed at 1, 3, 6, and 12 months and then annually. Results showed that XLPE has a significantly greater wear reduction than that of standard polyethylene in primary total hip arthroplasty. At the longest available follow-up for these specific inserts, XLPE proved to be effective in reducing wear.

  5. Studies on N-vinylformamide cross-linked copolymers

    Science.gov (United States)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  6. DNA-Protein Cross-Links: Formation, Structural Identities, and Biological Outcomes.

    Science.gov (United States)

    Tretyakova, Natalia Y; Groehler, Arnold; Ji, Shaofei

    2015-06-16

    complexity complicates structural and biological studies of DPC lesions. Two general strategies have been developed for creating DNA strands containing structurally defined, site-specific DPCs. Enzymatic methodologies that trap DNA modifying proteins on their DNA substrate are site specific and efficient, but do not allow for systematic studies of DPC lesion structure on their biological outcomes. Synthetic methodologies for DPC formation are based on solid phase synthesis of oligonucleotide strands containing protein-reactive unnatural DNA bases. The latter approach allows for a wider range of protein substrates to be conjugated to DNA and affords a greater flexibility for the attachment sites within DNA. In this Account, we outline the chemistry of DPC formation in cells, describe our recent efforts to identify the cross-linked proteins by mass spectrometry, and discuss various methodologies for preparing DNA strands containing structurally defined, site specific DPC lesions. Polymerase bypass experiments conducted with model DPCs indicate that the biological outcomes of these bulky lesions are strongly dependent on the peptide/protein size and the exact cross-linking site within DNA. Future studies are needed to elucidate the mechanisms of DPC repair and their biological outcomes in living cells.

  7. Grass Cell Walls: A Story of Cross-Linking

    Science.gov (United States)

    Hatfield, Ronald D.; Rancour, David M.; Marita, Jane M.

    2017-01-01

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how cell walls are assembled into complex matrices. Valuable insight has been gained by examining intact components to understand the individual elements that make up plant cell walls. Grasses are a prominent group within the plant kingdom, not only for their important roles in global agriculture, but also for the complexity of their cell walls. Ferulate incorporation into grass cell wall matrices (C3 and C4 types) leads to a cross-linked matrix that plays a prominent role in the structure and utilization of grass biomass compared to dicot species. Incorporation of p-coumarates as part of the lignin structure also adds to the complexity of grass cell walls. Feruoylation results in a wall with individual hemicellulosic polysaccharides (arabinoxylans) covalently linked to each other and to lignin. Evidence strongly suggests that ferulates not only cross-link arabinoxylans, but may be important factors in lignification of the cell wall. Therefore, the distribution of ferulates on arabinoxylans could provide a means of structuring regions of the matrix with the incorporation of lignin and have a significant impact upon localized cell wall organization. The role of other phenolics in cell wall formation such as p-coumarates (which can have concentrations higher than ferulates) remains unknown. It is possible that p-coumarates assist in the formation of lignin, especially syringyl rich lignin. The uniqueness of the grass cell wall compared to dicot sepcies may not be so much in the gross composition of the wall, but how the distinctive individual components are organized into a functional wall matrix. These features are discussed and working models are provided to illustrate how changing the organization of feruoylation and p

  8. Peptidoglycan Cross-Linking in Glycopeptide-Resistant Actinomycetales

    Science.gov (United States)

    Hugonnet, Jean-Emmanuel; Haddache, Nabila; Veckerlé, Carole; Dubost, Lionel; Marie, Arul; Shikura, Noriyasu; Mainardi, Jean-Luc; Rice, Louis B.

    2014-01-01

    Synthesis of peptidoglycan precursors ending in d-lactate (d-Lac) is thought to be responsible for glycopeptide resistance in members of the order Actinomycetales that produce these drugs and in related soil bacteria. More recently, the peptidoglycan of several members of the order Actinomycetales was shown to be cross-linked by l,d-transpeptidases that use tetrapeptide acyl donors devoid of the target of glycopeptides. To evaluate the contribution of these resistance mechanisms, we have determined the peptidoglycan structure of Streptomyces coelicolor A(3)2, which harbors a vanHAX gene cluster for the production of precursors ending in d-Lac, and Nonomuraea sp. strain ATCC 39727, which is devoid of vanHAX and produces the glycopeptide A40296. Vancomycin retained residual activity against S. coelicolor A(3)2 despite efficient incorporation of d-Lac into cytoplasmic precursors. This was due to a d,d-transpeptidase-catalyzed reaction that generated a stem pentapeptide recognized by glycopeptides by the exchange of d-Lac for d-Ala and Gly. The contribution of l,d-transpeptidases to resistance was limited by the supply of tetrapeptide acyl donors, which are essential for the formation of peptidoglycan cross-links by these enzymes. In the absence of a cytoplasmic metallo-d,d-carboxypeptidase, the tetrapeptide substrate was generated by hydrolysis of the C-terminal d-Lac residue of the stem pentadepsipeptide in the periplasm in competition with the exchange reaction catalyzed by d,d-transpeptidases. In Nonomuraea sp. strain ATCC 39727, the contribution of l,d-transpeptidases to glycopeptide resistance was limited by the incomplete conversion of pentapeptides into tetrapeptides despite the production of a cytoplasmic metallo-d,d-carboxypeptidase. Since the level of drug production exceeds the level of resistance, we propose that l,d-transpeptidases merely act as a tolerance mechanism in this bacterium. PMID:24395229

  9. The wear of cross-linked polyethylene against itself.

    Science.gov (United States)

    Joyce, T J; Ash, H E; Unsworth, A

    1996-01-01

    Cross-linked polyethylene (XLPE) may have an application as a material for an all-plastic surface replacement finger joint. It is inexpensive, biocompatible and can be injection-moulded into the complex shapes that are found on the ends of the finger bones. Further, the cross-linking of polyethylene has significantly improved its mechanical properties. Therefore, the opportunity exists for an all-XLPE joint, and so the wear characteristics of XLPE sliding against itself have been investigated. Wear tests were carried out on both reciprocating pin-on-plate machines and a finger function simulator. The reciprocating pin-on-plate machines had pins loaded at 10 N and 40 N. All pin-on-plate tests show wear factors from the plates very much greater than those of the pins. After 349 km of sliding, a mean wear factor of 0.46 x 10(-6) mm3/N m was found for the plates compared with 0.021 x 10(-6) mm3/N m for the pins. A fatigue mechanism may be causing this phenomenon of greater plate wear. Tests using the finger function simulator give an average wear rate of 0.22 x 10(-6) mm3/N m after 368 km. This sliding distance is equivalent to 12.5 years of use in vivo. The wear factors found were comparable with those of ultra-high molecular weight polyethylene (UHMWPE) against a metallic counterface and, therefore, as the loads across the finger joint are much less than those across the knee or the hip, it is probable that an all-XLPE finger joint will be viable from a wear point of view.

  10. Anisotropic Thermal Conductivity Measurements on Cross-Linked Polybutadienes in Uniaxial Elongation

    Science.gov (United States)

    Venerus, David C.; Kolev, Dimitre

    2008-07-01

    Cross-linked elastomers have numerous applications including automobiles, sporting goods, and biomedical devices. During both their processing and application, these materials experience large mechanical stresses and thermal gradients. In this study, we investigate the mechanical and thermal transport behavior of cross-linked polybutadienes. These materials have been prepared by cross linking well-entangled polybutadienes using an organic peroxide cross-linking agent at low concentration. Samples obtained after nearly complete conversion of the cross-linking agent, which can be characterized as lightly cross-linked (i.e., more than 10 entanglements per cross-link), were subjected to a series of large strain, uniaxial deformations. Measurements of the tensile stress and two components of the thermal conductivity tensor will be reported as a function of elongation. These data are also used to examine the stress-thermal rule in which the stress and thermal conductivity tensors are linearly related.

  11. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  12. Preparation and adsorption property of aminated cross linking microbeads of GMA/EGDMA for bilirubin

    Indian Academy of Sciences (India)

    Zhiping Chen; Baojiao Gao; Xiaofeng Yang

    2009-11-01

    Cross linking microbeads with a controllable diameter were synthesized by suspension copolymerization of the monomer glycidyl methacrylate (GMA) and the cross linking agent ethylene glycol dimethylacrylate (EGDMA). By the ring-opening reaction of the epoxy groups, the microbeads GMA/EGDMA were modified with different aminating agents and resulting in the aminated microbeads. The morphology of the microbeads was characterized by SEM. The adsorption property of aminated microbeads for bilirubin was investigated, and the effects of various factors, such as the chemical structures of the aminating agents, pH values of the medium and the presence of bovine serum albumin in the adsorption medium, on the adsorption property were examined. The experimental results show that the aminated microbeads have strong adsorption ability for bilirubin, and the isotherm adsorption behaviour is fitted to Freundlich equation satisfactorily. The adsorption ability of the aminated microbeads modified with hexanediamine is stronger than that of others, and the longer the molecule of multi-ethylene multiamine, the weaker the adsorption ability for bilirubin. The pH value of the medium affects the adsorption ability greatly, as pH = 6, the adsorption ability is strongest. In the presence of BSA, the microbeads still have a higher adsorption capacity towards bilirubin.

  13. Size-dependent release of fluorescent macromolecules and nanoparticles from radically cross-linked hydrogels.

    Science.gov (United States)

    Henke, Matthias; Brandl, Ferdinand; Goepferich, Achim M; Tessmar, Joerg K

    2010-02-01

    Hydrogels play an important role in drug delivery and tissue engineering applications due to their excellent biocompatibility and their variable mechanical and physical properties, which allow their optimization for many different aspects of the intended use. In this study, we examined the suitability of poly(ethylene glycol) (PEG)-based hydrogels as release systems for nanometer-sized drugs or drug carriers, like nanoparticles, using the radically cross-linkable oligo(poly(ethylene glycol)fumarate) (OPF) together with two cross-linking agents. Different fluorescent nanoparticulate probes with respect to size and physical structure were incorporated in the cross-linked hydrogels, and the obtained release profiles were correlated with the physical properties and the chemical structure of the gels, indicating a strong dependence of the release on the chosen PEG prepolymers. The prepared hydrogels were characterized by oscillatory rheometry and swelling experiments. Release experiments as well as diffusion measurements using fluorescence recovery after photobleaching showed the great potential of this type of hydrogels for the preparation of adjustable release systems by altering the molecular weights of the used PEG molecules.

  14. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin

    Science.gov (United States)

    Fathy, Mahmoud; Moghny, Th. Abdel; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2017-03-01

    In response to rising concerns about the effect of sulfate on water quality, human health, and agriculture, many jurisdictions around the world are imposing tighter regulations for sulfate discharge. This is driving the need for environmental compliance in industries like mining, metal processing, pulp and paper, sewage treatment, and chemical manufacturing. The sulfate removal from synthetic water by high cross-linked polystyrene divinylbenzene resin was studied at batch experiments in this study. The effect of pH, contact time, sulfates concentration, and adsorbent dose on the sulfate sequestration was investigated. The optimum conditions were studied on Saline water as a case study. The results showed that with increasing of the absorbent amount; contact time, and pH improve the efficiency of sulfate removal. The maximum sulfates uptake was obtained in pH and contact time 3.0 and 120 min, respectively. Also, with increasing initial concentration of sulfates in water, the efficiency of sulfate removal decreased. The obtained results in this study were matched with Freundlich isotherm and pseudo-second-order kinetic. The maximum adsorption capacity (Qm) and constant rate were found 0.318 (mg/g) and 0.21 (mg/g.min), respectively. This study also showed that in the optimum conditions, the sulfate removal efficiency from Saline water by 0.1 mg/L sulfates was 65.64 %. Eventually, high cross-linked polystyrene divinylbenzene resin is recommended as a suitable and low cost absorbent to sulfate removal from aqueous solutions.

  15. Adsorption of Pb{sup 2+} on chitosan cross-linked with triethylene-tetramine

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.H. [College of Chemistry and Chemical Engineering, Hunan University, Changsha (China); College of Environmental and Chemical Engineering, Nanchang Institute of Aeronautical Technology (China); Zhang, X.M.; Zhou, A.L. [College of Environmental and Chemical Engineering, Nanchang Institute of Aeronautical Technology (China); Guo, C.C. [College of Chemistry and Chemical Engineering, Hunan University, Changsha (China)

    2007-07-15

    A novel triethylene-tetramine cross-linked chitosan (CCTS) was synthesized via the cross-linking of triethylene-tetramine and epichlorohydrin activated chitosan. Its structure was characterized by elemental analysis, infrared spectroscopy and X-ray diffraction analysis, and the surface topography was determined with ESEM. The results were in agreement with expectations. The capacity of CCTS to adsorb Pb{sup 2+} ions from aqueous solutions was examined, and equilibrium and kinetic investigations were undertaken. The adsorption isotherms were fitted well by the Langmuir equation (R > 0.999). The maximum adsorbed amount, at pH 5.5, with an initial concentration of 3 mmol/L (621 ppm), was 378.8 mg/g. The adsorption process could be best described by a second-order equation (R = 1). This suggests that the rate-limiting step may be the chemical adsorption (chemisorption) step and not the mass transport. The separation factor used was 0 < R{sub L} < 1. Therefore, it can be concluded that CCTS is an effective adsorbent for the collection of Pb{sup 2+}. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. Kinetics of chromium ion absorption by cross-linked polyacrylate films

    Science.gov (United States)

    May, C. E.

    1984-01-01

    Three cross-linked ion exchange membranes were studied as to their ability to absorb chromium ion from aqueous chromium III nitrate solutions. Attention was given to the mechanism of absorption, composition of the absorbed product, and the chemical bonding. The membranes were: calcium polyacrylate, polyacrylic acid, and a copolymer of acrylic acid and vinyl alcohol. For the calcium polyacrylate and the copolymer, parabolic kinetics were observed, indicating the formation of a chromium polyacrylate phase as a coating on the membrane. The rate of absorption is controlled by the diffusion of the chromium ion through this coating. The product formed in the copolymer involves the formation of a coordination complex of a chromium ion with 6 carboxylic acid groups from the same molecule. The absorption of the chromium ion by the polyacrylic acid membranes appears to be more complicated, involving cross-linking. This is due to the coordination of the chromium ion with carboxylic acid groups from more than one polymer molecule. The absorption rate of the chromium ion by the calcium salt membrane was found to be more rapid than that by the free polyacrylic acid membrane.

  17. Integrated Workflow for Structural Proteomics Studies Based on Cross-Linking/Mass Spectrometry with an MS/MS Cleavable Cross-Linker.

    Science.gov (United States)

    Arlt, Christian; Götze, Michael; Ihling, Christian H; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2016-08-16

    Cross-linking combined with mass spectrometry (MS) has evolved as an alternative strategy in structural biology for characterizing three-dimensional structures of protein assemblies and for mapping protein-protein interactions. Here, we describe an integrated workflow for an automated identification of cross-linked products that is based on the use of a tandem mass spectrometry (MS/MS) cleavable cross-linker (containing a 1,3-bis-(4-oxo-butyl)-urea group, BuUrBu) generating characteristic doublet patterns upon fragmentation. We evaluate different fragmentation methods available on an Orbitrap Fusion mass spectrometer for three proteins and an E. coli cell lysate. An updated version of the dedicated software tool MeroX was employed for a fully automated identification of cross-links. The strength of our cleavable cross-linker is that characteristic patterns of the cross-linker as well as backbone fragments of the connected peptides are already observed at the MS/MS level, eliminating the need for conducting MS(3) or sequential CID (collision-induced dissociation)- and ETD (electron transfer dissociation)-MS/MS experiments. This makes our strategy applicable to a broad range of mass spectrometers with MS/MS capabilities. For purified proteins and protein complexes, our workflow using CID-MS/MS acquisition performs with high confidence, scoring cross-links at 0.5% false discovery rate (FDR). The cross-links provide structural insights into the intrinsically disordered tetrameric tumor suppressor protein p53. As a time-consuming manual inspection of cross-linking data is not required, our workflow will pave the way for making the cross-linking/MS approach a routine technique for structural proteomics studies.

  18. Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability.

    Science.gov (United States)

    Welsch, Nicole; Lyon, L Andrew

    2017-01-01

    We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.

  19. Nafion-assisted cross-linking of sulfonated poly(arylene ether ketone) bearing carboxylic acid groups and their composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haidan; Zhao, Chengji; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin street 2699, Changchun 130012, Jilin (China)

    2010-06-01

    In this study, a new type of cross-linked composite membrane is prepared and considered for its potential applications in direct methanol fuel cell. Nafion and sulfonated poly(arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) are blended and subsequently cross-linked by a Friedel-Craft reaction using the carboxylic acid groups in the SPAEK-C to achieve lower methanol permeability. The perfluoroalkyl sulfonic acid groups of Nafion act as a benign solid catalyst, which assist the cross-linking of SPAEK-C. The physical and chemical characterizations of the cross-linked composite membranes are performed by varying the contents of SPAEK-C. The c-Nafion-15% membrane exhibits appropriate water uptake (10.49-25.22%), low methanol permeability (2.57 x 10{sup -7} cm{sup 2} s{sup -1}), and high proton conductivity (0.179 S cm{sup -1} at 80 C). DSC and FTIR analyze suggest the cross-linking reaction. These results show that the self-cross-linking of SPAEK-C in the Nafion membrane can effectively reduce methanol permeability while maintaining high proton conductivity. (author)

  20. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw

    2014-12-01

    In the present study, we developed photo-cross-linked amniotic membrane (AM) as a limbal stem cell niche. After ultraviolet (UV) irradiation for varying time periods, the biological tissues were studied by determinations of cross-linking structure, degradability, and nutrient permeation ability. Our results showed that the number of cross-links per unit mass of AM significantly increased with increasing illumination time from 5 to 50 min. However, the cross-link formation was inhibited by longer irradiation time (i.e., 150 min), probably due to the scission of tissue collagen chains through irradiation. The biological stability and matrix permeability of photo-cross-linked AM materials strongly depended on their cross-linking densities affected by the UV irradiation. In vitro biocompatibility studies including cell viability and pro-inflammatory gene expression analyses demonstrated that, irrespective of the irradiation time employed, the physically cross-linked biological tissues exhibited negligible cytotoxicity and similar interleukin-6 (IL-6) mRNA levels. The data clearly indicate that these AM matrices do not cause potential harm to the corneal epithelial cells. After the growth of limbal epithelial cells (LECs) on AM substrates, Western blot analyses were conducted to examine the expression of ABCG2. It was found that the ability of UV-irradiated AM to maintain the undifferentiated precursor cell phenotype was significantly enhanced with increasing extent of photo-cross-linking. In summary, the UV irradiation time may have a profound influence on the fabrication of photo-cross-linked AM matrices for LEC cultivation. - Highlights: • We report the development of photo-cross-linked AM as a limbal stem cell niche. • Cross-linked structure of tissue materials was controlled by UV irradiation time. • Biostability and matrix permeability of AM depended on cross-linking density. • All the studied photo-cross-linked AM showed good in vitro biocompatibility.

  1. Cross-linking immunoprecipitation-MS (xIP-MS): Topological Analysis of Chromatin-associated Protein Complexes Using Single Affinity Purification.

    Science.gov (United States)

    Makowski, Matthew M; Willems, Esther; Jansen, Pascal W T C; Vermeulen, Michiel

    2016-03-01

    In recent years, cross-linking mass spectrometry has proven to be a robust and effective method of interrogating macromolecular protein complex topologies at peptide resolution. Traditionally, cross-linking mass spectrometry workflows have utilized homogenous complexes obtained through time-limiting reconstitution, tandem affinity purification, and conventional chromatography workflows. Here, we present cross-linking immunoprecipitation-MS (xIP-MS), a simple, rapid, and efficient method for structurally probing chromatin-associated protein complexes using small volumes of mammalian whole cell lysates, single affinity purification, and on-bead cross-linking followed by LC-MS/MS analysis. We first benchmarked xIP-MS using the structurally well-characterized phosphoribosyl pyrophosphate synthetase complex. We then applied xIP-MS to the chromatin-associated cohesin (SMC1A/3), XRCC5/6 (Ku70/86), and MCM complexes, and we provide novel structural and biological insights into their architectures and molecular function. Of note, we use xIP-MS to perform topological studies under cell cycle perturbations, showing that the xIP-MS protocol is sufficiently straightforward and efficient to allow comparative cross-linking experiments. This work, therefore, demonstrates that xIP-MS is a robust, flexible, and widely applicable methodology for interrogating chromatin-associated protein complex architectures.

  2. Study On Oil and Chemical Resistance of the UV Light Cross-linking Polyethylene Insulating Cable at 135 ℃%耐温135℃紫外光交联聚乙烯绝缘电线的耐油及耐化学品性能

    Institute of Scientific and Technical Information of China (English)

    鲍文波; 楚婧; 杨洪伟; 刘岩; 高广刚

    2013-01-01

    According to GB/T 12528 -2008, the mechanical and voltage resistant properties of the UV light cross-linking polyethylene insulating wire at 135℃ were investigated after its immersion in mineral oil, fuel oil, acid, alkali or salt solutions at different times. The results indicated that the UV light cross-linking polyethylene at 135 ℃ insulation can not be used safely in mineral oil environment, but it can be used in fuel oil, acid, alkali and salt conditions.%参考GB/T 12528-2008,考查了耐温135℃紫外光交联聚乙烯绝缘电线在矿物油、燃料油、酸碱盐溶液中浸泡不同时间后的机械性能变化和耐电压试验研究.结果表明,耐温135℃紫外光交联聚乙烯材料暂时不适合在有矿物油的环境中使用,在燃料油存在的环境中、酸、碱和盐的环境中均可正常使用.

  3. The selective peptide reactivity of chemical respiratory allergens under competitive and non-competitive conditions.

    Science.gov (United States)

    Lalko, Jon F; Kimber, Ian; Dearman, Rebecca J; Api, Anne Marie; Gerberick, G Frank

    2013-01-01

    It is well established that certain chemicals cause respiratory allergy. In common with contact allergens, chemicals that induce sensitization of the respiratory tract must form stable associations with host proteins to elicit an immune response. Measurement of the reactivity of chemical allergens to single nucleophilic peptides is increasingly well-described, and standardized assays have been developed for use in hazard assessment. This study employed standard and modified peptide reactivity assays to investigate the selectivity of chemical respiratory allergens for individual amino acids under competitive and non-competitive conditions. The reactivity of 20 known chemical respiratory sensitizers (including diisocyanates, anhydrides, and reactive dyes) were evaluated for reactivity towards individual peptides containing cysteine, lysine, histidine, arginine, or tyrosine. Respiratory allergens exhibited the common ability to deplete both lysine and cysteine peptides; however, reactivity for histidine, arginine, and tyrosine varied between chemicals, indicating differences in relative binding affinity toward each nucleophile. To evaluate amino acid selectivity for cysteine and lysine under competitive conditions a modified assay was used in which reaction mixtures contained different relative concentrations of the target peptides. Under these reaction conditions, the binding preferences of reference respiratory and contact allergens (dinitrochlorobenzene, dinitrofluorobenzene) were evaluated. Discrete patterns of reactivity were observed showing various levels of competitive selectivity between the two allergen classes.

  4. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction.

    Science.gov (United States)

    Abe, Tomoko; Hashimoto, Yoshiteru; Zhuang, Ye; Ge, Yin; Kumano, Takuto; Kobayashi, Michihiko

    2016-01-22

    We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.

  5. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.

    Science.gov (United States)

    Zhang, Xinyue; Price, Nathan E; Fang, Xi; Yang, Zhiyu; Gu, Li-Qun; Gates, Kent S

    2015-12-22

    Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.

  6. Cross-linked polyethylenimine–tripolyphosphate nanoparticles for gene delivery

    Directory of Open Access Journals (Sweden)

    Huang XZ

    2014-10-01

    Full Text Available Xianzhang Huang,1 Sujing Shen,2 Zhanfeng Zhang,1 Junhua Zhuang1 1Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 2Department of Laboratory Science, Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, People’s Republic of China Abstract: The high transfection efficiency of polyethylenimine (PEI makes it an attractive potential nonviral genetic vector for gene delivery and therapy. However, the highly positive charge of PEI leads to cytotoxicity and limits its application. To reduce the cytotoxicity of PEI, we prepared anion-enriched nanoparticles that combined PEI with tripolyphosphate (TPP. We then characterized the PEI-TPP nanoparticles in terms of size, zeta potential, and Fourier-transform infrared (FTIR spectra, and assessed their transfection efficiency, cytotoxicity, and ability to resist deoxyribonuclease (DNase I digestion. The cellular uptake of PEI-TPP with phosphorylated internal ribosome entry site–enhanced green fluorescent protein C1 or FAM (fluorouracil, Adriamycin [doxorubicin] and mitomycin-labeled small interfering ribonucleic acids (siRNAs was monitored by fluorescence microscopy and confocal laser microscopy. The efficiency of transfected delivery of plasmid deoxyribonucleic acid (DNA and siRNA in vitro was 1.11- to 4.20-fold higher with the PEI-TPP particles (7.6% cross-linked than with the PEI, at all N:P ratios (nitrogen in PEI to phosphorus in DNA tested. The cell viability of different cell lines was more than 90% at the chosen N:P ratios of PEI-TPP/DNA complexes. Moreover, PEI-TPP nanoparticles resisted digestion by DNase I for more than 2 hours. The time-dependent absorption experiment showed that 7.6% of cross-linked PEI-TPP particles were internalized by 293T cells within 1 hour. In summary, PEI-TPP nanoparticles effectively transfected cells while conferring little or no toxicity, and thus have potential application in gene

  7. Riboflavin-ultraviolet a corneal cross-linking for keratoconus

    Directory of Open Access Journals (Sweden)

    El-Raggal Tamer

    2009-01-01

    Full Text Available Purpose: To evaluate the safety, efficacy of riboflavin-ultraviolet A irradiation (UVA corneal cross-linking and present refractive changes induced by the treatment in cases of keratoconus. Materials and Methods: The study includes 15 eyes of 9 patients with keratoconus with an average keratometric (K reading less than 54 D and minimal corneal thickness greater than 420 microns. The corneal epithelium was removed manually within the central 8.5 mm diameter area and the cornea was soaked with riboflavin eye drops (0.1% in 20% dextran t-500 for 30 minutes followed by exposure to UVA radiation (365 nm, 3 mW/cm 2 for 30 minutes. During the follow-up period, uncorrected visual acuity (UCVA, best spectacle-corrected visual acuity (BSCVA, manifest refraction, slit lamp examination and topographic changes were recorded at the first week, first month, 3 and 6 months. Results: There was statistically significant improvement of UCVA from a preoperative mean of 0.11 ± 0.07 (range 0.05-0.3 to a postoperative mean of 0.15 ± 0.06 (range 0.1-0.3 (P < 0.05. None of the eyes lost lines of preoperative UCVA but 1 eye lost 1 line of preoperative BSCVA. The preoperative mean K of 49.97 ± 2.81 D (range 47.20-51.75 changed to 48.34 ± 2.64 D (range 45.75-50.40. This decrease in K readings was statistically significant (P < 0.05. All eyes developed minimal faint stromal haze that cleared in 14 eyes within 1 month. In only 1 eye, this resulted in a very faint corneal scar. Other sight threatening complications were not encountered in this series. Progression of the original disease was not seen in any of the treated eyes within 6 months of follow-up. Conclusion: Riboflavin-UVA corneal cross-linking is a safe and promising method for keratoconus. Larger studies with longer follow up are recommended.

  8. Understanding of the Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UV-A Cross-Linking at the Nano Level

    Science.gov (United States)

    Labate, Cristina; De Santo, Maria Penelope; Lombardo, Giuseppe; Lombardo, Marco

    2015-01-01

    Purpose To investigate the viscoelastic changes of the human cornea induced by riboflavin/UV-A cross-linking using Atomic Force Microscopy (AFM) at the nano level. Methods Seven eye bank donor corneas were investigated, after gently removing the epithelium, using a commercial AFM in the force spectroscopy mode. Silicon cantilevers with tip radius of 10 nm and spring elastic constants between 26- and 86-N/m were used to probe the viscoelastic properties of the anterior stroma up to 3 µm indentation depth. Five specimens were tested before and after riboflavin/UV-A cross-linking; the other two specimens were chemically cross-linked using glutaraldehyde 2.5% solution and used as controls. The Young’s modulus (E) and the hysteresis (H) of the corneal stroma were quantified as a function of the application load and scan rate. Results The Young’s modulus increased by a mean of 1.1-1.5 times after riboflavin/UV-A cross-linking (P<0.05). A higher increase of E, by a mean of 1.5-2.6 times, was found in chemically cross-linked specimens using glutaraldehyde 2.5% (P<0.05). The hysteresis decreased, by a mean of 0.9-1.5 times, in all specimens after riboflavin/UV-A cross-linking (P<0.05). A substantial decrease of H, ranging between 2.6 and 3.5 times with respect to baseline values, was observed in glutaraldehyde-treated corneas (P<0.05). Conclusions The present study provides the first evidence that riboflavin/UV-A cross-linking induces changes of the viscoelastic properties of the cornea at the scale of stromal molecular interactions. PMID:25830534

  9. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.

    Science.gov (United States)

    Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Wahlsten, Matti; Gugger, Muriel; Calteau, Alexandra; Permi, Perttu; Kerfeld, Cheryl A; Sivonen, Kaarina; Fewer, David P

    2013-08-22

    Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications.

  10. Synthesis of cysteine-rich peptides by native chemical ligation without use of exogenous thiols.

    Science.gov (United States)

    Tsuda, Shugo; Yoshiya, Taku; Mochizuki, Masayoshi; Nishiuchi, Yuji

    2015-04-03

    Native chemical ligation (NCL) performed without resorting to the use of thiol additives was demonstrated to be an efficient and effective procedure for synthesizing Cys-rich peptides. This method using tris(2-carboxyethyl)phosphine (TCEP) as a reducing agent facilitates the ligation reaction even at the Thr-Cys or Ile-Cys site and enables one-pot synthesis of Cys-rich peptides throughout NCL and oxidative folding.

  11. Plasma-Enhanced Chemical Vapor Deposition as a Method for the Deposition of Peptide Nanotubes

    Science.gov (United States)

    2013-09-17

    peptide nanotubes, plasma-enhanced chemical vapor deposition, nano assembly 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Using physical vapor deposition ( PVD ) well-ordered assemblies of peptide nanotubes (PNTs) composed of dipeptide subunits are obtained on various...for the deposition of thin films (Figure 1b). A. B. Figure 1. (a) Illustration of physical vapor deposition ( PVD ) process of diphenylalanine

  12. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2015-07-01

    Full Text Available Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP, followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ⋅ g33 for a more typical d33 value of 400 pC/N is about 11.2 GPa−1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  13. Cross-linking da cornea: protocolo padrão

    Directory of Open Access Journals (Sweden)

    Marcony R. Santhiago

    Full Text Available RESUMO O objetivo desta revisão é de determinar as indicações e eficácia da cirurgia que promove novas ligações covalentes entre as fibras de colágeno da córnea, conhecida como Cross-Linking (CXL, assim como esclarecer seus objetivos. O ceratocone é uma doença ectasica da córnea, bilateral, assimétrica, que, principalmente, cursa com encurvamento e afinamentos progressivo, e se inicia em geral na segunda década de vida. O uso primário do CXL tem sido na interrupção da progressão do Ceratocone. Apesar do conhecido encurvamento no estroma da córnea ocorrer nesses pacientes, a fisiopatologia por trás do ceratocone ainda é desconhecida e parece ser multifatorial. Pela evidencia literária disponível até o momento, o CXL da córnea esta, portanto indicado nos pacientes com doença em progressão. Concluímos que existe evidencia suficiente para afirmar que o CXL da córnea é eficaz na estabilização da doença ectásica da cornea.

  14. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    Science.gov (United States)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  15. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Science.gov (United States)

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-01

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  16. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoqing [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany); Wu, Liming [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Sessler, Gerhard M., E-mail: g.sessler@nt.tu-darmstadt.de [Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany)

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  17. Subclinical inflammatory response after accelerated corneal cross-linking

    Institute of Scientific and Technical Information of China (English)

    Hassan Hashemi; Nahid Ashraf; Ebrahim Jafarzadehpur; Alireza Hedayatfar; Soheila Asgari

    2016-01-01

    Background: To evaluate the inlfammatory response after accelerated collagen cross-linking (CXL) in eyes with keratoconus. Methods: Consecutive eyes with keratoconus undergoing CXL surgery were included in this non-randomized interventional study. Aqueous lfare was measured pre- and post-operatively with a laser lfare photometer at 1 week, 1, 3 and 6 months after CXL. Results: Sixty eyes of 60 patients were entered into the study. Before CXL, the mean lfare value was 4.5 photons per millisecond (ph/ms). The lfare values observed at week 1 (7.1 ph/ms; P=0.008), month 1 (6.5 ph/ms; P=0.04), month 3 (6.7 ph/ms; P=0.004) and month 6 (6.7 ph/ms; P=0.004) were signiifcantly higher compared to baseline. Flare values were not signiifcantly different from week 1 up to 6 months after CXL (P=0.930). No statistically significant correlation was detected between the amount of inlfammation and keratometric indices. Conclusions: Accelerated CXL in patients with keratoconus may cause a subclinical inflammatory response which is evident as slight but rather long-lasting rise of aqueous lfare.

  18. Pyridinium cross-links in heritable disorders of collagen

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, M.; Still, M.J.; Dembure, P.P. [Emory Univ., Atlanta, GA (United States)] [and others

    1995-12-01

    Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

  19. Synthesis and conformational analysis of novel trimeric maleimide cross-linking reagents.

    Science.gov (United States)

    Szczepanska, Agnieszka; Espartero, José Luis; Moreno-Vargas, Antonio J; Carmona, Ana T; Robina, Inmaculada; Remmert, Sarah; Parish, Carol

    2007-08-31

    Nine homotrifunctional cross-linking reagents are presented. Their synthesis and chemical properties as well as their characterization by classical mechanical conformational searching techniques is reported. Mixed Low Mode and Monte Carlo searching techniques were used to exhaustively sample the OPLS2005/GBSA(water) potential energy surface of trisubstituted cyclohexane and benzene derivatives of C3 symmetry. Geometric structure, molecular length, and hydrogen-bonding patterns were analyzed. Nonaromatic compounds exhibited exclusively chair conformations at low energies, with a preference for axial or equatorial arms depending upon the presence of additional ring substituent Me groups. Increasing chain length often resulted in overall shorter molecular length due to additional chain flexibility. These results were consistent with one- and two-dimensional temperature-dependent NMR studies.

  20. Nanosecond laser-induced periodic surface structuring of cross-linked azo-polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Berta, Marco, E-mail: marco.berta@univ-amu.fr [Aix Marseille Université, CNRS, ICR (Institut de Chimie Radicalaire) UMR 7273, 13397 Marseille Cedex 20 (France); Biver, Émeric [Aix Marseille Université, CNRS, LP3 UMR 7341, 13288 Marseille (France); Maria, Sébastien; Phan, Trang N.T. [Aix Marseille Université, CNRS, ICR (Institut de Chimie Radicalaire) UMR 7273, 13397 Marseille Cedex 20 (France); D’Aleo, Anthony; Delaporte, Philippe; Fages, Frederic [Aix Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille (France); Gigmes, Didier [Aix Marseille Université, CNRS, ICR (Institut de Chimie Radicalaire) UMR 7273, 13397 Marseille Cedex 20 (France)

    2013-10-01

    In this work we discuss the response to laser ablation of a poly(4-vinylbenzyl azide-random-methyl methacrylate) (p((S-N{sub 3})-r-MMA)) random copolymer. This material is cross-linkable thermally and upon exposure to UV light, and on cross-linked films the irradiation with a 248 nm ns KrF laser induces the formation of laser induced periodical surface structure (LIPSS). The LIPSS morphology is dependent on the amount of 4-vinylbenzyl azide (S-N{sub 3}) groups in the pristine copolymer. We propose a crosslinking mechanism based on the scission of azide with formation of azo groups and we discuss the possible relationship between this chemical modifications and the formation of ripples on the bottom of laser ablation cavities.

  1. Nanosecond laser-induced periodic surface structuring of cross-linked azo-polymer films

    Science.gov (United States)

    Berta, Marco; Biver, Émeric; Maria, Sébastien; Phan, Trang N. T.; D'Aleo, Anthony; Delaporte, Philippe; Fages, Frederic; Gigmes, Didier

    2013-10-01

    In this work we discuss the response to laser ablation of a poly(4-vinylbenzyl azide-random-methyl methacrylate) (p((S-N3)-r-MMA)) random copolymer. This material is cross-linkable thermally and upon exposure to UV light, and on cross-linked films the irradiation with a 248 nm ns KrF laser induces the formation of laser induced periodical surface structure (LIPSS). The LIPSS morphology is dependent on the amount of 4-vinylbenzyl azide (S-N3) groups in the pristine copolymer. We propose a crosslinking mechanism based on the scission of azide with formation of azo groups and we discuss the possible relationship between this chemical modifications and the formation of ripples on the bottom of laser ablation cavities.

  2. Nonlinear behavior of ionically and covalently cross-linked alginate hydrogels

    Science.gov (United States)

    Hashemnejad, Seyedmeysam; Zabet, Mahla; Kundu, Santanu

    2015-03-01

    Gels deform differently under applied load and the deformation behavior is related to their network structures and environmental conditions, specifically, strength and density of crosslinking, polymer concentration, applied load, and temperature. Here, we investigate the mechanical behavior of both ionically and covalent cross-linked alginate hydrogel using large amplitude oscillatory shear (LAOS) and cavitation experiments. Ionically-bonded alginate gels were obtained by using divalent calcium. Alginate volume fraction and alginate to calcium ratio were varied to obtain gels with different mechanical properties. Chemical gels were synthesized using adipic acid dihdrazide (AAD) as a cross-linker. The non-linear rheological parameters are estimated from the stress responses to elucidate the strain softening behavior of these gels. Fracture initiation and propagation mechanism during shear rheology and cavitation experiments will be presented. Our results provide a better understanding on the deformation mechanism of alginate gel under large-deformation.

  3. Space Charge Accumulation and Micro-Structure of Cross-linked Polyethylene

    Science.gov (United States)

    Li, Jixiao; Zhang, Yewen; Zheng, Feihu; Wu, Changshun

    2004-12-01

    In this paper, laser induced pressure pulse (LIPP) method and electrostatic force microscopy (EFM) method are utilized to investigate the distribution of space charge in cross-linked polyethylene (XLPE), and the action on the groups of XLPE by the accumulative charge are investigated by infrared spectroscopy (IR) method. It was found that space charge in the sample has obvious influence on the vibration of chemical group, especially on group OH, group CH3 and group CH2. Group vibration affected considerably by space charge in XLPE sample locates on the interface between crystalline and amorphous domains. The experimental results also indicate that positive charge compared to negative charge has a different effect on bands.

  4. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry.

    Science.gov (United States)

    Wu, Fei; Minteer, Shelley

    2015-02-02

    It has been hypothesized that the high metabolic flux in the mitochondria is due to the self-assembly of enzyme supercomplexes (called metabolons) that channel substrates from one enzyme to another, but there has been no experimental confirmation of this structure or the channeling. A structural investigation of enzyme organization within the Krebs cycle metabolon was accomplished by in vivo cross-linking and mass spectrometry. Eight Krebs cycle enzyme components were isolated upon chemical fixation, and interfacial residues between mitochondrial malate dehydrogenase, citrate synthase, and aconitase were identified. Using constraint protein docking, a low-resolution structure for the three-enzyme complex was achieved, as well as the two-fold symmetric octamer. Surface analysis showed formation of electrostatic channeling upon protein-protein association, which is the first structural evidence of substrate channeling in the Krebs cycle metabolon.

  5. Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization.

    Science.gov (United States)

    Gaharwar, Akhilesh K; Schexnailder, Patrick J; Kline, Benjamin P; Schmidt, Gudrun

    2011-02-01

    The in vitro cytocompatibility of silicate (Laponite clay) cross-linked poly(ethylene oxide) (PEO) nanocomposite films using MC3T3-E1 mouse preosteoblast cells was investigated while cell adhesion, spreading, proliferation and mineralization were assessed as a function of film composition. By combining the advantageous characteristics of PEO polymer (hydrophilic, prevents protein and cell adhesion) with those of a synthetic and layered silicate (charged, degradable and potentially bioactive) some of the physical and chemical properties of the resulting polymer nanocomposites could be controlled. Hydration, dissolution and mechanical properties were examined and related to cell adhesion. Overall, this feasibility study demonstrates the ability of using model Laponite cross-linked PEO nanocomposites to create bioactive scaffolds.

  6. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange.

    Science.gov (United States)

    Bruchet, Marion; Melman, Artem

    2015-10-20

    Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium.

  7. Peptide reactivity assay using spectrophotometric method for high-throughput screening of skin sensitization potential of chemical haptens.

    Science.gov (United States)

    Jeong, Yun Hyeok; An, Susun; Shin, Kyeho; Lee, Tae Ryong

    2013-02-01

    Haptens must react with cellular proteins to be recognized by antigen presenting cells. Therefore, monitoring reactivity of chemicals with peptide/protein has been considered an in vitro skin sensitization testing method. The reactivity of peptides with chemicals (peptide reactivity) has usually been monitored by chromatographic methods like HPLC or LC/MS, which are robust tools for monitoring common chemical reactions but are rather expensive and time consuming. Here, we examined the possibility of using spectrophotometric methods to monitor peptide reactivity. Two synthetic peptides, Ac-RWAACAA and Ac-RWAAKAA, were reacted with 48 chemicals (34 sensitizers and 14 non-sensitizers). Peptide reactivity was measured by monitoring unreacted peptides with UV-Vis spectrophotometer using 5,5'-dithiobis-2-nitrobenzoic acid as a detection reagent for the free thiol group of cysteine-containing peptide or fluorometer using fluorescamine™ as a detection reagent for the free amine group of lysine-containing peptide. Chemicals were categorized as sensitizers when they induced more than 10% depletion of cysteine-containing peptide or 20% depletion of lysine-containing peptide. The sensitivity, specificity, and accuracy of this method were 82.4%, 85.7%, and 83.3%, respectively. These results demonstrate that spectrophotometric methods can be easy, fast, and high-throughput screening tools for the prediction of the skin sensitization potential of chemical haptens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Tailoring the properties of cholecyst-derived extracellular matrix using carbodiimide cross-linking.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna

    2009-01-01

    Modulation of properties of extracellular matrix (ECM) based scaffolds is key for their application in the clinical setting. In the present study, cross-linking was used as a tool for tailoring the properties of cholecyst-derived extracellular matrix (CEM). CEM was cross-linked with varying cross-linking concentrations of N,N-(3-dimethyl aminopropyl)-N\\'-ethyl carbodiimide (EDC) in the presence of N-hydroxysuccinimide (NHS). Shrink temperature measurements and ATR-FT-IR spectra were used to determine the degree of cross-linking. The effect of cross-linking on degradation was tested using the collagenase assay. Uniaxial tensile properties and the ability to support fibroblasts were also evaluated as a function of cross-linking. Shrink temperature increased from 59 degrees C for non-cross-linked CEM to 78 degrees C for the highest EDC cross-linking concentration, while IR peak area ratios for the free -NH(2) group at 3290 cm(-1) to that of the amide I band at 1635 cm(-1) decreased with increasing EDC cross-linking concentration. Collagenase assay demonstrated that degradation rates for CEM can be tailored. EDC concentrations 0 to 0.0033 mmol\\/mg CEM were the cross-linking concentration range in which CEM showed varied susceptibility to collagenase degradation. Furthermore, cross-linking concentrations up to 0.1 mmol EDC\\/mg CEM did not have statistically significant effect on the uniaxial tensile strength, as well as morphology, viability and proliferation of fibroblasts on CEM. In conclusion, the degradation rates of CEM can be tailored using EDC-cross-linking, while maintaining the mechanical properties and the ability of CEM to support cells.

  9. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    OpenAIRE

    Oral, Ebru; Muratoglu, Orhun K.

    2007-01-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs develo...

  10. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: csorico@comunidad.unam.mx [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz-Boca del Río, Universidad Veracruzana, C.P. 91700 Veracruz (Mexico); Campos-Fernández, Linda; Alvarado-Salazar, Andres [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), C.P. 09340 México, D.F. (Mexico)

    2015-08-18

    Highlights: • Asparagine plays an important role to anti-inflammatory effect of peptides. • The electron-donor substituent groups favor the formation of the hydrogen bonds, which contribute in the structural stability of peptides. • Chemical reactivity and the physicochemical features are crucial in the biological functions of peptides. - Abstract: Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys–Asn–Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  11. Effect of Cross-Linking and Enzymatic Hydrolysis Composite Modification on the Properties of Rice Starches

    Directory of Open Access Journals (Sweden)

    Gao-Qiang Liu

    2012-07-01

    Full Text Available Native rice starch lacks the versatility necessary to function adequately under rigorous industrial processing, so modified starches are needed to meet the functional properties required in food products. This work investigated the impact of enzymatic hydrolysis and cross-linking composite modification on the properties of rice starches. Rice starch was cross-linked with epichlorohydrin (EPI with different concentrations (0.5%, 0.7%, 0.9% w/w, on a dry starch basis, affording cross-linked rice starches with the three different levels of cross-linking that were named R1, R2, and R3, respectively. The cross-linked rice starches were hydrolyzed by α-amylase and native, hydrolyzed, and hydrolyzed cross-linked rice starches were comparatively studied. It was found that hydrolyzed cross-linked rice starches showed a lower the degree of amylase hydrolysis compared with hydrolyzed rice starch. The higher the degree of cross-linking, the higher the capacity to resist enzyme hydrolysis. Hydrolyzed cross-linked rice starches further increased the adsorptive capacities of starches for liquids and decreased the trend of retrogradation, and it also strengthened the capacity to resist shear compared to native and hydrolyzed rice starches.

  12. Validation of peptide and PTM identifications by chemical perturbation proteomics

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Falkenby, Lasse Gaarde; Harder, Lea Mørch

    procedure is repeating experiments and estimating false discovery rates by searching reverse or garbled protein sequence databases. One danger of this approach is that erroneous assignments can be made quite consistently and reproducibly by the software based on the measurement of a parent mass......Identification and characterization of proteins via database searching of tandem mass spectrometry data of peptides has become a central technique in proteomics. The massive amount of data generated precludes manual interpretation and validation of the identifications. The current standard...

  13. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo.

    Science.gov (United States)

    Lee, Haerim; Yu, Mi Kyung; Park, Sangjin; Moon, Sungmin; Min, Jung Jun; Jeong, Yong Yeon; Kang, Hae-Won; Jon, Sangyong

    2007-10-24

    We report the fabrication and characterization of thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) and their application to the dual imaging of cancer in vivo. Unlike dextran-coated cross-linked iron oxide nanoparticles, which are prepared by a chemical cross-linking method, TCL-SPION are prepared by a simple, thermal cross-linking method using a Si-OH-containing copolymer. The copolymer, poly(3-(trimethoxysilyl)propyl methacrylate-r-PEG methyl ether methacrylate-r-N-acryloxysuccinimide), was synthesized by radical polymerization and used as a coating material for as-synthesized magnetite (Fe3O4) SPION. The polymer-coated SPION was further heated at 80 degrees C to induce cross-linking between the -Si(OH)3 groups in the polymer chains, which finally generated TCL-SPION bearing a carboxyl group as a surface functional group. The particle size, surface charge, presence of polymer-coating layers, and the extent of thermal cross-linking were characterized and confirmed by various measurements, including dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carboxyl TCL-SPION was converted to amine-modified TCL-SPION and then finally to Cy5.5 dye-conjugated TCL-SPION for use in dual (magnetic resonance/optical) in vivo cancer imaging. When the Cy5.5 TCL-SPION was administered to Lewis lung carcinoma tumor allograft mice by intravenous injection, the tumor was unambiguously detected in T2-weighted magnetic resonance images as a 68% signal drop as well as in optical fluorescence images within 4 h, indicating a high level of accumulation of the nanomagnets within the tumor site. In addition, ex vivo fluorescence images of the harvested tumor and other major organs further confirmed the highest accumulation of the Cy5.5 TCL-SPION within the tumor. It is noteworthy that, despite the fact that TCL-SPION does not bear any targeting ligands on its surface, it was highly effective for tumor

  14. One-pot chemical synthesis of small ubiquitin-like modifier protein-peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates.

    Science.gov (United States)

    Boll, Emmanuelle; Drobecq, Hervé; Ollivier, Nathalie; Blanpain, Annick; Raibaut, Laurent; Desmet, Rémi; Vicogne, Jérôme; Melnyk, Oleg

    2015-02-01

    Small ubiquitin-like modifier (SUMO) post-translational modification (PTM) of proteins has a crucial role in the regulation of important cellular processes. This protocol describes the chemical synthesis of functional SUMO-peptide conjugates. The two crucial stages of this protocol are the solid-phase synthesis of peptide segments derivatized by thioester or bis(2-sulfanylethyl)amido (SEA) latent thioester functionalities and the one-pot assembly of the SUMO-peptide conjugate by a sequential native chemical ligation (NCL)/SEA native peptide ligation reaction sequence. This protocol also enables the isolation of a SUMO SEA latent thioester, which can be attached to a target peptide or protein in a subsequent step. It is compatible with 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, and it gives access to homogeneous, reversible and functional SUMO conjugates that are not easily produced using living systems. The synthesis of SUMO-peptide conjugates on a milligram scale takes 20 working days.

  15. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    Science.gov (United States)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  16. ROLE OF CORNEAL COLLAGEN CROSS LINKING IN KERATOCONUS

    Directory of Open Access Journals (Sweden)

    Atul

    2015-09-01

    Full Text Available To evaluate the outcome of collagen cross linkage using riboflavin 0.1% and ultraviolet A radiation of a wavelength 370nm . PURPOSE : To determine the effect of collagen cross linking for keratoconus on pachymetry , corneal topography, uncorrected visual acuity, specular count, IOP at 1, 3, 6 months . METHODS : The current study was designed as a prospective interventional trial of corneal collagen cross - linking in subjects with progressive keratoconus between a period of J anuary 2013 to J uly 2014 including 50 eyes of 30 patients. This study rece ived approval from Ethics committee. Informed written consent was obtained from all patients prior to treatment. RESULTS: Mean follow up period of 6 months. There was statistically significant decline in effective k readings from mean pre op (51.7D to pos t op value (49.65D . Pachymetry showed initial increase post operatively followed by reduction in corneal thickness in 3 month s follow up , followed by gradual increase in thickness over a period of 6 months though it was not equivalent to pre - operative values. paired t test p value was 0.00 1 in 1 n 3 month and 0. 043 in 6 month, concluding significant reduction in early post op period with im provement over time . Specular count reduced from pre - op (2673.80 levels to post - op (2654.60 levels ,the reduction in specular count was not statistically significant P value (0.014 The uncorrected visual acuity showed decrease in refractive error with in crease in visual acuity gradually over 6 months, log MAR scale visual acuity was used for statistical analysis with P value (0.001 which was statistically significant .visual acuity improved by 1.5 lines in snellens equivalence or from 0.5 to 0.4 in log MA R char y ± 20cells/mm 3 , P value(0. 001 . IOP statically show ed no significant change in pre - operative and post operatively , paired t test p value was 0. 44 showing it was not significant . CONCLUSIONS : 1. Visual acuity improved in

  17. Encapsulation of volatiles by homogenized partially-cross linked alginates.

    Science.gov (United States)

    Inguva, Pavan K; Ooi, Shing Ming; Desai, Parind M; Heng, Paul W S

    2015-12-30

    Cross-linked calcium alginate gels are too viscous to be efficaciously incorporated into spray dried formulations. Thus, viscosity reduction is essential to ensure the processability of calcium alginate gels to be sprayed. Viscosity reduction by high pressure homogenization can open new formulation possibilities. Presently, testing of microcapsule integrity is also limited because either single particle tests neglect collective particle behaviours in bulk or bulk testing methods are often associated with single compressions which may not fully characterize individual particle strengths. The aim of this study was sub-divided into three objectives. First objective was to evaluate the impact of high pressure homogenization on gel viscosity. Second objective was to explore the use of the homogenized gels with modified starch for microencapsulation by spray drying. The final objective was to develop a stamping system as microcapsule strength tester that can assess microcapsules in bulk and evaluate the impact of multiple compressions. Collectively, this study would lead towards developing a pressure-activated patch of microcapsules with encapsulated volatiles and the method to assess the patch efficacy. The alginate gels largely experienced an exponential decay in viscosity when homogenized. Furthermore, the homogenized gels were successfully incorporated in spray drying formulations for microencapsulation. The custom-designed microcapsule strength tester was successfully used and shown to possess the required sensitivity to discern batches of microcapsules containing volatiles to have different release profiles. Addition of homogenized gels strengthened the microcapsules only at high wall to core ratios with low mass-load alginate gels. High mass-load gels weaken the microcapsules, exhibiting a higher release at low stamping pressures and wrinkling on the microcapsules surface.

  18. Integrated Cryogenic Satellite Communications Cross-Link Receiver Experiment

    Science.gov (United States)

    Romanofsky, R. R.; Bhasin, K. B.; Downey, A. N.; Jackson, C. J.; Silver, A. H.; Javadi, H. H. S.

    1995-01-01

    An experiment has been devised which will validate, in space, a miniature, high-performance receiver. The receiver blends three complementary technologies; high temperature superconductivity (HTS), pseudomorphic high electron mobility transistor (PHEMT) monolithic microwave integrated circuits (MMIC), and a miniature pulse tube cryogenic cooler. Specifically, an HTS band pass filter, InP MMIC low noise amplifier, HTS-sapphire resonator stabilized local oscillator (LO), and a miniature pulse tube cooler will be integrated into a complete 20 GHz receiver downconverter. This cooled downconverter will be interfaced with customized signal processing electronics and integrated onto the space shuttle's 'HitchHiker' carrier. A pseudorandom data sequence will be transmitted to the receiver, which is in low Earth orbit (LEO), via the Advanced Communication Technology Satellite (ACTS) on a 20 GHz carrier. The modulation format is QPSK and the data rate is 2.048 Mbps. The bit error rate (BER) will be measured in situ. The receiver is also equipped with a radiometer mode so that experiment success is not totally contingent upon the BER measurement. In this mode, the receiver uses the Earth and deep space as a hot and cold calibration source, respectively. The experiment closely simulates an actual cross-link scenario. Since the receiver performance depends on channel conditions, its true characteristics would be masked in a terrestrial measurement by atmospheric absorption and background radiation. Furthermore, the receiver's performance depends on its physical temperature, which is a sensitive function of platform environment, thermal design, and cryocooler performance. This empirical data is important for building confidence in the technology.

  19. Transglutaminases: widespread cross-linking enzymes in plants.

    Science.gov (United States)

    Serafini-Fracassini, Donatella; Del Duca, Stefano

    2008-08-01

    Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still incompletely defined physiological roles. At present, it is not possible to classify this enzyme family in plants owing to

  20. Use of cross-linked carboxymethyl cellulose for soft-tissue augmentation: preliminary clinical studies

    Directory of Open Access Journals (Sweden)

    Mauro Leonardis

    2010-11-01

    Full Text Available Mauro Leonardis1, Andrea Palange2, Rodrigo FV Dornelles3, Felipe Hund41Department of Plastic Surgery, Salvator Mundi International Hospital, Roma, Italy; 2Department of Aesthetic Medicine, Fisiobios, Roma, Italy; 3Department of Plastic Surgery, Núcleo de Plástica Avançada, São Paulo, SP, Brazil; 4Department of Plastic Surgery, Consultorio de Cirurgia Plastica, Criciuma, SC, BrazilPurpose: The continual search for new products for soft-tissue augmentation has in recent years led to the introduction of long lasting alternatives to hyaluronic acids and collagen that are composed of other polymers able to improve clinical persistence over time. This is the first report in which sodium carboxymethyl cellulose (CMC has been chemically treated by the cross-linking process and thus used as a hydrogel for soft-tissue augmentation through injection with thin needles. The study evaluates, from a clinical point of view, the behavior of cross-linked carboxymethyl cellulose hydrogel used in the aesthetic field and its side effects so as to check the safety and performance of the polymer following intradermal injections.Patients and methods: This work shows the preliminary results of an ongoing clinical study conducted between 2006 and 2009, performed on 84 healthy volunteers (62 females, 22 males aged between 18 and 72 years, for the treatment of 168 nasolabial folds, 45 perioral wrinkles, and 39 lip volume.Results: Study results show an excellent correction of facial defects. Tolerance and aesthetic quality of the correction obtained indicate considerable safety features and absence of side effects. From a clinical point of view, hydrogel is gradually absorbed into the injection site without migration issues.Conclusion: Cross-linked CMC hydrogel proves to be an ideal agent for soft tissue augmentation with regard to safety and ease of application. It did not cause infection, extrusion, migration, or adverse reactions in the patients who have been

  1. Feruloylated arabinoxylans are oxidatively cross-linked by extracellular maize peroxidase but not by horseradish peroxidase.

    Science.gov (United States)

    Burr, Sally J; Fry, Stephen C

    2009-09-01

    Covalent cross-linking of soluble extracellular arabinoxylans in living maize cultures, which models the cross-linking of wall-bound arabinoxylans, is due to oxidation of feruloyl esters to oligoferuloyl esters and ethers. The oxidizing system responsible could be H2O2/peroxidase, O2/laccase, or reactive oxygen species acting non-enzymically. To distinguish these possibilities, we studied arabinoxylan cross-linking in vivo and in vitro. In living cultures, exogenous, soluble, extracellular, feruloylated [pentosyl-3H]arabinoxylans underwent cross-linking, beginning abruptly 8 d after sub-culture. Cross-linking was suppressed by iodide, an H2O2 scavenger, indicating dependence on endogenous H2O2. However, exogenous H2O2 did not cause precocious cross-linking, despite the constant presence of endogenous peroxidases, suggesting that younger cultures contained natural cross-linking inhibitors. Dialysed culture-filtrates cross-linked [3H]arabinoxylans in vitro only if H2O2 was also added, indicating a peroxidase requirement. This cross-linking was highly ionic-strength-dependent. The peroxidases responsible were heat-labile, although relatively heat-stable peroxidases (assayed on o-dianisidine) were also present. Surprisingly, added horseradish peroxidase, even after heat-denaturation, blocked the arabinoxylan-cross-linking action of maize peroxidases, suggesting that the horseradish protein was a competing substrate for [3H]arabinoxylan coupling. In conclusion, we show for the first time that cross-linking of extracellular arabinoxylan in living maize cultures is an action of apoplastic peroxidases, some of whose unusual properties we report.

  2. Feruloylated Arabinoxylans Are Oxidatively Cross-Linked by Extracellular Maize Peroxidase but Not by Horseradish Peroxidase

    Institute of Scientific and Technical Information of China (English)

    Sally J. Burr; Stephen C. Fry

    2009-01-01

    Covalent cross-linking of soluble extraceUular arabinoxylans in living maize cultures, which models the cross-linking of wall-bound arabinoxylans, is due to oxidation of feruloyl esters to oligoferuloyl esters and ethers. The oxidizing system responsible could be H_2O_2/peroxidase, O_2/laccase, or reactive oxygen species acting non-enzymically. To distinguish these possibilities, we studied arabinoxylan cross-linking in vivo and in vitro. In living cultures, exogenous, soluble, extra-cellular, feruloylated [pentosyl-~3H]arabinoxylans underwent cross-linking, beginning abruptly 8 d after sub-culture. Cross-linking was suppressed by iodide, an H_2O_2 scavenger, indicating dependence on endogenous H2O2. However, exogenous H_2O_2 did not cause precocious cross-linking, despite the constant presence of endogenous peroxidases, suggesting that younger cultures contained natural cross-linking inhibitors. Dialysed culture-filtrates cross-linked [~3H]arabinoxylans in vitro only if H_20_2 was also added, indicating a peroxiclase requirement. This cross-linking was highly ionic-strength-dependent. The peroxidases responsible were heat-labile, although relatively heat-stable peroxidases (assayed on o-dianisidine) were also present, Surprisingly, added horseradish peroxidase, even after heat-denaturation, blocked the arabinoxylan-cross-linking action of maize peroxidases, suggesting that the horseradish protein was a competing substrate for [~3H]arabino-xylan coupling. In conclusion, we show for the first time that cross-linking of extracellular arabinoxylan in living maize cultures is an action of apoplastic peroxidases, some of whose unusual properties we report.

  3. Total Chemical Synthesis of a Heterodimeric Interchain Bis-Lactam-Linked Peptide: Application to an Analogue of Human Insulin-Like Peptide 3

    Directory of Open Access Journals (Sweden)

    John Karas

    2013-01-01

    Full Text Available Nonreducible cystine isosteres represent important peptide design elements in that they can maintain a near-native tertiary conformation of the peptide while simultaneously extending the in vitro and in vivo half-life of the biomolecule. Examples of these cystine mimics include dicarba, diselenide, thioether, triazole, and lactam bridges. Each has unique physicochemical properties that impact upon the resulting peptide conformation. Each also requires specific conditions for its formation via chemical peptide synthesis protocols. While the preparation of peptides containing two lactam bonds within a peptide is technically possible and reported by others, to date there has been no report of the chemical synthesis of a heterodimeric peptide linked by two lactam bonds. To examine the feasibility of such an assembly, judicious use of a complementary combination of amine and acid protecting groups together with nonfragment-based, total stepwise solid phase peptide synthesis led to the successful preparation of an analogue of the model peptide, insulin-like peptide 3 (INSL3, in which both of the interchain disulfide bonds were replaced with a lactam bond. An analogue containing a single disulfide-substituted interchain lactam bond was also prepared. Both INSL3 analogues retained significant cognate RXFP2 receptor binding affinity.

  4. Structural and spectral characteristics of the cross-linked dimer derived from electrooxidation of cyclic 1,N2-propanoguanosine.

    Science.gov (United States)

    Murakami, Hiroya; Esaka, Yukihiro; Uno, Bunji

    2011-01-01

    The acetaldehyde-derived cyclic propano adduct of 2'-deoxyguanosine was easily oxidized electrochemically into the cross-linked dimer as an oxidative product. The structural and spectroscopic characteristics of the dimer were investigated by MS, (1)H and (13)C-NMR, UV, and DFT calculations. The dimer formation was inferred from a molecular ionic peak of m/z 705 ([(2M-2H)+H](+), M being the molecular weight of the monomer) on the ESI-MS spectra and the chemical formula as C(28)H(36)N(10)O(12) provided by the high-resolution ESI-MS results. The C2-N5 linkage between the two monomers in the dimer was deduced from the (1)H- and (13)C-NMR spectral results. In addition, the correlations in the 2-dimensional NMR spectra (DQF-COSY and HMBC) were consistently explained by the structure of the C2-N5 cross-linked dimer. UV spectral measurements also support the C2-N5 linking in the dimer formation. The formation of the cross-link dimer as an oxidative lesion of the acetaldehyde-derived cyclic propano adduct of guanosine is expected to interfere with DNA replication and to contribute to acetaldehyde-mediated genotoxicity.

  5. Adsorptive removal of lead and cadmium ions using Cross -linked CMC Schiff base: Isotherm, Kinetics and Catalytic Activity

    Directory of Open Access Journals (Sweden)

    P. Moganavally

    2016-03-01

    Full Text Available Water plays a vital role to human and other living organisms. Due to the effluent coming from chemical industries, the industrial activity, contamination of ground water level is goes on increasing nowadays. Therefore, there is a need to develop technologies that can remove toxic pollutants in wastewater. Hence the cross linked Carboxymethyl chitosan(CMC/ 2,3-dimethoxy Benzaldehyde Schiff base complex has been synthesized and characterized by using FT-IR and SEM analysis. All these results revealed that cross linked Schiff base has formed with high adsorption capacity. The prepared effective adsorbent used for the removal of heavy metals like lead (II and cadmium (II ions from aqueous solution and the adsorption data follow the Freundlich model, which follows pseudo first order kinetics. Effect of various parameters like solution pH, adsorbent dose and contact time for the removal of heavy metals has been studied. The synthesized sample undergoes catalytic oxidation process significantly at 24 hrs. The results showed that cross linked Schiff base is an effective, eco-friendly, low-cost adsorbent.

  6. A novel method for immobilization of proteins via entrapment of magnetic nanoparticles through epoxy cross-linking.

    Science.gov (United States)

    Iype, Tessy; Thomas, Jaiby; Mohan, Sangeetha; Johnson, Kochurani K; George, Ligi E; Ambattu, Lizebona A; Bhati, Aniruddha; Ailsworth, Kristen; Menon, Bindu; Rayabandla, Sunayana M; Jesudasan, Rachel A; Santhosh, Sam; Ramchand, Chaniyilparampu N

    2017-02-15

    A method for immobilization of functional proteins by chemical cross-linking of the protein of interest and uncoated iron oxide nanoparticles in the presence of Epichlorohydrin is described. As a result of the cross-linking, the proteins form a matrix in which the particles get entrapped. The optimum concentration of Epichlorohydrin that facilitates immobilization of protein without affecting the functional properties of the protein was determined. This method was used to immobilize several functional proteins and the development and functional activity of Protein A-magnetic nanoparticles (MNPs) is described here in detail. The Protein A-MNPs possess high binding capacity due to the increased surface area of uncoated nanoparticles and robust magnetic separation due to the absence of polymeric coating materials. Protein A-MNPs were successfully used for purification of antibodies and also for immunoprecipitation. We also immobilized enzymes such as horse radish peroxidase and esterase and found that by providing the optimum incubation time, temperature and protein to nanoparticle ratio, we can retain the activity and improve the stability of the enzyme. This study is the first demonstration that Epichlorohydrin can be used to entrap nanoparticles in a cross-linked matrix of protein without impairing the activity of immobilized protein.

  7. Xlink Analyzer: software for analysis and visualization of cross-linking data in the context of three-dimensional structures.

    Science.gov (United States)

    Kosinski, Jan; von Appen, Alexander; Ori, Alessandro; Karius, Kai; Müller, Christoph W; Beck, Martin

    2015-03-01

    Structural characterization of large multi-subunit protein complexes often requires integrating various experimental techniques. Cross-linking mass spectrometry (XL-MS) identifies proximal protein residues and thus is increasingly used to map protein interactions and determine the relative orientation of subunits within the structure of protein complexes. To fully adapt XL-MS as a structure characterization technique, we developed Xlink Analyzer, a software tool for visualization and analysis of XL-MS data in the context of the three-dimensional structures. Xlink Analyzer enables automatic visualization of cross-links, identifies cross-links violating spatial restraints, calculates violation statistics, maps chemically modified surfaces, and allows interactive manipulations that facilitate analysis of XL-MS data and aid designing new experiments. We demonstrate these features by mapping interaction sites within RNA polymerase I and the Rvb1/2 complex. Xlink Analyzer is implemented as a plugin to UCSF Chimera, a standard structural biology software tool, and thus enables seamless integration of XL-MS data with, e.g. fitting of X-ray structures to EM maps. Xlink Analyzer is available for download at http://www.beck.embl.de/XlinkAnalyzer.html.

  8. Effects of granule size of cross-linked and hydroxypropylated sweet potato starches on their physicochemical properties.

    Science.gov (United States)

    Zhao, Jianwei; Chen, Zhenghong; Jin, Zhengyu; Buwalda, Piet; Gruppen, Harry; Schols, Henk A

    2015-05-13

    Sweet potato starch was modified by cross-linking, hydroxypropylation, and combined cross-linking and hydroxypropylation, and the starches were subsequently sieved to obtain differently sized granule fractions. The effects of granule size of native and modified sweet potato starch fractions and all fractions were investigated with respect to their physicochemical properties. The large-size granule fraction (27-30 μm) showed a 16-20% higher chemical phosphorylation and a 4-7% higher hydroxypropylation than the small-size granule fraction (14-16 μm). The large-size granule fractions of native and modified sweet potato starches showed lower transition temperatures (0.7-3.1 °C for peak temperature of gelatinization) and lower enthalpy changes (0.6-1.9 J/g) during gelatinization than the small-size granule fractions, making the sweet potato starch different from cereal starches. The large-size granule fraction of native starch showed a higher paste viscosity (78-244 cP) than the corresponding small-size granule fraction. In addition, cross-linking and hydroxypropylation affected the paste viscosity of the large-size granule fraction significantly more than that of the small-size granule fraction when compared to the corresponding parental starch fractions. The large-size granule fraction of native and dual-modified starches showed a lower syneresis after freeze-thaw treatments than the small-size granule fractions. The difference in swelling power between large- and small-size granule fractions was not significant. In general, the large-size granule fraction of sweet potato starch was more susceptible for cross-linking and hydroxypropylation and the physicochemical properties were changed to a higher extent compared to the corresponding small-size granule fraction.

  9. Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates.

    Science.gov (United States)

    Bilal, Muhammad; Asgher, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Zhang, Xuehong

    2017-01-14

    In this study, manganese peroxidase (MnP) from an indigenous white-rot fungus Ganoderma lucidum IBL-05 was insolubilized in the form of cross-linked enzyme aggregates (CLEAs) using various aggregating agents, i.e., acetone, ammonium sulfate, ethanol, 2-propanol, and tert-butanol, followed by glutaraldehyde (GA) cross-linking. The precipitant type, MnP, and GA concentrations affected the CLEAs activity recovery and aggregation yield. Among precipitants used, acetone appeared to be the most efficient aggregation agent, providing the highest activity recovery and aggregation yield of 31.26 and 73.46%, respectively. Optimal cross-linking was noticed using 2.0% (v/v) GA and 8:1 (v/v) MnP to GA ratio at 3.0 h cross-linking time under continuous agitation at 4 °C. The highest recovered activity and aggregation yield were determined to be 47.57 and 81.26%, respectively. The MnP-CLEAs, thus synthesized, were tested to investigate their bio-catalytic capacity for removing two known endocrine-disrupting chemicals (EDCs), e.g., nonylphenol and triclosan in a packed bed reactor system. The insolubilized MnP efficiently catalyzed the biodegradation of both EDCs, transforming over 80% in the presence of MnP-based system. A maximal of 100% decolorization was recorded for Sitara textile (SIT-based) effluent, followed by 95.5% for Crescent textile (CRT-based) effluent, 88.0% for K&N textile (KIT-based) effluent, and 84.2% for Nishat textile (NIT-based) effluent.

  10. Preparation and Characterization of Epoxy Resin Cross-Linked with High Wood Pyrolysis Bio-Oil Substitution by Acetone Pretreatment

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2017-03-01

    Full Text Available The use of cost effective solvents may be necessary to store wood pyrolysis bio-oil in order to stabilize and control its viscosity, but this part of the production system has not been explored. Conversely, any rise in viscosity during storage, that would occur without a solvent, will add variance to the production system and render it cost ineffective. The purpose of this study was to modify bio-oil with a common solvent and then react the bio-oil with an epoxy for bonding of wood without any loss in properties. The acetone pretreatment of the bio-oil/epoxy mixture was found to improve the cross-linking potential and substitution rate based on its mechanical, chemical, and thermal properties. Specifically, the bio-oil was blended with epoxy resin at weight ratios ranging from 2:1 to 1:5 and were then cured. A higher bio-oil substitution rate was found to lower the shear bond strength of the bio-oil/epoxy resins. However, when an acetone pretreatment was used, it was possible to replace the bio-oil by as much as 50% while satisfying usage requirements. Extraction of the bio-oil/epoxy mixture with four different solvents demonstrated an improvement in cross-linking after acetone pretreatment. ATR-FTIR analysis confirmed that the polymer achieved a higher cross-linked structure. DSC and TGA curves showed improved thermal stability with the addition of the acetone pretreatment. UV-Vis characterization showed that some functional groups of the bio-oil to epoxy system were unreacted. Finally, when the resin mixture was utilized to bond wood, the acetone pretreatment coupled with precise tuning of the bio-oil:epoxy ratio was an effective method to control cross-linking while ensuring acceptable bond strength.

  11. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects--a study in rabbits.

    NARCIS (Netherlands)

    Buma, P.; Pieper, J.S.; Tienen, Tony van; Susante, J.L.C. van; Kraan, P.M. van der; Veerkamp, J.H.; Berg, W.B. van den; Veth, R.P.H.; Kuppevelt, A.H.M.S.M. van

    2003-01-01

    The physico-chemical properties of collagenous matrices may determine the tissue response after insertion into full-thickness articular cartilage defects. In this study, cross-linked type I and type II collagen matrices, with and without attached chondroitin sulfate, were implanted into full-thickne

  12. Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins.

    Science.gov (United States)

    Chen, Rong; Wang, Jian-Bo; Zhang, Xian-Qing; Ren, Jing; Zeng, Cheng-Ming

    2011-03-15

    Increasing evidence has demonstrated that EGCG possesses prooxidant potential in biological systems, including modifying proteins, breaking DNA strands and inducing the generation of reactive oxygen species. In the present study, the prooxidant effect of EGCG on erythrocyte membranes was investigated. SDS-PAGE and NBT-staining assay were utilized to detect the catechol-protein adducts that generated upon treating the membranes with EGCG. The results indicated that EGCG was able to bind covalently to sulfhydryl groups of membrane proteins, leading to the formation of protein aggregates with intermolecular cross-linking. We suggested that the catechol-quinone originated from the oxidation of EGCG acted as a cross-linker on which peptide chains were combined through thiol-S-alkylation at the C2- and C6-sites of the gallyl ring. EGC showed similar effects as EGCG on the ghost membranes, whereas ECG and EC did not, suggesting that a structure with a gallyl moiety is a prerequisite for a catechin to induce the aggregation of membrane proteins and to deplete membrane sulfhydryls. EDTA and ascorbic acid inhibited the EGCG-induced aggregation of membrane proteins by blocking the formation of catechol-quinone. The information of the present study may provide a fresh insight into the prooxidant effect and cytotoxicity of tea catechins.

  13. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands.

    Science.gov (United States)

    Shinya, Tomonori; Osada, Tomohiko; Desaki, Yoshitake; Hatamoto, Masahiro; Yamanaka, Yuko; Hirano, Hisashi; Takai, Ryota; Che, Fang-Sik; Kaku, Hanae; Shibuya, Naoto

    2010-02-01

    The plant genome encodes a wide range of receptor-like proteins but the function of most of these proteins is unknown. We propose the use of affinity cross-linking of biotinylated ligands for a ligand-based survey of the corresponding receptor molecules. Biotinylated ligands not only enable the analysis of receptor-ligand interactions without the use of radioactive compounds but also the isolation and identification of receptor molecules by a simple affinity trapping method. We successfully applied this method for the characterization, isolation and identification of the chitin elicitor binding protein (CEBiP). A biocytin hydrazide conjugate of N-acetylchitooctaose (GN8-Bio) was synthesized and used for the detection of CEBiP in the plasma or microsomal membrane preparations from rice and carrot cells. Binding characteristics of CEBiP analyzed by inhibition studies were in good agreement with the previous results obtained with the use of a radiolabeled ligand. The biotin-tagged CEBiP could be purified by avidin affinity chromatography and identified by LC-MALDI-MS/MS after tryptic digestion. We also used this method to detect OsFLS2, a rice receptor-like kinase for the perception of the peptide elicitor flg22, in membrane preparations from rice cells overexpressing OsFLS2. This work demonstrates the applicability of this method to the purification and identification of plant receptor proteins.

  14. SYNTHESIS AND CATALYTIC PROPERTIES OF CROSS-LINKED HYDROPHOBICALLY ASSOCIATING POLY(ALKYLMETHYLDIALLYLAMMONIUM BROMIDES)

    NARCIS (Netherlands)

    WANG, GJ; ENGBERTS, JBFN

    1994-01-01

    Cross-linked, hydrophobically associating homo- and copolymers were synthesized by free-radical cyclo(co)polymerization of alkylmethyldiallylammonium bromide monomers with a small amount of N,N'-methylenebisacrylamide in aqueous solution using ammonium persulfate as the initiator. The cross-linked h

  15. Rheological properties of dispersions of enzymatically cross-linked apo-α-lactalbumin

    NARCIS (Netherlands)

    Saricay, Yunus; Wierenga, Peter A.; Vries, de Renko

    2016-01-01

    The enzymatic cross-linking of apo-α-lactalbumin (α-LA) with horseradish peroxidase (HRP) leads to the formation of hydrophilic protein aggregates with controlled size and architecture. We explore the rheological properties of dispersions of these HRP-cross-linked α-LA aggregates with a hydrodyna

  16. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  17. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  18. Self-assembly made durable: water-repellent materials formed by cross-linking fullerene derivatives.

    Science.gov (United States)

    Wang, Jiaobing; Shen, Yanfei; Kessel, Stefanie; Fernandes, Paulo; Yoshida, Kaname; Yagai, Shiki; Kurth, Dirk G; Möhwald, Helmuth; Nakanishi, Takashi

    2009-01-01

    Fullerene flakes: A diacetylene-functionalized fullerene derivative self-organizes into flakelike microparticles (see picture). Both the diacetylene and C(60) moieties can be effectively cross-linked, which leads to supramolecular materials with remarkable resistivity to solvent, heat, and mechanical stress. Moreover, the surface of the cross-linked flakelike objects is highly durable and water-repellent.

  19. Quantification of carboxyl groups in carbodiimide cross-linked collagen sponges

    NARCIS (Netherlands)

    Everaerts, Frank; Torrianni, Mark; Hendriks, Marc; Feijen, Jan

    2007-01-01

    Glutaraldehyde (GA) fixation of bioprosthetic tissue is a well adapted technique, with commercial products on the market for almost 40 years. Amine groups present in tissue react with GA to form different types of cross-links. An estimation of the degree of cross-linking of the tissue can be obtaine

  20. Infrared microspectroscopic determination of collagen cross-links in articular cartilage

    Science.gov (United States)

    Rieppo, Lassi; Kokkonen, Harri T.; Kulmala, Katariina A. M.; Kovanen, Vuokko; Lammi, Mikko J.; Töyräs, Juha; Saarakkala, Simo

    2017-03-01

    Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples (n=27) were treated with threose to increase the collagen cross-linking while the other half (n=27) served as a control group. Partial least squares (PLS) regression with variable selection algorithms was used to predict the cross-link concentrations from the measured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link concentrations. The correlation coefficients between the PLS regression models and the biochemical reference values were r=0.84 (p<0.001), r=0.87 (p<0.001) and r=0.92 (p<0.001) for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage.

  1. Glucose-mediated cross-linking of collagen in rat tendon and skin

    NARCIS (Netherlands)

    Mentink, CJAL; Hendriks, M; Levels, AAG; Wolffenbuttel, BHR

    2002-01-01

    Back-ground: Cross-linking of macromolecules like collagen plays an important role in the development of complications in diabetes and ageing. One of the underlying mechanisms of this cross-linking is the formation of advanced glycation endproducts (AGEs). Methods: In this study, we assessed the use

  2. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat.

    NARCIS (Netherlands)

    Rothamel, D.; Schwarz, F.; Sager, M.; Herten, M. van; Sculean, A.; Becker, J.M.

    2005-01-01

    The aim of the present study was to compare the biodegradation of differently cross-linked collagen membranes in rats. Five commercially available and three experimental membranes (VN) were included: (1) BioGide (BG) (non-cross-linked porcine type I and III collagens), (2) BioMend (BM), (3) BioMendE

  3. Dehydration Mechanism of Secondary Cross-linked Gels%二次交联凝胶脱水机理研究

    Institute of Scientific and Technical Information of China (English)

    罗宪波; 武海燕; 周晶; 蒲万芬; 赵金洲

    2005-01-01

    In this paper, microscopic characteristics of preformed gels (PGs) and secondary cross-linked gels (SCG) with the same concentration were analyzed by atomic force microscopy (AFM). Experimental results indicate that the microstructure of secondary cross-linked gels is a thick 3-D network, in which micro-holes and irregular macro-holes are embedded. The maximum width of the irregular macro-holes is 200 nm. In the SCG, two different chemical bonds were formed, which leads to the structural inhomogeneity and the asymmetry of the crosslinking density. The structural inhomogeneity of SCG results in the formation of irregular macro-holes. The excessive cross-linking density is the primary reason for dehydration of SCG and the presence of irregular macro-holes in SCG can facilitate dehydration.

  4. Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from Shewanella putrefaciens and using malachite green decolorization.

    Science.gov (United States)

    Sinirlioglu, Zeynep Aydin; Sinirlioglu, Deniz; Akbas, Fahri

    2013-10-01

    A novel type laccase from Shewanella putrefaciens was identified, expressed in Escherichia coli, characterized, prepared in cross-linked enzyme aggregates (CLEA) for industrial applications and investigated of decolorization activity on malchite green dye. Enzyme characterization was investigated by enzyme assay, SDS-PAGE and other biochemical reactions. Moreover, cross-linked enzyme aggregates were prepared and characterized. Saturated ammonium sulphate solution was used as the precipitating agent and cross linked with glutaraldehyde. These CLEA-laccase aggregates showed more catalytic efficiency and more stabilities compared to free laccase against harsh conditions of thermal and chemical agents as well as high reusability. Also it showed more decolorization ability. These results suggest that this CLEA is potentially usable in industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Investigation of anisotropic thermal transport in cross-linked polymers

    Science.gov (United States)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  6. Chemical and light triggering of peptide networks under partial thermodynamic control.

    Science.gov (United States)

    Dadon, Zehavit; Samiappan, Manickasundaram; Wagner, Nathaniel; Ashkenasy, Gonen

    2012-02-01

    The kinetics of novel dynamic libraries that operate via reversible replication is described. In these systems, selective product formation is governed by peptides autocatalytic efficiency and by differences in their unfolding stability. We suggest ways to significantly alter the network behavior by chemical inputs (templates) or physical triggers (light).

  7. Assessment of protein function following cross-linking by alpha-dicarbonyls.

    Science.gov (United States)

    Miller, Antonia G; Gerrard, Juliet A

    2005-06-01

    Protein cross-linking via the Maillard reaction with alpha-dicarbonyl compounds has been the subject of intense scrutiny in the literature. We report here a study of the impact of this cross-linking on enzyme function. Protein function following glycation was examined by treating ribonuclease A with methylglyoxal, glyoxal, and diacetyl, which cross-linked the enzyme and impaired its activity. The effects of two reported Maillard reaction inhibitors, aminoguanidine and 3,5-dimethylpyrazole-1-carboxamidine, on the cross-linking reaction were assessed, with a parallel measurement of the effect on enzyme activity. The results demonstrate that preventing protein cross-linking does not necessarily preserve enzyme activity. These results cast doubt on the likely efficacy of some purported antiaging compounds in vivo.

  8. Characteristic of hyaluronic acid derivative films cross-linked by polyethylene glycol of low water content

    Institute of Scientific and Technical Information of China (English)

    Chen Jinghua; Chen Jingtao; Xu Zheng; Gu Qisheng

    2008-01-01

    Objective: To test the characteristics of byaluronic acid (HA) derivative cross-linked by polyethylene glycol films of low water content. Methods: The cross-linked HA film with 200 μm thickness was got at atmospheric pressure at 25℃ for 5 d. After dried, cross-linked films of 10 mm×10 mm were weighed and immersed in phosphate buffered saline (PBS pH 7.45) at 37℃ for 24 h. Then the solution fraction and water content were estimated. Meanwhile, cross-linked HA derivative films were immersed in phosphate buffered saline (PBS: pH 7.45) at 37℃ for determined time and then implanted subcutaneously in the back of white rats to test in vitro or in vivo degradation characteristic. Results and Conclusion: HA hydrogel cross-linked by polyethylene glycol with water content is as low as 60% and this kind of HA derivative has a slow degradation rate.

  9. Isolation, chemical and functional characterization of several new K(+)-channel blocking peptides from the venom of the scorpion Centruroides tecomanus.

    Science.gov (United States)

    Olamendi-Portugal, Timoteo; Bartok, Adam; Zamudio-Zuñiga, Fernando; Balajthy, Andras; Becerril, Baltazar; Panyi, Gyorgy; Possani, Lourival D

    2016-06-01

    Six new peptides were isolated from the venom of the Mexican scorpion Centruroides tecomanus; their primary structures were determined and the effects on ion channels were verified by patch-clamp experiments. Four are K(+)-channel blockers of the α-KTx family, containing 32 to 39 amino acid residues, cross-linked by three disulfide bonds. They all block Kv1.2 in nanomolar concentrations and show various degree of selectivity over Kv1.1, Kv1.3, Shaker and KCa3.1 channels. One peptide has 42 amino acids cross-linked by four disulfides; it blocks ERG-channels and belongs to the γ-KTx family. The sixth peptide has only 32 amino acid residues, three disulfide bonds and has no effect on the ion-channels assayed. It also does not have antimicrobial activity. Systematic numbers were assigned (time of elution on HPLC): α-KTx 10.4 (time 24.1); α-KTx 2.15 (time 26.2); α-KTx 2.16 (time 23.8); α-KTx 2.17 (time 26.7) and γ-KTx 1.9 (elution time 29.6). A partial proteomic analysis of the short chain basic peptides of this venom, which elutes on carboxy-methyl-cellulose column fractionation, is included. The pharmacological properties of the peptides described in this study may provide valuable tools for understanding the structure-function relationship of K(+) channel blocking scorpion toxins.

  10. Disuccinimidyl suberate cross-linked hemoglobin as a novel red blood cell substitute

    Institute of Scientific and Technical Information of China (English)

    LU; Xiuling; ZHENG; Chunyang; XU; Yuhong; SU; Zhiguo

    2005-01-01

    Disuccinimidyl suberate (DSS) intramolecularly cross-linked hemoglobin (Hb) was developed as a novel red blood cell substitute. A multi-angle laser light scattering detector coupled with size exclusion HPLC was applied to determine the molecular weight of the modified Hb. SDS-PAGE was also used as a complement. It was proved that 83.8% of the product was intramolecularly cross-linked Hb with weight-average molecular weights (Mw) of 67.5 kD, 12% was dimeric Hb with Mw of 146.6 kD, and 4.2% was trimeric Hb with Mw of 306.4 kD. The tetramer structure of the cross-linked Hb was stable as shown in size-exclusion chromatography using a mobile phase containing 1 mol/L MgCl2. Analysis by LC-MS demonstrated that the reaction of DSS with Hb mainly took place between the twoα subunits within a Hb molecule, resulting in stabilization of the tetramer structure. However, the cross-linking was not site-specific. The P50 of the cross-linked Hb decreased from 21.8 mmHg to 14.3 mmHg, and the Hill coefficient decreased from 2.22 to 1.41. Result of isoelectric focusing showed that the pI of DSS cross-linked Hb was in the range of 4.6-5.2, similar to that of serum albumin. The safety of DSS cross-linked Hb was favored by animal tests on rats and guinea pigs. Exchange transfusion experiment with DSS cross-linked Hb using rats as a model indicated no pressor effect or other significant side effects. The characteristics and properties of DSS cross-linked Hb were also compared with that of diaspirin cross-linked Hb reported in the literature.

  11. Analysis of protein-RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry.

    Science.gov (United States)

    Sharma, Kundan; Hrle, Ajla; Kramer, Katharina; Sachsenberg, Timo; Staals, Raymond H J; Randau, Lennart; Marchfelder, Anita; van der Oost, John; Kohlbacher, Oliver; Conti, Elena; Urlaub, Henning

    2015-11-01

    Ribonucleoprotein (RNP) complexes play important roles in the cell by mediating basic cellular processes, including gene expression and its regulation. Understanding the molecular details of these processes requires the identification and characterization of protein-RNA interactions. Over the years various approaches have been used to investigate these interactions, including computational analyses to look for RNA binding domains, gel-shift mobility assays on recombinant and mutant proteins as well as co-crystallization and NMR studies for structure elucidation. Here we report a more specialized and direct approach using UV-induced cross-linking coupled with mass spectrometry. This approach permits the identification of cross-linked peptides and RNA moieties and can also pin-point exact RNA contact sites within the protein. The power of this method is illustrated by the application to different single- and multi-subunit RNP complexes belonging to the prokaryotic adaptive immune system, CRISPR-Cas (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated). In particular, we identified the RNA-binding sites within three Cas7 protein homologs and mapped the cross-linking results to reveal structurally conserved Cas7 - RNA binding interfaces. These results demonstrate the strong potential of UV-induced cross-linking coupled with mass spectrometry analysis to identify RNA interaction sites on the RNA binding proteins.

  12. Corneal changes following collagen cross linking and simultaneous topography guided photoablation with collagen cross linking for keratoconus

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2014-01-01

    Full Text Available Purpose: To compare the outcome of Collagen cross-linking (CXL with that following topography-guided customized ablation treatment (T-CAT with simultaneous CXL in eyes with progressive keratoconus. Materials and Methods: This was a prospective, non-randomized single centre study of 66 eyes with progressive keratoconus. Of these, 40 eyes underwent CXL and 26 eyes underwent T-CAT + CXL. The refractive, topographic, tomographic and aberrometric changes measured at baseline, 1, 3 and 6 months post-operatively were compared between both groups. Results: After a mean follow-up of 7.7 ± 1.3 months, the mean retinoscopic cylinder decreased by 1.02 ± 3.16 D in the CXL group ( P = 0.1 and 2.87 ± 3.22 D in the T-CAT + CXL group ( P = 0.04. The Best corrected visual acuity increased by 2 lines or more in 10% of eyes in the CXL group and in 23.3% of eyes in the T-CAT + CXL group. The mean steepest-K reduced by 0.40 ± 3.71 D ( P = 0.77 in the CXL group and by 2.91 ± 2.01D ( P = 0.03 in the T-CAT + CXL group. The sag factor and surface asymmetry index showed no significant change in the CXL group but reduced by 3.59 ± 5.94 D ( P = 0.01 and 0.72 ± 1.18 ( P = 0.02 respectively in the T-CAT + CXL group. There was a significant increase in the highest posterior corneal elevation in both groups (9.57 ± 14.93 μ in the CXL group and 7.85 ± 9.25 μ in the T-CAT + CXL group, P ≤ 0.001 for both. There was significantly greater reduction of mean coma ( P < 0.001 and mean higher-order aberrations ( P = 0.01 following T-CAT + CXL compared to CXL. Conclusions: CAT + CXL is an effective approach to confer biomechanical stability and to improve the corneal contour in eyes with keratoconus and results in better refractive, topographic and aberrometric outcomes than CXL alone.

  13. Iodinated derivatives of vasoactive intestinal peptide (VIP), PHI and PHM: purification, chemical characterization and biological activity

    Energy Technology Data Exchange (ETDEWEB)

    McMaster, D.; Suzuki, Y.; Rorstad, O.; Lederis, K.

    1987-07-01

    The iodination of vasoactive intestinal peptide (VIP) was studied, using a variety of enzymatic and chemical iodination methods. Reversed phase high performance liquid chromatography (HPLC) was used to purify the reaction products. The lactoperoxidase-glucose oxidase method gave excellent results in terms of reproducibility, iodine incorporation, and yield of the non-oxidized products (Tyr(I)10)VIP and (Tyr(I)22)VIP, and was used to prepare both /sup 125/I and /sup 127/I labelled derivatives. In both cases, direct application to HPLC and a single column system were used. Although the oxidized peptides (Tyr(I)10,Met(O)17)VIP and (Tyr(I)22,Met(O)17)VIP could be generated to varying degrees directly by iodination of VIP, these were most conveniently prepared by iodination of (Met(O)17)VIP. Iodinated derivatives of the homologous peptides PHI and PHM were likewise prepared by rapid, one-step HPLC procedures. The site and degree of iodination were determined by HPLC peptide mapping of tryptic digests and amino acid analyses, and in the case of (Tyr(I)10)VIP also by sequencing. The vasorelaxant activities of the iodinated peptides in bovine cerebral artery preparations did not differ significantly from those of the corresponding noniodinated peptides, with the exception of (Tyr(I)10,Met(O)17)VIP and (Tyr(I)22,Met(O)17)VIP which, unlike (Met(O)17)VIP itself, had slightly lower potency than VIP.

  14. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  15. Study of Sorption Properties of Anion Exchangers with Long-Chained Cross-Linking Agents for Tungsten Hydrometallurgy

    Institute of Scientific and Technical Information of China (English)

    O.N.Kononova; S.V.Kachin; O.P.Kalyakina; G.L.Pashkov; A.G.Kholmogorov

    2000-01-01

    The macroporous anion exchangers with long-chained cross-linking agents were investigated for the tungsten recovery from salt solutions. The physical-chemical characteristics of these sorbents were studied by means of sorption-desorption experiment aswell as electron and IR-spectroscopy. The anion exchangers on the basis of macroporous copolymers of methylacrylate and divinyl-ester of diethyleneglycol or tetravinyl-ester of pentaerythritol possess the exchange capacity to tungsten 2--5 times greater than the porous anion exchangers on the basis of styrene and divinylbenzene, therefore they can be used for selective tungsten recovery from comulex salt solutions.

  16. Chemistry and physical properties of melt-processed and solution-cross-linked corn zein.

    Science.gov (United States)

    Sessa, David J; Mohamed, Abdellatif; Byars, Jeffrey A

    2008-08-27

    Corn zein was cross-linked with glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to evaluate the swelling characteristics of GDA cross-linked zein gels in water, ethanol, and their combinations. Similar formulations, upon solvent evaporation, form films. The mechanical properties of the films are compared to compression molded tensile bars from GDA melt-processed zein as a second objective. Chemistry of the cross-linking reaction was based on the aldehyde binding characteristics defined by use of fluorescence spectroscopy; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to demonstrate the cross-linking reaction; FTIR to observe absorption differences of the cross-linked product; differential scanning calorimetry, dynamic mechanical analysis and thermogravimetric analysis to assess thermal properties; and the use of Instron Universal Testing Machine to evaluate mechanical properties. A reaction mechanism for acid catalyzed GDA cross-linking of zein is proposed. Thermal and mechanical properties of tensile bars cut from either film or formed by compression molding were similar, where both showed increased tensile strengths, ductility and stiffness when compared with unmodified controls. Samples that were reacted with 8% GDA by weight based on weight of zein from either process retained their integrity when tensile bars from each were subjected to boiling water for 10 min or soaking in either water or HAc for 24 h. The melt-processed, cross-linked zein is a more environmentally friendly method that would eliminate the need for HAc recovery.

  17. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Cinthya, Kuriakose [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Jayakrishnan, A. [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036 (India); Anilkumar, P.R., E-mail: anilkumarpr@sctimst.ac.in [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); James, Nirmala Rachel, E-mail: nirmala@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India)

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture.

  18. Shell and core cross-linked poly(L-lysine)/poly(acrylic acid) complex micelles.

    Science.gov (United States)

    Hsieh, Yi-Hsuan; Hsiao, Yung-Tse; Jan, Jeng-Shiung

    2014-12-21

    We report the versatility of polyion complex (PIC) micelles for the preparation of shell and core cross-linked (SCL and CCL) micelles with their surface properties determined by the constituent polymer composition and cross-linking agent. The negatively and positively charged PIC micelles with their molecular structure and properties depending on the mixing weight percentage and polymer molecular weight were first prepared by mixing the negatively and positively charged polyions, poly(acrylic acid) (PAA) and poly(L-lysine) (PLL). The feasibility of preparing SCL micelles was demonstrated by cross-linking the shell of the negatively and positively charged micelles using cystamine and genipin, respectively. The core of the micelles can be cross-linked by silica deposition to stabilize the assemblies. The shell and/or core cross-linked micelles exhibited excellent colloid stability upon changing solution pH. The drug release from the drug-loaded SCL micelles revealed that the controllable permeability of the SCL micelles can be achieved by tuning the cross-linking degree and the SCL micelles exhibited noticeable pH-responsive behavior with accelerated release under acidic conditions. With the versatility of cross-linking strategies, it is possible to prepare a variety of SCL and CCL micelles from PIC micelles.

  19. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    Science.gov (United States)

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density.

  20. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Antonio [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy); IMAST SCaRL, Piazza Bovio 22, 80133 Naples (Italy); Guarino, Vincenzo, E-mail: vincenzo.guarino@cnr.it; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy)

    2015-12-17

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  1. Synthesis, Characterization and Surface Properties of Cross-linked Polyurethane Dispersion Modified by Organosiloxane

    Institute of Scientific and Technical Information of China (English)

    高明志; 许戈文

    2006-01-01

    A series of cross-linked polyether-polyester polyurethane dispersions modified with organosiloxane were prepared based on hydroxyl-terminated polydimethylsiloxane (HTPS) as hydrophobic component and 3-aminopropyl-triethoxysilane (APTS) as cross-linker as well as a bridge between polyurethane (PU) and polysiloxane (PSIL). It was discovered that polydimethylsiloxane segments were incorporated into PU chains chemically and organosiloxane was preferentially oriented toward the surface layer of the film by making a comparison of attenuated total reflection (ATR) spectra between the copolymer and the blend of PU and PSIL, which was further confirmed by investigation of electron spectroscopy for chemical analysis (ESCA). The relationships between surface properties of the film formed from polyurethane dispersion and organosiloxane content were also studied. The results showed that water contact angle of the film increased with the increase of organosiloxane content. Interestingly, it was also found that water contact angle of PUS film increased firstly and then decreased when film-forming temperature varied from 25℃ to 55℃.

  2. Preparation and characterization of resistant starch type IV nanoparticles through ultrasonication and miniemulsion cross-linking.

    Science.gov (United States)

    Ding, Yongbo; Zheng, Jiong; Xia, Xuejuan; Ren, Tingyuan; Kan, Jianquan

    2016-05-05

    This study aimed to assess the properties of resistant starch type IV (chemically modified starch, RS4) prepared from a new and convenient synthesis route by using ultrasonication combined with water-in-oil miniemulsion cross-linking technique. A three-factor Box-Behnken design and optimization was used to minimize particle size through the developed RS4 nanoparticles. The predicted minimized Z-Avel (576.1nm) under the optimum conditions of the process variables (ultrasonic power, 214.57W; sonication time, 114.73min; and oil/water ratio, 10.54:1) was very close to the experimental value (651.0nm) determined in a batch experiment. After preparing the RS4 nanoparticles, morphological, physical, chemical, and functional properties were assessed. Results revealed that RS4 nanoparticle size reached about 600nm. Scanning electron microscopy images showed that ultrasonication induced notches and grooves on the surface. Under polarized light, the polarized cross was impaired. X-ray diffraction results revealed that the crystalline structure was disrupted. Smaller or no endotherms were exhibited in DSC analysis. In the FTIR graph, new peaks at 1532.91 and 1451.50cm(-1) were observed, and pasting properties were reduced. Amylose content, solubility, and SP increased, but RS content decreased. Anti-digestibility remained after ultrasonication. The prepared RS4 nanoparticles could be extensively used in biomedical applications and in the development of new medical materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Science.gov (United States)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  4. Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation

    KAUST Repository

    Xu, Sheng

    2015-12-01

    © 2015 Elsevier B.V. In this work, two novel carboxyl-containing polyimides, 2,2\\'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (6FDA-MDA/DABA, FMD) and 3,3\\',4,4\\'-benzophenone tetracarboxylic dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (BTDA-MDA/DABA, BMD), are synthesized via chemical and thermal imidization methods, respectively, and employed as pervaporation membranes for ethanol dehydration. Chemical structures of the two polyimides are examined by FTIR and TGA to confirm the successful synthesis. A post thermal treatment of the polyimide membranes with the temperature range of 250 to 400. °C is applied, and its effects on the membrane morphology and separation performance are studied and characterized by FTIR, TGA, WXRD, solubility and sorption test. It is believed that the thermal treatment of the carboxyl-containing polyimide membrane at a relative low temperature only leads to the physical annealing, while it may cause the decarboxylation-induced cross-linking at a higher temperature. In addition, the operation temperature in pervaporation is also varied and shown to be an important factor to affect the final membrane performance. Performance benchmarking shows that the developed polyimide membranes both have superior pervaporation performance to most other flat-sheet dense membranes. This work is believed to shed useful insights on polyimide membranes for pervaporation applications.

  5. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks.

    Science.gov (United States)

    Broguiere, Nicolas; Isenmann, Luca; Zenobi-Wong, Marcy

    2016-08-01

    Hyaluronan (HA) is an essential component of the central nervous system's extracellular matrix and its high molecular weight (MW) form has anti-inflammatory and anti-fibrotic properties relevant for regenerative medicine. Here, we introduce a new hydrogel based on high MW HA which is cross-linked using the transglutaminase (TG) activity of the activated blood coagulation factor XIII (FXIIIa). These HA-TG gels have significant advantages for neural tissue engineering compared to previous HA gels. Due to their chemical inertness in the absence of FXIIIa, the material can be stored long-term, is stable in solution, and shows no cytotoxicity. The gelation is completely cell-friendly due to the specificity of the enzyme and the gelation rate can be tuned from seconds to hours at physiological pH and independently of stiffness. The gels are injectable, and attach covalently to fibrinogen and fibrin, two common bioactive components in in vitro tissue engineering, as well as proteins present in vivo, allowing the gels to covalently bind to brain or spinal cord defects. These optimal chemical and bioactive properties of HA-TG gels enabled the formation of 3D neuronal cultures of unprecedented performance, showing fast neurite outgrowth, axonal and dendritic speciation, strong synaptic connectivity in 3D networks, and rapidly-occurring and long-lasting coordinated electrical activity.

  6. In vitro and in vivo characteristics of core–shell type nanogel particles: Optimization of core cross-linking density and surface poly(ethylene glycol) density in PEGylated nanogels

    OpenAIRE

    Tamura, Masato; Ichinohe, Satoshi; Tamura, Atsushi; Ikeda, Yutaka; Nagasaki, Yukio

    2011-01-01

    The biocompatibility and body distribution of PEGylated polyamine nanogels composed of chemically cross-linked poly(2-N,N-(diethylamino)ethyl methacrylate) (PEAMA) gel cores surrounded by poly(ethylene glycol) (PEG) chains were investigated to evaluate their feasibility as drug nanocarriers for systemic administration. PEGylated nanogels with different cross-linking densities (1, 2, and 5 mol.%) were prepared to evaluate their biocompatibilities by in vitro cytotoxicity assay, hemolysis assay...

  7. Evidence for the Existence of Cross-Linked Intermediates during Unfolding and Refolding of CK in UGGE

    Institute of Scientific and Technical Information of China (English)

    王希成; 谢成; 杨建; 周海梦

    2001-01-01

    Urea gradient gel electrophoresis (UGGE) is an important technique for studying the conformation changes of proteins during denaturation. This paper reports on an investigation of the unfolding and refolding of creatine kinase (CK) by UGGE. The native and denatured CK underwent electrophoresis in polyacrylamide gels containing a linear 0-8 mol/L gradient of urea perpendicular to the direction of migration. The results showed that unfolding and refolding of CK is a relatively rapid process. The denatured enzyme could refold to a conformation with activity during electrophoresis at low urea concentrations, indicating that denaturation in urea is reversible. More importantly, both the native and denatured CK were separated into multiple parallel bands through UGGE, but the bands decreased significantly when mercaptoethanol was added to the samples.The results suggest that various kinds of unfolding and refolding intermediates were formed during UGGE,which are assumed to be oligomers with disulfide bonds between peptide chains. Urea/SDS (sodium dodecylsulphate) polyacrylamide two-dimensional electrophoresis proved that these unfolding and refolding intermediates formed during UGGE were oligomers which were composed of different number of subunits cross-linked by disulfide bonds. The results indicate that the unfolding and refolding of CK are relatively rapid processes with some cross-linked intermediates with disulfide bonds during unfolding and refolding of the enzyme.

  8. Nano-hydrogels of methoxy polyethylene glycol-grafted branched polyethyleneimine via biodegradable cross-linking of Zn2+-ionomer micelle template

    Science.gov (United States)

    Abolmaali, Samira Sadat; Tamaddon, Ali Mohammad; Dinarvand, Rasoul

    2013-12-01

    Soft polymeric nanomaterials were synthesized by the template-assisted method involving self-association of methoxy polyethylene glycol- g-branched polyethyleneimine (mPEG- g-branched PEI) ionomer by transition metal ions such as Zn2+ followed by chemical cross-linking of the polyamine core by dithiopropionic acid. The formation of donor-acceptor complexes of Zn2+ and PEI ionomer was characterized by FT-IR spectroscopy and potentiometric titration. Turbidimetry was performed to study the solution property of the complexes which depended on pH, relative weight fraction of mPEG, and the molar ratio of Zn2+. The cross-linking reaction was studied by TNBS assay, 1H-NMR, and size exclusion chromatography. Upon removal of Zn2+ from cl-mPEG- g-branched PEI/Zn2+ at pH 3 by dialysis, the resulting cross-linked self-assembly represented a uniform, stable, and less positively charged hydrogel-like nanosphere with an intensity-averaged size ranging from 150 to 250 nm as determined by a Zetasizer. Atomic forced microscopy imaging was performed in intermittent contact mode in air that revealed discrete and oval-to-spherically shaped particles with average sizes ranging from 40 to 50 nm depending on the degree of cross-linking. This functional nanocarrier is expected to exhibit some key features such as active encapsulation of negatively charged hydrophilic agents in the swollen core of polyamine network and a hydrophilic mPEG shell which provides an increased solubility and passive targeting of active pharmaceutical agents to impaired tissues. The nano-hydrogels especially at 12 % degrees of cross-link demonstrated excellent biocompatibility determined by different experiments such as albumin aggregation, erythrocyte aggregation, hemolysis, and MTT cytotoxicity assay. Moreover, biodegradability of the cross-links as shown by the Ellman assay can offer a time-dependent degradation and redox-stimulated release of active agents.

  9. Grafted, cross-linked carbon black as a double-layer capacitor electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Wokaun, A.

    2001-03-01

    Isocyanate prepolymers readily react with oxidic functional groups on carbon black. On carbon black grafted with diisocyanates, reactive isocyanate groups are available for cross-linking to a polyurethane system. This cross-linked carbon black was considered as a new active material for electrochemical electrodes. Active material for electric double-layer capacitor electrodes was produced which had values of specific capacitance of up to 200 F/g. Cross-linking efficiencies of up to 58 % of the polymers utilised were achieved. (author)

  10. Characterization of solid UV cross-linked PEGDA for biological applications

    KAUST Repository

    Castro, David

    2013-10-20

    This paper reports on solid UV cross-linked Poly(ethylene)-glycol-diacrylate (PEGDA) as a material for microfluidic devices for biological applications. We have evaluated biocompatibility of PEGDA through two separate means: 1) by examining cell viability and attachment on cross-linked PEGDA surfaces for cell culture applications, and 2) by determining if cross-linked PEGDA inhibits the polymerase chain reaction (PCR) processes for on-chip PCR. Through these studies a correlation has been found between degree of curing and cell viability, attachment, as well as on PCR outcome.

  11. Permanent Set of Cross-Linking Networks: Comparison of Theory with Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne

    2006-01-01

    The permanent set of cross-linking networks is studied by molecular dynamics. The uniaxial stress for a bead-spring polymer network is investigated as a function of strain and cross-link density history, where cross-links are introduced in unstrained and strained networks. The permanent set...... is found from the strain of the network after it returns to the state-of-ease where the stress is zero. The permanent set simulations are compared with theory using the independent network hypothesis, together with the various theoretical rubber elasticity theories: affine, phantom, constrained junction...

  12. A genetic anomaly of oriented collagen biosynthesis and cross-linking: Keratoconus.

    Science.gov (United States)

    Bourges, J L; Robert, A M; Robert, L

    2015-02-01

    Oriented collagen biosynthesis is one of the major mechanisms involved in tissue and organ formation during development. Corneal biogenesis is one example. Defects in this process lead to anomalies in tissue structure and function. The transparency of cornea and its achievement are a good example as well as its pathological modifications. Keratoconus is one example of this type of pathologies, involving also inappropriate cross-linking of collagen fibers. Among the tentatives to correct this anomaly, the riboflavin-potentiated UV-cross-linking (CXL) of keratoconus corneas appears clinically satisfactory, although none of the experiments and clinical results published prove effective cross-linking. The published results are reviewed in this article.

  13. Permanent Set of Cross-Linking Networks: Comparison of Theory with Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne;

    2006-01-01

    is found from the strain of the network after it returns to the state-of-ease where the stress is zero. The permanent set simulations are compared with theory using the independent network hypothesis, together with the various theoretical rubber elasticity theories: affine, phantom, constrained junction......The permanent set of cross-linking networks is studied by molecular dynamics. The uniaxial stress for a bead-spring polymer network is investigated as a function of strain and cross-link density history, where cross-links are introduced in unstrained and strained networks. The permanent set...

  14. Peptide-Mediated Delivery of Chemical Probes and Therapeutics to Mitochondria.

    Science.gov (United States)

    Jean, Sae Rin; Ahmed, Marya; Lei, Eric K; Wisnovsky, Simon P; Kelley, Shana O

    2016-09-20

    Mitochondria are organelles with critical roles in key processes within eukaryotic cells, and their dysfunction is linked with numerous diseases including neurodegenerative disorders and cancer. Pharmacological manipulation of mitochondrial function is therefore important both for basic science research and eventually, clinical medicine. However, in comparison to other organelles, mitochondria are difficult to access due to their hydrophobic and dense double membrane system as well as their negative membrane potential. To tackle the challenge of targeting these important subcellular compartments, significant effort has been put forward to develop mitochondria-targeted systems capable of transporting bioactive cargo into the mitochondrial interior. Systems now exist that utilize small molecule, peptide, liposome, and nanoparticle-based transport. The vectors available vary in size and structure and can facilitate transport of a variety of compounds for mitochondrial delivery. Notably, peptide-based delivery scaffolds offer attractive features such as ease of synthesis, tunability, biocompatibility, and high uptake both in cellulo and in vivo. Owing to their simple and modular synthesis, these peptides are highly adaptable for delivering chemically diverse cargo. Key design features of mitochondria-targeted peptides include cationic charge, which allows them to harness the negative membrane potential of mitochondria, and lipophilicity, which permits favorable interaction with hydrophobic membranes of mitochondria. These peptides have been covalently tethered to target therapeutic agents, including anticancer drugs, to enhance their drug properties, and to provide probes for mitochondrial biology. Interestingly, mitochondria-targeted DNA damaging agents demonstrate high potency and the ability to evade resistance mechanisms and off-target effects. Moreover, a combination of mitochondria-targeted DNA damaging agents was applied to an siRNA screen for the elucidation of

  15. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    Science.gov (United States)

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  16. Laser cross-linking of nucleic acids to proteins. Methodology and first applications to the phage T4 DNA replication system.

    Science.gov (United States)

    Hockensmith, J W; Kubasek, W L; Vorachek, W R; von Hippel, P H

    1986-03-15

    Single-pulse (approximately 8 ns) ultraviolet laser excitation of protein-nucleic acid complexes can result in efficient and rapid covalent cross-linking of proteins to nucleic acids. The reaction produces no nucleic acid-nucleic acid or protein-protein cross-links, and no nucleic acid degradation. The efficiency of cross-linking is dependent on the wavelength of the exciting radiation, on the nucleotide composition of the nucleic acid, and on the total photon flux. The yield of cross-links/laser pulse is largest between 245 and 280 nm; cross-links are obtained with far UV photons (200-240 nm) as well, but in this range appreciable protein degradation is also observed. The method has been calibrated using the phage T4-coded gene 32 (single-stranded DNA-binding) protein interaction with oligonucleotides, for which binding constants have been measured previously by standard physical chemical methods (Kowalczykowski, S. C., Lonberg, N., Newport, J. W., and von Hippel, P. H. (1981) J. Mol. Biol. 145, 75-104). Photoactivation occurs primarily through the nucleotide residues of DNA and RNA at excitation wavelengths greater than 245 nm, with reaction through thymidine being greatly favored. The nucleotide residues may be ranked in order of decreasing photoreactivity as: dT much greater than dC greater than rU greater than rC, dA, dG. Cross-linking appears to be a single-photon process and occurs through single nucleotide (dT) residues; pyrimidine dimer formation is not involved. Preliminary studies of the individual proteins of the five-protein T4 DNA replication complex show that gene 43 protein (polymerase), gene 32 protein, and gene 44 and 45 (polymerase accessory) proteins all make contact with DNA, and can be cross-linked to it, whereas gene 62 (polymerase accessory) protein cannot. A survey of other nucleic acid-binding proteins has shown that E. coli RNA polymerase, DNA polymerase I, and rho protein can all be cross-linked to various nucleic acids by the laser

  17. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links.

    Science.gov (United States)

    Richard, S; Tamas, C; Sell, D R; Monnier, V M

    1991-08-01

    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

  18. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety.

    Science.gov (United States)

    Snyder, Abigail B; Worobo, Randy W

    2014-01-15

    Antimicrobial peptides are produced across all domains of life. Among these diverse compounds, those produced by bacteria have been most successfully applied as agents of biocontrol in food and agriculture. Bacteriocins are ribosomally synthesized, proteinaceous compounds that inhibit the growth of closely related bacteria. Even within the subcategory of bacteriocins, the peptides vary significantly in terms of the gene cluster responsible for expression, and chemical and structural composition. The polycistronic gene cluster generally includes a structural gene and various combinations of immunity, secretion, and regulatory genes and modifying enzymes. Chemical variation can exist in amino acid identity, chain length, secondary and tertiary structural features, as well as specificity of active sites. This diversity posits bacteriocins as potential antimicrobial agents with a range of functions and applications. Those produced by food-grade bacteria and applied in normally occurring concentrations can be used as GRAS-status food additives. However, successful application requires thorough characterization.

  19. Chemical Probes Allow Structural Insight into the Condensation Reaction of Nonribosomal Peptide Synthetases.

    Science.gov (United States)

    Bloudoff, Kristjan; Alonzo, Diego A; Schmeing, T Martin

    2016-03-17

    Nonribosomal peptide synthetases (NRPSs) synthesize a vast variety of small molecules, including antibiotics, antitumors, and immunosuppressants. The NRPS condensation (C) domain catalyzes amide bond formation, the central chemical step in nonribosomal peptide synthesis. The catalytic mechanism and substrate determinants of the reaction are under debate. We developed chemical probes to structurally study the NRPS condensation reaction. These substrate analogs become covalently tethered to a cysteine introduced near the active site, to mimic covalent substrate delivery by carrier domains. They are competent substrates in the condensation reaction and behave similarly to native substrates. Co-crystal structures show C domain-substrate interactions, and suggest that the catalytic histidine's principle role is to position the α-amino group for nucleophilic attack. Structural insight provided by these co-complexes also allowed us to alter the substrate specificity profile of the reaction with a single point mutation.

  20. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    Science.gov (United States)

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  1. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Directory of Open Access Journals (Sweden)

    Maria Luisa eDi Vona

    2014-10-01

    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  2. PROSPECTS OF HIGH-CURRENT ELECTRON BEAMS APPLICATION TO RADIATION POLYETHYLENE CROSS-LINKING

    Directory of Open Access Journals (Sweden)

    A.G. Gurin

    2013-09-01

    Full Text Available A possibility of applying a pulse-periodic high-current induction electron accelerators to radiation polyethylene cross-linking is considered in the article. A comparative analysis with other devices used for irradiation is made.

  3. Molecular Dynamics Simulations of Polymer Networks Undergoing Sequential Cross-Linking and Scission Reactions

    DEFF Research Database (Denmark)

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne;

    2007-01-01

    The effects of sequential cross-linking and scission of polymer networks formed in two states of strain are investigated using molecular dynamics simulations. Two-stage networks are studied in which a network formed in the unstrained state (stage 1) undergoes additional cross-linking in a uniaxia......The effects of sequential cross-linking and scission of polymer networks formed in two states of strain are investigated using molecular dynamics simulations. Two-stage networks are studied in which a network formed in the unstrained state (stage 1) undergoes additional cross...... good agreement with the predictions of Flory and Fricker. It was found that the fractional stress reduction upon removal of the first-stage cross-links could be accurately calculated from the slip tube model of Rubinstein and Panyukov modified to use the theoretical transfer functions of Fricker.  ...

  4. Riboflavin cross-linking of collagen porous scaffolds for periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Seciu A-M.

    2016-05-01

    Full Text Available Periodontitis treatment using occlusive membranes presented variable efficacy due to their rapid degradation in the complex biologic environment of the damaged periodontium. The aim of this study was to prepare novel composites based on collagen, chondroitin sulfate and fibronectin, and to establish the optimal parameters for their photochemical cross-linking using riboflavin and UV exposure. The degree of cross-linking, biodegradability and density of all scaffold variants were investigated. Their cytotoxicity was evaluated in a culture of gingival fibroblasts by MTT assay and light microscopy. The results indicated that the higher the cross-linking degree, the lower was the scaffold biodegradation. Cell culture studies showed that composite scaffolds were favorable for cellular survival. In conclusion, the cross-linking method using riboflavin and UV exposure resulted in stable and biocompatible collagen-based composite scaffolds that could be used for periodontitis treatment.

  5. Hydrogen peroxide and ferulic acid-mediated oxidative cross-linking ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... Oxidative cross-linked casein mediated by hydrogen peroxide and ferulic acid was prepared at ... functional properties of food proteins treated (Motoki and. Seguro, 1998 ..... Team of Northeast Agricultural University (No.

  6. A Review of Collagen Cross-Linking in Cornea and Sclera

    Directory of Open Access Journals (Sweden)

    Xiao Zhang

    2015-01-01

    Full Text Available Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders.

  7. New insights into the pros and cons of cross-linking decellularized bioartificial organs.

    Science.gov (United States)

    Hussein, Kamal H; Park, Kyung-Mee; Lee, Yun-Suk; Woo, Jae-Seok; Kang, Byung-Jae; Choi, Ki-Young; Kang, Kyung-Sun; Woo, Heung-Myong

    2017-01-25

    ABSTRACTDecellularization is an attractive method for scaffold designing in regenerative medicine. The resulting extracellular matrix (ECM) consists of structural proteins such as collagen and elastin, growth factors, and glycosaminoglycans, which can direct site-appropriate remodeling after in vivo implantation. Mainly, collagen and elastin of ECM are exposed to the enzymatic biodegradation in the host. To control the biodegradation process, treatment of decellularized tissue by a cross-linking agent is required. Cross-linking also reduces antigenicity and increases the storage properties. Cross-linkers should be nontoxic, with the ability to preserve the ECM components, especially glycosaminoglycans and associated growth factors for retention of scaffold bioactivity. In this review, we describe the different cross-linking agents and methods of evaluation of cross-linking efficiency.

  8. Glutaraldehyde vapor cross-linked nanofibrous PVA mat with in situ formed silver nanoparticles.

    Science.gov (United States)

    Destaye, Addisu Getachew; Lin, Cheng-Keng; Lee, Cheng-Kang

    2013-06-12

    Polyvinyl alcohol (PVA) nanofibrous mat can be easily prepared via electrospinning its aqueous solution. However, the obtained nanofibrous mat is instantaneously dissolved in water. Therefore, rendering the environmentally friendly nanofibrous mat water insoluble by cross-linking mechanism is of great interest. The electrospun PVA nanofibrous mat with an average fiber diameter of ca. 400 nm could be effectively cross-linked by glutaraldehyde vapor at room temperature. The cross-linking not only resulted in a water-insoluble nanofibrous mat but also generated an excess amount of unreacted aldehyde functional groups that could reduce silver salts into silver nanoparticles. The in situ formed silver nanoparticles along the fibrous surface showed excellent antimicrobial activity against Escherichia coli. The vapor cross-linked nanofibrous mat shows a high potential to be used for efficiently capturing and killing pathogenic bacteria.

  9. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites

    Directory of Open Access Journals (Sweden)

    Javad Hamedi

    2015-10-01

    Full Text Available Background and Objective: Due to the evolution of multidrug-resistant strains, screening of natural resources, especially actinomycetes, for new therapeutic agents discovery has become the interests of researchers. In this study, molecular, chemical and biological screening of soil actinomycetes was carried out in order to search for peptide-producing actinomycetes.Materials and Methods: 60 actinomycetes were isolated from soils of Iran. The isolates were subjected to molecular screening for detection NRPS (non-ribosomal peptide synthetases gene. Phylogenic identification of NRPS containing isolates was performed. Chemical screening of the crude extracts was performed using chlorine o-dianisidine as peptide detector reagent and bioactivity of peptide producing strains was determined by antimicrobial bioassay. High pressure liquid chromatography- mass spectrometry (HPLC-MS with UV-visible spectroscopy was performed for detection of the metabolite diversity in selected strain.Results: Amplified NRPS adenylation gene (700 bp was detected among 30 strains. Phylogenic identification of these isolates showed presence of rare actinomycetes genera among the isolates and 10 out of 30 strains were subjected to chemical screening. Nocardia sp. UTMC 751 showed antimicrobial activity against bacterial and fungal test pathogens. HPLC-MSand UV-visible spectroscopy results from the crude extract showed that this strain has probably the ability to produce new metabolites.Conclusion: By application of a combined approach, including molecular, chemical and bioactivity analysis, a promising strain of Nocardia sp. UTMC 751 was obtained. This strain had significant activity against Staphylococcus aureus and Pseudomonas aeruginosa. Strain Nocardia sp. UTMC 751 produce five unknown and most probably new metabolites with molecular weights of 274.2, 390.3, 415.3, 598.4 and 772.5. This strain had showed 99% similarity to Nocardia ignorata DSM 44496 T.

  10. The level of cross-linking and the structure of anisotropic magnetorheological elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Borin, Dmitry, E-mail: dmitry.borin@tu-dresden.de [Institute of Fluid Mechanics, Technische Universitaet Dresden, Dresden 01062 (Germany); Guenther, David [Institute of Fluid Mechanics, Technische Universitaet Dresden, Dresden 01062 (Germany); Hintze, Christian; Heinrich, Gert [Leibniz Institute of Polymer Research, Dresden 01069 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Technische Universitaet Dresden, Dresden 01062 (Germany)

    2012-10-15

    The influence of the concentration of the magnetic powder on the level of cross-linking of magnetorheological elastomers (MREs) has been studied. Afterwards the structural characterisation of manufactured MREs has been performed by using non-destructive method, specifically the computed tomography. The correlation between internal structures of MREs and the developing of its cross-linking level during the curing was found. It was shown that changes in the concentration of the powder significantly affect morphologies of the sample.

  11. Novel thermoplastic vulcanizates (TPVs based on silicone rubber and polyamide exploring peroxide cross-linking

    Directory of Open Access Journals (Sweden)

    K. Naskar

    2014-04-01

    Full Text Available Novel thermoplastic vulcanizates (TPVs based on silicone rubber (PDMS and polyamide (PA12 have been prepared by dynamic vulcanization process. The effect of dynamic vulcanization and influence of various types of peroxides as cross-linking agents were studied in detail. All the TPVs were prepared at a ratio of 50/50 wt% of silicone rubber and polyamide. Three structurally different peroxides, namely dicumyl peroxide (DCP, 3,3,5,7,7-pentamethyl 1,2,4-trioxepane (PMTO and cumyl hydroperoxide (CHP were taken for investigation. Though DCP was the best option for curing the silicone rubber, at high temperature it suffers from scorch safety. An inhibitor 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO was added with DCP to stabilize the radicals in order to increase the scorch time. Though CHP (hydroperoxide had higher half life time than DCP at higher temperature, it has no significant effect on cross-linking of silicone rubber. PMTO showed prolonged scorch safety and better cross-linking efficiency rather than the other two. TPVs of DCP and PMTO were made up to 11 minutes of mixing. Increased values of tensile strength and elongation at break of PMTO cross-linked TPV indicate the superiority of PMTO. Scanning electron micrographs correlate with mechanical properties of the TPVs. High storage modulus (E' and lower loss tangent value of the PMTO cross-linked TPV indicate the higher degree of cross-linking which is also well supported by the overall cross-link density value. Thus PMTO was found to be the superior peroxide for cross-linking of silicone rubber at high temperature.

  12. Sorption of substituted indoles on highly cross-linked polystyrene from water-acetonitrile solutions

    Science.gov (United States)

    Shafigulin, R. V.; Myakishev, A. A.; Il'Ina, E. A.; Il'in, M. M.; Davankov, V. A.; Bulanova, A. V.

    2011-07-01

    The sorption of first synthesized indole derivatives by highly cross-linked polystyrenes from water-acetonitrile solutions was studied by high-performance liquid chromatography. The retention factors and differences in the Gibbs energy of adsorption from infinite diluted solutions were calculated, and the applicability of the Snyder-Soczewinski and Scott-Kucera models for describing the chromatographic retention of sorbates on a polymer network of highly cross-linked polystyrene was shown.

  13. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices

    OpenAIRE

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-01-01

    Background Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methods Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °...

  14. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    Energy Technology Data Exchange (ETDEWEB)

    Lacevic, N; Gee, R; Saab, A; Maxwell, R

    2008-04-24

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  15. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology.

    Science.gov (United States)

    Lacevic, Naida; Gee, Richard H; Saab, Andrew; Maxwell, Robert

    2008-09-28

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  16. Porphyrin-induced photodynamic cross-linking of hepatic heme-binding proteins.

    Science.gov (United States)

    Vincent, S H; Holeman, B; Cully, B C; Muller-Eberhard, U

    1986-01-27

    Three types of hepatic proteins, a heme-binding Z protein, a mixture of the glutathione S-transferases and a cytochrome P450 isozyme, were shown to be susceptible to photodynamic cross-linking and loss in antigenicity by naturally occurring porphyrins. At 50 microM, uroporphyrin caused the most and protoporphyrin the least photodecomposition. Hemopexin, a specific serum heme carrier, was photodecomposed but no cross-linking was detected. Heme and scavengers of singlet oxygen partially prevented protein photodecomposition.

  17. The Familial British Dementia Mutation Promotes Formation of Neurotoxic Cystine Cross-linked Amyloid Bri (ABri) Oligomers.

    Science.gov (United States)

    Cantlon, Adam; Frigerio, Carlo Sala; Freir, Darragh B; Boland, Barry; Jin, Ming; Walsh, Dominic M

    2015-07-03

    Familial British dementia (FBD) is an inherited neurodegenerative disease believed to result from a mutation in the BRI2 gene. Post-translational processing of wild type BRI2 and FBD-BRI2 result in the production of a 23-residue long Bri peptide and a 34-amino acid long ABri peptide, respectively, and ABri is found deposited in the brains of individuals with FBD. Similarities in the neuropathology and clinical presentation shared by FBD and Alzheimer disease (AD) have led some to suggest that ABri and the AD-associated amyloid β-protein (Aβ) are molecular equivalents that trigger analogous pathogenic cascades. But the sequences and innate properties of ABri and Aβ are quite different, notably ABri contains two cysteine residues that can form disulfide bonds. Thus we sought to determine whether ABri was neurotoxic and if this activity was regulated by oxidation and/or aggregation. Crucially, the type of oxidative cross-linking dramatically influenced both ABri aggregation and toxicity. Cyclization of Bri and ABri resulted in production of biologically inert monomers that showed no propensity to assemble, whereas reduced ABri and reduced Bri aggregated forming thioflavin T-positive amyloid fibrils that lacked significant toxic activity. ABri was more prone to form inter-molecular disulfide bonds than Bri and the formation of covalently stabilized ABri oligomers was associated with toxicity. These results suggest that extension of the C-terminal of Bri causes a shift in the type of disulfide bonds formed and that structures built from covalently cross-linked oligomers can interact with neurons and compromise their function and viability.

  18. Protein Cross-Linking and Oligomerization through Dityrosine Formation upon Exposure to Ozone.

    Science.gov (United States)

    Kampf, Christopher J; Liu, Fobang; Reinmuth-Selzle, Kathrin; Berkemeier, Thomas; Meusel, Hannah; Shiraiwa, Manabu; Pöschl, Ulrich

    2015-09-15

    Air pollution is a potential driver for the increasing prevalence of allergic disease, and post-translational modification by air pollutants can enhance the allergenic potential of proteins. Here, the kinetics and mechanism of protein oligomerization upon ozone (O3) exposure were studied in coated-wall flow tube experiments at environmentally relevant O3 concentrations, relative humidities and protein phase states (amorphous solid, semisolid, and liquid). We observed the formation of protein dimers, trimers, and higher oligomers, and attribute the cross-linking to the formation of covalent intermolecular dityrosine species. The oligomerization proceeds fast on the surface of protein films. In the bulk material, reaction rates are limited by diffusion depending on phase state and humidity. From the experimental data, we derive a chemical mechanism and rate equations for a kinetic multilayer model of surface and bulk reaction enabling the prediction of oligomer formation. Increasing levels of tropospheric O3 in the Anthropocene may promote the formation of protein oligomers with enhanced allergenicity and may thus contribute to the increasing prevalence of allergies.

  19. Structure of a DNA glycosylase that unhooks interstrand cross-links

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Elwood A.; Warren, Garrett M.; Bradley, Noah P.; Eichman, Brandt F. (Vanderbilt)

    2017-04-10

    DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protects its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.

  20. Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion

    Directory of Open Access Journals (Sweden)

    Junqi Jia

    2017-02-01

    Full Text Available The utilization of renewable biomass resources to produce high-value chemicals by enzymatic processes is beneficial for alternative energy production, due to the accelerating depletion of fossil fuels. As immobilization techniques can improve enzyme stability and reusability, a novel magnetic cross-linked cellulase aggregate has been developed and applied for biomass bioconversion. The crosslinked aggregates could purify and immobilize enzymes in a single operation, and could then be combined with magnetic nanoparticles (MNPs, which provides easy separation of the materials. The immobilized cellulase showed a better activity at a wider temperature range and pH values than that of the free cellulase. After six cycles of consecutive reuse, the immobilized cellulase performed successful magnetic separation and retained 74% of its initial activity when carboxylmethyl cellulose (CMC was used as the model substrate. Furthermore, the structure and morphology of the immobilized cellulase were studied by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Moreover, the immobilized cellulase was shown to hydrolyze bamboo biomass with a yield of 21%, and was re-used in biomass conversion up to four cycles with 38% activity retention, which indicated that the immobilized enzyme has good potential for biomass applications.

  1. Resveratrol cross-linked chitosan loaded with phospholipid for controlled release and antioxidant activity.

    Science.gov (United States)

    Jeong, Hun; Samdani, Kunda J; Yoo, Dong Hyuck; Lee, Dong Won; Kim, Nam Hoon; Yoo, Il-Soo; Lee, Joong Hee

    2016-12-01

    Despite the therapeutic effects of resveratrol, its clinical application is restricted by its poor oral bioavailability and low water solubility. To overcome these physicochemical and pharmacokinetic limitations, encapsulation of resveratrol (RV) into nanodevices has been explored. Resveratrol cross-linked chitosan nanoparticles modified with phospholipids (RVC-lipid) were synthesized using a double emulsion technique. The surface morphology of RVC-lipid nanoparticles was evaluated with field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Particle size was measured using dynamic light scattering technique (DLS), X-ray diffraction (XRD) was performed to identify the crystallographic nature and Fourier transform infrared spectroscopy (FTIR) was used to measure changes in the chemical structures of the resveratrol and RVC-lipid nanoparticles. Results showed RVC-lipid nanoparticle had a characteristic amorphous structure, a mean particle sizes of 570nm in DI water and 950nm in ethanol, and an encapsulation efficiency of 63.82% in aqueous medium and 85.59% in ethanol medium. In-vitro release studies demonstrated a slow and sustained release of resveratrol governed by diffusion. Based on assays of antioxidant activity the scavenging activity of RVC-lipid nanoparticles was inferior to that of resveratrol due to its prolonged release. We concluded that phospholipids are the potential carriers for resveratrol. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterization of the receptor for endothelial cell growth factor (ECGF) by affinity cross-linking

    Energy Technology Data Exchange (ETDEWEB)

    Friesel, R.; Burgess, W.H.; Mehlman, T.; Maciag, T.

    1986-05-01

    The authors have demonstrated high affinity receptors for ECGF on endothelial cells by covalent cross-linking of (/sup 125/I)-ECGF with disuccinimidyl suberate and observe a single chain cross-linked polypeptide species with an apparent M/sub r/ of 170K. The M/sub r/ 170K species represents (/sup 125/I)-ECGF bound to its receptor since (i) excess unlabeled ECGF inhibits the cross-linking of (/sup 125/I)-ECGF, (ii) labeling of the M/sub r/170K species does not take place in the absence of cross-linker, (iii) cells previously shown to be refractory to ECGF and lack ECGF receptors do not yield a cross-linked species, (iv) the cross-linked species can be immunoprecipitated with anti-ECGF antibodies, and (v) preincubation of cells with ECGF at 37/sup 0/C significantly reduces cross-linking while incubation at 4/sup 0/C does not. These data demonstrate that ECGF induced cell proliferation occurs through the occupancy of a specific cell surface polypeptide receptor with an apparent M/sub r/ of 150K, and suggests that internalization of the receptor-ligand complex may be relevant to ECGF-induced signal transduction.

  3. Directing the oligomer size distribution of peroxidase-mediated cross-linked bovine alpha-lactalbumin.

    Science.gov (United States)

    Heijnis, Walter H; Wierenga, Peter A; van Berkel, Willem J H; Gruppen, Harry

    2010-05-12

    Enzymatic protein cross-linking is a powerful tool to change protein functionality. For optimal functionality in gel formation, the size of the cross-linked proteins needs to be controlled, prior to heating. In the current study, we addressed the optimization of the horseradish peroxidase-mediated cross-linking of calcium-depleted bovine alpha-lactalbumin. To characterize the formed products, the molecular weight distribution of the cross-linked protein was determined by size exclusion chromatography. At low ionic strength, more dimers of alpha-lactalbumin are formed than at high ionic strength, while the same conversion of monomers is observed. Similarly, at pH 5.9 more higher oligomers are formed than at pH 6.8. This is proposed to be caused by local changes in apo alpha-lactalbumin conformation as indicated by circular dichroism spectroscopy. A gradual supply of hydrogen peroxide improves the yield of cross-linked products and increases the proportion of higher oligomers. In conclusion, this study shows that the size distribution of peroxidase-mediated cross-linked alpha-lactalbumin can be directed toward the protein oligomers desired.

  4. Cross-linking proteins by laccase-catalyzed oxidation: importance relative to other modifications.

    Science.gov (United States)

    Steffensen, Charlotte L; Andersen, Mogens L; Degn, Peter E; Nielsen, Jacob H

    2008-12-24

    Laccase-catalyzed oxidation was able to induce intermolecular cross-links in beta-lactoglobulin, and ferulic acid-mediated laccase-catalyzed oxidation was able to induce intermolecular cross-links in alpha-casein, whereas transglutaminase cross-linked only alpha-casein. In addition, different patterns of laccase-induced oxidative modifications were detected, including dityrosine formation, formation of fluorescent tryptophan oxidation products, and carbonyls derived from histidine, tryptophan, and methionine. Laccase-catalyzed oxidation as well as transglutaminase induced only minor changes in surface tension of the proteins, and the changes could not be correlated to protein cross-linking. The presence of ferulic acid was found to influence the effect of laccase, allowing laccase to form irreducible intermolecular cross-links in beta-lactoglobulin and resulting in proteins exercising higher surface tensions due to cross-linking as well as other oxidative modifications. The outcome of using ferulic acid-mediated laccase-catalyzed oxidation to modify the functional properties of proteinaceous food components or other biosystems is expected to be highly dependent on the protein composition, resulting in different changes of the functional properties.

  5. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement.

    Science.gov (United States)

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya H; Jayasuriya, A Champa

    2015-09-01

    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. The chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples was slightly improved. Based on the presented results, cross-linking does not have a significant effect on porosity. As expected, by increasing the P/L ratio of a sample, ductility and injectability were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can improve the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications.

  6. Cross-linked survey analysis is an approach for separating cause and effect in survey research.

    Science.gov (United States)

    Redelmeier, Donald A; Thiruchelvam, Deva; Lustig, Andrew J

    2015-01-01

    We developed a new research approach, called cross-linked survey analysis, to explore how an acute exposure might lead to changes in survey responses. The goal was to identify associations between exposures and outcomes while reducing some ambiguities related to interpreting cause and effect in survey responses from a population-based community questionnaire. Cross-linked survey analysis differs from a cross-sectional, longitudinal, and panel survey analysis by individualizing the timeline to the unique history of each respondent. Cross-linked survey analysis, unlike a repeated-measures self-matching design, does not track changes in a repeated survey question given to the same respondent at multiple time points. Pilot data from three analyses (n = 1,177 respondents) illustrate how a cross-linked survey analysis can control for population shifts, temporal trends, and reverse causality. Accompanying graphs provide an intuitive display to readers, summarize results, and show differences in response distributions. Population-based individual-level linkages also reduce selection bias and increase statistical power compared with a single-center cross-sectional survey. Cross-linked survey analysis has limitations related to unmeasured confounding, pragmatics, survivor bias, statistical models, and the underlying artifacts in survey responses. We suggest that a cross-linked survey analysis may help in epidemiology science using survey data. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Jejurikar, Aparna; Lawrie, Gwen; Groendahl, Lisbeth [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Martin, Darren, E-mail: l.grondahl@uq.edu.au [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072 (Australia)

    2011-04-15

    The properties of alginate films modified using two cross-linker ions (Ca{sup 2+} and Ba{sup 2+}), comparing two separate cross-linking techniques (the traditional immersion (IM) method and a new strategy in a pressure-assisted diffusion (PD) method), are evaluated. This was achieved through measuring metal ion content, water uptake and film stability in an ionic solution ([Ca{sup 2+}] = 2 mM). Characterization of the internal structure and mechanical properties of hydrated films were established by cryogenic scanning electron microscopy and tensile testing, respectively. It was found that gels formed by the PD technique possessed greater stability and did not exhibit any delamination after 21 day immersion as compared to gels formed by the IM technique. The Ba{sup 2+} cross-linked gels possessed significantly higher cross-linking density as reflected in lower water content, a more dense internal structure and higher Young's modulus compared to Ca{sup 2+} cross-linked gels. For the Ca{sup 2+} cross-linked gels, a large improvement in the mechanical properties was observed in gels produced by the PD technique and this was attributed to thicker pore walls observed within the hydrogel structure. In contrast, for the Ba{sup 2+} cross-linked gels, the PD technique resulted in gels that had lower tensile strength and strain energy density and this was attributed to phase separation and larger macropores in this gel.

  8. Digestibility of β-lactoglobulin following cross-linking by Trametes versicolor laccase and apple polyphenols

    Directory of Open Access Journals (Sweden)

    DRAGANA STANIĆ-VUČINIĆ

    2011-06-01

    Full Text Available β-Lactoglobulin (BLG is an important nutrient of dairy products and an important allergen in cow’s milk allergy. The aim of this study was to investigate the potential of laccase to cross-link BLG in the presence of an apple phenolic extract (APE and to characterize the obtained products for their digestibility by pepsin and pancreatin. The composition of the apple phenolics used for cross-linking was determined by liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-MS. The apple phenolic extract contained significant amounts of quercetin glycosides, catechins and chlorogenic acid. The laccase cross-linked BLG in the presence of apple phenolics. The polymerization rendered the protein insoluble in the reaction mixture. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE analysis of the cross-linking reaction mixture revealed a heterogeneous mixture of high molecular masses (cross-linked BLG, with a fraction of the BLG remaining monomeric. Enzymatic processing of BLG by laccase and apple polyphenols as mediators can decrease the biphasal pepsin–pancreatin digestibility of the monomeric and cross-linked protein, thus decreasing its nutritional value. In addition, reduced BLG digestibility can decrease its allergenic potential. Apple polyphenols can find usage in the creation of new, more functional food products, designed to prevent obesity and hypersensitivity-related disorders.

  9. Exogenous collagen cross-linking recovers tendon functional integrity in an experimental model of partial tear.

    Science.gov (United States)

    Fessel, Gion; Wernli, Jeremy; Li, Yufei; Gerber, Christian; Snedeker, Jess G

    2012-06-01

    We investigated the hypothesis that exogenous collagen cross-linking can augment intact regions of tendon to mitigate mechanical propagation of partial tears. We first screened the low toxicity collagen cross-linkers genipin, methylglyoxal and ultra-violet (UV) light for their ability to augment tendon stiffness and failure load in rat tail tendon fascicles (RTTF). We then investigated cross-linking effects in load bearing equine superficial digital flexor tendons (SDFT). Data indicated that all three cross-linking agents augmented RTTF mechanical properties but reduced native viscoelasticity. In contrast to effects observed in fascicles, methylglyoxal treatment of SDFT detrimentally affected tendon mechanical integrity, and in the case of UV did not alter tendon mechanics. As in the RTTF experiments, genipin cross-linking of SDFT resulted in increased stiffness, higher failure loads and reduced viscoelasticity. Based on this result we assessed the efficacy of genipin in arresting tendon tear propagation in cyclic loading to failure. Genipin cross-linking secondary to a mid-substance biopsy-punch significantly reduced tissue strains, increased elastic modulus and increased resistance to fatigue failure. We conclude that genipin cross-linking of injured tendons holds potential for arresting tendon tear progression, and that implications of the treatment on matrix remodeling in living tendons should now be investigated.

  10. High removal rate of cross-linked SU-8 resist using hydrogen radicals generated by tungsten hot-wire catalyzer

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Akihiko, E-mail: a.kono@neptune.kanazawa-it.ac.jp [Kanazawa Institute of Technology, 7-1 Ougigaoka, Nonoichi, Ishikawa 921-8501 (Japan); Arai, Yu; Maruoka, Takeshi; Yamamoto, Masashi; Goto, Yousuke; Takahashi, Seiji; Nishiyama, Takashi [Kanazawa Institute of Technology, 7-1 Ougigaoka, Nonoichi, Ishikawa 921-8501 (Japan); Horibe, Hideo [Osaka City University, Sugimoto, Sumiyoshiku, Osaka 558-8585 (Japan)

    2014-07-01

    This paper discusses the removal of chemically amplified negative-tone i-line resist SU-8 using hydrogen radicals generated by the catalytic decomposition of H{sub 2} molecules in H{sub 2}/N{sub 2} mixed gas (H{sub 2}:N{sub 2} = 10:90 vol.%) using a tungsten hot-wire catalyzer. SU-8 resists with exposure doses from 7 to 280 mJ/cm{sup 2} were removed by hydrogen radicals, although the SU-8 removal rate was independent of the exposure dose. The SU-8 removal rate increased with both substrate and catalyzer temperature, in addition to a decrease in the distance between the catalyzer and substrate. A high removal rate for cross-linked SU-8 with an exposure dose of 14 mJ/cm{sup 2} of approximately 4 μm/min was achieved with a catalyzer to substrate distance of 20 mm, and catalyzer and initial substrate temperatures of 2400 and 165 °C, respectively. - Highlights: • Chemically amplified negative-tone i-line resist SU-8 removed by hydrogen radicals • Hydrogen radicals generated by catalytic H{sub 2} decomposition using hot-wire catalyzer • The cross-linked SU-8 resist was removed at a rate of approximately 4 μm/min.

  11. How can the Cross-Link Adducts Formed by Novel Trans Platinum Drug be Influenced by Hydrogen Bond

    Institute of Scientific and Technical Information of China (English)

    CHANG Guan-Ru; ZHOU Li-Xin; CHEN Dong

    2006-01-01

    A systematic quantum chemical characterization of intrinsic structure, energies and spectral properties of all the studed cross-link adducts formed by the novel trans platinum with thiazole ligand has been carried out at B3LYP/6-31G* level of theory with the Lanl2dz pseudo potential basis set for the Pt atom.Special attention has been paid to the relative stability of these complexes and the factors that probably alter the order of the relative stability. The imporant influence of hydrogen bond on the structures, the energies and the spectral property was revealed. Other factors that contribute to relative stability including solvation effect, entropy and electronic delocalization energywere taken into account. The stability energy of the whole complex, and the interaction energy between two purinebases and the [Pt-(NH3)thiazole]2+ group were adopted to study the interplay among subsystems and their contribution to relative stability of all thestudied cross-link model. Finally, basic spectral properties of these complexesincludingH(8) chemical shifts of all the studied complexes and the VCD (vibrational circular dichroism) spectra of two pairs of GG chelate enantiomers, were provided in order to define the structure of the most possible duplex bearing novel trans platinum drug lesions.

  12. A Comparative Study of the Characteristics of Cross-Linked, Oxidized and Dual-Modified Rice Starches

    Directory of Open Access Journals (Sweden)

    Feng-Xiang Yu

    2012-09-01

    Full Text Available Rice starch was cross-linked with epichlorohydrin (0.3%, w/w, on a dry starch basis and oxidized with sodium hypochlorite (2.5% w/w, respectively. Two dual-modified rice starch samples (oxidized cross-linked rice starch and cross-linked oxidized rice starch were obtained by the oxidation of cross-linked rice starch and the cross-linking of oxidized rice starch at the same level of reagents. The physicochemical properties of native rice starch, cross-linked rice starch and oxidized rice starch were also studied parallel with those of the two dual-modified rice starch samples using rapid visco analysis (RVA, differential scanning calorimetry (DSC, dynamic rheometry and scanning electron microscopy (SEM. It was found that the levels of cross-linking and oxidation used in this study did not cause any significant changes in the morphology of rice starch granules. Cross-linked oxidized starch showed lower swelling power (SP and solubility, and higher paste clarity in comparison with native starch. Cross-linked oxidized rice starch also had the lowest tendency of retrogradation and highest ability to resistant to shear compared with native, cross-linked, oxidized and oxidized cross-linked rice starches. These results suggest that the undesirable properties in native, cross-linked and oxidized rice starch samples could be overcome through dual-modification.

  13. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    Science.gov (United States)

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  14. The Application of an Emerging Technique for Protein–Protein Interaction Interface Mapping: The Combination of Photo-Initiated Cross-Linking Protein Nanoprobes with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ptáčková Renata

    2014-05-01

    Full Text Available Protein–protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8–Met78. The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr. The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis to map the protein-protein interface or regions with a flexible structure.

  15. The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen.

    Science.gov (United States)

    Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W; Davidenko, Natalia; Best, Serena M; Cameron, Ruth E; Farndale, Richard W; Bihan, Dominique

    2016-04-01

    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons.

  16. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation

    Directory of Open Access Journals (Sweden)

    Brian M. G. Janssen

    2015-06-01

    Full Text Available The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py–Im polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py–Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py–Im polyamides. The effect of Py–Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR. Although the synthesis of different protein-Py–Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py–Im-polyamide conjugates. The practical use of protein-Py–Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

  17. Chemical synthesis of hydrocarbon-stapled peptides for protein interaction research and therapeutic targeting.

    Science.gov (United States)

    Bird, Gregory H; Crannell, W Christian; Walensky, Loren D

    2011-09-01

    The peptide α-helix represents one of nature's most featured protein shapes and is employed in a diversity of protein architectures, from the cytoskeletal infrastructure to the most intimate contact points between crucial signaling proteins. By installing an all-hydrocarbon crosslink into native sequences, the shape and biological activity of natural peptide α-helices can be recapitulated, yielding a chemical toolbox that can be used both to interrogate the protein interactome and to modulate interaction networks for potential therapeutic benefit. Here, current methodology for synthesizing stabilized α-helices (SAH) corresponding to key protein interaction domains is described. A stepwise approach is taken for the production of crosslinking non-natural amino acids, incorporation of the residues into peptide templates, and application of ruthenium-catalyzed ring-closing metathesis to generate hydrocarbon-stapled peptides. Through facile derivatization and functionalization steps, SAHs can be tailored for a broad range of applications in biochemical, structural, proteomic, cellular, and in vivo studies. Curr. Protoc. Chem. Biol. 3:99-117 © 2011 by John Wiley & Sons, Inc.

  18. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation.

    Science.gov (United States)

    Janssen, Brian M G; van Ommeren, Sven P F I; Merkx, Maarten

    2015-06-04

    The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py-Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py-Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py-Im polyamides. The effect of Py-Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py-Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py-Im-polyamide conjugates. The practical use of protein-Py-Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

  19. Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

    Directory of Open Access Journals (Sweden)

    Jeanine F Amacher

    Full Text Available PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR. Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL, and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.

  20. Chemically modified peptide scaffolds target the CFTR-associated ligand PDZ domain.

    Science.gov (United States)

    Amacher, Jeanine F; Zhao, Ruizhi; Spaller, Mark R; Madden, Dean R

    2014-01-01

    PDZ domains are protein-protein interaction modules that coordinate multiple signaling and trafficking pathways in the cell and that include active therapeutic targets for diseases such as cancer, cystic fibrosis, and addiction. Our previous work characterized a PDZ interaction that restricts the apical membrane half-life of the cystic fibrosis transmembrane conductance regulator (CFTR). Using iterative cycles of peptide-array and solution-binding analysis, we targeted the PDZ domain of the CFTR-Associated Ligand (CAL), and showed that an engineered peptide inhibitor rescues cell-surface expression of the most common CFTR disease mutation ΔF508. Here, we present a series of scaffolds containing chemically modifiable side chains at all non-motif positions along the CAL PDZ domain binding cleft. Concordant equilibrium dissociation constants were determined in parallel by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance techniques, confirming robust affinity for each scaffold and revealing an enthalpically driven mode of inhibitor binding. Structural studies demonstrate a conserved binding mode for each peptide, opening the possibility of combinatorial modification. Finally, we diversified one of our peptide scaffolds with halogenated substituents that yielded modest increases in binding affinity. Overall, this work validates our approach and provides a stereochemical foundation for further CAL inhibitor design and screening.

  1. The Toxicity of a Chemically Synthesized Peptide Derived from Non-Integrin Platelet Collagen Receptors

    Directory of Open Access Journals (Sweden)

    Thomas M. Chiang

    2008-01-01

    Full Text Available A chemically synthesized peptide derived from platelet non-integrin collagen receptor has been shown to be an effective agent for inhibiting collagen-induced platelet aggregation and adhesion of washed radiolabeled platelets onto natural matrices and collagen coated microtiter plates. In order to be a therapeutic agent, we have used a cell culturing system and an animal model to test its cytotoxicities. In cell culture experiments, the peptide is not toxic to MEG-01, a megakaryoblastic cell line. Prior to performing experiments in rats, the existence of both platelet type I and type III collagen receptors and its functional roles in rat platelets had to be established. In this investigation, we report that rat platelets contain both receptors and the cHyB peptide inhibits both type I and type III collagen-induced rat platelet aggregation. In addition, analysis of the rat sera collected at various time intervals following an injection of cHyB into the rat-tail vein, did not show an increase in the activity of key enzymes which indicate tissue and/or organ damage. These results suggest that the cHyB peptide is safe and its development into a potential therapeutic agent for inhibiting thrombi formation is possible.

  2. The Toxicity of a Chemically Synthesized Peptide Derived from Non-Integrin Platelet Collagen Receptors

    Directory of Open Access Journals (Sweden)

    Thomas M. Chiang

    2008-08-01

    Full Text Available A chemically synthesized peptide derived from platelet non-integrin collagen receptor has been shown to be an effective agent for inhibiting collagen-induced platelet aggregation and adhesion of washed radiolabeled platelets onto natural matrices and collagen coated microtiter plates. In order to be a therapeutic agent, we have used a cell culturing system and an animal model to test its cytotoxicities. In cell culture experiments, the peptide is not toxic to MEG-01, a megakaryoblastic cell line. Prior to performing experiments in rats, the existence of both platelet type I and type III collagen receptors and its functional roles in rat platelets had to be established. In this investigation, we report that rat platelets contain both receptors and the cHyB peptide inhibits both type I and type III collagen-induced rat platelet aggregation. In addition, analysis of the rat sera collected at various time intervals following an injection of cHyB into the rat-tail vein, did not show an increase in the activity of key enzymes which indicate tissue and/or organ damage. These results suggest that the cHyB peptide is safe and its development into a potential therapeutic agent for inhibiting thrombi formation is possible.

  3. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.

    Science.gov (United States)

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian

    2016-07-13

    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives.

  4. Effect of cross-linking on microstructure and physical performance of casein protein.

    Science.gov (United States)

    Ghosh, Arun; Ali, M Azam; Dias, George J

    2009-07-13

    The development of advanced materials from biorenewable protein biopolymers requires the generation of more exogenous bonds to maintain the microstructure and durability in the final products. Casein is the main protein of milk, representing about 80% of the total protein. In the present investigation the casein protein was solubilized and/or emulsified in aqueous alkaline solutions, and 2D films and 3D matrices were produced. The effects of silane (3-aminopropyl triethoxy silane), DL-glyceraldehyde and glutaraldehyde on tensile properties and water swelling/absorption of 2D casein films and also the microstructure of the freeze-dried 3D matrices were analyzed. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that there were no significant changes in the molecular weight (19-23.9 kDa) of the casein proteins on exposure to alkaline solutions of sodium hydroxide and silane. The casein films produced without glycerol plasticizer and with heat treatment (130 °C for 18 h) were fragile. However, the fragile films were transformed into ductile and tough materials on exposure to moisture (i.e., conditioned for one week at 50 ± 2% relative humidity and 22 ± 2 °C) and showed a maximum average tensile strength of 49-52 MPa and modulus of 1107-1391 MPa. The chemical cross-linkers (i.e., DL-glyceraldehyde and glutaraldehyde) improved the microstructure of glycerol plasticized casein protein, when analyzed under scanning electron microscope (SEM). Furthermore, these chemical cross-linking agents enhanced the mechanical properties and water resistant properties of casein films.

  5. Reactivity of chemical respiratory allergens in the Peroxidase Peptide Reactivity Assay.

    Science.gov (United States)

    Lalko, J F; Dearman, R J; Gerberick, G F; Troutman, J A; Api, A M; Kimber, I

    2013-03-01

    Sensitizing chemicals are commonly associated primarily with either skin or respiratory sensitization. In the Direct Peptide Reactivity Assay (DPRA), when compared with skin sensitizers, respiratory allergens have been demonstrated to selectively react with lysine rather than cysteine. The Peroxidase Peptide Reactivity Assay (PPRA) has been developed as a refinement to the DPRA. The PPRA incorporates dose-response analyses, mass spectroscopy for peptide detection and a horseradish peroxidase-hydrogen peroxide enzymatic system, increasing the potential to identify pro-haptens. In the investigations reported here, the PPRA was evaluated to determine whether it provides advantages for the identification of respiratory allergens. Twenty respiratory sensitizers, including five predicted to be pre-/pro-haptens were evaluated. The PPRA performed similarly to the DPRA with respect to identifying inherently reactive respiratory sensitizers. However, three respiratory sensitizers predicted to be pre-/pro-haptens (chlorhexidine, ethylenediamine and piperazine) were non-reactive and the general selectivity of the respiratory allergens for lysine was lost in the PPRA. Overall, the data indicate that the PPRA does not provide an advantage over the DPRA for discriminating allergens as either contact or respiratory sensitizers. Nevertheless, the PPRA provides a number of refinements to the DPRA that allow for an enhanced characterization of reactivity for both classes of chemical allergens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.

    Science.gov (United States)

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    2014-09-01

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, PUHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE.

  7. CHARACTERIZATION OF SORBENT PRODUCED THROUGH IMMOBILIZATION OF HUMIC ACID ON CHITOSAN USING GLUTARALDEHYDE AS CROSS-LINKING AGENT AND Pb(II ION AS ACTIVE SITE PROTECTOR

    Directory of Open Access Journals (Sweden)

    Uripto Trisno Santoso

    2010-12-01

    Full Text Available Sorbent produced through immobilization of humic acid (HA on chitosan using glutaraldehyde as cross-linking agent and Pb(II ions as active site protector has been characterized. Active sorption site of HA was protected by reacting HA with Pb(II ion, and the protected-HA was then activated by glutaraldehyde, crosslinked onto chitosan, and deprotected by 0.1 M disodium ethylenediamine tetra-acetic acid (Na2EDTA. The protected-crosslinking method enhanced the content of immobilized-HA and its chemical stability. Based on the FTIR spectra, crosslinking of HA on chitosan probably occurred through a chemical reaction. The sorption capacity of sorbent still remains unchanged after the second regeneration, but some of HA start to be soluble. The latter shows that cross-linking reaction between HA and chitosan is through formation an unstable product. The effectiveness of sorbent regeneration can also be identified by the XRD pattern.

  8. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo

    DEFF Research Database (Denmark)

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H

    2014-01-01

    when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between...... virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P

  9. Graphene oxide-immobilized NH₂-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes.

    Science.gov (United States)

    Sun, Cheng; Deng, Yuanfu; Wan, Lina; Qin, Xusong; Chen, Guohua

    2014-07-23

    There is a great interest in the utilization of silicon-based anodes for lithium-ion batteries. However, its poor cycling stability, which is caused by a dramatic volume change during lithium-ion intercalation, and intrinsic low electric conductivity hamper its industrial applications. A facile strategy is reported here to fabricate graphene oxide-immobilized NH2-terminated silicon nanoparticles (NPs) negative electrode (Si@NH2/GO) directed by hydrogen bonding and cross-linked interactions to enhance the capacity retention of the anode. The NH2-modified Si NPs first form strong hydrogen bonds and covalent bonds with GO. The Si@NH2/GO composite further forms hydrogen bonds and covalent bonds with sodium alginate, which acts as a binder, to yield a stable composite negative electrode. These two chemical cross-linked/hydrogen bonding interactions-one between NH2-modified Si NPs and GO, and another between the GO and sodium alginate-along with highly mechanically flexible graphene oxide, produced a robust network in the negative electrode system to stabilize the electrode during discharge and charge cycles. The as-prepared Si@NH2/GO electrode exhibits an outstanding capacity retention capability and good rate performance, delivering a reversible capacity of 1000 mAh g(-1) after 400 cycles at a current of 420 mA g(-1) with almost 100% capacity retention. The results indicated the importance of system-level strategy for fabricating stable electrodes with improved electrochemical performance.

  10. Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan

    Science.gov (United States)

    Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M.; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre

    2015-01-01

    The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillussubtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains – the catalytic domain as well as the proposed peptidoglycan recognition domain – are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis. PMID:25429710

  11. Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan.

    Science.gov (United States)

    Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre

    2014-12-24

    The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.

  12. Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)

    Science.gov (United States)

    Leventis, Nicholas

    2006-01-01

    Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X

  13. Metalloprotein complexes for the study of electron-transfer reactions. Characterization of diprotein complexes obtained by covalent cross-linking of cytochrome c and plastocyanin with a carbodiimide.

    Science.gov (United States)

    Zhou, J S; Brothers, H M; Neddersen, J P; Peerey, L M; Cotton, T M; Kostić, N M

    1992-01-01

    Cytochrome c (cyt) and zinc cytochrome c (Zncyt) are separately cross-linked to plastocyanin (pc) by the carbodiimide EDC according to a published method. The changes in the protein reduction potentials indicate the presence of approximately two amide cross-links. Chromatography of the diprotein complexes cyt/pc and Zncyt/pc on CM-52 resin yields multiple fractions, whose numbers depend on the eluent. UV-vis, EPR, CD, MCD, resonance Raman, and surface-enhanced resonance Raman spectra show that cross-linking does not significantly perturb the heme and blue copper active sites. Degrees of heme exposure show that plastocyanin covers most of the accessible heme edge in cytochrome c. Impossibility of cross-linking cytochrome c to a plastocyanin derivative whose acidic patch had been blocked by chemical modification shows that it is the acidic patch that abuts the heme edge in the covalent complex. The chromatographic fractions of the covalent diprotein complex are structurally similar to one another and to the electrostatic diprotein complex. Isoelectric points show that the fractions differ from one another in the number and distribution of N-acylurea groups, byproducts of the reaction with the carbodiimide. Cytochrome c and plastocyanin are also tethered to each other via lysine residues by N-hydroxysuccinimide diesters. Tethers, unlike direct amide bonds, allow mobility of the cross-linked molecules. Laser-flash-photolysis experiments show that, nonetheless, the intracomplex electron-transfer reaction cyt(II)/pc(II)----cyt(III)/pc(I) is undetectable in complexes of either type. Only the electrostatic diprotein complex, in which protein rearrangement from the docking configuration to the reactive configuration is unrestricted, undergoes this intracomplex reaction at a measurable rate.

  14. Enhancement of mechanical properties, microstructure, and antimicrobial activities of zein films cross-linked using succinic anhydride, eugenol, and citric Acid.

    Science.gov (United States)

    Khalil, Ashraf A; Deraz, Sahar F; Elrahman, Somia Abd; El-Fawal, Gomaa

    2015-08-18

    Zein constitutes about half of the endosperm proteins in corn. Recently, attempts have been made to utilize zein for food coatings and biodegradable materials, which require better physical properties, using chemical modification of zein. In this study, zein proteins were modified using citric acid, succinic anhydride, and eugenol as natural cross-linking agents in the wet state. The cross-linkers were added either separately or combined in increment concentrations (0.1, 0.2, 0.3, and 0.4%). The effects of those agents on the mechanical properties, microstructure, optical properties, infrared (IR) spectroscopy, and antibacterial activities of zein were investigated. The addition of cross-linking agents promoted changes in the arrangement of groups in zein film-forming particles. Regarding the film properties, incorporation of cross-linking agents into zein films prepared in ethanol resulted in two- to three-fold increases in tensile strength (TS) values. According to the Fourier-transform infrared (FTIR) spectra and Hunter parameters there were no remarkable changes in the structure and color of zein films. Transparency of zein films was decreased differentially according to the type and cross-linker concentration. The mechanical and optical properties of zein films were closely related to their microstructure. All cross-linked films showed remarkable antibacterial activities against Bacillus cereus ATCC 49064 and Salmonella enterica ATCC 25566. Food spoilage and pathogenic bacteria were affected in a film-dependent manner. Our experimental results show that even with partial cross-linking the mechanical properties and antipathogen activities of zein films were significantly improved, which would be useful for various industrial applications.

  15. Preparation of cross-linked hen-egg white lysozyme crystals free of cracks

    Science.gov (United States)

    Yan, Er-Kai; Lu, Qin-Qin; Zhang, Chen-Yan; Liu, Ya-Li; He, Jin; Chen, Da; Wang, Bo; Zhou, Ren-Bin; Wu, Ping; Yin, Da-Chuan

    2016-01-01

    Cross-linked protein crystals (CLPCs) are very useful materials in applications such as biosensors, catalysis, and X-ray crystallography. Hence, preparation of CLPCs is an important research direction. During the preparation of CLPCs, an often encountered problem is that cracks may appear in the crystals, which may finally lead to shattering of the crystals into small pieces and cause problem in practical applications. To avoid cross-link induced cracking, it is necessary to study the cracking phenomenon in the preparation process. In this paper, we present an investigation on how to avoid cracking during preparation of CLPCs. An orthogonal experiment was designed to study the phenomenon of cross-link induced cracking of hen-egg white lysozyme (HEWL) crystals against five parameters (temperature, solution pH, crystal growth time, glutaraldehyde concentration, and cross-linking time). The experimental results showed that, the solution pH and crystal growth time can significantly affect cross-link induced cracking. The possible mechanism was studied, and optimized conditions for obtaining crack-free CLPCs were obtained and experimentally verified. PMID:27703210

  16. Supercritical CO2 Foaming of Radiation Cross-Linked Isotactic Polypropylene in the Presence of TAIC

    Directory of Open Access Journals (Sweden)

    Chen-Guang Yang

    2016-12-01

    Full Text Available Since the maximum foaming temperature window is only about 4 °C for supercritical CO2 (scCO2 foaming of pristine polypropylene, it is important to raise the melt strength of polypropylene in order to more easily achieve scCO2 foaming. In this work, radiation cross-linked isotactic polypropylene, assisted by the addition of a polyfunctional monomer (triallylisocyanurate, TAIC, was employed in the scCO2 foaming process in order to understand the benefits of radiation cross-linking. Due to significantly enhanced melt strength and the decreased degree of crystallinity caused by cross-linking, the scCO2 foaming behavior of polypropylene was dramatically changed. The cell size distribution, cell diameter, cell density, volume expansion ratio, and foaming rate of radiation-cross-linked polypropylene under different foaming conditions were analyzed and compared. It was found that radiation cross-linking favors the foamability and formation of well-defined cell structures. The optimal absorbed dose with the addition of 2 wt % TAIC was 30 kGy. Additionally, the foaming temperature window was expanded to about 8 °C, making the handling of scCO2 foaming of isotactic polypropylene much easier.

  17. Incorporation of Decanethiol-Passivated Gold Nanoparticles into Cross-Linked Poly(Dimethylsiloxane Films

    Directory of Open Access Journals (Sweden)

    Motohiro Tagaya

    2011-01-01

    Full Text Available Cross-linking degree of a poly(dimethylsiloxane (PDMS film was controlled, and the incorporation of hydrophobic decanethiol-passivated gold (Au nanoparticles into the film was investigated. FT-IR spectra indicated that the hydrosilylation reaction between a vinyl group and a hydrosilyl group occurred with the cross-linking. The swelling degree of the film in toluene changed with a cross-linker concentration, indicating the control of the cross-linking degree of PDMS film. By EDX analysis, the amount of incorporated Au nanoparticles increased with decreasing a cross-linker concentration, indicating the enlarged free volume of the film. The Au nanoparticle-PDMS composite film containing a cross-linker at 6 wt% showed brown color attributed to plasmon resonance of Au nanoparticles, suggesting the Au nanoparticles in the film at monodispersion state. The UV-visible absorbance of the composite film decreased without spectralshift by swelling with toluene, and the changes were reversible. The aggregation among Au nanoparticles in the composite film after calcination also depended on the cross-linking degree. Thus, the control of cross-linking degree of PDMS film successfully leaded to a simple way of fabricating the Au nanoparticle-PDMS composite film at the mono-dispersion state.

  18. Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking.

    Science.gov (United States)

    van Montfort, Bart A; Schuurman-Wolters, Gea K; Wind, Joyce; Broos, Jaap; Robillard, George T; Poolman, Bert

    2002-04-26

    A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.

  19. Site specificity of psoralen-DNA interstrand cross-linking determined by nuclease Bal31 digestion

    DEFF Research Database (Denmark)

    Zhen, W P; Buchardt, O; Nielsen, Henrik

    1986-01-01

    A novel method for determination of psoralen photo-cross-linking sites in double-stranded DNA is described, which is based on a pronounced inhibition of Bal31 exonuclease activity by psoralen-DNA interstrand cross-links. The results using a 51 base pair fragment of plasmid pUC19 and a 346 base pair...... fragment of pBR322 show that 5'-TA sequences are preferred cross-linking sites compared to 3'-TA sequences. They also indicate that sequences flanking the 5'-TA site influence the cross-linking efficiency at the site. The DNA photo-cross-linking by 4,5',8-trimethylpsoralen and 8-methoxypsoralen...... was analyzed, and these two psoralens showed identical site specificity. The 5'-TA preference is rationalized on the basis of the local DNA structure in terms of the pi-pi electronic interaction between the thymines and the intercalated psoralens, as well as on the base tilt angles of the DNA....

  20. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    Science.gov (United States)

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration.

  1. Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels.

    Science.gov (United States)

    Köhnke, Tobias; Elder, Thomas; Theliander, Hans; Ragauskas, Arthur J

    2014-01-16

    Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with CNCs after which the suspension was frozen unidirectionally in order to control the ice crystal formation and by that the pore morphology of the material. Finally the ice crystal templates were removed by freeze-drying. During the freeze-casting process hemiacetal bonds are formed between the aldehyde groups and hydroxyl groups, either on other xylan molecules or on CNCs, which cross-links the system. The proposed cross-linking reaction was confirmed by using cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy. The pore morphology of the obtained materials was analyzed by scanning electron microscopy (SEM). The materials were also tested for compressive strength properties, both in dry and water swollen state. All together this study describes a novel combined freeze-casting/cross-linking process which enables fabrication of nanoreinforced biopolymer-based hydrogels with controlled porosity and 3-D architecture.

  2. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    Science.gov (United States)

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved.

  3. Studies on Cross-linking of succinic acid with chitosan/collagen

    Directory of Open Access Journals (Sweden)

    Tapas Mitra

    2013-01-01

    Full Text Available The present study summarizes the cross-linking property of succinic acid with chitosan /collagen. In detail, the chemistry behind the cross-linking and the improvement in mechanical and thermal properties of the cross-linked material were discussed with suitable instruments and bioinformatics tools. The concentration of succinic acid with reference to the chosen polymers was optimized. A 3D scaffold prepared using an optimized concentration of succinic acid (0.2% (w/v with chitosan (1.0% (w/v and similarly with collagen (0.5% (w/v, was subjected to surface morphology, FT-IR analysis, tensile strength assessment, thermal stability and biocompatibility. Results revealed, cross-linking with succinic acid impart appreciable mechanical strength to the scaffold material. In silico analysis suggested the prevalence of non-covalent interactions, which played a crucial role in improving the mechanical and thermal properties of the cross-linked scaffold. The resultant 3D scaffold may find application as wound dressing material, as an implant in clinical applications and as a tissue engineering material.

  4. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing.

    Science.gov (United States)

    Kirk, James F; Ritter, Gregg; Finger, Isaac; Sankar, Dhyana; Reddy, Joseph D; Talton, James D; Nataraj, Chandra; Narisawa, Sonoko; Millán, José Luis; Cobb, Ronald R

    2013-01-01

    Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.

  5. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus

    Science.gov (United States)

    Raffa, Paolo; Rosati, Marianna

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  6. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus

    Directory of Open Access Journals (Sweden)

    Marco Lombardo

    2016-01-01

    Full Text Available In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999 comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72±1.20 D (P=0.01; in addition, corrected distance visual acuity improved significantly (P=0.08 and spherical equivalent refraction was significantly less myopic (P=0.02 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus.

  7. DNA interstrand cross-link induced by estrogens as well as their complete and synergic carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The estrogens show negative activity in Ames test, but estrodiol and diethylstilbestrol in estrogens both are carcinogens based upon animal experiments and epidemiological investigation. It is concluded from the di-region theory, a mechanism conception put forward by one of the present authors, that the carcinogenesis of estrogens is switched on by the covalent cross-link between complementary DNA bases induced by them. We verified for the first time by the DNA alkaline elution method that both estrodiol and diethylstilbestrol cause covalent cross-link between DNA-protein and DNA interstrands after metabolic activation with dosage correlation, but neither the non-carcinogens cholesterol nor pyrene can lead to these sorts of cross-link in the same condition. It has been known that there is a synergetic effect between estrogen and pollution of polycyclic aromatic hydrocarbons. Although non-carcinogenic pyrene alone cannot induce cross-link, its addition with equal molar quantity to estrodiol culture causes synergically the total and DNA interstrand cross-link ratios to be respectively four and three times more than the ones in the cultivation with estrodiol only. It is shown that not only the estrodiol set off the formation of pyrene bi-radicals, but also the pyrene radicals arouse conversely the production of estrodiol bi-radicals.

  8. Synthesis of cross-linked magnetic composite microspheres containing carboxyl groups

    Institute of Scientific and Technical Information of China (English)

    Jili ZHAO; Zhaorang HAN; Qiang SONG; Ying WANG; Dan SUN

    2008-01-01

    Fe3O4 magnetic nano-particles were prepared by a co-precipitation method and were modified using oleic acid. Then, the cross-linked magnetic composite microspheres containing a carboxyl group were prepared by using an improved emulsion polymerization with divinylbenzene (DVB) as the cross-linking agent. The composite microspheres comprised the Fe3O4 magnetic nano-partictes as cores and the copolymer of styrene and acrylic acid as shells. The morphology and structure of the composite microsphere were characterized by FT-IR, transmission electron microscopy (TEM), X-ray diffrac-tion (XRD), X-ray photoelectron spectrum (XPS) and so on. The results show that the composite microspheres were well dispersed in emulsion with uniform sizes and carboxyl groups on their surface. They were cross-linked and stable in 1 mol/L of HCl and DMF.

  9. Photochromic cross-link polymer for color changing and sensing surface

    Science.gov (United States)

    Fu, Richard; Shi, Jianmin; Forsythe, Eric; Srour, Merric

    2016-12-01

    Photochromic cross-link polymers were developed using patented ultraviolet (UV) photoinitiator and commercial photochromic dyes. The photochromic dyes have been characterized by measuring absorbance before and after UV activation using UV-visible (Vis) spectrometry with varying activation intensities and wavelengths. Photochromic cross-link polymers were characterized by a dynamic xenon and UV light activation and fading system. The curing processes on cloth were established and tested to obtain effective photochromic responses. Both PulseForge photonic curing and PulseForge plus heat surface curing processes had much better photochromic responses (18% to 19%, 16% to 25%, respectively) than the xenon lamp treatment (8%). The newly developed photochromic cross-link polymer showed remarkable coloration contrasts and fast and comparable coloration and fading rates. Those intelligent, controlled color changing and sensing capabilities will be used on flexible and "drapeable" surfaces, which will incorporate ultra-low power sensors, sensor indicators, and identifiers.

  10. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Lee, Kwan Soo [Los Alamos National Laboratory; Jeong, Myung - Hwan [GIST, KOREA; Lee, Jae - Suk [GIST, KOREA

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  11. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

    DEFF Research Database (Denmark)

    Ma, Wenjia; Zhao, Chengji; Yang, Jingshuai

    2012-01-01

    Diamine-cross-linked membranes were prepared from cross-linkable poly(arylene ether ketone) containing pendant cationic quaternary ammonium group (QPAEK) solution by a facile and general thermal curing method using 4,4′-diaminodiphenylmethane with rigid framework and 1,6-diaminohexane with flexible...... framework as cross-linker, respectively. Self-cross-linked cationic polymer electrolytes membranes were also prepared for comparison. The diamines were advantageously distributed within the polymeric matrix and its amine function groups interacted with the benzyl bromide of QPAEK, resulting in a double...... that the diamine-cross-linked membranes using the rigid cross-linker show much improved properties than that using the flexible cross-linker. More properties relating to the feasibility in high temperature proton exchange membrane fuel cell applications were investigated in detail....

  12. Genipin Cross-Linked Polymeric Alginate-Chitosan Microcapsules for Oral Delivery: In-Vitro Analysis

    Directory of Open Access Journals (Sweden)

    Hongmei Chen

    2009-01-01

    Full Text Available We have previously reported the preparation of the genipin cross-linked alginate-chitosan (GCAC microcapsules composed of an alginate core with a genipin cross-linked chitosan membrane. This paper is the further investigation on their structural and physical characteristics. Results showed that the GCAC microcapsules had a smooth and dense surface and a networked interior. Cross-linking by genipin substantially reduced swelling and physical disintegration of microcapsules induced by nongelling ions and calcium sequestrants. Strong resistance to mechanical shear forces and enzymatic degradation was observed. Furthermore, the GCAC membranes were permeable to bovine serum albumin and maintained a molecular weight cutoff at 70 KD, analogous to the widely studied alginate-chitosan, and alginate-poly-L-lysine-alginate microcapsules. The release features and the tolerance of the GCAC microcapsules in the stimulated gastrointestinal environment were also investigated. This GCAC microcapsule formulation offers significant potential as a delivery vehicle for many biomedical applications.

  13. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  14. Light-triggered cross-linking of alginates with caged Ca2+.

    Science.gov (United States)

    Cui, Jiaxi; Wang, Miao; Zheng, Yijun; Rodríguez Muñiz, Gemma Maria; del Campo, Aránzazu

    2013-05-13

    A strategy to light-trigger ionic cross-linking of alginates by incorporating a photosensitive Ca2+ cage (nitr-T) is presented. Upon irradiation, free Ca2+ was released, and this caused gelation of the alginate solution. Addition of Ca2+ "on-demand" allowed us to obtain homogeneous alginate (ALG) gels using concentrated initial ALG solutions (10%), not possible with other ionic gelation approaches. The cross-linking degree and derived mechanical properties of the hydrogel were modulated by the exposure dose. The light-mediated cross-linked alginate hydrogel displayed a significant improvement in the mechanical properties and homogeneity when compared to mixtures of alginate and soluble Ca2+ at comparable concentrations.

  15. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    Science.gov (United States)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  16. Effect of cross-linking degree on selected properties of retrograded starch adipate.

    Science.gov (United States)

    Kapelko, M; Zięba, T; Michalski, A; Gryszkin, A

    2015-01-15

    The aim of this study was to determine the effects of the concentration of paste used to produce retrograded starch, and esterification degree, on selected properties of the resultant distarch adipate. Starch paste was prepared from native potato starch (1, 4, 10, 18 or 30 g/100g), frozen, defrosted and dried. Thus produced preparations of retrograded starch were cross-linked with various doses of a cross-linking agent (0.125, 0.25, 0.5, 1.0 or 2.0 ml per 100g of starch). Properties of the produced adipates depended on both the concentration of paste used to produce retrograded starch and the degree of substitution with adipic acid residues. Solubility in water and swelling power of the cross-linked preparations of retrograded starch, as well as pasting temperature and viscosity of produced pastes, all decreased along with the increasing degree of substitution with adipic acid residues.

  17. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use.

  18. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    Science.gov (United States)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  19. Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.

    Science.gov (United States)

    Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen

    2017-01-01

    Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability.

  20. Comparison of Wear and Oxidation in Retrieved Conventional and Highly Cross-Linked UHMWPE Tibial Inserts.

    Science.gov (United States)

    Currier, Barbara H; Currier, John H; Franklin, Katherine J; Mayor, Michael B; Reinitz, Steven D; Van Citters, Douglas W

    2015-12-01

    Two groups of retrieved tibial inserts from one manufacturer's knee system were analyzed to evaluate the effect of a highly cross-linked bearing surface on wear and in vivo oxidation. The two groups ((1) conventional gamma-inert sterilized and (2) highly cross-linked, coupled with the same rough (Ra=0.25) Ti-6Al-4V tray) were matched with statistically similar in vivo duration and patient variables. The retrieved inserts were analyzed for ketone oxidation and wear in the form of dimensional change. The difference in oxidation rate between highly cross-linked and conventional gamma-inert sterilized inserts did not reach statistical significance. Observations suggest that the majority of wear can be accounted for by the backside interface with the rough Ti-6Al-4V tray; however, wear measured by thickness-change rate was statistically indistinguishable between the two bearing materials.

  1. Designing of superporous cross-linked hydrogels containing acrylic-based polymer network

    Directory of Open Access Journals (Sweden)

    Ray Debajyoti

    2008-01-01

    Full Text Available Biodegradable cross-linked polymer, 2-hydroxyethyl methacrylate-co-acrylic acid was synthesized by free radical polymerization technique using N,N"-methylene-bis-acrylamide as cross-linker and benzoyl peroxide as reaction initiator. FT-IR, 1 H-NMR, scanning electron microscopy (SEM, and thermogravimetric analysis (TGA studies of the copolymer along with homopolymers were carried out. FT-IR studies showed no interactions on copolymerization. SEM studies of the copolymer were carried out and mean particle size was found to be 50 µm. TGA analysis indicated an increase in thermal stability by cross-linking the polymer network. Swelling behavior of the copolymer showed more swelling by increasing pH of the medum and the prepared polymer was found to be biodegradable. The prepared cross-linked polymer system holds good for further drug delivery studies in connection to its super swelling and biodegradability.

  2. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer.

    Science.gov (United States)

    Matos-Pérez, Cristina R; White, James D; Wilker, Jonathan J

    2012-06-06

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues.

  3. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    Energy Technology Data Exchange (ETDEWEB)

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O. (Harvard-Med); (IIT); (NCSU); (UPENN); (Manchester); (Orthovita)

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  4. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  5. Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase.

    Science.gov (United States)

    Truong, Van-Den; Clare, Debra A; Catignani, George L; Swaisgood, Harold E

    2004-03-10

    Modification of the functionality of whey proteins using microbial transglutaminase (TGase) has been the subject of recent studies. However, changes in rheological properties of whey proteins as affected by extensive cross-linking with TGase are not well studied. The factors affecting cross-linking of whey protein isolate (WPI) using both soluble and immobilized TGase were examined, and the rheological properties of the modified proteins were characterized. The enzyme was immobilized on aminopropyl glass beads (CPG-3000) by selective adsorption of the biotinylated enzyme on avidin that had been previously immobilized. WPI (4 and 8% w/w) in deionized water, pH 7.5, containing 10 mM dithiothreitol was cross-linked using enzyme/substrate ratios of 0.12-10 units of activity/g WPI. The reaction was carried out in a jacketed bioreactor for 8 h at 40 degrees C with continuous circulation. The gel point temperature of WPI solutions treated with 0.12 unit of immobilized TGase/g was slightly decreased, but the gel strength was unaffected. However, increasing the enzyme/substrate ratio resulted in extensive cross-linking of WPI that was manifested by increases in apparent viscosity and changes in the gelation properties. For example, using 10 units of soluble TGase/g resulted in extensive cross-linking of alpha-lactalbumin and beta-lactoglobulin in WPI, as evidenced by SDS-PAGE and Western blotting results. Interestingly, the gelling point of WPI solutions increased from 68 to 94 degrees C after a 4-h reaction, and the gel strength was drastically decreased (lower storage modulus, G'). Thus, extensive intra- and interchain cross-linking probably caused formation of polymers that were too large for effective network development. These results suggest that a process could be developed to produce heat-stable whey proteins for various food applications.

  6. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    Science.gov (United States)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  7. Functional hydrophilic polystyrene beads with uniformly size and high cross-linking degree facilitated rapid separation of exenatide.

    Science.gov (United States)

    Li, Qiang; Zhao, Lan; Zhang, Rongyue; Huang, Yongdong; Zhang, Yan; Zhang, Kun; Wu, Xuexing; Zhang, Zhigang; Gong, Fangling; Su, Zhiguo; Ma, Guanghui

    2016-04-01

    A high cross-linking polystyrene(PSt)-based anion-exchange material with uniformly size, high ion exchange capacity, and high hydrophilicity was synthesized by a novel surface functionalization approach in this study. Uniformly sized PSt microspheres were prepared by the membrane emulsion polymerization strategy, and then modified by (1) conversing resid ual surface vinyl groups to epoxy groups followed by quaternization, and (2) decorating aromatic ring matrix including nitration, reduction and attachment of glycidyltrimethylammonium chloride. The 3-D morphology and porous features of microspheres were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface of the modified PSt became roughness but the particle size remained same. Meanwhile, FT-IR spectra and laser scanning confocal microscope (LCSM) indicated that the modification groups had been successfully covalently coated onto the PSt microspheres. Modified PSt microspheres showed greatly improved hydrophilicity and biocompatibility with 0.387mmol/mL ion exchange capacity (IEC). In the application evaluation procedure, exenatide can be purified from 42.9% (peptide crudes) to 88.6% by modified PSt column with 97.1% recovery yield. This modified PSt microspheres had a large potential in application for efficient separation of peptides.

  8. pH-dependent cross-linking of catechols through oxidation via Fe(3+) and potential implications for mussel adhesion.

    Science.gov (United States)

    Fullenkamp, Dominic E; Barrett, Devin G; Miller, Dusty R; Kurutz, Josh W; Messersmith, Phillip B

    2014-01-01

    The mussel byssus is a remarkable attachment structure that is formed by injection molding and rapid in-situ hardening of concentrated solutions of proteins enriched in the catecholic amino acid 3,4-dihydroxy-L-phenylalanine (DOPA). Fe(3+), found in high concentrations in the byssus, has been speculated to participate in redox reactions with DOPA that lead to protein polymerization, however direct evidence to support this hypothesis has been lacking. Using small molecule catechols, DOPA-containing peptides, and native mussel foot proteins, we report the first direct observation of catechol oxidation and polymerization accompanied by reduction of Fe(3+) to Fe(2+). In the case of the small molecule catechol, we identified two dominant dimer species and characterized their connectivities by nuclear magnetic resonance (NMR), with the C6-C6 and C5-C6 linked species as the major and minor products, respectively. For the DOPA-containing peptide, we studied the pH dependence of the reaction and demonstrated that catechol polymerization occurs readily at low pH, but is increasingly diminished in favor of metal-catechol coordination interactions at higher pH. Finally, we demonstrate that Fe(3+) can induce cross-links in native byssal mussel proteins mefp-1 and mcfp-1 at acidic pH. Based on these findings, we discuss the potential implications to the chemistry of mussel adhesion.

  9. 1,3-Diphenylethenylcarbazolyl-Based Monomer for Cross-Linked Hole Transporting Layers

    Directory of Open Access Journals (Sweden)

    Maryte Daskeviciene

    2015-05-01

    Full Text Available A new cross-linkable monomer containing 1,3-diphenylethenylcarbazolyl-based hole-transporting moieties and four reactive epoxy groups, was prepared by a multistep synthesis route from 1,3-bis(2,2-diphenylethenyl-9H-carbazol-2-ol and its application for the in situ formation of cross-linked hole transporting layers was investigated. A high concentration of flexible aliphatic epoxy chains ensures good solubility and makes this compound an attractive cross-linking agent. The synthesized compounds were characterized by various techniques, including differential scanning calorimetry, xerographic time of flight, and electron photoemission in air methods.

  10. Bioreducible cross-linked nanoshell enhances gene transfection of polycation/DNA polyplex in vivo.

    Science.gov (United States)

    Piao, Ji-Gang; Ding, Sheng-Gang; Yang, Lu; Hong, Chun-Yan; You, Ye-Zi

    2014-08-11

    In this study, we have prepared a self-cross-linking PEG-based branched polymer, which easily forms a bioreducible nanoshell around polyplexes of cationic polymer and DNA, simply via heating the polyplex dispersions in the presence of this self-cross-linking branched polymer. This nanoshell can prevent the polyplex from dissociation and aggregation in physiological fluids without inhibiting the electrostatic interactions between the polymer and DNA. Furthermore, glutathione (GSH) can act as a stimulus to open the nanoshell after it has entered the cell. The polyplexes coated with the bioreducible nanoshell show an obvious enhancement in gene transfection in vivo compared with bare polyplexes.

  11. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    Science.gov (United States)

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  12. Increasing Thermal Stability of Gelatin by UV-Induced Cross-Linking with Glucose

    Directory of Open Access Journals (Sweden)

    Evan M. Masutani

    2014-01-01

    Full Text Available The effects of ultraviolet (254 nm radiation on a hydrated gelatin-glucose matrix were investigated for the development of a physiologically thermostable substrate for potential use in cell scaffold production. Experiments conducted with a differential scanning calorimeter indicate that ultraviolet irradiation of gelatin-glucose hydrogels dramatically increases thermal stability such that no melting is observed at temperatures of at least 90°C. The addition of glucose significantly increases the yield of cross-linked product, suggesting that glucose has a role in cross-link formation. Comparisons of lyophilized samples using scanning electron microscopy show that irradiated materials have visibly different densities.

  13. A novel DTPA cross-linking of hyaluronic acid and metal complexation thereof.

    Science.gov (United States)

    Buffa, Radovan; Běťák, Jiří; Kettou, Sofiane; Hermannová, Martina; Pospíšilová, Lucie; Velebný, Vladimír

    2011-09-27

    Macromolecular conjugates of a natural polysaccharide, hyaluronic acid, with diethylenetriaminepentaacetic acid (DTPA)-metal complexes were synthesized and characterized by FTIR, NMR, SEC-MALLS and ICP analysis. Several parameters of the cross-linking reaction as molecular weight of starting HA, temperature, equivalent of DTPA bis-anhydride, concentration of HA, presence of transacylation catalyst DMAP and reaction time were studied. The mechanism for the reaction was suggested and relationship between the molecular weight assigned by SEC-MALLS, reaction parameters and rheological properties of the final cross-linked products were investigated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Reinforced films based on cross-linked water-soluble sulfonated carbon nanotubes with sulfonated polystyrene.

    Science.gov (United States)

    Dai, Ying; Haiping, Hong; Guiver, Michael; Welsh, Jeffry S

    2009-09-01

    Reinforced films based on sulfonated polystyrene cross-linked with water-soluble sulfonated carbon nanotubes were fabricated using a free-standing film-making method. Transmission and scanning electron microscopy (TEM and SEM), and X-ray photoelectron spectroscopy (XPS) were used to verify the cross-linking reaction. The mechanical properties of these films demonstrated that the tensile strength increases with an increase in the sulfonated nanotube concentration. At 5 wt% nanotube loading, the tensile strength increased 84% compared with polymer containing no nanotube loading. The relationships between structure and mechanical properties are discussed and a possible direction for making ultra thin and ultra lightweight film is proposed.

  15. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Arnous, Anis; Holck, Jesper

    2011-01-01

    the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular...... weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased...

  16. Multistimuli-Responsive, Moldable Supramolecular Hydrogels Cross-Linked by Ultrafast Complexation of Metal Ions and Biopolymers.

    Science.gov (United States)

    Sun, Zhifang; Lv, Fucong; Cao, Lujie; Liu, Lin; Zhang, Yi; Lu, Zhouguang

    2015-06-26

    A new type of multistimuli-responsive hydrogels cross-linked by metal ions and biopolymers is reported. By mixing the biopolymer chitosan (CS) with a variety of metal ions at the appropriate pH values, we obtained a series of transparent and stable hydrogels within a few seconds through supramolecular complexation. In particular, the CS-Ag hydrogel was chosen as the model and the gelation mechanism was revealed by various measurements. It was found that the facile association of Ag(+) ions with amino and hydroxy groups in CS chains promoted rapid gel-network formation. Interestingly, the CS-Ag hydrogel exhibits sharp phase transitions in response to multiple external stimuli, including pH value, chemical redox reactions, cations, anions, and neutral species. Furthermore, this soft matter showed a remarkable moldability to form shape-persistent, free-standing objects by a fast in situ gelation procedure.

  17. A Hyper-cross-linked Polynaphthalene Semiconductor with Excellent Visible-Light Photocatalytic Performance in the Degradation of Organic Dyes.

    Science.gov (United States)

    Zhang, Lei; Huang, Xin-Hua; Hu, Jin-Song; Song, Jian; Kim, Il

    2017-02-28

    Hyper-cross-linked polynaphthalene nanoparticles (PNNs) capable of catalyzing the degradation of organic pollutants upon exposure to visible light have been developed. The nascent and metal-free PNNs with a porous structure, high specific surface area, and narrow bandgap are chemically and thermally stable in the catalytic system, which make it promising as a kind of excellent photocatalytic material compared to conventional photocatalysts. The photocatalytic activity of the as-obtained PNNs exhibits remarkable photocatalytic performance for the degradation of rhodamine B (RhB) and methyl blue (MB) under the irradiation of visible light. The easy preparation, high catalytic activity, and recyclability of the PNNs open new opportunities in the visible-light-promoted degradation of organic pollutants.

  18. A Novel Membrane Prepared from Sodium Alginate Cross-linked with Sodium Tartrate for CO2 Capture

    Institute of Scientific and Technical Information of China (English)

    朱娅群; 王志; 张晨昕; 王纪孝; 王世昌

    2013-01-01

    The membrane-based CO2 separation process has an advantage compared to traditional CO2 separation technologies. The membrane is the key of the membrane separation process. In this paper, preparation, characteriza-tion and laboratory testing of the membrane, which was prepared from sodium alginate, hydrogen bond cross-linked with sodium tartrate and used for CO2/N2 separation, were reported. The resistance to SO2 of the membrane was also investigated. The experimental results demonstrate that the membrane possesses a high resistance to SO2. Finally, based on experimental results, the economic feasibility of the membrane used for CO2/N2 separation was evaluated, indicating the two-stage membrane process can compete with the traditional chemical absorption method.

  19. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M.; Zhu, Xiang; Dai, Sheng

    2014-04-01

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energyand environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to ‘classical’ methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  20. Mass spectrometric proteomics reveals that nuclear protein positive cofactor PC4 selectively binds to cross-linked DNA by a trans-platinum anticancer complex.

    Science.gov (United States)

    Du, Zhifeng; Luo, Qun; Yang, Liping; Bing, Tao; Li, Xianchan; Guo, Wei; Wu, Kui; Zhao, Yao; Xiong, Shaoxiang; Shangguan, Dihua; Wang, Fuyi

    2014-02-26

    An MS-based proteomic strategy combined with chemically functionalized gold nanoparticles as affinity probes was developed and validated by successful identification and quantification of HMGB1, which is well characterized to interact selectively with 1,2-cross-linked DNA by cisplatin, from whole cell lysates. The subsequent application of this method to identify proteins responding to 1,3-cross-linked DNA by a trans-platinum anticancer complex, trans-PtTz (Tz = thiazole), revealed that the human nuclear protein positive cofactor PC4 selectively binds to the damaged DNA, implying that PC4 may play a role in cellular response to DNA damage by trans-PtTz.

  1. Fmoc-based peptide thioester synthesis with self-purifying effect: heading to native chemical ligation in parallel formats.

    Science.gov (United States)

    Thomas, Franziska

    2013-03-01

    The chemical synthesis of proteins has facilitated functional studies of proteins due to the site-specific incorporation of post-translational modifications, labels, and non-proteinogenic amino acids. Moreover, native chemical ligation provides facile access to proteins by chemical means. However, the application of the native chemical ligation reaction in the synthesis of parallel formats such as protein arrays has been complicated because of the often cumbersome and time-consuming synthesis of the required peptide thioesters. An Fmoc-based peptide thioester synthesis with self-purification on the sulfonamide 'safety-catch' linker widens this bottleneck because HPLC purification can be avoided. The method is based on an on-resin cyclization-thiolysis reaction sequence. A macrocyclization via the N-terminus of the full-length peptide followed by a thiolytic C-terminal ring opening allows selective detachment of the truncation products and the full-length peptide. A brief overview of the chemical aspects of this method is provided including the optimization steps and the automation process. Furthermore, the application of the cyclization-thiolysis approach combined with the native chemical ligation reaction in the parallel synthesis of a library of 16 SH3-domain variants of SHO1 in yeast is described, demonstrating the value of this new technique for the chemical synthesis of protein arrays.

  2. The Effect of Glutaraldehyde Cross-Linking on the Enzyme Activity of Immobilized &beta-Galactosidase on Chitosan Bead

    Directory of Open Access Journals (Sweden)

    He Chen

    2013-07-01

    Full Text Available The effect of glutaraldehyde solution concentration, cross-linking time, cross-linking pH and cross-linking temperature on the enzyme activity of the immobilized &beta-galactosidase on Chitosan beads were studied. The enzyme activity was measured after immobilized by detecting the absorbance value at 420 nm.The results were as follows: the immobilized enzyme activity reached the maximum when the concentration of glutaraldehyde solution was 0.3%.The immobilized enzyme had optimal cross-linking time of 3h, optimal cross-linking pH of 6.5, optimal cross-linking temperature of 25°C, under these conditions, the immobilized enzyme activity reached 101, 96, 90 U/g, respectively.

  3. Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking.

    Science.gov (United States)

    Chen, Boru; Dang, Leping; Zhang, Xiao; Fang, Wenzhi; Hou, Mengna; Liu, Tiankuo; Wang, Zhanzhong

    2017-03-15

    Kudzu starch was cross-linked with sodium trimetaphosphate (STMP) at different temperatures, time and of STMP concentrations in this work. The cross-linked starches (CLSs) were fractionated further into cross-linked amylose and amylopectin in order to compare the effect of cross-linking on the microstructure. According to scanning electron microscope (SEM), CLSs displayed the resemble appearance of spherical and polygonal shapes like NS. X-ray diffraction (XRD) revealed that amylose of native starch (A), NS and CLS displayed a combination of A-type and B-type structure, while that was not found in amylose of cross-linked starch (CLA). The deconvoluted fourier transform infrared (FT-IR) indicated that crystal structure of kudzu starch was losing with the proceeding of cross-linking reaction. The CLSs exhibited a higher retrogradation and freeze-thaw stability than NS. This was accompanied by a significant decrease in sedimentation, transparency, swelling power and solubility.

  4. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier.

    Science.gov (United States)

    Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh

    2015-01-01

    Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres.

  5. Elevated carboxy terminal cross linked telopeptide of type I collagen in alcoholic cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Hansen, M; Hillingsø, Jens

    1999-01-01

    BACKGROUND: The carboxy terminal cross linked telopeptide of type I collagen (ICTP) has been put forward as a marker of bone resorption. Patients with alcoholic liver disease may have osteodystrophy. AIMS: To assess circulating and regional concentrations of ICTP in relation to liver dysfunction...

  6. TGFβ affects collagen cross-linking independent of chondrocyte phenotype but strongly depending on physical environment

    NARCIS (Netherlands)

    Bastiaansen-Jenniskens, Y.M.; Koevoet, W.; Bart, A.C.W. de; Zuurmond, A.-M.; Bank, R.A.; Verhaar, J.A.N.; Groot, J. de; Osch, G.J.V.M. van

    2008-01-01

    Transforming growth factor beta (TGFβ) is often used in cartilage tissue engineering to increase matrix formation by cells with various phenotypes. However, adverse effects of TGFβ, such as extensive cross-linking in cultured fibroblasts, have also been reported. Our goal was to study effects of

  7. Ionically cross-linked hyaluronic acid: wetting, lubrication, and viscoelasticity of a modified adhesion barrier gel

    Directory of Open Access Journals (Sweden)

    Katherine Vorvolakos

    2010-12-01

    Full Text Available Katherine Vorvolakos1, Irada S Isayeva1, Hoan-My Do Luu1, Dinesh V Patwardhan1, Steven K Pollack21Division of Chemistry and Material Science, 2Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USAAbstract: Hyaluronic acid (HA, in linear or cross-linked form, is a common component of cosmetics, personal care products, combination medical products, and medical devices. In all cases, the ability of the HA solution or gel to wet surfaces and/or disrupt and lubricate interfaces is a limiting feature of its mechanism of action. We synthesized ferric ion–cross-linked networks of HA based on an adhesion barrier, varied the degree of cross-linking, and performed wetting goniometry, viscometry, and dynamic mechanical analysis. As cross-linking increases, so do contact angle, viscosity, storage modulus, and loss modulus; thus, wetting and lubrication are compromised. These findings have implications in medical device materials, such as adhesion barriers and mucosal drug delivery vehicles.Keywords: hyaluron, adhesion barrier, wetting, contact angle, viscosity, lubrication, elasticity, viscoelastic, hydrogel, ferric

  8. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    Science.gov (United States)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  9. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs)

    NARCIS (Netherlands)

    Sheldon, R.A.

    2011-01-01

    Cross-linked enzyme aggregates (CLEAs) have many economic and environmental benefits in the context of industrial biocatalysis. They are easily prepared from crude enzyme extracts, and the costs of (often expensive) carriers are circumvented. They generally exhibit improved storage and operational

  10. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Khabaz, Fardin, E-mail: rajesh.khare@ttu.edu; Khare, Ketan S., E-mail: rajesh.khare@ttu.edu; Khare, Rajesh, E-mail: rajesh.khare@ttu.edu [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States)

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  11. Mocaf cross-linking with gluten to improve the quality of mocaf dough

    Science.gov (United States)

    Raharja, Sapta; Udin, Faqih; Suparno, Ono; Febrianti, Faricha Helfi; Nuraisyah, Ani

    2017-03-01

    Crosslink between mocaf and gluten is conducted to increase the using of mocaf which has very big potential in Indonesia. The effort of cross-linking between mocaf and gluten is to get mocaf flour with better dough quality. This study aims to produce a cross-linked mocaf-gluten flour and to evaluate the influence of heating temperature (X1) and the addition of gluten concentration (X2) using completely randomized design factorial (RAFL). The cross-linking is carried out in alkaline solution with 10%, 20%, and 30% gluten addition and heating temperature at 50, 55, and 60 °C. The result showed that mocaf - gluten flour with the treatment of 30% gluten addition at 55 °C had the largest amount of protein and baking expansion (i.e 19.77% and 2.78 mL/g). Swelling power of the flour was increasing along with the increasing of water absorbing capacity of the mocaf - gluten flour. Birefringence properties of mocaf - gluten flour tended to be reduced as the increasing heating temperature. FTIR analysis of mocaf - gluten flour showed that there was peak strengthening of the infrared spectrum of the C - N bond at 1167-1159 cm-1 which was presumably resulted from the gluten addition and the cross-linking properties.

  12. Sensitizing potential of enzymatically cross-linked peanut proteins in a mouse model of peanut allergy.

    NARCIS (Netherlands)

    Smit, Joost|info:eu-repo/dai/nl/250600706

    2014-01-01

    SCOPE: The cross-linking of proteins by enzymes to form high-molecular-weight protein, aggregates can be used to tailor the technological or physiological functionality of food products. Aggregation of dietary proteins by food processing may promote allergic sensitization, but the effects of enzymat

  13. Design and Preparation of Cross-Linked Polystyrene Nanoparticles for Elastomer Reinforcement

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2010-01-01

    Full Text Available Cross-linked polystyrene (PS particles in a latex form were synthesized by free radical emulsion polymerization. The nano-PS-filled elastomer composites were prepared by the energy-saving latex compounding method. Results showed that the PS particles took a spherical shape in the size of 40–60 nm with a narrow size distribution, and the glass-transition temperature of the PS nanoparticles increased with the cross-linking density. The outcomes from the mechanical properties demonstrated that when filled into styrene-butadiene rubber (SBR, nitrile-butadiene rubber (NBR, and natural rubber (NR, the cross-linked PS nano-particles exhibited excellent reinforcing capabilities in all the three matrices, and the best in the SBR matrix. In comparison with that of the carbon black filled composites, another distinguished advantage of the cross-linked PS particles filled elastomer composites was found to be light weight in density, which could help to save tremendous amount of energy when put into end products.

  14. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Science.gov (United States)

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances..., preparing, treating, packaging, transporting, or holding food, in accordance with the following prescribed... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked....

  15. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  16. EVA交联机理的研究%The Research of EVA Cross-linking Mechanism

    Institute of Scientific and Technical Information of China (English)

    王川艳; 苑会林

    2011-01-01

    研究了过氧化二异丙苯(DCP)对乙烯-醋酸乙烯共聚物(EVA)交联的影响,分析交联过程的反应机理.对交联的EVA样品进行紫外光辐照,分析在该过程中所发生的反应,并研究加入紫外线吸收剂2-羟基-4-正辛氧基-二苯甲酮(UV-531)后,对交联EVA样品在紫外光辐照下交联的影响.%The effect of peroxide (DCP) on Ethylene-Vinyl Acetate (EVA) cross-linking were studied, the reaction mechanism of EVA cross-linking were analyzed. Upon the exposure of cross-linked EVA samples to ultraviolet light, the reaction during this process were analyzed, and also, after adding the ultraviolet absorber (UV-531) , the influences to cross-linked EVA samples during the ultraviolet radiation process were researched.

  17. Dynamic Heterogeneity in Highly Cross-linked Epoxy in the Vicinity of Glass Transition

    Science.gov (United States)

    Lin, Po-Han; Khare, Rajesh

    2010-03-01

    Cross-linked epoxy has been widely used in aerospace and electronics industries. The highly cross-linked nature of these systems leads to different chain dynamics as compared to the linear polymeric systems. In this work, we have used molecular dynamics (MD) simulations to study the dynamic heterogeneity in cross-linked epoxy near the glass transition temperature. Well-relaxed atomistic models of cross-linked epoxy were first created by employing the simulated annealing polymerization approach. The specific epoxy system studied consisted of diglycidyl ether of bisphenol-A (DGEBA) as the epoxy monomer and trimethylene glycol di-p-aminobenzoate (TMAB) as the cross-linker. The glass transition temperature of these model structures was determined from MD simulation by monitoring their volume-temperature behaviour in a stepwise cooling run. The chain dynamics of these systems were characterized by their local translational and orientational mobility. Furthermore, dynamic heterogeneity was studied by analyzing the spatial distribution of the mobile and immobile atoms in the system near the glass transition temperature.

  18. Standard and hypoosmolar corneal cross-linking in various pachymetry groups

    NARCIS (Netherlands)

    Soeters, Nienke; Tahzib, Nayyirih G

    2015-01-01

    PURPOSE: To investigate the influence of corneal thickness on the outcome of corneal cross-linking (CXL) for progressive keratoconus. METHODS: In this cohort study, 72 unilateral eyes were treated by CXL and divided into three groups according to central corneal thickness (CCT) measured by ultrasoun

  19. The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by L,D-transpeptidases.

    Science.gov (United States)

    Lavollay, Marie; Fourgeaud, Martine; Herrmann, Jean-Louis; Dubost, Lionel; Marie, Arul; Gutmann, Laurent; Arthur, Michel; Mainardi, Jean-Luc

    2011-02-01

    Few therapeutic alternatives remain for the treatment of infections due to multiresistant Mycobacterium abscessus. Here we show that the peptidoglycans of the "rough" and "smooth" morphotypes contain predominantly 3→3 cross-links generated by l,d-transpeptidases, indicating that these enzymes are attractive targets for the development of efficient drugs.

  20. Cross-linking Electrospun Polydioxanone-Soluble Elastin Blends: Material Characterization

    Directory of Open Access Journals (Sweden)

    Michael J. McClure

    2008-03-01

    Full Text Available The purpose of this study was to establish whether material properties of elastin co-electrospun with polydioxanone (PDO would change over time in both the uncross-linked state and the cross-linked state. First, uncross-linked scaffolds were placed in phosphate buffered saline (PBS for three separate time periods: 15 minutes, 1 hour, and 24 hours, and subsequently tested using uniaxial materials testing. Several cross-linking reagents were then investigated to verify their ability to crosslink elastin: 1-ethyl-3-(dimethylaminopropyl-carbodiimide (EDC, ethylene glycol diglycidyl ether (EGDE, and genipin. Uniaxial tensile testing was performed on scaffolds cross-linked with EDC and genipin, yielding results that warranted further investigation for PDO-elastin blends. Material properties of the cross-linked scaffolds were then found within range of both pig femoral artery and human femoral artery. These results demonstrate PDO-elastin blends could potentially be favorable as vascular grafts, thus warranting future in vitro and in vivo studies.

  1. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?

    Science.gov (United States)

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A

    2016-04-01

    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent--dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10% of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10% of DAS are more resistant to enzymatic degradation.

  2. Corneal Cross-Linking for Pediatric Keratoconus : Long-Term Results

    NARCIS (Netherlands)

    Godefrooij, Daniel A; Soeters, Nienke; Imhof, Saskia M; Wisse, Robert P L

    2016-01-01

    PURPOSE: To assess the efficacy and safety of cross-linking in pediatric patients with keratoconus and to provide a systematic literature overview regarding this subject. METHODS: In this prospective cohort, 54 eyes of 36 pediatric patients with keratoconus underwent standard epithelium-off cross-li

  3. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI protein

  4. Detection of DNA cross-links in tumor cells with the ethidium bromide fluorescence assay

    NARCIS (Netherlands)

    de Jong, Steven; Zijlstra, J G; Timmer-Bosscha, H; Mulder, N H; de Vries, Liesbeth

    1986-01-01

    Until now the fluorescence assay with ethidium bromide has only been used on pure DNA. This assay depends on the difference in fluorescence between single- and double-stranded DNA (dsDNA). Cross-links in DNA are measured by the return of fluorescence of dsDNA after heat denaturation at pH 12. Under

  5. Horseradish peroxidase-catalyzed cross-linking of feruloylated arabinoxylans with β-casein

    NARCIS (Netherlands)

    Boeriu, C.G.; Oudgenoeg, G.; Spekking, W.T.J.; Berendsen, L.B.J.M.; Vancon, L.; Boumans, H.; Gruppen, H.; Berkel, W.J.H. van; Laane, C.; Voragen, A.G.J.

    2004-01-01

    Heterologous conjugates of wheat arabinoxylan and β-casein were prepared via enzymatic cross-linking, using sequential addition of the arabinoxylan to a mixture of β-casein, peroxidase, and hydrogen peroxide. The maximal formation of adducts between the β-casein and the feruloylated arabinoxylan was

  6. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L [Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284-3067 (United States); Francis, Michael P [Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States); Simpson, David G [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States)], E-mail: glbowlin@vcu.edu

    2008-12-15

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml{sup -1} were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  7. Mature enzymatic collagen cross-links, hydroxylysylpyridinoline and lysylpyridinoline, in the aging human vitreous

    NARCIS (Netherlands)

    Ponsioen, T.L.; van Deemter, M.; Bank, R.A.; Snabel, J.M.; Zijlstra, G.S.; van der Worp, R.J.; Hooymans, J.M.M.; Los, L.I.

    2009-01-01

    Purpose. The vitreous body of the human eye undergoes progressive morphologic changes with aging. Since the enzymatic collagen cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) are known to be important for the integrity of the collagen matrix, the presence in the vitreous on agin

  8. Mature Enzymatic Collagen Cross-Links, Hydroxylysylpyridinoline and Lysylpyridinoline, in the Aging Human Vitreous

    NARCIS (Netherlands)

    Ponsioen, Theodorus L.; van Deemter, Marielle; Bank, Rudolf A.; Snabel, Johanna M.; Zijlstra, Gerrit S.; van der Worp, Roelofje J.; Hooymans, Johanna M. M.; Los, Leonoor I.

    2009-01-01

    PURPOSE. The vitreous body of the human eye undergoes progressive morphologic changes with aging. Since the enzymatic collagen cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) are known to be important for the integrity of the collagen matrix, the presence in the vitreous on agin

  9. Formation and Distribution of Space-Charge in Cross-Linked Polyethylene

    Science.gov (United States)

    Zhang, Ye-Wen; Li, Ji-Xiao; Zheng, Fei-Hu; Peng, Zong-Ren; Wu, Chang-Shun; Xia, Zhong-Fu

    2002-08-01

    The formation and distribution of space-charge in a cross-linked polyethylene (XLPE) sample are investigated by means of pressure wave propagation, infrared spectroscopy and electrostatic force microscopy (EFM). The related mechanism of space-charge distribution and the structure of XLPE are discussed. The EFM images show that quite large quantitative space-charges locate at the surface of spherulites.

  10. Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links

    DEFF Research Database (Denmark)

    Hink, Steffen; Elsøe, Katrine; Cleemann, Lars Nilausen;

    2015-01-01

    Udel polysulfone based membranes with 4-aminopyridine pendant groups and cross-linking imidazole units are synthesized in a simple two step reaction. The ratio of 4-aminopyridine and imidazole is varied and the materials are extensively characterized. The average phosphoric acid uptake (in 85 wt...

  11. Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A. (UMM)

    2012-10-10

    Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

  12. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    Science.gov (United States)

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability.

  13. Vitamin E diffused highly cross-linked polyethylene in total hip arthroplasty at five years

    DEFF Research Database (Denmark)

    Nebergall, Audrey K; Greene, M. E.; Laursen, M B

    2017-01-01

    AIMS: The objective of this five-year prospective, blinded, randomised controlled trial (RCT) was to compare femoral head penetration into a vitamin E diffused highly cross-linked polyethylene (HXLPE) liner with penetration into a medium cross-linked polyethylene control liner using radiostereome......AIMS: The objective of this five-year prospective, blinded, randomised controlled trial (RCT) was to compare femoral head penetration into a vitamin E diffused highly cross-linked polyethylene (HXLPE) liner with penetration into a medium cross-linked polyethylene control liner using...... radiostereometric analysis. PATIENTS AND METHODS: Patients scheduled for total hip arthroplasty (THA) were randomised to receive either the study E1 (32 patients) or the control ArComXL polyethylene (35 patients). The median age (range) of the overall cohort was 66 years (40 to 76). RESULTS: The five-year median...... (interquartile range) proximal femoral head penetration into the E1 was -0.05 mm (-0.13 to -0.02) and 0.07 mm (-0.03 to 0.16) for ArComXL. At three and five years, the penetration was significantly greater in the ArComXL group compared with the E1 group (p = 0.029 and p = 0.019, respectively). All patient...

  14. Ultraviolet cross-linking of helical oligonucleotides to two monoclonal MRL-1pr/1pr anti-DNA autoantibodies. Variations in H and L chain binding to DNA

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Y.J.; Stollar, B.D. (Tufts Univ., Boston, MA (USA))

    1990-11-15

    Experiments were performed to determine whether both H and L chains of different anti-native DNA autoantibodies are uniformly involved in binding to DNA. Two purified monoclonal mouse (MRL-1pr/1pr) IgG autoantibodies, H241 and 2C10, were tested. They both bound synthetic helical oligonucleotides of 10 to 20 base pairs in a gel electrophoresis retardation assay but differed in their preferences for given base sequences. Exposure of antibody-radiolabeled oligonucleotide mixtures to UV light (254 nm) for 10 min led to specific covalent cross-linking of oligonucleotide to both the H and the L chains of H241 but only to the H chain of 2C10. Single labeling events were detected without higher aggregation. The oligonucleotides were not cross-linked to unrelated IgG, even after 2 h of irradiation. Cross-linked (radioactively labeled) H and L chains of H241 and 2C10 were isolated from denaturing electrophoresis gels and digested with lysyl endopeptidase and/or staphylococcal V8 protease. H241 and 2C10 H chains each yielded a major labeled peptide fragment, but the peptides from the two antibodies were different. These experiments measured only some of the antibody-DNA interactions, probably with bases in the major groove of the DNA. They indicated that two MRL-1pr/1pr IgG anti-native DNA antibodies differ in their H and L chain contacts with DNA and provide an approach to identifying affinity-labeled binding sites in the antibodies.

  15. Chemical engineering of self-assembled Alzheimer's peptide on a silanized silicon surface.

    Science.gov (United States)

    Ammar, Mehdi; Smadja, Claire; Ly, Giang Thi Phuong; Tandjigora, Diénaba; Vigneron, Jackie; Etcheberry, Arnaud; Taverna, Myriam; Dufour-Gergam, Elisabeth

    2014-05-27

    The aim of this work is to develop a sensitive and specific immune-sensing platform dedicated to the detection of potential biomarkers of Alzheimer's disease (AD) in biological fluids. Accordingly, a controlled and adaptive surface functionalization of a silicon wafer with 7-octenyltrichlorosilane has been performed. The surface has extensively been characterized by atomic force microscopy (AFM; morphology) and X-ray photoelectron spectroscopy (XPS; chemical composition) and contact angle measurements. The wettability of the grafted chemical groups demonstrated the gradual trend from hydrophilic to hydrophobic surface during functionalization. XPS evidenced the presence of silanes on the surface after silanization, and even carboxylic groups as products from the oxidation step of the functionalization process. The characterization results permitted us to define an optimal protocol to reach a high-quality grafting yield. The issue of the quality of controlled chemical preparation on bioreceiving surfaces was also investigated by the recognition of one AD biomarker, the amyloid peptide Aβ 1-42. We have therefore evaluated the biological activity of the grafted anti Aβ antibodies onto this silanized surface by fluorescent microscopy. In conclusion, we have shown, both qualitatively and quantitatively, the uniformity of the optimized functionalization on slightly oxidized silicon surfaces, providing a reliable and chemically stable procedure to determine specific biomarkers of Alzheimer disease. This work opens the route to the integration of controlled immune-sensing applications on lab-on-chip systems.

  16. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering.

    Science.gov (United States)

    Mathapati, Santosh; Bishi, Dillip Kumar; Guhathakurta, Soma; Cherian, Kotturathu Mammen; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Verma, Rama Shanker

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p>0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP-G-CA-ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP-G-CA-ET). DBP-G-CA-ET exhibited a significant (p>0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (ppericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Wear measurement of highly cross-linked UHMWPE using a 7Be tracer implantation technique.

    Science.gov (United States)

    Wimmer, Markus A; Laurent, Michel P; Dwiwedi, Yasha; Gallardo, Luis A; Chipps, Kelly A; Blackmon, Jeffery C; Kozub, Raymond L; Bardayan, Daniel W; Gross, Carl J; Stracener, Daniel W; Smith, Michael S; Nesaraja, Caroline D; Erikson, Luke; Patel, Nidhi; Rehm, Karl E; Ahmad, Irshad; Greene, John P; Greife, Uwe

    2013-04-01

    The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are therefore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 ((7)Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression-molded GUR 1050, were activated with 10(9) to 10(10) (7)Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei up to 8.5 μm below the surface. The pins were tested for wear in a six-station pin-on-flat apparatus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and estimated to be 17 ± 3 μg per million cycles. The conventional-to-cross-linked ratio of the wear rates was 13.1 ± 0.8, in the expected range for these materials. Oxidative degradation damage from implantation was negligible; however, a weak dependence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.

  18. Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Suzhou Institute of Sichuan University, Suzhou 215123 (China); Tian Meng; Zhang Dongming; Wang Jianyun; Wang Qiguang [College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Yu Xixun [College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Suzhou Institute of Sichuan University, Suzhou 215123 (China); Zhang Xiaohua [College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Wan Changxiu, E-mail: wanchangxiu@163.com [College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2012-02-01

    Liver tissue engineering (LTE) requires a perfect extracellular matrix (ECM) for hepatocytes culture to maintain high level of liver-specific functions. Here, we reported a LTE scaffold derived from oxidized alginate covalently cross-linked galactosylated chitosan via Schiff base reaction, without employing any extraneous chemical cross-linking agent. The structure of galactosylated chitosan (GC) and oxidized alginate was confirmed by Fourier transformed infrared (FTIR) spectra, proton nuclear magnetic resonance ({sup 1}H-NMR) spectroscopy, X-ray diffraction (XRD) or thermogravimetric (TG) analysis. The structure and properties of a series of the scaffolds were characterized by FTIR, XRD, scanning electron microscopy (SEM), porosity, equilibrium swelling, mechanical properties, thermal stability and in vitro degradation. FTIR spectra confirmed the characteristic peak of Schiff base groups in the scaffolds and XRD indicated the scaffolds could be amorphous. SEM analysis showed that the scaffolds displayed highly porous surfaces with average pore size of 50-150 {mu}m and interconnected pore structure in the internal structure with average pore size of 100-250 {mu}m. Porosity measurement suggested the scaffolds had a porosity of about 70%. The compressive modulus of the scaffolds (hydrated) was in the range of 4.2-6.3 kPa. Further studies showed that, with the increase of the oxidized alginate content, the equilibrium swelling and in vitro degradation rate of the scaffolds decreased and the thermal stability slightly increased, which might mainly attribute to the difference of the degree of cross-linking and the nature properties of the raw materials. Additionally, the biocompatibility of the scaffolds was evaluated in vitro. The results showed that the hepatocytes cultured on the scaffolds had a typical spheroidal morphology, formed multi-cellular aggregates and presented perfect integration with the scaffolds, which suggested that the scaffolds may be potential

  19. Solvent effects on the physicochemical properties of the cross-linked histidine-tyrosine ligand of cytochrome c oxidase.

    Science.gov (United States)

    McDonald, William J; Einarsdóttir, Olöf

    2010-05-20

    Density functional theory was used to explore the effects of aqueous solvation on the structure, vibrational frequencies, and the electronic absorption spectrum of 2-(4-methylimidazol-1-yl)-phenol (Me-ImPhOH), a chemical analogue of the cross-linked histidine-tyrosine Cu(B) ligand of cytochrome c oxidase. In addition, the phenolic-OH pK(a), the anodic redox potential for the biring radical/anion couple, and the phenolic-OH bond dissociation energy were calculated relative to phenol using a series of isodesmic reactions. In the gas phase, the imidazole moiety stabilizes the biring anion for all the models and greatly decreases the phenolic-OH pK(a) relative to phenol. Moreover, the conductor-like polarizable continuum model (C-PCM)-water-solvated reactions predict Delta pK(a) values that are five times smaller than the gas-phase reactions, in agreement with the proposed role of the cross-linked histidine-tyrosine as a proton donor in the enzyme. For the neutral biring radical solvation models, the imidazole moiety induces a high degree of asymmetry into the phenol ring when compared to unmodified phenoxyl radical. The biring radical pi-bonds of the imidazole ring are more localized when compared to unmodified 1-methylimidazole and Me-ImPhOH solvation models, suggesting reduced aromaticity for all biring radical solvation models. The C-PCM-water-solvated reactions predict relative biring radical reduction potentials that are an order of magnitude smaller than the gas-phase reactions. The biring O-H bond is weakened relative to phenol by less than 4 kcal/mol for all the reactions studied, suggesting that the imidazole moiety does not facilitate H-atom abstraction in the enzyme. Together, these results demonstrate the sensitive nature of the proton and electron donating ability of the histidine-tyrosine cross-linked ligand in cytochrome c oxidase and suggest that for quantitative predictions of reaction energies and thermodynamic properties, models of this ligand

  20. Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells

    Directory of Open Access Journals (Sweden)

    Li X

    2013-08-01

    Full Text Available Xian Li,1,* Hao Li,2,4,* Wei Yi,3 Jianyu Chen,1 Biling Liang1 1Radiology Department, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China; 2Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China; 3Radiotherapy Department, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China; 4School of Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China *These authors contributed equally to this work Purpose: To research the acid-triggered core cross-linked folate-poly(ethylene glycol-b-poly[N-(N',N'-diisopropylaminoethyl glutamine] (folated-PEG-P[GA-DIP] amphiphilic block copolymer for targeted drug delivery and magnetic resonance imaging (MRI in liver cancer cells. Methods: As an appropriate receptor of protons, the N,N-diisopropyl tertiary amine group (DIP was chosen to conjugate with the side carboxyl groups of poly(ethylene glycol-b-poly (L-glutamic acid to obtain PEG-P(GA-DIP amphiphilic block copolymers. By ultrasonic emulsification, PEG-P(GA-DIP could be self-assembled to form nanosized micelles loading doxorubicin (DOX and superparamagnetic iron oxide nanoparticles (SPIONs in aqueous solution. When PEG-P(GA-DIP nanomicelles were combined with folic acid, the targeted effect of folated-PEG-P(GA-DIP nanomicelles was evident in the fluorescence and MRI results. Results: To further increase the loading efficiency and the cell-uptake of encapsulated drugs (DOX and SPIONs, DIP (pKa≈6.3 groups were linked with ~50% of the side carboxyl groups of poly(L-glutamic acid (PGA, to generate the core cross-linking under neutral or weakly acidic conditions. Under the acidic condition (eg, endosome/lysosome, the carboxyl groups were neutralized to facilitate disassembly of the P(GA-DIP blocks' cross-linking, for duly accelerating the encapsulated drug release. Combined