WorldWideScience

Sample records for chemical warfare agent

  1. History of chemical and biological warfare agents.

    Science.gov (United States)

    Szinicz, L

    2005-10-30

    Chemical and biological warfare agents constitute a low-probability, but high-impact risk both to the military and to the civilian population. The use of hazardous materials of chemical or biological origin as weapons and for homicide has been documented since ancient times. The first use of chemicals in terms of weapons of mass destruction goes back to World War I, when on April 22, 1915 large amounts of chlorine were released by German military forces at Ypres, Belgium. Until around the 1970s of the 20th century, the awareness of the threat by chemical and biological agents had been mainly confined to the military sector. In the following time, the development of increasing range delivery systems by chemical and biological agents possessors sensitised public attention to the threat emanating from these agents. Their proliferation to the terrorists field during the 1990s with the expanding scale and globalisation of terrorist attacks suggested that these agents are becoming an increasing threat to the whole world community. The following article gives a condensed overview on the history of use and development of the more prominent chemical and biological warfare agents. PMID:16111798

  2. Handbook of toxicology of chemical warfare agents

    CERN Document Server

    2010-01-01

    This groundbreaking book covers every aspect of deadly toxic chemicals used as weapons of mass destruction and employed in conflicts, warfare and terrorism. Including findings from experimental as well as clinical studies, this one-of-a-kind handbook is prepared in a very user- friendly format that can easily be followed by students, teachers and researchers, as well as lay people. Stand-alone chapters on individual chemicals and major topics allow the reader to easily access required information without searching through the entire book. This is the first book that offers in-depth coverage of individual toxicants, target organ toxicity, major incidents, toxic effects in humans, animals and wildlife, biosensors, biomarkers, on-site and laboratory analytical methods, decontamination and detoxification procedures, prophylactic, therapeutic and countermeasures, and the role of homeland security. Presents a comprehensive look at all aspects of chemical warfare toxicology in one reference work. This saves research...

  3. Fluorescent sensors for the detection of chemical warfare agents.

    Science.gov (United States)

    Burnworth, Mark; Rowan, Stuart J; Weder, Christoph

    2007-01-01

    Along with biological and nuclear threats, chemical warfare agents are some of the most feared weapons of mass destruction. Compared to nuclear weapons they are relatively easy to access and deploy, which makes them in some aspects a greater threat to national and global security. A particularly hazardous class of chemical warfare agents are the nerve agents. Their rapid and severe effects on human health originate in their ability to block the function of acetylcholinesterase, an enzyme that is vital to the central nervous system. This article outlines recent activities regarding the development of molecular sensors that can visualize the presence of nerve agents (and related pesticides) through changes of their fluorescence properties. Three different sensing principles are discussed: enzyme-based sensors, chemically reactive sensors, and supramolecular sensors. Typical examples are presented for each class and different fluorescent sensors for the detection of chemical warfare agents are summarized and compared. PMID:17705326

  4. Environmental assessments of sea dumped chemical warfare agents

    DEFF Research Database (Denmark)

    Sanderson, Hans; Fauser, Patrik

    This is a report on the information gathered during work related to sea dumped chemical warfare agents. It mainly reviews the work conducted in relation to the installation of the two Nord Stream gas pipeline from 2008-2012. The focus was on the weight-of-evidence risk assessment of disturbed CWA...

  5. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Henych, Jiří; Janos, P.; Skoumal, M.

    2016-01-01

    Roč. 236, č. 2016 (2016), s. 239-259. ISSN 0179-5953 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : chemical warfare agent * metal nanoparticle * unique surface-chemistry * mesoporous manganese oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 3.744, year: 2014

  6. Optical detection of chemical warfare agents and toxic industrial chemicals

    Science.gov (United States)

    Webber, Michael E.; Pushkarsky, Michael B.; Patel, C. Kumar N.

    2004-12-01

    We present an analytical model evaluating the suitability of optical absorption based spectroscopic techniques for detection of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in ambient air. The sensor performance is modeled by simulating absorption spectra of a sample containing both the target and multitude of interfering species as well as an appropriate stochastic noise and determining the target concentrations from the simulated spectra via a least square fit (LSF) algorithm. The distribution of the LSF target concentrations determines the sensor sensitivity, probability of false positives (PFP) and probability of false negatives (PFN). The model was applied to CO2 laser based photoacosutic (L-PAS) CWA sensor and predicted single digit ppb sensitivity with very low PFP rates in the presence of significant amount of interferences. This approach will be useful for assessing sensor performance by developers and users alike; it also provides methodology for inter-comparison of different sensing technologies.

  7. Carbon Nanotubes: Detection of Chemical and Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    Om Kumar

    2008-09-01

    Full Text Available Discovery of carbon nanotubes has great impact on the development of newer methodologies and devicesuseful for the analysis of various types of chemicals. The functionalisation of CNTs with biomolecules relatedto chemical and biological warfare agents makes these useful for the detection of these agents. The detectionsensitivity can be increased manyfold. Various types of chemical and biological sensors were developed usingvarious type of carbon nanotubes as well as nano particles of different metals.Defence Science Journal, 2008, 58(5, pp.617-625, DOI:http://dx.doi.org/10.14429/dsj.58.1684

  8. Respiratory Protection Against Chemical and Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    G.K. Prasad

    2008-09-01

    Full Text Available Chemical and biological warfare (CBW agents pose unavoidable threat, both to soldiers and civilians.Exposure to such deadly agents amidst the CBW agents contaminated environment can be avoided bytaking proper protective measures. Respiratory protection is indispensable when the soldiers or civiliansare surrounded by such deadly environment as contamination-free air is needed for respiration purposes.In this context, an attempt has been made to review the literature for the past five decades on developmentof various protective devices for respiratory protection against aerosols, gases, and vapours of CBWagents. This review covers structural, textural, and adsorption properties of materials used in gas filtersand mechanical filters for the removal of CBW agents.Defence Science Journal, 2008, 58(5, pp.686-697, DOI:http://dx.doi.org/10.14429/dsj.58.1692

  9. Using cheminformatics to find simulants for chemical warfare agents

    International Nuclear Information System (INIS)

    Highlights: → Summary of chemical warfare agent (CWA) simulants in current use. → Application of method of molecular similarity to CWA and simulants. → Quantitative metric for CWA-simulant similarity. → Rank ordering of simulants in current use. → Potential of method to identify simulants for emerging agents. - Abstract: Direct experimentation with chemical warfare agents (CWA) to study important problems such as their permeation across protective barrier materials, decontamination of equipment and facilities, or the environmental transport and fate of CWAs is not feasible because of the obvious toxicity of the CWAs and associated restrictions on their laboratory use. The common practice is to use 'simulants,' namely, analogous chemicals that closely resemble the CWAs but are less toxic, with the expectation that the results attained for simulants can be correlated to how the CWAs would perform. Simulants have been traditionally chosen by experts, by means of intuition, using similarity in one or more physical properties (such as vapor pressure or aqueous solubility) or in the molecular structural features (such as functional groups) between the stimulant and the CWA. This work is designed to automate the simulant identification process backed by quantitative metrics, by means of chemical similarity search software routinely used in pharmaceutical drug discovery. The question addressed here is: By the metrics of such software, how similar are traditional simulants to CWAs? That is, what is the numerical 'distance' between each CWA and its customary simulants in the quantitative space of molecular descriptors? The answers show promise for finding close but less toxic simulants for the ever-increasing numbers of CWAs objectively and fast.

  10. SCIENTIFIC AND PRACTICAL ASPECTS OF WATER BASIN CLEANING FROM CHEMICAL WARFARE AGENTS

    OpenAIRE

    T. M. Tiavlovskaya; V. F. Tamelo

    2011-01-01

    The paper contains an analysis of reasons that explain pollution of World Ocean waters by chemical warfare agents and ecological dangers which can arise due to their emission. Possible methods for liquidation of chemical warfare agents and water basin cleaning from them have been considered in the paper.

  11. Passive standoff detection of chemical warfare agents on surfaces.

    Science.gov (United States)

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible. PMID:15540446

  12. Passive Standoff Detection of Chemical Warfare Agents on Surfaces

    Science.gov (United States)

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.

  13. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.;

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs...

  14. Diagnosis of exposure to chemical warfare agents: An essential tool to counteract chemical terrorism

    NARCIS (Netherlands)

    Noort, D.; Schans, M.J. van der; Bikker, F.J.; Benschop, H.P.

    2009-01-01

    Methods to analyze chemical warfare agents (CW-agents) and their decomposition products in environmental samples were developed over the last decades. In contrast herewith, procedures for analysis in biological samples have only recently been developed. Retrospective detection of exposure to CW-agen

  15. Estimated Chemical Warfare Agent Surface Clearance Goals for Remediation Pre-Planning

    Energy Technology Data Exchange (ETDEWEB)

    Dolislager, Frederick [University of Tennessee, Knoxville (UTK); Bansleben, Dr. Donald [U.S. Department of Homeland Security; Watson, Annetta Paule [ORNL

    2010-01-01

    Health-based surface clearance goals, in units of mg/cm2, have been developed for the persistent chemical warfare agents sulfur mustard (HD) and nerve agent VX as well as their principal degradation products. Selection of model parameters and critical receptor (toddler child) allow calculation of surface residue estimates protective for the toddler child, the general population and adult employees of a facilty that has undergone chemical warfare agent attack.

  16. Studies on residue-free decontaminants for chemical warfare agents.

    Science.gov (United States)

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination. PMID:25710477

  17. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes

    Czech Academy of Sciences Publication Activity Database

    Janos, P.; Henych, Jiří; Pelant, O.; Pilařová, V.; Vrtoch, L.; Kormunda, M.; Mazanec, K.; Štengl, Václav

    2016-01-01

    Roč. 304, MAR (2016), s. 259-268. ISSN 0304-3894 Institutional support: RVO:61388980 Keywords : Cerium oxide * Chemical warfare agents * Organophosphate compounds * Decontamination Subject RIV: CA - Inorganic Chemistry Impact factor: 4.529, year: 2014

  18. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    International Nuclear Information System (INIS)

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator

  19. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Twomey; A. J. Caffrey; D. L. Chichester

    2007-02-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator.

  20. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    Science.gov (United States)

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents. PMID:27260452

  1. Applications of LPG fiber optical sensors for relative humidity and chemical-warfare-agents monitoring

    Science.gov (United States)

    Luo, Shufang; Liu, Yongcheng; Sucheta, Artur; Evans, Mishell K.; Van Tassell, Roger

    2002-09-01

    A long-period grating (LPG) fiber optic sensor has been developed for monitoring the relative humidity levels and toxic chemicals, especially the chemical warfare agents. The principle of operation of this sensor is based on monitoring the refractive index changes exhibited by the reactive coating applied to the surface of the LPG region in response to analytes. Specific interaction of the analyte with the thin film polymer coating produces as the output a wavelength shift that can be correlated with the concentration of the analyte. Thin polymer coating for relative humidity sensor is made of carboxymethylcellulose (CMC) covalently bound to the surface of the fiber. Coating for chemical warfare agent detection employs metal nanoclusters imbedded in polyethylenimine (PEI) for specific reaction. The relative humidity level can be determined from 0% to 95% and the level of toxic chemicals can be determined is at least on the scale of 1 ppm. This small-size and low-cost LPG fiber optic sensor exhibited high sensitivity, rapid response, repeatability and durability. The goal of developing relative humidity sensor is to produce a fiber optic sensor-based health monitoring system for building, while the chemical sensor has found its application in point detection network for chemical warfare agent monitoring.

  2. Rapid Ultrasensitive Chemical-Fingerprint Detection of Chemical and Biochemical Warfare Agents

    Energy Technology Data Exchange (ETDEWEB)

    ASHBY, CAROL I.; SHEPODD, TIMOTHY J.; YELTON, WILLIAM G.; MURON, DAVID J.

    2002-12-01

    Vibrational spectra can serve as chemical fingerprints for positive identification of chemical and biological warfare molecules. The required speed and sensitivity might be achieved with surface-enhanced Raman spectroscopy (SERS) using nanotextured metal surfaces. Systematic and reproducible methods for preparing metallic surfaces that maximize sensitivity have not been previously developed. This work sought to develop methods for forming high-efficiency metallic nanostructures that can be integrated with either gas or liquid-phase chem-lab-on-a-chip separation columns to provide a highly sensitive, highly selective microanalytical system for detecting current and future chem/bio agents. In addition, improved protein microchromatographic systems have been made by the creation of acrylate-based porous polymer monoliths that can serve as protein preconcentrators to reduce the optical system sensitivity required to detect and identify a particular protein, such as a bacterial toxin.

  3. Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation

    Science.gov (United States)

    Webber, Michael E.; Pushkarsky, Michael; Patel, C. Kumar N.

    2005-06-01

    We present an analysis of optical techniques for the detection of chemical warfare agents and toxic industrial chemicals in real-world conditions. We analyze the problem of detecting a target species in the presence of a multitude of interferences that are often stochastic and we provide a broadly applicable technique for evaluating the sensitivity, probability of false positives (PFP), and probability of false negatives (PFN) for a sensor through the illustrative example of a laser photoacoustic spectrometer (L-PAS). This methodology includes (1) a model of real-world air composition, (2) an analytical model of an actual field-deployed L-PAS, (3) stochasticity in instrument response and air composition, (4) repeated detection calculations to obtain statistics and receiver operating characteristic curves, and (5) analyzing these statistics to determine the sensor's sensitivity, PFP, and PFN. This methodology was used to analyze variations in sensor design and ambient conditions, and can be utilized as a framework for comparing different sensors.

  4. Reactive chromophores for sensitive and selective detection of chemical warfare agents and toxic industrial chemicals

    Science.gov (United States)

    Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.

    2005-05-01

    A reactive chromophore developed at MIT exhibits sensitive and selective detection of surrogates for G-class nerve agents. This reporter acts by reacting with the agent to form an intermediate that goes through an internal cyclization reaction. The reaction locks the molecule into a form that provides a strong fluorescent signal. Using a fluorescent sensor platform, Nomadics has demonstrated rapid and sensitive detection of reactive simulants such as diethyl chloro-phosphate (simulant for sarin, soman, and related agents) and diethyl cyanophosphate (simulant for tabun). Since the unreacted chromophore does not fluoresce at the excitation wavelength used for the cyclized reporter, the onset of fluo-rescence can be easily detected. This fluorescence-based detection method provides very high sensitivity and could enable rapid detection at permissible exposure levels. Tests with potential interferents show that the reporter is very selective, with responses from only a few highly toxic, electrophilic chemicals such as phosgene, thionyl chloride, and strong acids such as HF, HCl, and nitric acid. Dimethyl methyl phosphonate (DMMP), a common and inactive simu-lant for other CW detectors, is not reactive enough to generate a signal. The unique selectivity to chemical reactivity means that a highly toxic and hazardous chemical is present when the reporter responds and illustrates that this sensor can provide very low false alarm rates. Current efforts focus on demonstrating the sensitivity and range of agents and toxic industrial chemicals detected with this reporter as well as developing additional fluorescent reporters for a range of chemical reactivity classes. The goal is to produce a hand-held sensor that can sensitively detect a broad range of chemical warfare agent and toxic industrial chemical threats.

  5. The Steel Helmet Project: Canine Olfactory Detection of Low Concentrations of a Surrogate Chemical Warfare Agent

    OpenAIRE

    Hilliard, Stewart

    2003-01-01

    The Steel Helmet project was meant to assess the feasibility of the chemical warfare agent (CWA) detector dog concept. A relatively benign organophosphate pesticide called dichlorvos was used as a surrogate for CWAs. Using conventional training techniques, U.S. Department of Defense military working dogs were taught to discriminate scent boxes containing dichlorvos from “vehicle” scent boxes. Experiment 1 appeared to show that two out of three subjects were capable of criterion accuracy (0.95...

  6. Comparison of Selected Methods for Individual Decontamination of Chemical Warfare Agents

    OpenAIRE

    Tomas Capoun; Jana Krykorkova

    2014-01-01

    This study addresses the individual decontamination of chemical warfare agents (CWA) and other hazardous substances. The individual decontamination applies to contaminated body surfaces, protective clothing and objects immediately after contamination, performed individually or by mutual assistance using prescribed or improvised devices. The article evaluates the importance of individual decontamination, security level for Fire and Rescue Service Units of the Czech Republic (FRS CR) and demons...

  7. Applicability of federal and state hazardous waste regulatory programs to waste chemical weapons and chemical warfare agents.; TOPICAL

    International Nuclear Information System (INIS)

    This report reviews federal and state hazardous waste regulatory programs that govern the management of chemical weapons or chemical warfare agents. It addresses state programs in the eight states with chemical weapon storage facilities managed by the U.S. Army: Alabama, Arkansas, Colorado, Indiana, Kentucky, Maryland, Oregon, and Utah. It also includes discussions on 32 additional states or jurisdictions with known or suspected chemical weapons or chemical warfare agent presence (e.g., disposal sites containing chemical agent identification sets): Alaska, Arizona, California, Florida, Georgia, Hawaii, Idaho, Illinois, Iowa, Kansas, Louisiana, Massachusetts, Michigan, Mississippi, Missouri, Nebraska, Nevada, New Jersey, New Mexico, New York, North Carolina, Ohio, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, the U.S. Virgin Islands, Virginia, Washington, Washington, D.C., and Wyoming. Resource Conservation and Recovery Act (RCRA) hazardous waste programs are reviewed to determine whether chemical weapons or chemical warfare agents are listed hazardous wastes or otherwise defined or identified as hazardous wastes. Because the U.S. Environmental Protection Agency (EPA) military munitions rule specifically addresses the management of chemical munitions, this report also indicates whether a state has adopted the rule and whether the resulting state regulations have been authorized by EPA. Many states have adopted parts or all of the EPA munitions rule but have not yet received authorization from EPA to implement the rule. In these cases, the states may enforce the adopted munitions rule provisions under state law, but these provisions are not federally enforceable

  8. Reevaluation of 1999 Health-Based Environmental Screening Levels (HBESLs) for Chemical Warfare Agents

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Annetta Paule [ORNL; Dolislager, Fredrick G [ORNL

    2007-05-01

    This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include the G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development

  9. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  10. Surface-immobilization of molecules for detection of chemical warfare agents.

    Science.gov (United States)

    Bhowmick, Indrani; Neelam

    2014-09-01

    Fabrication of nanoscale molecular assemblies with advanced functionalities is an emerging field. These systems provide new perspectives for the detection and degradation of chemical warfare agents (CWAs). The main concern in this context is the design and fabrication of "smart surfaces" able to immobilize functional molecules which can perform a certain function or under the input of external stimuli. This review addresses the above points dealing with immobilization of various molecules on different substrates and describes their adequacy as sensors for the detection of CWAs. PMID:24998209

  11. Portable Raman device for detection of chemical and biological warfare agents

    Science.gov (United States)

    Wabuyele, Musundi B.; Martin, Matthew E.; Yan, Fei; Stokes, David L.; Mobley, Joel; Cullum, Brian M.; Wintenberg, Alan; Lenarduzzi, Roberto; Vo-Dinh, Tuan

    2005-04-01

    This paper describes a compact, self-contained, cost effective, and portable Raman Integrated Tunable Sensor (RAMiTs) for screening a wide variety of chemical and biological agents for homeland defense applications. The instrument is a fully-integrated, tunable, "point-and-shoot" Raman monitor based on solid-state acousto-optic tunable filter (AOTF) technology. It can provide direct identification and quantitative analysis of chemical and biological samples in a few seconds under field conditions. It also consists of a 830-nm diode laser for excitation, and an avalanche photodiode for detection. Evaluation of this instrument has been performed by analyzing several standard samples and comparing the results those obtained using a conventional Raman system. In addition to system evaluation, this paper will also discuss potential applications of the RAMiTs for detection of chemical and biological warfare agents.

  12. Reactive chromophores for sensitive and selective detection of chemical warfare agents

    Science.gov (United States)

    Frye-Mason, Greg; Leuschen, Martin; la Grone, Marcus; Wald, Lara; Aker, Craig; Dock, Matt; Hancock, Lawrence F.; Fagan, Steve; Paul, Kateri

    2004-08-01

    A new sensor for highly toxic species including chemical warfare (CW) agents has been developed. This sensor is based on a unique CW indicating chromophore (CWIC) developed by Professor Tim Swager at MIT. The CWIC was designed to be sensitive to the reactivity that makes these chemicals so toxic. Since it requires the reactivity of the agent to be detected, the CWIC technology has shown remarkable selectivity for nerve agent surrogates and some other highly toxic species, thereby demonstrating the potential to provide low false alarm rate detection. Since the chromophore has mini-mal fluorescence prior to reaction with an electrophilic and toxic chemical, the sensor acts in a dark field fluorescence mode. This provides the sensor with exceptional sensitivity and a potential to detect priority analytes well below levels detected by current hand held sensors. Finally, it is based on a simple optical detection scheme that enables small and rugged sensors to be developed and produced at a low enough cost so they can be widely utilized.

  13. Design and evaluation of hyperspectral algorithms for chemical warfare agent detection

    Science.gov (United States)

    Manolakis, Dimitris; D'Amico, Francis M.

    2005-11-01

    Remote sensing of chemical warfare agents (CWA) with stand-off hyperspectral imaging sensors has a wide range of civilian and military applications. These sensors exploit the spectral changes in the ambient photon flux produced by either sunlight or the thermal emission of the earth after passage through a region containing the CWA cloud. The purpose of this paper is threefold. First, to discuss a simple phenomenological model for the radiance measured by the sensor in the case of optically thin clouds. This model provides the mathematical framework for the development of optimum algorithms and their analytical evaluation. Second, we identify the fundamental aspects of the data exploitation problem and we develop detection algorithms that can be used by different sensors as long as they can provide the required measurements. Finally, we discuss performance metrics for detection, identification, and quantification and we investigate their dependance on CWA spectral signatures, sensor noise, and background spectral variability.

  14. Comparison of Selected Methods for Individual Decontamination of Chemical Warfare Agents

    Directory of Open Access Journals (Sweden)

    Tomas Capoun

    2014-06-01

    Full Text Available This study addresses the individual decontamination of chemical warfare agents (CWA and other hazardous substances. The individual decontamination applies to contaminated body surfaces, protective clothing and objects immediately after contamination, performed individually or by mutual assistance using prescribed or improvised devices. The article evaluates the importance of individual decontamination, security level for Fire and Rescue Service Units of the Czech Republic (FRS CR and demonstrates some of the devices. The decontamination efficiency of selected methods (sorbent, glove and sponge, two-chamber foam device and wiping with alcohol was evaluated for protective clothing and painted steel plate contaminated with O-ethyl-S-(diisopropylaminoethyl-methylthiophosphonate (VX, sulfur mustard, o-cresol and acrylonitrile. The methods were assessed from an economic point of view and with regard to specific user parameters, such as the decontamination of surfaces or materials with poor accessibility and vertical surfaces, the need for a water rinse as well as toxic waste and its disposal.

  15. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides

    International Nuclear Information System (INIS)

    Neurotoxic organophosphates (OP) have found widespread use in the environment for insect control. In addition, there is the increasing threat of use of OP based chemical warfare agents in both ground based warfare and terrorist attacks. Together, these trends necessitate the development of simple and specific methods for discriminative detection of ultra low quantities of OP neurotoxins. In our previous investigations a new biosensor for the direct detection of organophosphorus neurotoxins was pioneered. In this system, the enzymatic hydrolysis of OP neurotoxins by organophosphate hydrolase (OPH) generated two protons in each hydrolytic turnover through reactions in which P-X bonds are cleaved. The sensitivity of this biosensor was limited due to the potentiometric method of detection. Recently, it was reported that a change in fluorescence properties of a fluorophore in the vicinity of gold nanoparticles might be used for detection of nanomolar concentrations of DNA oligonucleotides. The detection strategy was based on the fact that an enhancement or quenching of fluorescence intensity is a function of the distances between the gold nanoparticle and fluorophore. While these reports have demonstrated the use of nanoparticle-based sensors for the detection of target DNA, we observed that the specificity of enzyme-substrate interactions could be exploited in similar systems. To test the feasibility of this approach, OPH-gold nanoparticle conjugates were prepared, then incubated with a fluorescent enzyme inhibitor or decoy. The fluorescence intensity of the decoy was sensitive to the proximity of the gold nanoparticle, and thus could be used to indicate that the decoy was bound to the OPH. Then different paraoxon concentrations were introduced to the OPH-nanoparticle-conjugate-decoy mixtures, and normalized ratio of fluorescence intensities were measured. The greatest sensitivity to paraoxon was obtained when decoys and OPH-gold nanoparticle conjugates were present at

  16. Research on the Interaction of Hydrogen-Bond Acidic Polymer Sensitive Sensor Materials with Chemical Warfare Agents Simulants by Inverse Gas Chromatography

    OpenAIRE

    Liu Yang; Qiang Han; Shuya Cao; Feng Huang; Molin Qin; Chenghai Guo; Mingyu Ding

    2015-01-01

    Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant) and 2-CEES (a blister agent simulant) were used as probes. Chemical an...

  17. Mass spectrometric study of selected precursors and degradation products of chemical warfare agents.

    Science.gov (United States)

    Papousková, Barbora; Bednár, Petr; Frysová, Iveta; Stýskala, Jakub; Hlavác, Jan; Barták, Petr; Ulrichová, Jitka; Jirkovský, Jaromír; Lemr, Karel

    2007-12-01

    Selected precursors and degradation products of chemical warfare agents namely N,N-dialkylaminoethane-2-ols, N,N-dialkylaminoethyl-2-chlorides and some of related N-quaternary salts were studied by means of electrospray ionization-multiple tandem mass spectrometry (ESI-MS(n)). Proposed structures were confirmed with accurate mass measurement. General fragmentation patterns of these compounds are discussed in detail and suggested processes are confirmed using deuterated standards. The typical processes are elimination of alkene, hydrogen chloride, or water, respectively. Besides, elimination of ethene from propyl chain under specific conditions was observed and unambiguously confirmed using exact mass measurement and labelled standard. The potential of mass spectrometry to distinguish the positional isomers occurring among the studied compounds is reviewed in detail using two different MS instruments (i.e. ion trap and hybrid quadrupole-time of flight (Q-TOF) analyzer). A new microcolumn liquid chromatography (microLC)/MS(n) method was designed for the cases where the resolution based solely on differences in fragmentation is not sufficient. Low retention of the derivatives on reversed phase (RP) was overcome by using addition of less typical ion pairing agent (1 mM/l, 3,5-dinitrobenzoic acid) to the mobile phase (mixture water : acetonitrile). PMID:18085550

  18. Surface studies of aminoferrocene derivatives on gold: electrochemical sensors for chemical warfare agents.

    Science.gov (United States)

    Khan, Mohammad A K; Long, Yi-Tao; Schatte, Gabriele; Kraatz, Heinz-Bernhard

    2007-04-01

    The cystamine conjugate [(BocNH)Fc(CO)CSA]2 was prepared by coupling cystamine with the N-protected ferrocene amino acid derivative BocHN-Fc-COOH and was fully characterized by spectroscopic methods and by single-crystal X-ray diffraction. The cystamine conjugate forms films on gold substrates, which upon deprotection of the amino group, react with chemical warfare agent (CWA) mimics, upon which the redox properties of the Fc group are affected significantly. Cyclic voltammetry shows 50(5) mV anodic shifts of the Fc redox potentials after exposure to EtSCH2CH2Cl, a simulant for sulfur mustard HD (MA), and (NC)(EtO)2P(O), a simulant for nerve agent Tabun (NA). Exposure to MA and NA causes an increase in 2.3 and 4.5 ng mass, respectively, in QCM which indicates ca. 70% efficiency in Boc-deprotection. Ellipsometry measured a film thickness increase from 6(+/-1) A for the deprotected film to 10(+/-4) A for the film modified with MA and to 7(+/-2) A for the film modified with NA. AFM measurements show changes in the thickness and morphology of the film after reaction with MA and NA. The surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and clearly show the attachment of the cystamine conjugate on the surface and its reaction with CWA mimics. PMID:17319647

  19. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.

    2003-07-24

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  20. Experimental study on detecting the explosives and chemical warfare agents by using neutrons

    International Nuclear Information System (INIS)

    In some cases, some small security inspection systems for detecting explosives or chemical warfare agents are useful. By using the 252Cf neutron source, some thermal neutron captured γ rays of 10.83 and 6.6 MeV could be observed as the indicator of the existence of nitrogen and chlorine, respectively. As a result of the experiment, the detecting limit for TNT and the mustard gas is 200 g and 20 g, respectively. It is observed that by the use of LaBr3(Ce) scintillation crystal to detect the inelastic scattering γ rays of 5.1 MeV from nitrogen, of which the single escape and double escape peaks could be discriminated from the inelastic scattering peak of 4.43 MeV from carbon, since the energy resolution of LaBr3 is much better than that of other scintillators. In the case of nitrogen, it is better to detect the inelastic scattering γ rays induced by fast neutrons than to detect thermal neutron captured γ rays, since the counting rate is much higher. For the detection of mustard gas bomb, thermal neutron captured γ rays of 1.95 MeV is better than that of 6.6 MeV, since the interference of the background from the iron shell of the mustard gas bomb is smaller. These studies are useful for the establishment of the practical systems. (authors)

  1. Magnetic hydrophilic-lipophilic balance sorbent for efficient extraction of chemical warfare agents from water samples.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud D, Raghavender; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-02-19

    Magnetic hydrophilic-lipophilic balance (MHLB) hybrid resin was prepared by precipitation polymerization using N-vinylpyrrolidone (PVP) and divinylbenzene (DVB) as monomers and Fe2O3 nanoparticles as magnetic material. These resins were successfully applied for the extraction of chemical warfare agents (CWAs) and their markers from water samples through magnetic dispersive solid-phase extraction (MDSPE). By varying the ratios of monomers, resin with desired hydrophilic-lipophilic balance was prepared for the extraction of CWAs and related esters of varying polarities. Amongst different composites Fe2O3 nanoparticles coated with 10% PVP+90% DVB exhibited the best recoveries varying between 70.32 and 97.67%. Parameters affecting the extraction efficiencies, such as extraction time, desorption time, nature and volume of desorption solvent, amount of extraction sorbent and the effect of salts on extraction were investigated. Under the optimized conditions, linearity was obtained in the range of 0.5-500 ng mL(-1) with correlation ranging from 0.9911-0.9980. Limits of detection and limits of quantification were 0.5-1.0 and 3.0-5.0 ng mL(-1) respectively with RSDs varying from 4.88-11.32% for markers of CWAs. Finally, the developed MDSPE method was employed for extraction of analytes from water samples of various sources and the OPCW proficiency test samples. PMID:26814366

  2. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    International Nuclear Information System (INIS)

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications

  3. Fast neutron sensor for detection of explosives and chemical warfare agents

    International Nuclear Information System (INIS)

    Once the presence of the anomaly on the bottom of the shallow coastal sea water has been confirmed it is necessary to establish if it contains explosive or chemical warfare charge. We propose that this be performed by using neutron sensor installed within an underwater vessel. When positioned above the object, or to its side, the system can inspect the object for the presence of the threat materials by using alpha particle tagged neutrons from the sealed tube d+t neutron generator.

  4. Fast neutron sensor for detection of explosives and chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Valkovic, Vladivoj [A.C.T.d.o.o., Prilesje 4, 10000 Zagreb (Croatia)], E-mail: valkovic@irb.hr; Sudac, Davorin [Institute Ruder Boskovic, Bijenicka c.54, 10000 Zagreb (Croatia); Matika, Dario [Institute for Researches and Development of Defense Systems, Ilica 256b, 10000 Zagreb (Croatia)

    2010-04-15

    Once the presence of the anomaly on the bottom of the shallow coastal sea water has been confirmed it is necessary to establish if it contains explosive or chemical warfare charge. We propose that this be performed by using neutron sensor installed within an underwater vessel. When positioned above the object, or to its side, the system can inspect the object for the presence of the threat materials by using alpha particle tagged neutrons from the sealed tube d+t neutron generator.

  5. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted

  6. Rapid response behavior, at room temperature, of a nanofiber-structured TiO2 sensor to selected simulant chemical-warfare agents.

    Science.gov (United States)

    Ma, Xingfa; Zhu, Tao; Xu, Huizhong; Li, Guang; Zheng, Junbao; Liu, Aiyun; Zhang, Jianqin; Du, Huatai

    2008-02-01

    A chemical prototype sensor was constructed based on nanofiber-structured TiO2 and highly sensitive quartz resonators. The gas-sensing behavior of this new sensor to selected simulant warfare agents was investigated at room temperature. Results showed rapid response and good reversibility of this sensor when used with high-purity nitrogen. This provides a simple approach to preparation of materials needed as chemical sensors for selected organic volatiles or warfare agents. PMID:18094961

  7. Toxins as weapons of mass destruction. A comparison and contrast with biological-warfare and chemical-warfare agents.

    Science.gov (United States)

    Madsen, J M

    2001-09-01

    Toxins are toxic chemical compounds synthesized in nature by living organisms. Classifiable by molecular weight, source, preferred targets in the body, and mechanism of action, they include the most potent poisons on the planet, although considerations of production, weaponization, delivery, environmental stability, and host factors place practical limits on their use as WMD. The two most important toxin threats on the battlefield or in bioterrorism are probably botulinum toxin (a series of seven serotypes, of which botulinum toxin A is the most toxic for humans) and SEB, an incapacitating toxin. Ricin and the trichothecene mycotoxins, including T-2 mycotoxin, are of lesser concern but are still potential threats. Botulinum toxin is a neurotoxin, ricin and trichothecene mycotoxins are membrane-damaging proteins, and SEB is a superantigen capable of massive nonspecific activation of the immune system. The clinical intoxications resulting from exposure to and absorption (usually by inhalation) of these agents reflect their underlying pathophysiology. Because of the hybrid nature of toxins, they have sometimes been considered CW agents and sometimes BW agents. The current trend seems to be to emphasize their similarities to living organisms and their differences from CW agents, but examination of all three groups relative to a number of factors reveals both similarities and differences between toxins and each of the other two categories of non-nuclear unconventional WMD. The perspective that groups toxins with BW agents is logical and very useful for research and development and for administrative and treaty applications, but for medical education and casualty assessment, there are real advantages in clinician use of assessment techniques that emphasize the physicochemical behavior of these nonliving, nonreplicating, intransmissible chemical poisons. PMID:11577702

  8. Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction.

    Science.gov (United States)

    Sanders, C A; Rodriguez, M; Greenbaum, E

    2001-09-01

    Tissue biosensors made from immobilized whole-cell photosynthetic microorganisms have been developed for the detection of airborne chemical warfare agents and simulants. The sensor read-out is based on well-known principles of fluorescence induction by living photosynthetic tissue. Like the cyanobacteria and algae from which they were constructed, the sensors are robust and mobile. The fluorescence signal from the sensors was stable after 40 days, storage and they can be launched or dropped into suspected danger zones. Commercially available hand-held fluorometric detector systems were used to measure Photosystem II (PSII) photochemical efficiency of green algae and cyanobacteria entrapped on filter paper disks. Toxic agents flowing in the gas stream through the sensors can alter the characteristic fluorescence induction curves with resultant changes in photochemical yields. Tabun (GA), sarin (GB), mustard agent, tributylamine (TBA) (a sarin stabilizer), and dibutyl sulfide (DBS) (a mustard agent analog) were tested. Upper threshold limits of detectability for GA, TBA, and DBS are reported. With additional research and development, these biosensors may find application in stand-off detection of chemical and perhaps biological warfare agents under real-world conditions. PMID:11544038

  9. Research on the Interaction of Hydrogen-Bond Acidic Polymer Sensitive Sensor Materials with Chemical Warfare Agents Simulants by Inverse Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2015-06-01

    Full Text Available Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant and 2-CEES (a blister agent simulant were used as probes. Chemical and physical parameters such as heats of absorption and Henry constants of the polymers to DMMP and 2-CEES were determined by inverse gas chromatography. Details concerning absorption performance are also discussed in this paper.

  10. Research on the interaction of hydrogen-bond acidic polymer sensitive sensor materials with chemical warfare agents simulants by inverse gas chromatography.

    Science.gov (United States)

    Yang, Liu; Han, Qiang; Cao, Shuya; Huang, Feng; Qin, Molin; Guo, Chenghai; Ding, Mingyu

    2015-01-01

    Hydrogen-bond acidic polymers are important high affinity materials sensitive to organophosphates in the chemical warfare agent sensor detection process. Interactions between the sensor sensitive materials and chemical warfare agent simulants were studied by inverse gas chromatography. Hydrogen bonded acidic polymers, i.e., BSP3, were prepared for micro-packed columns to examine the interaction. DMMP (a nerve gas simulant) and 2-CEES (a blister agent simulant) were used as probes. Chemical and physical parameters such as heats of absorption and Henry constants of the polymers to DMMP and 2-CEES were determined by inverse gas chromatography. Details concerning absorption performance are also discussed in this paper. PMID:26043177

  11. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    International Nuclear Information System (INIS)

    Highlights: ► Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. ► Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). ► Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3′-imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants (∼10−2 s−1) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10−8–10−6 s−1). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  12. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.

    Science.gov (United States)

    Steiner, Wes E; Clowers, Brian H; Haigh, Paul E; Hill, Herbert H

    2003-11-15

    For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated. PMID:14615983

  13. How Do I Know? A Guide to the Selection of Personal Protective Equipment for Use in Responding to A Release of Chemical Warfare Agents

    Energy Technology Data Exchange (ETDEWEB)

    Foust, C.B.

    1999-05-01

    An incident involving chemical warfare agents requires a unique hazardous materials (HAZMAT) response. As with an HAZMAT event, federal regulations prescribe that responders must be protected from exposure to the chemical agents. But unlike other HAZMAT events, special considerations govern selection of personal protective equipment (PPE). PPE includes all clothing, respirators and monitoring devices used to respond to a chemical release. PPE can differ depending on whether responders are military or civilian personnel.

  14. Mass spectrometry as a tool for characterization of N,N-dialkylaminoethane-2-thiols - precursors and degradation products of chemical warfare agents

    Czech Academy of Sciences Publication Activity Database

    Papoušková, B.; Bednář, P.; Stýskala, Jakub; Hlaváč, J.; Barták, P.; Lemr, K.

    2009-01-01

    Roč. 44, č. 11 (2009), s. 1604-1612. ISSN 1076-5174 Institutional research plan: CEZ:AV0Z50380511 Keywords : mass spectrometry * chemical warfare agents * N,N-dialkylaminoethane-2-thiols Subject RIV: CE - Biochemistry Impact factor: 3.411, year: 2009

  15. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    Science.gov (United States)

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues. PMID:24633585

  16. Development of electrochemical sensors for trace detection of explosives and for the detection of chemical warfare agents

    Science.gov (United States)

    Berger, T.; Ziegler, H.; Krausa, Michael

    2000-08-01

    A huge number of chemical sensors are based on electrochemical measurement methods. Particularly amperometric sensorsystems are employed for the fast detection of pollutants in industry and environment as well as for analytic systems in the medical diagnosis. The large number of different applications of electrochemical sensors is based on the high sensitivity of electrochemical methods and on the wide of possibilities to enhance the selectivity by variation of electrochemical and chemical parameters. Besides this, electrochemical sensorsystems are frequently simple to operate, transportable and cheap. Up to now the electrochemical method of cyclic voltammetry is used only seldom for sensors. Clearly the efficiency of cyclic voltammetry can be seen at the sensorsystem for the detection of nitro- and aminotoluenes in solids and waters as presented here. The potentiodynamic sensors system can be employed for the fast and easy risk estimation of contaminated areas. Because of the high sensitivity of electrochemical methods the detection of chemical substances with a low vapor pressure is possible also. The vapor pressure of TNT at room temperature is 7 ppb for instances. With a special electrochemical set-up we were able to measure TNT approximately 10 cm above a TNT-sample. In addition we were able to estimate TNT in the gaseous phase approximately 10 cm above a real plastic mine. Therefore it seems to be possible to develop an electrochemical mien detection. Moreover, we present that the electrochemical detection of RDX, HMX and chemical warfare agents is also possible.

  17. A comparison of {sup 252}Cf and 14-MeV neutron excitation to identify chemical warfare agents by PGNAA

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, A.J.; Harlow, B.D.; Edwards, A.J.; Krebs, K.M.; Jones, J.L.; Yoon, W.; Zabriskie, J.M.; Dougan, A.D.

    2000-07-01

    Since 1992, Idaho National Engineering and Environmental Laboratory's portable isotopic neutron spectrometry (PINS) system has been widely used for the nondestructive assessment of munitions suspected to contain chemical warfare agents, such as the nerve agent sarin. PINS is a {sup 252}Cf-based prompt gamma-ray neutron activation analysis (PGNAA) system. The standard PINS system employs a partially moderated 5-{micro}g {sup 252}Cf source emitting 10{sup 7} n/s to excite the atomic nuclei inside the item under test. The chemical elements inside the item are revealed by their characteristic gamma-ray spectrum, measured by a high-resolution high-purity germanium gamma-ray spectrometer. The system computer then infers the fill compound or mixture from the elemental data extracted from the gamma-ray spectrum. Reliable PINS assessments can be completed in as little as 100 s for favorable cases such as white phosphorus smoke munitions, but normally, a 1000 to 3000 live-second counting interval is required. To improve PINS throughput when hundreds or more munitions must be assessed, they are evaluating the possible advantages of 14-MeV neutron excitation over their current radioisotopic source.

  18. LANL organic analysis detection capabilities for chemical and biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Ansell, G.B.; Cournoyer, M.E.; Hollis, K.W.; Monagle, M.

    1996-12-31

    Organic analysis is the analytical arm for several Los Alamos National Laboratory (LANL) research programs and nuclear materials processes, including characterization and certification of nuclear and nonnuclear materials used in weapons, radioactive waste treatment and waste certification programs. Organic Analysis has an extensive repertoire of analytical technique within the group including headspace gas, PCBs/pesticides, volatile organics and semivolatile organic analysis. In addition organic analysis has mobile labs with analytic capabilities that include volatile organics, total petroleum hydrocarbon, PCBs, pesticides, polyaromatic hydrocarbons and high explosive screening. A natural extension of these capabilities can be applied to the detection of chemical and biological agents,

  19. Distribution of chemical warfare agent, energetics, and metals in sediments at a deep-water discarded military munitions site

    Science.gov (United States)

    Briggs, Christian; Shjegstad, Sonia M.; Silva, Jeff A. K.; Edwards, Margo H.

    2016-06-01

    There is a strong need to understand the behavior of chemical warfare agent (CWA) at underwater discarded military munitions (DMM) sites to determine the potential threat to human health or the environment, yet few studies have been conducted at sites in excess of 250 m, the depth at which most U.S. chemical munitions were disposed. As part of the Hawai'i Undersea Military Munitions Assessment (HUMMA), sediments adjacent to chemical and conventional DMM at depths of 400-650 m were sampled using human occupied vehicles (HOVs) in order to quantify the distribution of CWA, energetics, and select metals. Sites in the same general area, with no munitions within 50 m in any direction were sampled as a control. Sulfur mustard (HD) and its degradation product 1,4-dithiane were detected at each CWA DMM site, as well as a single sample with the HD degradation product 1,4-thioxane. An energetic compound was detected in sediment to a limited extent at one CWA DMM site. Metals common in munitions casings (i.e., Fe, Cu, and Pb) showed similar trends at the regional and site-wide scales, likely reflecting changes in marine sediment deposition and composition. This study shows HD and its degradation products can persist in the deep-marine environment for decades following munitions disposal.

  20. Broad-Spectrum Liquid- and Gas-Phase Decontamination of Chemical Warfare Agents by One-Dimensional Heteropolyniobates.

    Science.gov (United States)

    Guo, Weiwei; Lv, Hongjin; Sullivan, Kevin P; Gordon, Wesley O; Balboa, Alex; Wagner, George W; Musaev, Djamaladdin G; Bacsa, John; Hill, Craig L

    2016-06-20

    A wide range of chemical warfare agents and their simulants are catalytically decontaminated by a new one-dimensional polymeric polyniobate (P-PONb), K12 [Ti2 O2 ][GeNb12 O40 ]⋅19 H2 O (KGeNb) under mild conditions and in the dark. Uniquely, KGeNb facilitates hydrolysis of nerve agents Sarin (GB) and Soman (GD) (and their less reactive simulants, dimethyl methylphosphonate (DMMP)) as well as mustard (HD) in both liquid and gas phases at ambient temperature and in the absence of neutralizing bases or illumination. Three lines of evidence establish that KGeNb removes DMMP, and thus likely GB/GD, by general base catalysis: a) the k(H2 O)/k(D2 O) solvent isotope effect is 1.4; b) the rate law (hydrolysis at the same pH depends on the amount of P-PONb present); and c) hydroxide is far less active against the above simulants at the same pH than the P-PONbs themselves, a critical control experiment. PMID:27061963

  1. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    Science.gov (United States)

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  2. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes.

    Science.gov (United States)

    Dennison, Genevieve H; Johnston, Martin R

    2015-04-20

    Organophosphorus chemical warfare agents (OP CWAs) are potent acetylcholinesterase inhibitors that can cause incapacitation and death within minutes of exposure, and furthermore are largely undetectable by the human senses. Fast, efficient, sensitive and selective detection of these compounds is therefore critical to minimise exposure. Traditional molecular-based sensing approaches have exploited the chemical reactivity of the OP CWAs, whereas more recently supramolecular-based approaches using non-covalent interactions have gained momentum. This is due, in part, to the potential development of sensors with second-generation properties, such as reversibility and multifunction capabilities. Supramolecular sensors also offer opportunities for incorporation of metal ions allowing for the exploitation of their unique properties. In particular, trivalent lanthanide ions are being increasingly used in the OP CWA sensing event and their use in supramolecular sensors is discussed in this Minireview. We focus on the fundamental interactions of simple lanthanide systems with OP CWAs and simulants, along with the development of more elaborate and complex systems including those containing nanotubes, polymers and gold nanoparticles. Whilst literature investigations into lanthanide-based OP CWA detection systems are relatively scarce, their unique and versatile properties provide a promising platform for the development of more efficient and complex sensing systems into the future. PMID:25649522

  3. Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection.

    Science.gov (United States)

    Yao, Junjun; Fu, Yanyan; Xu, Wei; Fan, Tianchi; Gao, Yixun; He, Qingguo; Zhu, Defeng; Cao, Huimin; Cheng, Jiangong

    2016-02-16

    Sarin, used as chemical warfare agents (CWAs) for terrorist attacks, can induce a number of virulent effects. Therefore, countermeasures which could realize robust and convenient detection of sarin are in exigent need. A concise charge-transfer colorimetric and fluorescent probe (4-(6-(tert-butyl)pyridine-2-yl)-N,N-diphenylaniline, TBPY-TPA) that could be capable of real-time and on-site monitoring of DCP vapor was reported in this contribution. Upon contact with DCP, the emission band red-shifted from 410 to 522 nm upon exposure to DCP vapor. And the quenching rate of TBPY-TPA reached up to 98% within 25 s. Chemical substances such as acetic acid (HAc), dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PAMP), and triethyl phosphate (TEP) do not interfere with the detection. A detection limit for DCP down to 2.6 ppb level is remarkably achieved which is below the Immediately Dangerous to Life or Health concentration. NMR data suggested that a transformation of the pyridine group into pyridinium salt via a cascade reaction is responsible for the sensing process which induced the dramatic fluorescent red shift. All of these data suggest TBPY-TPA is a promising fluorescent sensor for a rapid, simple, and low-cost method for DCP detection, which could be easy to prepare as a portable chemosensor kit for its practical application in real-time and on-site monitoring. PMID:26776457

  4. Chemical Warfare Agents Analyzer Based on Low Cost, Room Temperature, and Infrared Microbolometer Smart Sensors

    Directory of Open Access Journals (Sweden)

    Carlo Corsi

    2012-01-01

    Full Text Available Advanced IR emitters and sensors are under development for high detection probability, low false alarm rate, and identification capability of toxic gases. One of the most reliable techniques to identify the gas species is absorption spectroscopy, especially in the medium infrared spectral range, where most of existing toxic compounds exhibit their strongest rotovibrational absorption bands. Following the results obtained from simulations and analysis of expected absorption spectra, a compact nondispersive infrared multispectral system has been designed and developed for security applications. It utilizes a few square millimeters thermal source, a novel design multipass cell, and a smart architecture microbolometric sensor array coupled to a linear variable spectral filter to perform toxic gases detection and identification. This is done by means of differential absorption spectroscopic measurements in the spectral range of the midinfrared. Experimental tests for sensitivity and selectivity have been done with various chemical agents (CAs gases and a multiplicity of vapour organic compounds (VOCs. Detection capability down to ppm has been demonstrated.

  5. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    International Nuclear Information System (INIS)

    The atmospheric pressure plasma jet (APPJ) [A. Schuetze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products. copyright 1999 American Institute of Physics

  6. Fragmentation of molecular ions in differential mobility spectrometry as a method for identification of chemical warfare agents.

    Science.gov (United States)

    Maziejuk, M; Puton, J; Szyposzyńska, M; Witkiewicz, Z

    2015-11-01

    The subject of the work is the use of differential mobility spectrometry (DMS) for the detection of chemical warfare agents (CWA). Studies were performed for mustard gas, i.e., bis(2-chloroethyl)sulfide (HD), sarin, i.e., O-isopropyl methylphosphonofluoridate (GB) and methyl salicylate (MS) used as test compounds. Measurements were conducted with two ceramic DMS analyzers of different constructions allowing the generation of an electric field with an intensity of more than 120 Td. Detector signals were measured for positive and negative modes of operation in a temperature range from 0 to 80 °C. Fragmentations of ions containing analyte molecules were observed for all tested compounds. The effective temperatures of fragmentation estimated on the basis of dispersion plots were equal from about 148 °C for GB to 178 °C for MS. It was found that values of separation voltage (SV) and compensation voltage (CV) at which the fragmentation of sample ions is observed may be the parameters improving the certainty of detection for different analytes. The DMS analyzers enabling the observation of ion fragmentation can be successfully used for effective CWA detection. PMID:26452948

  7. THE APPLICATION OF SINGLE PARTICLE AEROSOL MASS SPECTROMETRY FOR THE DETECTION AND IDENTIFICATION OF HIGH EXPLOSIVES AND CHEMICAL WARFARE AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A

    2006-10-23

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle ({approx}1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  8. Decomposition of 2-chloroethylethylsulfide on copper oxides to detoxify polymer-based spherical activated carbons from chemical warfare agents.

    Science.gov (United States)

    Fichtner, S; Hofmann, J; Möller, A; Schrage, C; Giebelhausen, J M; Böhringer, B; Gläser, R

    2013-11-15

    For the decomposition of chemical warfare agents, a hybrid material concept was applied. This consists of a copper oxide-containing phase as a component with reactive functionality supported on polymer-based spherical activated carbon (PBSAC) as a component with adsorptive functionality. A corresponding hybrid material was prepared by impregnation of PBSAC with copper(II)nitrate and subsequent calcination at 673K. The copper phase exists predominantly as copper(I)oxide which is homogeneously distributed over the PBSAC particles. The hybrid material containing 16 wt.% copper on PBSAC is capable of self-detoxifying the mustard gas surrogate 2-chloroethylethylsulfide (CEES) at room temperature. The decomposition is related to the breakthrough behavior of the reactant CEES, which displaces the reaction product ethylvinylsulfide (EVS). This leads to a combined breakthrough of CEES and EVS. The decomposition of CEES is shown to occur catalytically over the copper-containing PBSAC material. Thus, the hybrid material can even be considered to be self-cleaning. PMID:24140529

  9. Preliminary evaluation of military, commercial and novel skin decontamination products against a chemical warfare agent simulant (methyl salicylate).

    Science.gov (United States)

    Matar, Hazem; Guerreiro, Antonio; Piletsky, Sergey A; Price, Shirley C; Chilcott, Robert P

    2016-06-01

    Rapid decontamination is vital to alleviate adverse health effects following dermal exposure to hazardous materials. There is an abundance of materials and products which can be utilised to remove hazardous materials from the skin. In this study, a total of 15 products were evaluated, 10 of which were commercial or military products and five were novel (molecular imprinted) polymers. The efficacies of these products were evaluated against a 10 µl droplet of (14)C-methyl salicylate applied to the surface of porcine skin mounted on static diffusion cells. The current UK military decontaminant (Fuller's earth) performed well, retaining 83% of the dose over 24 h and served as a benchmark to compare with the other test products. The five most effective test products were Fuller's earth (the current UK military decontaminant), Fast-Act® and three novel polymers [based on itaconic acid, 2-trifluoromethylacrylic acid and N,N-methylenebis(acrylamide)]. Five products (medical moist-free wipes, 5% FloraFree™ solution, normal baby wipes, baby wipes for sensitive skin and Diphotérine™) enhanced the dermal absorption of (14)C-methyl salicylate. Further work is required to establish the performance of the most effective products identified in this study against chemical warfare agents. PMID:26339920

  10. Semi-continuous high speed gas analysis of generated vapors of chemical warfare agents

    NARCIS (Netherlands)

    Trap, H.C.; Langenberg, J.P.

    1999-01-01

    A method is presented for the continuous analysis of generated vapors of the nerve agents soman and satin and the blistering agent sulfur mustard. By using a gas sampling valve and a very short (15 cm) column connected to an on-column injector with a 'standard length' column, the system can either b

  11. Remote Continuous Wave and Pulsed Laser Raman Detection of Chemical Warfare Agents Simulants and Toxic Industrial Compounds

    Science.gov (United States)

    Ortiz-Rivera, William; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.

    2010-09-01

    This study describes the design, assembly, testing and comparison of two Remote Raman Spectroscopy (RRS) systems intended for standoff detection of hazardous chemical liquids. Raman spectra of Chemical Warfare Agents Simulants (CWAS) and Toxic Industrial Compounds (TIC) were measured in the laboratory at a 6.6 m source-target distance using continuous wave (CW) laser detection. Standoff distances for pulsed measurements were 35 m for dimethyl methylphosphonate (DMMP) detection and 60, 90 and 140 m for cyclohexane detection. The prototype systems consisted of a Raman spectrometer equipped with a CCD detector (for CW measurements) and an I-CCD camera with time-gated electronics (for pulsed laser measurements), a reflecting telescope, a fiber optic assembly, a single-line CW laser source (514.5, 488.0, 351.1 and 363.8 nm) and a frequency-doubled single frequency Nd:YAG 532 nm laser (5 ns pulses at 10 Hz). The telescope was coupled to the spectrograph using an optical fiber, and filters were used to reject laser radiation and Rayleigh scattering. Two quartz convex lenses were used to collimate the light from the telescope from which the telescope-focusing eyepiece was removed, and direct it to the fiber optic assembly. To test the standoff sensing system, the Raman Telescope was used in the detection of liquid TIC: benzene, chlorobenzene, toluene, carbon tetrachloride, cyclohexane and carbon disulfide. Other compounds studied were CWAS: dimethylmethyl phosphonate, 2-chloroethyl ethyl sulfide and 2-(butylamino)-ethanethiol. Relative Raman scattering cross sections of liquid CWAS were measured using single-line sources at 532.0, 488.0, 363.8 and 351.1 nm. Samples were placed in glass and quartz vials at the standoff distances from the telescope for the Remote Raman measurements. The mass of DMMP present in water solutions was also quantified as part of the system performance tests.

  12. Chemical warfare in freshwater

    NARCIS (Netherlands)

    Mulderij, Gabi

    2006-01-01

    Aquatic macrophytes can excrete chemical substances into their enviroment and these compounds may inhibit the growth of phytoplankton. This process is defined as allelopathy: one organism has effects on another via the excretion of a (mixture of) chemical substance(s). With laboratory and field expe

  13. Chemical warfare in freshwater

    OpenAIRE

    Mulderij, Gabi

    2006-01-01

    Aquatic macrophytes can excrete chemical substances into their enviroment and these compounds may inhibit the growth of phytoplankton. This process is defined as allelopathy: one organism has effects on another via the excretion of a (mixture of) chemical substance(s). With laboratory and field experiments we studied the allelopathic effects of the aquatic macrophytes, Chara and Stratiotes. Laboratory experiments showed that the aquatic macrophytes had allelopathic effects. Phytoplankton grow...

  14. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    Science.gov (United States)

    Cioce, Christian R.

    sigma donates, and subsequent back-bonding occurs into a pi* antibonding orbital. This is a different type of interaction not seen in the three existing classes of metal-carbene complexes, namely Fischer, Schrock, and Grubbs. Finally, the virtual engineering of enhanced chemical warfare agent (CWA) detection systems is discussed. As part of a U.S. Department of Defense supported research project, in silico chemical modifications to a previously synthesized zinc-porphyrin, ZnCS1, were made to attempt to achieve preferential binding of the nerve agent sarin versus its simulant, DIMP (diisopropyl methylphosphonate). Upon modification, a combination of steric effects and induced hydrogen bonding allowed for the selective binding of sarin. The success of this work demonstrates the role that high performance computing can play in national security research, without the associated costs and high security required for experimentation.

  15. Chemical warfare in termites

    Czech Academy of Sciences Publication Activity Database

    Šobotník, Jan; Jirošová, Anna; Hanus, Robert

    2010-01-01

    Roč. 56, č. 9 (2010), s. 1012-1021. ISSN 0022-1910 R&D Projects: GA AV ČR IAA600550614 Institutional research plan: CEZ:AV0Z40550506 Keywords : Isoptera * chemical defense * exocrine gland * frontal gland Subject RIV: CC - Organic Chemistry Impact factor: 2.310, year: 2010

  16. Handheld and mobile hyperspectral imaging sensors for wide-area standoff detection of explosives and chemical warfare agents

    Science.gov (United States)

    Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.

    2016-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.

  17. Demonstration of spread-on peel-off consumer products for sampling surfaces contaminated with pesticides and chemical warfare agent signatures.

    Science.gov (United States)

    Behringer, Deborah L; Smith, Deborah L; Katona, Vanessa R; Lewis, Alan T; Hernon-Kenny, Laura A; Crenshaw, Michael D

    2014-08-01

    A terrorist attack using toxic chemicals is an international concern. The utility of rubber cement and latex body paint as spray-on/spread-on peel-off collection media for signatures attributable to pesticides and chemical warfare agents from interior building and public transportation surfaces two weeks post-deposition is demonstrated. The efficacy of these media to sample escalator handrail, stainless steel, vinyl upholstery fabric, and wood flooring is demonstrated for two pesticides and eight chemicals related to chemical warfare agents. The chemicals tested are nicotine, parathion, atropine, diisopropyl methylphosphonate, dimethyl methylphosphonate, dipinacolyl methylphosphonate, ethyl methylphosphonic acid, isopropyl methylphosphonic acid, methylphosphonic acid, and thiodiglycol. Amounts of each chemical found are generally greatest when latex body paint is used. Analytes with low volatility and containing an alkaline nitrogen or a sulfur atom (e.g., nicotine and parathion) usually are recovered to a greater extent than the neutral phosphonate diesters and acidic phosphonic acids (e.g., dimethyl methylphosphonate and ethyl methylphosphonic acid). PMID:24835029

  18. Mesoporous manganese oxide for warfare agents degradation

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Králová, Daniela; Opluštil, F.; Němec, T.

    2012-01-01

    Roč. 156, JULY (2012), s. 224-232. ISSN 1387-1811 R&D Projects: GA MPO FI-IM5/231 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : homogeneous hydrolysis * chloroacetamide * manganese(IV) oxide * warfare agents Subject RIV: CA - Inorganic Chemistry Impact factor: 3.365, year: 2012

  19. Chemical warfare, past and future. Study project

    Energy Technology Data Exchange (ETDEWEB)

    Tzihor, A.

    1992-05-15

    World War I was arena for the first use of chemical warfare. The enormous tactical success brought about by this first time use of chemical weapons caused the continued development of more sophisticated tactics and weapons in this category of unconventional warfare. This phenomenon has carried through to today. However, at present, because of technological developments, the global economic situation, and political factors, coupled with the inability of the western world to control the proliferation of chemical weapons, a situation weapon of mass destruction. Recent use by Iraq against Kurdish civilian indicates that chemical warfare is no longer limited to the battlefield. The western nations have a need to understand the risk. This paper conducts an analysis of past lessons and the factors which will affect the use of chemical warfare in the future. From this analysis, the paper reaches conclusions concerning the significant threat chemical weapons pose for the entire world in the not too distant future.

  20. Nondestructive inspection of chemical warfare based on API-TOF

    International Nuclear Information System (INIS)

    Background: Real-time, fast, accurate, nondestructive inspection (NDI) and quantitative analysis for chemical warfare are very imperative for chemical defense, anti-terror and nation security. Purpose: Associated Particles Technique (APT)/Neutron Time of Flight (TOF) has been developed for non-invasive inspection of sealed containers with chemical warfare agents. Methods: A prototype equipment for chemical warfare is consisted of an APT neutron generator with a 3×3 matrix of semiconductor detectors of associated alpha-particles, the shielding protection of neutron and gamma-ray, arrayed NaI(Tl)-based detectors of gamma-rays, fully-digital data acquisition electronics, data analysis, decision-making software, support platform and remote control system. Inelastic scattering gamma-ray pulse height spectra of sarin, VX, mustard gas and adamsite induced by 14-MeV neutron are measured. The energies of these gamma rays are used to identify the inelastic scattering elements, and the intensities of the peaks at these energies are used to reveal their concentrations. Results: The characteristic peaks of inelastic scattering gamma-ray pulse height spectra show that the prototype equipment can fast and accurately inspect chemical warfare. Conclusion: The equipment can be used to detect not only chemical warfare agents but also other hazardous materials, such as chemical/toxic/drug materials, if their chemical composition is in any way different from that of the surrounding materials. (authors)

  1. HIGHLY SELECTIVE SENSORS FOR CHEMICAL AND BIOLOGICAL WARFARE AGENTS, INSECTICIDES AND VOCS BASED ON A MOLECULAR SURFACE IMPRINTING TECHNIQUE

    Science.gov (United States)

    Abstract was given as an oral platform presentation at the Pittsburgh Conference, Orlando FL (March 5-9, 2006). Research described is the development of sensors based on molecular surface imprinting. Applications include the monitoring of chemical and biological agents and inse...

  2. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-11-01

    Full Text Available On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples.

  3. Portable solid phase micro-extraction coupled with ion mobility spectrometry system for on-site analysis of chemical warfare agents and simulants in water samples.

    Science.gov (United States)

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  4. Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud, Raghavender D; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-05-27

    A simple, sensitive and low temperature sample preparation method is developed for detection and identification of Chemical Warfare Agents (CWAs) and scheduled esters in organic liquid using magnetic dispersive solid phase extraction (MDSPE) followed by gas chromatography-mass spectrometry analysis. The method utilizes Iron oxide@Poly(methacrylic acid-co-ethylene glycol dimethacrylate) resin (Fe2O3@Poly(MAA-co-EGDMA)) as sorbent. Variants of these sorbents were prepared by precipitation polymerization of methacrylic acid-co-ethylene glycol dimethacrylate (MAA-co-EGDMA) onto Fe2O3 nanoparticles. Fe2O3@poly(MAA-co-EGDMA) with 20% MAA showed highest recovery of analytes. Extractions were performed with magnetic microspheres by MDSPE. Parameters affecting the extraction efficiency were studied and optimized. Under the optimized conditions, method showed linearity in the range of 0.1-3.0μgmL(-1) (r(2)=0.9966-0.9987). The repeatability and reproducibility (relative standard deviations (RSDs) %) were in the range of 4.5-7.6% and 3.4-6.2% respectively for organophosphorous esters in dodecane. Limits of detection (S/N=3/1) and limit of quantification (S/N=10/1) were found to be in the range of 0.05-0.1μgmL(-1) and 0.1-0.12μgmL(-1) respectively in SIM mode for selected analytes. The method was successfully validated and applied to the extraction and identification of targeted analytes from three different organic liquids i.e. n-hexane, dodecane and silicon oil. Recoveries ranged from 58.7 to 97.3% and 53.8 to 95.5% at 3μgmL(-1) and 1μgmL(-1) spiking concentrations. Detection of diethyl methylphosphonate (DEMP) and O-Ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) in samples provided by the Organization for Prohibition of Chemical Weapons Proficiency Test (OPCW-PT) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. PMID:27113675

  5. Development of the HS-SPME-GC-MS/MS method for analysis of chemical warfare agent and their degradation products in environmental samples.

    Science.gov (United States)

    Nawała, Jakub; Czupryński, Krzysztof; Popiel, Stanisław; Dziedzic, Daniel; Bełdowski, Jacek

    2016-08-24

    After World War II approximately 50,000 tons of chemical weapons were dumped in the Baltic Sea by the Soviet Union under the provisions of the Potsdam Conference on Disarmament. These dumped chemical warfare agents still possess a major threat to the marine environment and to human life. Therefore, continue monitoring of these munitions is essential. In this work, we present the application of new solid phase microextraction fibers in analysis of chemical warfare agents and their degradation products. It can be concluded that the best fiber for analysis of sulfur mustard and its degradation products is butyl acrylate (BA), whereas for analysis of organoarsenic compounds and chloroacetophenone, the best fiber is a co-polymer of methyl acrylate and methyl methacrylate (MA/MMA). In order to achieve the lowest LOD and LOQ the samples should be divided into two subsamples. One of them should be analyzed using a BA fiber, and the second one using a MA/MMA fiber. When the fast analysis is required, the microextraction should be performed by use of a butyl acrylate fiber because the extraction efficiency of organoarsenic compounds for this fiber is acceptable. Next, we have elaborated of the HS-SPME-GC-MS/MS method for analysis of CWA degradation products in environmental samples using laboratory obtained fibers The analytical method for analysis of organosulfur and organoarsenic compounds was optimized and validated. The LOD's for all target chemicals were between 0.03 and 0.65 ppb. Then, the analytical method developed by us, was used for the analysis of sediment and pore water samples from the Baltic Sea. During these studies, 80 samples were analyzed. It was found that 25 sediments and 5 pore water samples contained CWA degradation products such as 1,4-dithiane, 1,4-oxathiane or triphenylarsine, the latter being a component of arsine oil. The obtained data is evidence that the CWAs present in the Baltic Sea have leaked into the general marine environment. PMID

  6. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    Science.gov (United States)

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    procedures and analytical methods suitable for investigating accelerant and decontaminant-soaked soil samples are presented. VX and its degradation products and/or impurities were detected under all the conditions studied, demonstrating that accelerant-based fire and liquid-based decontamination and then fire are unlikely to prevent the retrieval of evidence of chemical warfare agent (CWA) testing. This is the first published study of the effects of an accelerant-based fire on a CWA in environmental samples. The results will inform defence and security-based organisations worldwide and support the verification activities of the Organisation for the Prohibition of Chemical Weapons (OPCW), winner of the 2013 Nobel Peace Prize for its extensive efforts to eliminate chemical weapons. PMID:24972874

  7. Biological toxin warfare: threat, proliferation, and the effects of neutron energy on BTW agents

    OpenAIRE

    Swartz, Jeffrey R.

    1995-01-01

    The threat of biological weapons presents a special military challenge. Biological toxin warfare (BTW) agents are more potent than chemical warfare agents. Depending on the yield of the nuclear weapon, a biological weapon also can have a higher lethality than nuclear weapons. This thesis examines existing international restricions on the proliferation of BTW technology and identifies their shortcomings. These loopholes contribute to the eay availability of the technology necessary to examine ...

  8. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    Science.gov (United States)

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO. PMID:26653465

  9. Comparison of latex body paint with wetted gauze wipes for sampling the chemical warfare agents VX and sulfur mustard from common indoor surfaces.

    Science.gov (United States)

    Hernon-Kenny, Laura A; Behringer, Deborah L; Crenshaw, Michael D

    2016-05-01

    Comparison of solvent-wetted gauze with body paint, a peelable surface sampling media, for the sampling of the chemical warfare agents VX and sulfur mustard from nine surfaces was performed. The nine surfaces sampled are those typical of interior public venues and include smooth, rough, porous, and non-porous surfaces. Overall, solvent-wetted gauze (wipes) performed better for the recovery of VX from non-porous surfaces while body paint (BP) performed better for the porous surfaces. The average percent VX recoveries using wipes and BP, respectively, are: finished wood flooring, 86.2%, 71.4%; escalator handrail, 47.3%, 26.7%; stainless steel, 80.5%, 56.1%; glazed ceramic tile, 81.8%, 44.9%; ceiling tile, 1.77%, 13.1%; painted drywall 7.83%, 21.1%; smooth cement, 0.64%, 10.3%; upholstery fabric, 24.6%, 23.1%; unfinished wood flooring, 9.37%, 13.1%. Solvent-wetted gauze performed better for the recovery of sulfur mustard from three of the relatively non-porous surfaces while body paint performed better for the more porous surfaces. The average percent sulfur mustard recoveries using wipes and BP, respectively, are: finished wood flooring, 30.2%, 2.97%; escalator handrail, 4.40%, 4.09%; stainless steel, 21.2%, 3.30%; glazed ceramic tile, 49.7%, 16.7%; ceiling tile, 0.33%, 11.1%; painted drywall 2.05%, 10.6%; smooth cement, 1.20%, 35.2%; upholstery fabric, 7.63%, 6.03%; unfinished wood flooring, 0.90%, 1.74%. PMID:26990562

  10. Medical countermeasure against respiratory toxicity and acute lung injury following inhalation exposure to chemical warfare nerve agent VX

    International Nuclear Information System (INIS)

    To develop therapeutics against lung injury and respiratory toxicity following nerve agent VX exposure, we evaluated the protective efficacy of a number of potential pulmonary therapeutics. Guinea pigs were exposed to 27.03 mg/m3 of VX or saline using a microinstillation inhalation exposure technique for 4 min and then the toxicity was assessed. Exposure to this dose of VX resulted in a 24-h survival rate of 52%. There was a significant increase in bronchoalveolar lavage (BAL) protein, total cell number, and cell death. Surprisingly, direct pulmonary treatment with surfactant, liquivent, N-acetylcysteine, dexamethasone, or anti-sense syk oligonucleotides 2 min post-exposure did not significantly increase the survival rate of VX-exposed guinea pigs. Further blocking the nostrils, airway, and bronchioles, VX-induced viscous mucous secretions were exacerbated by these aerosolized treatments. To overcome these events, we developed a strategy to protect the animals by treatment with atropine. Atropine inhibits muscarinic stimulation and markedly reduces the copious airway secretion following nerve agent exposure. Indeed, post-exposure treatment with atropine methyl bromide, which does not cross the blood-brain barrier, resulted in 100% survival of VX-exposed animals. Bronchoalveolar lavage from VX-exposed and atropine-treated animals exhibited lower protein levels, cell number, and cell death compared to VX-exposed controls, indicating less lung injury. When pulmonary therapeutics were combined with atropine, significant protection to VX-exposure was observed. These results indicate that combinations of pulmonary therapeutics with atropine or drugs that inhibit mucous secretion are important for the treatment of respiratory toxicity and lung injury following VX exposure

  11. Chemical Warfare: Drugs in Sports

    OpenAIRE

    Percy, E. C.

    1980-01-01

    A number of substances have been used by athletes in an attempt to improve performance in sports. The use of these substances, which are referred to as ergogenic aids, has become widespread; some pose serious health hazards. Ergogenic aids are divided into five broad classifications: physiological, physical, psychological, nutritional and chemical. It is possible, although conclusive proof is lacking, that some substances may give an athlete who takes them an advantage over one who does not. ...

  12. A New Generation of Thermal Desorption Technology Incorporating Multi Mode Sampling (NRT/DAAMS/Liquid Agent) for Both on and off Line Analysis of Trace Level Airbone Chemical Warfare Agents

    International Nuclear Information System (INIS)

    A multi functional, twin-trap, electrically-cooled thermal desorption (TD) system (TT24-7) will be discussed for the analysis of airborne trace level chemical warfare agents. This technology can operate in both military environments (CW stockpile, or destruction facilities) and civilian locations where it is used to monitor for accidental or terrorist release of acutely toxic substances. The TD system interfaces to GC, GCMS or direct MS analytical platforms and provides for on-line continuous air monitoring with no sampling time blind spots and within a near real time (NRT) context. Using this technology enables on-line sub ppt levels of agent detection from a vapour sample. In addition to continuous sampling the system has the capacity for off-line single (DAAMS) tube analysis and the ability to receive an external liquid agent injection. The multi mode sampling functionality provides considerable flexibility to the TD system, allowing continuous monitoring of an environment for toxic substances plus the ability to analyse calibration standards. A calibration solution can be introduced via a conventional sampling tube on to either cold trap or as a direct liquid injection using a conventional capillary split/splitless injection port within a gas chromatograph. Low level (linearity) data will be supplied showing the TT24-7 analyzing a variety of CW compounds including free (underivitised) VX using the three sampling modes described above. Stepwise changes in vapor generated agent concentrations will be shown, and this is cross referenced against direct liquid agent introduction, and the tube sampling modes. This technology is in use today in several geographies around the world in both static and mobile analytical laboratories. (author)

  13. Biological warfare agents as threats to potable water.

    OpenAIRE

    Burrows, W D; Renner, S E

    1999-01-01

    Nearly all known biological warfare agents are intended for aerosol application. Although less effective as potable water threats, many are potentially capable of inflicting heavy casualties when ingested. Significant loss of mission capability can be anticipated even when complete recovery is possible. Properly maintained field army water purification equipment can counter this threat, but personnel responsible for the operation and maintenance of the equipment may be most at risk of exposur...

  14. Background chemistry for chemical warfare agents and decontamination processes in support of delisting waste streams at the U.S. Army Dugway Proving Ground, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblatt, D.H.; Small, M.J.; Kimmell, T.A.; Anderson, A.W.

    1996-04-01

    The State of Utah, Department of Environmental Quality (DEQ), Division of Solid and Hazardous Waste (DSHW), has declared residues resulting from the demilitarization, treatment, cleanup, and testing of military chemical agents to be hazardous wastes. These residues have been designated as corrosive, reactive, toxic, and acute hazardous (Hazardous Waste No. F999). The RCRA regulations (40 Code of Federal Regulations [CFR] 260-280), the Utah Administrative Code (R-315), and other state hazardous waste programs list specific wastes as hazardous but allow generators to petition the regulator to {open_quotes}delist,{close_quotes} if it can be demonstrated that such wastes are not hazardous. The U.S. Army Test and Evaluation Command (TECOM) believes that certain categories of F999 residues are not hazardous and has obtained assistance from Argonne National Laboratory (Argonne) to make the delisting demonstration. The objective of this project is to delist chemical agent decontaminated residues resulting from materials testing activities and to delist a remediation residue (e.g., contaminated soil). To delist these residues, it must be demonstrated that the residues (1) do not contain hazardous quantities of the listed agents; (2) do not contain hazardous quantities of constituents listed in 40 CFR Part 261, Appendix VIII; (3) do not exhibit other characteristics that could define the residues as hazardous; and (4) do not fail a series of acute toxicity tests. The first phase will focus on a subset of the F999 wastes generated at the U.S. Army Dugway Proving Ground (DPG), where the Army tests the effects of military chemical agents and agent-decontamination procedures on numerous military items. This effort is identified as Phase I of the Delisting Program. Subsequent phases will address other DPG chemical agent decontaminated residues and remediation wastes and similar residues at other installations.

  15. Decontamination of biological warfare agents by a microwave plasma torch

    International Nuclear Information System (INIS)

    A portable arc-seeded microwave plasma torch running stably with airflow is described and applied for the decontamination of biological warfare agents. Emission spectroscopy of the plasma torch indicated that this torch produced an abundance of reactive atomic oxygen that could effectively oxidize biological agents. Bacillus cereus was chosen as a simulant of Bacillus anthracis spores for biological agent in the decontamination experiments. Decontamination was performed with the airflow rate of 0.393 l/s, corresponding to a maximum concentration of atomic oxygen produced by the torch. The experimental results showed that all spores were killed in less than 8 s at 3 cm distance, 12 s at 4 cm distance, and 16 s at 5 cm distance away from the nozzle of the torch

  16. An isomer-specific high-energy collision-induced dissociation MS/MS database for forensic applications: a proof-of-concept on chemical warfare agent markers.

    Science.gov (United States)

    Subramaniam, Raja; Östin, Anders; Nygren, Yvonne; Juhlin, Lars; Nilsson, Calle; Åstot, Crister

    2011-09-01

    Spectra database search has become the most popular technique for the identification of unknown chemicals, minimizing the need for authentic reference chemicals. In the present study, an isomer-specific high-energy collision-induced dissociation (CID) MS/MS spectra database of 12 isomeric O-hexyl methylphosphonic acids (degradation markers of nerve agents) was created. Phosphonate anions were produced by the electrospray ionization of phosphonic acids or negative-ion chemical ionization of their fluorinated derivatives and were analysed in a hybrid magnetic-sector-time-of-flight tandem mass spectrometer. A centre-of-mass energy (E(com)) of 65 eV led to an optimal sequential carbon-carbon bond breakage, which was interpreted in terms of charge remote fragmentation. The proposed mechanism is discussed in comparison with the routinely used low-energy CID MS/MS. Even-mass (odd-electron) charge remote fragmentation ion series were diagnostic of the O-alkyl chain structure and can be used to interpret unknown spectra. Together with the odd-mass ion series, they formed highly reproducible, isomer-specific spectra that gave significantly higher database matches and probability factors (by 1.5 times) than did the EI MS spectra of the trimethylsilyl derivatives of the same isomers. In addition, ionization by negative-ion chemical ionization and electrospray ionization resulted in similar spectra, which further highlights the general potential of the high-energy CID MS/MS technique. PMID:21915956

  17. Effects of textural properties on the response of a SnO2-based gas sensor for the detection of chemical warfare agents.

    Science.gov (United States)

    Lee, Soo Chool; Kim, Seong Yeol; Lee, Woo Suk; Jung, Suk Yong; Hwang, Byung Wook; Ragupathy, Dhanusuraman; Lee, Duk Dong; Lee, Sang Yeon; Kim, Jae Chang

    2011-01-01

    The sensing behavior of SnO(2)-based thick film gas sensors in a flow system in the presence of a very low concentration (ppb level) of chemical agent simulants such as acetonitrile, dipropylene glycol methyl ether (DPGME), dimethyl methylphosphonate (DMMP), and dichloromethane (DCM) was investigated. Commercial SnO(2) [SnO(2)(C)] and nano-SnO(2) prepared by the precipitation method [SnO(2)(P)] were used to prepare the SnO(2) sensor in this study. In the case of DCM and acetonitrile, the SnO(2)(P) sensor showed higher sensor response as compared with the SnO(2)(C) sensors. In the case of DMMP and DPGME, however, the SnO(2)(C) sensor showed higher responses than those of the SnO(2)(P) sensors. In particular, the response of the SnO(2)(P) sensor increased as the calcination temperature increased from 400 °C to 800 °C. These results can be explained by the fact that the response of the SnO(2)-based gas sensor depends on the textural properties of tin oxide and the molecular size of the chemical agent simulant in the detection of the simulant gases (0.1-0.5 ppm). PMID:22163991

  18. Effects of Textural Properties on the Response of a SnO2-Based Gas Sensor for the Detection of Chemical Warfare Agents

    Directory of Open Access Journals (Sweden)

    Duk Dong Lee

    2011-07-01

    Full Text Available The sensing behavior of SnO2-based thick film gas sensors in a flow system in the presence of a very low concentration (ppb level of chemical agent simulants such as acetonitrile, dipropylene glycol methyl ether (DPGME, dimethyl methylphosphonate (DMMP, and dichloromethane (DCM was investigated. Commercial SnO2 [SnO2(C] and nano-SnO2 prepared by the precipitation method [SnO2(P] were used to prepare the SnO2 sensor in this study. In the case of DCM and acetonitrile, the SnO2(P sensor showed higher sensor response as compared with the SnO2(C sensors. In the case of DMMP and DPGME, however, the SnO2(C sensor showed higher responses than those of the SnO2(P sensors. In particular, the response of the SnO2(P sensor increased as the calcination temperature increased from 400 °C to 800 °C. These results can be explained by the fact that the response of the SnO2-based gas sensor depends on the textural properties of tin oxide and the molecular size of the chemical agent simulant in the detection of the simulant gases (0.1–0.5 ppm.

  19. Ge{sup 4+} doped TiO{sub 2} for stoichiometric degradation of warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@iic.cas.cz [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Grygar, Tomas Matys [Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno, Veslarska 230, 628 00 Brno (Czech Republic)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer We prepared nanodisperse Ge{sup 4+} doped titania by a novel synthesis method. Black-Right-Pointing-Pointer Synthesis does not involve organic solvents, organometallics nor thermal processes. Black-Right-Pointing-Pointer The prepared materials are efficient in removal of chemical warfare agents. Black-Right-Pointing-Pointer Ge{sup 4+} doping improves rate of removal of soman and agent VX by TiO{sub 2}. - Abstract: Germanium doped TiO{sub 2} was prepared by homogeneous hydrolysis of aqueous solutions of GeCl{sub 4} and TiOSO{sub 4} with urea. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, EDS analysis, specific surface area (BET) and porosity determination (BJH). Ge{sup 4+} doping increases surface area and content of amorphous phase in prepared samples. These oxides were used in an experimental evaluation of their reactivity with chemical warfare agent, sulphur mustard, soman and agent VX. Ge{sup 4+} doping worsens sulphur mustard degradation and improves soman and agent VX degradation. The best degree of removal (degradation), 100% of soman, 99% of agent VX and 95% of sulphur mustard, is achieved with sample with 2 wt.% of germanium.

  20. Toxicology and pharmacology of the chemical warfare agent sulfur mustard - a review. Final technical report, 29 September 1994-31 January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dacre, J.C.; Beers, R.; Goldman, M.

    1995-04-05

    Sulfur mustard is a poisonous chemical agent which exerts a local action on the eyes, skin and respiratory tissue with subsequent systemic action on the nervous, cardiac, and digestive and endocrine systems in man and laboratory animals causing lacrimation, malaise, anorexia, salivation, respiratory distress, vomiting, hyperexcitability, cardiac distress, and death. Sulfur mustard is a cell poison which causes disumption and impairment of a variety of cellular activities which are dependent upon a very specific integral relationship. These cytotoxic effects are manifested in widespread metabolic disturbances whose variable characteristics are observed in enzymatic deficiencies, vesicant action, abnormal mitotic activity and cell division, bone marrow disruption, disturbances in hematopoietic activity and systemic poisoning. Indeed, mustard gas readily combines with various components of the cell such as amino acids, amines and proteins. Sulfur mustard has been shown to be mainly a lung carcinogen in various test animal species; this effect is highly dependent of size of the dose and the route of exposure. In the human, there is evidence of cancers of the respiratory tract in men exposed to mustard gas. Mutagenicity of sulfur mustard, due to the strong alkylating activity, has been reported to occur in many different species of animals, plants, bacteria, and fungi. There is no strong evidence that sulfur mustard is a teratogen but much further research, with particular emphasis on maternal and fetal toxicity, is needed and recommended.

  1. A Triage Model for Chemical Warfare Casualties

    Directory of Open Access Journals (Sweden)

    Khoshnevis

    2015-08-01

    Full Text Available Context The main objectives of triage are securing patient safety during the process of emergency diagnosis and treatment, and reduction of waiting time for medical services and transport. To date, there is no triage system for nerve agent victims. Evidence Acquisition This systematic review proposes a new triage system for patients exposed to nerve agents. Information regarding clinical signs and symptoms of intoxication with nerve agents, primary treatments, and classification of patients were extracted from the literature. All related articles were reviewed. Subsequently, specialists from different disciplines were invited to discuss and draft protocols. Results Finalized triage tables summarizing the classification methods and required protocols in the field were designed after several meetings. Conclusions The proposed triage protocol encompasses aspects from most of the existing triage systems to create a single overarching guide for unifying the triage process. The proposed protocol can serve as a base for the designing future guidelines.

  2. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, Vaclav, E-mail: stengl@uach.cz [Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika [Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Rez (Czech Republic); Oplustil, Frantisek; Nemec, Tomas [Military Technical Institute of Protection Brno, Veslarska 230, 628 00 Brno (Czech Republic)

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  3. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator.

    Science.gov (United States)

    Nagashima, Hisayuki; Kondo, Tomohide; Nagoya, Tomoki; Ikeda, Toru; Kurimata, Naoko; Unoke, Shohei; Seto, Yasuo

    2015-08-01

    A field-portable gas chromatograph-mass spectrometer (Hapsite ER system) was evaluated for the detection of chemical warfare agents (CWAs) in the vapor phase. The system consisted of Tri-Bed concentrator gas sampler (trapping time: 3s(-1)min), a nonpolar low thermal-mass capillary gas chromatography column capable of raising temperatures up to 200°C, a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump for data acquisition, and a personal computer for data analysis. Sample vapors containing as little as 22μg sarin (GB), 100μg soman (GD), 210μg tabun (GA), 55μg cyclohexylsarin (GF), 4.8μg sulfur mustard, 390μg nitrogen mustard 1, 140μg of nitrogen mustard 2, 130μg nitrogen mustard 3, 120μg of 2-chloroacetophenone and 990μg of chloropicrin per cubic meter could be confirmed after Tri-Bed micro-concentration (for 1min) and automated AMDIS search within 12min. Using manual deconvolution by background subtraction of neighboring regions on the extracted ion chromatograms, the above-mentioned CWAs could be confirmed at lower concentration levels. The memory effects were also examined and we found that blister agents showed significantly more carry-over than nerve agents. Gasoline vapor was found to interfere with the detection of GB and GD, raising the concentration limits for confirmation in the presence of gasoline by both AMDIS search and manual deconvolution; however, GA and GF were not subject to interference by gasoline. Lewisite 1, and o-chlorobenzylidene malononitrile could also be confirmed by gas chromatography, but it was hard to quantify them. Vapors of phosgene, chlorine, and cyanogen chloride could be confirmed by direct mass spectrometric detection at concentration levels higher than 2, 140, and 10mg/m(3) respectively, by bypassing the micro-concentration trap and gas chromatographic separation. PMID:26118803

  4. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides

    International Nuclear Information System (INIS)

    The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl2, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 h post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman's method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. - Highlights: • First comprehensive evaluation of leading AChE oxime reactivators • All oximes are compared against current U.S. therapy 2-PAM Cl. • Relative therapeutic oxime efficacies against OP CWNA and pesticides • Contribution to more effective antidotes

  5. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Christina M., E-mail: wilhelmc@battelle.org [Battelle, 505 King Avenue, JM-7, Columbus, OH 43201-2693 (United States); Snider, Thomas H., E-mail: snidert@battelle.org [Battelle, 505 King Avenue, JM-7, Columbus, OH 43201-2693 (United States); Babin, Michael C., E-mail: babinm@battelle.org [Battelle, 505 King Avenue, JM-7, Columbus, OH 43201-2693 (United States); Jett, David A., E-mail: jettd@ninds.nih.gov [National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892 (United States); Platoff, Gennady E., E-mail: platoffg@niaid.nih.gov [National Institutes of Health/National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892 (United States); Yeung, David T., E-mail: dy70v@nih.gov [National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892 (United States)

    2014-12-15

    The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl{sub 2}, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 h post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman's method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. - Highlights: • First comprehensive evaluation of leading AChE oxime reactivators • All oximes are compared against current U.S. therapy 2-PAM Cl. • Relative therapeutic oxime efficacies against OP CWNA and pesticides • Contribution to more effective

  6. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants

    Directory of Open Access Journals (Sweden)

    Yin Long

    2015-07-01

    Full Text Available A linear hydrogen-bond acidic (HBA linear functionalized polymer (PLF, was deposited onto a bare surface acoustic wave (SAW device to fabricate a chemical sensor. Real-time responses of the sensor to a series of compounds including sarin (GB, dimethyl methylphosphonate (DMMP, mustard gas (HD, chloroethyl ethyl sulphide (2-CEES, 1,5-dichloropentane (DCP and some organic solvents were studied. The results show that the sensor is highly sensitive to GB and DMMP, and has low sensitivity to HD and DCP, as expected. However, the sensor possesses an unexpected high sensitivity toward 2-CEES. This good sensing performance can’t be solely or mainly attributed to the dipole-dipole interaction since the sensor is not sensitive to some high polarity solvents. We believe the lone pair electrons around the sulphur atom of 2-CEES provide an electron-rich site, which facilitates the formation of hydrogen bonding between PLF and 2-CEES. On the contrary, the electron cloud on the sulphur atom of the HD molecule is offset or depleted by its two neighbouring strong electron-withdrawing groups, hence, hydrogen bonding can hardly be formed.

  7. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants.

    Science.gov (United States)

    Long, Yin; Wang, Yang; Du, Xiaosong; Cheng, Luhua; Wu, Penglin; Jiang, Yadong

    2015-01-01

    A linear hydrogen-bond acidic (HBA) linear functionalized polymer (PLF), was deposited onto a bare surface acoustic wave (SAW) device to fabricate a chemical sensor. Real-time responses of the sensor to a series of compounds including sarin (GB), dimethyl methylphosphonate (DMMP), mustard gas (HD), chloroethyl ethyl sulphide (2-CEES), 1,5-dichloropentane (DCP) and some organic solvents were studied. The results show that the sensor is highly sensitive to GB and DMMP, and has low sensitivity to HD and DCP, as expected. However, the sensor possesses an unexpected high sensitivity toward 2-CEES. This good sensing performance can't be solely or mainly attributed to the dipole-dipole interaction since the sensor is not sensitive to some high polarity solvents. We believe the lone pair electrons around the sulphur atom of 2-CEES provide an electron-rich site, which facilitates the formation of hydrogen bonding between PLF and 2-CEES. On the contrary, the electron cloud on the sulphur atom of the HD molecule is offset or depleted by its two neighbouring strong electron-withdrawing groups, hence, hydrogen bonding can hardly be formed. PMID:26225975

  8. Platform-level Distributed Warfare Model-based on Multi-Agent System Framework

    Directory of Open Access Journals (Sweden)

    Xiong Li

    2012-05-01

    Full Text Available The multi-agent paradigm has become a useful tool in solving military problems. However, one of key challenges in multi-agent model for distributed warfare could be how to describe the microcosmic  tactical warfare platforms actions. In this paper, a platform-level distributed warfare model based on multi-agent system framework is designed to tackle this challenge. The basic ideas include:  Establishing multi-agent model by mapping from tactical warfare system’s members, i.e., warfare platforms, to respective agents; performing task decomposition and task allocation by using task-tree decomposition method and improved contract net protocol model technique; and implementing simulation by presenting battlefield terrain environment analysis algorithm based on grid approach. The  simulation demonstration results show that our model provides a feasible and effective approach to supporting the abstraction and representation of microcosmic tactical actions for complex warfare system.Defence Science Journal, 2012, 62(1, pp.180-186, DOI:http://dx.doi.org/10.14429/dsj.62.964

  9. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis.

    Science.gov (United States)

    Kanamori-Kataoka, Mieko; Seto, Yasuo

    2015-09-01

    To establish adequate on-site solvent trapping of volatile chemical warfare agents (CWAs) from air samples, we measured the breakthrough volumes of CWAs on three adsorbent resins by an elution technique using direct electron ionization mass spectrometry. The trapping characteristics of Tenax(®) TA were better than those of Tenax(®) GR and Carboxen(®) 1016. The latter two adsorbents showed non-reproducible breakthrough behavior and low VX recovery. The specific breakthrough values were more than 44 (sarin) L/g Tenax(®) TA resin at 20°C. Logarithmic values of specific breakthrough volume for four nerve agents (sarin, soman, tabun, and VX) showed a nearly linear correlation with the reciprocals of their boiling points, but the data point of sulfur mustard deviated from this linear curve. Next, we developed a method to determine volatile CWAs in ambient air by thermal desorption-gas chromatography (TD-GC/MS). CWA solutions that were spiked into the Tenax TA(®) adsorbent tubes were analyzed by a two-stage TD-GC/MS using a Tenax(®) TA-packed cold trap tube. Linear calibration curves for CWAs retained in the resin tubes were obtained in the range between 0.2pL and 100pL for sarin, soman, tabun, cyclohexylsarin, and sulfur mustard; and between 2pL and 100pL for VX and Russian VX. We also examined the stability of CWAs in Tenax(®) TA tubes purged with either dry or 50% relative humidity air under storage conditions at room temperature or 4°C. More than 80% sarin, soman, tabun, cyclohexylsarin, and sulfur mustard were recovered from the tubes within 2 weeks. In contrast, the recoveries of VX and Russian VX drastically reduced with storage time at room temperature, resulting in a drop to 10-30% after 2 weeks. Moreover, we examined the trapping efficiency of Tenax TA(®) adsorbent tubes for vaporized CWA samples (100mL) prepared in a 500mL gas sampling cylinder. In the concentration range of 0.2-2.5mg/m(3), >50% of sarin, soman, tabun, cyclohexylsarin, and HD were

  10. Status of dental health in chemical warfare victims: The case of Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Ahmad Mottaghi

    2012-01-01

    Conclusion: Chemical warfare victims have relatively poor dental/oral health. Chemical injury might cause a dysfunction in saliva secretion, with decrease in saliva secretion increasing the risk for tooth decay and periodontal disorders. Further research is required to find out the exact underlying mechanisms and the factors associated with poor dental/oral health in chemical warfare victims.

  11. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR

    Science.gov (United States)

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K.; Sharma, Ramesh C.

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ˜5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly.

  12. Joint chemical agent detector (JCAD): the future of chemical agent detection

    Science.gov (United States)

    Laljer, Charles E.

    2003-08-01

    The Joint Chemical Agent Detector (JCAD) has continued development through 2002. The JCAD has completed Contractor Validation Testing (CVT) that included chemical warfare agent testing, environmental testing, electromagnetic interferent testing, and platform integration validation. The JCAD provides state of the art chemical warfare agent detection capability to military and homeland security operators. Intelligence sources estimate that over twenty countries have active chemical weapons programs. The spread of weapons of mass destruction (and the industrial capability for manufacture of these weapons) to third world nations and terrorist organizations has greatly increased the chemical agent threat to U.S. interests. Coupled with the potential for U.S. involvement in localized conflicts in an operational or support capacity, increases the probability that the military Joint Services may encounter chemical agents anywhere in the world. The JCAD is a small (45 in3), lightweight (2 lb.) chemical agent detector for vehicle interiors, aircraft, individual personnel, shipboard, and fixed site locations. The system provides a common detection component across multi-service platforms. This common detector system will allow the Joint Services to use the same operational and support concept for more efficient utilization of resources. The JCAD detects, identifies, quantifies, and warns of the presence of chemical agents prior to onset of miosis. Upon detection of chemical agents, the detector provides local and remote audible and visual alarms to the operators. Advance warning will provide the vehicle crew and other personnel in the local area with the time necessary to protect themselves from the lethal effects of chemical agents. The JCAD is capable of being upgraded to protect against future chemical agent threats. The JCAD provides the operator with the warning necessary to survive and fight in a chemical warfare agent threat environment.

  13. Chemical and Biological Warfare: Should Rapid Detection Techniques Be Researched To Dissuade Usage? A Review

    Directory of Open Access Journals (Sweden)

    Mark R. Hurst

    2005-01-01

    Full Text Available Chemistry, microbiology and genetic engineering have opened new doorways for the human race to propel itself to a better future. However, there is a darker side to Bioengineering. One element of this is the manufacture and proliferation of biological and chemical weapons. It is clearly in the interest of humankind to prevent the future use of such weapons of mass destruction. Though many agents have been proposed as potential biological and chemical weapons, the feasibility of these weapons is a matter of conjecture. The unpredictable and indiscriminate devastation caused by natural epidemics and hazardous chemicals during wartime without medical treatment should warn humans of the dangers of employing them as weapons. This study argues rapid detection techniques may dissuade future use. Many agents are far less toxic to treatment. A quick response time to most attacks will decrease the chances of serious health issues. The agent will be less effective and discourage the attacker from using the weapon. Fortunately, the Chemical and Biological Weapons Convention (CWCIBWC allows defensive work in the area of biological and chemical weapons. Consequently, the review will discuss history, delivery/dispersal systems and specific agents of the warfare. The study presents current developments in biosensors for toxic materials of defense interest. It concludes with future directions for biosensor development.

  14. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Houšková, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Maříková, Monika; Opluštil, F.; Němec, T.

    2010-01-01

    Roč. 61, č. 11 (2010), s. 1080-1088. ISSN 1044-5803 Institutional research plan: CEZ:AV0Z40320502 Keywords : warfare agents * nano-dispersed oxides * homogeneous hydrolysis Subject RIV: CA - Inorganic Chemistry Impact factor: 1.496, year: 2010

  15. Ge 4+ doped TiO 2 for stoichiometric degradation of warfare agents

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Matys Grygar, Tomáš; Opluštil, F.; Němec, T.

    2012-01-01

    Roč. 227, AUGUST (2012), s. 62-67. ISSN 0304-3894 R&D Projects: GA ČR(CZ) GAP106/12/1116 Institutional support: RVO:61388980 Keywords : germanium * homogeneous hydrolysis * titania * urea * warfare agent degradation Subject RIV: CA - Inorganic Chemistry Impact factor: 3.925, year: 2012

  16. Detection of Chemical Warfare Agents by Differential Mobility Spectrometry and Drift-time Ion Mobility Spectrometry Hybrid Technology%差分离子迁移谱和迁移时间离子迁移谱联用技术检测化学战剂模拟物

    Institute of Scientific and Technical Information of China (English)

    程沙沙; 陈创; 王卫国; 李海洋

    2014-01-01

    Using a novel hybrid technology combined differential ion mobility spectrometry ( DMS) with drift time ion mobility spectrometry DMS-IMS2 , we detected the typical chemical warfare agent simulants dimethyl methylphosphonate ( DMMP ) and methyl salicylate ( MS) . With carrier gas 800 mL/min and DMS RF voltage 1100 V, the chemical warfare agents DMMP and MS could be detected and characterized by DMS-IMS2 under DIMS mode. In addition, DMS-IMS2 is capable to monitor positive and negative ions of DMMP and MS simultaneously, and provides the two-dimensional separation parameters DMS compensation voltage ( CV) and IMS drift time ( Td ) , which provides more information for the identification of two chemical warfare agents. DMS-IMS2 has potential application in on-site detection and instrument miniaturization due to its advantages including small size, low power consumption and rapid response time.%采用平板式差分离子迁移谱( DMS)和迁移时间离子迁移谱( DTIMS)联用技术( DMS-IMS2)对典型化学战剂模拟物甲基膦酸二甲酯(DMMP)和水杨酸甲酯(MS)进行测定。实验结果表明,在载气800 mL/min, DMS射频电压1100 V条件下,DMS-IMS2在DIMS模式能够实现DMMP和MS两种化学战剂模拟物的有效识别和检测。另外,DMS-IMS2能够实现DMMP和MS正、负离子的同时检测,同时获得DMMP和MS的DMS补偿电压( CV)和IMS迁移时间( Td )的二维分离信息,为两种化学战剂模拟物的准确鉴定提供更多的信息。DMS-IMS2具有二维分析能力、可同时分析正负离子、响应速度快、体积小、功耗低等优点,在现场检测中具有广阔的应用前景。

  17. Investigations of emergency destruction methods for recovered, explosively configured, chemical warfare munitions: Interim emergency destruction methods - evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Cooper, P.W.; Kipp, M.E. [and others

    1995-07-01

    At the request of the U.S. Army Non-Stockpile Chemical Material Office, the Sandia Explosives Containment System Design Team investigated mature destruction systems for destroying recovered chemical warfare munitions (CWM). The goal of the investigations was to identify and examine available techniques for the destruction of recovered CWM. The result of this study is a recommendation for an interim solution, a solution for use on any munitions found while an optimal, long-term solution is developed. Sandia is also performing the long-term solution study to develop a system that destroys CWM, contains the blast and fragments, and destroys the chemical agent without insult to the environment.

  18. Increasing lifetimes of fiber-optic sensor arrays for chemical warfare detection

    Science.gov (United States)

    Bencic, Sandra; Walt, David R.

    2004-03-01

    We are exploring the ability of cross reactive sensor arrays to monitor the presence of chemical warfare agents. The sensing platform developed in our lab uses a variety of fluorescent microbead sensors, either 3 or 5 microns in diameter. The sensors have a wide range of surface functionalities and are coated with fluorescent dyes that change their emission properties upon interaction with analyte vapors. Every time the sensors are interrogated with light they photobleach which leads to signal loss and a decreased array lifetime. In order to monitor for long periods of time, a strategy has been developed that extends the array lifetime. Here, we implement a method to increase the lifetime of an array by up to 10-fold, as we incrementally expose small sections of the array at a time. We divide the array into sections by moving an optical slit across the face of the fiber.

  19. Detection of biological warfare agents with fiber-optic microsphere-based DNA arrays

    Science.gov (United States)

    Song, Linan; Walt, David R.

    2005-11-01

    Biological warfare agents (BWAs) pose significant threats to both military forces and civilian populations. The increased concern about bioterrorism has promoted the development of rapid, sensitive, and reliable detection systems to provide an early warning for detecting the release of BWAs. We have developed a high-density DNA array to detect BWAs in real environmental samples with fast response times and high sensitivity. An optical fiber bundle containing approximately 50,000 individual 3.1 μm diameter fibers was chemically etched to yield an array of microwells and used as the substrate for the array. 50-mer single-stranded DNA probes designed to be specific for target BWAs were covalently attached to 3.1-μm microspheres, and the microspheres were distributed into the microwells to form a randomized high-density DNA array. We demonstrated the applicability of this DNA array for the identification of Bacillus thuringiensis kurstaki, a BWA simulant, in real samples. PCR was used to amplify the sequences, introduce fluorescent labels into the target molecules, and provide a second level of specificity. After hybridization of test solutions to the array, analysis was performed by evaluating the specific responses of individual probes on the array.

  20. Chemical crowd control agents.

    Science.gov (United States)

    Menezes, Ritesh G; Hussain, Syed Ather; Rameez, Mansoor Ali Merchant; Kharoshah, Magdy A; Madadin, Mohammed; Anwar, Naureen; Senthilkumaran, Subramanian

    2016-03-01

    Chemical crowd control agents are also referred to as riot control agents and are mainly used by civil authorities and government agencies to curtail civil disobedience gatherings or processions by large crowds. Common riot control agents used to disperse large numbers of individuals into smaller, less destructive, and more easily controllable numbers include chloroacetophenone, chlorobenzylidenemalononitrile, dibenzoxazepine, diphenylaminearsine, and oleoresin capsicum. In this paper, we discuss the emergency medical care needed by sufferers of acute chemical agent contamination and raise important issues concerning toxicology, safety and health. PMID:26658556

  1. Chemiluminescence assay for the detection of biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Langry, K; Horn, J

    1999-11-05

    A chemiluminescent homogeneous immunoassay and a hand-size multiassay reader are described that could be used for detecting biological materials. The special feature of the assay is that it employs two different antibodies that each bind to a unique epitope on the same antigen. Each group of epitope-specific antibodies has linked to it an enzyme of a proximal-enzyme pair. One enzyme of the pair utilizes a substrate in high concentration to produce a second substrate required by the second enzyme. This new substrate enables the second enzyme to function. The reaction of the second enzyme is configured to produce light. This chemiluminescence is detected with a charge-coupled device (CCD) camera. The proximal pair enzymes must be in close proximity to one another to allow the second enzyme to react with the product of the first enzyme. This only occurs when the enzyme-linked antibodies are attached to the antigen, whether antigen is a single protein with multiple epitopes or the surface of a cell with a variety of different antigens. As a result of their juxtaposition, the enzymes produce light only in the presence of the biological material. A brief description is given as to how this assay could be utilized in a personal bio-agent detector system.

  2. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    OpenAIRE

    Daniel Matatagui; José Luis Fontecha; María Jesús Fernández; Isabel Gràcia; Carles Cané; José Pedro Santos; María Carmen Horrillo

    2014-01-01

    The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentr...

  3. Evaluation of Molecular Markers and Analytical Methods Documenting the Occurrence of Mustard Gas and Arsenical Warfare Agents in Soil.

    Science.gov (United States)

    Sassolini, Alessandro; Brinchi, Giampaolo; Di Gennaro, Antonio; Dionisi, Simone; Dominici, Carola; Fantozzi, Luca; Onofri, Giorgio; Piazza, Rosario; Guidotti, Maurizio

    2016-09-01

    The chemicals warfare agents (CWAs) are an extremely toxic class of molecules widely produced in many industrialized countries for decades, these compounds frequently contained arsenic. The plants where the CWAs have been produced or the plants where they have been demilitarized after the Second World War with unacceptable techniques can represent a serious environmental problem. CWAs standards are difficult to find on market so in present work an environmental assessment method based on markers has been proposed. Triphenylarsine, phenylarsine oxide and thiodiglycol have been selected as markers. Three reliable analytical methods based on gaschromatography and mass detection have been proposed and tested for quantitative analysis of markers. Methods performance have been evaluated testing uncertainty, linearity, recovery and detection limits and also comparing detection limits with exposure limits of reference CWAs. Proposed assessment methods have been applied to a case study of a former industrial plant sited in an area characterized by a high background of mineral arsenic. PMID:27385368

  4. Nanowire-based surface-enhanced Raman spectroscopy (SERS) for chemical warfare simulants

    Science.gov (United States)

    Hoffmann, J. A.; Miragliotta, J. A.; Wang, J.; Tyagi, P.; Maddanimath, T.; Gracias, D. H.; Papadakis, S. J.

    2012-06-01

    Hand-held instruments capable of spectroscopic identification of chemical warfare agents (CWA) would find extensive use in the field. Because CWA can be toxic at very low concentrations compared to typical background levels of commonly-used compounds (flame retardants, pesticides) that are chemically similar, spectroscopic measurements have the potential to reduce false alarms by distinguishing between dangerous and benign compounds. Unfortunately, most true spectroscopic instruments (infrared spectrometers, mass spectrometers, and gas chromatograph-mass spectrometers) are bench-top instruments. Surface-acoustic wave (SAW) sensors are commercially available in hand-held form, but rely on a handful of functionalized surfaces to achieve specificity. Here, we consider the potential for a hand-held device based on surface enhanced Raman scattering (SERS) using templated nanowires as enhancing substrates. We examine the magnitude of enhancement generated by the nanowires and the specificity achieved in measurements of a range of CWA simulants. We predict the ultimate sensitivity of a device based on a nanowire-based SERS core to be 1-2 orders of magnitude greater than a comparable SAW system, with a detection limit of approximately 0.01 mg m-3.

  5. On-Site Detection as a Countermeasure to Chemical Warfare/Terrorism.

    Science.gov (United States)

    Seto, Y

    2014-01-01

    On-site monitoring and detection are necessary in the crisis and consequence management of wars and terrorism involving chemical warfare agents (CWAs) such as sarin. The analytical performance required for on-site detection is mainly determined by the fatal vapor concentration and volatility of the CWAs involved. The analytical performance for presently available on-site technologies and commercially available on-site equipment for detecting CWAs interpreted and compared in this review include: classical manual methods, photometric methods, ion mobile spectrometry, vibrational spectrometry, gas chromatography, mass spectrometry, sensors, and other methods. Some of the data evaluated were obtained from our experiments using authentic CWAs. We concluded that (a) no technologies perfectly fulfill all of the on-site detection requirements and (b) adequate on-site detection requires (i) a combination of the monitoring-tape method and ion-mobility spectrometry for point detection and (ii) a combination of the monitoring-tape method, atmospheric pressure chemical ionization mass spectrometry with counterflow introduction, and gas chromatography with a trap and special detectors for continuous monitoring. The basic properties of CWAs, the concept of on-site detection, and the sarin gas attacks in Japan as well as the forensic investigations thereof, are also explicated in this article. PMID:26226969

  6. The Short-Term Effect of Chest Physiotherapy on Spirometric Indices in Chemical Warfare Victims Exposed to Mustard Gas

    OpenAIRE

    Abedi, A.; HR Koohestani; Z Roosta

    2008-01-01

    ABCTRACT Introduction & Objective: Chronic respiratory diseases are the most prevalent late sequels of sulfur mustard gas injury among Iranian chemical warfare victims. Chest physiotherapy is one of the useful methods in care, cure and infection prevention of these patients. The aim of this study was to determine the short-term effect of chest physiotherapy on spirometric indices in chemical warfare victims exposed to sulfur mustard gas. Materials & Methods: In this study, 27 of the chemical ...

  7. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    Science.gov (United States)

    Matatagui, Daniel; Fontecha, José Luis; Fernández, María Jesús; Gràcia, Isabel; Cané, Carles; Santos, José Pedro; Horrillo, María Carmen

    2014-01-01

    The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13), and the rabbit immunoglobulin (Rabbit IgG) has been detected using the polyclonal antibody goat anti-rabbit (GAR). Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved. PMID:25029282

  8. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    Daniel Matatagui

    2014-07-01

    Full Text Available The following paper examines a time-efficient method for detecting biological warfare agents (BWAs. The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13, and the rabbit immunoglobulin (Rabbit IgG has been detected using the polyclonal antibody goat anti-rabbit (GAR. Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved.

  9. Love-wave sensors combined with microfluidics for fast detection of biological warfare agents.

    Science.gov (United States)

    Matatagui, Daniel; Fontecha, José Luis; Fernández, María Jesús; Gràcia, Isabel; Cané, Carles; Santos, José Pedro; Horrillo, María Carmen

    2014-01-01

    The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13), and the rabbit immunoglobulin (Rabbit IgG) has been detected using the polyclonal antibody goat anti-rabbit (GAR). Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved. PMID:25029282

  10. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    Energy Technology Data Exchange (ETDEWEB)

    Ramaseshan, Ramakrishnan [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Sundarrajan, Subramanian [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Liu, Yingjun [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore (Singapore); Barhate, R S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Lala, Neeta L [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Ramakrishna, S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore)

    2006-06-28

    A catalyst for the detoxification of nerve agents is synthesized from {beta}-cyclodextrin ({beta}-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with {beta}-CD, IBA, a blend of {beta}-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane.

  11. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    International Nuclear Information System (INIS)

    A catalyst for the detoxification of nerve agents is synthesized from β-cyclodextrin (β-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with β-CD, IBA, a blend of β-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane

  12. Comment on “Computed Tomography Imaging Findings in Chemical Warfare Victims with Pulmonary Complications”

    OpenAIRE

    Shahrzad M.Lari

    2013-01-01

    Dr.Mirsadraei and colleagues performed an interesting study about the lung HRCT findings in chemical warfare patients who suffering from long-term pulmonary complications. They found that air trapping and mosaic attenuation were the most common lung HRCT findings. Also they divided patients in different clinical entities according to the lung HRCT findings (Bronchiolitis Oblitrans, pulmonary fibrosis, bronchiectasis, asthma, and COPD). At present, GOLD and GINA recommend the diagnosis of COPD...

  13. Quality of life in chemical warfare survivors with ophthalmologic injuries: the first results form Iran Chemical Warfare Victims Health Assessment Study

    Directory of Open Access Journals (Sweden)

    Soroush Mohammad

    2009-01-01

    Full Text Available Abstract Background Iraq used chemical weapons extensively against the Iranians during the Iran-Iraq war (1980–1988. The aim of this study was to assess the health related quality of life (HRQOL in people who had ophthalmologic complications due to the sulfur mustard gas exposure during the war. Methods The Veterans and Martyrs Affair Foundation (VMAF database indicated that there were 196 patients with severe ophthalmologic complications due to chemical weapons exposure. Of these, those who gave consent (n = 147 entered into the study. Quality of life was measured using the 36-item Short Form Health Survey (SF-36 and scores were compared to those of the general public. In addition logistic regression analysis was performed to indicate variables that contribute to physical and mental health related quality of life. Results The mean age of the patients was 44.8 (SD = 8.7 ranging from 21 to 75 years. About one-third of the cases (n= 50 reported exposure to chemical weapons more than once. The mean exposure duration to sulfur mustard gas was 21.6 years (SD = 1.2. The lowest scores on the SF-36 subscales were found to be: the role physical and the general health. Quality of life in chemical warfare victims who had ophthalmologic problems was significantly lower than the general public (P Conclusion The study findings suggest that chemical warfare victims with ophthalmologic complications suffer from poor health related quality of life. It seems that the need for provision of health and support for this population is urgent. In addition, further research is necessary to measure health related quality of life in victims with different types of disabilities in order to support and enhance quality of life among this population.

  14. Transport behavior of surrogate biological warfare agents in a simulated landfill: Effect of leachate recirculation and water infiltration

    KAUST Repository

    Saikaly, Pascal

    2010-11-15

    An understanding of the transport behavior of biological warfare (BW) agents in landfills is required to evaluate the suitability of landfills for the disposal of building decontamination residue (BDR) following a bioterrorist attack on a building. Surrogate BW agents, Bacillus atrophaeus spores and Serratia marcescens, were spiked into simulated landfill reactors that were filled with synthetic building debris (SBD) and operated for 4 months with leachate recirculation or water infiltration. Quantitative polymerase chain reaction (Q-PCR) was used to monitor surrogate transport. In the leachate recirculation reactors, <10% of spiked surrogates were eluted in leachate over 4 months. In contrast, 45% and 31% of spiked S. marcescens and B. atrophaeus spores were eluted in leachate in the water infiltration reactors. At the termination of the experiment, the number of retained cells and spores in SBD was measured over the depth of the reactor. Less than 3% of the total spiked S. marcescens cells and no B. atrophaeus spores were detected in SBD. These results suggest that significant fractions of the spiked surrogates were strongly attached to SBD. © 2010 American Chemical Society.

  15. Rapid chemical agent identification by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Lee, Yuan-Hsiang; Farquharson, Stuart

    2001-08-01

    Although the Chemical Weapons Convention prohibits the development, production, stockpiling, and use of chemical warfare agents (CWAs), the use of these agents persists due to their low cost, simplicity in manufacturing and ease of deployment. These attributes make these weapons especially attractive to low technology countries and terrorists. The military and the public at large require portable, fast, sensitive, and accurate analyzers to provide early warning of the use of chemical weapons. Traditional laboratory analyzers such as the combination of gas chromatography and mass spectroscopy, although sensitive and accurate, are large and require up to an hour per analysis. New, chemical specific analyzers, such as immunoassays and molecular recognition sensors, are portable, fast, and sensitive, but are plagued by false-positives (response to interferents). To overcome these limitations, we have been investigating the potential of surface-enhanced Raman spectroscopy (SERS) to identify and quantify chemical warfare agents in either the gas or liquid phase. The approach is based on the extreme sensitivity of SERS demonstrated by single molecule detection, a new SERS material that we have developed to allow reproducible and reversible measurements, and the molecular specific information provided by Raman spectroscopy. Here we present SER spectra of chemical agent simulants in both the liquid and gas phase, as well as CWA hydrolysis phase.

  16. From energy-rich phosphate compounds to warfare agents: A review on the chemistry of organic phosphate compounds

    OpenAIRE

    Luciano Albino Giusti; Vanderlei Gageiro Machado

    2008-01-01

    The chemistry of the phosphorus-oxygen bond is widely used in biological systems in many processes, such as energy transduction and the storage, transmission and expression of genetic information, which are essential to living beings in relation to a wide variety of functions. Compounds containing this bond have been designed for many purposes, ranging from agricultural defense systems, in order to increase food production, to nerve agents, for complaining use in warfare. In this review, feat...

  17. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    International Nuclear Information System (INIS)

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L-1 and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 μg L-1) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  18. Chemical Agents: Facts about Evacuation

    Science.gov (United States)

    ... Health Emergency Response Guide Reaching At-Risk Populations Chemical Agents: Facts About Evacuation Format: Select one PDF [ ... on Facebook Tweet Share Compartir Some kinds of chemical accidents or attacks, such as a train derailment ...

  19. Establishment of Exposure to Organophosphorus Warfare Agents by Means of SPME-GSMS Analysis of Bodily Fluids

    International Nuclear Information System (INIS)

    Reliable chemical analytical procedures for revealing an exposure to toxic chemicals, identifying the active substance, and assessing the degree of exposure are necessary as a component of medical and forensic activities in cases of the possible use of highly toxic chemicals in war conflicts and terrorism acts, as well as emergency situations in chemical industry, specifically at chemical weapons storage and destruction facilities. According to Chemical Weapons Convention, Part XI, Appendix 4, e-17, 'samples of importance in the investigation of alleged use include biomedical samples from human or animal sources (blood, urine, excreta, tissue etc.)'. Urinary metabolites, O-alkyl esters of methylphosphic acid, offer one of the simplest means of confirming an exposure to organophosphorus warfare agents (OPWA). Urine, unlike blood or tissues, does not require invasive collection demanding in terms of sterility. Excretion with urine is the major route of elimination of OPWA from an organism. According to published data, 90% of OPWA metabolites are excreted within 48-72 h after intoxication. We developed an SPME-GCMS procedure for the determination of O-alkyl esters methylphosphonic acid in urine, with the following detection limits,: isopropyl and isobutyl esters 5 ng/ml and pinacolyl ester 1 ng/ml. The procedure involves derivatization of the target compounds directly on the microfiber. The total analysis time is 1-1.5 h. In animal experiments in vivo we could establish the exposure to OPWA at a half-LD50 level within no less than 48 h after intoxication. In principle, OPWA metabolites could be detected in urine within two weeks after intoxication but at higher doses. Retrospective analysis of urinary metabolites in cases of the exposure to low doses of OPWA requires lower detection limits (0.1-1 ng/ml). Optimal objects for the retrospective analysis of OPWA in an organism are long-lived blood protein adducts. We developed a procedure for revealing an exposure to

  20. Corner capping of silsesquioxane cages by chemical warfare agent simulants.

    Science.gov (United States)

    Ferguson-McPherson, Melinda K; Low, Emily R; Esker, Alan R; Morris, John R

    2005-11-22

    The room-temperature uptake and reactivity of gas-phase methyl dichlorophosphate (MDCP) and trichlorophosphate (TCP) within trisilanolphenyl-polyhedral oligomeric silsesquioxane (POSS) Langmuir-Blodgett films are investigated. The halogenated phosphate molecules are found to readily diffuse into and react with the hybrid inorganic-organic silicon-oxide films under ambient conditions. Reflection absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), and fast atom bombardment-mass spectrometry (FAB-MS) measurements suggest that the chlorophosphates undergo hydrolysis with the silanol groups of the POSS LB-film. Substitution and elimination reactions appear to cap the corner of the POSS molecules, leaving a surface-bound phosphoryl group and a resulting structure that is highly stable at elevated temperatures. PMID:16285795

  1. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents.

    Science.gov (United States)

    Wang, Fei; Gu, Hongwei; Swager, Timothy M

    2008-04-23

    We report a chemiresistor that has been fabricated via simple spin-casting technique from stable CNT dispersion in hexafluoroisopropanol functionalized polythiophene. The sensor has shown high sensitivity and selectivity for a nerve reagent stimulant DMMP. A series of sensing studies, including field effect investigation, electrode passivation, and fluorescent measurement, indicate a combinative mechanism of charge transfer, introduction of scattering sites, and a configurational change of the polymer. PMID:18373343

  2. Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.; Springer, K.; Han, W.; Lizon, D.; Kogan, S. [Los Alamos National Lab., NM (United States). Electronic Materials and Devices Group

    1997-12-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a nonintrusive liquid characterization technique developed specifically for detecting and identifying chemical warfare (CW) compounds inside sealed munitions. The SFAI technique can rapidly (less than 20 seconds) and accurately determine sound speed and sound attenuation of a liquid inside a container over a wide frequency range (1 kHz-15 MHz). From the frequency-dependent sound attenuation measurement, liquid density is determined. These three physical properties are used to uniquely identify the CW compounds. In addition, various chemical relaxation processes in liquids and particle size distribution in emulsions can also be determined from the frequency-dependent attenuation measurement. The SFAI instrument is battery-operated and highly portable (< 6 lb.). The instrument has many potential application in industry ranging from sensitive detection (ppm level) of contamination to process control. The theory of the technique will be described and examples of several chemical industry applications will be presented.

  3. Surface plasmon resonance detection of biological warfare agent Staphylococcal enterotoxin B using high affinity monoclonal antibody

    International Nuclear Information System (INIS)

    A novel sensitive method was developed for the detection as well as quantification of Staphylococcal enterotoxin B (SEB) using surface plasmon resonance (SPR). It is well known that the amount of SEB needed to cause the intoxication to human beings is very less and this concentration (0.02 μg/kg) is highly dangerous, hence, it is used as biological warfare agent. Thus, the need to develop a reliable and potential detection system against SEB is warranted. In the present work, SEB antibody was immobilized on carboxymethyldextran modified gold chip. The immobilization of SEB antibody and interaction of antigen with immobilized antibody were in-situ characterized by SPR and electrochemical impedance spectroscopy. A sample solution containing SEB antigen was injected in a working channel and the results revealed linearity in the concentration from 2.0 to 32.0 pM with a detection limit of 1.0 pM. By using kinetic evaluation software, KD (equilibrium constant) and Bmax (maximum binding capacity of analyte) values were calculated and found to be 13 pM and 424.23, respectively. Moreover, the thermodynamic parameter, change in Gibb's free energy was deduced and found to be -62.08 kJ/mol and this value shows the spontaneous interaction between SEB antigen and SEB antibody. In order to optimize the detection method, temperature and pH variation studies were also performed. Interference study was conducted to know the selectivity for the antigen-antibody interaction of SEB. The selectivity efficiency of SEB, SEC, SEA and SED were 100, 27.15, 20.01 and 12.05%, respectively towards SEB antibody.

  4. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    Science.gov (United States)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  5. Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2009-12-01

    To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are not the necessary requirements for insurgents to efficiently attain their objective.

  6. Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents

    Science.gov (United States)

    Hug, William F.; Bhartia, Rohit; Taspin, Alexandre; Lane, Arthur; Conrad, Pamela; Sijapati, Kripa; Reid, Ray D.

    2005-11-01

    Laser induced native fluorescence (LINF) is the most sensitive method of detection of biological material including microorganisms, virus', and cellular residues. LINF is also a sensitive method of detection for many non-biological materials as well. The specificity with which these materials can be classified depends on the excitation wavelength and the number and location of observation wavelengths. Higher levels of specificity can be obtained using Raman spectroscopy but a much lower levels of sensitivity. Raman spectroscopy has traditionally been employed in the IR to avoid fluorescence. Fluorescence rarely occurs at wavelength below about 270nm. Therefore, when excitation occurs at a wavelength below 250nm, no fluorescence background occurs within the Raman fingerprint region for biological materials. When excitation occurs within electronic resonance bands of the biological target materials, Raman signal enhancement over one million typically occurs. Raman sensitivity within several hundred times fluorescence are possible in the deep UV where most biological materials have strong absorption. Since the Raman and fluorescence emissions occur at different wavelength, both spectra can be observed simultaneously, thereby providing a sensor with unique sensitivity and specificity capability. We will present data on our integrated, deep ultraviolet, LINF/Raman instruments that are being developed for several applications including life detection on Mars as well as biochemical warfare agents on Earth. We will demonstrate the ability to discriminate organic materials based on LINF alone. Together with UV resonance Raman, higher levels of specificity will be demonstrated. In addition, these instruments are being developed as on-line chemical sensors for industrial and municipal waste streams and product quality applications.

  7. Comment on “Computed Tomography Imaging Findings in Chemical Warfare Victims with Pulmonary Complications”

    Directory of Open Access Journals (Sweden)

    2013-08-01

    Full Text Available Dr.Mirsadraei and colleagues performed an interesting study about the lung HRCT findings in chemical warfare patients who suffering from long-term pulmonary complications. They found that air trapping and mosaic attenuation were the most common lung HRCT findings. Also they divided patients in different clinical entities according to the lung HRCT findings (Bronchiolitis Oblitrans, pulmonary fibrosis, bronchiectasis, asthma, and COPD. At present, GOLD and GINA recommend the diagnosis of COPD and asthma mainly on spirometry (1, 2. Although the HRCT may have valuable diagnostic points, but the diagnosis of COPD and asthma is according to the spirometry and relevant clinical symptoms. In this article, the authors relied only on clinical symptoms and corresponding lung HRCT findings that may have overlapping points in the diagnosis of asthma and COPD since normal lung HRCT with or without air trapping can be seen in COPD too (3. It has been proposed that saber-sheath trachea (tracheal index

  8. Monitoring presence of chemical agents

    International Nuclear Information System (INIS)

    The specification describes a case for use with a hand-portable chemical agent detector for continuously monitoring an atmosphere for the presence of predetermined chemical agents. The detector having means for ionizing air samples and providing at an output terminal electrical signals representative of the mobility spectrum of ionized chemical vapours produced by the ionizing means. The case comprises means for defining a chamber in the case for supporting and removably enclosing the detector, means for communicating ambient atmosphere to the chamber, electrical circuit means in the case, the circuit means being adapted to be detachably connected to the detector output terminal when the detector is positioned in the chamber and being responsive to the electrical signals for producing an alarm signal when the signals detect a chemical agent concentration in the atmosphere exceeding a predetermined concentration level, and alarm means responsive to the alarm signal. (author)

  9. Vertically Integrated MEMS SOI Composite Porous Silicon-Crystalline Silicon Cantilever-Array Sensors: Concept for Continuous Sensing of Explosives and Warfare Agents

    Science.gov (United States)

    Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael

    This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.

  10. A traceable quantitative infrared spectral database of chemical agents

    Science.gov (United States)

    Samuels, Alan C.; Williams, Barry R.; Ben-David, Avishai; Hulet, Melissa; Roelant, Geoffrey J.; Miles, Ronald W., Jr.; Green, Norman; Zhu, Changjiang

    2004-12-01

    Recent experimental field trials have demonstrated the ability of both Fourier transform infrared (FTIR) and active light detection and ranging (LIDAR) sensors to detect particulate matter, including simulants for biological materials. Both systems require a reliable, validated, quantitative database of the mid infrared spectra of the targeted threat agents. While several databases are available, none are validated and traceable to primary standards for reference quality reliability. Most of the existing chemical agent databases have been developed using a bubbler or syringe-fed vapor generator, and all are fraught with errors and uncertainties as a result. In addition, no quantitative condensed phase data on the low volatility chemicals and biological agents have been reported. We are filling this data gap through the systematic measurement of gas phase chemical agent materials generated using a unique vapor-liquid equilibrium approach that allows the quantitation of the cross-sections using a mass measurement calibrated to primary, National Institutes of Standards and Technology (NIST) standards. In addition, we have developed quantitative methods for the measurement of condensed phase materials in both transmission and diffuse reflectance modes. The latter data are valuable for the development of complex index of refraction data, which is required for both system modeling and algorithm development of both FTIR and LIDAR based sensor systems. We will describe our measurement approach and progress toward compiling the first known comprehensive and validated database of both vapor and condensed phase chemical warfare agents.

  11. Zeolite fiber integrated microsensors for highly sensitive point detection of chemical agents

    Science.gov (United States)

    Liu, Ning; Hui, Juan; Dong, Junhang; Xiao, Hai

    2006-05-01

    A zeolite-fiber integrated chemical sensor was developed for in situ point detection of chemical warfare agents. The sensor was made by fine-polishing the MFI polycrystalline zeolite thin film synthesized on the endface of the single mode optical fiber. The sensor device operates by measuring the optical thickness changes of the zeolite thin film caused by the adsorption of analytes into the zeolite channels. The sensor was demonstrated for sensitive detection of toluene and dimethyl methylphosphonate (DMMP).

  12. Metabolic Syndrome in Chemical Warfare Patients with Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Shahrzad M. Lari

    2014-11-01

    Full Text Available   Introduction: Sulfur mustard (SM, a toxic alkylating gas, can cause serious long-term pulmonary complications such as chronic obstructive pulmonary disease (COPD. Metabolic syndrome (MetS is one of the important comorbidities of COPD. This study was designed to evaluate the frequency of metabolic syndrome in Iranian chemical warfare patients (CWPs with COPD. Materials and Methods: Thirty CWPs with a mean age of 46.93± 6.8 were enrolled in this study. The following parameters were studied in: complete pulmonary function tests, health-related quality of life, serum triglycerides (TG, high density lipoprotein (HDL and fasting blood sugar (FBS levels. Additionally, 32 COPD patients and 56 healthy persons were considered as control groups who were matched to CWPs. Results: We found a statistically significant difference in the frequency of MetS between the COPD patients and the healthy control group (p=0.04. Additionally, we observed a statistically significant difference in the mean HDL levels among these groups (p=

  13. Heat and mass transfer from a baby manikin: impact of a chemical warfare protective bag.

    Science.gov (United States)

    Danielsson, Ulf

    2004-09-01

    A chemical warfare (CW) protective bag for babies, younger than 1 year, has been evaluated in respect of thermal load. Heat and water vapour dissipating from the baby make the climate in the protective bag more demanding than outside. The thermal strain on a baby was estimated from heat and mass transfer data using an electrically heated baby manikin and a water-filled tray. Furthermore, a theoretical baby model was developed based on relations valid for heat and mass transfer rates from a cylinder and flat surface. Convective and radiative (dry) and evaporative heat transfer coefficients calculated from this model agreed well with the measured values. The maximum heat dissipation from a baby was calculated for combinations of air temperatures (22-30 degrees C) and relative humidities (70-90% rh). The results indicate that a naked baby can dissipate about 100% more heat than is produced during basal conditions when the bag is ventilated (70 1 min(-1)) and the ambient climate is 30 degrees C and 90% rh. If the ventilation rate is 40 1 min(-1), the margin is reduced to 50%. Clothing reduces the margin further. Ventilating the bag with 70 1 min(-1), a dressed baby can dissipate only 10-20% more heat than is produced during basal conditions in a climate (27 degrees C and 80% rh) that is obtained in a crowded shelter after about 24 h of occupation. PMID:15150661

  14. Capillary zone electrophoresis analysis and detection of mid-spectrum biological warfare agents. Suffield memorandum No. 1463

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, C.A.

    1995-12-31

    Mid-spectrum biological warfare agents such as proteins, peptides, and toxins are often difficult to analyze and often require individually developed assay methods for detection and identification. In this regard, capillary electrophoresis is an important, emerging technique for separation and quantitation of peptides and proteins, providing separation efficiencies up to two orders of magnitude greater than high performance liquid chromatography. The technique can also analyze a broad range of compounds, has a simple instrument design which can be automated, and has low sample volume requirements. In this study, a highly efficient and reproducible capillary zone electrophoresis method was developed to separate and identify a series of nine peptides of defense interest including bradykinin, leucine enkephalin, and oxytocin. The paper demonstrates three strategies which could be used in a fully automated field detection and identification system for unknown peptides.

  15. Hand-Held Devices Detect Explosives and Chemical Agents

    Science.gov (United States)

    2010-01-01

    Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.

  16. Scanning surface-enhanced Raman spectroscopy (SERS) of chemical agent simulants on templated Au-Ag nanowire substrates

    Science.gov (United States)

    Hoffmann, J. A.; Miragliotta, J. A.; Wang, J.; Tyagi, P.; Maddanimath, T.; Gracias, D. H.; Papadakis, S. J.

    2009-05-01

    We report the results of scanning micro-Raman spectroscopy obtained on Au-Ag nanowires for a variety of chemical warfare agent simulants. Rough silver segments embedded in gold nanowires showed enhancement of 105 - 107 and allowed unique identification of 3 of 4 chemical agent simulants tested. These results suggest a promising method for detection of compounds significant for security applications, leading to sensors that are compact and selective.

  17. Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate▿

    OpenAIRE

    Pascal E. Saikaly; Barlaz, Morton A.; de los Reyes, Francis L.

    2007-01-01

    Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus...

  18. From energy-rich phosphate compounds to warfare agents: A review on the chemistry of organic phosphate compounds

    Directory of Open Access Journals (Sweden)

    Luciano Albino Giusti

    2008-12-01

    Full Text Available The chemistry of the phosphorus-oxygen bond is widely used in biological systems in many processes, such as energy transduction and the storage, transmission and expression of genetic information, which are essential to living beings in relation to a wide variety of functions. Compounds containing this bond have been designed for many purposes, ranging from agricultural defense systems, in order to increase food production, to nerve agents, for complaining use in warfare. In this review, features related to the chemistry of organic phosphate compounds are discussed, with particular emphasis on the role of phosphate compounds in biochemical events and in nerve agents. To this aim, the energy-rich phosphate compounds are focused, particularly the mode of their use as energy currency in cells. Historical and recent studies carried out by research groups have tried to elucidate the mechanism of action of enzymes responsible for energy transduction through the use of biochemical studies, enzyme models, and artificial enzymes. Finally, recent studies on the detoxification of nerve agents based on phosphorous esters are presented, and on the utilization of chromogenic and fluorogenic chemosensors for the detection of these phosphate species.

  19. Chemical and Biological Warfare: Should Rapid Detection Techniques Be Researched To Dissuade Usage? A Review

    OpenAIRE

    Mark R. Hurst; Ebtisam Wilkins

    2005-01-01

    Chemistry, microbiology and genetic engineering have opened new doorways for the human race to propel itself to a better future. However, there is a darker side to Bioengineering. One element of this is the manufacture and proliferation of biological and chemical weapons. It is clearly in the interest of humankind to prevent the future use of such weapons of mass destruction. Though many agents have been proposed as potential biological and chemical weapons, the feasibility of these weapons i...

  20. Chemical agent detection by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.; Morrisey, Kevin; Christesen, Steven D.

    2004-03-01

    In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.

  1. Nanodispersive mixed oxides for destruction of warfare agents prepared by homogeneous hydrolysis with urea

    Czech Academy of Sciences Publication Activity Database

    Daněk, Ondřej; Štengl, Václav; Bakardjieva, Snejana; Murafa, Nataliya; Kalendová, A.; Oplustil, F.

    2007-01-01

    Roč. 68, 5-6 (2007), s. 707-711. ISSN 0022-3697 R&D Projects: GA MPO 1H-PK2/56 Institutional research plan: CEZ:AV0Z40320502 Keywords : nanostructures * chemical synthesis * surface properties Subject RIV: CA - Inorganic Chemistry Impact factor: 0.899, year: 2007

  2. Governing Warfare

    DEFF Research Database (Denmark)

    Harste, Gorm

      It would seem as though warfare has gotten out of control, not only in Iraq and Afghanistan, but also in Central Africa. The paper outlines the strategic history of politically controlled warfare since the early Enlightenment. The argument is that control is implausible. The idea of control has...... risks of lacking unity and displays the organisational trap to the fatal political myth of controlled warfare: Does it come from the military organisation system itself, from political ideologies of goal-rational governance, or from the chameleonic logic of wars?  ...

  3. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides.

    Science.gov (United States)

    Ramalho, Teodorico C; de Castro, Alexandre A; Silva, Daniela R; Cristina Silva, Maria; Franca, Tanos C C; Bennion, Brian J; Kuca, Kamil

    2016-01-01

    The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research. PMID:26898655

  4. Capillary zone electrophoresis analysis and detection of mid-spectrum biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, C.A.; Townsley, C.

    1995-04-01

    DRE Suffield has initiated a research program to develop methods and equipment for field detection and laboratory identification of mid-spectrum agents, molecules of biological origin such as proteins, peptides and toxins. In this study, a highly efficient and reproducible capillary zone electrophoresis method was developed to separate and identify a series of nine peptides of defence interest: bradykinin, bradykinin fragment 1-5, substance P,ARG8-vasopressin, luteinizing hormone releasing hormone, bombesin, leucine enkephalin, methionine enkephalin, and oxytocin. Using a 50 micrometer x 47 cm capillary column, 22.5 kV separation voltage and a 100 mM pH 2.5 phosphate buffer, all nine peptide could separated in under 10 minutes. Three strategies, which could be used in a fully automated field detection and identification system, were demonstrated for the identification of unknown peptides: comparison of migration times, comparison of electrophoretic mobilities, and co-injection of multiple reference standards. These experiments demonstrate that a separation based analytical method such as capillary electrophoresis could form the basis of a generic detection system for mid-spectrum protein and peptide toxins.

  5. Roman Warfare

    Directory of Open Access Journals (Sweden)

    D.B. Saddington

    2012-03-01

    Full Text Available

    ROTH, Jonathan P 2009. Roman Warfare. Cambridge: Cambridge University Press. Pbk. R250. ISBN 978-0-521-53726-1.

    Jonathan Roth of San Jose State University, known as an expert on military logistics, has written this attractive Cambridge Introduction to Roman Civilization volume on Roman Warfare. The series is designed for students with no prior knowledge of Roman antiquity. The book comprises an Introduction on Sources and Methods (pp. 1-6 and 15 chapters on Roman warfare from the beginnings to the fall of the Western Empire in AD 476, using a chronological approach. There are 68 illustrations and maps, a Timeline, a Glossary, a Glossary of People, a Bibliography (which includes several websites and an Index.

  6. New Safety rule for Chemical Agents

    CERN Multimedia

    Safety Commission

    2010-01-01

    The following Safety rule has been issued on 08-01-2010: Safety Regulation SR-C Chemical Agents This document applies to all persons under the Director General’s authority. It sets out the minimal requirements for the protection of persons from risks to their safety and health arising, or likely to arise, from the effects of hazardous chemical agents used in any CERN activity. All Safety rules are available on the web pages.

  7. Laser interrogation of surface agents (LISA) for chemical agent reconnaissance

    Science.gov (United States)

    Higdon, N. S.; Chyba, Thomas H.; Richter, Dale A.; Ponsardin, Patrick L.; Armstrong, Wayne T.; Lobb, C. T.; Kelly, Brian T.; Babnick, Robert D.; Sedlacek, Arthur J., III

    2002-06-01

    Laser Interrogation of Surface Agents (LISA) is a new technique which exploits Raman scattering to provide standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division is developing the LISA technology under a cost-sharing arrangement with the US Army Soldier and Biological Chemical Command for incorporation on the Army's future reconnaissance vehicles. A field-engineered prototype LISA-Recon system is being designed to demonstrate on-the- move measurements of chemical contaminants. In this article, we will describe the LISA technique, data form proof-of- concept measurements, the LISA-Recon design, and some of the future realizations envisioned for military sensing applications.

  8. The Findings of HRCT of the Lung in Chemical Warfare Veterans with Previous Sulfur Mustard (SM Gas Exposure

    Directory of Open Access Journals (Sweden)

    Saeed Naghibi

    2009-01-01

    Full Text Available "nIntroduction: To identify the findings of High-Resolution Computed Tomography (HRCT of the lung in chemical warfare veterans with previous sulfur mustard (SM gas exposure. "nMaterials and Methods: 93 patients were studied prospectively 22 years after exposure. Demographic and clinical data were recorded. HRCT of the lung was performed during expiration and was reported double blinded by two radiologists. HRCT findings include air trapping, mosaic attenuation, ground glass attenuation, nodules, signet ring, fibrosis, bronchial wall thickening, bronchodilation, tree in bud, interlobular wall thickening, bulla, cavity, air consolidation, honey comb and mediastinal and pleural abnormalities that were analyzed. Final diagnosis was identified according to HRCT findings. The relation between HRCT findings, final diagnosis and the distribution of the abnormalities with duration after exposure were evaluated. Distribution of each finding was also evaluated. "nb The most frequent HRCT finding was air trapping (56.7%. Other common findings were mosaic attenuation (35.1%, ground glass attenuation (20.6%, nodules (17.5%, signet ring (15.5% and fibrosis(12.4%. Distribution of the abnormalities were mostly local (79.4% and bilateral (73%. Abnormalities were mostly in the lower lobe (61.3%. No significant correlation was found between the HRCT findings and the duration after exposure or distribution of the abnormalities. The respiratory complications diagnosed according to HRCT included bronchiolitis obliterans (43%, chronic obstructive pulmonary disease (COPD (27.9%, asthma (23.6%, bronchiectasis (13.9%, interstitial lung disease (ILD (9.6%. All abnormalities were seen more frequently in patients with lesser duration of exposure.( P-value < 0.05. "nConclusion: Focal bilateral air trapping was the most common finding seen in expiratory HRCT in this study, and it is highly suggestive of bronchiolitis obliterance (BO. BO can be a late complication of SM

  9. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    Science.gov (United States)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  10. Detection of electrophilic and nucleophilic chemical agents

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R.; Shepodd, Timothy J.

    2014-08-12

    A "real time" method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.

  11. Detection of Electrophilic and Nucleophilic Chemical Agents

    Energy Technology Data Exchange (ETDEWEB)

    McElhanon, James R. (Manteca, CA); Shepodd, Timothy J. (Livermore, CA)

    2008-11-11

    A "real time" method for detecting electrophilic and nucleophilic species generally by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species.

  12. Investigating the Hydrolysis Reactions of a Chemical Warfare Agent Surrogate. A Systematic Study using 1H, 13C, 17O, 19F, 31P, and 35Cl NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Brendan W. [West Virginia Univ., Morgantown, WV (United States)

    2015-07-24

    During the summer of 2015, I participated in the DHS HS-STEM fellowship at Sandia National Laboratories (SNL, NM) under the supervision of Dr. Todd M. Alam in his Nuclear Magnetic Resonance (NMR) Spectroscopy research group. While with the group, my main project involved pursing various hydrolysis reactions with Diethyl Chlorophosphate (DECP), a surrogate for the agent Sarin (GB). Specifically, I performed different hydrolysis reactions, monitored and tracked the different phosphorous containing species using phosphorous (31P) NMR spectroscopy. With the data collected, I performed kinetics studies mapping the rates of DECP hydrolysis. I also used the NMR of different nuclei such as 1H, 13C, 17O, and 35Cl to help understand the complexity of the reactions that take place. Finally, my last task at SNL was to work with Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) NMR Spectroscopy optimizing conditions for 19F- 31P filtering NMR experiments.

  13. JOHNSTON ATOLL CHEMICAL AGENT DISPOSAL SYSTEM (JACADS) CLOSURE PLAN DEVELOPMENT

    Science.gov (United States)

    The JACADS project consists of four incinerators including a liquid chemical agent waste processor, an explosives treatment incinerator and a batch metal parts treatment unit. Its mission was to disassemble and destroy chemcial weapons and bulk chemical agent. This prototypical...

  14. Leadership, Violence, and Warfare in Small Societies

    OpenAIRE

    Stephen Younger

    2011-01-01

    Multi-agent simulation was used to study the effect of simple models of leadership on interpersonal violence and warfare in small societies. Agents occupied a two dimensional landscape containing villages and food sources. Sharing and stealing contributed to normative reputation. Violence occurred during theft, in revenge killings, and in leader-directed warfare between groups. The simulations were run over many generations to examine the effect of violence on social development. The results ...

  15. Environmental toxicity of Chemical Warfare Agents (CWAs) - MicrotoxTM and Spontaneous Locomotor Changes

    DEFF Research Database (Denmark)

    Storgaard, Morten Swayne; Sanderson, Hans; Baatrup, Erik

    both sediment and pore water, acute toxicity and physicochemical properties. Besides the mentioned evaluation factors, Sulphur mustard (Yperite) degradation products will have emphasis as the majority of the dumped CWAs is the sulphur mustard gas. The chronic toxicity will be described by spontaneous......-2008) and CHEMSEA (2011-2014), the area has been screened for the presence of parent compounds and metabolites including the concentrations they are found in. The majority of the detected compounds has been found in the sediment and a minor part in the pore water. The (eco)toxicity of these compounds remain...

  16. Marital Relationship and Its Associated Factors in Veterans Exposed to High Dose Chemical Warfare Agents

    Directory of Open Access Journals (Sweden)

    Shervin Assari

    2008-06-01

    Full Text Available Objective: The aim of this study was to determine the associates of marital relationship in mustard exposed veterans.Materials and Methods: Two hundred ninety two married Iranian mustard exposed veterans, who had been exposed to single high dose mustard gas in Iraq-Iran war, were assessed for marital adjustment with Revised Dyadic Adjustment Scale (RDAS. Census sampling was done. The patients' quality of life (SF-36, spirometric measures and war related data were also extracted.Results: A total of 189 subjects (65% completed our study. The mean (±SD of the RDAS Total score, RDAS Dyadic Consensus , RDAS Affectional Expression, RDAS Dyadic Satisfaction , and RDAS Dyadic Cohesion were 50.61 (8.16, 16.67 (2.77, 7.62 (1.84, 14.76 (3.39, and 11.54 (3.79, respectively. RDAS Dyadic satisfaction was correlated with SF-36 and all its sub-scores (p<0.05. RDAS total score showed significant correlation with SF-36 total score and most of its sub-scores (p<0.05. RDAS affective expression was significantly correlated with role limitation, social function, general mental health, vitality, General health perceptions, physical composite score (PCS and mental composite score (MCS (p<0.05. RDAS dyadic consensus was not correlated with any SF-36 sub-scores.Conclusion: Veterans health team including physicians, psychologists and/or psychiatrists should know that poorer marital satisfaction is linked with lower quality of life scores, late after mustard exposure, although marital relationship is independent of spirometric findings, age, duration from exposure and comorbidity score.

  17. Reduced weight decontamination formulation for neutralization of chemical and biological warfare agents

    Science.gov (United States)

    Tucker, Mark D.

    2014-06-03

    A reduced weight DF-200 decontamination formulation that is stable under high temperature storage conditions. The formulation can be pre-packed as an all-dry (i.e., no water) or nearly-dry (i.e., minimal water) three-part kit, with make-up water (the fourth part) being added later in the field at the point of use.

  18. Laser based in-situ and standoff detection of chemical warfare agents and explosives

    Science.gov (United States)

    Patel, C. Kumar N.

    2009-09-01

    Laser based detection of gaseous, liquid and solid residues and trace amounts has been developed ever since lasers were invented. However, the lack of availability of reasonably high power tunable lasers in the spectral regions where the relevant targets can be interrogated as well as appropriate techniques for high sensitivity, high selectivity detection has hampered the practical exploitation of techniques for the detection of targets important for homeland security and defense applications. Furthermore, emphasis has been on selectivity without particular attention being paid to the impact of interfering species on the quality of detection. Having high sensitivity is necessary but not a sufficient condition. High sensitivity assures a high probability of detection of the target species. However, it is only recently that the sensor community has come to recognize that any measure of probability of detection must be associated with a probability of false alarm, if it is to have any value as a measure of performance. This is especially true when one attempts to compare performance characteristics of different sensors based on different physical principles. In this paper, I will provide a methodology for characterizing the performance of sensors utilizing optical absorption measurement techniques. However, the underlying principles are equally application to all other sensors. While most of the current progress in high sensitivity, high selectivity detection of CWAs, TICs and explosives involve identifying and quantifying the target species in-situ, there is an urgent need for standoff detection of explosives from safe distances. I will describe our results on CO2 and quantum cascade laser (QCL) based photoacoustic sensors for the detection of CWAs, TICs and explosives as well the very new results on stand-off detection of explosives at distances up to 150 meters. The latter results are critically important for assuring safety of military personnel in battlefield environment, especially from improvised explosive devices (IEDs), and of civilian personnel from terrorist attacks in metropolitan areas.

  19. 电子对抗作战仿真分层半自治Agent系统框架设计%Design of Electronic Warfare Simulation System Framework Based on Semi-autonomous Agent

    Institute of Scientific and Technical Information of China (English)

    成晓鹏; 齐锋; 王枭

    2016-01-01

    In order to redisplay the process of real combat in the electronic warfare simulation system, it designs a layered semi⁃autonomous Agent system framework. Beginning with the point of devising the electronic warfare simulation entity, a new manner of creating entity Agent based on the BDI framework was built and the advantage of semi⁃autonomous Agent was probed. Not only the way how to design Agent became clear, but also the layered semi⁃autonomous Agent structure based on the sort of entities was established. It displays how to use the semi⁃Agent technique in electronic warfare simulation and is re⁃ally significant.%为了在电子对抗作战仿真系统中真实地复现现实作战过程,设计了基于分层半自治Agent的系统框架。从设计电子对抗作战仿真实体Agent的现实意义出发,提出了基于BDI框架的仿真实体Agent设计方法,着重探讨了半自治Agent技术应用于作战仿真领域的巨大优势,明确了个体Agent的设计方法。根据电子对抗作战仿真系统的实体分类结果提出了一种基于分层半自治Agent的系统结构,并分析了不同层次的Agent的功能,为半自治Agent技术应用于电子对抗作战仿真领域提供了思路,具有一定的借鉴意义。

  20. Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials.

    Science.gov (United States)

    Fraga, Carlos G; Bronk, Krys; Dockendorff, Brian P; Heredia-Langner, Alejandro

    2016-05-17

    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities from the synthesis of tris(2-chloroethyl)amine (HN3) that point to the reagent and the specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. All the reagent stocks had impurity profiles that differentiated them from one another. This was demonstrated by building classification models with partial least-squares discriminant analysis (PLSDA) and obtaining average stock classification errors of 2.4, 2.8, 2.8, and 11% by cross-validation for chloroform (7 stocks), thionyl chloride (3 stocks), acetone (7 stocks), and TEA (3 stocks), respectively, and 0% for a validation set of chloroform samples. In addition, some reagent impurities indicative of reagent type were found in the HN3 batches that were originally present in the reagent stocks and presumably not altered during synthesis. More intriguing, impurities in HN3 batches that were apparently produced by side reactions of impurities unique to specific TEA and chloroform stocks, and thus indicative of their use, were observed. PMID:27116337

  1. Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Carlos G.; Bronk, Krys; Dockendorff, Brian P.; Heredia-Langner, Alejandro

    2016-05-17

    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities produced during the synthesis of tris(2-chloroethyl)amine (HN3) that point to specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. Reaction-produced impurities indicative of specific TEA and chloroform stocks were exclusively discovered in HN3 batches made with those reagent stocks. In addition, some reagent impurities were found in the HN3 batches that were presumably not altered during synthesis and believed to be indicative of reagent type regardless of stock. Supervised classification using partial least squares discriminant analysis (PLSDA) on the impurity profiles of chloroform samples from seven stocks resulted in an average classification error by cross-validation of 2.4%. A classification error of zero was obtained using the seven-stock PLSDA model on a validation set of samples from an arbitrarily selected chloroform stock. In a separate analysis, all samples from two of seven chloroform stocks that were purposely not modeled had their samples matched to a chloroform stock rather than assigned a “no class” classification.

  2. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review.

    Science.gov (United States)

    Upadhyayula, Venkata K K

    2012-02-17

    There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and biothreat pathogens through any of the four sensory means mentioned previously. PMID:22244163

  3. Antidotal effects of varthemia persica DC extract in organophosphate poisoning or warfare agents by measuring whole blood acetylcholinesterase

    International Nuclear Information System (INIS)

    The organophosphates (ORPs) or war fare agents toxicity results from inhibition of acetylcholinesterase (AchE). phosphylation of the active serin of AchE leads to accumulation of acetylcholine in synaptic clefts leading to generalized cholinergic over-stimulation. Standard treatment of ORP poisoning includes a muscarinic antagonist such as Atropine, and acetylcholinesterase reactivator (oxime). Presently, oximes like abidoxime and pralidoxime are approved as antidotes against ORP poisoning but are considered to be rather ineffective against certain ORP. Like Soman. In this study, the protective effect of Varthemia persica DC extract on acetylcholinesterase was examined in rats. Animals in weight range of 200-225 g were divided in 8 groups. The negative control group received only 0.4 ml normal saline, reference group, received ethylparaoxone in dose of 50 percent of LD50, positive control group, received ethylparaoxone (50% LD50) and one minute later 50 mol of pralidoxime. Test group 1: received ethylparaoxone and one minute later single dose of methanolic extract of Varthemia persica (250 mg/kg), Test Group 2: daily received methanolic extract of V.persica (250 mg/kg) in six days and one minute after last dose of extract, ethylparaoxone (50% LD50) were injected, Test Group 3: received ethylparaoxone (50% LD50) and then six doses of methanolic extract of V.persica (250 mg/kg) in six continuous days. Test Group 4: received ethylparaoxone and then single dose of dichloromethane extract of V.persica (250 mg/kg). Test Group 5: received ethylparaoxone and one minute later single high dose of methanolic extract of V.persica (1000 mg/kg). Then blood withdrawn and acetylcholinesterase activity was measured according to modified Ellman's method. Only in groups which received extract of V. persica before and after injection of ethylparaoxone, the mean of acetylcholinesterase activity was significantly different with reference group (p 0.05) but no significant difference with

  4. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    International Nuclear Information System (INIS)

    Highlights: ► Smart sensors are needed for detection of chemical and biological threat agents. ► Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. ► Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. ► Functionalized GNPs support multiple analytical methods for sensing threat agents. ► Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and

  5. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyayula, Venkata K.K., E-mail: Upadhyayula.Venkata@epa.gov [Oak Ridge Institute of Science and Education (ORISE), MC-100-44, PO Box 117, Oak Ridge, TN 37831 (United States)

    2012-02-17

    range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and biothreat pathogens through any of the four sensory means mentioned previously.

  6. Chemical Agents: Personal Cleaning and Disposal of Contaminated Clothing

    Science.gov (United States)

    ... Health Emergency Response Guide Reaching At-Risk Populations Chemical Agents: Facts About Personal Cleaning and Disposal of ... Filipino) 中文 (Chinese) Français (French) Some kinds of chemical accidents or attacks may cause you to come ...

  7. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets[I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas[2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study[3] has been

  8. Overview of the joint services lightweight standoff chemical agent detector (JSLSCAD)

    Science.gov (United States)

    Hammond, Barney; Popa, Mirela

    2005-05-01

    This paper presents a system-level description of the Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD). JSLSCAD is a passive Fourier Transform InfraRed (FTIR) based remote sensing system for detecting chemical warfare agents. Unlike predecessor systems, JSLSCAD is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The sensor is interfaced to a small, high performance spatial scanner that provides high-speed, two-axis area coverage. Command, control, and processing electronics have been coupled with real time control software and robust detection/discrimination algorithms. Operator interfaces include local and remote options in addition to interfaces to external communications networks. The modular system design facilitates interfacing to the many platforms targeted for JSLSCAD.

  9. Flying Electronic Warfare Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides NP-3D aircraft host platforms for Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program antiship missile (ASM) seeker simulators used...

  10. Destruction of chemical agent simulants in a supercritical water oxidation bench-scale reactor

    International Nuclear Information System (INIS)

    A new design of supercritical water oxidation (SCWO) bench-scale reactor has been developed to handle high-risk wastes resulting from munitions demilitarization. The reactor consists of a concentric vertical double wall in which SCWO reaction takes place inside an inner tube (titanium grade 2, non-porous) whereas pressure resistance is ensured by a Hastelloy C-276 external vessel. The performances of this reactor were investigated with two different kinds of chemical warfare agent simulants: OPA (a mixture of isopropyl amine and isopropyl alcohol) as the binary precursor for nerve agent of sarin and thiodiglycol [TDG (HOC2H4)2S] as the model organic sulfur heteroatom. High destruction rates based on total organic carbon (TOC) were achieved (>99.99%) without production of chars or undesired gases such as carbon monoxide and methane. The carbon-containing product was carbon dioxide whereas the nitrogen-containing products were nitrogen and nitrous oxide. Sulfur was totally recovered in the aqueous effluent as sulfuric acid. No corrosion was noticed in the reactor after a cumulative operation time of more than 250 h. The titanium tube shielded successfully the pressure vessel from corrosion

  11. Chemical agents and the immune response.

    OpenAIRE

    Luster, M I; Rosenthal, G J

    1993-01-01

    Our desire to understand the potential adverse human health effects of environmental chemical exposure has coincided with an increased understanding of the immune system and an appreciation of its complex regulatory network. This has spawned a broad interest in the area of immunotoxicology within the scientific community as well as certain concerns in the public sector regarding chemical-induced hypersensitivity and immunosuppression. The incidence of alleged human sensitization to chemicals ...

  12. Study on scattering properties of tissues with hyperosmotic chemical agents

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Optical properties of biological tissue are variable due to the changes of micro-structures and scattering constituents after hyperosmotic chemical agents permeates into tissue. The changes of optical properties of biological tissue are due to the refractive indices matching between the scatterers with high refractive index and the ground substances, which reduce scattering of tissue. The main reasons are that permeated semipermeable chemical agents with higher refractive index than the ground substances of tissuemakes the refractive index of ground substances of tissue higher by the enhancement of the permeated concentration. We studied on the collimated transmittance changes of light penetrating biological tissue after the hyperosmotic chemical agents administrates with different concentration.

  13. Statistical models for LWIR hyperspectral backgrounds and their applications in chemical agent detection

    Science.gov (United States)

    Manolakis, D.; Jairam, L. G.; Zhang, D.; Rossacci, M.

    2007-04-01

    Remote detection of chemical vapors in the atmosphere has a wide range of civilian and military applications. In the past few years there has been significant interest in the detection of effluent plumes using hyperspectral imaging spectroscopy in the 8-13μm atmospheric window. A major obstacle in the full exploitation of this technology is the fact that everything in the infrared is a source of radiation. As a result, the emission from the gases of interest is always mixed with emission by the more abundant atmospheric constituents and by other objects in the sensor field of view. The radiance fluctuations in this background emission constitute an additional source of interference which is much stronger than the detector noise. In this paper we develop and evaluate parametric models for the statistical characterization of LWIR hyperspectral backgrounds. We consider models based on the theory of elliptically contoured distributions. Both models can handle heavy tails, which is a key stastical feature of hyperspectral imaging backgrounds. The paper provides a concise description of the underlying models, the algorithms used to estimate their parameters from the background spectral measurements, and the use of the developed models in the design and evaluation of chemical warfare agent detection algorithms.

  14. The induction of synaesthesia with chemical agents: A systematic review

    Directory of Open Access Journals (Sweden)

    David eLuke

    2013-10-01

    Full Text Available Despite the general consensus that synaesthesia emerges at an early developmental stage and is only rarely acquired during adulthood, the transient induction of synaesthesia with chemical agents has been frequently reported in research on different psychoactive substances. Nevertheless, these effects remain poorly understood and have not been systematically incorporated. Here we review the known published studies in which chemical agents were observed to elicit synaesthesia. Across studies there is consistent evidence that serotonin agonists elicit transient experiences of synaesthesia. Despite convergent results across studies, studies investigating the induction of synaesthesia with chemical agents have numerous methodological limitations and little experimental research has been conducted. Cumulatively, these studies implicate the serotonergic system in synaesthesia and have implications for the neurochemical mechanisms underlying this phenomenon but methodological limitations in this research area preclude making firm conclusions regarding whether chemical agents can induce genuine synaesthesia.

  15. Intelligence, Information Technology, and Information Warfare.

    Science.gov (United States)

    Davies, Philip H. J.

    2002-01-01

    Addresses the use of information technology for intelligence and information warfare in the context of national security and reviews the status of clandestine collection. Discusses hacking, human agent collection, signal interception, covert action, counterintelligence and security, and communications between intelligence producers and consumers…

  16. A decontamination study of simulated chemical and biological agents

    International Nuclear Information System (INIS)

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment

  17. Structural, energetic and electrical properties of boron nitride nanotubes interacting with DMMP chemical agent

    International Nuclear Information System (INIS)

    Highlights: • ab initio DFT calculations were used for interaction of DMMP with BNNTs. • Full structural optimization was performed for several possible active sites. • Electronic structure of the energetically favorable complexes was analyzed. • The stability of the most stable complex was evaluated at ambient condition. • First-principles calculations showed that DMMP is strongly bound to the small diameter BNNTs. - Abstract: The adsorption of DMMP as an intoxicating chemical warfare agent onto the boron nitride nanotube has been investigated by using density functional theory calculations. Several active sites were considered for both interacting systems and full structural optimization was performed to accurately find the energetically favorable state. It is found that DMMP molecule prefers to be adsorbed strongly on the top site above the B atom of a (5, 0) BNNT with a binding energy of about −103.24 kJ mol−1 and an O–B binding distance of 1.641 Å. We have performed a comparative investigation of BNNTs with different diameters and the results indicate that the DMMP adsorption ability for the side wall of the tubes significantly decreases for higher diameters BNNTs. Furthermore, the adsorption properties of DMMP molecule onto the BNNT have been investigated using the ab initio MD simulation at room temperature. Our result showed that BNNTs facilitates the DMMP detection at ambient conditions for practical applications

  18. Software algorithms for false alarm reduction in LWIR hyperspectral chemical agent detection

    Science.gov (United States)

    Manolakis, D.; Model, J.; Rossacci, M.; Zhang, D.; Ontiveros, E.; Pieper, M.; Seeley, J.; Weitz, D.

    2008-04-01

    The long-wave infrared (LWIR) hyperpectral sensing modality is one that is often used for the problem of detection and identification of chemical warfare agents (CWA) which apply to both military and civilian situations. The inherent nature and complexity of background clutter dictates a need for sophisticated and robust statistical models which are then used in the design of optimum signal processing algorithms that then provide the best exploitation of hyperspectral data to ultimately make decisions on the absence or presence of potentially harmful CWAs. This paper describes the basic elements of an automated signal processing pipeline developed at MIT Lincoln Laboratory. In addition to describing this signal processing architecture in detail, we briefly describe the key signal models that form the foundation of these algorithms as well as some spatial processing techniques used for false alarm mitigation. Finally, we apply this processing pipeline to real data measured by the Telops FIRST hyperspectral (FIRST) sensor to demonstrate its practical utility for the user community.

  19. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  20. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    International Nuclear Information System (INIS)

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA

  1. Understanding evaporation characteristics of a drop of distilled sulfur mustard (HD) chemical agent from stainless steel and aluminum substrates

    International Nuclear Information System (INIS)

    Highlights: • Evaporation rates of HD are obtained from stainless steel and aluminum substrates. • The rates increase with temperature and are linearly proportional to drop size. • HD evaporation from stainless steel follows only constant contact area mechanism. • HD evaporation from aluminum proceeds by a combined mechanism. - Abstract: We report herein the evaporation rates and mechanism of a drop of distilled sulfur mustard (HD) agent from stainless steel and aluminum substrates. For systematic analysis, we used a laboratory-sized wind tunnel, thermal desorption (TD) connected to gas chromatograph/mass spectrometry (GC/MS) and drop shape analysis (DSA). We found that the evaporation rates of HD from stainless steel and aluminum increased with temperature. The rates were also linearly proportional to drop size. The time-dependent contact angle measurement showed that the evaporation of the drop of HD proceeded only by constant contact area mechanism from stainless steel surface. On the other hand, the evaporation of HD from aluminum proceeded by a combined mechanism of constant contact area mode and constant contact angle mode. Our experimental data sets and analysis could be used to predict vapor and contact hazard persistence of chemical warfare agents (CWAs) in the air and on exterior surfaces with chemical releases, which assists the military decision influencing personnel safety and decontamination of the site upon a chemical attack event

  2. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon GreenTM, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO4-2) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t1/2 ≤ 4 min), 1:10 for HD (t1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  3. Appendix C. Collection of Samples for Chemical Agent Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koester, C; Thompson, C; Doerr, T; Scripsick, R

    2005-09-23

    This chapter describes procedures for the collection and analysis of samples of various matrices for the purpose of determining the presence of chemical agents in a civilian setting. This appendix is intended to provide the reader with sufficient information to make informed decisions about the sampling and analysis process and to suggest analytical strategies that might be implemented by the scientists performing sampling and analysis. This appendix is not intended to be used as a standard operating procedure to provide detailed instructions as to how trained scientists should handle samples. Chemical agents can be classified by their physical and chemical properties. Table 1 lists the chemical agents considered by this report. In selecting sampling and analysis methods, we have considered procedures proposed by the Organization for Prohibition of Chemical Weapons (OPCW), the U. S. Environmental Protection Agency (EPA), and peer-reviewed scientific literature. EPA analytical methods are good resources describing issues of quality assurance with respect to chain-of-custody, sample handling, and quality control requirements.

  4. Bridging the gap between sample collection and laboratory analysis: using dried blood spots to identify human exposure to chemical agents

    Science.gov (United States)

    Hamelin, Elizabeth I.; Blake, Thomas A.; Perez, Jonas W.; Crow, Brian S.; Shaner, Rebecca L.; Coleman, Rebecca M.; Johnson, Rudolph C.

    2016-05-01

    Public health response to large scale chemical emergencies presents logistical challenges for sample collection, transport, and analysis. Diagnostic methods used to identify and determine exposure to chemical warfare agents, toxins, and poisons traditionally involve blood collection by phlebotomists, cold transport of biomedical samples, and costly sample preparation techniques. Use of dried blood spots, which consist of dried blood on an FDA-approved substrate, can increase analyte stability, decrease infection hazard for those handling samples, greatly reduce the cost of shipping/storing samples by removing the need for refrigeration and cold chain transportation, and be self-prepared by potentially exposed individuals using a simple finger prick and blood spot compatible paper. Our laboratory has developed clinical assays to detect human exposures to nerve agents through the analysis of specific protein adducts and metabolites, for which a simple extraction from a dried blood spot is sufficient for removing matrix interferents and attaining sensitivities on par with traditional sampling methods. The use of dried blood spots can bridge the gap between the laboratory and the field allowing for large scale sample collection with minimal impact on hospital resources while maintaining sensitivity, specificity, traceability, and quality requirements for both clinical and forensic applications.

  5. Effectiveness Analysis Method Research of Formation Cooperative Anti-submarine Warfare Based on Multi-agent Simulation%基于多Agent仿真的编队协同反潜作战效能分析方法研究

    Institute of Scientific and Technical Information of China (English)

    陆铭华; 吴金平; 董汉权

    2011-01-01

    编队协同反潜作战是一个复杂系统,能不能形成清晰的反潜效能分析思路,建立合适的反潜效能指标体系,并进一步确定合理的效能分析方法,成为编队协同反潜作战效能分析最为关键的环节.在给出编队协同反潜作战领域Agent定义及单个反潜兵力Agent形式化描述的基础上,提出了基于多Agent系统仿真(MASBS)的复杂系统效能分析法(MASBS-CSEA),给出了其定义,提取了三种作战任务模式下的效能分析指标,并基于HLA技术构建了MASBS仿真的联邦体系结构.%Conceiving legible anti-submarine effectiveness analysis ideas and designing appropriate anti-submarine effectiveness indexes system as well as determining reasonable effectiveness analysis method have been the most important aspects of effectiveness analysis in the field of formation cooperative anti-submarine warfare which is a complex system. On the basis of presenting the definition of agent and the formalization description of single anti-submarine force in the field of formation cooperative anti-submarine warfare, MAS-based simulation complex system effectiveness analysis (MASBS- CSEA) method was brought forward including presenting its definition and picking-up effectiveness analysis indexes in three combat task models as well as structuring the federation architecture of MASBS simulation based on HLA.

  6. The Physics of Warfare

    Science.gov (United States)

    Giordano, Gerardo

    2015-01-01

    Recently, I was tasked with the creation and execution of a new themed general education physics class called The Physics of Warfare. In the past, I had used the theme of a class, such as the physics of sports medicine, as a way to create homework and in-class activities, generate discussions, and provide an application to demonstrate that physics…

  7. Chemical cleaning agents and bonding to glass-fiber posts

    Directory of Open Access Journals (Sweden)

    Ana Paula Rodrigues Gonçalves

    2013-02-01

    Full Text Available The influence of chemical cleaning agents on the bond strength between resin cement and glass-fiber posts was investigated. The treatments included 10% hydrofluoric acid, 35% phosphoric acid, 50% hydrogen peroxide, acetone, dichloromethane, ethanol, isopropanol, and tetrahydrofuran. Flat glass-fiber epoxy substrates were exposed to the cleaners for 60 s. Resin cement cylinders were formed on the surfaces and tested in shear. All treatments provided increased bond strength compared to untreated control specimens. All failures were interfacial. Although all agents improved the bond strength, dichloromethane and isopropanol were particularly effective.

  8. Chemically modified tetracyclines: The novel host modulating agents.

    Science.gov (United States)

    Swamy, Devulapalli Narasimha; Sanivarapu, Sahitya; Moogla, Srinivas; Kapalavai, Vasavi

    2015-01-01

    Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA), including Non Steroidal Anti Inflammatory Drugs (NSAIDS), bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs) are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators. PMID:26392682

  9. Chemically modified tetracyclines: The novel host modulating agents

    Directory of Open Access Journals (Sweden)

    Devulapalli Narasimha Swamy

    2015-01-01

    Full Text Available Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA, including Non Steroidal Anti Inflammatory Drugs (NSAIDS, bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemically modified tetracyclines (CMTs are one such group of drugs which have been viewed as potential host modulating agents by their anticollagenolytic property. The CMTs are designed to be more potent inhibitors of pro inflammatory mediators and can increase the levels of anti inflammatory mediators.

  10. Reduced weight decontamination formulation utilizing a solid peracid compound for neutralization of chemical and biological warfare agents

    Science.gov (United States)

    Tucker, Mark D.

    2011-09-20

    A reduced weight decontamination formulation that utilizes a solid peracid compound (sodium borate peracetate) and a cationic surfactant (dodecyltrimethylammonium chloride) that can be packaged with all water removed. This reduces the packaged weight of the decontamination formulation by .about.80% (as compared to the "all-liquid" DF-200 formulation) and significantly lowers the logistics burden on the warfighter. Water (freshwater or saltwater) is added to the new decontamination formulation at the time of use from a local source.

  11. The effect of alkaline agents on retention of EOR chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  12. Detection of Alkylating Agents using Electrical and Mechanical Means

    Energy Technology Data Exchange (ETDEWEB)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Eichen, Yoav [Schulich Department of Chemistry, Technion-Israel Institute of Technology, Technion City, 32000, Haifa (Israel) (Israel); Tal, Shay [Present address: Systems Biology Department, Harvard Medical School, Boston, MA 02115 (United States); Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir, E-mail: chryoav@tx.technion.ac.il [Department of Electrical Engineering, Technion-Israel Institute of Technology, Technion City, 32000, Haifa (Israel)

    2011-08-17

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  13. Detection of Alkylating Agents using Electrical and Mechanical Means

    International Nuclear Information System (INIS)

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  14. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  15. Multiscale modeling of nerve agent hydrolysis mechanisms: a tale of two Nobel Prizes

    Science.gov (United States)

    Field, Martin J.; Wymore, Troy W.

    2014-10-01

    The 2013 Nobel Prize in Chemistry was awarded for the development of multiscale models for complex chemical systems, whereas the 2013 Peace Prize was given to the Organisation for the Prohibition of Chemical Weapons for their efforts to eliminate chemical warfare agents. This review relates the two by introducing the field of multiscale modeling and highlighting its application to the study of the biological mechanisms by which selected chemical weapon agents exert their effects at an atomic level.

  16. The efficacy of chemical agents in cleaning and disinfection programs

    Directory of Open Access Journals (Sweden)

    Silva Martins Alzira

    2001-09-01

    Full Text Available Abstract Background Due to the growing number of outbreaks of infection in hospital nurseries, it becomes essential to set up a sanitation program that indicates that the appropriate chemical agent was chosen for application in the most effective way. Method For the purpose of evaluating the efficacy of a chemical agent, the minimum inhibitory concentration (MIC was reached by the classic method of successive broth dilutions. The reference bacteria utilized were Bacillus subtilis var. globigii ATCC 9372, Bacillus stearothermophilus ATCC 7953, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923. The strains of Enterobacter cloacae IAL 1976 (Adolfo Lutz Institute, Serratia marcescens IAL 1478 and Acinetobactev calcoaceticus IAL 124 (ATCC 19606, were isolated from material collected from babies involved in outbreaks of infection in hospital nurseries. Results The MIC intervals, which reduced bacteria populations over 08 log10, were: 59 to 156 mg/L of quaternarium ammonium compounds (QACs; 63 to 10000 mg/L of chlorhexidine digluconate; 1375 to 3250 mg/L of glutaraldehyde; 39 to 246 mg/L of formaldehyde; 43750 to 87500 mg/L of isopropanol or ethanol; 1250 to 6250 mg/L of iodine in polyvinyl-pyrolidone complexes, 150 to 4491 mg/L of chlorine-releasing-agents (CRAs; 469 to 2500 mg/L of hydrogen peroxide; and, 2310 to 18500 mg/L of peracetic acid. Conclusions Chlorhexidine showed non inhibitory activity over germinating spores. A. calcoaceticus, was observed to show resistance to the majority of the agents tested, followed by E. cloacae and S. marcescens.

  17. A computational study of detoxification of lewisite warfare agents by British anti-lewisite: catalytic effects of water and ammonia on reaction mechanism and kinetics.

    Science.gov (United States)

    Sahu, Chandan; Pakhira, Srimanta; Sen, Kaushik; Das, Abhijit K

    2013-04-25

    trans-2-Chlorovinyldichloroarsine (lewisite, L agent, Lew-I) acts as a blistering agents. British anti-lewisite (BAL, 2,3-dimercaptopropanol) has long been used as an L-agent antidote. The main reaction channels for the detoxification proceed via breaking of As-Cl bonds and formation of As-S bonds, producing stable, nontoxic ring product [(2-methyl-1,3,2-dithiarsolan-4-yl)methanol]. M06-2X/GENECP calculations have been carried out to establish the enhanced rate of detoxification mechanism in the presence of NH3 and H2O catalysts in both gas and solvent phases, which has been modeled by use of the polarized continuum model (PCM). In addition, natural bond orbital (NBO) and atoms in molecules (AIM) analysis have been performed to characterize the intermolecular hydrogen bonding in the transition states. Transition-state theory (TST) calculation establishes that the rates of NH3-catalyzed (2.88 × 10(-11) s(-1)) and H2O-catalyzed (2.42 × 10(-11) s(-1)) reactions are reasonably faster than the uncatalyzed detoxification (5.44 × 10(-13) s(-1)). The results obtained by these techniques give new insight into the mechanism of the detoxification process, identification and thermodynamic characterization of the relevant stationary species, the proposal of alternative paths on modeled potential energy surfaces for uncatalyzed reaction, and the rationalization of the mechanistic role played by catalysts and solvents. PMID:23540856

  18. Biological warfare, bioterrorism, and biocrime.

    Science.gov (United States)

    Jansen, H J; Breeveld, F J; Stijnis, C; Grobusch, M P

    2014-06-01

    Biological weapons achieve their intended target effects through the infectivity of disease-causing infectious agents. The ability to use biological agents in warfare is prohibited by the Biological and Toxin Weapon Convention. Bioterrorism is defined as the deliberate release of viruses, bacteria or other agents used to cause illness or death in people, but also in animals or plants. It is aimed at creating casualties, terror, societal disruption, or economic loss, inspired by ideological, religious or political beliefs. The success of bioterroristic attempts is defined by the measure of societal disruption and panic, and not necessarily by the sheer number of casualties. Thus, making only a few individuals ill by the use of crude methods may be sufficient, as long as it creates the impact that is aimed for. The assessment of bioterrorism threats and motives have been described before. Biocrime implies the use of a biological agent to kill or make ill a single individual or small group of individuals, motivated by revenge or the desire for monetary gain by extortion, rather than by political, ideological, religious or other beliefs. The likelihood of a successful bioterrorist attack is not very large, given the technical difficulties and constraints. However, even if the number of casualties is likely to be limited, the impact of a bioterrorist attack can still be high. Measures aimed at enhancing diagnostic and therapeutic capabilities and capacities alongside training and education will improve the ability of society to combat 'regular' infectious diseases outbreaks, as well as mitigating the effects of bioterrorist attacks. PMID:24890710

  19. Psychological effects of nuclear warfare

    International Nuclear Information System (INIS)

    This report is divided into five parts. (1) Discussion of the psychological milieu before a nuclear confrontation. (2) Acute psychological reactions to nuclear warfare (some of which may reflect, in part, direct radiogenic alteration of nervous system functions). (3) Chronic psychological effects of a nuclear confrontation. (4) Issues concerning treatment of these psychological changes. (5) Prevention of adverse psychological reactions to nuclear warfare

  20. Establishing Cyber Warfare Doctrine

    Directory of Open Access Journals (Sweden)

    Andrew M. Colarik

    2012-01-01

    Full Text Available Over the past several decades, advances in technology have transformed communications and the ability to acquire, disseminate, and utilize information in a range of environments. Modern societies and their respective militaries have taken advantage of a robust information space through network-centric systems. Because military and commercial operations have increasingly converged, communication and information infrastructures are now high-priority military objectives in times of war. This article examines the theoretical underpinning of current cyber warfare research, what we have learned so far about its application, and some of the emerging themes to be considered; it also postulates the development of a (national cyber warfare doctrine (CWD. An endeavor of this scale requires lots of considerations and preparation for its development if it is to be cooperatively embraced. This article considers why information technology systems and their supporting infrastructures should be considered legitimate military targets in conflicts, and offers several events that support this supposition. In addition, it identifies the various forms of doctrine that will become the basis for developing a CWD, discusses a CWD's possible components, and proposes a national collaborative and discussion framework for obtaining a nation's stakeholder buy-in for such an endeavor.

  1. Evidence of VX nerve agent use from contaminated white mustard plants

    OpenAIRE

    Gravett, Matthew R.; Hopkins, Farrha B.; Self, Adam J.; Webb, Andrew J; Timperley, Christopher M.; Matthew J. Baker

    2014-01-01

    The Chemical Weapons Convention prohibits the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by Member States. Verification of compliance and investigations into allegations of use require accurate detection of chemical warfare agents (CWAs) and their degradation products. Detection of CWAs such as organophosphorus nerve agents in the environment relies mainly upon the analysis of soil. We now present a method for the detection of the nerve a...

  2. Nuclear radiation in warfare

    International Nuclear Information System (INIS)

    The subject is covered in chapters, entitled: introduction; digest of nuclear weaponry (characteristics of nuclear weapons; effects of nuclear weapons other than ionizing radiation (fire-ball, fall-out, thermal radiation, blast wave, electromagnetic pulse); the nuclear arms race; war scenarios; biological effects of radiations on man (radiation doses; natural sources of radiation; acute effects of radiation; long-term somatic effects; genetic effects; factors affecting the biological response to radiation; internal exposure; synergistic effects; protection against radiation effects); radiations from nuclear explosions (initial radiation; fall-out; effects of fall-out on animal and plant life; contamination of water and food supplies by fall-out); radiation casualties in a nuclear war; effectiveness of civil defence; other warlike uses of radiation (attacks on civilian nuclear power installations; radiological warfare; terrorist activities); conclusion. (orig./HP)

  3. The evolution of human warfare.

    Science.gov (United States)

    Pitman, George R

    2011-01-01

    Here we propose a new theory for the origins and evolution of human warfare as a complex social phenomenon involving several behavioral traits, including aggression, risk taking, male bonding, ingroup altruism, outgroup xenophobia, dominance and subordination, and territoriality, all of which are encoded in the human genome. Among the family of great apes only chimpanzees and humans engage in war; consequently, warfare emerged in their immediate common ancestor that lived in patrilocal groups who fought one another for females. The reasons for warfare changed when the common ancestor females began to immigrate into the groups of their choice, and again, during the agricultural revolution. PMID:22081837

  4. Decontamination Strategy for Large Area and/or Equipment Contaminated with Chemical and Biological Agents using a High Energy Arc Lamp (HEAL)

    Energy Technology Data Exchange (ETDEWEB)

    Schoske, Richard [ORNL; Kennedy, Patrick [ORNL; Duty, Chad E [ORNL; Smith, Rob R [ORNL; Huxford, Theodore J [ORNL; Bonavita, Angelo M [ORNL; Engleman, Greg [ORNL; Vass, Arpad Alexander [ORNL; Griest, Wayne H [ORNL; Ilgner, Ralph H [ORNL; Brown, Gilbert M [ORNL

    2009-04-01

    A strategy for the decontamination of large areas and or equipment contaminated with Biological Warfare Agents (BWAs) and Chemical Warfare Agents (CWAs) was demonstrated using a High Energy Arc Lamp (HEAL) photolysis system. This strategy offers an alternative that is potentially quicker, less hazardous, generates far less waste, and is easier to deploy than those currently fielded by the Department of Defense (DoD). For example, for large frame aircraft the United States Air Force still relies on the combination of weathering (stand alone in environment), air washing (fly aircraft) and finally washing the aircraft with Hot Soapy Water (HSW) in an attempt to remove any remaining contamination. This method is laborious, time consuming (upwards of 12+ hours not including decontamination site preparation), and requires large amounts of water (e.g., 1,600+ gallons for a single large frame aircraft), and generates large amounts of hazardous waste requiring disposal. The efficacy of the HEAL system was demonstrated using diisopropyl methyl phosphonate (DIMP) a G series CWA simulant, and Bacillus globigii (BG) a simulant of Bacillus anthracis. Experiments were designed to simulate the energy flux of a field deployable lamp system that could stand-off 17 meters from a 12m2 target area and uniformly expose a surface at 1360 W/m2. The HEAL system in the absence of a catalyst reduced the amount of B. globigii by five orders of magnitude at a starting concentration of 1.63 x 107 spores. In the case of CWA simulants, the HEAL system in the presence of the catalyst TiO2 effectively degraded DIMP sprayed onto a 100mm diameter Petri dish in 5 minutes.

  5. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase

    International Nuclear Information System (INIS)

    Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest. Phosphotriesterase (PTE) isolated from the soil bacteria Pseudomonas diminuta displays a significant rate enhancement and substrate promiscuity for the hydrolysis of organophosphate triesters. Directed evolution and rational redesign of the active site of PTE have led to the identification of new variants with enhanced catalytic efficiency and stereoselectivity toward the hydrolysis of organophosphate neurotoxins. PTE has been utilized to protect against organophosphate poisoning in vivo. Biotechnological applications of PTE for detection and decontamination of insecticides and chemical warfare agents are developing into useful tools. In this review, the catalytic properties and potential applications of this remarkable enzyme are discussed

  6. Combinatorial Feature Optimization using Multi-objective Evolutionary Algorithms applied to a Biological Warfare Classification Problem.

    OpenAIRE

    2010-01-01

    Biological weapons is the aggressive use of organisms or toxins, also known as biological warfare agents. These weapons are invisible, odorless, tasteless and can be spread without a sound, making it difficult to detect an attack. Early warning systems based on environmental standoff detection of biological warfare agents using lidar technology require real-time signal processing, challenging the systems efficiency in terms of both computational complexity and classification accuracy. Hence, ...

  7. The Scarlet Letter of Alkylation: A Mini Review of Selective Alkylating Agents

    OpenAIRE

    Oronsky, Bryan T.; Reid, Tony; Knox, Susan J.; Scicinski, Jan J.

    2012-01-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to “tame” the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it i...

  8. How Challenges of Warfare Influences the Laws of Warfare

    Directory of Open Access Journals (Sweden)

    Eyal Benvenisti

    2012-04-01

    Full Text Available The first challenge to laws of warfare comes from the realm of human rights, from the right to life. Today the situation is different. Laws of human rights have trickled into laws of warfare, even though they never mean to apply to them. In the process of formulating human rights laws there was never any intention that they be applied to a state of war. Their starting point was the power that a regime brings to bear on its citizens. This was not a case of horizontal warring - such as a duel or contest - but rather a hierarchy, a vertical relationship in which the one possessing public power controlled the citizen. This essay will deal with the challenges to the laws of warfare posed by fighting in urban zones, the consequent changes to these laws, and the problems these changes have aroused and responses to them.

  9. 15 CFR Supplement No. 1 to Part 742 - Nonproliferation of Chemical and Biological Weapons

    Science.gov (United States)

    2010-01-01

    ... Biological Weapons No. Supplement No. 1 to Part 742 Commerce and Foreign Trade Regulations Relating to... ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS Pt. 742, Supp. 1 Supplement No. 1 to Part 742...: (i) Equipment (for producing chemical weapon precursors and chemical warfare agents) described...

  10. THE TWENTIETH CENTURY DEVELOPMENT OF DIFFERENT TYPES OF BACTERIAL, BIOLOGICAL AND CHEMICAL WEAPONS AND THE PRESENT CAPABILITIES OF NATO AND THE WARSAW PACT IN THIS RESPECT

    OpenAIRE

    A.L.S. Hudson

    2012-01-01

    Over the last twenty years increased attention has been focused on the military uses of Bacterial, Biological and Chemical agents (BBC weapons). This phenomenon can be attributed to a number of reasons. Firstly, BBC weapons are comparatively cheap and simple to produce, they are easy to use as conventional weapons and their effects are short-lived. The mutual deterrence effect of nuclear weapons, furthermore, has necessitated the exploration of other fields of warfare of which - BBC warfare i...

  11. Chemical munitions dumped at sea

    Science.gov (United States)

    Edwards, Margo; Bełdowski, Jacek

    2016-06-01

    Modern chemical warfare is a byproduct of the industrial revolution, which created factories capable of rapidly producing artillery shells that could be filled with toxic chemicals such as chlorine, phosgene and mustard agent. The trench warfare of World War I inaugurated extensive deployments of modern chemical weapons in 1915. Concomitantly, the need arose to dispose of damaged, captured or excess chemical munitions and their constituents. Whereas today chemical warfare agents (CWA) are destroyed via chemical neutralization processes or high-temperature incineration in tandem with environmental monitoring, in the early to middle 20th century the options for CWA disposal were limited to open-air burning, burial and disposal at sea. The latter option was identified as the least likely of the three to impact mankind, and sea dumping of chemical munitions commenced. Eventually, the potential impacts of sea dumping human waste were recognized, and in 1972 an international treaty, the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, was developed to protect the marine environment from pollution caused by the dumping of wastes and other matter into the ocean. By the time this treaty, referred to as the London Convention, was signed by a majority of nations, millions of tons of munitions were known to have been disposed throughout the world's oceans.

  12. Molecular recognition of chem/biowarfare agents using micromechanical sensors

    Science.gov (United States)

    Ji, H.-F.; Yan, X.; Lu, Y.; Du, H.; Thundat, T.

    2006-05-01

    Recent terrorists events have shown that an urgent and widespread need exists for development of novel sensors for chemical and biowarfare agents. The advent of inexpensive, mass-produced microcantilever sensors, promises to bring about a revolution in detection of terrorists threats. Extremely sensitive chem/biosensors can be developed using microcantilever platform. Both frequency and bending of microcantilevers can be used to detect the chemical and biological species in air or solution. The specificity is achieved by immobilizing chemically-specific receptors the cantilever. This short report will give an overview of chemical/biological warfare agents sensor recently developed based on microcantilevers.

  13. The doctor and nuclear warfare

    International Nuclear Information System (INIS)

    At the 34th World Medical Assembly in Lisbon in 1981 the World Medical Association adopted a motion proposed by the American Medical Association that national medical associations should develop programs to educate the civilian population on the medical consequences of nuclear war. This article discusses the attitude the medical professions should have, should nuclear warfare in some form confront them in the future. The conclusion is drawn that defence against nuclear warfare is only a part of civil defence against any disaster, including the natural disasters such as flood and fire and the man-made disasters of transport accidents, even of problems at nuclear plants designed to supply energy

  14. A review on common chemical hemostatic agents in restorative dentistry

    OpenAIRE

    Pardis Tarighi; Maryam Khoroushi

    2014-01-01

    Control of hemorrhage is one of the challenging situations dentists confront during deep cavity preparation and before impressions or cementation of restorations. For the best bond and least contamination it is necessary to be familiar with the hemostatic agents available on the market and to be able to choose the appropriate one for specific situations. This review tries to introduce the commercially available hemostatic agents, discusses their components and their specific features. The mos...

  15. European Curricula, Xenophobia and Warfare.

    Science.gov (United States)

    Coulby, David

    1997-01-01

    Examines school and university curricula in Europe and the extent of their influence on xenophobia. Considers the pluralistic nature of the European population. Discusses the role of curriculum selection and language policy in state efforts to promote nationalism. Assesses the role of curricular systems in the actual encouragement of warfare,…

  16. The Anatomy of Counterinsurgency Warfare

    DEFF Research Database (Denmark)

    Mouritsen, Lars; Pedersen, Kenneth; Thruelsen, Peter Dahl

    Since the beginning of the new millennium, the West has been increasingly involved in a tiresome and rather particular type of conflict: insurgency warfare. The bloody and shocking terrorist attacks on New York and Washington in September 2001 marked the beginning of a new era, and the introducti...

  17. Extrudates of starch-xanthan gum mixtures as affected by chemical agents and irradiation

    International Nuclear Information System (INIS)

    Mixtures of starch, xanthan gum and either polyvinyl alcohol, epichlorohydrin, valeric acid or adipoyl chloride were extruded. Properties of extrudates including apparent viscosity, water solubility, water absorption indices and extrudate expansion were measured for different proportions of xanthan gum, 70% amylose starch (with or without irradiation) and chemical agents. Extrusion with chemical agents and irradiation changed physical properties of both starch and xanthan gum. Expansions of extrudates were higher than that of starch. Viscosity of extrudates increased with xanthan gum concentration. The addition of 1% (w/w) polyvinyl alcohol had the greatest effect of the chemical agents. Irradiation increased the apparent viscosity of starch-xanthan gum mixtures

  18. Pyrazine-Derived Disulfide-Reducing Agent for Chemical Biology

    OpenAIRE

    Lukesh, John C.; Wallin, Kelly K.; Raines, Ronald T.

    2014-01-01

    For fifty years, dithiothreitol (DTT) has been the preferred reagent for the reduction of disulfide bonds in proteins and other biomolecules. Herein we report on the synthesis and characterization of 2,3-bis(mercaptomethyl)pyrazine (BMMP), a readily accessible disulfide-reducing agent with reactivity under biological conditions that is markedly superior to DTT and other known reagents.

  19. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin

    OpenAIRE

    Kocsis, Bela; Domokos, J.; Szabo, D.

    2016-01-01

    Quinolones are potent antimicrobial agents with a basic chemical structure of bicyclic ring. Fluorine atom at position C-6 and various substitutions on the basic quinolone structure yielded fluoroquinolones, namely norfloxacin, ciprofloxacin, levofloxacin, moxifloxacin and numerous other agents. The target molecules of quinolones and fluoroquinolones are bacterial gyrase and topoisomerase IV enzymes. Broad-spectrum and excellent tissue penetration make fluoroquinolones potent agents but their...

  20. Chemically modified tetracyclines: The novel host modulating agents

    OpenAIRE

    Devulapalli Narasimha Swamy; Sahitya Sanivarapu; Srinivas Moogla; Vasavi Kapalavai

    2015-01-01

    Periodontal pathogens and destructive host responses are involved in the initiation and progression of periodontitis. The emergence of host response modulation as a treatment concept has resulted from our improved understanding of the pathogenesis of periodontal disease. A variety of drugs have been evaluated as host modulation agents (HMA), including Non Steroidal Anti Inflammatory Drugs (NSAIDS), bisphosphonates, tetracyclines, enamel matrix proteins and bone morphogenetic proteins. Chemica...

  1. Novel fluorescence-based integrated sensor for chemical and biological agent detection

    Science.gov (United States)

    Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.; Fagan, Steve; Krouse, Justin; Hutchinson, Kira D.

    2004-12-01

    There is a renewed interest in the development of chemical and biological agent sensors due to the increased threat of weapons deployment by terrorist organizations and rogue states. Optically based sensors address the needs of military and homeland security forces in that they are reliable, rapidly deployed, and can provide continuous monitoring with little to no operator involvement. Nomadics has developed optically based chemical weapons sensors that utilize reactive fluorescent chromophores initially developed by Professor Tim Swager at MIT. The chromophores provide unprecedented sensitivity and selectivity toward toxic industrial chemicals and certain chemical weapon agents. The selectivity is based upon the reactivity of the G-class nerve agents (phosphorylation of acetylcholinesterase enzyme) that makes them toxic. Because the sensor recognizes the reactivity of strong electrophiles and not molecular weight, chemical affinity or ionizability, our system detects a specific class of reactive agents and will be able to detect newly developed or modified agents that are not currently known. We have recently extended this work to pursue a combined chemical/biological agent sensor system incorporating technologies based upon novel deep ultraviolet (UV) light emitting diodes (LEDs) developed out of the DARPA Semiconductor UV Optical Sources (SUVOS) program.

  2. Electronic warfare target location methods

    CERN Document Server

    Poisel, Richard

    2012-01-01

    Describing the mathematical development underlying current and classical methods of geolocating electronic systems that are emitting, this newly revised and greatly expanded edition of a classic Artech House book offers practical guidance in electronic warfare target location. The Second Edition features a wealth of additional material including new chapters on time delay estimation, direction finding techniques, and the MUSIC algorithm. This practical resource provides you with critical design information on geolocation algorithms, and establishes the fundamentals of existing algorithms as a

  3. Role of Smokes in Warfare .

    Directory of Open Access Journals (Sweden)

    P.K. Mishra

    1994-04-01

    Full Text Available The role smokes in warfare is reviewed with particular reference to the world wars, and various types os smokes are discussed. The smokes that can defeat modern opto-electronics including infrared (IR/millimetre wave (MMW guidance and thermal imager are described. Environment-friendly non-toxic smokes are dealt with briefly. The future of smokes in these circumstances is mentioned.

  4. Quantum chemical analysis of potential anti-Parkinson agents

    Indian Academy of Sciences (India)

    Nima Razzaghi-Asl; Sara Shahabipour; Ahmad Ebadi; Azam Bagheri

    2015-07-01

    Monoamine oxidases (MAOs) are amine oxidoreductase falvoenzymes that belong to the integral proteins of the outer mitochondrial membrane. MAO exists in two distinct isoforms; MAO-A and MAO-B. Inhibition of MAO-A and MAO-B is important for developing antidepressant and antiparkinson agents, respectively. In the light of the above explanations, detailed structure binding relationship studies on the intermolecular binding components of MAO-B complexes may unravel the way toward developing novel anti-Parkinson agents. In the present contribution, intermolecular binding pattern for a series of experimentally validated 3-arylcoumarin MAO-B inhibitors (1–9) have been elucidated via molecular docking and density functional theory (DFT) calculations. Intermolecular binding energy components could not be analyzed by docking and due to this limitation, quantum mechanical (QM) calculations including functional B3LYP in association with split valence basis set (Def2-SVP) were applied to estimate the ligand-residue binding energies in the MAO-B active site. Moreover; results were interpreted in terms of calculated polarization effects that were induced by individual amino acids of the MAO-B active site. The results of the present study provide an approach to pharmacophore-based modification within the 3-arylcoumarin scaffold for potent MAO-B inhibitors.

  5. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin.

    Science.gov (United States)

    Kocsis, Bela; Domokos, J; Szabo, D

    2016-01-01

    Quinolones are potent antimicrobial agents with a basic chemical structure of bicyclic ring. Fluorine atom at position C-6 and various substitutions on the basic quinolone structure yielded fluoroquinolones, namely norfloxacin, ciprofloxacin, levofloxacin, moxifloxacin and numerous other agents. The target molecules of quinolones and fluoroquinolones are bacterial gyrase and topoisomerase IV enzymes. Broad-spectrum and excellent tissue penetration make fluoroquinolones potent agents but their toxic side effects and increasing number of resistant pathogens set limits on their use. This review focuses on recent advances concerning quinolones and fluoroquinolones, we will be summarising chemical structure, mode of action, pharmacokinetic properties and toxicity. We will be describing fluoroquinolones introduced in clinical trials, namely avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and non-fluorinated nemonoxacin. These agents have been proved to have enhanced antibacterial effect even against ciprofloxacin resistant pathogens, and found to be well tolerated in both oral and parenteral administrations. These features are going to make them potential antimicrobial agents in the future. PMID:27215369

  6. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  7. Cyber warfare building the scientific foundation

    CERN Document Server

    Jajodia, Sushil; Subrahmanian, VS; Swarup, Vipin; Wang, Cliff

    2015-01-01

    This book features a wide spectrum of the latest computer science research relating to cyber warfare, including military and policy dimensions. It is the first book to explore the scientific foundation of cyber warfare and features research from the areas of artificial intelligence, game theory, programming languages, graph theory and more. The high-level approach and emphasis on scientific rigor provides insights on ways to improve cyber warfare defense worldwide. Cyber Warfare: Building the Scientific Foundation targets researchers and practitioners working in cyber security, especially gove

  8. MEANS AND METHODS OF CYBER WARFARE

    Directory of Open Access Journals (Sweden)

    Dan-Iulian VOITAȘEC

    2016-06-01

    Full Text Available According to the Declaration of Saint Petersburg of 1868 “the only legitimate object which States should endeavor to accomplish during war is to weaken the military forces of the enemy”. Thus, International Humanitarian Law prohibits or limits the use of certain means and methods of warfare. The rapid development of technology has led to the emergence of a new dimension of warfare. The cyber aspect of armed conflict has led to the development of new means and methods of warfare. The purpose of this paper is to study how the norms of international humanitarian law apply to the means and methods of cyber warfare.

  9. An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

    OpenAIRE

    Rene Kizek; Vojtech Adam; Miroslav Pohanka

    2013-01-01

    The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments desc...

  10. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    Science.gov (United States)

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent. PMID:23390579

  11. NOVEL MULTI-LEVEL OPTIMIZATION METHOD FOR CHEMICAL COMPLEX USING INTELLIGENT AGENT

    Institute of Scientific and Technical Information of China (English)

    Xiaojun LI; Huanjun YU; Shangxu HU

    2003-01-01

    Multi-level optimization of complex chemical complex was comprehensively analyzed, including the optimization of management plan, production scheme, operating conditions, etc. The software framework of multi-level optimization of chemical complex was worked out. Basing upon the frame of multi-level optimization, the intelligent agent technique was adopted to search for global optimum. The organization, function, design and the implementation of a series of intelligent agents were discussed. According to the strategy that to spend most computing time in optimization solving and much less time in exchanging information regarding the tasks and results of optimization through network, the communication mechanism and cooperation rules for Multi-Agent System for hierarchically optimizing chemical complex was proposed.

  12. Surface-enhanced Raman scattering (SERS) detection for chemical and biological agents

    Science.gov (United States)

    Yan, Fei; Stokes, David L.; Wabuyele, Musundi B.; Griffin, Guy D.; Vass, Arpad A.; Vo-Dinh, Tuan

    2004-07-01

    Surface-enhanced Raman scattering (SERS) spectra of chemical agent simulants such as dimethyl methylphonate (DMMP), pinacolyl methylphosphonate (PMP), diethyl phosphoramidate (DEPA), and 2-chloroethyl ethylsulfide (CEES), and biological agent simulants such as bacillus globigii (BG), erwinia herbicola (EH), and bacillus thuringiensis (BT) were obtained from silver oxide film-deposited substrates. Thin AgO films ranging in thickness from 50 nm to 250 nm were produced by chemical bath deposition onto glass slides. Further Raman intensity enhancements were noticed in UV irradiated surfaces due to photo-induced Ag nanocluster formation, which may provide a possible route to producing highly useful plasmonic sensors for the detection of chemical and biological agents upon visible light illumination.

  13. Analytic tools for information warfare

    Energy Technology Data Exchange (ETDEWEB)

    Vandewart, R.L.; Craft, R.L.

    1996-05-01

    Information warfare and system surety (tradeoffs between system functionality, security, safety, reliability, cost, usability) have many mechanisms in common. Sandia`s experience has shown that an information system must be assessed from a {ital system} perspective in order to adequately identify and mitigate the risks present in the system. While some tools are available to help in this work, the process is largely manual. An integrated, extensible set of assessment tools would help the surety analyst. This paper describes one approach to surety assessment used at Sandia, identifies the difficulties in this process, and proposes a set of features desirable in an automated environment to support this process.

  14. Chemical characterization of oil-based asphalt release agents and their emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bing Tang; Ulf Isacsson [Royal Institute of Technology, Stockholm (Sweden). Division of Highway Engineering, Department of Civil and Architectural Engineering

    2006-06-15

    Four commercial asphalt release agents were chemically characterized using different analytical methods. Functional groups and molecular weight distributions were determined by fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), gel permeation chromatography (GPC) and mass spectrometry (MS). General compositions of the agents were obtained as petroleum hydrocarbons, fatty acid methyl esters (FAMEs), fatty acids and glycerides using gas chromatography-mass spectrometry (GC-MS) and MS probe inlet method. The contents of health related analytes, such as aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), were determined. Asphalt release agents emission was investigated using thermogravimetric analysis (TGA) and headspace solid-phase microextraction (HS-SPME). The emission proneness as well as emission level of aromatic hydrocarbons from these agents were compared. The results obtained were used for ranking the agents with regard to health hazards. 19 refs., 7 figs., 6 tabs.

  15. Identification syetem for chemical warfare agents with PGNAA method%基于PGNAA技术的化学武器检测系统

    Institute of Scientific and Technical Information of China (English)

    王百荣; 尹光华; 杨忠平

    2007-01-01

    介绍了采用中子活化瞬发γ技术(PGNAA)检测化学毒剂的原理,对基于PGNAA技术的化学武器检测系统的中子源、慢化剂和探头的选择及数据处理进行了理论分析和研究.提出了以BGO探头,1μg252 Cf-中子源搭建的一套简便实用的化学武器检测系统,其通过检测化学武器中广泛存在的C1元素来识别化学武器.

  16. Chemical Agents

    Science.gov (United States)

    ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Updates Subscribe Listen Page last reviewed April ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Subscribe to RSS Get email updates To ...

  17. History of biological warfare and bioterrorism.

    Science.gov (United States)

    Barras, V; Greub, G

    2014-06-01

    Bioterrorism literally means using microorganisms or infected samples to cause terror and panic in populations. Bioterrorism had already started 14 centuries before Christ, when the Hittites sent infected rams to their enemies. However, apart from some rare well-documented events, it is often very difficult for historians and microbiologists to differentiate natural epidemics from alleged biological attacks, because: (i) little information is available for times before the advent of modern microbiology; (ii) truth may be manipulated for political reasons, especially for a hot topic such as a biological attack; and (iii) the passage of time may also have distorted the reality of the past. Nevertheless, we have tried to provide to clinical microbiologists an overview of some likely biological warfare that occurred before the 18th century and that included the intentional spread of epidemic diseases such as tularaemia, plague, malaria, smallpox, yellow fever, and leprosy. We also summarize the main events that occurred during the modern microbiology era, from World War I to the recent 'anthrax letters' that followed the World Trade Center attack of September 2001. Again, the political polemic surrounding the use of infectious agents as a weapon may distort the truth. This is nicely exemplified by the Sverdlovsk accident, which was initially attributed by the authorities to a natural foodborne outbreak, and was officially recognized as having a military cause only 13 years later. PMID:24894605

  18. Grid architecture model of network centric warfare

    Institute of Scientific and Technical Information of China (English)

    Yan Tihua; Wang Baoshu

    2006-01-01

    NCW(network centric warfare) is an information warfare concentrating on network. A global network-centric warfare architecture with OGSA grid technology is put forward, which is a four levels system including the user level, the application level, the grid middleware layer and the resource level. In grid middleware layer, based on virtual hosting environment, a BEPL4WS grid service composition method is introduced. In addition, the NCW grid service model is built with the help of Eclipse-SDK-3.0.1 and Bpws4j.

  19. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  20. Synergic effect of chelating agent and oxidant on chemical mechanical planarization

    International Nuclear Information System (INIS)

    Chemically dominant alkaline slurry, which is free of BTA (benzotriazole) and other inhibitors, was investigated. The synergic effect of the chelating agent and oxidant on the chemical mechanical planarization (CMP) was taken into consideration. Copper CMP slurry is mainly composed of an oxidizer, nonionic surfactant, chelating agent and abrasive particles. The effect of different synergic ratios of oxidant with chelating agent on the polishing removal rate, static etch rate and planarization were detected. The planarization results reveal that with the increase of oxidant concentration, the dishing value firstly diminished and then increased again. When the synergic ratios is 3, the dishing increases the least. A theoretical model combined with chemical-mechanical kinetics process was proposed in the investigation, which can explain this phenomenon. Based on the theoretical model, the effect of synergic ratios of oxidant with chelating agent on velocity D-value (convex removal rate minus recessed removal rate) was analyzed. The results illustrate that when the synergic ratio is between 2.5–3.5, the velocity D-value is relatively higher, thereby good planarization can be achieved in this interval. This investigation provides a new guide to analyze and study copper line corrosion in the recessed region during copper clearing polishing. (semiconductor technology)

  1. Retention of junior Naval Special Warfare officers

    OpenAIRE

    Davids, Keith B.

    1998-01-01

    The Commander of the Naval Special Warfare Command (NSWC) has identified junior officer retention within the Naval Special Warfare community as a significant problem. In 1997, the community experienced the highest number of resignations on record, and this trend has continued in 1998. NSWC has taken several steps to identify the cause of recent retention trends, one of which was to provide support for this study. The purpose of this study was to identify the factors that lead to resignation o...

  2. Impurity Profiling to Match a Nerve Agent to Its Precursor Source for Chemical Forensics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Carlos G.; Perez Acosta, Gabriel A.; Crenshaw, Michael D.; Wallace, Krys; Mong, Gary M.; Colburn, Heather A.

    2011-10-31

    Chemical forensics is an emerging field in homeland security that aims to attribute a weaponized toxic chemical or related material to its source. Herein, for the first time, trace impurities originating from a chemical precursor were used to match a synthesized nerve agent to its precursor source. Specifically, multiple batches of sarin and its intermediate were synthesized from two commercial stocks of methylphosphonic dichloride (DC) and were then matched by impurity profiling to their DC stocks from out of five possible stocks. This was possible because each DC stock had a unique impurity profile that, for the tested stocks, persisted through synthesis, decontamination, and sample preparation. This work may form a basis for using impurity profiling to help find and prosecute perpetrators of chemical attacks.

  3. An agent-based service-oriented integration architecture for chemical process automation

    Institute of Scientific and Technical Information of China (English)

    Na Luo; Weimin Zhong; Feng Wan; Zhencheng Ye; Feng Qian

    2015-01-01

    In reality, traditional process control system built upon centralized and hierarchical structures presents a weak response to change and is easy to shut down by single failure. Aiming at these problems, a new agent-based service-oriented integration architecture was proposed for chemical process automation system. Web services were dynamical y orchestrated on the internet and agent behaviors were built in them. Data analysis, model, op-timization, control, fault diagnosis and so on were capsuled into different web services. Agents were used for ser-vice compositions by negotiation. A prototype system of poly(ethylene terephthalate) process automation was used as the case study to demonstrate the validation of the integration.

  4. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  5. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  6. IN VITRO EFFECTS OF CHEMICAL AGENTS ON BREAST TUMOR CELLS UNDER 24-HOUR INCUBATION

    Directory of Open Access Journals (Sweden)

    S. N. Navruzov

    2014-09-01

    Full Text Available The use of cytostatics is frequently limited due to their high toxicity and inadequate selectivity. This makes one search for adjuvant treat- ments to limit tumor growth and extent, to eliminate traditional chemotherapy sequels, and to ensure stable and prolonged remission. This investigation has revealed the specific features of using natural and recombinant cytokines in combination with chemical agents in therapy for malignancies. The findings open up new vistas for the treatment of malignancies with natural cytokines.

  7. Mutagenic effect of ionizing radiation and chemical and environmental agents in Tradescantia

    International Nuclear Information System (INIS)

    The studies covered the following problems: an influence of some environmental agents on the mutagenic effectiveness of ionizing radiation, interaction between ionizing radiation and chemical mutagens in the induction of somatic mutations and also an application of Tradescantia model system for biological monitoring. The studies showed that the pretreatment of Tradescantia plants with sodium fluoride or the modification of the soil composition with dolomite admixture, visibly influences plants radiosensitivity. The analysis of the changes in the dose-response curves suggested that the employed agents were influencing in different ways the repair processes of the DNA. The studies on the interaction between agents proved that the synergistic effect occurs in case of combined action of ionizing radiation with such chemical mutagens as ethyl methansulfonate or 1,2 dibromomethane. It was also discovered that in the range of low doses the effect was proportional to radiation dose and total exposition to chemical mutagen. The field application of Tradescantia method defined the mutagenicity of air pollution in the Cracow area. The highest frequencies of mutations were detected after the Chernobyl accident and after the damage of the filters in the Pharmaceutical Plant. The applied method was evaluated in respect of its usefulness for biological monitoring of environmental pollution. 163 refs. (author)

  8. Evanescent planar waveguide detection of biological warfare simulants

    Science.gov (United States)

    Sipe, David M.; Schoonmaker, Kenneth P.; Herron, James N.; Mostert, Michael J.

    2000-04-01

    An evanescent planar waveguide Mark 1.5 instrument was used to detect simulants of biological warfare agents; ovalbumin (OV), MS2 bacteriophage, BG, and Erwinia herbicola (EH). Polyclonal tracer antibodies were labeled with the fluorescent dye, Cy5. Discrete bands of polyclonal capture antibodies were immobilized to a polystyrene planar waveguide with molded integral lenses. An ST-6 CCD camera was used for detection. OV. MS2 and BG were detected in a simultaneous 3 by 3 array; with a total of nine measurements within 6 minutes. EH was analyzed in a separate array. Results were evaluate dat the US Army Joint Field Trials V, at the Dugway Proving Grounds. Over a 10 day period, 32 unknown samples were analyzed daily for each simulant. Detection limits: OV 10 ng/ml, MS2 107 pfu/ml, BG 105 cfu/ml. EH was detectable at 5 X 105 cfu/ml. Overall false positives were 3.0 percent. Therefore, the Mark 1.5 instrument, with a parallel array of detectors, evanescent flourescent excitation, and CCD imaging provides for rapid, sensitive, and specific detection of biological warfare agent simulants.

  9. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  10. Accelerating the degradation of green plant waste with chemical decomposition agents.

    Science.gov (United States)

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that Na

  11. Scientific and technical development and the chemical weapon convention

    International Nuclear Information System (INIS)

    The Chemical Weapons Convention (CWC) was drafted with the recognition that it is impossible to envision every way in which toxic chemicals might be used for aggressive purposes. As terrorist organizations and rogue states replace the major powers as the most likely candidates to employ chemical weapons, the agents of choice may differ from those developed for battlefield use. Twenty- first century chemical warfare may target civilians or agricultural production, and clandestine production-facilities may manufacture toxic agents from chemical precursors, not monitored under the CWC control regime. The effects (on CWC implementation) of changing industrial technologies, including ongoing developments in chemical process technology, dual-use industrial chemicals, and rapid methods for discovering biologically active chemicals, are considerable Also considered is how commercial technologies could be misused for the development of novel chemical weapons, and how such abuses might be detected and monitored. (author)

  12. Efficient implementations of hyperspectral chemical-detection algorithms

    Science.gov (United States)

    Brett, Cory J. C.; DiPietro, Robert S.; Manolakis, Dimitris G.; Ingle, Vinay K.

    2013-10-01

    Many military and civilian applications depend on the ability to remotely sense chemical clouds using hyperspectral imagers, from detecting small but lethal concentrations of chemical warfare agents to mapping plumes in the aftermath of natural disasters. Real-time operation is critical in these applications but becomes diffcult to achieve as the number of chemicals we search for increases. In this paper, we present efficient CPU and GPU implementations of matched-filter based algorithms so that real-time operation can be maintained with higher chemical-signature counts. The optimized C++ implementations show between 3x and 9x speedup over vectorized MATLAB implementations.

  13. Advances in researches on application of surface-enhanced Raman spectroscopy in the detection of chemical threat agents%表面增强拉曼光谱在化学恐怖物质检测中的应用进展

    Institute of Scientific and Technical Information of China (English)

    高敬; 郭磊; 李春正; 陈佳; 谢剑炜

    2012-01-01

    在应对和处置涉及化学恐怖物质的突发公共安全事件中,实现实时快速、准确可靠、高灵敏的现场侦检非常关键.表面增强拉曼光谱技术因其灵敏、快速、便携等特性,在化学恐怖物质的侦检领域逐渐受到重视.该文综述了这一技术在化学战剂及相关物质、生物毒素检测中的应用进展,并分析了其应用前景.%The first important response is a real -time or rapid, accurate, highly sensitive and on-site detection strategy for public security emergencies related to chemical threat agents . Surface-enhanced Raman spectroscopy has attracted wide attention in the detection field in chemical threat agents by virtue of its speed , sensitivity and portability. In this review, recent applications of surface-enhanced Raman spectroscopy in the detection of chemical warfare agents , related chemicals and biotoxins are summarized, and the outlook of such a technique in the on -site detection is briefly described.

  14. Method of processing radioactive liquid wastes derived from organic-chemical decontaminating agents

    International Nuclear Information System (INIS)

    Purpose: To process radioactive liquid wastes of organic-chemical decontaminating agents after being used for the decontamination of tanks, pipeways, pumps or like other equipments contaminated with radioactive materials in nuclear power plants. Method: Radioactive liquid wasted derived from decontaminating agents mainly composed of organic acids such as citric acid, formic acid, oxalic acid, hydroxyl acetic acid, ascorbic acid and gluconic acid are at first processed in a filter comprising porous filtering membranes, to eliminate suspended materials containing claddings not dissolved in the liquid wastes. As the porous filtering membranes, hollow thread filtering membranes, ceramic filters, sintered metal membranes, metal mesh filters or the likes may be used, the back-wash type hollow thread porous polymeric membranes being preferred. Then, the organic mateirals are effectively decomposed into gaseous dioxide and water through photolysis while blowing ozone under the irradiation of UV-rays to thereby decrease the amount of radioactive wastes significantly. (Kamimura, M.)

  15. Impurity profiling to match a nerve agent to its precursor source for chemical forensics applications.

    Science.gov (United States)

    Fraga, Carlos G; Acosta, Gabriel A Pérez; Crenshaw, Michael D; Wallace, Krys; Mong, Gary M; Colburn, Heather A

    2011-12-15

    Chemical forensics is a developing field that aims to attribute a chemical (or mixture) of interest to its source by the analysis of the chemical itself or associated material constituents. Herein, for the first time, trace impurities detected by gas chromatography/mass spectrometry and originating from a chemical precursor were used to match a synthesized nerve agent to its precursor source. Specifically, six batches of sarin (GB, isopropyl methylphosphonofluoridate) and its intermediate methylphosphonic difluoride (DF) were synthesized from two commercial stocks of 97% pure methylphosphonic dichloride (DC); the GB and DF were then matched by impurity profiling to their DC stocks from a collection of five possible stocks. Source matching was objectively demonstrated through the grouping by hierarchal cluster analysis of the GB and DF synthetic batches with their respective DC precursor stocks based solely upon the impurities previously detected in five DC stocks. This was possible because each tested DC stock had a unique impurity profile that had 57% to 88% of its impurities persisting through product synthesis, decontamination, and sample preparation. This work forms a basis for the use of impurity profiling to help find and prosecute perpetrators of chemical attacks. PMID:22040126

  16. Hybrid Warfare Studies and Russia’s Example in Crimea

    OpenAIRE

    Erol, Mehmet Seyfettin; Şafak OĞUZ

    2015-01-01

    Although Hybrid Warfare is an old concept, theoretical studies in the western countries mainly began in the post-Col War era, focusing on asymmetrical threats against conventional superiority of western countries such as USA or Israel. September 11th attacks and 2006 Israel-Lebanon war played important roles for the evolution of hybrid warfare theories. However, there has not any consensus among scholars on a exact or unique definition of hybrid warfare. Hybrid warfare became one of the main ...

  17. Detection of toxic industrial chemicals in water supplies using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Spencer, Kevin M.; Sylvia, James M.; Spencer, Sarah A.; Clauson, Susan L.

    2010-04-01

    An effective method to create fear in the populace is to endanger the water supply. Homeland Security places significant importance on ensuring drinking water integrity. Beyond terrorism, accidental supply contamination from a spill or chemical residual increases is a concern. A prominent class of toxic industrial chemicals (TICs) is pesticides, which are prevalent in agricultural use and can be very toxic in minute concentrations. Detection of TICs or warfare agents must be aggressive; the contaminant needs to be rapidly detected and identified to enable isolation and remediation of the contaminated water while continuing a clean water supply for the population. Awaiting laboratory analysis is unacceptable as delay in identification and remediation increases the likelihood of infection. Therefore, a portable or online water quality sensor is required that can produce rapid results. In this presentation, Surface-Enhanced Raman Spectroscopy (SERS) is discussed as a viable fieldable sensor that can be immersed directly into the water supply and can provide results in chemical warfare agent degradation products, simulants and toxic industrial chemicals in distilled water, tap water and untreated water will be shown. In addition, results for chemical warfare agent degradation products and simulants will be presented. Receiver operator characteristic (ROC) curves will also be presented.

  18. A Survey of Commercially Available Chemical Agent Instrumentation for Use in the Field

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J S; Alcaraz, A; Andresen, B D; Pruneda, C O

    2002-03-01

    Lawrence Livermore National Laboratory's (LLNL) Forensic Science Center (FSC) has extensive experience and capabilities in the analysis of chemical agents (CA) and related compounds as well as experience in identifying these materials in the field (i.e. samples such as those found in soils, liquids, gases). An open source survey was performed to determine viable, commercially available technology that can detect, in situ, CA and also meet field-use performance criteria as specified by the Program Management Consultant (PMC). The performance requirements of the technology include accuracy, reliability, integration onto robotics, and chemical detection sensitivities that meet required specifications. Not included in this survey are technologies and methodologies to detect CA decomposition products and related waste streams.

  19. THE TWENTIETH CENTURY DEVELOPMENT OF DIFFERENT TYPES OF BACTERIAL, BIOLOGICAL AND CHEMICAL WEAPONS AND THE PRESENT CAPABILITIES OF NATO AND THE WARSAW PACT IN THIS RESPECT

    Directory of Open Access Journals (Sweden)

    A.L.S. Hudson

    2012-02-01

    Full Text Available Over the last twenty years increased attention has been focused on the military uses of Bacterial, Biological and Chemical agents (BBC weapons. This phenomenon can be attributed to a number of reasons. Firstly, BBC weapons are comparatively cheap and simple to produce, they are easy to use as conventional weapons and their effects are short-lived. The mutual deterrence effect of nuclear weapons, furthermore, has necessitated the exploration of other fields of warfare of which - BBC warfare is a field. Another reason for this interest is the employment, on a limited scale, of such weapons in certain conflicts over this period.

  20. Oak Ridge Multiple Attribute System (ORMAS) for Pu, HEU, HE, Chemical Agents, and Drugs

    International Nuclear Information System (INIS)

    The concept for the Oak Ridge Multiple Attribute System (ORMAS) is a Nuclear Materials Identification System (NMIS) time-dependent coincidence processor that incorporates gamma ray spectrometry and utilizes a small, lightweight, portable DT neutron (14.1 MeV) generator (1 x 108 n/s), proton recoil scintillation detectors, and a gamma ray detector (HPGe). ORMAS is based on detecting fission neutrons and gamma rays from inherent source fission, fission induced by the external DT source, gamma ray detection of natural emissions of uranium and Pu, and induced gamma ray emission by the interaction of the 14.1 MeV neutrons from the DT source. This system is uniquely suited for detection of shielded highly enriched uranium (HEU), plutonium and other special nuclear materials, and detection of high explosives (HE), chemical agents, and in some cases, drugs. It could easily be adjusted to utilize a trusted processor that incorporates information barrier and authentication techniques using open software and then be useful in some international applications for materials whose characteristics may be classified. Since it is based entirely on commercially available components, the entire system, including the NMIS data acquisition boards, can be built with commercial off the shelf components (COTS). ORMAS incorporates the PINS technology of A. J. Caffrey of the Idaho National Engineering and Environmental Laboratory for HE, chemical agents, and drugs detection

  1. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    International Nuclear Information System (INIS)

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet

  2. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents.

    Science.gov (United States)

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W; Battelli, Lori A; Kashon, Michael L; Ma, Qiang

    2016-02-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genome-wide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  3. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents

    Science.gov (United States)

    Dong, Jie; Yu, Xiaoqing; Porter, Dale W.; Battelli, Lori A.; Kashon, Michael L.

    2016-01-01

    Pulmonary fibrosis results from the excessive deposition of collagen fibers and scarring in the lungs with or without an identifiable cause. The mechanism(s) underlying lung fibrosis development is poorly understood, and effective treatment is lacking. Here we compared mouse lung fibrosis induced by pulmonary exposure to prototypical particulate (crystalline silica) or soluble chemical (bleomycin or paraquat) fibrogenic agents to identify the underlying mechanisms. Young male C57BL/6J mice were given silica (2 mg), bleomycin (0.07 mg), or paraquat (0.02 mg) by pharyngeal aspiration. All treatments induced significant inflammatory infiltration and collagen deposition, manifesting fibrotic foci in silica-exposed lungs or diffuse fibrosis in bleomycin or paraquat-exposed lungs on day 7 post-exposure, at which time the lesions reached their peaks and represented a junction of transition from an acute response to chronic fibrosis. Lung genomewide gene expression was analyzed, and differential gene expression was confirmed by quantitative RT-PCR, immunohistochemistry, and immunoblotting for representative genes to demonstrate their induced expression and localization in fibrotic lungs. Canonical signaling pathways, gene ontology, and upstream transcription networks modified by each agent were identified. In particular, these inducers elicited marked proliferative responses; at the same time, silica preferentially activated innate immune functions and the defense against foreign bodies, whereas bleomycin and paraquat boosted responses related to cell adhesion, platelet activation, extracellular matrix remodeling, and wound healing. This study identified, for the first time, the shared and unique genes, signaling pathways, and biological functions regulated by particulate and soluble chemical fibrogenic agents during lung fibrosis, providing insights into the mechanisms underlying human lung fibrotic diseases. PMID:26345256

  4. High-separation efficiency micro-fabricated multi-capillary gas chromatographic columns for simulants of the nerve agents and blister agents

    OpenAIRE

    Li, Yi; Du, Xiaosong; Wang, Yang; Tai, Huiling; Qiu, Dong; Lin, Qinghao; Jiang, Yadong

    2014-01-01

    To achieve both high speed and separation efficiency in the separation of a mixture of nerve and blister agent simulants, a high-aspect-ratio micro-fabricated multi-capillary column (MCC, a 50-cm-long, 450-μm-deep, and 60-μm-wide four-capillary column) was fabricated by the application of the microelectromechanical system (MEMS) techniques. Mixtures of chemical warfare agent (CWA) simulants - dimethyl methylphosphonate (DMMP), triethyl phosphate (TEP), and methyl salicylate - were used as sam...

  5. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  6. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Lomazzi, Eleonora [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Passoni, Alice [Unit of Analytical Instrumentation, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Bagnati, Renzo [Unit of Analytical Instrumentation, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Lodi, Marco [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Viarengo, Aldo; Sforzini, Susanna [Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale “A. Avogadro”, 15121 Alessandria (Italy); Benfenati, Emilio [Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Fanelli, Roberto [Department of Environmental Health Sciences, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy)

    2015-10-15

    Highlights: • An integrated approach was applied to study three foaming agents. • Several compounds not reported on the safety data sheets were identified by HRMS. • Environmental impacts were investigated with a battery of biological assays. • An ecotoxicological ranking of the products was obtained. - Abstract: The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity

  7. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling

    International Nuclear Information System (INIS)

    Highlights: • An integrated approach was applied to study three foaming agents. • Several compounds not reported on the safety data sheets were identified by HRMS. • Environmental impacts were investigated with a battery of biological assays. • An ecotoxicological ranking of the products was obtained. - Abstract: The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity

  8. Guiding Warfare to Reach Sustainable Peace

    DEFF Research Database (Denmark)

    Vestenskov, David; Drewes, Line

    The conference report Guiding Warfare to Reach Sustainable Peace constitutes the primary outcome of the conference It is based on excerpts from the conference presenters and workshop discussions. Furthermore, the report contains policy recommendations and key findings, with the ambition of...

  9. A New Class of Contrast Agents for MRI Based on Proton Chemical Exchange Dependent Saturation Transfer (CEST)

    Science.gov (United States)

    Ward, K. M.; Aletras, A. H.; Balaban, R. S.

    2000-03-01

    It has been previously shown that intrinsic metabolites can be imaged based on their water proton exchange rates using saturation transfer techniques. The goal of this study was to identify an appropriate chemical exchange site that could be developed for use as an exogenous chemical exchange dependent saturation transfer (CEST) contrast agent under physiological conditions. These agents would function by reducing the water proton signal through a chemical exchange site on the agent via saturation transfer. The ideal chemical exchange site would have a large chemical shift from water. This permits a high exchange rate without approaching the fast exchange limit at physiological pH (6.5-7.6) and temperature (37°C), as well as minimizing problems associated with magnetic field susceptibility. Numerous candidate chemicals (amino acids, sugars, nucleotides, heterocyclic ring chemicals) were evaluated in this preliminary study. Of these, barbituric acid and 5,6-dihydrouracil were more fully characterized with regard to pH, temperature, and concentration CEST effects. The best chemical exchange site found was the 5.33-ppm indole ring -NH site of 5-hydroxytryptophan. These data demonstrate that a CEST-based exogenous contrast agent for MRI is feasible.

  10. 毒物战的现实威胁%Threats of toxic warfare

    Institute of Scientific and Technical Information of China (English)

    刘芳; 赵建; 丁日高

    2013-01-01

    2002年,一份美国空军发起的关于毒物战争的研究报告引起了美国军方和平民灾难应急救援组织的关注。该报告通过对在战争中恶意使用有毒工业化学物质的历史事件的回顾,提出了毒物战( toxic warfare )的概念,并讨论了它对美国军事和国土安全的影响。该文综述了毒物战的历史及其对美国军事和国土安全的影响,分析了我国面临的毒物战威胁,并就应对毒物战威胁提出了若干启示。%In 2002, a research report about toxic warfare launched by the United States Air Force attracted the attentionof the U.S.military and civilian disaster emergency rescue organizations .By reviewing historical events related to the malicioususe of toxic industrial chemicals in the war , this report proposed the concept of "Toxic Warfare ", and discussed itsimpact on the United States military and homeland security .In this paper, the concept and history of toxic warfare and itsinfluence on American military and homeland security are reviewed , the threats of toxic warfare facing China and counter -measures against toxic warfare are analyzed.

  11. Animal model: damage to DNA in the Amazon Molly by physical and chemical agents

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.; Woodhead, A.D.; Hart, R.W.

    1978-01-01

    Effects of acute exposure to ionizing radiation in humans are generally reflected in damage to the brain when doses exceed 3000 rad, to the gastrointestinal tract at doses from 500 to 3000 rad, and to the hematopoietic tissues at doses less than 500 rad. Deposition of radiation energy in cells causes physicochemical changes in DNA; since the information for all cellular physiologic processes is carried on DNA, damage to DNA may play a crucial role in injury to the cells and ultimately to pathologic changes in organs. The Amazon molly, Poecilia formosa, has an unusual mode of reproduction, which makes it eminently suitable for study of the in vivo effects of biologic damage to DNA caused by ionizing radiation. There is no genetic contribution from the male; sperm provides only the stimulus for egg development. The offspring of a single original female, all females, are clones with identical genotypes, so that tissue and cell transplants between members of a clone survive as long as the recipient animal. Cells taken from speicific tissues in donor fish can be treated in vitro, which allows precise physical and chemical measuremnts of the agent used. The cells are injected into homologous recipients, and the resulting lesions are scored in vivo a number of months later. Damage to DNA caused by ionizing radiation, by ultraviolet radition, and by certain chemicals results in tumor development and hematopoietic lesions; when known specific damage to DNA was reversed in vitro, the recipient group of fish showed no lesions. It is suggested that the fish model may be used to obtain information about the molecular effects, both physical and chemical, of injurious agents on animals. Cells garnered from specific tissues can be treated quite precisely; the damage can be measured; and lesions can be examined in vivo. The genetic homogeneity of the clone ensures that variation between the responses of individuals will be minimal and the experiments will be highly reproducible.

  12. Mutagenic Effects of Some Chemical Agents in Wheat (Triticum aestivum L. em Thell)

    International Nuclear Information System (INIS)

    Water soaked wheat cv. NW 1014 seeds were treated with aqueous solutions (1 per cent) of 6 chemicals, namely, acid slurry, sodium carbonate, tri-sodium phosphate, sodium tri-polyphosphate, carboxy methylcellulose and sodium sulphate for 22h. Out of these chemicals, tri-sodium phosphate and carboxy methylcellulose recorded the highest mutation frequency (1.15 per cent), followed by sodium sulphate (1.00 per cent), sodium carbonate (0.85 per cent), sodium tri-poly phosphate (0.65 per cent) and acid slurry (0.0 per cent) in the M2 generation. The highest number of mutants was observed for late heading (47), followed by dwarf stature (36), white spike (7) and high tillering (6) in the M2 generation. On the basis of the number of high yielding mutants (M5), the mutagenic efficiency of sodium carbonate may be placed at the top rank, followed by sodium sulphate, tri-sodium phosphate, sodium tri-poly phosphate and carboxy methyl cellulose. One type of macro mutant (white spiked) was induced by tri-sodium phosphate whereas sodium carbonate generated 3 types of macro-mutants (large flag leaf, club shape spike and small grain ). The studies reveal that all the chemicals, except acid slurry, may be used as mutagenic agents in wheat. (author)

  13. Catalytic bioscavengers in nerve agent poisoning: A promising approach?

    Science.gov (United States)

    Worek, Franz; Thiermann, Horst; Wille, Timo

    2016-02-26

    The repeated use of the nerve agent sarin against civilians in Syria in 2013 emphasizes the continuing threat by chemical warfare agents. Multiple studies demonstrated a limited efficacy of standard atropine-oxime treatment in nerve agent poisoning and called for the development of alternative and more effective treatment strategies. A novel approach is the use of stoichiometric or catalytic bioscavengers for detoxification of nerve agents in the systemic circulation prior to distribution into target tissues. Recent progress in the design of enzyme mutants with reversed stereo selectivity resulting in improved catalytic activity and their use in in vivo studies supports the concept of catalytic bioscavengers. Yet, further research is necessary to improve the catalytic activity, substrate spectrum and in vivo biological stability of enzyme mutants. The pros and cons of catalytic bioscavengers will be discussed in detail and future requirements for the development of catalytic bioscavengers will be proposed. PMID:26200600

  14. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1979-10-30

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  15. Sulfomethylated lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    Energy Technology Data Exchange (ETDEWEB)

    Kalfoglou, G.

    1981-05-26

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of sulfomethylated lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the sulfomethylated lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  16. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.

    Science.gov (United States)

    Izake, Emad L; Cletus, Biju; Olds, William; Sundarajoo, Shankaran; Fredericks, Peter M; Jaatinen, Esa

    2012-05-30

    Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems. PMID:22608458

  17. Pretreatment of highly turbid coal mine drainage by a chemical agent free filtration system

    Institute of Scientific and Technical Information of China (English)

    Zhang Chunhui; He Xiong; Li Kaihe; Wu Dongsheng; Guo Yanrong; Wang Can

    2012-01-01

    A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated during the study.The experimental results show that for aperture diameters of 0.4,0.6,or 0.8 mm smaller apertures provide more complete filtration.Rotations of 12,20,28,or 40 r/min show that higher speeds give more efficient filtration.Suspended solids decreased in both particle size and concentration after the filtration.The separated slime can be directly reused as a fuel.Efficient filtration pretreatment systems for coal mine drainage were investigated and the economic feasibility is analyzed in this article.

  18. Biological effects of radiation and chemical agents with special regard to repair processes

    International Nuclear Information System (INIS)

    It is reasonably certain that the introduction or increase of pollutants in the environment can augment mutagenic and carcinogenic effects. These effects are operationally definable, but the genetic organization and the underlying mechanisms of DNA repair, mutagenesis and carcinogenesis are so complex as to make the extrapolation of results from mutagenicity test data to carcinogenicity somewhat uncertain. The subject is reviewed. Recent discoveries in gene organization and expression include overlapping genes in bacteriophages, split genes, processing of RNA and splicing, translocation of genes in eukaryotes, inactivation of the X-chromosome in mammals, etc. Apart from the genetic regulation, plasmids, insertion sequences and mutators can additionally affect mutation frequency. Cancers due to gene mutations, viruses, chemicals and physical agents are known. However, little is known about the epigenetic mechanisms involved. The value of mutagenicity test data is beyond question, but in view of the extraordinary complexities encountered our extrapolations will be more sound if the data have the underpinning of basic information. (author)

  19. Trapping of organophosphorus chemical nerve agents in water with amino acid functionalized baskets.

    Science.gov (United States)

    Ruan, Yian; Dalkiliç, Erdin; Peterson, Paul W; Pandit, Aroh; Dastan, Arif; Brown, Jason D; Polen, Shane M; Hadad, Christopher M; Badjić, Jovica D

    2014-04-01

    We prepared eleven amino-acid functionalized baskets and used (1) H NMR spectroscopy to quantify their affinity for entrapping dimethyl methylphosphonate (DMMP, 118 Å(3) ) in aqueous phosphate buffer at pH=7.0±0.1; note that DMMP guest is akin in size to chemical nerve agent sarin (132 Å(3) ). The binding interaction (Ka ) was found to vary with the size of substituent groups at the basket's rim. In particular, the degree of branching at the first carbon of each substituent had the greatest effect on the host-guest interaction, as described with the Verloop's B1 steric parameter. The branching at the remote carbons, however, did not perturb the encapsulation, which is important for guiding the design of more effective hosts and catalysts in future. PMID:24616086

  20. Chemical characterization and ecotoxicity of three soil foaming agents used in mechanized tunneling.

    Science.gov (United States)

    Baderna, Diego; Lomazzi, Eleonora; Passoni, Alice; Pogliaghi, Alberto; Petoumenou, Maria Ifigeneia; Bagnati, Renzo; Lodi, Marco; Viarengo, Aldo; Sforzini, Susanna; Benfenati, Emilio; Fanelli, Roberto

    2015-10-15

    The construction of tunnels and rocks with mechanized drills produces several tons of rocky debris that are today recycled as construction material or as soil replacement for covering rocky areas. The lack of accurate information about the environmental impact of these excavated rocks and foaming agents added during the excavation process has aroused increasing concern for ecosystems and human health. The present study proposes an integrated approach to the assessment of the potential environmental impact of three foaming agents containing different anionic surfactants and other polymers currently on the market and used in tunnel boring machines. The strategy includes chemical characterization with high resolution mass spectrometry techniques to identify the components of each product, the use of in silico tools to perform a similarity comparison among these compounds and some pollutants already listed in regulatory frameworks to identify possible threshold concentrations of contamination, and the application of a battery of ecotoxicological assays to investigate the impact of each foaming mixture on model organisms of soil (higher plants and Eisenia andrei) and water communities (Daphnia magna). The study identified eleven compounds not listed on the material safety data sheets for which we have identified possible concentrations of contamination based on existing regulatory references. The bioassays allowed us to determine the no effect concentrations (NOAECs) of the three mixtures, which were subsequently used as threshold concentration for the product in its entirety. The technical mixtures used in this study have a different degree of toxicity and the predicted environmental concentrations based on the conditions of use are lower than the NOAEC for soils but higher than the NOAEC for water, posing a potential risk to the waters due to the levels of foaming agents in the muck. PMID:25917697

  1. Investigation of chemical bath deposition of CdO thin films using three different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Khallaf, Hani [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Chen, Chia-Ta; Chang, Liann-Be [Graduate Institute of Electro-Optical Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Green Technology Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Lupan, Oleg [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Boulevard, MD-2004 Chisinau, Republic of Moldova (Moldova, Republic of); Dutta, Aniruddha; Heinrich, Helge [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Shenouda, A. [Central Metallurgical R and D Institute (CMRDI), Tebbin, P.O. Box 87, Helwan (Egypt); Chow, Lee, E-mail: Lee.Chow@ucf.edu [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2011-09-01

    Chemical bath deposition of CdO thin films using three different complexing agents, namely ammonia, ethanolamine, and methylamine is investigated. CdSO{sub 4} is used as Cd precursor, while H{sub 2}O{sub 2} is used as an oxidation agent. As-grown films are mainly cubic CdO{sub 2}, with some Cd(OH){sub 2} as well as CdO phases being detected. Annealing at 400 deg. C in air for 1 h transforms films into cubic CdO. The calculated optical band gap of as-grown films is in the range of 3.37-4.64 eV. Annealed films have a band gap of about 2.53 eV. Rutherford backscattering spectroscopy of as-grown films reveals cadmium to oxygen ratio of 1.00:1.74 {+-} 0.01 while much better stoichiometry is obtained after annealing, in accordance with the X-ray diffraction results. A carrier density as high as 1.89 x 10{sup 20} cm{sup -3} and a resistivity as low as 1.04 x 10{sup -2} {Omega}-cm are obtained.

  2. Chemical carcinogenic and mutagenic agents in the workplace, Poland, 2008–2010

    Directory of Open Access Journals (Sweden)

    Katarzyna Konieczko

    2013-04-01

    Full Text Available Background: The aim of this paper is to present a concise but comprehensive information on the occurrence of carcinogenic or mutagenic agents in Polish enterprises and the number of workers exposed to those agents reported to the central register by employers. Objectives and responsibilities of the register, as well as the range and methods of data gathering are discussed. Material and Methods: Data concerning carcinogenic or mutagenic chemical substances and technological processes reported to central register in 2008-2010 were analyzed. Results: In 2008-2010 more than 300 carcinogenic or mutagenic chemical substances were reported to the register. Approximately 2500 plants reported above 150 000 per-person-exposures annually. Among all technological processes regarded as occupational carcinogens, hardwood dusts exposure (about 660 companies; 11 000-13 000 exposed workers each year and exposure to polycyclic aromatic hydrocarbons (PAHs present in coal products (117-125 plantsl 3000 exposed per year were reported. Conclusions: The most widespread carcinogenic/mutagenic substances were: benzene, chromium(VI compounds: potassium dichromate and chromate, chromium(VI trioxide and other chromium compounds, ethylene oxide, asbestos, benzo[a]pyrene and gasoline. The highest number of men was exposed to particular PAHs and benzene , and the majority of women was exposed to benzene, potassium dichromate and chromate, acrylamide, ethylene oxide and gasoline. The lack of clear-cut definitione of occupational exposure to carcinogen creates a problem faced by employers in defining the accurate number of exposed workers. Med Pr 2013;64(2:181–192

  3. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flue gas pollution is a serious environmental problem that needs to be solved for the sustainable development of China.The surface chemical properties of carbon have great influence on its desulphurization performance.A series of activated carbons (ACs) were prepared using HNO3,H2O2,NH3·H2O and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The ACs were physically and chemically characterized by iodine and SO2 adsorption,ultimate analysis,Boehm titration,and temperature-programmed reduction (TPR).Results showed that the iodine number and desulphurization capacity of NH3·H2O activated carbon (AC-NH3) increase with both activation time,and its desulphurization capacity also increases with the concentration of activation agent.However,HNO3 activated carbon (AC-HNO3) and H2O2 activated carbon (AC-H2O2) exhibit more complex behavior.Only their iodine numbers increase monotonously with activation time.Compared with steam activated AC (AC-H2O),the nitrogen content increases 0.232% in AC-NH3 and 0.077% in AC-HNO3.The amount of total basic site on AC-HNO3 is 0.19 mmol·g-1 higher than that on AC-H2O.H2O2 activation introduces an additional 0.08 mmol·g-1 carboxyl groups to AC surface than that introduced by steam activation.The desulphurization capacity of ACs in simulate flue gas desulphurization decreases as follows: AC-NH3 > AC-HNO3 > AC-H2O2 > AC-H2O.This sequence is in accord with the SO2 catalytic oxidation/oxidation ratio in the absence of oxygen and the oxidation property reflected by TPR.In the presence of oxygen,all adsorbed SO2 on ACs can be oxidized into SO3.The desulphurization capacity increases differently according to the activation agents;the desulphurization capacity of AC-NH3 and AC-HNO3 improves by 4.8 times,yet AC-H2O increases only by 2.62 as compared with the desulphurization of corresponding ACs in absence of oxygen.

  4. Applying radiation approaches to the control of public risks from chemical agents

    International Nuclear Information System (INIS)

    risks from chemical and biological agents, the technical people involved should make certain that the major scientific considerations have a prominent role in the decision-making processes, not just assumptions, hypotheses and axioms adopted in lieu of facts

  5. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1

    OpenAIRE

    Qidi Zhu; Yulong Song; Gaisheng Zhang; Lan Ju; Jiao Zhang; Yongang Yu; Na Niu; Junwei Wang; Shoucai Ma

    2015-01-01

    Wheat (Triticum aestivum L.), one of the world's most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther tra...

  6. Computational models of intergroup competition and warfare.

    Energy Technology Data Exchange (ETDEWEB)

    Letendre, Kenneth (University of New Mexico); Abbott, Robert G.

    2011-11-01

    This document reports on the research of Kenneth Letendre, the recipient of a Sandia Graduate Research Fellowship at the University of New Mexico. Warfare is an extreme form of intergroup competition in which individuals make extreme sacrifices for the benefit of their nation or other group to which they belong. Among animals, limited, non-lethal competition is the norm. It is not fully understood what factors lead to warfare. We studied the global variation in the frequency of civil conflict among countries of the world, and its positive association with variation in the intensity of infectious disease. We demonstrated that the burden of human infectious disease importantly predicts the frequency of civil conflict and tested a causal model for this association based on the parasite-stress theory of sociality. We also investigated the organization of social foraging by colonies of harvester ants in the genus Pogonomyrmex, using both field studies and computer models.

  7. Artillery and Warfare 1945-2025

    OpenAIRE

    Bailey, J. P. A.

    2009-01-01

    For millennia battles were essentially affairs of linear encounter. From the 10th Century to the 20th Century, artillery generally fired directly in the two dimensional plane,limiting potential effects. The development of indirect fire changed this , two-dimensional model. Warfare became not so much a matter of linear encounter as one of engagement as cross and throughout an area; and artillery dominated land operations in both the First and Second World Wars as a result. Fi...

  8. OFFICER AND COMMANDER IN ASYMMETRIC WARFARE OPERATIONS

    OpenAIRE

    Giuseppe CAFORIO

    2013-01-01

    Starting from the data of a field research conducted among soldiers with asymmetric warfare experiences from nine different countries, the author seeks to identify and shed light on the various problems that officers with command responsibilities had to face during their missions. A picture emerges of feelings and experiences relating to their first impression upon arriving in the theatre, relations with local armed forces, relations with the local population and local authorities, relations ...

  9. Drone Warfare : Visual Primacy as a Weapon

    OpenAIRE

    Lee-Morrison, Lila

    2015-01-01

    This paper articulates drone warfare through a critical analysis of an actual drone operation and a study into its developing technologies. The first chapter moves through a discussion of the intervening role of the camera as described by Walter Benjamin and societal perspective of visual reproduction technology. This discussion then departs from the mechanical to the digital realm of realtime video, utilizing theory of Paul Virilio. The second chapter focuses on developing technologies withi...

  10. Axial Vircator for Electronic Warfare Applications

    OpenAIRE

    L. Drazan; R. Vrana

    2009-01-01

    This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM) is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered b...

  11. Animal plant warfare and secondary metabolite evolution

    OpenAIRE

    Wöll, Steffen; Kim, Sun Hee; Greten, Henry Johannes; Efferth, Thomas

    2013-01-01

    Abstract The long-lasting discussion, why plants produce secondary metabolites, which are pharmacologically and toxicologically active towards mammals traces back to the eminent role of medicinal plants in the millennia-old history of manhood. In recent years, the concept of an animal plant warfare emerged, which focused on the co-evolution between plants and herbivores. As a reaction to herbivory, plants developed mechanical defenses such as thorns and hard shells, which paved the way for ad...

  12. Preparation and characteristics of chemical bath deposited ZnS thin films: Effects of different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Agawane, G.L.; Gang, Myeng Gil [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V. [Department of Physics, Shivaji University, Kolhapur 416-004 (India); Moon, Jong-Ha [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Lee, Jeong Yong, E-mail: j.y.lee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thick ZnS thin films were successfully prepared by chemical bath deposition in a basic medium using less toxic complexing agents. Black-Right-Pointing-Pointer Effect of different complexing agents such as no complexing agent, Na{sub 3}-citrate and a mixture of Na{sub 3}-citrate and EDTA on the properties of ZnS thin films was investigated. Black-Right-Pointing-Pointer ZnS thin film deposited using two complexing agent showed the outstanding characteristics as compared to those using no and one complexing agent. - Abstract: Zinc sulfide (ZnS) thin films were prepared on glass substrates by a chemical bath deposition technique using aqueous zinc acetate and thiourea solutions in a basic medium (pH {approx} 10) at 80 Degree-Sign C. The effects of different complexing agents, such as a non-complexing agent, Na{sub 3}-citrate, and a mixture of Na{sub 3}-citrate and ethylenediamine tetra-acetate (EDTA), on the structural, chemical, morphological, optical, and electrical properties of ZnS thin films were investigated. X-ray diffraction pattern showed that the ZnS thin film deposited without any complexing agent was grown on an amorphous phase. However, the ZnS thin films deposited with one or two complexing agents showed a polycrystalline hexagonal structure. No secondary phase (ZnO) was observed. X-ray photoelectron spectroscopy showed that all ZnS thin films exhibited both Zn-S and Zn-OH bindings. Field emission scanning electron microscopy (FE-SEM) images showed that ZnS thin films deposited with complexing agents had thicker thicknesses than that deposited without a complexing agent. The electrical resistivity of ZnS thin films was over 10{sup 5} {Omega} cm regardless of complexing agents. The average transmittance of the ZnS thin films deposited without a complexing agent, those with Na{sub 3}-citrate, and those with a mixture of Na{sub 3}-citrate and EDTA was approximately 85%, 65%, and 70%, respectively, while the band gap

  13. Terahertz signatures of biological-warfare-agent simulants

    Science.gov (United States)

    Globus, Tatiana; Woolard, Dwight L.; Khromova, Tatyana; Partasarathy, Ramakrishnan; Majewski, Alexander; Abreu, Rene; Hesler, Jeffrey L.; Pan, Shing-Kuo; Ediss, Geoff

    2004-09-01

    This work presents spectroscopic characterization results for biological simulant materials measured in the terahertz gap. Signature data have been collected between 3 cm-1 and 10 cm-1 for toxin Ovalbumin, bacteria Erwinia herbicola, Bacillus Subtilis lyophilized cells and RNA MS2 phage, BioGene. Measurements were conducted on a modified Bruker FTIR spectrometer equipped with the noise source developed in the NRAL. The noise source provides two orders of magnitude higher power in comparison with a conventional mercury lamp. Photometric characterization of the instrument performance demonstrates that the expected error for sample characterization inside the interval from 3 to 9.5 cm-1 is less then 1%.

  14. Hybrid Warfare Studies and Russia’s Example in Crimea

    OpenAIRE

    Erol, Mehmet Seyfettin; Şafak OĞUZ

    2015-01-01

    Although Hybrid Warfare is an old concept, theoretical studies in the western countries mainly began in the post-Col War era, focusing on asymmetrical threats against conventional superiority of western countries such as USA or Israel. September 11th attacks and 2006 Israel-Lebanon war played important roles for the evolution of hybrid warfare theories. However, there has not any consensus among scholars on a exact or unique definition of hybrid warfare. Hybrid warfare became one of the main ...

  15. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  16. Device for collecting chemical compounds and related methods

    Science.gov (United States)

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  17. Decomposition kinetics of dimethyl methylphospate(chemical agent simulant) by supercritical water oxidation

    Institute of Scientific and Technical Information of China (English)

    Bambang VERIANSYAH; Jae-Duck KIM; Youn-Woo LEE

    2006-01-01

    Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An important design consideration in the development of supercritical water oxidation is the information of decomposition rate. In this paper, the decomposition rate of dimethyl methylphosphonate(DMMP), which is similar to the nerve agent VX and GB(Sarin) in its structure, was investigated under SCWO conditions. The experiments were performed in an isothermal tubular reactor with a H2O2 as an oxidant. The reaction temperatures were ranged from 398 to 633 ℃ at a fixed pressure of 24 MPa. The conversion of DMMP was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. It is found that the oxidative decomposition of DMMP proceeded rapidly and a high TOC decomposition up to 99.99% was obtained within 11 s at 555℃. On the basis of data derived from experiments, a global kinetic equation for the decomposition of DMMP was developed. The model predictions agreed well with the experimental data.

  18. NMIS With Gamma Spectrometry for Attributes of Pu and HEU, Explosives and Chemical Agents

    International Nuclear Information System (INIS)

    The concept for the system described herein is an active/passive Nuclear Materials Identification System2 (NMIS) that incorporates gamma ray spectrometry3. This incorporation of gamma ray spectrometry would add existing capability into this system. This Multiple Attribute System can determine a wide variety of attributes for Pu and highly enriched uranium (HEU) of which a selected subset could be chosen. This system can be built using commercial off the shelf (COTS) components. NMIS systems are at All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and Russian Federal Nuclear Center Institute of Technical Physics, (VNIITF) and measurements with Pu have been performed at VNIIEF and analyzed successfully for mass and thickness of Pu. NMIS systems are being used successfully for HEU at the Y-12 National Security Complex. The use of active gamma ray spectrometry for high explosive HE and chemical agent detection is a well known activation analysis technique, and it is incorporated here. This report describes the system, explains the attribute determination methods for fissile materials, discusses technical issues to be resolved, discusses additional development needs, presents a schedule for building from COTS components, and assembly with existing components, and discusses implementation issues such as lack of need for facility modification and low radiation exposure

  19. NMIS With Gamma Spectrometry for Attributes of Pu and HEU, Explosives and Chemical Agents

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J. T.; Mattingly, J. K.; Mullens, J. A.; Neal, J. S.

    2002-05-10

    The concept for the system described herein is an active/passive Nuclear Materials Identification System{sup 2} (NMIS) that incorporates gamma ray spectrometry{sup 3}. This incorporation of gamma ray spectrometry would add existing capability into this system. This Multiple Attribute System can determine a wide variety of attributes for Pu and highly enriched uranium (HEU) of which a selected subset could be chosen. This system can be built using commercial off the shelf (COTS) components. NMIS systems are at All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and Russian Federal Nuclear Center Institute of Technical Physics, (VNIITF) and measurements with Pu have been performed at VNIIEF and analyzed successfully for mass and thickness of Pu. NMIS systems are being used successfully for HEU at the Y-12 National Security Complex. The use of active gamma ray spectrometry for high explosive HE and chemical agent detection is a well known activation analysis technique, and it is incorporated here. This report describes the system, explains the attribute determination methods for fissile materials, discusses technical issues to be resolved, discusses additional development needs, presents a schedule for building from COTS components, and assembly with existing components, and discusses implementation issues such as lack of need for facility modification and low radiation exposure.

  20. OFFICER AND COMMANDER IN ASYMMETRIC WARFARE OPERATIONS

    Directory of Open Access Journals (Sweden)

    Giuseppe CAFORIO

    2013-01-01

    Full Text Available Starting from the data of a field research conducted among soldiers with asymmetric warfare experiences from nine different countries, the author seeks to identify and shed light on the various problems that officers with command responsibilities had to face during their missions. A picture emerges of feelings and experiences relating to their first impression upon arriving in the theatre, relations with local armed forces, relations with the local population and local authorities, relations with NGOs, relations with other armies, the impact of the rules of engagement (ROEs, training and education, and operational experiences. The paper ends with a discussion of the lessons learned.

  1. Electronic warfare receivers and receiving systems

    CERN Document Server

    Poisel, Richard A

    2014-01-01

    Receivers systems are considered the core of electronic warfare (EW) intercept systems. Without them, the fundamental purpose of such systems is null and void. This book considers the major elements that make up receiver systems and the receivers that go in them.This resource provides system design engineers with techniques for design and development of EW receivers for modern modulations (spread spectrum) in addition to receivers for older, common modulation formats. Each major module in these receivers is considered in detail. Design information is included as well as performance tradeoffs o

  2. Microwave receivers with electronic warfare applications

    CERN Document Server

    Tsui, James

    2005-01-01

    This book by the author of Digital Techniques for Wideband Receivers willbe like no other one on your book shelf as the definitive word on electronicwarfare (EW) receiver design and performance. Whether you are an EWscientist involved in the test and evaluation of EW receivers or a designerof RWR's and other EW-related receivers, Microwave Receivers withElectronic Warfare Applications is a handy reference through which you canperfect your technical art. Lucidly written, this book is a treatise on EWreceivers that is relevant to you if you are just looking for a top-levelinsight into EW receive

  3. Axial Vircator for Electronic Warfare Applications

    Directory of Open Access Journals (Sweden)

    L. Drazan

    2009-12-01

    Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.

  4. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  5. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  6. A chemically labeled cytotoxic agent: Two-photon fluorophore for optical tracking of cellular pathway in chemotherapy

    OpenAIRE

    Wang, Xiaopeng; Krebs, Linda J.; Al-Nuri, Mohammed; Pudavar, Haridas E.; Ghosal, Saswati; Liebow, Charles; Nagy, Attila A.; Schally, Andrew V.; Prasad, Paras N.

    1999-01-01

    Chemotherapy is commonly used in the treatment of cancers. However, the mechanism of action of many of these agents is not well understood. We present the synthesis of a two-photon fluorophore (C625) and its biological application when chemically linked to a chemotherapeutic agent (AN-152). By using two-photon laser-scanning microscopy, the drug:fluorophore conjugate can be observed directly as it interacts with receptor-positive cell lines. The results of this project visually show the recep...

  7. Preliminary screening of alternative technologies to incineration for treatment of chemical-agent-contaminated soil, Rocky Mountain Arsenal

    Energy Technology Data Exchange (ETDEWEB)

    Shem, L.M.; Rosenblatt, D.H.; Smits, M.P.; Wilkey, P.L.; Ballou, S.W.

    1995-12-01

    In support of the U.S. Army`s efforts to determine the best technologies for remediation of soils, water, and structures contaminated with pesticides and chemical agents, Argonne National Laboratory has reviewed technologies for treating soils contaminated with mustard, lewisite, sarin, o-ethyl s-(2- (diisopropylamino)ethyl)methyl-phosphonothioate (VX), and their breakdown products. This report focuses on assessing alternatives to incineration for dealing with these contaminants. For each technology, a brief description is provided, its suitability and constraints on its use are identified, and its overall applicability for treating the agents of concern is summarized. Technologies that merit further investigation are identified.

  8. Hybrid Warfare Studies and Russia’s Example in Crimea

    Directory of Open Access Journals (Sweden)

    Mehmet Seyfettin EROL

    2015-12-01

    Full Text Available Although Hybrid Warfare is an old concept, theoretical studies in the western countries mainly began in the post-Col War era, focusing on asymmetrical threats against conventional superiority of western countries such as USA or Israel. September 11th attacks and 2006 Israel-Lebanon war played important roles for the evolution of hybrid warfare theories. However, there has not any consensus among scholars on a exact or unique definition of hybrid warfare. Hybrid warfare became one of the main security issues for the West and especially for NATO after the Russia-Ukraine crisis. Russian military strategies, called “hybrid warfare” by the western countries, resulted in the successful annexation of Crimea and, caused a serious security problem for the West resulting important structural and functional changes for the military system of NATO. Russian activities, which have been based on surprise, ambiguity and deniability, presented a unique example for hybrid warfare studies.

  9. Pollution of the Marine Environment by Dumping: Legal Framework Applicable to Dumped Chemical Weapons and Nuclear Waste in the Arctic Ocean

    OpenAIRE

    Lott, Alexander

    2016-01-01

    The Arctic seas are the world’s biggest dumping ground for sea-disposed nuclear waste and have served among the primary disposal sites for chemical warfare agents. Despite of scientific uncertainty, the Arctic Council has noted that this hazardous waste still affects adversely the Arctic marine environment and may have implications to the health of the Arctic people. The purpose of this manuscript is to establish the rights and obligations of the Arctic States in c...

  10. The effect of biological and chemical control agents on the health status of the very early potato cultivar Rosara

    OpenAIRE

    Cwalina-Ambroziak Bożena; Damszel Marta Maria; Głosek-Sobieraj Małgorzata

    2015-01-01

    The external appearance and quality of table potatoes are determined, among other factors, by the health status of the plants during the growing season. Chemical control methods are often combined with biocontrol agents to effectively fight potato pathogens. Potatoes of the very early cultivar Rosara were grown in experimental plots. The plots were located in Tomaszkowo (NE Poland, 2007-2009). The experiment involved the following treatments: 1) biological control − mycorrhizal Glomus spp. in...

  11. The importance of chemical components in cleaning agents for the indoor environment

    DEFF Research Database (Denmark)

    Vejrup, Karl Ventzel

    concentrations of surface active agents in combination with other compounds affect the tearfilm and the mucous membranes of the airways means that it is impossible to assess the importance of the concentrations found here. Moreover, there is a lack of knowledge about the amounts o surface active agents other...... VOCs. In one experiment, the concentration of nonpolar VOCs in the breathing zone of a person who treated the floor in a large climate chamber (45 m3) using a water based polish product was found to be 3,9 mg/m3. Use of scented cleaning agents usually means that odour thresholds of some compounds are...... exceeded, which means that the perception of the air in the cleaned room is changed and the indoor air quality is affected.The group of polar VOCs consists of the different water miscible solvents frequently used in cleaning agents to improve the properties of the products. The two wash and vax products...

  12. Role of chelating agent in chemical and fluorescent properties of SnO2 nanoparticles

    Science.gov (United States)

    He, Shao-Bo; Wang, Shi-Fa; Ding, Qing-Ping; Yuan, Xiao-Dong; Zheng, Wan-Guo; Xiang, Xia; Li, Zhi-Jie; Zu, Xiao-Tao

    2013-05-01

    A modified Polyacrylamide gel route is applied to synthesize SnO2 nanoparticles. High-quality SnO2 nanoparticles with a uniform size are prepared using different chelating agents. The average particle size of the samples is found to depend on the choice of the chelating agent. The photoluminescence spectrum detected at λex = 230 nm shows a new peak located at 740 nm due to the surface defect level distributed at the nanoparticle boundaries.

  13. What Lies behind Chinese Cyber Warfare

    Directory of Open Access Journals (Sweden)

    Gabi Siboni

    2012-09-01

    Full Text Available Over the past several years China has been developing operational capabilities in the field of cyberspace warfare. A cyber attack may be defined as the unauthorized penetration of computer and communications systems belonging to individuals or organizations for the purpose of espionage and information theft, in order thereby to damage or disrupt the functioning of these systems or to damage other systems dependent on them, even to a point of causing actual physical damage. Despite denials by the Chinese government, researchers posit that China is behind a string of cyber attacks against the United States, Japan, France, Australia, and other Western nations. This essay argues that an analysis of the publicly available information about the more recent attacks makes it possible to establish that China does in fact stand behind these attacks and also makes it possible to identify the link between China’s cyberspace warfare strategy and its choice of targets. The analysis includes an examination of the companies attacked to identify possible motives for the attacks. The motives for these attacks are presumably to steal capabilities and conduct industrial espionage against nations and commercial competitors. Attacking companies and organizations in the financial and even political sectors allows access to valuable intelligence in these fields. By contrast, the intelligence value for immediate use in attacking companies providing critical infrastructures and communications services is usually relatively low. Rather, gaining access, if only to some providers of communications and internet services in the West and the United States, is liable to give attackers the ability to damage these services.

  14. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon. Final Phase 1 environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  15. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  16. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    International Nuclear Information System (INIS)

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens

  17. Molecules for Fluorescence Detection of Specific Chemicals

    Science.gov (United States)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  18. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Wei, Aixiang, E-mail: weiax@gdut.edu.cn; Zhao, Yu

    2014-03-05

    Highlights: • To fabricate high quality ZnS films need to promote the ion-by-ion process and restrain cluster-by-cluster process. • The complexation ability of tri-sodium citrate is stronger than that of hydrazine hydrate. • The nucleation density of nuclei determine the performance of ZnS thin films. -- Abstract: Zinc sulfide (ZnS) thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. The effects of different complexing agents (tri-sodium citrate, hydrazine hydrate) and their concentrations on the structure, composition, morphology, optical properties and growth mechanism of ZnS thin films were investigated. The results indicated that the chemical-bath-deposited ZnS thin films exhibit poor crystallinity and a high Zn/S atomic ratio with an average transmittance of 75% in the range of visible light. The ZnS thin films prepared using hydrazine hydrate as the complexing agent present a more compact surface, a smaller average particle size, and a sharper absorption edge at 300–340 nm compared with those prepared using tri-sodium citrate. Based on our experimental observations and analysis, we conclude that the predominant growth mechanism of ZnS thin films is an ion-by-ion process. The nucleation density of Zn(OH){sub 2} nuclei on the substrate in the initial stage produces the different morphologies and properties of the ZnS thin films prepared using the two complexing agents.

  19. Anthropology, Culture, and COIN in a Hybrid Warfare World

    OpenAIRE

    Simons, Anna

    2011-01-01

    in Paul Brister, William Natter, and Robert Tomes (eds.), Hybrid Warfare and Transnational Threats: Perspectives for an Era of Persistent Conflict. New York: Council for Emerging National Security Studies, 2011.

  20. State of the Art Report on Drone-Based Warfare

    OpenAIRE

    Lee-Morrison, Lila

    2014-01-01

    State of the art report on the latest cultural discourse and debate over contemporary forms of drone based warfare. primarily resulting from the disciplines of Law, Political Science, and Geography. 2014.

  1. Detecting Chemical Weapons: Threats, Requirements, Solutions, and Future Challenges

    Science.gov (United States)

    Boso, Brian

    2011-03-01

    Although chemicals have been reportedly used as weapons for thousands of years, it was not until 1915 at Ypres, France that an industrial chemical, chlorine, was used in World War I as an offensive weapon in significant quantity, causing mass casualties. From that point until today the development, detection, production and protection from chemical weapons has be an organized endeavor of many of the world's armed forces and in more recent times, non-governmental terrorist organizations. The number of Chemical Warfare Agents (CWAs) has steadily increased as research into more toxic substances continued for most of the 20 th century. Today there are over 70 substances including harassing agents like tear gas, incapacitating agents, and lethal agents like blister, blood, chocking, and nerve agents. The requirements for detecting chemical weapons vary depending on the context in which they are encountered and the concept of operation of the organization deploying the detection equipment. The US DoD, for example, has as a requirement, that US forces be able to continue their mission, even in the event of a chemical attack. This places stringent requirements on detection equipment. It must be lightweight (chemical warfare agents and toxic industrial chemicals, detect and warn at concentration levels and time duration to prevent acute health effects, meet military ruggedness specifications and work over a wide range of temperature and humidity, and have a very high probability of detection with a similarly low probability of false positives. The current technology of choice to meet these stringent requirements is Ion Mobility Spectrometry. Many technologies are capable of detecting chemicals at the trace levels required and have been extensively developed for this application, including, but not limited to: mass spectroscopy, IR spectroscopy, RAMAN spectroscopy, MEMs micro-cantilever sensors, surface acoustic wave sensors, differential mobility spectrometry, and

  2. Physico-chemical properties and toxic effect of fruit-ripening agent calcium carbide

    Directory of Open Access Journals (Sweden)

    Mohammad Asif

    2012-01-01

    Full Text Available Ripening is the final stage of the maturation process, when the fruit changes color, softens and develops the flavor, texture and aroma that constitute optimum eating quality. This study was conducted to discuss the use of unsatisfactory calcium carbide to ripen fruits for domestic markets as well as their toxic effects on human health. The commonly used ripening agents are calcium carbide, acetylene, ethylene, propylene, ethrel (2-chloroethyl phosphonic acid, glycol, ethanol and some other agents. The calcium carbide is one of the most commonly used ripening agent for fruits, while other calcium salts like calcium ammonium nitrate, calcium chloride and calcium sulfate are used to delay fruit ripening agents for local fruit industries. The use of calcium carbide is being discouraged worldwide, due to associated health hazards. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous, and once dissolved in water, it produces acetylene gas. Arsenic, phosphorous and acetylene gas may affect the different body organs and causes various health problems like headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema, seizures and prolonged hypoxia.

  3. RELEVANCE OF INFORMATION WARFARE MODELS TO CRITICAL INFRASTRUCTURE PROTECTION

    OpenAIRE

    Manoj S. Maharaj; Brett van Niekerk

    2011-01-01

    This article illustrates the relevance of information warfare models to critical infrastructure protection. Analogies of information warfare models to those of information security and information systems were used to deconstruct the models into their fundamental components and this will be discussed. The models were applied to critical infrastructures to illustrate the relevance to critical infrastructure protection. By considering the interdependencies of the critical infrastructure sectors...

  4. Active and Passive Precautions in Air and Missile Warfare

    OpenAIRE

    Sassoli, Marco; Quintin, Anne

    2014-01-01

    Based upon state practice, customary international law, Protocol Additional I to the Geneva Conventions and the Harvard Manual on Air and Missile Warfare (which they critically review), the authors discuss the different precautionary measures for the benefit of the civilian population an attacker and a defender must take, in the conduct of hostilities in general, and specifically in air and missile warfare, including in attacks against aircraft.

  5. Comparison of the mutagenic potential of 17 physical and chemical agents analyzed by the flow cytometry mutation assay

    Energy Technology Data Exchange (ETDEWEB)

    French, C. Tenley [Cytomation GTX Inc., Fort Collins, CO (United States); Ross, Carley D. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Keysar, Stephen B. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Joshi, Dhanashree D. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Lim, Chang-Uk [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Fox, Michael H. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States) and Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)]. E-mail: mfox@colostate.edu

    2006-12-01

    Several methods to assess genotoxicity of physical and chemical agents have been developed, most of which depend on growing colonies in selective medium. We recently published a new method for detecting mutations in the CD59 gene in a Chinese hamster ovary cell line that contains a single copy of human chromosome 11 (CHO A{sub L}). The assay is based on detecting the surface expression of CD59 with monoclonal antibodies using flow cytometry. The capabilities of this flow cytometry mutation assay (FCMA) to detect mutations from a wide variety of genotoxic agents are described here. There was a 400-fold separation between CD59{sup -} and CD59{sup +} populations based on fluorescence intensity. Small numbers of negative cells mixed in with positive cells were detected in a highly linear fashion. Mutation dose response curves over a dose range yielding 80% to 20% survival are shown for ethyl methane sulfonate (EMS), mitomycin C (MMC) and lead acetate. EMS and lead acetate exhibited a threshold in response while MMC had a linear dose response over the full dose range. The mutant fraction was measured over time periods ranging up to 35 days following treatment. The mutant fraction peaked at different times ranging from 6 to 12 days after treatment. An additional 14 chemical and physical agents including point mutagens, heavy metals, ionizing and UV radiation, and DNA intercalators and cross linkers, were analyzed for mutagenic potential after doses giving 80% to 20% survival. The results presented here demonstrate the sensitivity and broad-ranging capability of the FCMA to detect mutations induced by a variety of genotoxic agents.

  6. Influence of complexing agent on the growth of chemically deposited Ni3Pb2S2 thin films

    Directory of Open Access Journals (Sweden)

    Ho Soonmin

    2014-09-01

    Full Text Available Ni3Pb2S2 thin films were prepared by chemical bath deposition method. Here, the objective of this research was to investigate the influence of complexing agent on the properties of films.These films were characterized using atomic force microscopy, UV-Visible spectro photometer and X-ray diffraction. It was found that, as the concentration of tartaric acid increased, film thickness increased, but, the band gap reduced. For the films prepared using 0.1M of tartaric acid, the films were uniform and completely covered the substrates.

  7. Application and appreciation of chemical sand fixing agent-poly (aspartic acid) and its composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Cao Hui; Wang Fang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: twtan@mail.buct.edu.cn

    2007-12-15

    The sand fixing agent-poly (aspartic acid) (PASP) and its composites were applied in the field by two forms (spraying around by PASP solution and PASP powder directly). It was found that the sand fixing effect in powder form was not as good as in solution form, but it was more practical in dry region. It needed 9, 6 and 7 days for PASP, xanthan gum-PASP (X2) and ethyl cellulose-PASP (E3) to attain the maximal mechanical strength after they were applied, respectively. The sand fixing effect decreased when the material was subjected to repeated hydration-dehydration cycles and the material had no negative influence on plant growth. The PASP and its composites had water-retaining ability and could reduce the water evaporation. - The sand fixing agent was applied in powder form and it had no negative influence on plant growth.

  8. Application and appreciation of chemical sand fixing agent-poly (aspartic acid) and its composites

    International Nuclear Information System (INIS)

    The sand fixing agent-poly (aspartic acid) (PASP) and its composites were applied in the field by two forms (spraying around by PASP solution and PASP powder directly). It was found that the sand fixing effect in powder form was not as good as in solution form, but it was more practical in dry region. It needed 9, 6 and 7 days for PASP, xanthan gum-PASP (X2) and ethyl cellulose-PASP (E3) to attain the maximal mechanical strength after they were applied, respectively. The sand fixing effect decreased when the material was subjected to repeated hydration-dehydration cycles and the material had no negative influence on plant growth. The PASP and its composites had water-retaining ability and could reduce the water evaporation. - The sand fixing agent was applied in powder form and it had no negative influence on plant growth

  9. Conceptual Lanchester-type Decapitation Warfare Modelling

    Directory of Open Access Journals (Sweden)

    Jau-yeu Menq

    2007-07-01

    Full Text Available Decapitation operation has existed for a long time in military history; however, it was notuntil March 2003 'decapitation attack' became a well known term in the mass media. This paperis based on the connotation of decapitation based on historical study and refines the term intomilitary strategic concept of decapitation strategy. Ideas derived from detailed studies onLanchester-type combat models are used to describe the effectiveness of conventional regularforces under decapitation warfare, which includes asymmetric, nonlinear, stand-off and specialoperation forces (SOF operations. A conceptual model is presented to describe the effects ofthe decapitation strategy on the regular battlefield. With extensive coverage of operational factorssuch as robustness of forces, time difference between combats, undermining effects, breakpoints,attrition rates, total force level and force allocation, the model is suitable to analyse complexscenario with different types of military operations consisting of decapitation strategy. Anillustrative example is provided to demonstrate the application of the model. The conceptualmodel is built based on hypotheses, assumptions, and criteria. In the absence of historical data,no data analysis and parameter estimation are involved.

  10. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    Science.gov (United States)

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range. PMID:19682922

  11. Significance of stable and unstable cytogenetic biomarkers in estimation of genome damage in subjects exposed to physical and chemical agents

    International Nuclear Information System (INIS)

    The last few years have shown that cytogenetic biomarkers do predict increased cancer risk. The most frequently used biomarkers in genetic toxicology are chromosome aberration assay (CA) and micronucleus (MN) assay. Fluorescent in situ hybridisation (FISH), in turn, enables analysis of translocation as a stable genome damage. With technological development, working environment has become associated with complex exposure to ionising and non-ionising radiation and chemical agents. A follow-up of 1200 subjects occupationally exposed to ionising radiation and chemical agents using CA and MN showed that the highest deviations from control values were detected in complex exposure to ionising radiation and ultrasound or to radioisotopes in medicine and in industrial radiography and to ionising radiation in specific jobs in nuclear plants. FISH used in a group of subjects exposed to gamma radiation and ultrasound showed that translocation frequency could rise even when CA frequency is within control values. This example shows that health risk is present even when results obtained by routine methods for the last few decades do not deviate from control values and that a decrease in permissible doses does not protect from accumulated genome damage during employment under different conditions. As biological effects of complex exposure are not possible to monitor by physical measurements, cytogenetic biomarkers are the only reliable tools to evaluate of genome damage and significant parameters in regulating health surveillance of exposed subjects.(author)

  12. Role of the Lysine as a Complexing Agent in Ge2Sb2Te5 Chemical Mechanical PolishingSlurries

    International Nuclear Information System (INIS)

    In this work,we investigate the polishing behavior, static dissolution and electrochemical performace of Ge2Sb2Te5 in the presense of lysine as a complexing agent with H2O2 employed as an oxidizer. Electrochemical techniques are used to investigate polishing behavior under static conditions as a function of lysine concentration .The polishing rate of GST increases with lysine concentraion increasing in acidic solutions at pH 5.2. The static dissolution rate shows the same trend. In the presence of lysine, the surface of GST film is smooth. To verify the complexes of the GST and lysine soluble, the Inductively Coupled Plasma is used which demonstrates that complexes with GST and lysine are soluble and the solubleness of Te element is increasing with lysine concentration increasing. In addition, electrochemical investigation indicates that an enhanced polishing rate and static dissolution is due to the Icorr increase varying lysine concentrations. Finally, X-ray photoelectron spectroscope results suggest that the chemical mechanism of lysine as a complexing agent is that lysine has the chemical reaction with GST oxide

  13. Simultaneous Measurement of Serum Chemical Castration Agents and Testosterone Levels Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Ko, Dae-Hyun; Lee, Kyunghoon; Jeon, Sun-Hee; Song, Sang Hoon; Yun, Yeo-Min; Chun, Sail; Kim, Hee Seung; Kim, Jin Young; In, Moon Kyo; Song, Junghan

    2016-05-01

    Chemical castration involves administration of drugs to prevent pathological sexual behavior, reduce abnormal sexual drive and treat hormone-dependent cancers. Various drugs have been used for chemical castration; however, substantial interindividual variability and side effects are often observed. In this study, we proposed a useful monitoring method for the application of chemical castration agents using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS). Testosterone, cyproterone acetate, medroxyprogesterone, goserelin acetate, leuprolide acetate and triptorelin acetate were analyzed by UPLC-MS-MS. The target drugs were extracted from serum samples by double protein precipitation using methanol. Testosterone-1,2-d2 and buserelin acetate were used as internal standards. Parameters of analytical performance were evaluated, including imprecision, linearity, ion suppression and detection capabilities. Testosterone measurements were compared with the results of immunoassays. Serum specimens from 51 subjects who underwent chemical castration were analyzed. All drugs and testosterone were well extracted and separated using our method. The method was essentially free from potential interferences and ion suppression. Within-run and between-run imprecision values were <15%. The lower limits of quantification were 0.125 and 0.5-1.0 ng/mL for testosterone and other drugs, respectively. Good correlations with pre-existing immunoassays for testosterone measurement were observed. Sera from subjects who underwent androgen deprivation therapy showed variable levels of drugs. We successfully developed a UPLC-MS-MS-based monitoring method for chemical castration. The performance of our method was generally acceptable. This method may provide a novel monitoring strategy for chemical castration to enhance expected effects while reducing unwanted side effects. PMID:26989223

  14. Aerogel nanoscale magnesium oxides as a destructive sorbent for toxic chemical agents

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Maříková, Monika; Šubrt, Jan; Oplustil, F.; Olšanská, M.

    2004-01-01

    Roč. 2, č. 1 (2004), s. 16-33. ISSN 1644-3624 R&D Projects: GA MŠk LN00A028 Institutional research plan: CEZ:AV0Z4032918 Keywords : nanostructures * organometallic compounds * chemical synthesis Subject RIV: CA - Inorganic Chemistry Impact factor: 0.171, year: 2004

  15. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    Science.gov (United States)

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  16. Overcoming Heterogeneity Effects Through Polymer-Enhanced Groundwater Remediation Techniques: Coupling Polymer Floods with Chemical Oxidants and Bio-agents

    Science.gov (United States)

    Smith, M. M.; Silva, J. A.; Munakata-Marr, J.; McCray, J. E.

    2008-12-01

    Even small heterogeneity contrasts in contaminated systems (resulting from differences in permeability or contaminant saturation) can affect the distribution of injected remediation agents by channeling fluids through high-permeability flowpaths, thus bypassing some regions and leaving contaminants uncontacted. The addition of a viscous polymer solution to the remediation agent may enhance agent delivery as a result of increased cross-flow (or "sweep efficiency") into different layers of the system, if the polymer solution remains stable in the presence of the remediation agent. Our research combines various non-toxic, food- grade polymer solutions with the remediation techniques of chemical oxidation and bio-remediation, to increase the effectiveness of treatment at sites contaminated with non-aqueous phase liquids (NAPLs). The coupling of polymer floods with oxidants may help to combat contaminant "rebound" sometimes associated with incomplete contaminant destruction in low-permeability zones. Initial compatibility testing has shown that certain robust polymer/oxidant mixtures possess stable viscosities and pose low additional oxidant demands over multi-day timescales. Transport of these solutions through natural porous media was studied in column experiments, and small two-dimensional experiments with heterogeneous layering were conducted to assess effectiveness of contaminant destruction. Limitations of these compatible polymer/oxidant combinations as well as possible experimental strategies to optimize delivery are also discussed. In addition, results of polymer/microbial screening tests reveal that polymer solutions do not inhibit the dechlorinating capabilities of a microbial consortium. Preliminary findings have also raised the possibility that certain polymers may successfully serve as electron donors in the subsurface. The implications of these results for either bioaugmentation or delivery of biostimulants are presented.

  17. Infrared differential absorption lidar for stand-off detection of chemical agents

    Indian Academy of Sciences (India)

    A K Razdan; S Veerabuthiran; M K Jindal; R K Sharma

    2014-02-01

    A compact trolley-mounted pulsed transverse electric atmospheric pressure (TEA) carbon dioxide laser-based differential absorption lidar (DIAL) system capable of stand-off detection of chemical clouds in aerosol and vapour form upto about 200 m range in the atmosphere has been developed and assembled at Laser Science and Technology Centre (LASTEC), Delhi. The system was tested successfully with diethyl ether (DEE) (a toxic industrial chemical (TIC)) and differential absorption signals at on (strong absorption, 9R16) and off (weak absorption, 10R26) wavelengths were recorded for stand-off distances upto ∼100 m (open air ground path). This paper discusses the technical details of trolley-mounted CO2 DIAL system and the data generated during the test and evaluation of this sensor using DEE aerosols.

  18. Biological effects of radiation in combination with other physical, chemical or biological agents. Annex L

    International Nuclear Information System (INIS)

    This Annex considers the combined action of radiation with potentially important environmental conditions. Since there is a scarcity of systematic data on which an analysis of combined effects can be based, this Annex will be more hypothetical and will attempt to suggest definitions, to identify suitable methods of analysis, to select from a large amount of diffuse information the conditions and the data of importance for further consideration and to provide suggestions for future research. For humans in environmental circumstances the UNSCEAR Committee has been unable to document any clear case of synergistic interaction between radiation and other agents, which could lead to substantial modifications of the risk estimates for significant sections of the population

  19. Evaluation of aziridine bonding agent by means of chemical and instrumental techniques of analysis

    Directory of Open Access Journals (Sweden)

    Darci Cortes Pires

    2009-01-01

    Full Text Available A new method using wet chemistry and instrumental analysis has been developed for evaluating the ring-opening of aziridine tris [1-(2 methyl aziridinyl] phosphide oxide (MAPO of the bonding agent used in composite propellant. A reduction was observed in the intensity absorption bands in 1400 and 1040 cm-1, characteristic of aziridinic ring. It was also observed, in some cases, that when the number of open aziridinyl ring increases, the NH band in the range 3400-3300 cm-1, that appears with ring-opening, is located in the region of lower wave numbers. The study of the synthesis of MAPO derivative indicated side reactions such as homopolymerization of rings and also, with secondary hydroxyl of the 12-hydroxy stearic acid and probable humidity existent in the original sample.

  20. Numerical simulation of RCS for carrier electronic warfare airplanes

    Directory of Open Access Journals (Sweden)

    Yue Kuizhi

    2015-04-01

    Full Text Available This paper studies the radar cross section (RCS of carrier electronic warfare airplanes. Under the typical naval operations section, the mathematical model of the radar wave’s pitch angle incidence range analysis is established. Based on the CATIA software, considering dynamic deflections of duck wing leading edge flaps, flaperons, horizontal tail, and rudder, as well as aircraft with air-to-air missile, anti-radiation missile, electronic jamming pod, and other weapons, the 3D models of carrier electronic warfare airplanes Model A and Model B with weapons were established. Based on the physical optics method and the equivalent electromagnetic flow method, by the use of the RCSAnsys software, the characteristics of carrier electronic warfare airplanes’ RCS under steady and dynamic flights were simulated under the UHF, X, and S radar bands. This paper researches the detection probability of aircraft by radars under the condition of electronic warfare, and completes the mathematical statistical analysis of the simulation results. The results show that: The Model A of carrier electronic warfare airplane is better than Model B on stealth performance and on discover probability by radar detection effectively.

  1. The effect of biological and chemical control agents on the health status of the very early potato cultivar Rosara

    Directory of Open Access Journals (Sweden)

    Cwalina-Ambroziak Bożena

    2015-12-01

    Full Text Available The external appearance and quality of table potatoes are determined, among other factors, by the health status of the plants during the growing season. Chemical control methods are often combined with biocontrol agents to effectively fight potato pathogens. Potatoes of the very early cultivar Rosara were grown in experimental plots. The plots were located in Tomaszkowo (NE Poland, 2007-2009. The experiment involved the following treatments: 1 biological control − mycorrhizal Glomus spp. inoculum was applied to the roots, − tubers were dressed and plants were sprayed with Polyversum three times during the growing season, 2 chemical control - at two-week intervals, plants were sprayed with the following fungicides: Infinito 687.5 SC and Tanos 50 WG, Valbon 72 WG and Tanos 50 WG. In the control treatment, potato plants were not protected against pathogens. During the growing season, the severity of late blight and early blight was evaluated on a nine-point scale. The composition of fungal communities colonising potato stems was analysed. The fungistatic properties of the fungicides used in the field experiment were evaluated in an in vitro test. The symptoms of infections caused by Phytophthora infestans and Alternaria spp. were significantly reduced in the treatment which used the integrated chemical and biological control. The least diverse fungal community was isolated from fungicide-treated plants. In the in vitro test, fungicides at all analysed concentrations inhibited the linear mycelial growth of selected pathogens.

  2. Tracers: the use of chemical agents for hydrological environmental, petrochemical and biological studies

    International Nuclear Information System (INIS)

    This paper presents a revision of the history, definitions, and classification of tracers (natural and artificial, internal and external). The fundamental ideas concerning tracers are described, followed by their application illustrated by typical examples. The advantages and disadvantages of five classes among the most frequently used external tracers (fluorescent, microbial, chemical, radioactive and activable isotopes) are also described in detail. This review also presents some interesting and modern applications of tracers in the areas of diagnostics in medical practice, environmental pollution, hydrology and petroleum chemistry. (author)

  3. Acute and Long-Term Impact of Chemical Weapons: Lessons from the Iran-Iraq War.

    Science.gov (United States)

    Haines, D D; Fox, S C

    2014-07-01

    Chemical weapons have given the human experience of warfare a uniquely terrifying quality that has inspired a general repugnance and led to periodic attempts to ban their use. Nevertheless, since ancient times, toxic agents have been consistently employed to kill and terrorize target populations. The evolution of these weapons is examined here in ways that may allow military, law enforcement, and scientific professionals to gain a perspective on conditions that, in the past, have motivated their use - both criminally and as a matter of national policy during military campaigns. Special emphasis is placed on the genocidal use of chemical weapons by the regime of Saddam Hussein, both against Iranians and on Kurdish citizens of his own country, during the Iran-Iraq War of 1980-88. The historical development of chemical weapons use is summarized to show how progressively better insight into biochemistry and physiology was adapted to this form of warfare. Major attributes of the most frequently used chemical agents and a description of how they affected military campaigns are explained. Portions of this review describing chemical-casualty care devote particular focus to Iranian management of neurotoxic (nerve) agent casualties due to the unique nature of this experience. Both nerve and blistering "mustard" agents were used extensively against Iranian forces. However, Iran is the only nation in history to have sustained large-scale attacks with neurotoxic weapons. For this reason, an understanding of the successes and failures of countermeasures to nerve-agent use developed by the Iranian military are particularly valuable for future civil defense and military planning. A detailed consideration of these strategies is therefore considered. Finally, the outcomes of clinical research into severe chronic disease triggered by mustard-agent exposure are examined in the context of the potential of these outcomes to determine the etiology of illness among US and Allied veterans

  4. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  5. Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent

    Directory of Open Access Journals (Sweden)

    Thaís V. Souza

    2016-03-01

    Full Text Available CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.

  6. [Technology upgrades and exposure to chemical agents: results of the PPTP study in the footwear industry].

    Science.gov (United States)

    Gianoli, Enrica; Brusoni, Daniela; Cornaggia, Nicoletta; Saretto, Gianni

    2012-01-01

    In the present work the chemical compositions of the products used in shoes manufacturing are reported. The data were collected over the period 2004-2007 in 156 shoe factories in Vigevano area during a study aiming the evaluation of safety conditions and occupational exposure to hazardous chemicals of the employees. The study was part of a regional project for "Occupational cancer prevention in the footwear industry". In the first phase of the study an information form on production cycle, products used and their composition was filled during preliminary audit. In the second phase of the study an in depth qualitative/quantitative evaluation of professional exposure was conducted in 13 selected shoe factories. Data analysis showed the increase in use of water-based adhesives at expense of solvent-based adhesives, the reduction to less than 3.5 weight %, and up to 1 weight %, of n-hexane concentration in solvent mixtures, the increase in use of products containing less hazardous ketones, esters, cyclohexane and heptane. Only in very few cases, products containing from 4 to 12 weight% of toluene were used. These data attest a positive trend in workers risks prevention in shoes industry. PMID:22697030

  7. STUDY OF MICROBIAL DIVERSITY OF FUNGAL COMMUNITIES FROM RHIZOSPHERE AND PHYLOSPHERE OF STRAWBERRY TREATED WITH CHEMICAL AND BIOLOGICAL AGENTS FOR THE CONTROL OF PATHOGENS

    Directory of Open Access Journals (Sweden)

    Gabi-Mirela Matei

    2011-12-01

    Full Text Available The negative impact of long term utilization of pesticides on yields quality, as well as on the human health made scientific community to seek new ways, less expensive and environmental friendly for protecting cultivated plants against pathogens. Biological control agents of microbial origin represented by living selected strains or their metabolites are more and more frequently utilized for protecting horticultural plants intensely consumed by European population, such as strawberry. A green house experiment was designed to compare the structure of rhizospheric and phylospheric microflora of strawberry cv. Senga Sengana, sensible to Botrytis cinerea (the agent of grey mould treated with systemic and contact fungicides, as well as with four biological control preparations of microbial origin administrated on plant leaves or in the soil. The structure of fungal communities in rhizosphere and phylosphere of strawberry cv. Senga Sengana varied as a function of the nature of control agent and the method of administration. Non significant influence on soil fungal community diversity index and species number was registered after the treatment with chemical and biological control agents, but significant increments were induced in time by control agents as compared with both non-treated control and chemical pesticides. Fungal community structure from strawberry leaves was not significantly influenced by chemical and biological control agents. The most favourable influence on fungal communities registered for bio-control agents E1 and E2 due to

  8. Crucial steps to life: From chemical reactions to code using agents.

    Science.gov (United States)

    Witzany, Guenther

    2016-02-01

    The concepts of the origin of the genetic code and the definitions of life changed dramatically after the RNA world hypothesis. Main narratives in molecular biology and genetics such as the "central dogma," "one gene one protein" and "non-coding DNA is junk" were falsified meanwhile. RNA moved from the transition intermediate molecule into centre stage. Additionally the abundance of empirical data concerning non-random genetic change operators such as the variety of mobile genetic elements, persistent viruses and defectives do not fit with the dominant narrative of error replication events (mutations) as being the main driving forces creating genetic novelty and diversity. The reductionistic and mechanistic views on physico-chemical properties of the genetic code are no longer convincing as appropriate descriptions of the abundance of non-random genetic content operators which are active in natural genetic engineering and natural genome editing. PMID:26723230

  9. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    Science.gov (United States)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  10. The effect of different chemical and physical agents on the viability of Cysticercus bovis: a preliminary report.

    Science.gov (United States)

    Ghebrekidan, H

    1992-01-01

    The in vitro comparative effect of 23 chemicals and 5 physical agents on the viability of Cysticerci of Taenia saginata was investigated. Accordingly the effects of Vinegar, "Kosso-Araki", "Senafitch", "Dagim-Araki", "Datta", Gin, Lemon-juice, Cognac, Fernet Whisky, Bitter, Brandy, Kilikil, "Feto", ArakiUzo, Araki-Double Uzo, Vermouth, Metta Beer, Pilsner Beer, "Awazie", "Tella", "Tej", and Sarris Wine Red and White; was assessed on the basis of minimum exposure time (in minutes) required to render viable cysticerci nonevaginable, and was found to be 5, 20, 20, 25, 40, 40, 45, 50, 55, 75, 80, 90, 90, 90, 105, 105, 110 respectively with the remaining showing no deleterious effects on the cysts up to 180 minutes of exposure. Similarly, viable bovine cysticerci were subjected to the physical forces of x-ray radiation, electricity, UV light radiation, centrifugation and vibration, and the effect of the individual agent on the cysts was assessed on the basis of minimum applicable force required to render bovine cysticerci non-evaginable. And it was found that, whereas 500 grays (Gy) of absorbed xray radiation dose and electric current measuring 0.1 mA applied for 1/2 a minute were required to render cysts nonviable. A relative decrease in evagination time and increased viger and motility of the evaginated cysticerci was observed with the other physical forces. On the basis of these results, it is suggested that an attempt to understand the mechanism of action and may be elucidation of the active principle of the more potent agents will be a step forward towards a successful break in the life cycle of the parasite. PMID:1563360

  11. High-throughput identification of chemical inhibitors of E. coli Group 2 capsule biogenesis as anti-virulence agents.

    Directory of Open Access Journals (Sweden)

    Carlos C Goller

    Full Text Available Rising antibiotic resistance among Escherichia coli, the leading cause of urinary tract infections (UTIs, has placed a new focus on molecular pathogenesis studies, aiming to identify new therapeutic targets. Anti-virulence agents are attractive as chemotherapeutics to attenuate an organism during disease but not necessarily during benign commensalism, thus decreasing the stress on beneficial microbial communities and lessening the emergence of resistance. We and others have demonstrated that the K antigen capsule of E. coli is a preeminent virulence determinant during UTI and more invasive diseases. Components of assembly and export are highly conserved among the major K antigen capsular types associated with UTI-causing E. coli and are distinct from the capsule biogenesis machinery of many commensal E. coli, making these attractive therapeutic targets. We conducted a screen for anti-capsular small molecules and identified an agent designated "C7" that blocks the production of K1 and K5 capsules, unrelated polysaccharide types among the Group 2-3 capsules. Herein lies proof-of-concept that this screen may be implemented with larger chemical libraries to identify second-generation small-molecule inhibitors of capsule biogenesis. These inhibitors will lead to a better understanding of capsule biogenesis and may represent a new class of therapeutics.

  12. A cleaning method to minimize contaminant luminescence signal of empty sample carriers using off-the-shelf chemical agents

    International Nuclear Information System (INIS)

    Signals acquired during thermoluminescence or optically stimulated luminescence measurements must be completely free of any spurious and/or contamination signals to assure the credibility of the results, especially during exploratory research investigating the luminescence behavior of new materials. Experiments indicate that such unwanted signals may also stem from new (unused) and used empty sample carriers, namely cups and discs, which are widely used for such measurements, probably due to contamination from a fluorite and/or silica-related source. Fluorite and/or silicone oil appear to be the most likely sources of contamination, thus, their removal, along with any other possible source that exhibits undesirable luminescence behavior, is necessary. Conventional cleaning methods fail to eliminate such contaminants from empty cups and discs. In this work a new cleaning method is proposed incorporating off-the-shelf chemical agents. Results of thermoluminescence measurements highlight the efficiency of the new cleaning process, since it can completely remove any observed contaminants from both new and used sample carriers, of various shapes and/or materials. Consequently their signal is minimized even at relatively high beta-doses, where it is prominent, resulting in a clean and only sample-attributed signal. - Highlights: • New and used empty sample carriers suffer from contamination from a fluorite and silica-related source. • A new cleaning method for empty sample carriers is proposed using off-the-shelf chemical agents. • The new method can eliminate any contamination from empty sample holders of various shapes and/or materials. • Contamination signals are reduced to the background level even at relatively high doses (100 Gy)

  13. Sweeping changes for mine warfare : controlling the mine threat

    OpenAIRE

    Cashman, T. Michael

    1994-01-01

    This thesis proposes that the U.S. Navy deter and, if necessary, combat potential minelayers by pursuing a pro-active' offensive mine warfare strategy. Central to this proposed strategy is the development, acquisition, and use of Remote Controlled (RECO) mines. It is argued that, given the historical problems the United States has had in the area of naval mine warfare, a strategy aimed at the aggressive deterrence of enemy mine laying be embraced so as to project forces ashore in future amphi...

  14. Measurement of 100 B. anthracis Ames spores within 15 minutes by SERS at the US Army Edgewood Chemical Biological Ctr.

    Science.gov (United States)

    Farquharson, Stuart; Shende, Chetan; Smith, Wayne; Huang, Hermes; Sperry, Jay; Sickler, Todd; Prugh, Amber; Guicheteau, Jason

    2014-05-01

    Since the distribution of Bacillus anthracis-Ames spores through the US Postal System, there has been a persistent fear that biological warfare agents will be used by terrorists against our military abroad and our civilians at home. While there has been substantial effort since the anthrax attack of 2001 to develop analyzers to detect this and other biological warfare agents, the analyzers remain either too slow, lack sensitivity, produce high false-positive rates, or cannot be fielded. In an effort to overcome these limitations we have been developing a surface-enhanced Raman spectroscopy system. Here we describe the use of silver nanoparticles functionalized with a short peptide to selectively capture Bacillus anthracis spores and produce SER scattering. Specifically, measurements of 100 B. anthracis-Ames spores/mL in ~25 minutes performed at the US Army's Edgewood Chemical Biological Center are presented. The measurements provide a basis for the development of systems that can detect spores collected from the air or water supplies with the potential of saving lives during a biological warfare attack.

  15. Chemical composition and biological evaluation of Physalis peruviana root as hepato-renal protective agent.

    Science.gov (United States)

    El-Gengaihi, Souad E; Hassan, Emad E; Hamed, Manal A; Zahran, Hanan G; Mohammed, Mona A

    2013-03-01

    This study was designed to investigate the potential of Physalis peruviana root as a functional food with hepato-renal protective effects against fibrosis. The chemical composition of the plant root suggested the presence of alkaloids, withanolides and flavonoids. Five compounds were isolated and their structures elucidated by different spectral analysis techniques. One compound was isolated from the roots: cuscohygrine. The biological evaluation was conducted on different animal groups; control rats, control treated with ethanolic root extract, CCl(4) group, CCl(4) treated with root extract, and CCl(4) treated with silymarin as a standard herbal drug. The evaluation used the oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO). The liver function indices; aspartate and alanine aminotransferases (AST & ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), bilirubin, and total hepatic protein were also estimated. Kidney disorder biomarkers; creatinine, urea, and serum protein were also evaluated. The results suggested safe administration, and improvement of all the investigated parameters. The liver and kidney histopathological analysis confirmed the results. In conclusion, P. peruviana succeeded in protecting the liver and kidney against fibrosis. Further studies are needed to discern their pharmacological applications and clinical uses. PMID:23419022

  16. Simple laboratory methods for quantitative IR measurements of CW agents

    Science.gov (United States)

    Puckrin, Eldon; Thériault, Jean-Marc; Lavoie, Hugo; Dubé, Denis; Lepage, Carmela J.; Petryk, Michael

    2005-11-01

    A simple method is presented for quantitatively measuring the absorbance of chemical warfare (CW) agents and their simulants in the vapour phase. The technique is based on a standard lab-bench FTIR spectrometer, 10-cm gas cell, a high accuracy Baratron pressure manometer, vacuum pump and simple stainless-steel hardware components. The results of this measurement technique are demonstrated for sarin (GB) and soman (GD). A second technique is also introduced for the passive IR detection of CW agents in an open- air path located in a fumehood. Using a modified open-cell with a pathlength of 45 cm, open-air passive infrared measurements have been obtained for simulants and several classical CW agents. Detection, identification and quantification results based on passive infrared measurements are presented for GB and the CW agent simulant, DMMP, using the CATSI sensor which has been developed by DRDC Valcartier. The open-cell technique represents a relatively simple and feasible method for examining the detection capability of passive sensors, such as CATSI, for CW agents.

  17. A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection

    Science.gov (United States)

    Holthoff, Ellen L.; Li, Lily; Hiller, Tobias; Turner, Kimberly L.

    2015-05-01

    Recently, microcantilever-based technology has emerged as a viable sensing platform due to its many advantages such as small size, high sensitivity, and low cost. However, microcantilevers lack the inherent ability to selectively identify hazardous chemicals (e.g., explosives, chemical warfare agents). The key to overcoming this challenge is to functionalize the top surface of the microcantilever with a receptor material (e.g., a polymer coating) so that selective binding between the cantilever and analyte of interest takes place. Molecularly imprinted polymers (MIPs) can be utilized as artificial recognition elements for target chemical analytes of interest. Molecular imprinting involves arranging polymerizable functional monomers around a template molecule followed by polymerization and template removal. The selectivity for the target analyte is based on the spatial orientation of the binding site and covalent or noncovalent interactions between the functional monomer and the analyte. In this work, thin films of sol-gel-derived xerogels molecularly imprinted for TNT and dimethyl methylphosphonate (DMMP), a chemical warfare agent stimulant, have demonstrated selectivity and stability in combination with a fixed-fixed beam microelectromechanical systems (MEMS)-based gas sensor. The sensor was characterized by parametric bifurcation noise-based tracking.

  18. Partial chemical characterization of antigenic preparations of chromoblastomycosis agents Caracterização química parcial de preparações antigênicas de agentes da cromoblastomicose

    OpenAIRE

    Tania Fraga BARROS; de Resende, Maria Aparecida

    1999-01-01

    Antigenic preparations (saline, methylic, metabolic and exoantigens) of four agents of chromoblastomycosis, Fonsecaea pedrosoi, Phialophora verrucosa, Cladophialophora (Cladosporium) carrionii and Rhinocladiella aquaspersa were obtained. Partial chemical characterization of these antigenic preparations was obtained by determination of the levels of total lipids, protein, and carbohydrates, and identification of the main sterols and carbohydrates. Methylic antigens presented the highest lipid ...

  19. Disposal of chemical agents and munitions stored at Pueblo Depot Activity, Colorado. Final, Phase 1: Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.W.; Blasing, T.J.; Ensminger, J.T.; Johnson, R.O.; Schexnayder, S.M.; Shor, J.T.; Staub, W.P.; Tolbert, V.R.; Zimmerman, G.P.

    1995-04-01

    Under the Chemical Stockpile Disposal Program (CSDP), the US Army proposes to dispose of lethal chemical agents and munitions stored at eight existing Army installations in the continental United States. In 1988, the US Army issued the final programmatic environmental impact statement (FPEIS) for the CSDP. The FPEIS and the subsequent Record of Decision (ROD) identified an on-site disposal process as the preferred method for destruction of the stockpile. That is, the FPEIS determined the environmentally preferred alternative to be on-site disposal in high-temperature incinerators, while the ROD selected this alternative for implementation as the preferred method for destruction of the stockpile. In this Phase I report, the overall CSDP decision regarding disposal of the PUDA Stockpile is subjected to further analyses, and its validity at PUDA is reviewed with newer, more detailed data than those providing the basis for the conclusions in the FPEIS. The findings of this Phase I report will be factored into the scope of a site-specific environmental impact statement to be prepared for the destruction of the PUDA stockpile. The focus of this Phase I report is on those data identified as having the potential to alter the Army`s previous decision regarding disposal of the PUDA stockpile; however, several other factors beyond the scope of this Phase I report must also be acknowledged to have the potential to change or modify the Army`s decisions regarding PUDA.

  20. Utilization of ventilation air methane as an oxidizing agent in chemical looping combustion

    International Nuclear Information System (INIS)

    Highlights: • A novel ancillary method for mitigating VAM was proposed and evaluated. • The effect of variations in VAM on the system was assessed thermodynamically. • The combustion of VAM with and without Fe2O3/Al2O3 were studied experimentally. • Ventilation air methane abatement can be achieved by the proposed system. - Abstract: Release of fugitive methane (CH4) emissions from ventilation air in coal mines is a major source of greenhouse gas (GHG) emissions. Approximately 64% of methane emissions in coal mine operations are the result of VAM (i.e. ventilation air methane) which is difficult for use as a source of energy. A novel ancillary utilization of VAM was thereby proposed. In this proposal, the VAM was utilized instead of air as a feedstock to a chemical looping combustion (CLC) process of coal. In this case, Fe2O3/Fe3O4 particles were shuttled between two interconnected reactors for combustion of syngas produced by an imbedded coal gasifier. The effect of VAM flow rate and methane concentration on the performance of CLC was analyzed thermodynamically using Aspen Plus software. Results indicated that the variations of air reactor temperature with VAM flow rate and methane concentration can be minimized as expected. The effect of temperature and inlet methane concentration on the conversion of CH4 was examined experimentally in a fixed bed reactor with the presence of particles of Fe2O3/Al2O3. Not surprisingly, the reaction temperature put a significant influence on the conversion of CH4. The conversion started at the temperature about 300 °C and the temperature to achieve full conversion was around 500 °C while the temperature in empty reactor between 665 °C and 840 °C. This is due to the catalytic effect of oxygen carriers (i.e. Fe2O3/Al2O3) on the conversion of methane. Moreover, it was observed that the methane conversion rate decreased with the increase in inlet methane concentration while increasing with Fe2O3 loading content

  1. Acute environmental toxicity and persistence of DEM, a chemical agent simulant: Diethyl malonate. [Diethyl malonate

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, Shu-mei W.; Van Voris, P.; Wentsel, R.S.

    1990-05-01

    The purpose of the following chemical simulant studies is to assess the potential acute environmental effects and persistence of diethyl malonate (DEM). Deposition velocities for DEM to soil surfaces ranged from 0.04 to 0.2 cm/sec. For foliar surfaces, deposition velocities ranged from 0.0002 cm/sec at low air concentrations to 0.05 cm/sec for high dose levels. The residence times or half-lives of DEM deposited to soils was 2 h for the fast component and 5 to 16 h for the residual material. DEM deposited to foliar surfaces also exhibited biphasic depuration. The half-life of the short residence time component ranged from 1 to 3 h, while the longer time component had half-times of 16 to 242 h. Volatilization and other depuration mechanisms reduce surface contaminant levels in both soils and foliage to less than 1% of initial dose within 96 h. DEM is not phytotoxic at foliar mass loading levels of less than 10 {mu}m/cm{sup 2}. However, severe damage is evident at mass loading levels in excess of 17 {mu}g/cm{sup 2}. Tall fescue and sagebrush were more affected than was short-needle pine, however, mass loading levels were markedly different. Regrowth of tall fescue indicated that the effects of DEM are residual, and growth rates are affected only at higher mass loadings through the second harvest. Results from in vitro testing of DEM indicated concentrations below 500 {mu}g/g dry soil generally did not negatively impact soil microbial activity. Short-term effects of DEM were more profound on soil dehydrogenase activity than on soil phosphatase activity. No enzyme inhibition or enhancement was observed after 28 days in incubation. Results of the earthworm bioassay indicate survival to be 86 and 66% at soil doses of 107 and 204 {mu}g DEM/cm{sup 2}, respectively. At higher dose level, activity or mobility was judged to be affected in over 50% of the individuals. 21 refs., 10 figs., 15 tabs.

  2. Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors.

    Science.gov (United States)

    Clavaguera, Simon; Raoul, Nicolas; Carella, Alexandre; Delalande, Michael; Celle, Caroline; Simonato, Jean-Pierre

    2011-10-15

    The ability to detect minute traces of chemical warfare agents is mandatory both for military forces and homeland security. Various detectors based on different technologies are available but still suffer from serious drawbacks such as false positives. There is still a need for the development of innovative reliable sensors, in particular for organophosphorus nerve agents like Sarin. We report herein on the fabrication of a portable, battery-operated, microprocessor-based prototype sensor system relying on silicon nanowire field-effect transistors for the detection of nerve agents. A fast, supersensitive and highly selective detection of organophosphorus molecules is reported. The results show also high selectivity in complex mixtures and on contaminated materials. PMID:21962681

  3. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials.

    Science.gov (United States)

    Climent, Estela; Biyikal, Mustafa; Gawlitza, Kornelia; Dropa, Tomáš; Urban, Martin; Costero, Ana M; Martínez-Máñez, Ramón; Rurack, Knut

    2016-08-01

    Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the μg m(-3) range in a few seconds. PMID:27124609

  4. Public Discussion of Nuclear Warfare: A Time for Hope.

    Science.gov (United States)

    Cooper, Martha

    Anti-nuclear discourse, which peaked in 1981-82, signaled an emergence of public discourse on the nuclear warfare issue. During the development of the original atomic bomb, public discussion of the issue was severely restricted, but immediately after the bombing of Hiroshima and Nagasaki, discourse on the subject increased. During the Cold War…

  5. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1.

    Directory of Open Access Journals (Sweden)

    Qidi Zhu

    Full Text Available Wheat (Triticum aestivum L., one of the world's most important food crops, is a strictly autogamous (self-pollinating species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1-induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1-induced male sterile wheat and is a valuable source of data for future research in SQ-1-induced wheat male sterility.

  6. De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1.

    Science.gov (United States)

    Zhu, Qidi; Song, Yulong; Zhang, Gaisheng; Ju, Lan; Zhang, Jiao; Yu, Yongang; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-01-01

    Wheat (Triticum aestivum L.), one of the world's most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1-induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1-induced male sterile wheat and is a valuable source of data for future research in SQ-1-induced wheat male sterility. PMID:25898130

  7. Fabrication and electrical characteristics of TFTs based on chemically deposited CdS films, using glycine as a complexing agent

    International Nuclear Information System (INIS)

    In this work, we report on the fabrication and electrical characteristics of thin film transistors (TFTs) using chemically deposited cadmium sulfide (CdS) thin films as the semiconductor active layer in back-gated devices. The CdS thin films were deposited by the chemical bath deposition (CBD) technique using glycine as the complexing agent. The CdS layers were deposited on SiO2/Si-n substrates and lift-off was used to define the source and drain contacts (Au) on top of these layers. The Si-n wafer with a chromium-gold back contact served as the common gate for the transistors. Several devices with different channel lengths ranging from 10 to 80 µm were fabricated by this process. We studied the properties of the CdS layers deposited by this glycine-based CBD process and the electrical behavior of the transistors as a function of the channel length. The experimental results show that as-deposited CdS are n-type in character and devices exhibit typical pinch-off in drain current versus source–drain voltage (IDS–VDS) curves for several gate voltages. The values of the threshold voltage of the devices were in the range from 8.5 to 8.9 V, depending on the channel length. Channel mobility was between 4.3 and 5.2 cm2 V−1 s−1. This research implies that CdS TFTs produced by a simple and low-cost technique could be applicable to electronic devices

  8. A short history of biological warfare.

    Science.gov (United States)

    Metcalfe, Neil

    2002-01-01

    Biological weapons have been used in war from the start of recorded history. This article reviews the history of the subject, including the outbreak of the Black Death and the use of smallpox against American Indians. The new science of microbiology was misused from soon after its start and, despite the 1925 Geneva Protocol, the Japanese experimented extensively on prisoners in China. The Allies carried out extensive research during the Second World War, notably the United Kingdom into anthrax on Gruinard Island and the United States into a variety of agents. Despite the 1972 Biological Weapons Convention (BWC), a major programme continued in the former Soviet Union (leading to an accidental outbreak of anthrax). Most recently Iraq was revealed as having an extensive programme, with weaponization of large amounts of various agents, and several terrorists groups have attempted to use biological agents as weapons. Modern developments in biotechnology could lead to even more serious developments, and effective preventive measures, including strengthening of the BWC, are imperative. PMID:12201085

  9. Surface decontamination for blister agents Lewisite, sulfur mustard and agent yellow, a Lewisite and sulfur mustard mixture.

    Science.gov (United States)

    Stone, Harry; See, David; Smiley, Autumn; Ellingson, Anthony; Schimmoeller, Jessica; Oudejans, Lukas

    2016-08-15

    Sulfur mustard (HD) and Lewisite (L) are blister agents that have a high potential for terrorist use; Agent Yellow (HL) is the eutectic mixture of HD and L. Bench-scale testing was used to determine the residual amount of these chemical warfare agents remaining on three building materials (wood, metal and glass) after application of various decontaminants (household bleach, full strength and dilute; hydrogen peroxide 3% solution; and EasyDECON(®) DF200). All decontaminants reduced the amount of L recovered from coupons. Application of dilute bleach showed little or no difference compared to natural attenuation in the amount of HD recovered from coupons. Full-strength bleach was the most effective of four decontaminants at reducing the amount of HD from coupons. Hydrogen peroxide (3% solution) and DF200 did decrease the amount of HD recovered from coupons more than natural attenuation (except DF200 against HD on metal), but substantial amounts of HD remained on some materials. Toxic HD by-products were generated by hydrogen peroxide treatment. The effectiveness of decontaminants was found to depend on agent, material, and decontaminant. Increased decontaminant reaction time (60min rather than 30min) did not significantly increase effectiveness. PMID:27107236

  10. Optimization of a chemical identification algorithm

    Science.gov (United States)

    Chyba, Thomas H.; Fisk, Brian; Gunning, Christin; Farley, Kevin; Polizzi, Amber; Baughman, David; Simpson, Steven; Slamani, Mohamed-Adel; Almassy, Robert; Da Re, Ryan; Li, Eunice; MacDonald, Steve; Slamani, Ahmed; Mitchell, Scott A.; Pendell-Jones, Jay; Reed, Timothy L.; Emge, Darren

    2010-04-01

    A procedure to evaluate and optimize the performance of a chemical identification algorithm is presented. The Joint Contaminated Surface Detector (JCSD) employs Raman spectroscopy to detect and identify surface chemical contamination. JCSD measurements of chemical warfare agents, simulants, toxic industrial chemicals, interferents and bare surface backgrounds were made in the laboratory and under realistic field conditions. A test data suite, developed from these measurements, is used to benchmark algorithm performance throughout the improvement process. In any one measurement, one of many possible targets can be present along with interferents and surfaces. The detection results are expressed as a 2-category classification problem so that Receiver Operating Characteristic (ROC) techniques can be applied. The limitations of applying this framework to chemical detection problems are discussed along with means to mitigate them. Algorithmic performance is optimized globally using robust Design of Experiments and Taguchi techniques. These methods require figures of merit to trade off between false alarms and detection probability. Several figures of merit, including the Matthews Correlation Coefficient and the Taguchi Signal-to-Noise Ratio are compared. Following the optimization of global parameters which govern the algorithm behavior across all target chemicals, ROC techniques are employed to optimize chemical-specific parameters to further improve performance.

  11. Chemical-Sensing Cables Detect Potential Threats

    Science.gov (United States)

    2007-01-01

    Intelligent Optical Systems Inc. (IOS) completed Phase I and II Small Business Innovation Research (SBIR) contracts with NASA's Langley Research Center to develop moisture- and pH-sensitive sensors to detect corrosion or pre-corrosive conditions, warning of potentially dangerous conditions before significant structural damage occurs. This new type of sensor uses a specially manufactured optical fiber whose entire length is chemically sensitive, changing color in response to contact with its target, and demonstrated to detect potentially corrosive moisture incursions to within 2 cm. After completing the work with NASA, the company received a Defense Advanced Research Projects Agency (DARPA) Phase III SBIR to develop the sensors further for detecting chemical warfare agents, for which they proved just as successful. The company then worked with the U.S. Department of Defense (DoD) to fine tune the sensors for detecting potential threats, such as toxic industrial compounds and nerve agents. In addition to the work with government agencies, Intelligent Optical Systems has sold the chemically sensitive fiber optic cables to major automotive and aerospace companies, who are finding a variety of uses for the devices. Marketed under the brand name Distributed Intrinsic Chemical Agent Sensing and Transmission (DICAST), these unique continuous-cable fiber optic chemical sensors can serve in a variety of applications: Corrosive-condition monitoring, aiding experimentation with nontraditional power sources, as an economical means of detecting chemical release in large facilities, as an inexpensive "alarm" systems to alert the user to a change in the chemical environment anywhere along the cable, or in distance-resolved optical time domain reflectometry systems to provide detailed profiles of chemical concentration versus length.

  12. Stuxnet and Cyber-Warfare (1/2)

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The first part of the lecture is devoted to the description of the Stuxnet worm, the first cyber-weapon whose existence has been made public, discovered in 2010 and targeting a specific industrial control system; the worm is responsible for the damaging of many centrifuges at an uranium enrichment facility, with the goal of sabotaging Iran's nuclear program. In the second part, the main features of cyber-warfare in conflict and pre-conflict activities will be discussed and compared to the conventional warfare domains, with also a general view at the international political debate on this topic. Check the http://pugwash.org web site, an organisation that seeks a world free of nuclear weapons and other weapons of mass destruction.   NB! All Academic Training lectures are recorded and are publicly available. There is no live webcast.

  13. Stuxnet and Cyber-Warfare (2/2)

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The first part of the lecture is devoted to the description of the Stuxnet worm, the first cyber-weapon whose existence has been made public, discovered in 2010 and targeting a specific industrial control system; the worm is responsible for the damaging of many centrifuges at an uranium enrichment facility, with the goal of sabotaging Iran's nuclear program. In the second part, the main features of cyber-warfare in conflict and pre-conflict activities will be discussed and compared to the conventional warfare domains, with also a general view at the international political debate on this topic.   Check the http://pugwash.org web site, an organisation that seeks a world free of nuclear weapons and other weapons of mass destruction. The lecturer invites comments via email to Gian.Piero.Siroli@cern.ch NB! All Academic Training lectures are recorded and are publicly available. There is no live webcast.

  14. Annihilation Prediction for Lanchester-Type Models of Modern Warfare

    OpenAIRE

    Brown, G G; Taylor, J.

    1983-01-01

    Operations Research, 31, p.752. This paper introduces important new functions for analytic solution of Launch-ester-type equations of modern warfare for combat between two homogeneous forces modeled by power attrtition-rate coefficients with "no offset". Tabulations of these Lanchester-Clifford-Schlatii (or LCS) functions allow one to study this particular variable-coefficient model almost as easily and thoroughly as Lanchester's classic constant-coefficient one. LCS functions allow one ...

  15. Improved Anti-Submarine Warfare (ASW) effectiveness MSSE Capstone Project

    OpenAIRE

    Broadmeadow, James; Dziekan, Francis; Frantz, Francis; Gudz, Rodney; Kelley, Patrick; Kennedy, Shawn; Moreira, Christine; Nguyen, Nguyen; Roach, Patrick; Sammis, Jeffrey; Santos, Scott; Silveria, Kenneth; Smith, Cullen; Volk, Kirk; Wright. Steven

    2008-01-01

    The protection of our nation's ability to operate military forces freely and safely across the world's oceans remains a paramount goal of the United States Navy. The NUWC Division Newport cohort applied the disciplined practice of systems engineering processes to analyze and improve upon Anti-Submarine Warfare effectiveness in support of Carrier Strike Group operations. The cohort sought customer feedback to understand and formalize the perceived needs and formulate and rank candidate solutio...

  16. Factors affecting the retention decisions of female surface warfare officers

    OpenAIRE

    Clifton, Elizabeth A.

    2003-01-01

    This thesis delineates factors affecting the retention decisions of female Surface Warfare Officers. The data were obtained from in-depth interviews conducted with 12 female senior officers and 15 female junior officers. The transcripts from the interviews revealed 19 general themes. Based on the research, the data regarding the decisions that female officers make to either stay in the Navy or leave leads to four broad categories: economic factors, Navy taste factors., leadership factor...

  17. Punishment sustains large-scale cooperation in prestate warfare

    OpenAIRE

    Mathew, Sarah; Boyd, Robert

    2011-01-01

    Understanding cooperation and punishment in small-scale societies is crucial for explaining the origins of human cooperation. We studied warfare among the Turkana, a politically uncentralized, egalitarian, nomadic pastoral society in East Africa. Based on a representative sample of 88 recent raids, we show that the Turkana sustain costly cooperation in combat at a remarkably large scale, at least in part, through punishment of free-riders. Raiding parties comprised several hundred warriors an...

  18. Infrasonoc fluidic oscillator for use in anti-terrorist warfare

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Smyk, E.

    Southampton: WIT Press, 2015 - (Brebbia, C.; Garzia, F.; Poljak, D.), s. 179-189 ISBN 978-1-84564-928-9. ISSN 1746-4498. [Safety and Security Engineering /6./. Opatija (HR), 06.05.2015-08.05.2015] R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : anti-terrorist warfare * synthetic jet * impinging jet * infrasonoics Subject RIV: BK - Fluid Dynamics

  19. Stem-loop oligonucleotide beacons as switches for amplifying-fluorescent-polymer-based biological warfare sensors

    Science.gov (United States)

    Clinkenbeard, Kenneth D.; Ramachandran, Akhilesh; Malayer, Jerry R.; Moon, Joong Ho; Hancock, Lawrence F.

    2003-09-01

    Sensors that are exceptionally sensitive with real-time outputs and minimal consumption of reagents are needed to continuously monitor air and water against bioterrorist incidents. Amplifying fluorescent polymers (AFP) provide exceptionally sensitive real-time reagentless sensor platforms as applied to detection of nitroaromatic explosives. This platform technology has the potential to be adapted to detect biological warfare (BW) agents by covalently attaching the 5" end of stem-loop molecular beacons to AFP as DNA hybridization signal transduction switches. Molecular beacons with loop sequences specific for sequence signatures of a target BW agent are configured with a quencher on the end of the 3" arm of the stem-loop. The AFP is quenched in the absence of target DNA, but upon hybridization with target the stem is melted, the duplex loop extended, and the AFP dequenched. This signal transduction is reversible upon removal of the target sequence with the molecular beacon reforming the stem-loop conformation. Proof-of-concept research has demonstrated that molecular beacons for signature sequences of Francisella tularensis result in correct identification of the presence of this agent in samples, but no false positives were seen with Escherichia coli.

  20. Synthesis and characterization of N-acylaniline derivatives as potential chemical hybridizing agents (CHAs) for wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chakraborty, Kajal; Devakumar, C

    2006-09-01

    Induction of male sterility by deployment of chemical hybridizing agents (CHAs) are important in heterosis breeding of self-pollinated crops like wheat, wherein the male and female organs are in the same flower. Taking a lead from the earlier work on rice, a total of 25 N-acylanilines comprising of malonanilates, acetoacetanilides, and acetanilides (including halogenated acetanilides) were synthesized and screened as CHAs on three genotypes of wheat, viz., PBW 343, HD 2046, and HD 2733 at 1500 ppm in the winter of 2001-2002. The N-acylanilines containing variations at the acyl and aromatic domain were synthesized by condensation of substituted anilines with appropriate diesters, acid chlorides, or monoesters. The test compounds with highly electronegative groups such as F/Br at the para position of the aryl ring were identified as the most potent CHAs, causing higher induction of male sterility. A variation of N-substitution at the side chain generally furnished analogues like 4'-fluoroacetoacetanilide (7) and ethyl 4'-fluoromalonanilate (1), which induced 89.12 and 84.66% male sterility, respectively, in PBW 343. Among halogenated acetanilides, the increasing number of chlorine atoms in the side chain led to an increase in the activity of 4'-fluoro (23) and 4'-bromo (24) derivatives of trichoroacetanilides, which induced >87% male sterility. Quantitative structure-activity relationship (QSAR) models indicated the positive contributions of the field effect exemplified by the Swain-Lupton constant (Fp) and negative contributions of the Swain-Lupton resonance constant (R) for the aromatic substitution. The positive influences of parachor (P) for the acyl domain have been underlined. These leads will be significant in explaining the CHA fit in the macromolecular receptor site. The CHAs appeared to act by causing an imbalance in the acid-base equilibrium in pollen mother cells resulting in dissolution of the callose wall by premature callase secretion. PMID:16939342

  1. Structural Studies on Acetylcholinesterase and Paraoxonase Directed Towards Development of Therapeutic Biomolecules for the Treatment of Degenerative Diseases and Protection Against Chemical Threat Agents

    Science.gov (United States)

    Sussman, Joel L.; Silman, Israel

    Acetylcholinesterase and paraoxonase are important targets for treatment of degenerative diseases, Alzheimer's disease and atherosclerosis, respectively, both of which impose major burdens on the health care systems in Western society. Acetylcholinesterase is the target of lethal nerve agents, and paraoxonase is under consideration as a bioscavenger for their detoxification. Both are thus the subject of research and development in the context of nerve agent toxicology. The crystal structures of the two enzymes are described, and structure/function relationships are discussed in the context of drug development and of development of means of protection against chemical threats.

  2. The application of microrobotics in warfare

    Energy Technology Data Exchange (ETDEWEB)

    Solem, J.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to conduct a detailed theoretical study of military microrobot requirements and performance in conflict situations. The study was directed toward construction of a proof-of-concept prototype with attention to its eventual mass manufacture using microlithographic fabrication techniques. The study included design and performance assessment of payloads for the microvehicle, which might include special sensors and data processing equipment for gathering intelligence, or electrical, mechanical, and chemical disrupters of various sorts.

  3. Simulation innovation in Naval Special Warfare by utilizing small working groups

    OpenAIRE

    Rainville, Thomas A.

    2001-01-01

    Naval Special Warfare has produced successful innovation by using small working groups. Naval Special Warfare deems an innovation successful if it results in a more efficient, less risky, more cost effective method to conduct special operations. The Quantum Leap program is an example of successful innovation in Naval Special Warfare produced by a small working group. How have these small groups been able to produce successful innovations? Michael McCaskey's Theory offers an explanation of how...

  4. The Destructiveness of Pre-Industrial Warfare: Political and Technological Determinants

    OpenAIRE

    John Landers

    2005-01-01

    This article is concerned with the demographic impact of warfare in pre-industrial Europe and the consequences of the adoption of firearms from the early 16th century. The scale of warfare and its costs both increased, but the demographic impact depended on rulers’ strategies for meeting or evading these costs, rather than the scale of warfare itself. War-induced mortality was almost entirely due to epidemic disease precipitated by economic and social disruption. The impact was primarily regi...

  5. Occurrence and possible sources of arsenic in seafloor sediments surrounding sea-disposed munitions and chemical agents near O´ahu, Hawai´i

    Science.gov (United States)

    Tomlinson, Michael S.; De Carlo, Eric Heinen

    2016-06-01

    The Department of Defense disposed of conventional and chemical munitions as well as bulk containers of chemical agents in US coastal waters including those surrounding the State of Hawai´i. The Hawai´i Undersea Military Munitions Assessment has been collecting biota, water, and sediment samples from two disposal areas south of the island of O´ahu in waters 500 to 600 m deep known to have received both conventional munitions and chemical agents (specifically sulfur mustard). Unlike a number of other sea-disposed munitions investigations which used grabs or corers lowered from surface vessels, we used manned submersibles to collect the samples. Using this approach, we were able to visually identify the munitions and precisely locate our samples in relation to the munitions on the seafloor. This paper focuses on the occurrence and possible sources of arsenic found in the sediments surrounding the disposed military munitions and chemical agents. Using nonparametric multivariate statistical techniques, we looked for patterns in the chemical data obtained from these sediment samples in order to determine the possible sources of the arsenic found in these sediments. The results of the ordination technique nonmetric multidimensional scaling indicate that the arsenic is associated with terrestrial sources and not munitions. This was not altogether surprising given that: (1) the chemical agents disposed of in this area supposedly did not contain arsenic, and (2) the disposal areas studied were under terrestrial influence or served as dredge spoil disposal sites. The sediment arsenic concentrations during this investigation ranged from <1.3 to 40 mg/kg-dry weight with the lower concentrations typically found around control sites and munitions (not located in dredge disposal areas) and the higher values found at dredge disposal sites (with or without munitions). During the course of our investigation we did, however, discover that mercury appears to be loosely associated

  6. In vivo decontamination of the nerve agent VX using the domestic swine model.

    Science.gov (United States)

    Misik, Jan; Pavlik, Michal; Novotny, Ladislav; Pavlikova, Ruzena; Chilcott, Robert P; Cabal, Jiri; Kuca, Kamil

    2012-11-01

    The purpose of this in vivo study was to assess a new, putatively optimised method for mass casualty decontamination ("ORCHIDS protocol") for effectiveness in removing the chemical warfare agent VX from the skin of anaesthetised, domestic white pigs. ORCHIDS protocol consists of a 1.5-minute shower with a mild detergent (Argos™) supplemented by physical removal. A standard method of wet decontamination was used for comparison. Experimental animals were divided into four groups (A-D). Two groups were exposed to a supra-lethal percutaneous dose (5 × LD(50); 300 μg kg(-1)) of VX for 1 h prior to decontamination with either the ORCHIDS (C) or standard protocol (D). A third (B, positive control) group was exposed but not subject to decontamination. Blank controls (A) received anaesthesia and the corresponding dose of normal saline instead of VX. Observations of the clinical signs of intoxication were supplemented by measurements of whole blood cholinesterase (ChE) performed on samples of arterial blood acquired at 30-minute intervals for the duration of the study (up to 6 h). Untreated (B) animals displayed typical cholinergic signs consistent with VX intoxication (local fasciculation, mastication, salivation, pilo-erection and motor convulsions) and died 165-240 min post exposure. All animals in both decontamination treatment groups (C, D) survived the duration of the study and exhibited less severe signs of cholinergic poisoning. Thus, both the standard and ORCHIDS protocol were demonstrably effective against exposure to the potent nerve agent VX, even after a delay of 1 h. A critical advantage of the ORCHIDS protocol is the relatively short shower duration (1½ min compared to 3 min). In practice, this could substantially improve the rate at which individuals could be decontaminated by emergency responders following exposure to toxic materials such as chemical warfare agents. PMID:22963275

  7. Bioterrorism and Biological Warfare, from Past to the Present: A classic review

    Directory of Open Access Journals (Sweden)

    Majid Zare Bidaki

    2015-10-01

    Full Text Available Bioterrorism is defined as any terrorist action of intentional release or dissemination of highly pathogenic biological agents, including a variety of microorganisms or biological toxins. With the growing threat of terrorism, is necessary that the potential danger of various microorganisms – as a powerful tool of aggression and threat- to be taken seriously. This review tries to explain the concept of biological weapons and their historical development process with an emphasis on efforts to control the proliferation of these types of weapons over the last century. Potential impact of infectious diseases on people and armed forces was known from since 600 BC. Using the victims of the plague as a weapon in medieval warfare and spread of smallpox as a weapon during the war against the Indians when initially America was discovered, the development of biological weapons during the World War I, World War II and the Cold War, and even since the beginning of the third millennium, all show the strategic importance of pathogenic microorganisms as a deterrent power for the superiority of some governments and cults. Historical attempts to use infectious diseases as biological weapons reveal that the distinction between a natural outbreak of an infectious disease and that of a deliberate biological attack is very difficult. Abusing this characteristic of infectious diseases has made it possible for the purposes of superiority. International agreements to control the development of biological weapons, such as “the 1925 Geneva Protocol” and “the Convention on the Prohibition of the Development, Production and Stockpiling of Biological and Toxic Weapons” have not been able to control the development and using of biological warfare.  The current paper is a classic review (Overview article aiming at increasing the knowledge and awareness of people especially of health authorities and government officials.

  8. Hydrophobic polydimethylsiloxane (PDMS) coating of mesoporous silica and its use as a preconcentrating agent of gas analytes.

    Science.gov (United States)

    Park, Eun Ji; Cho, Youn Kyoung; Kim, Dae Han; Jeong, Myung-Geun; Kim, Yong Ho; Kim, Young Dok

    2014-09-01

    Mesoporous silica with mean pore size of ∼14 nm was coated by polydimethylsiloxane (PDMS) using a thermal deposition method. We showed that the inner walls of pores larger than ∼8 nm can be coated by thin layers of PDMS, and the surfaces consisting of PDMS-coated silica were superhydrophobic, with water contact angles close to 170°. We used the PDMS-coated silica as adsorbents of various gas-phase chemical warfare agent (CWA) simulants. PDMS-coated silica allowed molecular desorption of various CWA simulants even after exposure under highly humid conditions and, therefore, is applicable as an agent for the preconcentration of gas-phase analytes to enhance the sensitivities of various sensors. PMID:25102134

  9. Morphological analysis of microcellular PP produced in a core-back injection process using chemical blowing agents and gas counter pressure

    OpenAIRE

    Reglero Ruiz, José Antonio; Vincent, Michel; Agassant, Jean-François; Claverie, Aurore; Huck, Sébastien

    2015-01-01

    A complete experimental analysis of the microcellular injection process using Chemical Blowing Agents (CBA) with Gas Counter Pressure (GCP) and core-back expansion is presented. Three different types of polypropylene, neat and charged, were mixed with two different CBAs and injected into a plate mold with varying process parameters. First, an exhaustive cartographical mapping of the plate morphology is analyzed. In a second step, the relation between injection parameters and the resulting mor...

  10. The effect of bulking agents on the chemical stability of acid-sensitive compounds in freeze-dried formulations: sucrose inversion study.

    Science.gov (United States)

    Lu, Enxian; Ewing, Susan; Gatlin, Larry; Suryanarayanan, Raj; Shalaev, Evgenyi

    2009-09-01

    The goal of the study was to evaluate the impact of amorphous bulking agents on the chemical stability of freeze-dried materials. Polyvinylpyrrolidone and dextran of different molecular weights and lactose were used as bulking agents, and sucrose was used as an example of an acid-sensitive compound. Lyophiles containing bulking agent and sucrose at 10:1 (w/w) ratio, citrate buffer, and optionally bromophenol blue (pH indicator) were tested by X-ray powder diffractometry, differential scanning calorimetry, and Karl Fischer titrimetry. Diffuse reflectance UV-vis spectroscopy was used to obtain the concentration ratio of the deprotonated (In(2-)) to the protonated (HIn(-)) indicator species, from which the Hammett acidity function (H(2-)) was calculated. The extent of sucrose inversion in lyophiles stored at 60 degrees C was quantified by HPLC. The bulking agent had a major impact on both the apparent solid-state acidity (H(2-)) and the degradation rate, with the degradation rate constants value highest for dextran lyophiles (most "acidic", lower H(2-)) followed by lactose and polyvinylpyrrolidone lyophile (least "acidic", higher H(2-)). The Hammett acidity function can be used as an empirical solid-state acidity scale, to predict the rank-order stability of acid-sensitive compounds in lyophiles prepared with different bulking agents. PMID:19544366

  11. Environmental genotoxicity assessment along the transport routes of chemical munitions leading to the dumping areas in the Baltic Sea.

    Science.gov (United States)

    Baršienė, Janina; Butrimavičienė, Laura; Grygiel, Włodzimierz; Stunžėnas, Virmantas; Valskienė, Roberta; Greiciūnaitė, Janina; Stankevičiūtė, Milda

    2016-02-15

    The frequencies of micronuclei (MN), nuclear buds (NB) and nuclear buds on filament (NBf) were examined in 660 specimens of herring (Clupea harengus) collected in 2009-2014 at 65 study stations located mainly along the chemical munition transport routes in the Baltic Sea. The frequency of nuclear abnormalities was strongly increased in herring caught at four stations located close to chemical munition dumping sites, or CWAs - substances (chemical warfare agents) in sediments. Significant increase of MN, NB and NBf was observed in fish caught November 2010-2013 compared to 2009. The most significantly increased genotoxicity responses were recorded in fish caught at stations along CW (chemical weapons) transport routes, close to the Bornholm CW dumping area, in zones with CWAs in sediments and with oil-gas platforms. PMID:26763319

  12. Overall View of Chemical and Biochemical Weapons

    OpenAIRE

    Vladimír Pitschmann

    2014-01-01

    This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical we...

  13. Electronic Warfare Simulation-based on Service Oriented Architecture

    Directory of Open Access Journals (Sweden)

    J. Nanda Kishore

    2012-07-01

    Full Text Available The realisation of service oriented architecture (SOA is embodied in the accomplishments of various simulation applicable functions in the form of service encapsulation and the interconnection and interoperation of services. In this paper, an electronic warfare (EW simulation is structured to SOA and achieved the effect of dynamic sharing and reusability. As a proof of concept, a radar electronic support (ES simulator, which intercepts and classifies radar signals is designed and explained in this paper.Defence Science Journal, 2012, 62(4, pp.219-222, DOI:http://dx.doi.org/10.14429/dsj.62.929

  14. Cybersecurity protecting critical infrastructures from cyber attack and cyber warfare

    CERN Document Server

    Johnson, Thomas A

    2015-01-01

    The World Economic Forum regards the threat of cyber attack as one of the top five global risks confronting nations of the world today. Cyber attacks are increasingly targeting the core functions of the economies in nations throughout the world. The threat to attack critical infrastructures, disrupt critical services, and induce a wide range of damage is becoming more difficult to defend against. Cybersecurity: Protecting Critical Infrastructures from Cyber Attack and Cyber Warfare examines the current cyber threat landscape and discusses the strategies being used by governments and corporatio

  15. THE EVOLUTION OF MODERN LAND WARFARE; THEORY AND PRACTICE

    Directory of Open Access Journals (Sweden)

    C.J. Jacobs

    2012-02-01

    Full Text Available Christopher Bellamy is 'n senior navorser verbonde aan die Sentrum vir Verdedigingstudies, Universiteit van Edinburgh. Sy akademiese opleiding sluit 'n MA-graad in Oorlogstudies aan die King's College in Londen in. Afgesien hiervan was hy ook 'n beroepsoldaat wat sy militêre skoling in die Koninklike Militêre Akademie te Sandhurst deurloop het. Hy het ook in die Britse Artillerie gedien. Bellamy is die skrywer van Red God of War: Soviet Artillery and Rocket Forces en The Future of Land Warfare.

  16. Evaluation of oxime efficacy in nerve agent poisoning: Development of a kinetic-based dynamic model

    International Nuclear Information System (INIS)

    The widespread use of organophosphorus compounds (OP) as pesticides and the repeated misuse of highly toxic OP as chemical warfare agents (nerve agents) emphasize the necessity for the development of effective medical countermeasures. Standard treatment with atropine and the established acetylcholinesterase (AChE) reactivators, obidoxime and pralidoxime, is considered to be ineffective with certain nerve agents due to low oxime effectiveness. From obvious ethical reasons only animal experiments can be used to evaluate new oximes as nerve agent antidotes. However, the extrapolation of data from animal to humans is hampered by marked species differences. Since reactivation of OP-inhibited AChE is considered to be the main mechanism of action of oximes, human erythrocyte AChE can be exploited to test the efficacy of new oximes. By combining enzyme kinetics (inhibition, reactivation, aging) with OP toxicokinetics and oxime pharmacokinetics a dynamic in vitro model was developed which allows the calculation of AChE activities at different scenarios. This model was validated with data from pesticide-poisoned patients and simulations were performed for intravenous and percutaneous nerve agent exposure and intramuscular oxime treatment using published data. The model presented may serve as a tool for defining effective oxime concentrations and for optimizing oxime treatment. In addition, this model can be useful for the development of meaningful therapeutic animal models

  17. A concept study on identification and attribution profiling of chemical threat agents using liquid chromatography-mass spectrometry applied to Amanita toxins in food.

    Science.gov (United States)

    Jansson, Daniel; Fredriksson, Sten-Åke; Herrmann, Anders; Nilsson, Calle

    2012-09-10

    Accidental or deliberate poisoning of food is of great national and international concern. Detecting and identifying potentially toxic agents in food is challenging due to their large chemical diversity and the complexity range of food matrices. A methodology is presented whereby toxic agents are identified and further characterized using a two-step approach. First, generic screening is performed by LC/MS/MS to detect toxins based on a list of selected potential chemical threat agents (CTAs). After identifying the CTAs, a second LC/MS analysis is performed applying accurate mass determination and the generation of an attribution profile. To demonstrate the potential of the methodology, toxins from the mushrooms Amanita phalloides and Amanita virosa were analyzed. These mushrooms are known to produce cyclic peptide toxins, which can be grouped into amatoxins, phallotoxins and virotoxins, where α-amanitin and β-amanitin are regarded as the most potent. To represent a typical complex food sample, mushroom stews containing either A. phalloides or A. virosa were prepared. By combining the screening method with accurate mass analysis, the attribution profile for the identified toxins and related components in each stew was established and used to identify the mushroom species in question. In addition, the analytical data was consistent with the fact that the A. virosa specimens used in this study were of European origin. This adds an important piece of information that enables geographic attribution and strengthens the attribution profile. PMID:22503887

  18. China's Use of Cyber Warfare: Espionage Meets Strategic Deterrence

    Directory of Open Access Journals (Sweden)

    Magnus Hjortdal

    2011-01-01

    Full Text Available This article presents three reasons for states to use cyber warfare and shows that cyberspace is—and will continue to be—a decisive element in China's strategy to ascend in the international system. The three reasons are: deterrence through infiltration of critical infrastructure; military technological espionage to gain military knowledge; and industrial espionage to gain economic advantage. China has a greater interest in using cyberspace offensively than other actors, such as the United States, since it has more to gain from spying on and deterring the United States than the other way around. The article also documents China's progress in cyber warfare and shows how it works as an extension of its traditional strategic thinking and the current debate within the country. Several examples of cyber attacks traceable to China are also presented. This includes cyber intrusions on a nuclear arms laboratory, attacks on defense ministries (including the Joint Strike Fighter and an airbase and the U.S. electric grid, as well as the current Google affair, which has proved to be a small part of a broader attack that also targeted the U.S. Government. There are, however, certain constraints that qualify the image of China as an aggressive actor in cyberspace. Some believe that China itself is the victim of just as many attacks from other states. Furthermore, certain actors in the United States and the West have an interest in overestimating China's capabilities in cyberspace in order to maintain their budgets.

  19. Punishment sustains large-scale cooperation in prestate warfare.

    Science.gov (United States)

    Mathew, Sarah; Boyd, Robert

    2011-07-12

    Understanding cooperation and punishment in small-scale societies is crucial for explaining the origins of human cooperation. We studied warfare among the Turkana, a politically uncentralized, egalitarian, nomadic pastoral society in East Africa. Based on a representative sample of 88 recent raids, we show that the Turkana sustain costly cooperation in combat at a remarkably large scale, at least in part, through punishment of free-riders. Raiding parties comprised several hundred warriors and participants are not kin or day-to-day interactants. Warriors incur substantial risk of death and produce collective benefits. Cowardice and desertions occur, and are punished by community-imposed sanctions, including collective corporal punishment and fines. Furthermore, Turkana norms governing warfare benefit the ethnolinguistic group, a population of a half-million people, at the expense of smaller social groupings. These results challenge current views that punishment is unimportant in small-scale societies and that human cooperation evolved in small groups of kin and familiar individuals. Instead, these results suggest that cooperation at the larger scale of ethnolinguistic units enforced by third-party sanctions could have a deep evolutionary history in the human species. PMID:21670285

  20. Low corrosive chemical decontamination method using pH control. 2. Decomposition of reducing agent by using catalyst with hydrogen peroxide

    International Nuclear Information System (INIS)

    In the development of a new chemical decontamination method which provides a high decontamination effect, less corrosion of base metal, and less radioactive waste generation, we developed a decomposition method for oxalic acid coexisting with hydrazine to decrease the amount of radioactive waste. Using a catalyst of 0.5wt% Ru supported by activated carbon grains, we decomposed oxalic acid and hydrazine, simultaneously and efficiently, with a stoichiometric concentration of H2O2. The decomposition ratios were decreased by the deposition of oxides. But even if the simulated reducing agent solution with high concentrations of coexisting Fe and K ions, which negatively effect decomposition ratio, was decomposed, the decomposition ratios of oxalic acid and hydrazine were kept high during decomposition of the amount of reducing agent used in actual chemical decontamination. Additionally, we examined the deposition ratios of metal ions on the catalyst as metal oxides. These results indicated about 2% of the radioactive species which were removed by the chemical decontamination were deposited on the catalyst column. 59Fe and 51Cr were estimated to be about 90% of the total deposited amount of radioactive species and about 60% of the dose equivalent in the model calculation. But this problem should be easily dealt with by using shielding. (author)

  1. Lightweight autonomous chemical identification system (LACIS)

    Science.gov (United States)

    Lozos, George; Lin, Hai; Burch, Timothy

    2012-06-01

    Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.

  2. Superhydrophobic powder additives to enhance chemical agent resistant coating systems for military equipment for the U.S. Marine Corps (USMC) Corrosion Prevention and Control (CPAC) Program

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Haynes, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    The primary goal of the CPAC program at ORNL was to explore the feasibility of introducing various silica-based superhydrophobic (SH) powder additives as a way to improve the corrosion resistance of US Department of Defense (DOD) military-grade chemical agent resistant coating (CARC) systems. ORNL had previously developed and patented several SH technologies of interest to the USMC, and one of the objectives of this program was to identify methods to incorporate these technologies into the USMC’s corrosion-resistance strategy. This report discusses findings of the CPAC and their application.

  3. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.

    Science.gov (United States)

    Hakonen, Aron; Andersson, Per Ola; Stenbæk Schmidt, Michael; Rindzevicius, Tomas; Käll, Mikael

    2015-09-17

    Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels. This involves major technical and practical challenges, such as detection of ultra-low quantities of hazardous compounds at remote locations for anti-terror purposes and monitoring of environmental sanitation of dumped or left behind toxic substances and explosives. Surface-enhanced Raman scattering (SERS) is one of todays most interesting and rapidly developing methods for label-free ultrasensitive vibrational "fingerprinting" of a variety of molecular compounds. Performance highlights include attomolar detection of TNT and DNT explosives, a sensitivity that few, if any, other technique can compete with. Moreover, instrumentation needed for SERS analysis are becoming progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare purposes. PMID:26398417

  4. Apoptosis and clonogenic survival in three tumour cell lines exposed to gamma rays or chemical genotoxic agents

    International Nuclear Information System (INIS)

    We compared the extent to which apoptosis is induced and clonogenicity reduced in three tumour cell lines - the human melanoma Me45 and promyelocytic leukaemia HL-60, and the rat rhabdomyosarcoma R1 - after exposure to the anticancer drugs etoposide and cis-platinum or to gamma radiation; each induces different types of DNA damage. Cells which readily underwent apoptosis did not necessarily show a correlated loss of clonogenicity; for example, Me45 cells showed the highest sensitivity to all three agents in clonogenic assays but much lower levels of apoptotic cells than R1 or HL-60 cells. These results show that the efficiency of the eradication of clonogenic cells by genotoxic agents does not solely depend on the induction of apoptotic processes, and suggest that the induction of apoptosis and suppression of clonogenicity are independent processes. (author)

  5. Synthesis, characterization and application of a novel chemical sand-fixing agent-poly(aspartic acid) and its composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Fang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China); Fang Li [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China)]. E-mail: twtan@mail.buct.edu.cn

    2007-09-15

    A novel sand-fixing agent-poly(aspartic acid) and its composites were synthesized to improve sand particles compressive strength and anti-wind erosion properties. The relationship between the concentration of sand-fixing agent and the sand-fixing properties was studied by three kinds of aging tests. Some composites were choose to improve the sand-fixing property and the composition of 40% xanthan gum and 60% ethyl cellulose were chosen to compare sand-fixing property with lignosulfonate. The results showed that the sand-fixing and water-retaining properties of xanthan gum and ethyl cellulose composites were better than that of lignosulfonate. The biodegradability experiment showed that the PASP and its composites were environment-friendly products and the field test showed that the PASP composites could improve wind erosion disturbance. - A novel biodegradability polymer significantly improved sand particles' compressive strength and anti-wind erosion properties.

  6. Synthesis, characterization and application of a novel chemical sand-fixing agent-poly(aspartic acid) and its composites

    International Nuclear Information System (INIS)

    A novel sand-fixing agent-poly(aspartic acid) and its composites were synthesized to improve sand particles compressive strength and anti-wind erosion properties. The relationship between the concentration of sand-fixing agent and the sand-fixing properties was studied by three kinds of aging tests. Some composites were choose to improve the sand-fixing property and the composition of 40% xanthan gum and 60% ethyl cellulose were chosen to compare sand-fixing property with lignosulfonate. The results showed that the sand-fixing and water-retaining properties of xanthan gum and ethyl cellulose composites were better than that of lignosulfonate. The biodegradability experiment showed that the PASP and its composites were environment-friendly products and the field test showed that the PASP composites could improve wind erosion disturbance. - A novel biodegradability polymer significantly improved sand particles' compressive strength and anti-wind erosion properties

  7. High-Throughput Identification of Chemical Inhibitors of E. coli Group 2 Capsule Biogenesis as Anti-Virulence Agents

    OpenAIRE

    Goller, Carlos C.; Seed, Patrick C.

    2010-01-01

    Rising antibiotic resistance among Escherichia coli, the leading cause of urinary tract infections (UTIs), has placed a new focus on molecular pathogenesis studies, aiming to identify new therapeutic targets. Anti-virulence agents are attractive as chemotherapeutics to attenuate an organism during disease but not necessarily during benign commensalism, thus decreasing the stress on beneficial microbial communities and lessening the emergence of resistance. We and others have demonstrated that...

  8. Flexible carbon nanotube sensors for nerve agent simulants

    Science.gov (United States)

    Cattanach, Kyle; Kulkarni, Rashmi D.; Kozlov, Mikhail; Manohar, Sanjeev K.

    2006-08-01

    Chemiresistor-based vapour sensors made from network films of single-walled carbon nanotube (SWNT) bundles on flexible plastic substrates (polyethylene terephthalate, PET) can be used to detect chemical warfare agent simulants for the nerve agents Sarin (diisopropyl methylphosphonate, DIMP) and Soman (dimethyl methylphosphonate, DMMP). Large, reproducible resistance changes (75-150%), are observed upon exposure to DIMP or DMMP vapours, and concentrations as low as 25 ppm can be detected. Robust sensor response to simulant vapours is observed even in the presence of large equilibrium concentrations of interferent vapours commonly found in battle-space environments, such as hexane, xylene and water (10 000 ppm each), suggesting that both DIMP and DMMP vapours are capable of selectively displacing other vapours from the walls of the SWNTs. Response to these interferent vapours can be effectively filtered out by using a 2 µm thick barrier film of the chemoselective polymer polyisobutylene (PIB) on the SWNT surface. These network films are composed of a 1-2 µm thick non-woven mesh of SWNT bundles (15-30 nm diameter), whose sensor response is qualitatively and quantitatively different from previous studies on individual SWNTs, or a network of individual SWNTs, suggesting that vapour sorption at interbundle sites could be playing an important role. This study also shows that the line patterning method used in device fabrication to obtain any desired pattern of films of SWNTs on flexible substrates can be used to rapidly screen simulants at high concentrations before developing more complicated sensor systems.

  9. CATSI EDM: a new sensor for the real-time passive stand-off detection and identification of chemicals

    Science.gov (United States)

    Thériault, Jean-Marc; Lacasse, Paul; Lavoie, Hugo; Bouffard, François; Montembeault, Yan; Farley, Vincent; Belhumeur, Louis; Lagueux, Philippe

    2010-04-01

    DRDC Valcartier recently completed the development of the CATSI EDM (Compact Atmospheric Sounding Interferometer Engineering Development Model) for the Canadian Forces (CF). It is a militarized sensor designed to meet the needs of the CF in the development of area surveillance capabilities for the detection and identification of chemical Warfare Agents (CWA) and toxic industrial chemicals (TIC). CATSI EDM is a passive infrared double-beam Fourier spectrometer system designed for real-time stand-off detection and identification of chemical vapours at distances up to 5 km. It is based on the successful passive differential detection technology. This technique known as optical subtraction, results in a target gas spectrum which is almost free of background, thus making possible detection of weak infrared emission in strong background emission. This paper summarizes the system requirements, achievements, hardware and software characteristics and test results.

  10. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  11. The deployment of ethnographic sciences and psychological warfare during the suppression of the Mau Mau rebellion.

    Science.gov (United States)

    Hasian, Marouf

    2013-09-01

    This essay provides readers with a critical analysis of the ethnographic sciences and the psychological warfare used by the British and Kenyan colonial regimes during the suppression of the Mau Mau rebellion. In recent years, several survivors of several detention camps set up for Mau Mau suspects during the 1950s have brought cases in British courts, seeking apologies and funds to help those who argue about systematic abuse during the times of "emergency." The author illustrates that the difficulties confronting Ndiku Mutua and other claimants stem from the historical and contemporary resonance of characterizations of the Mau Mau as devilish figures with deranged minds. The author also argues that while many journalists today have commented on the recovery of "lost" colonial archives and the denials of former colonial administrators, what gets forgotten are the polysemic ways that Carothers, Leakey, and other social agents co-produced all of these pejorative characterizations. Kenyan settlers, administrators, novelists, filmmakers and journalists have helped circulate the commentaries on the "Mau Mau" mind that continue to influence contemporary debates about past injustices. PMID:23728849

  12. Characterization of aerosol-containing chemical simulant clouds using a sensitive, thermal infrared imaging spectrometer

    Science.gov (United States)

    Hall, Jeffrey L.; D'Amico, Francis M.; Kolodzey, Steven J.; Qian, Jun; Polak, Mark L.; Westerberg, Karl; Chang, Clement S.

    2011-05-01

    A sensitive, ground-based thermal imaging spectrometer was deployed at the Army's Dugway Proving Ground to remotely monitor explosively released chemical-warfare-agent-simulant clouds from stand-off ranges of a few kilometers. The sensor has 128 spectral bands covering the 7.6 to 13.5 micron region. The measured cloud spectra clearly showed scattering of high-elevation-angle sky radiance by liquid aerosols or dust in the clouds: we present arguments that show why the scattering is most likely due to dust. This observation has significant implications for early detection of dust-laden chemical clouds. On one hand, detection algorithms must properly account for the scattered radiation component, which would include out-of-scene radiation components as well as a dust signature; on the other hand, this scattering gives rise to an enhanced "delta-T" for detection by a ground-based sensor.

  13. Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications

    Science.gov (United States)

    Sapsford, Kim E.

    Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.

  14. A Blue Print for the Future Electronic Warfare Suite Development

    Directory of Open Access Journals (Sweden)

    R. Pitchammal

    2013-03-01

    Full Text Available Mastering increasing complexity of electronic warfare (EW airborne equipment systems needs new architectural concepts mainly based on modular design, generic resources and reliable communication buses. Less is more architectural concept replaces separate EW line replaceable units with fewer centralized processing units. This approach leads to a robust architecture for the next generation EW suite development in a unified fashion and thereby promising significant weight reduction and maintenance savings. In general, this approach is represented by a blanket term called integrated modular avionics (IMA. IMA architecture based EW suite development concentrates with the main goals of IMA such as technology transparency, resource sharing, incremental qualification, reduced maintenance cost, and so on.Defence Science Journal, 2013, 63(2, pp.192-197, DOI:http://dx.doi.org/10.14429/dsj.63.4263

  15. Agroterrorism, Biological Crimes, and Biological Warfare Targeting Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Terry M.; Logan-Henfrey, Linda; Weller, Richard E.; Kellman, Brian

    2000-04-12

    There is a rising level of concern that agriculture might be targeted for economic sabotage by terrorists. Knowledge gathered about the Soviet Union biological weapons program and Iraq following the Gulf War, confirmed that animals and agricultural crops were targets of bioweapon development. These revelations are particularly disturbing in light of the fact that both countries are States Parties to the Biological and Toxin Weapons Convention that entered into force in 1975. The potential for misusing biotechnology to create more virulent pathogens and the lack of international means to detect unethical uses of new technologies to create destructive bioweapons is of increasing concern. Disease outbreaks, whether naturally occurring or intentionally, involving agricultural pathogens that destroy livestock and crops would have a profound impact on a country's infrastructure, economy and export markets. This chapter deals with the history of agroterrorism, biological crimes and biological warfare directed toward animal agriculture, specifically, horses, cattle, swine, sheep, goats, and poultry.

  16. Microfluidic chip with optical sensor for rapid detection of nerve agent Sarin in water samples

    Science.gov (United States)

    Tan, Hsih Yin; Nguyen, Nam-Trung; Loke, Weng Keong; Tan, Yong Teng

    2007-12-01

    The chemical warfare agent Sarin is an organophosphate that is highly toxic to humans as they can act as cholinesterase inhibitors, that disrupts neuromuscular transmission. As these nerve agents are colorless, odorless and highly toxic, they can be introduced into drinking water as a means of terrorist sabotage. Hence, numerous innovative devices and methods have been developed for rapid detection of these organophosphates. Microfluidic technology allows the implementation of fast and sensitive detection of Sarin. In this paper, a micro-total analysis systems (TAS), also known as Lab-on-a-chip, fitted with an optical detection system has been developed to analyze the presence of the nerve agent sarin in water samples. In the present set-up, inhibition of co-introduced cholinesterase and water samples containing trace amounts of nerve agent sarin into the microfluidic device was used as the basis for selective detection of sarin. The device was fabricated using polymeric micromachining with PMMA (poly (methymethacrylate)) as the substrate material. A chromophore was utilized to measure the activity of remnant cholinesterase activity, which is inversely related to the amount of sarin present in the water samples. Comparisons were made between two different optical detection techniques and the findings will be presented in this paper. The presented measurement method is simple, fast and as sensitive as Gas Chromatography.

  17. Chemical genetics analysis of an aniline mustard anticancer agent reveals complex I of the electron transport chain as a target

    OpenAIRE

    Fedeles, Bogdan I.; Zhu, Angela Y.; Young, Kellie S.; Hillier, Shawn M.; Proffitt, Kyle D.; Essigmann, John M.; Croy, Robert G.

    2011-01-01

    The antitumor agent 11β (CAS 865070-37-7), consisting of a DNA-damaging aniline mustard linked to an androgen receptor (AR) ligand, is known to form covalent DNA adducts and to induce apoptosis potently in AR-positive prostate cancer cells in vitro; it also strongly prevents growth of LNCaP xenografts in mice. The present study describes the unexpectedly strong activity of 11β against the AR-negative HeLa cells, both in cell culture and tumor xenografts, and uncovers a new mechanism of action...

  18. Characterization of nanostructured As{sub 2}S{sub 3} thin films synthesized at room temperature by chemical bath deposition method using various complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ubale, Ashok U., E-mail: ashokuu@yahoo.com; Kantale, J.S.; Choudhari, D.M.; Mitkari, V.N.; Nikam, M.S.; Belkhedkar, M.R.

    2013-09-02

    Nanostructured binary As{sub 2}S{sub 3} thin films were deposited onto glass substrates by chemical bath deposition method from complexed and uncomplexed baths using complexing agents acetic acid, ethylenediaminetetraacetic acid, oxalic acid and tartaric acid. The effect of complexing agent on structural, electrical, morphological and optical properties of As{sub 2}S{sub 3} is reported. The synthesized films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical resistivity and optical absorption measurements. The deposited films are nanocrystalline in nature with monoclinic lattice. The films deposited from uncomplexed bath and from ethylenediaminetetraacetic acid complexes are non-porous and become porous for other complexes. The electrical resistivity and optical band gap is also found complex dependent. - Highlights: • Nanocrystalline n-type As{sub 2}S{sub 3} films were grown by chemical bath deposition method. • Effect of complex on structural, electrical and optical properties was reported. • The film morphology highly depends on complex used in deposition process.

  19. Development of Laser Warning and Detection Technology for Chemical/Biological Agents%生化战剂激光侦检技术的发展概述

    Institute of Scientific and Technical Information of China (English)

    吴慧云; 孙振海; 黄志松; 生甡; 王华; 徐卸古

    2013-01-01

    Application of chemical/biological agents in terrorism and unmilitary fields induce serious impact to the public safety. Principles of laser warning and detection technology for chemical/biological agents based on Mie scattering signals, Rayleigh scattering signals, Raman scattering signals, absorption signals and laser induced fluorescence signals are described. The key technologies in the laser warning and detection system are analyzed, the laser warning and detection technology development profiles in the United States, Russia, German and France are introduced.%生化战剂在恐怖主义活动和非军事领域的非法使用对社会公共安全造成了严重的威胁.分析了基于米氏散射、瑞利散射、拉曼散射、吸收光谱和诱导荧光光谱信号的生化战剂激光侦察报警和快速检测技术的基本原理,说明了生化战剂激光侦检系统的关键技术,回顾了美、俄、德、法等国生化战剂激光侦检技术的发展情况.

  20. Treatment of paraffin problems in petroleum production with chemicals; Tratamento de problemas parafinicos com agentes quimicos na producao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, David; Yin, Ralph; Weispfennig, Klaus; Newberry, Mike [Baker Petrolite, Sugar Land, TX (United States)

    2004-07-01

    Paraffin problems can greatly reduce production of certain crude oils, if correct methods to control the problems are not used. These problems are primarily related to flow line deposition and reduction in crude oil flow properties caused by wax network growth. Deep water production and production of high-wax content crude oils can be especially problematic. Much of the petroleum production in Brazil falls in these categories: in the Campos Basin and in Bahia. Paraffin problems can be controlled with diverse methods. These methods include use of: pigging, insulation, heating, and chemicals. Sometimes, the use of chemicals can be very practical, alone or in combination with other methods. This paper discusses the use of chemicals for the treatment of paraffin problems. Three types of treatments are discussed: prevention of deposition in flow lines with paraffin inhibitors; improvement in flow properties of crude oils with pour point depressants, and removal of paraffin deposits with dispersants. The discussion includes the physical effects of the treatment chemicals and field examples. (author)

  1. INDUCTION OF MUTATIONS BY CHEMICAL AGENTS AT THE HYPOXANTHINE-GUANINE PHOSPHORIBOSYL TRANSFERASE LOCUS IN HUMAN EPITHELIAL TERATOMA CELLS

    Science.gov (United States)

    Induction of 6-thioguanine (TG) resistance by chemical mutagens was examined in a line of cells derived from a human epithelial teratocarcinoma cell clone. The cells, designated as P3 cells, have a stable diploid karyotype with 46(XX) chromosomes, including a translocation betwee...

  2. Editorial: Discovery from Lake Turkana and History of Human Warfare

    Directory of Open Access Journals (Sweden)

    Professor S. P. Singh, Ph.D.

    2016-02-01

    Full Text Available Very interesting finds have come to light of violently killed humans from Lake Turkana in the Kenyan Rift Valley around 10000 years ago. A stunning discovery of skeletons of 27 persons who are believed to have been killed at the same time and are supposed to have suffered violent wounds has been reported recently (Nature 529, 394–398, 21 January 2016. These finds belong to a period of late Pleistocene/early Holocene of the hunter-gatherer societies from Nataruk. Among the victims were men, women and children. The individuals were killed with projectiles and blunt weapons. These skeletons were found in the lagoon and were preserved very nicely. Such type of mass killing probably could never happen as a consequence of intra-group conflict. The evidence seems to be towards warfare and aggression in ancient societies. The experts ruled out the possibility of a cemetery and ceremonial burial. This discovery of 27 skeletons points to the fact that there may have been more causalities and many individuals might have escaped death at that time. According to one of the co-authors of this research Dr. R.A. Foley, the groups were elatively more densely packed populations than the hunter gatherers and had more chances of having inter-group conflicts because of sharing the resources which would have been plentiful near the lagoons and water bodies. Violence probably has been in the instinct of early humans and that the warfare among humans has a history of 10000 years or even earlier.

  3. Optical clearing effect on gastric tissues immersed with biocompatible chemical agents investigated by near infrared reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiangqun [Institute of Bioscience and Technology, Cranfield University at Silsoe, Bedfordshire MK45 4DT (United Kingdom); Wang Ruikang [Institute of Bioscience and Technology, Cranfield University at Silsoe, Bedfordshire MK45 4DT (United Kingdom); Elder, James B [Department of Surgery, North Staffordshire Hospital, Stoke-on-Trent ST4 7QB (United Kingdom)

    2003-07-21

    In order to understand the role of water desorption in optical clearing effect on gastric tissues after the application of hyperosmotic agents, dynamics of water loss in porcine stomach administrated with glycerol was investigated with the near infrared reflectance spectroscopy. It is found that the progress of optical clearing of various samples corresponds very well with the individual pattern of water desorption. The changes in optical properties are almost linear with time in frozen-thawed cardiac mucosa immersed in 80% glycerol whilst the water inside the tissue is displaced at the same rate. For the same samples immersed in 50% glycerol, after 30 min, when the dehydration equilibrates with time, optical clearing tends to lever out. The overall water loss in frozen porcine stomach at 60 min after the immersion of 80% and 50% glycerol is approximately 38% and 13%, respectively. The more significant effect of optical clearing by 80% glycerol is due to its high refractive index and high dehydration capability. In fresh pyloric mucosa samples, treated with 50% glycerol through the topical application, the changes of optical properties at the initial stage are very slow due to the mucous barrier. However, once the solution has penetrated into tissue, optical clearing is achieved significantly with time. The results indicate that optical clearing induced by hyperosmotic agents is strongly correlated with dehydration.

  4. Characterization of Cu–Ni nanostructured alloys obtained by a chemical route. Influence of the complexing agent content in the starting solution

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Alejo C., E-mail: acarreras@famaf.unc.edu.ar [Instituto de Física Enrique Gaviola (IFEG), Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba—CONICET, Medina Allende s/n, Ciudad Universitaria, 5016 Córdoba (Argentina); Cangiano, María de los A.; Ojeda, Manuel W.; Ruiz, María del C. [Instituto de Investigaciones en Tecnología Qumica (INTEQUI), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis—CONICET, Chacabuco y Pedernera, 5700 San Luis (Argentina)

    2015-03-15

    The influence of the amount of complexing agent added to the starting solution on the physicochemical properties of Cu–Ni nanostructured alloys obtained through a chemical route, was studied. For this purpose, three Cu–Ni nanoalloy samples were synthesized by a previously developed procedure, starting from solutions with citric acid to metal molar ratios (C/Me) of 0.73, 1.00 and 1.50. The synthesis technique consisted in preparing a precursor via the citrate-gel method, and carrying out subsequent thermal treatments in controlled atmospheres. Sample characterization was performed by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, transmission electron microscopy, X-ray nanoanalysis and electron diffraction. In the three cases, copper and nickel formed a solid solution with a Cu/Ni atomic ratio close to 50/50, and free of impurities inside the crystal structure. The citric acid content of the starting solution proved to have an important influence on the morphology, size distribution, porosity, and crystallinity of the Cu–Ni alloy microparticles obtained, but a lesser influence on their chemical composition. The molar ratio C/Me = 1.00 resulted in the alloy with the Cu/Ni atomic ratio closest to 50/50. - Highlights: • We synthesize Cu–Ni nanoalloys by a chemical route based on the citrate-gel method. • We study the influence of the complexing agent content of the starting solution. • We characterize the samples by electron microscopy and X-ray techniques. • Citric acid influences the shape, size, porosity and crystallinity of the alloys.

  5. Characterization of Cu–Ni nanostructured alloys obtained by a chemical route. Influence of the complexing agent content in the starting solution

    International Nuclear Information System (INIS)

    The influence of the amount of complexing agent added to the starting solution on the physicochemical properties of Cu–Ni nanostructured alloys obtained through a chemical route, was studied. For this purpose, three Cu–Ni nanoalloy samples were synthesized by a previously developed procedure, starting from solutions with citric acid to metal molar ratios (C/Me) of 0.73, 1.00 and 1.50. The synthesis technique consisted in preparing a precursor via the citrate-gel method, and carrying out subsequent thermal treatments in controlled atmospheres. Sample characterization was performed by scanning electron microscopy, X-ray microanalysis, X-ray diffraction, transmission electron microscopy, X-ray nanoanalysis and electron diffraction. In the three cases, copper and nickel formed a solid solution with a Cu/Ni atomic ratio close to 50/50, and free of impurities inside the crystal structure. The citric acid content of the starting solution proved to have an important influence on the morphology, size distribution, porosity, and crystallinity of the Cu–Ni alloy microparticles obtained, but a lesser influence on their chemical composition. The molar ratio C/Me = 1.00 resulted in the alloy with the Cu/Ni atomic ratio closest to 50/50. - Highlights: • We synthesize Cu–Ni nanoalloys by a chemical route based on the citrate-gel method. • We study the influence of the complexing agent content of the starting solution. • We characterize the samples by electron microscopy and X-ray techniques. • Citric acid influences the shape, size, porosity and crystallinity of the alloys

  6. Optimizing Armed Forces Capabilities for Hybrid Warfare – New Challenge for Slovak Armed Forces

    Directory of Open Access Journals (Sweden)

    Peter PINDJÁK

    2015-09-01

    Full Text Available The paper deals with the optimization of military capabilities of the Slovak Armed Forces for conducting operations in a hybrid conflict, which represents one of the possible scenarios of irregular warfare. Whereas in the regular warfare adversaries intend to eliminate the centers of gravity of each other, most often command and control structures, in irregular conflicts, the center of gravity shifts towards the will and cognitive perception of the target population. Hybrid warfare comprises a thoroughly planned combination of conventional military approaches and kinetic operations with subversive, irregular activities, including information and cyber operations. These efforts are often accompanied by intensified activities of intelligence services, special operation forces, and even mercenary and other paramilitary groups. The development of irregular warfare capabilities within the Slovak Armed Forces will require a progressive transformation process that may turn the armed forces into a modern and adaptable element of power, capable of deployment in national and international crisis management operations.

  7. Functionalized Cellulose: PET Polymer Fibers with Zeolites for Detoxification Against Nerve Agents%Functionalized Cellulose:PET Polymer Fibers with Zeolites for Detoxification Against Nerve Agents

    Institute of Scientific and Technical Information of China (English)

    Agarwal Satya R; Sundarrajan Subramanian; Ramakrishna Seeram

    2012-01-01

    Presently activated carbon is used as an adsorptive material for chemical and biological warfare agents.It possess excellent surface properties such as large surface area,fire-resistance and plenty availability,but has disadvantages such as its heavy weight,low breathability (after adsorption of moisture) and disposal.In this paper,we propose to utilize novel electrospun polymeric nanostructures having zeolites as catalyst materials.In this respective,the electrospun polymer nanofibers would serve as the best possible substitutes to activated carbon based protective clothing applications.This is the first in the literature that reports the integration of these types of catalysts with nanofiberous membranes.Electrospinning of cellulose/polyethylene terephthalate (PET) blend nanofibers has been carried out.Zeolite catalysts (Linde Type A and Mordenite) for the detoxification of nerve agent stimulant-paraoxon,were prepared due to their relative simplicity of synthesis.The catalysts were then coated onto nanofiber membranes and their morphology was confirmed using SEM.This is the first report on the coating of nanofibers with zeolites and their successful demonstration against nerve agent stimulant.The UV absorption spectra clearly show the detoxification ability of the functionalized fibers and their potential to be used in textiles for protection and decontamination.

  8. Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent

    OpenAIRE

    Coman, Daniel; Trubel, Hubert K.; Rycyna, Robert E.; Hyder, Fahmeed

    2009-01-01

    Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly due to lack of precise and non-invasive methods. At 11.7T, we demonstrate that a thulium-based macrocyclic complex infused through the blood stream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical...

  9. Why mid-grade Surface Warfare officers are resigning from the Naval service.

    OpenAIRE

    Howell, James Robert

    1980-01-01

    This thesis addresses the reasons for mid-grade (0-2 to 0-4) Surface Warfare officer resignations. It makes recommendations that would possibly increase retention for the mid-grade Surface Warfare Officer Community. Statistical analyses were performed upon data from post-resignation questionnaires. A list of the ten most reported reasons for resigning was then compiled. A series of recommendations which might have a positive effect upon retention were then derived

  10. Discovery of novel antiviral agents directed against the influenza A virus nucleoprotein using photo-cross-linked chemical arrays

    International Nuclear Information System (INIS)

    The nucleoprotein (NP) of the influenza virus is expressed in the early stage of infection and plays important roles in numerous steps of viral replication. NP is relatively well conserved compared with viral surface spike proteins. This study experimentally demonstrates that NP is a novel target for the development of new antiviral drugs against the influenza virus. First, artificial analogs of mycalamide A in a chemical array bound specifically with high affinity to NP. Second, the compounds inhibited multiplication of the influenza virus. Furthermore, surface plasmon resonance imaging experiments demonstrated that the binding activity of each compound to NP correlated with its antiviral activity. Finally, it was shown that these compounds bound NP within the N-terminal 110-amino acid region but their binding abilities were dramatically reduced when the N-terminal 13-amino acid tail was deleted, suggesting that the compounds might bind to this region, which mediates the nuclear transport of NP and its binding to viral RNA. These data suggest that compound binding to the N-terminal 13-amino acid tail region may inhibit viral replication by inhibiting the functions of NP. Collectively, these results strongly suggest that chemical arrays are convenient tools for the screening of viral product inhibitors.

  11. Discovery of novel antiviral agents directed against the influenza A virus nucleoprotein using photo-cross-linked chemical arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Kyoji [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Kondoh, Yasumitsu [Chemical Biology Core Facility, RIKEN, Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Ueda, Atsushi; Yamada, Kazunori [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Medical Genome Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Goto, Hideo [Department of Microbiology and Immunology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Watanabe, Toshiki [Department of Medical Genome Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Nakata, Tadashi [Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Osada, Hiroyuki [Chemical Biology Core Facility, RIKEN, Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Medical Genome Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2010-04-09

    The nucleoprotein (NP) of the influenza virus is expressed in the early stage of infection and plays important roles in numerous steps of viral replication. NP is relatively well conserved compared with viral surface spike proteins. This study experimentally demonstrates that NP is a novel target for the development of new antiviral drugs against the influenza virus. First, artificial analogs of mycalamide A in a chemical array bound specifically with high affinity to NP. Second, the compounds inhibited multiplication of the influenza virus. Furthermore, surface plasmon resonance imaging experiments demonstrated that the binding activity of each compound to NP correlated with its antiviral activity. Finally, it was shown that these compounds bound NP within the N-terminal 110-amino acid region but their binding abilities were dramatically reduced when the N-terminal 13-amino acid tail was deleted, suggesting that the compounds might bind to this region, which mediates the nuclear transport of NP and its binding to viral RNA. These data suggest that compound binding to the N-terminal 13-amino acid tail region may inhibit viral replication by inhibiting the functions of NP. Collectively, these results strongly suggest that chemical arrays are convenient tools for the screening of viral product inhibitors.

  12. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2016-02-01

    A recyclable organic bulking agent (BA) that can be screened and was developed to optimize green waste (GW) composting. This study investigated the use of wood chips (WC) (at 0%, 15%, and 25%) and/or composted green waste (CGW) (at 0%, 25%, and 35%) as the BAs in the two-stage composting of GW. The combined addition of WC and CGW improved the conditions of composting process and the quality of compost product in terms of composting temperature, porosity, water retention, particle-size distribution, pH, electrical conductivity (EC), cation exchange capacity (CEC), nitrogen losses, humification indices, microbial numbers, enzyme activities, macro- and micro-nutrient contents, and toxicity to germinating seeds. The compost matured in only 22days with the optimized two-stage composting method rather than in the 90-270days typically required for traditional composting. The optimal two-stage composting process and the best quality of compost product were obtained with the combined addition of 15% WC and 35% CGW. PMID:26644164

  13. Nanodispersive mixed oxides for destruction of warfare agents prepared by homogenous hydrolysis with urea

    Czech Academy of Sciences Publication Activity Database

    Daněk, Ondřej; Štengl, Václav; Bakardjieva, Snejana; Murafa, Nataliya; Kalendová, A.; Oplustil, F.

    Pardubice : Univezita Pardubice, 2006, s. 82-83. [International Conference Solid State Chemistry 2006 /7./. Pardubice (CZ), 24.09.2006-29.09.2006] Institutional research plan: CEZ:AV0Z40320502 Keywords : homogenous hydrolysis Subject RIV: CA - Inorganic Chemistry

  14. Zirconium doped titania:destruction of warfare agents and photocatalytic degradation of orange 2 dye

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Murafa, Nataliya; Opluštil, F.

    2008-01-01

    Roč. 1, č. 1 (2008), s. 1-7. ISSN 1875-1806 R&D Projects: GA MPO 1H-PK2/56 Institutional research plan: CEZ:AV0Z40320502 Keywords : anatase * mustard gas * soman Subject RIV: CA - Inorganic Chemistry

  15. In vitro evaluation of different chemical agents for the decontamination of gutta-percha cones Avaliação in vitro de diferentes agentes de descontaminação de cones de guta-percha

    Directory of Open Access Journals (Sweden)

    Rogério Emílio de Souza

    2003-03-01

    Full Text Available This study evaluated the effectiveness of three disinfectants used in Dentistry for decontamination of gutta-percha cones. Sixty gutta-percha cones were contaminated with standardized pure cultures of five species of microorganisms (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, Candida albicans ATCC CBS-ICB/USP 562, Bacillus subtilis spores ATCC 6633 and Streptococcus mutans ATCC 25175. The cones were treated with 10% polyvinylpyrrolidone-iodine aqueous solution (PVP-I; Groups 1 and 2, 5.25% aqueous sodium hypochlorite (Groups 3 and 4 and paraformaldehyde tablets (Group 5. All chemical agents were efficient for the cold sterilization of gutta-percha cones in short time periods.A eficiência de três desinfetantes usados em Odontologia foi estudada na descontaminação de 60 cones de guta-percha contaminados com culturas puras e padronizadas de cinco cepas de microrganismos (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, Candida albicans ATCC CBS-ICB/USP 562, Bacillus subtilis em esporos ATCC 6633 e Streptococcus mutans ATCC 25175. Os cones foram tratados com solução aquosa de polivinilpirrolidona-iodo 10% (PVP-I; Grupos 1 e 2, solução aquosa de hipoclorito de sódio 5,25% (Grupos 3 e 4 e pastilhas de formaldeído (Grupo 5. Nossos resultados indicam que todos os agentes químicos foram eficientes para a esterilização a frio dos cones de guta-percha em curtos espaços de tempo.

  16. Studies of the chemical and biological properties of the bone and acute myocardial imaging agent 99mTc-PYP

    International Nuclear Information System (INIS)

    Correlation between the in vivo distribution and the chemical formulation of 99mTc-PYP complex was studied. Mice was chosen to evaluate in vivo biodistribution and gel chromatography column scanning technique for radiochemical analysis. The influence of the pH, Sn(II), pyrophosphate concentration and molar ratios of Sn : PYP on the labelling of PYP with 99mTc was investigated in vitro and in vivo. Induced myocardial infarction was evaluated in rats. The clinical evaluation showed excellent definition of sternum and ribs with little blood background activity with normal subjects. Discrete localization of abnormally high activity was shown in the site of recent infarction of the left ventricular myocardium. (author)

  17. 2,4-Difluoro anisole. A promising complexing agent for boron isotopes separation by chemical exchange reaction and distillation

    International Nuclear Information System (INIS)

    Although methods of boron isotopes separation were intensively pursued about 60 years, the chemical exchange distillation is the only method that has been applied in industrial scale production of 10B. The present anisole BF3 system suffers from the drawbacks like high melting point, relatively low separation coefficient and instability under reaction conditions, which demand a continuous search for more effective and efficient donors for boron isotope separation. A series of fluoro-substituted anisole derivatives were screened in this paper, among which 2,4-difluoro anisole exhibited good properties compared with anisole. Studies on the boron trifluoride and 2,4-difluoro anisole adduct, its thermodynamic and physical properties related to large-scale isotopic separation is reported. The results showed that 2,4-difluoro anisole is better than anisole in separation coefficient, freezing point and stability under pyrolysis conditions, which suggest a further detailed investigations on boron trifluoride and 2,4-difluoro anisole adduct. (author)

  18. A radiobiological approach to cancer treatment. Possible chemical and physical agents modifying radiosensitivity in comparison with high LET radiations

    International Nuclear Information System (INIS)

    Biological characteristics of high LET radiations are summarized to be low oxygen enhancement ratio, high RBE, low repair and low cell cycle dependency of radiosensitivity. Various chemical modifiers of radiosensitivity and radiological effect of hyperthermia are classified into these four properties. It is evident that we have now various means to mimic high LET radiations as far as biological response is concerned though some of them are still in experimental stage. Among them, the means to cope with hypoxia and repair which are assumed to be the most important causes of radioresistance of human tumors are discussed in some detail. It is expected that through the present seminar we would have consensus to concentrate our effort of development for new modifying means available and useful in developing countries. (author)

  19. On the need to assess cancer risk in populations environmentally and occupationally exposed to virus and chemical agents in developing countries

    Directory of Open Access Journals (Sweden)

    Franco Netto Guilherme

    1998-01-01

    Full Text Available Evidence exists that exposure to poultry oncogenic viruses may produce elevated cancer mortality in human populations, particularly excesses of cancer of lung and excesses of cancer of lymphopoietic tissues. To date, this potential risk is unknown in populations from the developing countries. This paper suggests the need to assess cancer risk in populations of developing countries with reported environmental exposure to chicken meat products and eggs; the need to assess risk of cancer in populations inoculated with vaccines from infected chicken embryos; and the need to assess risk of cancer in occupational populations highly exposed to poultry oncogenic viruses, and with potential concurrent exposure to chemical agents known or suspected to be carcinogens.

  20. Effect of Top Slag Basicity on Quality of Steel Treated by Exothermic Agent SiFe and SiCaBa during Chemical Heating

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of top slag basicity on quality of steel treated with SiFe and SiCaBa alloy as exothermic agent in chemical heating was studied. These experiments were carried out in MoSi2 laboratory furnace with 0.2kg molten steel for equilibrium test and 2kg molten steel for simulation test respectively. These results showed that the adjusting basicity of top slag with CaO is effective to prevent rephosphorization and resulphurization, and it is possible to dephosphorize and desulphurize and remove the inclusions from molten steel when basicity R of the top slag is adjusted to 2.0-3.10, and SiCaBa alloy is better than SiFe alloy in this relation.

  1. DNA-membrane complex damages in mammalian cells after gamma irradiation and chemical agent action and role of the complex in DNA replication

    International Nuclear Information System (INIS)

    The sedimentation behavior of the DNA-membrane complex (DMC) from Ehrlich ascites tumor (EAT) cells after gamma irradiation and carminomycin (CM) treatment was studied. The DNA and membrane containing material released by alkaline lysis from EAT cells had an anomalous sedimentation relative to denatured DNA. The DMC sediments with a great sedimentation constant (255 S). Both the chemical and physical agents induced DNA single-strand breaks and damage of the DMC. It was shown that 0.01 g/ml CM did not affect the incorporation of exogenic thymidine into DNA but the DMC was completely disrupted by this CM dose. There was no correlation between postirradiation repair kinetics of the DMC and the kinetics of 3H-thymidine incorporation into DNA of ETA cells. (author)

  2. Physico-chemical characterisation of 99mTc-SnF2 colloid agent used for labelling white cells

    International Nuclear Information System (INIS)

    Full text: For more than fifteen years, Tc-stannous fluoride (SnF2) has been used to successfully label patient whole blood for the clinical diagnosis of inflammatory bowel disease. The physico-chemical characteristics of this radiocolloid are still poorly understood. Using filters of specific composition, the particle size distribution (PSD) of SnF2 was found to be 6.1% >5μm, 5.2% 1-5μm, 0% 0.2-1μm and 88.7% 5μm, 14.1% 1-5μm, 0% 0.2-1μm and 85.9% 99mTc-SnF2 was found to be 0.8% >5μm, 96.7% 1 -5mm, 2.3% 0.2-1 μm and 0.4% 2 is used in colloidal particle formation, and of the radioactivity added, all Tc is associated with the 1-5μm diameter particles. The growth of these colloidal particles depends upon the surface chemistry of SnF2. There is a slow initial rate of accretion of SnF2 during colloid formation, which is a slow hydrolysis reaction in water, to yield fewer yet larger particles. Subsequently, reduction of 99mTc-pertechnetate by Sn2+ present, yields [Tc3+] that binds to the growing colloid surface. The chemical units comprising the colloidal surface are probably SnO-SnF2 or Sn2O2F2 or SnF3- and Sn2F5-. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  3. An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents.

    Science.gov (United States)

    Serpone, Nick; Salinaro, Angela; Emeline, Alexei V; Horikoshi, Satoshi; Hidaka, Hisao; Zhao, Jincai

    2002-12-01

    The photostabilities of a random set of commercially available sunscreen lotions and their active ingredients are examined spectroscopically subsequent to simulated sunlight UV exposure. Loss of filtering efficacy can occur because of possible photochemical modifications of the sunscreen active agents. Changes in absorption of UVA/ UVB sunlight by agents in sunscreen lotions also leads to a reduction of the expected photoprotection of human skin and DNA against the harmful UV radiation. The active ingredients were investigated in aqueous media and in organic solvents of various polarities (methanol, acetonitrile, and n-hexane) under aerobic and anaerobic conditions The UV absorption features are affected by the nature of the solvents with properties closely related to oil-in-water (o/w) or water-in-oil (w/o) emulsions actually used in sunscreen formulations, and by the presence of molecular oxygen. The photostabilities of two combined chemical ingredients (oxybenzone and octyl methoxycinnamate) and the combination oxybenzone/titanium dioxide were also explored. In the latter case, oxybenzone undergoes significant photodegradation in the presence of the physical filter TiO2. PMID:12661594

  4. iCATSI: multi-pixel imaging differential spectroradiometer for standoff detection and quantification of chemical threats

    Science.gov (United States)

    Prel, Florent; Moreau, Louis; Lavoie, Hugo; Bouffard, François; Thériault, Jean-Marc; Vallieres, Christian; Roy, Claude; Dubé, Denis

    2011-11-01

    Homeland security and first responders are often faced with safety situations involving the identification of unknown volatile chemicals. Examples include industrial fires, chemical warfare, industrial leak, etc. The Improved Compact ATmospheric Sounding Interferometer (iCATSI) sensor has been developed to investigate the standoff detection and identification of toxic industrial chemicals (TICs), chemical warfare agents (CWA) and other chemicals. iCATSI is a combination of the CATSI instrument, a standoff differential FTIR optimised for the characterization of chemicals and the MR-i, the hyperspectral imaging spectroradiometer of ABB Bomem based on the proven MR spectroradiometers. The instrument is equipped with a dual-input telescope to perform optical background subtraction. The resulting signal is the difference between the spectral radiance entering each input port. With that method, the signal from the background is automatically removed from the signal of the target of interest. The iCATSI sensor is able to detect, spectrally resolve and identify 5 meters plumes up to 5 km range. The instrument is capable of sensing in the VLWIR (cut-off near 14 μm) to support research related to standoff chemical detection. In one of its configurations, iCATSI produces three 24 × 16 spectral images per second from 5.5 to 14 μm at a spectral resolution of 16 cm-1. In another configuration, iCATSI produces from two to four spectral images per second of 256 × 256 pixels from 8 to 13 μm with the same spectral resolution. Overview of the capabilities of the instrument and results from tests and field trials will be presented.

  5. THE PEROXYMONOCARBONATE ANIONS AS PULP BLEACHING AGENTS. PART 1. RESULTS WITH LIGNIN MODEL COMPOUNDS AND CHEMICAL PULPS

    Directory of Open Access Journals (Sweden)

    Francis K Attiogbe

    2010-08-01

    Full Text Available The peroxymonocarbonate mono-anion (HCO4─ is generated when the bicarbonate anion is added to a H2O2 solution. The mono-anion is believed to have a pKa value of ca. 10 and as such would start dissociating to the di-anion (CO42─ at pH ca. 8. The mono-anion should demonstrate electrophilic properties, while the di-anion should be a nucleophile. In an alkaline, non-sulfur pulping process such as soda/AQ, Na2CO3 could be obtained from the chemical recovery system and carbonated with CO2 from a flue gas stream to produce NaHCO3. In such a case only H2O2 would need to be purchased to generate the peroxymonocarbonate (PMC anions. Bicarbonate anions could also be produced from the carbonation of solutions containing NaOH, Mg(OH2 or mined Na2CO3. One or both of the PMC anions was found to be effective in oxidizing two lignin model compounds as well as lowering the lignin content of kraft and soda/AQ hardwood pulps. The PMC anions were generated in-situ by NaHCO3 or Na2CO3 + CO2 addition to dilute H2O2 solutions.

  6. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    Energy Technology Data Exchange (ETDEWEB)

    Wente, William Baker

    2005-06-01

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  7. Remote sensing of evaporation ducts for Naval warfare

    Science.gov (United States)

    Geernaert, G. L.

    1989-11-01

    Areas critical to naval operations are the prediction and application of atmospheric refractivity gradients. This report describes the use of the evaporation duct over the ocean and a plan for obtaining information about the evaporation duct by space-borne sensors. There has been little research on the theory and modeling of lower atmospheric refractivity, particularly evaporation ducts over a nonhomogeneous ocean over the past five decades. Much is known about surface layer similarity theory and propagation model techniques, but little attention has been placed on the spatial variabilities in the turbulent propagation medium (such as the atmospheric surface layer) in regions of strategic Navy interest. These regions include the coastal shelf, Gulf Stream, marginal ice zone, and those places where sharp sea surface temperature fronts exist. For tomorrow's Navy, using remote sensing techniques to infer evaporative and tropospheric ducts are a requirement. Although research efforts on ducts must couple the tropospheric and surface layer components, this report summarizes the state of the art for the evaporative duct and assess the potential of new and future results on improving next generation naval warfare capabilities.

  8. Lessons learned from the former Soviet biological warfare program

    Science.gov (United States)

    Anderson, Debra A.

    The purpose of this doctoral project was to develop the most credible educational tool openly available to enhance the understanding and the application of biological weapons threat analysis. The theory governing the effectiveness of biological weapons was integrated from publications, lectures, and seminars primarily provided by Kenneth Alibek and William C. Patrick III, the world's foremost authorities on the topic. Both experts validated the accuracy of the theory compiled from their work and provided forewords. An exercise requiring analysis of four national intelligence estimates of the former Soviet biological warfare program was included in the form of educational case studies to enhance retention, experience, and confidence by providing a platform against which the reader can apply the newly learned theory. After studying the chapters on BW theory, the reader can compare his/her analysis of the national intelligence estimates against the analysis provided in the case studies by this researcher. This training aid will be a valuable tool for all who are concerned with the threat posed by biological weapons and are therefore seeking the most reliable source of information in order to better understand the true nature of the threat.

  9. Back to the future: aerial warfare in Libya

    Directory of Open Access Journals (Sweden)

    João Paulo Nunes Vicente

    2013-05-01

    Full Text Available A century after the first air bomb mission, a new intervention in the same geographic space has made evident the changes in Airpower. The Aerial Warfare in Libya has radically changed the civil war, complying with a UN mission to protect Libyan population, imposing a no-fly zone and an arms embargo. Therefore, Operation Unified Protector became one of the most successful campaigns in the history of NATO. We aim to assess the operational efficiency of Airpower in the conflict in Libya, focusing on the challenges of a War essentially Aerial. Despite the military results and the fact that some political objectives were met, we can identify some concerning trends that, if not shifted, may negatively influence future NATO operations. We do not aim to draw general and universal conclusions on the strategic value of Airpower based on the analysis of a specific case. Above all, we focus on identifying some lessons which have influenced OUP operational efficiency. Thus, we must analyze some factors, such as the scope of objectives, the type of opposing action and aerial strategy used by the coalition and then focus on the challenges arising from the OUP.

  10. Virtual command center for distributed collaborative undersea warfare

    Science.gov (United States)

    Barton, Robert J., III; Encarnacao, L. M.; Shane, Richard T.; Drew, Ernest; Mulhearn, Jim F.

    2000-08-01

    The Naval Undersea Warfare Center, Division Newport (NUWCDIVNPT) and its partners have developed a prototype CTI (Command Technology Initiatives) Test Bed to demonstrate the utility of a facility where warfighters, government, academia and industry can evaluate the application of collaborate decision support and advanced computer graphics technologies to submarine command and control. The CTI Test bed is currently comprised of three components: Collaborative Visualization Environment (CVE) for Submarine Command and Control, which provides a coherent 3-D display of the perceived undersea battlespace. Individual windows can display multi-dimensional data/information to support a common picture of undersea battlespace management and tactical control; Submarine Fleet Mission Programming Library (SFMPL) which provides environmental data, such as transmission loss, to CVE; Command and Control Data Server which provides contact reports, areas of uncertainty, and ownship/contact motion to CVE Facilitated by a CORBA4 (Common Object Request Broker Architecture) compliant architecture, remotely connected collaborators interact via a computer network to generate and share information. Additionally, collaborators communicate orally via network telephony. Currently, the CTI Test bed is configured to provide volumetric displays of: undersea battlespace w/ bathymetry; Detection/Counter-detection regions for a given probability of detection; Contact(s) Volume of Uncertainty The CTI Test Bed provides a CORBA compliant framework, which can be readily expanded to evaluate candidate applications of collaborative command and tactical decision support and advanced computer graphics technologies.

  11. Research on performance of ethernet interface in network centric warfare

    Institute of Scientific and Technical Information of China (English)

    梁永生; 张乃通

    2004-01-01

    The concept of network centric warfare (NCW) and its character, high requirement of real-time synchronization are introduced. The distributed equal-node network architecture in NCW is presented. Based on theoretical analysis on ethernet interface performance, this paper presents that forwarding latency between ethernet interface devices is a key influence factor of real-time synchronization in NCW. Ethernet fundamental is briefly introduced. The model between a switch under test (SUT) and a smartbits card is presented and used for two interconnecting switches in NCW. On condition that ignoring the latency of connecting fiber or twisted pairs and processing latency of the smartbits test system, this paper presents that clock frequency tolerance (CFT) between a SUT and a smartbits card is a leading influence factor of forwarding latency of an ethernet switch. The formulae to calculate internal forwarding latency and forwarding latency caused by its CFT are deduced. Theoretical calculation on forwarding latency of an ethernet switch based on the given CFT and test time is implemented. Experimental study on primary forwarding latency and secondary forwarding latency is implemented and forwarding latency between the SUT and the smartbits card is measured, thus testifying the accuracy of the above theoretical analysis that the CFT is a key influence factor of forwarding latency. The measures to satisfy the needs of forwarding latency in NCW are presented.

  12. An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2013-08-01

    Full Text Available The enzyme acetylcholinesterase (AChE is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer, it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10−12 mol/L for sarin, 6.31 × 10−12 mol /L for soman, 6.17 × 10−11 mol/L for tabun, and 2.19 × 10−11 mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples.

  13. An acetylcholinesterase-based chronoamperometric biosensor for fast and reliable assay of nerve agents.

    Science.gov (United States)

    Pohanka, Miroslav; Adam, Vojtech; Kizek, Rene

    2013-01-01

    The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments described herein, an AChE- based electrochemical biosensor using screen printed electrode systems was prepared. The biosensor was used for assay of nerve agents such as sarin, soman, tabun and VX. The limits of detection achieved in a measuring protocol lasting ten minutes were 7.41 × 10(-12) mol/L for sarin, 6.31 × 10(-12) mol /L for soman, 6.17 × 10(-11) mol/L for tabun, and 2.19 × 10(-11) mol/L for VX, respectively. The assay was reliable, with minor interferences caused by the organic solvents ethanol, methanol, isopropanol and acetonitrile. Isopropanol was chosen as suitable medium for processing lipophilic samples. PMID:23999806

  14. Non-surgical treatment of deep wounds triggered by harmful physical and chemical agents: a successful combined use of collagenase and hyaluronic acid.

    Science.gov (United States)

    Onesti, Maria G; Fino, Pasquale; Ponzo, Ida; Ruggieri, Martina; Scuderi, Nicolò

    2016-02-01

    Some chronic ulcers often occur with slough, not progressing through the normal stages of wound healing. Treatment is long and other therapies need to be performed in addition to surgery. Patients not eligible for surgery because of ASA class (American Society of Anesthesiologists class) appear to benefit from chemical therapy with collagenase or hydrocolloids in order to prepare the wound bed, promoting the healing process. We describe four cases of traumatic, upper limb deep wounds caused by different physical and chemical agents, emphasising the effectiveness of treatment based on topical application of collagenase and hyaluronic acid (HA) before standardised surgical procedures. We performed careful disinfection of lesions combined with application of topical cream containing hyaluronic acid, bacterial fermented sodium hyaluronate (0·2%w/w) salt, and bacterial collagenase obtained from non-pathogenic Vibrio alginolyticus (>2·0 nkat1/g). In one patient a dermo-epidermal graft was used to cover the wide loss of substance. In two patients application of a HA-based dermal substitute was done. We obtained successful results in terms of wound healing, with satisfactory aesthetic result and optimal recovery of the affected limb functionality. Topical application of collagenase and HA, alone or before standardised surgical procedures allows faster wound healing. PMID:24698215

  15. Autonomous bio-chemical decontaminator (ABCD) against weapons of mass destruction

    Science.gov (United States)

    Hyacinthe, Berg P.

    2006-05-01

    The proliferation of weapons of mass destruction (WMD) and the use of such elements pose an eminent asymmetric threat with disastrous consequences to the national security of any nation. In particular, the use of biochemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered as a very peculiar threat. Accordingly, taking a quarantine-before-inhalation approach to biochemical warfare, the author introduces the notion of autonomous biochemical decontamination against WMD. In the unfortunate event of a biochemical attack, the apparatus proposed herein is intended to automatically detect, identify, and more importantly neutralize a biochemical threat. Along with warnings concerning a cyber-WMD nexus, various sections cover discussions on human senses and computer sensors, corroborating evidence related to detection and neutralization of chemical toxins, and cyber-assisted olfaction in stand alone, peer-to-peer, and network settings. In essence, the apparatus can be used in aviation and mass transit security to initiate mass decontamination by dispersing a decontaminant aerosol or to protect the public water supply against a potential bioterrorist attack. Future effort may involve a system-on-chip (SoC) embodiment of this apparatus that allows a safer environment for the emerging phenomenon of cyber-assisted olfaction and morph cell phones into ubiquitous sensors/decontaminators. Although this paper covers mechanisms and protocols to avail a neutralizing substance, further research will need to explore the substance's various pharmacological profiles and potential side effects.

  16. Spectroscopic investigation of the noncovalent association of the nerve agent simulant diisopropyl methylphosphonate (DIMP) with zinc(II) porphyrins.

    Science.gov (United States)

    Maza, William A; Vetromile, Carissa M; Kim, Chungsik; Xu, Xue; Zhang, X Peter; Larsen, Randy W

    2013-11-01

    Organophosphonates pose a significant threat as chemical warfare agents, as well as environmental toxins in the form of pesticides. Thus, methodologies to sense and decontaminate these agents are of significant interest. Porphyrins and metalloporphyrins offer an excellent platform to develop chemical threat sensors and photochemical degradation systems. These highly conjugated planar molecules exhibit relatively long-lived singlet and triplet states with high quantum yields and also form self-associated complexes with a wide variety of molecules. A significant aspect of porphyrins is the ability to functionalize the peripheral ring system either directly to the pyrrole rings or to the bridging methine carbons. In this report, steady-state absorption and fluorescence are utilized to probe binding affinities of a series of symmetric and asymmetric zinc(II) metalloporphyrins for the nerve agent simulant diisopropyl methylphosphonate (DIMP) in hexane. The red shifts in the absorption and emission spectra observed for all of the metalloporphyrins probed are discussed in the frame of Gouterman's four orbital model and a common binding motif involving coordination between the metalloporphyrin and DIMP via interaction between the zinc metal center of the porphyrin and phosphoryl oxygen of DIMP (Zn-O═P) is proposed. PMID:24093669

  17. Assessment of Semi-Quantitative Health Risks of Exposure to Harmful Chemical Agents in the Context of Carcinogenesis in the Latex Glove Manufacturing Industry.

    Science.gov (United States)

    Yari, Saeed; Fallah Asadi, Ayda; Varmazyar, Sakineh

    2016-01-01

    Excessive exposure to chemicals in the workplace can cause poisoning and various diseases. Thus, for the protection of labor, it is necessary to examine the exposure of people to chemicals and risks from these materials. The purpose of this study is to evaluate semi-quantitative health risks of exposure to harmful chemical agents in the context of carcinogenesis in a latex glove manufacturing industry. In this cross-sectional study, semi-quantitative risk assessment methods provided by the Department of Occupational Health of Singapore were used and index of LD50, carcinogenesis (ACGIH and IARC) and corrosion capacity were applied to calculate the hazard rate and the biggest index was placed as the basis of risk. To calculate the exposure rate, two exposure index methods and the actual level of exposure were employed. After identifying risks, group H (high) and E (very high) classified as high-risk were considered. Of the total of 271 only 39 (15%) were at a high risk level and 3% were very high (E). These risks only was relevant to 7 materials with only sulfuric acid placed in group E and 6 other materials in group H, including nitric acid (48.3%), chromic acid (6.9%), hydrochloric acid (10.3%), ammonia (3.4%), potassium hydroxide (20.7%) and chlorine (10.3%). Overall, the average hazard rate level was estimated to be 4 and average exposure rate to be 3.5. Health risks identified in this study showed that the manufacturing industry for latex gloves has a high level of risk because of carcinogens, acids and strong alkalisand dangerous drugs. Also according to the average level of risk impact, it is better that the safety design strategy for latex gloves production industry be placed on the agenda. PMID:27165227

  18. Chemical Weapons Exposures in Iraq: Challenges of a Public Health Response a Decade Later.

    Science.gov (United States)

    Baird, Coleen; Mirza, Raul; Sharkey, Jessica M; Teichman, Ron; Longmire, Romarius; Harkins, Deanna; Llanos, Joseph; Abraham, Joseph; McCannon, Charles; Heller, Jack; Tinklepaugh, Carole; Rice, William

    2016-01-01

    An October 14, 2014 article in The New York Times reported that the US Department of Defense (DoD) concealed, for nearly a decade, circumstances surrounding service members' exposure to chemical warfare agents (CWA) while deployed to Iraq in support of Operations Iraqi Freedom and New Dawn from March 13, 2003, to December 31, 2011, and alleged failure of the DoD to provide expedient and adequate medical care. This report prompted the DoD to devise a public health investigation, with the Army Public Health Center (Provisional) as the lead agency to identify, evaluate, document, and track CWA casualties of the Iraq war. Further, the DoD revisited and revised clinical guidelines and health policies concerning CWA exposure based on current evidence-based guidelines and best practices. PMID:27613213

  19. The Handicap Principle, Strategic Information Warfare and the Paradox of Asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhanshan [University of Idaho; Sheldon, Frederick T [ORNL; Krings, Axel [ORNL

    2010-01-01

    The term asymmetric threat (or warfare) often refers to tactics utilized by countries, terrorist groups, or individuals to carry out attacks on a superior opponent while trying to avoid direct confrontation. Information warfare is sometimes also referred to as a type of asymmetric warfare perhaps due to its asymmetry in terms of cost and efficacy. Obviously, there are differences and commonalities between two types of asymmetric warfare. One major difference lies in the goal to avoid confrontation and one commonality is the asymmetry. Regardless, the unique properties surrounding asymmetric warfare warrant a strategic-level study. Despite enormous studies conducted in the last decade, a consensus on the strategy a nation state should take to deal with asymmetric threat seems still intriguing. In this article, we try to shed some light on the issue from the handicap principle in the context of information warfare. The Handicap principle was first proposed by Zahavi (1975) to explain the honesty or reliability of animal communication signals. He argued that in a signaling system such as one used in mate selection, a superior male is able to signal with a highly developed "handicap" to demonstrate its quality, and the handicap serves "as a kind of (quality) test imposed on the individual" (Zahavi 1975, Searcy and Nowicki 2005). The underlying thread that inspires us for the attempt to establish a connection between the two apparently unrelated areas is the observation that competition, communication and cooperation (3C), which are three fundamental processes in nature and against which natural selection optimize living things, may also make sense in human society. Furthermore, any communication networks, whether it is biological networks (such as animal communication networks) or computer networks (such as the Internet) must be reasonably reliable (honest in the case of animal signaling) to fulfill its missions for transmitting and receiving messages. The strategic

  20. Quantum Chemical Study of the Thermochemical Properties of Organophosphorous Compounds.

    Science.gov (United States)

    Khalfa, A; Ferrari, M; Fournet, R; Sirjean, B; Verdier, L; Glaude, P A

    2015-10-22

    Organophosphorous compounds are involved in many toxic compounds such as fungicides, pesticides, or chemical warfare nerve agents. The understanding of the decomposition chemistry of these compounds in the environment is largely limited by the scarcity of thermochemical data. Because of the high toxicity of many of these molecules, experimental determination of their thermochemical properties is very difficult. In this work, standard gas-phase thermodynamic data, i.e., enthalpies of formation (ΔfH298°), standard entropies (S298°), and heat capacities (Cp°(T)), were determined using quantum chemical calculations and more specifically the CBS-QB3 composite method, which was found to be the best compromise between precision and calculation time among high accuracy composite methods. A large number of molecules was theoretically investigated, involving trivalent and pentavalent phosphorus atoms, and C, H, O, N, S, and F atoms. These data were used to propose 83 original groups, used in the semiempirical group contribution method proposed by Benson. Thanks to these latter group values, thermochemical properties of several nerve agents, common pesticides and herbicides have been evaluated. Bond dissociations energies (BDE), useful for the analysis the thermal stability of the compounds, were also determined in several molecules of interest. PMID:26434606

  1. Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers.

    Science.gov (United States)

    Loui, Albert; Ratto, Timothy V; Wilson, Thomas S; McCall, Scott K; Mukerjee, Erik V; Love, Adam H; Hart, Bradley R

    2008-05-01

    A compact and low-power microcantilever-based sensor array has been developed and used to detect various chemical vapor analytes. In contrast to earlier micro-electro-mechanical systems (MEMS) array sensors, this device uses the static deflection of piezoresistive cantilevers due to the swelling of glassy polyolefin coatings during sorption of chemical vapors. To maximize the sensor response to a variety of chemical analytes, the polymers are selected based on their Hildebrand solubility parameters to span a wide range of chemical properties. We utilize a novel microcontact spotting method to reproducibly coat a single side of each cantilever in the array with the polymers. To demonstrate the utility of the sensor array we have reproducibly detected 11 chemical vapors, representing a breadth of chemical properties, in real time and over a wide range of vapor concentrations. We also report the detection of the chemical warfare agents (CWAs) VX and sulfur mustard (HD), representing the first published report of CWA vapor detection by a polymer-based, cantilever sensor array. Comparisons of the theoretical polymer/vapor partition coefficient to the experimental cantilever deflection responses show that, while general trends can be reasonably predicted, a simple linear relationship does not exist. PMID:18427681

  2. Guerilla Warfare & Law Enforcement: Combating the 21st Century Terrorist Cell within the U.S.

    Directory of Open Access Journals (Sweden)

    Major Richard Hughbank

    2009-01-01

    Full Text Available Both domestic and international terrorist organizations employ guerrilla warfare tactics, techniques, and procedures. Thus, the ability to identify and defeat the members of these organizations, cripple their infrastructures, and disrupt their financial resources lies in the understanding of modern guerrilla warfare as it develops in the twenty-first century within the United States.3 The forms of asymmetric warfare4 adopted by domestic and international terrorist groups alike is no longer intended to gain simple media exposure or governmental manipulation; they want to make an overpowering impact by causing massive loss of life and severe damage to infrastructure and are often motivated by religious imperatives and political goals. As terrorism analyst Stephen Flynn has observed, "Throughout the 20th century [Americans] were able to treat national security as essentially an out-of-body experience. When confronted by threats, [America] dealt with them on the turf of our allies or our adversaries. Aside from the occasional disaster and heinous crime, civilian life [in the United States] has been virtually terror-free." With the turn of the twenty-first century, terrorist operations have become more prevalent in the United States and are taking shape in the form of modern guerrilla warfare, thus creating new challenges for federal, state, and local law enforcement agencies. After reviewing the origin and nature of these challenges, this article will offer some suggestions for countering guerilla warfare in the United States.

  3. A new method of inhibiting pollutant release from source water reservoir sediment by adding chemical stabilization agents combined with water-lifting aerator

    Institute of Scientific and Technical Information of China (English)

    Beibei Chai; Tinglin Huang; Weihuang Zhu; Fengying Yang

    2011-01-01

    Source water reservoirs easily become thermally and dynamically stratified.Internal pollution released from reservoir sediments is the main cause of water quality problems.To mitigate the internal pollution more effectively,a new method,which combined chemical stabilization with water lifting aerator (WLA) technology,was proposed and its efficiency in inhibiting pollutant release was studied by controlled sediment-water interface experiments.The results showed that this new method can inhibit pollutant release from sediment effectively.The values of mean efficiency (E) in different reactors 2#-5# (1# with no agent,2# 10 mg/L polymeric aluminum chloride (PAC) was added,3# 20 mg/L PAC was added,4# 30 mg/L PAC was added,5# 20 mg/L PAC and 0.2 mg/L palyacrylamide (PAM)were added) for PO43- were 35.0%,43.9%,50.4% and 63.6%,respectively.This showed that the higher the PAC concentration was,the better the inhibiting efficiency was,and PAM addition strengthened the inhibiting efficiency significantly.For Fe2+,the corresponding values of E for the reactors 2#-5# were 22.9%,47.2%,34.3% and 46.2%,respectively.The inhibiting effect of PAC and PAM on Mn release remained positive for a relatively short time,about 10 days,and was not so effective as for PO43- and Fe2+.The average efliciencies in inhibiting the release of UV254 were 35.3%,25.9%,35.5%,38.9% and 39.5% for reactors 2#-5#,respectively.The inhibiting mechanisms of the agents for different pollutants varied among the conditions and should be studied further.

  4. Radiation sensitizations at DNA-level by chemical and biological agents. Coordinated programme on improvement of radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Radiation sensitization by chemical agents at DNA level is discussed. Procaine, Halothan and Metronidazole showed no significant effect on unscheduled DNA synthesis (UDS) in mouse spleen cells, investigated by autoradiography and no effect on rejoining of DNA single strand breaks after gamma or UV irradiation. Oxyphenbutazon and prednisolone reduced the replicative DNA synthesis in vitro and in vivo but there was only little effect on DNA repair in the in vivo experiments. These two substances showed also a small reduction in poly(ADP-ribose) synthesis (PAR synthesis). 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) in combination with UV irradiation showed that 5-MOP was more toxic than mutagen, but induced much less DNA crosslinks than 8-MOP. Autoradiographic studies of radiation sensitization by biological agents showed significant inhibition of UDS in Yoshida tumor cells after acute mycoplasma infection in rats. Nucleoid sedimentation studies showed only in the case of Yoshida tumor cells after mycoplasma infection a dramatic effect in the sedimentation behaviour. Sensitization of cells by changing chromatin structure was also studied. Benzamide, 3-NH2-benzamide, 3-Methoxybenzamide, Spermine, Theophyllin and Caffeine were tested in different concentrations on replicative DNA synthesis, UDS after UV irradiation and PAR synthesis Chinese hamster ovary cells. 5-Methoxybenzamide was the strongest sensitizer and inhibitor of the PAR synthesis, and was used in further experiments. Results of KFA Juelich on sensitization of a mamma-adenocarcinoma EO 771 on C57 B1 mice are given. Replicative DNA synthesis, DNA repair and PAR synthesis were compared in spleen cells and adenocarcinoma cells after treatment with 5-Methoxybenzamide. An inhibitory effect on UDS could be shown only in adenocarcinoma cells but not in the mice spleen cells

  5. Non-toxic complexing agent Tri-sodium citrate's effect on chemical bath deposited ZnS thin films and its growth mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Agawane, G.L. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Moholkar, A.V. [Electrochemical Mat. Lab., Department of Physics, Shivaji University, Kolhapur 416 004 (India); Gurav, K.V. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Yun, Jae Ho, E-mail: yunjh92@kier.re.kr [Photovoltaic Research Group, KIER, Jang-Dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Lee, Jeong Yong [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer ZnS thin films were prepared by CBD using non-toxic complexing agent. Black-Right-Pointing-Pointer The morphology of ZnS thin film was improved with Na{sub 3}-citrate. Black-Right-Pointing-Pointer The growth mechanism of ZnS thin films is depends upon the concentration of Na{sub 3}-citrate. - Abstract: This study demonstrates the growth and characterizations of chemical bath deposited zinc sulfide (ZnS) thin films prepared at pH 10. Aqueous zinc acetate and thiourea were used as precursors along with the non-toxic complexing agent, Na{sub 3}-citrate. The effects of different concentrations of Na{sub 3}-citrate from 0 to 0.2 M on the structural, morphological, compositional, chemical, and optical properties of ZnS thin films were studied. It was revealed through field emission scanning electron microscopy studies that an increase in the concentration of Na{sub 3}-citrate leads to an improvement of the uniformity of the ZnS thin films and decrease in the grain size. Atomic force microscopy showed that the RMS value decreases with an increase in Na{sub 3}-citrate concentration. X-ray diffraction study revealed that crystallinity of ZnS thin films improves upon increasing concentration of Na{sub 3}-citrate and that the films exhibit a hexagonal polycrystalline ZnS phase while deposited with 0.2 and 0.1 M Na{sub 3}-citrate. X-ray photoelectron spectroscopy revealed that the signal intensity decreases for Zn 2p{sub 3/2} and S 2p{sub 1/2} as the concentration of Na{sub 3}-citrate decreases from 0.2 to 0 M. It was shown by ultraviolet-visible spectroscopy that approximately 80% transmission in the visible region and absorption edge shifts towards blue when the concentration of Na{sub 3}-citrate increases from 0 to 0.2 M. The band gap energy of the ZnS film deposited without Na{sub 3}-citrate was found to be 3.53 eV, while it increases from 3.73 to 3.80 eV with a decrease in Na{sub 3}-citrate concentration from 0.2 to 0.025 M. The

  6. 32P-Postlabeling test for covalent DNA binding of chemicals in vivo: Application to a variety of aromatic carcinogens and methylating agents

    International Nuclear Information System (INIS)

    Carcinogen--DNA adducts were detected and determined by 32P-postlabeling assay after exposure of mouse or rat tissues in vivo to a total of 28 compounds comprising 7 arylamines and derivatives, 3 azo compounds, 2 nitroaromatics, 12 polycyclic aromatic hydrocarbons, and 4 methylating agents. DNA was isolated from mouse skin, mouse liver, and rat liver after treatment with the individual carcinogens, then digested enzymatically to deoxyribonucleoside 3'-monophosphates, which were converted to 5'-32P-labeled deoxyribonucleoside 3',5'-bisphosphates by T4 polynucleotide kinase-catalyzed [32P]phosphate transfer from [gamma-32P]ATP. The nucleotides were resolved by anion-exchange t.l.c. on polyethyleneimine-cellulose and detected by autoradiography. The determination of low levels of DNA binding of the aromatic carcinogens entailed the removal of normal nucleotides prior to the resolution of adduct nucleotides. For this purpose, an alternative procedure employing reversed-phase t.l.c. was devised which offered advantages for the detection of quantitatively minor adducts. The procedures described enabled the detection of 1 aromatic DNA adduct in approximately 10(8) normal nucleotides, while the limit of detection of methylated adducts was 1 adduct in approximately 6 X 10(5) nucleotides. The results show that a great number of carcinogen-DNA adducts of diverse structure are substrates for 32P-labeling by polynucleotide kinase-catalyzed phosphorylation. Because covalent DNA adduct formation in vivo appears to be an essential property of the majority of chemical carcinogens, 32P-postlabeling analysis of carcinogen--DNA adducts in mammalian tissues may serve as a test for the screening of chemicals for potential carcinogenicity

  7. THE CYBER DIMENSION OF MODERN HYBRID WARFARE AND ITS RELEVANCE FOR NATO

    Directory of Open Access Journals (Sweden)

    Sorin DUCARU

    2016-06-01

    Full Text Available The technological development and the instant communication possibilities advanced not only economic and social developments, but also evolving threats from those who exploit the vulnerabilities of communication and information systems. The cyber threat landscape points to a significant increase of the frequency, intensity, duration and sophistication of cyber-attacks. One of the new and concerning trends is the use of cyber capabilities in relation with military of hybrid operations – the so-called cyber dimension of hybrid warfare. NATO’s strategy on countering hybrid warfare is based on the triad: prepare-deter-defend, which also applies to cyber. Nations represent the first line of defence in countering hybrid strategies. International cooperation is also a key factor in this sense. It is in this context that NATO’s response to cyber-attacks in the context of hybrid warfare must be further refined.

  8. Halomonhystera disjuncta - a young-carrying nematode first observed for the Baltic Sea in deep basins within chemical munitions disposal sites

    Science.gov (United States)

    Grzelak, Katarzyna; Kotwicki, Lech

    2016-06-01

    Three deep basins in the Baltic Sea were investigated within the framework of the CHEMSEA project (Chemical Munitions Search & Assessment), which aims to evaluate the ecological impact of chemical warfare agents dumped after World War II. Nematode communities, which comprise the most numerous and diverse organisms in the surveyed areas, were investigated as a key group of benthic fauna. One of the most successful nematode species was morphologically identified as Halomonhystera disjuncta (Bastian, 1865). The presence of this species, which is an active coloniser that is highly resistant to disturbed environments, may indicate that the sediments of these disposal sites are characterised by toxic conditions that are unfavourable for other metazoans. Moreover, ovoviviparous reproductive behaviour in which parents carry their brood internally, which is an important adaptation to harsh environmental conditions, was observed for specimens from Gdansk Deep and Gotland Deep. This reproductive strategy, which is uncommon for marine nematodes, has not previously been reported for nematodes from the Baltic Sea sediment.

  9. Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat.

    Science.gov (United States)

    Song, Qilu; Wang, Shuping; Zhang, Gaisheng; Li, Ying; Li, Zheng; Guo, Jialin; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-01-01

    The induction of wheat male fertile lines by using the chemical hybridizing agent SQ-1 (CHA-SQ-1) is an effective approach in the utilization of heterosis; however, the molecular basis of male fertility remains unknown. Wheat flag leaves are the initial receptors of CHA-SQ-1 and their membrane structure plays a vital role in response to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-SQ-1 stress, we compared their quantitative proteomic profiles in the absence and presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative stress during CHA-SQ-1 treatments. Leaf O2 (-), H2O2, and malonaldehyde levels were significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase were significantly reduced. Proteome profiles of membrane-enriched fraction showed a change in the abundance of a battery of membrane proteins involved in multiple biological processes. These variable proteins mainly impaired photosynthesis, ATP synthesis protein mechanisms and were involved in the response to stress. These results provide an explanation of the relationships between membrane proteomes and anther abortion and the practical application of CHA for hybrid breeding. PMID:26379693

  10. Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat

    Directory of Open Access Journals (Sweden)

    Qilu eSong

    2015-08-01

    Full Text Available The induction of wheat male fertile lines by using the chemical hybridizing agent SQ-1 (CHA-SQ-1 is an effective approach in the utilization of heterosis; however, the molecular basis of male fertility remains unknown. Wheat flag leaves are the initial receptors of CHA-SQ-1 and their membrane structure plays a vital role in response to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-SQ-1 stress, we compared their quantitative proteomic profiles in the absence and presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative stress during CHA-SQ-1 treatments. Leaf O2-, H2O2, and malonaldehyde levels were significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase were significantly reduced. Proteome profiles of membrane-enriched fraction showed a change in the abundance of a battery of membrane proteins involved in multiple biological processes. These variable proteins mainly impaired photosynthesis, ATP synthesis protein mechanisms and were involved in the response to stress. These results provide an explanation of the relationships between membrane proteomes and anther abortion and the practical application of CHA for hybrid breeding.

  11. EFFECTS OF CHEMICAL FOAMING AGENTS ON THE PHYSICO-MECHANICAL PROPERTIES AND RHEOLOGICAL BEHAVIOR OF BAMBOO POWDER-POLYPROPYLENE FOAMED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Xiaxing Zhou,

    2012-02-01

    Full Text Available To make full use of bamboo resources in China and explore the foaming mechanism of bamboo powder-polypropylene (PP foamed composites, a foamed composite of 54 wt% PP and 13 wt% HMSPP containing 33 wt% bamboo powder blends was prepared by injection moulding. Effects of chemical foaming agents (CFA on the mechanical properties and rheological behavior of foamed composites were investigated. The mechanical measurements and ESEM test results indicated that the composite with 1% modified exothermic FA had smaller cell size and better cell distribution compared with endothermic FA. It also had better physico-mechanical properties, with a decrease of 14.2% in density and an increase of 16.8% to 40.2% in the specific tensile, bending, and notched impact strength compared with the non-foamed composite. The frequency sweep results indicated that all composites had a shear- thinning behavior, and both the modulus and complex viscosity of composite with 1% exothermic FA decreased compared with those of the non-foamed composite. The shear rate scans revealed that the non-Newtonian fluid index increased with the increase of exothermic FA content. The viscous activation energy of the modified composite with 1% exothermic FA was 46.41KJ•mol-1. This was an increase of 8.9% compared with that of the non-foamed analogue.

  12. Chemical synthesis and characterization of hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol) (EVA) nanocomposite using a phosphonic acid coupling agent for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Nabakumar; Mohapatra, Sasmita [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, West Bengal (India); Bhargava, Parag [Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai-400076 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, West Bengal (India)], E-mail: pramanik@chem.iitkgp.ernet.in

    2009-01-01

    A novel bio-analogue hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol) (EVA) nanocomposite has been synthesized by a solution-based chemical methodology with varying HAp contents from 10 to 60% (w/w). The surface of HAp particles has been modified with 2-carboxyethylphosphonic acid in order to enhance the interfacial bonding interaction between HAp and EVA, and hence to improve the mechanical properties of the composite. The interfacial modification has been investigated through Fourier transform infrared absorption spectra (FTIR), X-ray diffraction (XRD) and thermal analyses. The surface morphology of the composite and the homogeneous dispersion of nanoparticles in the polymer matrix have been investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. The use of phosphonic acid coupling agent promotes the uniform dispersion of HAp particles in the polymer matrix with strong particle-polymer interfacial bonding, which leads to a significant improvement in mechanical properties of the composite. The cell viability test indicates that the HAp-EVA nanocomposite is cytocompatible. The developed HAp-EVA nanocomposite may be potentially used as bone substitutes.

  13. Chemical synthesis and characterization of hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol) (EVA) nanocomposite using a phosphonic acid coupling agent for orthopedic applications

    International Nuclear Information System (INIS)

    A novel bio-analogue hydroxyapatite (HAp)-poly (ethylene co vinyl alcohol) (EVA) nanocomposite has been synthesized by a solution-based chemical methodology with varying HAp contents from 10 to 60% (w/w). The surface of HAp particles has been modified with 2-carboxyethylphosphonic acid in order to enhance the interfacial bonding interaction between HAp and EVA, and hence to improve the mechanical properties of the composite. The interfacial modification has been investigated through Fourier transform infrared absorption spectra (FTIR), X-ray diffraction (XRD) and thermal analyses. The surface morphology of the composite and the homogeneous dispersion of nanoparticles in the polymer matrix have been investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. The use of phosphonic acid coupling agent promotes the uniform dispersion of HAp particles in the polymer matrix with strong particle-polymer interfacial bonding, which leads to a significant improvement in mechanical properties of the composite. The cell viability test indicates that the HAp-EVA nanocomposite is cytocompatible. The developed HAp-EVA nanocomposite may be potentially used as bone substitutes

  14. Chemicals agents and human male fertility: Review of the past thirty years literature; Sostanze chimiche e infertilita` maschile: Rassegna degli studi condotti negli ultimi trenta anni

    Energy Technology Data Exchange (ETDEWEB)

    Traina, Maria Elsa; Urbani, Elisabetta [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Igiene Ambientale; Petrelli, Grazia; Pasquali, Massimo; Pace, Francesca [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Epidemiologia e Biostatistica

    1997-03-01

    The effects of several industrial and environmental pollutants on the male reproductive system are known from animal studies, but to date the impact on human fertility is still scarcely documented by epidemiological studies. The literature of the past thirty years on the adverse effects of occupational chemical factors on human male fertility is reviewed. Eighty-nine studies have been analysed with the purpose to identify the substances and/or the working categories investigated and to evaluate the methods used. Since 1977 the interest has been focused on the human exposures to 1,2-dibromochloropropane, a powerful spermatotoxic agent, but a consistent number of studies was also related to other active ingredients of pesticides (lindane, carbaryl, 2,4-dichlorofenoxiacetic acid), solvents (glycol ethers, carbon disulfide) and heavy metals (lead, cadmium). Among the indicators used in these studies to evaluate the effects on male fertility, the seminal parameters are analysed in 67 % of the reports; blood hormonal tests are done in 54 % of the cases. The literature suggests that further epidemiological studies need to be conducted in other working categories; more attention should be paid to the sensitivity and biological significance of the male reproductive parameters used in human studies.

  15. Skeletal evidence for Inca warfare from the Cuzco region of Peru.

    Science.gov (United States)

    Andrushko, Valerie A; Torres, Elva C

    2011-11-01

    This article addresses the bioarchaeological evidence for Inca warfare through an analysis of 454 adult skeletons from 11 sites in the Inca capital region of Cuzco, Peru. These 11 sites span almost 1000 years (AD 600-1532), which allows for a comparison of the evidence for warfare before the Inca came to power (Middle Horizon AD 600-1000), during the time of Inca ascendency in the Late Intermediate Period (AD 1000-1400), and after the Inca came to power and expanded throughout the Cuzco region and beyond (Inca Imperial Period, AD 1400-1532). The results indicate that 100 of 454 adults (22.0%) showed evidence of cranial trauma. Of these, 23 individuals had major cranial injuries suggestive of warfare, consisting of large, complete, and/or perimortem fractures. There was scant evidence for major injuries during the Middle Horizon (2.8%, 1/36) and Late Intermediate Period (2.5%, 5/199), suggesting that warfare was not prevalent in the Cuzco region before and during the Inca rise to power. Only in the Inca Imperial Period was there a significant rise in major injuries suggestive of warfare (7.8%, 17/219). Despite the significant increase in Inca times, the evidence for major cranial injuries was only sporadically distributed at Cuzco periphery sites and was entirely absent at Cuzco core sites. These findings suggest that while the Inca used warfare as a mechanism for expansion in the Cuzco region, it was only one part of a complex expansion strategy that included economic, political, and ideological means to gain and maintain control. PMID:21959843

  16. Tutorial on agent-based modeling and simulation. Part 2 : how to model with agents.

    Energy Technology Data Exchange (ETDEWEB)

    Macal, C. M.; North, M. J.; Decision and Information Sciences

    2006-01-01

    Agent-based modeling and simulation (ABMS) is a new approach to modeling systems comprised of interacting autonomous agents. ABMS promises to have far-reaching effects on the way that businesses use computers to support decision-making and researchers use electronic laboratories to do research. Some have gone so far as to contend that ABMS is a new way of doing science. Computational advances make possible a growing number of agent-based applications across many fields. Applications range from modeling agent behavior in the stock market and supply chains, to predicting the spread of epidemics and the threat of bio-warfare, from modeling the growth and decline of ancient civilizations to modeling the complexities of the human immune system, and many more. This tutorial describes the foundations of ABMS, identifies ABMS toolkits and development methods illustrated through a supply chain example, and provides thoughts on the appropriate contexts for ABMS versus conventional modeling techniques.

  17. Agent based simulation as an exploratory tool in the study of the human dimension of combat

    OpenAIRE

    Brown, Lloyd Philip.

    2000-01-01

    War is a human phenomenon and the essence of war is a clash between human wills Ref. 10. The Marine Corps is applying complexity theory to study the human dimension of land warfare with the agent based combat simulation Irreducible Semi-Autonomous Adaptive Combat (ISAAC), developed by Andrew Ilachinski. ISAAC is designed to allow the user to explore the evolving patterns of large unit behavior that result from the collective interactions of individual agents. An urban and a desert scenario we...

  18. Detection and classification of organophosphate nerve agent simulants using support vector machines with multiarray sensors.

    Science.gov (United States)

    Sadik, Omowunmi; Land, Walker H; Wanekaya, Adam K; Uematsu, Michiko; Embrechts, Mark J; Wong, Lut; Leibensperger, Dale; Volykin, Alex

    2004-01-01

    The need for rapid and accurate detection systems is expanding and the utilization of cross-reactive sensor arrays to detect chemical warfare agents in conjunction with novel computational techniques may prove to be a potential solution to this challenge. We have investigated the detection, prediction, and classification of various organophosphate (OP) nerve agent simulants using sensor arrays with a novel learning scheme known as support vector machines (SVMs). The OPs tested include parathion, malathion, dichlorvos, trichlorfon, paraoxon, and diazinon. A new data reduction software program was written in MATLAB V. 6.1 to extract steady-state and kinetic data from the sensor arrays. The program also creates training sets by mixing and randomly sorting any combination of data categories into both positive and negative cases. The resulting signals were fed into SVM software for "pairwise" and "one" vs all classification. Experimental results for this new paradigm show a significant increase in classification accuracy when compared to artificial neural networks (ANNs). Three kernels, the S2000, the polynomial, and the Gaussian radial basis function (RBF), were tested and compared to the ANN. The following measures of performance were considered in the pairwise classification: receiver operating curve (ROC) Az indices, specificities, and positive predictive values (PPVs). The ROC Az) values, specifities, and PPVs increases ranged from 5% to 25%, 108% to 204%, and 13% to 54%, respectively, in all OP pairs studied when compared to the ANN baseline. Dichlorvos, trichlorfon, and paraoxon were perfectly predicted. Positive prediction for malathion was 95%. PMID:15032529

  19. Radioprotective Agents

    Directory of Open Access Journals (Sweden)

    Ilker Kelle

    2008-01-01

    Full Text Available Since1949, a great deal of research has been carried out on the radioprotective activity of various chemical substances. Thiol compounds, compounds which contain –SH radical, different classes of pharmacological agents and other compounds such as vitamine C and WR-2721 have been shown to reduce mortality when administered prior to exposure to a lethal dose of radiation. Recently, honey bee venom as well as that of its components melittin and histamine have shown to be valuable in reduction of radiation-induced damage and also provide prophylactic alternative treatment for serious side effects related with radiotherapy. It has been suggested that the radioprotective activity of bee venom components is related with the stimulation of the hematopoetic system.

  20. Flexible carbon nanotube sensors for nerve agent simulants

    International Nuclear Information System (INIS)

    Chemiresistor-based vapour sensors made from network films of single-walled carbon nanotube (SWNT) bundles on flexible plastic substrates (polyethylene terephthalate, PET) can be used to detect chemical warfare agent simulants for the nerve agents Sarin (diisopropyl methylphosphonate, DIMP) and Soman (dimethyl methylphosphonate, DMMP). Large, reproducible resistance changes (75-150%), are observed upon exposure to DIMP or DMMP vapours, and concentrations as low as 25 ppm can be detected. Robust sensor response to simulant vapours is observed even in the presence of large equilibrium concentrations of interferent vapours commonly found in battle-space environments, such as hexane, xylene and water (10 000 ppm each), suggesting that both DIMP and DMMP vapours are capable of selectively displacing other vapours from the walls of the SWNTs. Response to these interferent vapours can be effectively filtered out by using a 2 μm thick barrier film of the chemoselective polymer polyisobutylene (PIB) on the SWNT surface. These network films are composed of a 1-2 μm thick non-woven mesh of SWNT bundles (15-30 nm diameter), whose sensor response is qualitatively and quantitatively different from previous studies on individual SWNTs, or a network of individual SWNTs, suggesting that vapour sorption at interbundle sites could be playing an important role. This study also shows that the line patterning method used in device fabrication to obtain any desired pattern of films of SWNTs on flexible substrates can be used to rapidly screen simulants at high concentrations before developing more complicated sensor systems