WorldWideScience

Sample records for chemical vapour transport

  1. Chemical vapour transport of pyrite (FeS 2) with halogen (Cl, Br, I)

    Science.gov (United States)

    Fiechter, S.; Mai, J.; Ennaoui, A.; Szacki, W.

    1986-12-01

    A systematic study of chemical vapour transport (CVT) of pyrite with halogen, hydrogen halides and ammonium halides as transporting agents has shown that the transport with chlorine and bromine in a temperature gradient Δ T = 920-820 K yields the highest transport rates (˜6 mg/h) with crystals up to 5 mm edge length. Computing thermochemical equilibria and flux functions in the system Fe-S-Hal (Hal = Cl, Br, I) it has been confirmed that the transport velocity of pyrite is limited by the concentration of FeHal 2 in the vapour phase, the equilibrium position between FeHal 2(g) and FeHal 3(g) and the flux directions of the iron gas species.

  2. Transport properties of field effect transistors with randomly networked single walled carbon nanotubes grown by plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Park, Wanjun

    2009-01-01

    The transport properties of randomly networked single walled carbon nanotube (SWNT) transistors with different channel lengths of L c = 2-10 μm were investigated. Randomly networked SWNTs were directly grown for the two different densities of ρ ∼ 25 μm -2 and ρ ∼ 50 μm -2 by water plasma enhanced chemical vapour deposition. The field effect transport is governed mainly by formation of the current paths that is related to the nanotube density. On the other hand, the off-state conductivity deviates from linear dependence for both nanotube density and channel length. The field effect mobility of holes is estimated as 4-13 cm 2 V -1 s -1 for the nanotube transistors based on the simple MOS theory. The mobility is increased for the higher density without meaningful dependence on the channel lengths.

  3. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    International Nuclear Information System (INIS)

    Patel, Kaushik; Prajapati, Jagdish; Vaidya, Rajiv; Patel, S.G.

    2005-01-01

    Single crystals of the lamellar compound, ZrSe 3 , were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700-1450 nm. The indirect as well as direct band gap of ZrSe 3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303-423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe 3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail. (author)

  4. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  5. Pengaruh Temperatur, Massa Zink, Substrat Dan Waktu Tahan Terhadap Struktur Dan Morfologi Zno Hasil Sintesis Dengan Metode Chemical Vapour Transport (CVT

    Directory of Open Access Journals (Sweden)

    Arisela Distyawan

    2013-09-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Material Zink Oksida (ZnO telah berhasil disintesis menggunakan metode Chemical Vapour Transport dengan bahan dasar prekursor berupa serbuk Zn yang dipanaskan hingga mencapai temperatur uap dalam furnace horisontal. Adapun variasi yang diberikan dalam penelitian adalah berupa temperatur pemanasan (850, 900, dan 950oC, massa prekursor Zn (0,15, 0,25, dan 0,35g, lama waktu sputtering substrat (90 dan 180 detik, dan waktu tahan khusus untuk mengetahui initial growth ZnO (10, 20, 30, 40, 50, dan 60 menit. Pembentukan Zink Oksida (ZnO dikonfirmasi melalui data X-RD, dimana telah terbentuk material ZnO dengan struktur hexagonal wurtzite. Berdarsarkan data XRD juga diketahui ukuran kristal pada sampel sputtering 90 detik mengalami penurunan bersamaan penambahan massa Zn. Dari hasil pengamatan SEM didapatkan bahwa morfologi permukaan lapisan tipis ZnO terdiri dari berbagai macam bentuk berupa nanoparticle, nanowires, nanorods, dan nanotetrapod. Lapisan Zno paling tebal sebesar ±350 nm pada sampel 950oC-0,15g sputter 90 detik. Semakin tinggi temperatur operasi berdampak peningkatan ukuran partikel. Pengujian FTIR turut menguatkan terbentuknya lapisan tipis di permukaan substrat Alumina. Hal ini didasarkan terjadinya penyerapan vibrasi yang membentuk lekukan pada kisaran area 509 cm-1 dari masing-masing sampel.

  6. Hot-wire chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Cummings, FR

    2006-07-01

    Full Text Available ablation of graphite, carbon-arc discharge and chemical vapour deposition (CVD). However, some of these techniques have been shown to be expensive due to high deposition temperatures and are not easily controllable. Recently hot-wire chemical vapour...

  7. Ethylene vinylacetate copolymer and nanographite composite as chemical vapour sensor

    International Nuclear Information System (INIS)

    Stepina, Santa; Sakale, Gita; Knite, Maris

    2013-01-01

    Polymer-nanostructured carbon composite as chemical vapour sensor is described, made by the dissolution method of a non-conductive polymer, ethylene vinylacetate copolymer, mixed with conductive nanographite particles (carbon black). Sensor exhibits relative electrical resistance change in chemical vapours, like ethanol and toluene. Since the sensor is relatively cheap, easy to fabricate, it can be used in air quality monitoring and at industries to control hazardous substance concentration in the air, for example, to protect workers from exposure to chemical spills

  8. Long distance spin communication in chemical vapour deposited graphene

    Science.gov (United States)

    Kamalakar, M. Venkata; Groenveld, Christiaan; Dankert, André; Dash, Saroj P.

    2015-04-01

    Graphene is an ideal medium for long-distance spin communication in future spintronic technologies. So far, the prospect is limited by the smaller sizes of exfoliated graphene flakes and lower spin transport properties of large-area chemical vapour-deposited (CVD) graphene. Here we demonstrate a high spintronic performance in CVD graphene on SiO2/Si substrate at room temperature. We show pure spin transport and precession over long channel lengths extending up to 16 μm with a spin lifetime of 1.2 ns and a spin diffusion length ~6 μm at room temperature. These spin parameters are up to six times higher than previous reports and highest at room temperature for any form of pristine graphene on industrial standard SiO2/Si substrates. Our detailed investigation reinforces the observed performance in CVD graphene over wafer scale and opens up new prospects for the development of lateral spin-based memory and logic applications.

  9. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  10. Chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Arendse, CJ

    2006-02-01

    Full Text Available , effective, more versatile and easily scalable to large substrate sizes. In this paper, we present a design of the hot-wire CVD system constructed at the CSIR for the deposition of CNTs. Additionally, we will report on the structure of CNTs deposited... exhibit exceptional chemical and physical properties related to toughness, chemical inertness, magnetism, and electrical and thermal conductivity. A variety of preparation methods to synthesise CNTs are known, e.g. carbon-arc discharge, laser ablation...

  11. CHEMICAL VAPOUR DEPOSITION FROM A RADIATION-SENSITIVE PRECURSOR

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates in one aspect to a method of depositing a thin film on a substrate by chemical vapour deposition (CVD) from a radiation-sensitive precursor substance. The method comprises the steps of: (i) placing the substrate in a reaction chamber of a CVD system; (ii) heating...... heating pulse followed by an idle period; (iii) during at least one of the idle periods, providing a pressure pulse of precursor substance inside the reaction chamber by feeding at least one precursor substance to the reaction chamber so as to establish a reaction partial pressure for thin film deposition...... is formed. According to a further aspect, the invention relates to a chemical vapour deposition (CVD) system for depositing a thin film onto a substrate using precursor substances containing at least one radiation sensitive species....

  12. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...... structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can...

  13. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  14. Silicon nanowire arrays as learning chemical vapour classifiers

    International Nuclear Information System (INIS)

    Niskanen, A O; Colli, A; White, R; Li, H W; Spigone, E; Kivioja, J M

    2011-01-01

    Nanowire field-effect transistors are a promising class of devices for various sensing applications. Apart from detecting individual chemical or biological analytes, it is especially interesting to use multiple selective sensors to look at their collective response in order to perform classification into predetermined categories. We show that non-functionalised silicon nanowire arrays can be used to robustly classify different chemical vapours using simple statistical machine learning methods. We were able to distinguish between acetone, ethanol and water with 100% accuracy while methanol, ethanol and 2-propanol were classified with 96% accuracy in ambient conditions.

  15. Low pressure chemical vapour deposition of temperature resistant colour filters

    International Nuclear Information System (INIS)

    Verheijen, J.; Bongaerts, P.; Verspui, G.

    1987-01-01

    The possibility to deposit multilayer colour filters, based on optical inference, by means of Low Pressure Chemical Vapour Deposition (LPCVD) was investigated. The filters were made in a standard LPCVD system by alternate deposition of Si/sub 3/N/sub 4/ and SiO/sub 2/ layers. This resulted in filters with excellent colour uniformity on glass and quartz substrates. No difference was measured between theoretically calculated transmission and the transmission of the filters deposited by LPCVD. Temperature treatment at 600 0 C in air air showed no deterioration of filter quality and optical properties

  16. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    International Nuclear Information System (INIS)

    Kirchheim, Dennis; Jaritz, Montgomery; Hopmann, Christian; Dahlmann, Rainer; Mitschker, Felix; Awakowicz, Peter; Gebhard, Maximilian; Devi, Anjana; Brochhagen, Markus; Böke, Marc

    2017-01-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments. (paper)

  17. Thermoluminescence characterisation of chemical vapour deposited diamond films

    CERN Document Server

    Mazzocchi, S; Bucciolini, M; Cuttone, G; Pini, S; Sabini, M G; Sciortino, S

    2002-01-01

    The thermoluminescence (TL) characteristics of a set of six chemical vapour deposited diamond films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterisation has been performed by means of Raman spectroscopy. Their TL responses have been tested with radiotherapy beams ( sup 6 sup 0 Co photons, photons and electrons from a linear accelerator (Linac), 26 MeV protons from a TANDEM accelerator) in the dose range 0.1-7 Gy. The dosimetric characterisation has yielded a very good reproducibility, a very low dependence of the TL response on the type of particle and independence of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the diamond samples compares favourably with that of standard TLD100 dosimeters.

  18. Chemical vapour deposition synthetic diamond: materials, technology and applications

    International Nuclear Information System (INIS)

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  19. Chemical vapour deposition of freestanding sub-60 nm graphene gyroids

    Science.gov (United States)

    Cebo, Tomasz; Aria, Adrianus I.; Dolan, James A.; Weatherup, Robert S.; Nakanishi, Kenichi; Kidambi, Piran R.; Divitini, Giorgio; Ducati, Caterina; Steiner, Ullrich; Hofmann, Stephan

    2017-12-01

    The direct chemical vapour deposition of freestanding graphene gyroids with controlled sub-60 nm unit cell sizes is demonstrated. Three-dimensional (3D) nickel templates were fabricated through electrodeposition into a selectively voided triblock terpolymer. The high temperature instability of sub-micron unit cell structures was effectively addressed through the early introduction of the carbon precursor, which stabilizes the metallized gyroidal templates. The as-grown graphene gyroids are self-supporting and can be transferred onto a variety of substrates. Furthermore, they represent the smallest free standing periodic graphene 3D structures yet produced with a pore size of tens of nm, as analysed by electron microscopy and optical spectroscopy. We discuss generality of our methodology for the synthesis of other types of nanoscale, 3D graphene assemblies, and the transferability of this approach to other 2D materials.

  20. Polarized Raman spectroscopy of chemically vapour deposited diamond films

    International Nuclear Information System (INIS)

    Prawer, S.; Nugent, K.W.; Weiser, P.S.

    1994-01-01

    Polarized micro-Raman spectra of chemically vapour deposited diamond films are presented. It is shown that important parameters often extracted from the Raman spectra such as the ratio of the diamond to non-diamond component of the films and the estimation of the level of residual stress depend on the orientation of the diamond crystallites with respect to the polarization of the incident laser beam. The dependence originates from the fact that the Raman scattering from the non-diamond components in the films is almost completely depolarized whilst the scattering from the diamond components is strongly polarized. The results demonstrate the importance of taking polarization into account when attempting to use Raman spectroscopy in even a semi-quantitative fashion for the assessment of the purity, perfection and stress in CVD diamond films. 8 refs., 1 tab. 2 figs

  1. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  2. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  3. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    International Nuclear Information System (INIS)

    Dabirian, Ali; Kuzminykh, Yury; Wagner, Estelle; Benvenuti, Giacomo; Rushworth, Simon; Hoffmann, Patrik

    2014-01-01

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb 2 (OEt) 10 does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt) 5 acts as an octahedral field completing entity and leads to Nb(OEt) 4 (dmae). We show that Nb(OEt) 4 (dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h −1 to values larger than 400 nm·h −1 can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt) 4 (dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt) 4 (dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an atomic layer deposition (ALD) process

  4. Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours

    Science.gov (United States)

    Ridhi, R.; Singh, Sukhdeep; Saini, G. S. S.; Tripathi, S. K.

    2018-04-01

    The present study deals with comparing interaction mechanisms of copper phthalocyanine and nickel phthalocyanine with versatile chemical vapours: reducing, stable aromatic and oxidizing vapours namely; diethylamine, benzene and bromine. The variation in electrical current of phthalocyanines with exposure of chemical vapours is used as the detection parameter for studying interaction behaviour. Nickel phthalocyanine is found to exhibit anomalous behaviour after exposure of reducing vapour diethylamine due to alteration in its spectroscopic transitions and magnetic states. The observed sensitivities of copper phthalocyanine and nickel phthalcyanine films are different in spite of their similar bond numbers, indicating significant role of central metal atom in interaction mechanism. The variations in electronic transition levels after vapours exposure, studied using UV-Visible spectroscopy confirmed our electrical sensing results. Bromine exposure leads to significant changes in vibrational bands of metal phthalocyanines as compared to other vapours.

  5. SiC fibre by chemical vapour deposition on tungsten filament

    Indian Academy of Sciences (India)

    Unknown

    SiC fibre by chemical vapour deposition on tungsten filament ... CMCs), in defence and industrial applications. SiC has attractive ... porosity along with chemical purity. This is lacking .... reactor. Since mercury is very toxic it should be removed.

  6. Chemical vapour deposition of vanadium oxide thermochromic thin films

    Science.gov (United States)

    Piccirillo, Clara

    Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thin films. This thesis presents the work on the development of thermochromic vanadium (IV) oxide (VO2) thin films - both undoped and doped with tungsten, niobium and gold nanoparticles - which could be employed as solar control coatings. The films were deposited using Chemical Vapour Deposition (CVD), using improved Atmospheric Pressure (APCVD), novel Aerosol Assisted (AACVD) and novel hybrid AP/AACVD techniques. The effects of dopants on the metalto- semiconductor transition temperature and transmittance/reflectance characteristics were also investigated. This work significantly increased the understanding of the mechanisms behind thermochromic behaviour, and resulted in thermochromic materials based on VO2 with greatly improved properties.

  7. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Sharma, Uttam; Chauhan, Sachin S; Sharma, Jayshree; Sanyasi, A K; Ghosh, J; Choudhary, K K; Ghosh, S K

    2016-01-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m 2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS. (paper)

  8. The atmospheric chemical vapour deposition of coatings on glass

    International Nuclear Information System (INIS)

    Sanderson, Kevin David

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In 2 O 3 films with a resistivity of 1.1 - 3x10 -3 Ω cm were obtained with ln(thd) 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstructure is discussed. Control over the preferred orientation growth of ITO has been achieved by the addition of acetate species during film growth. Insitu infra-red spectroscopy has been used to identify the gas phase species and identify the species responsible for the film modification. ITO films with a resistivities of 1.5 - 4x10 -4 Ω cm have been achieved. The deposition of titanium nitride by the APCVD of Ti(NMe 2 ) 4 and a mixture of Ti(NMe 2 ) 4 and ammonia is reported. Contamination of the films and pro-reaction between the precursors in the gas phase is discussed, and the synthesis of new precursors for the deposition of titanium nitride is reported. New precursors have been synthesised under anaerobic conditions and characterised by infra-red spectroscopy, 1 H and 13 C NMR, mass spectrometry, thermal gravemetric analysis and three by single crystal X-ray diffraction. Deposition of titanium nitride utilising two new precursors is reported. (author)

  9. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Laurenti, M., E-mail: marco.laurenti@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garino, N. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Porro, S.; Fontana, M. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2015-08-15

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g{sup −1}) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm{sup −2} (i.e., around 400 mA h g{sup −1}) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%.

  10. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2004-01-01

    Roč. 19, č. 8 (2004), s. 1014-1017 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : chemical vapour generation * chemical modification * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2004

  11. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  12. Ballistic transport in graphene grown by chemical vapor deposition

    NARCIS (Netherlands)

    Calado, V.E.; Zhu, S.E.; Goswami, S.; Xu, Q.; Watanabe, K.; Taniguchi, T.; Janssen, G.C.A.M.; Vandersypen, L.M.K.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be

  13. ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols

    NARCIS (Netherlands)

    Protasova, L.N.; Rebrov, E.; Choy, K.L.; Pung, S.Y.; Engels, V.; Cabaj, M.; Wheatley, A.E.H.; Schouten, J.C.

    2011-01-01

    Vertically aligned ZnO nanowires (NWs) with a length of 1.5–10 µm and a mean diameter of ca. 150 nm were grown by chemical vapour deposition onto a c-oriented ZnO seed layer which was deposited by atomic layer deposition on Si substrates. The substrates were then spin-coated with an ethanol solution

  14. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing

  15. The effect of air permeability of chemical protective clothing material on clothing vapour resistance

    NARCIS (Netherlands)

    Havenith, G.; Vuister, R.; Wammes, L.

    1996-01-01

    One of the major problems associated with Chemical Warfare Protective Clothing (CW) is the additional heat load created by the garments. For CW-overgarments, research in the direction of reducing material thickness and thus heat and vapour resistance have not resulted in major improvements. The

  16. ArF Laser -Induced Chemical Vapour Deposition of Polythiene Films from Carbon Disulfide

    Czech Academy of Sciences Publication Activity Database

    Tomovska, R.; Bastl, Zdeněk; Vorlíček, Vladimír; Vacek, Karel; Šubrt, Jan; Plzák, Zbyněk; Pola, Josef

    2003-01-01

    Roč. 107, č. 36 (2003), s. 9793-9801 ISSN 1089-5647 R&D Projects: GA MŠk ME 612 Institutional research plan: CEZ:AV0Z4032918; CEZ:AV0Z4040901 Keywords : laser photolysis * ArF * chemical vapour deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  17. Vapour transport growth of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; Bakin, A.S.; Elshaer, A.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Technical University Braunschweig, Institute of Applied Physics, Braunschweig (Germany); Bertram, F.; Christen, J. [University of Magdeburg, Department of Solid State Physics, Magdeburg (Germany)

    2007-07-15

    The fabrication of low-dimensional ZnO structures has attracted enormous attention as such nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Many reported fabrication methods, especially for ZnO nanorods are mostly based on catalyst-assisted growth techniques that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on catalyst-free vapour-phase epitaxy growth of ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3} using purely elemental sources at relatively low temperatures and growth pressure. ZnO nanorods with widths of 80-900 nm and lengths of up to 12 {mu}m were obtained. Nanorod density on the order of 10{sup 9} cm{sup -2} with homogenous luminescence and high purity was also noted. (orig.)

  18. Heat stress in chemical protective clothing: Porosity and vapour resistance

    NARCIS (Netherlands)

    Havenith, G.; Hartog, E.A. den; Martini, S.

    2011-01-01

    Heat strain in chemical protective clothing is an important factor in industrial and military practice. Various improvements to the clothing to alleviate strain while maintaining protection have been attempted. More recently, selectively permeable membranes have been introduced to improve

  19. Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition

    Science.gov (United States)

    2014-11-18

    cture heterogeneity in MoS2 atomiclayers grown by chemical vapour deposition 6. AUTHORS Zheng Liu, Matin Amani, Sina Najmaei, Quan Xu, Xiaolong Zou...deposition Zheng Liu1•2•3·*, Matin Amani4·*, Sina Najmaei5·*, Quan Xu6•7, Xiaolong Zou5, Wu Zhou8, Ting Yu9, Caiyu Qiu9, A Glen Birdwell4, Frank J. Crowne4

  20. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    Science.gov (United States)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  1. Green electroluminescence from ZnO/n-InP heterostructure fabricated by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Zhu Huichao; Zhang Baolin; Li Xiangping; Dong Xin; Li Wancheng; Guan Hesong; Cui Yongguo; Xia Xiaochuan; Yang Tianpeng; Chang Yuchun; Du Guotong

    2007-01-01

    Vertically aligned ZnO films were deposited on n-InP by metalorganic chemical vapour deposition. X-ray diffraction, field emission scanning electron microscopy and photoluminescence measurements demonstrated that the ZnO films had good quality. By evaporating AuZn electrodes on both ZnO and InP surfaces, a ZnO-based light emitting device was fabricated. Under forward voltage, weak green emissions can be observed in darkness

  2. Microstructural and chemical variation of TiO{sub 2} electrodes in DSSCs after ethanol vapour treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanhui [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Zhang, Hongzhou, E-mail: hongzhou.zhang@tcd.ie [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Fox, Daniel [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Faulkner, Colm C. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Jeng, David; Bari, Mazhar [SolarPrint Ltd, Dublin 18 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer A simple ethanol vapour post-treatment was applied to the TiO{sub 2} electrode in a DSSC. Black-Right-Pointing-Pointer A stable efficiency improvement was evident after this post-treatment. Black-Right-Pointing-Pointer Structural and chemical modifications of the treatment were systematically investigated using advanced electron microscopy. Black-Right-Pointing-Pointer Morphology changes in favour of the efficiency improvement were identified (increased porosity and reduced TiO{sub 2} particle size). Black-Right-Pointing-Pointer EELS study confirmed that stronger coupling formed between the dye and the treated TiO{sub 2}. - Abstract: TiO{sub 2} based dye-sensitized solar cells (DSSCs) have great potential to solve many energy challenges, however, their low energy conversion rate is still a barrier for further applications. Ethanol vapour post-treatment can improve the DSSC's conversion efficiency without changing its architecture, and a stable 2-3% improvement was found in our experiments. Microstructural and chemical factors were investigated using scanning electron microscopy and analytical electron microscopy on treated and untreated electrodes. The vapour treatment improved the porosity and surface-to-volume ratio of the TiO{sub 2} particles, decreased electron transport loss between TiO{sub 2} and fluorine doped tin oxide, and increased hydroxyl sites on the TiO{sub 2} particle's surface. The modification therefore enhanced the dye uptake and dye-TiO{sub 2} coupling, and it reduced the energy loss during the carrier transfer.

  3. Graphene growth by transfer-free chemical vapour deposition on a cobalt layer

    Science.gov (United States)

    Macháč, Petr; Hejna, Ondřej; Slepička, Petr

    2017-01-01

    The contribution deals with the preparation of graphene films by a transfer-free chemical vapour deposition process utilizing a thin cobalt layer. This method allows growing graphene directly on a dielectric substrate. The process was carried out in a cold-wall reactor with methane as carbon precursor. We managed to prepare bilayer graphene. The best results were obtained for a structure with a cobalt layer with a thickness of 50 nm. The quality of prepared graphene films and of the number of graphene layers were estimated using Raman spectroscopy. with a minimal dots diameter of 180 nm and spacing of 1000 nm were successfully developed.

  4. Pulsed injection metal organic chemical vapour deposition and characterisation of thin CaO films

    International Nuclear Information System (INIS)

    Borges, R.P.; Ferreira, P.; Saraiva, A.; Goncalves, R.; Rosa, M.A.; Goncalves, A.P.; Silva, R.C. da; Magalhaes, S.; Lourenco, M.J.V.; Santos, F.J.V.; Godinho, M.

    2009-01-01

    Thin films of CaO were grown on silicon (Si) and lanthanum aluminate (LaAlO 3 ) substrates by pulsed injection metal-organic chemical vapour deposition in a vertical injection MOCVD system. Growth parameters were systematically varied to study their effect on film growth and quality and to determine the optimal growth conditions for this material. Film quality and growth rate were evaluated by atomic force microscopy, X-ray diffraction and Rutherford Backscattering Spectroscopy measurements. Optimised conditions allowed growing transparent, single phase films textured along the (0 0 l) direction.

  5. Capacitive behavior of Ag doped V2O5 grown by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Vernardou, D.; Marathianou, I.; Katsarakis, N.; Koudoumas, E.; Kazadojev, I.I.; O’Brien, S.; Pemble, M.E.; Povey, I.M.

    2016-01-01

    The growth of silver doped vanadium pentoxide was performed by aerosol assisted chemical vapour deposition and found to be optimal at 450° C. Additionally, an increase in crystallinity and a change in preferred orientation of V 2 O 5 was observed upon increasing the silver content. Silver incorporation also resulted in morphological changes in the thin films from rod to pellet-like structures. For higher silver content films the amount of incorporated charge increased and reversibility and repeatability was demonstrated for 500 cycles. Electrochemical impedance spectroscopy determined that the transfer and diffusion of Li+ ions through the cathode-electrolyte interface was assisted by silver loading, hence, enhancing the capacitive performance.

  6. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    International Nuclear Information System (INIS)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero; Sapag, Karim

    2010-01-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al 2 O 3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  7. Erosion behaviour of physically vapour-deposited and chemically vapour-deposited SiC films coated on molybdenum during oxygenated argon beam thinning

    International Nuclear Information System (INIS)

    Shikama, T.; Kitajima, M.; Fukutomi, M.; Okada, M.

    1984-01-01

    The erosion behaviour during bombardment with a 5 keV argon beam at room temperature was studied for silicon carbide (SiC) films of thickness of about 10 μm coated on molybdenum by physical vapour deposition (PVD) and chemical vapour deposition (CVD). The PVD SiC (plasma-assisted ion plating) exhibited a greater thinning rate than the CVD SiC film. Electron probe X-ray microanalysis revealed that the chemical composition of PVD SiC was changed to a composition enriched in silicon by the bombardment, and there was a notable change in its surface morphology. The CVD SiC retained its initial chemical composition with only a small change in its surface morphology. Auger electron spectroscopy indicated that silicon oxide was formed on the surface of PVD SiC by the bombardment. The greater thinning rate and easier change in chemical composition in PVD SiC could be attributed to its readier chemical reaction with oxygen due to its more non-uniform structure and weaker chemical bonding. Oxygen was present as one of the impurities in the argon beam. (Auth.)

  8. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista-UNESP, Avenida Tres de Marco, 511, Alto da Boa Vista, 18087-180, Soracaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Rouxinol, Francisco P.M.; Gelamo, Rogerio V. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Trasferetti, B. Claudio [Present address: Superintendencia Regional da Policia Federal em Sao Paulo, Setor Tecnico-Cientifico, Rua Hugo d' Antola 95/10o Andar, Lapa de Baixo, 05038-090 Sao Paulo, SP (Brazil); Davanzo, C.U. [Instituto de Quimica, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Bica de Moraes, Mario A. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V{sub S}) and of the proportion of TEOS in the mixture (X{sub T}) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V{sub S} and X{sub T} are presented.

  9. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Durrant, Steven F.; Rouxinol, Francisco P.M.; Gelamo, Rogerio V.; Trasferetti, B. Claudio; Davanzo, C.U.; Bica de Moraes, Mario A.

    2008-01-01

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V S ) and of the proportion of TEOS in the mixture (X T ) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V S and X T are presented

  10. Type II textured molybdenum disulphide films produced by direct vapour transport and rf-magnetron sputtering

    International Nuclear Information System (INIS)

    Bohlken, S.F.; Lemon, K.D.; Jakovidis, G.; Taheri, E.H.

    1999-01-01

    Full text: Molybdenum disulphide (MoS 2 ) is one of the few naturally occurring Layered Transition Metal Dichalcogenides and is the primary source for elemental molybdenum. It displays exceptional lubrication performance in both vacuum and atmospheric conditions over a wide temperature range. An important emerging application of MoS 2 and related materials is photovoltaics. Films of MoS 2 exhibit several morphologies described by the orientation of platelets with respect to the substrate. Films with platelets perpendicular or parallel to the substrate are referred to by their morphology, which is type-I or type-II respectively. Production of exclusive type-II films is highly desirable in applications involving lubrication and photovoltaics. For example, type-II morphology reduces friction and minority carrier recombination centres, thus improving tribological and photovoltaic performance. We have successfully produced type-II films using both direct vapour transport and rf-magnetron sputtering Continuous polycrystalline films (∼ 10 μm thick) grown in our laboratory using vapour transport have typical areas 1000 mm 2 . A novel ejecta filtration technique was applied to rf-magnetron sputtering. Films produced using this approach retain exclusive type-II morphology at thicknesses where type-I would normally be observed (∼ 200nm)

  11. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects......Cobalt oxide films were grown by Pulsed Injection Metal Organic Chemical Vapour Deposition (PI-MOCVD) using Co(acac)(3) (acac=acetylacetonate) precursor dissolved in toluene. The structure, morphology and growth rate of the layers deposited on silicon substrates were studied as a function......, to be used in Intermediate Temperature Solid Oxide Fuel Cells. (C) 2004 Elsevier B.V. All rights reserved....

  12. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    Science.gov (United States)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  13. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  14. Thermodynamic analysis of processes proceeding on (111) faces of diamond during chemical vapour deposition

    International Nuclear Information System (INIS)

    Piekarczyk, W.; Prawer, S.

    1992-01-01

    Chemically vapour deposited diamond is commonly synthesized from activated hydrogen-rich, carbon/hydrogen gas mixtures under conditions which should, from a thermodynamic equilibrium point of view, favour the production of graphite. Much remains to be understood about why diamond, and not graphite, forms under these conditions. However, it is well known that the presence of atomic hydrogen, is crucial to the success of diamond deposition. As part of an attempt to better understand the deposition process, a thermodynamic analysis of the process was performed on diamond (111) faces in hydrogen rich environments. It is shown that the key role of atomic hydrogen is to inhibit the reconstruction of the (111) face to an sp 2 -bonded structure, which would provide a template for graphite, rather than diamond formation. The model correctly predicts experimentally determined trends in growth rate and diamond film quality as a function of methane concentration in the stating gas mixture. 17 refs., 4 figs

  15. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  16. Advancements, Challenges and Prospects of Chemical Vapour Pressure at Atmospheric Pressure on Vanadium Dioxide Structures

    Directory of Open Access Journals (Sweden)

    Charalampos Drosos

    2018-03-01

    Full Text Available Vanadium (IV oxide (VO2 layers have received extensive interest for applications in smart windows to batteries and gas sensors due to the multi-phases of the oxide. Among the methods utilized for their growth, chemical vapour deposition is a technology that is proven to be industrially competitive because of its simplicity when performed at atmospheric pressure (APCVD. APCVD’s success has shown that it is possible to create tough and stable materials in which their stoichiometry may be precisely controlled. Initially, we give a brief overview of the basic processes taking place during this procedure. Then, we present recent progress on experimental procedures for isolating different polymorphs of VO2. We outline emerging techniques and processes that yield in optimum characteristics for potentially useful layers. Finally, we discuss the possibility to grow 2D VO2 by APCVD.

  17. Photoluminescence study of novel phosphorus-doped ZnO nanotetrapods synthesized by chemical vapour deposition

    International Nuclear Information System (INIS)

    Yu Dongqi; Hu Lizhong; Qiao Shuangshuang; Zhang Heqiu; Fu Qiang; Chen Xi; Sun Kaitong; Len, Song-En Andy; Len, L K

    2009-01-01

    Novel phosphorus-doped and undoped single crystal ZnO nanotetrapods were fabricated on sapphire by a simple chemical vapour deposition method, using phosphorus pentoxide (P 2 O 5 ) as the dopant source. The optical properties of the samples were investigated by photoluminescence (PL) spectroscopy. Low-temperature PL measurements of phosphorus-doped and undoped samples were compared, and the results indicated a decrease in deep level defects due to the incorporation of a phosphorus acceptor dopant. The PL spectrum of the phosphorus-doped sample at 10 K exhibited several acceptor-bound exciton related emission peaks. The effect of phosphorus doping on the optical characteristics of the samples was investigated by excitation intensity and temperature dependent PL spectra. The acceptor-binding energies of the phosphorus dopant were estimated to be about 120 meV, in good agreement with the corresponding theoretical and experimental values in phosphorus-doped ZnO films and nanowires.

  18. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  19. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  20. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Field electron emission characteristics of chemical vapour deposition diamond films with controlled sp2 phase concentration

    International Nuclear Information System (INIS)

    Lu, X.; Yang, Q.; Xiao, C.; Hirose, A.

    2008-01-01

    Diamond films were synthesized in a microwave plasma-enhanced chemical vapour deposition reactor. The microstructure and surface morphology of deposited films were characterized by Raman spectroscope and scanning electron microscope. The sp 2 phase concentration in diamond films was varied and its effect on the field electron emission (FEE) properties was investigated. Diamond films deposited under higher methane concentration exhibit better FEE property including lower turn-on electric field and larger emission current. The predominating factor modifying the FEE property is presumed to be the increase of sp 2 phase concentration. The influence of bias voltage on the FEE property of diamond films is not monotonic. Postgrowth acid treatment reduces the sp 2 phase content in diamond films without changing diamond grain sizes. The corresponding FEE property was degraded

  2. The volatile pivalates of Y, Ba and Cu as prospective precursors for metal-organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iljina, E. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Korjeva, A. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Kuzmina, N. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Troyanov, S. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Dunaeva, K. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Martynenko, L. (Dept. of Chemistry, Moscow State Univ. (Russian Federation))

    1993-04-15

    The volatile pivalates of Y, Ba and Cu were synthesized and characterized by chemical and thermogravimetric analysis, IR spectroscopy, X-ray diffraction and mass spectrometry. The volatilities of metal pivalates was studied; the vapour pressures, thermodynamic characteristics and rates of sublimation were investigated. The volatile pivalates of Y, Ba and Cu are new prospective accessible compounds. (orig.)

  3. Probing the Gas-Phase Dynamics of Graphene Chemical Vapour Deposition using in-situ UV Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shivayogimath, Abhay; Mackenzie, David; Luo, Birong

    2017-01-01

    The processes governing multilayer nucleation in the chemical vapour deposition (CVD) of graphene are important for obtaining high-quality monolayer sheets, but remain poorly understood. Here we show that higher-order carbon species in the gas-phase play a major role in multilayer nucleation...

  4. Ballistic transport in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K.; Zhu, Shou-En; Janssen, G. C. A. M.; Watanabe, K.; Taniguchi, T.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene

  5. Ballistic transport in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K., E-mail: l.m.k.vandersypen@tudelft.nl [Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft (Netherlands); Zhu, Shou-En; Janssen, G. C. A. M. [Micro and Nano Engineering Laboratory, Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft (Netherlands); Watanabe, K.; Taniguchi, T. [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-01-13

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.

  6. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  7. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2017-12-01

    Full Text Available Good chemical selectivity of sensors for detecting vapour traces of targeted molecules is vital to reliable detection systems for explosives and other harmful materials. We present the design, construction and measurements of the electronic response of a 16 channel electronic nose based on 16 differential microcapacitors, which were surface-functionalized by different silanes. The e-nose detects less than 1 molecule of TNT out of 10+12 N2 molecules in a carrier gas in 1 s. Differently silanized sensors give different responses to different molecules. Electronic responses are presented for TNT, RDX, DNT, H2S, HCN, FeS, NH3, propane, methanol, acetone, ethanol, methane, toluene and water. We consider the number density of these molecules and find that silane surfaces show extreme affinity for attracting molecules of TNT, DNT and RDX. The probability to bind these molecules and form a surface-adsorbate is typically 10+7 times larger than the probability to bind water molecules, for example. We present a matrix of responses of differently functionalized microcapacitors and we propose that chemical selectivity of multichannel e-nose could be enhanced by using artificial intelligence deep learning methods.

  8. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  9. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-01-01

    Roč. 23, č. 17 (2017), s. 4022-4022 ISSN 1521-3765 Institutional support: RVO:61388955 Keywords : Chemical vapor deposition * Hydrogenation * Graphene Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Electrical and optical properties of Cu–Cr–O thin films fabricated by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lunca Popa, P., E-mail: petru.luncapopa@list.lu; Crêpellière, J.; Leturcq, R.; Lenoble, D.

    2016-08-01

    We present electrical and optical properties of CuCrO{sub 2} thin films deposited by chemical vapour deposition, as well as the influence of depositions' parameters on these properties. Oxygen partial pressure and precursor's concentrations have the greatest influence on optical and electrical properties of the films. Values of conductivities ranging from 10{sup −4} to 10 S/cm were obtained using different deposition conditions. The conductivity is thermally activated with an activation energy ranging from 57 to 283 meV. Thermoelectric measurements confirm the p-type conduction, and demonstrate high carrier concentration typical for a degenerate semiconductor. The as-deposited films show a medium degree of crystallinity, a maximum optical transmission up to 80% in the visible range with a corresponding band gap around 3.2 eV. - Highlights: • CuCrO{sub 2} thin films deposited via a new innovative method - DLICVD. • Band gap and electrical conductivity can be tuned by controlling deposition parameters • Key process parameter is the metallic/oxygen atomic ratio involved in the process • Electrical conductivities values spanning 5 orders of magnitudes were obtained using different deposition parameters.

  11. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  12. Fabrication of nanostructured clay-carbon nanotube hybrid nanofiller by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, Dhanagopal, E-mail: dmani_cat@yahoo.co.in [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Mangalaraja, Ramalinga Viswanathan, E-mail: mangal@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Siddheswaran, Rajendran [Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion (Chile); Avila, Ricardo E. [Personal Dosimetry Section, Chilean Nuclear Energy Commission, Santiago (Chile); Ananthakumar, Solaiappan [Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala (India)

    2012-03-01

    Growth of multiwalled carbon nanotube (CNT) assemblies by chemical vapour decomposition (CVD) technique was achieved through decomposition of acetylene using iron impregnated montmorillonite (MM) catalysts. Various amounts of iron loaded montmorillonite catalysts were prepared by wet impregnation method and calcined at 450 Degree-Sign C. The catalysts were subjected to X-ray diffraction (XRD) and surface area analyses. Acetylene decomposition at a feed ratio of N{sub 2}:H{sub 2}:C{sub 2}H{sub 2} = 1:1:0.18 was conducted in the presence of iron impregnated montmorillonite catalysts in the CVD reactor for the growth of CNT structures. The role of Fe-activated clay catalyst on the formation of CNT structures has been systematically examined at various temperatures and correlated with the morphological features of CNTs. Catalyst assisted acetylene decomposition results the formation of different carbon nanostructures such as nanotubes, nanofibres and nanoflakes. These clay-CNT products were characterised for their morphological, thermal, qualitative and quantitative analyses. The morphological variations of CNT assemblies reveal Fe-montmorillonite catalysts have high selectivity at given reaction conditions. Thermogravimetric and Raman spectral analyses prove that the CNTs contain a good crystallanity and less structural defects.

  13. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  14. Characterization of chemical vapour deposited diamond films: correlation between hydrogen incorporation and film morphology and quality

    International Nuclear Information System (INIS)

    Tang, C J; Neves, A J; Carmo, M C

    2005-01-01

    In order to tailor diamond synthesized through chemical vapour deposition (CVD) for different applications, many diamond films of different colours and variable quality were deposited by a 5 kW microwave plasma CVD reactor under different growth conditions. The morphology, quality and hydrogen incorporation of these films were characterized using scanning electron microscopy (SEM), Raman and Fourier-transform infrared (FTIR) spectroscopy, respectively. From this study, a general trend between hydrogen incorporation and film colour, morphology and quality was found. That is, as the films sorted by colour gradually become darker, ranging from white through grey to black, high magnification SEM images illustrate that the smoothness of the well defined crystalline facet gradually decreases and second nucleation starts to appear on it, indicating gradual degradation of the crystalline quality. Correspondingly, Raman spectra evidence that the diamond Raman peak at 1332 cm -1 becomes broader and the non-diamond carbon band around 1500 cm -1 starts to appear and becomes stronger, confirming increase of the non-diamond component and decrease of the phase purity of the film, while FTIR spectra show that the CH stretching band and the two CVD diamond specific peaks around 2830 cm -1 rise rapidly, and this indicates that the total amount of hydrogen incorporated into the film increases significantly

  15. Characterisation of silicon carbide films deposited by plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Iliescu, Ciprian; Chen Bangtao; Wei Jiashen; Pang, A.J.

    2008-01-01

    The paper presents a characterisation of amorphous silicon carbide films deposited in plasma-enhanced chemical vapour deposition (PECVD) reactors for MEMS applications. The main parameter was optimised in order to achieve a low stress and high deposition rate. We noticed that the high frequency mode (13.56 MHz) gives a low stress value which can be tuned from tensile to compressive by selecting the correct power. The low frequency mode (380 kHz) generates high compressive stress (around 500 MPa) due to ion bombardment and, as a result, densification of the layer achieved. Temperature can decrease the compressive value of the stress (due to annealing effect). A low etching rate of the amorphous silicon carbide layer was noticed for wet etching in KOH 30% at 80 o C (around 13 A/min) while in HF 49% the layer is practically inert. A very slow etching rate of amorphous silicon carbide layer in XeF 2 -7 A/min- was observed. The paper presents an example of this application: PECVD-amorphous silicon carbide cantilevers fabricated using surface micromachining by dry-released technique in XeF 2

  16. Chemical vapour deposition - a promising method for production of different kinds of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, A.; Ritschel, M.; Bartsch, K.; Graff, A.; Taeschner, C.; Fink, J. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    2001-08-01

    Carbon nanostructures (fibres, multi and single walled tubes) have been synthesized by catalytic chemical vapour deposition. The catalyst material, deposition temperature and the used hydrocarbon are the main parameters responsible for the formation of the desired structure. In dependence on these parameters and by optimising the deposition process nanofibres with herringbone structure and tubular multiwalled nanotubes were deposited in large amounts and high purity. In the case of single wall nanotubes synthesis an aftertreatment and process is absolutely necessary to obtain material with high percentage of tubes. Layers of disordered and aligned multiwalled nanotubes were deposited on oxidised silicon substrates coated with thin sputtered metal layers (Co, permalloy) by using the micro-wave assisted plasma CVD process or the bias supported hot filament CVD method. The latter method allows relatively low deposition temperatures (550 - 750 C). The obtained carbon modifications were characterised by scanning and transmission electron microscopy. Furthermore, the electron field emission of the CNT's layers were investigated. (orig.)

  17. Investigation of the nucleation process of chemical vapour deposited diamond films

    International Nuclear Information System (INIS)

    Katai, S.

    2001-01-01

    The primary aim of this work was to contribute to the understanding of the bias enhanced nucleation (BEN) process during the chemical vapour deposition (CVD) of diamond on silicon. The investigation of both the gas phase environment above the substrate surface, by in situ mass selective energy analysis of ions, and of the surface composition and structure by in vacuo surface analytic methods (XPS, EELS) have been carried out. In both cases, the implementation of these measurements required the development and construction of special experimental apparatus as well. The secondary aim of this work was to give orientation to our long term goal of growing diamond films with improved quality. For this reason, (1) contaminant levels at the diamond-silicon interface after growth were studied by SIMS, (2) the internal stress distribution of highly oriented free-standing diamond films were studied by Raman spectroscopy, and (3) an attempt was made to produce spatially regular oriented nuclei formation by nucleating on a pattern created by laser treatment on silicon substrates. (orig.)

  18. Fabrication of nanostructured clay-carbon nanotube hybrid nanofiller by chemical vapour deposition

    International Nuclear Information System (INIS)

    Manikandan, Dhanagopal; Mangalaraja, Ramalinga Viswanathan; Siddheswaran, Rajendran; Avila, Ricardo E.; Ananthakumar, Solaiappan

    2012-01-01

    Growth of multiwalled carbon nanotube (CNT) assemblies by chemical vapour decomposition (CVD) technique was achieved through decomposition of acetylene using iron impregnated montmorillonite (MM) catalysts. Various amounts of iron loaded montmorillonite catalysts were prepared by wet impregnation method and calcined at 450 °C. The catalysts were subjected to X-ray diffraction (XRD) and surface area analyses. Acetylene decomposition at a feed ratio of N 2 :H 2 :C 2 H 2 = 1:1:0.18 was conducted in the presence of iron impregnated montmorillonite catalysts in the CVD reactor for the growth of CNT structures. The role of Fe-activated clay catalyst on the formation of CNT structures has been systematically examined at various temperatures and correlated with the morphological features of CNTs. Catalyst assisted acetylene decomposition results the formation of different carbon nanostructures such as nanotubes, nanofibres and nanoflakes. These clay-CNT products were characterised for their morphological, thermal, qualitative and quantitative analyses. The morphological variations of CNT assemblies reveal Fe-montmorillonite catalysts have high selectivity at given reaction conditions. Thermogravimetric and Raman spectral analyses prove that the CNTs contain a good crystallanity and less structural defects.

  19. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  20. Chemical vapour deposition of silicon under reduced pressure in a hot-wall reactor: Equilibrium and kinetics

    International Nuclear Information System (INIS)

    Langlais, F.; Hottier, F.; Cadoret, R.

    1982-01-01

    Silicon chemical vapour deposition (SiH 2 Cl 2 /H 2 system), under reduced pressure conditions, in a hot-wall reactor, is presented. The vapour phase composition is assessed by evaluating two distinct equilibria. The homogeneous equilibrium , which assumes that the vapour phase is not in equilibrium with solid silicon, is thought to give an adequate description of the vapour phase in the case of low pressure, high gas velocities, good temperature homogeneity conditions. A comparison with heterogeneous equilibrium enables us to calculate the supersaturation so evidencing a highly irreversible growth system. The experimental determination of the growth rates reveals two distinct temperature ranges: below 1000 0 C, polycrystalline films are usually obtained with a thermally activated growth rate (+40 kcal mole -1 ) and a reaction order, with respect to the predominant species SiCl 2 , close to one; above 1000 0 C, the films are always monocrystalline and their growth rate exhibits a much lower or even negative activation energy, the reaction order in SiCl 2 remaining about one. (orig.)

  1. Multilayer graphene growth on polar dielectric substrates using chemical vapour deposition

    Science.gov (United States)

    Karamat, S.; Çelik, K.; Shah Zaman, S.; Oral, A.

    2018-06-01

    High quality of graphene is necessary for its applications at industrial scale production. The most convenient way is its direct growth on dielectrics which avoid the transfer route of graphene from metal to dielectric substrate usually followed by graphene community. The choice of a suitable dielectric for the gate material which can replace silicon dioxide (SiO2) is in high demand. Various properties like permittivity, thermodynamic stability, film morphology, interface quality, bandgap and band alignment of other dielectrics with graphene needs more exploration. A potential dielectric material is required which could be used to grow graphene with all these qualities. Direct growth of graphene on magnesium oxide (MgO) substrates is an interesting idea and will be a new addition in the library of 2D materials. The present work is about the direct growth of graphene on MgO substrates by an ambient pressure chemical vapour deposition (CVD) method. We address the surface instability issue of the polar oxides which is the most challenging factor in MgO. Atomic force microscopy (AFM) measurements showed the topographical features of the graphene coated on MgO. X-ray photoelectron spectroscopy (XPS) study is carried out to extract information regarding the presence of necessary elements, their bonding with substrates and to confirm the sp-2 hybridization of carbon, which is a characteristic feature of graphene film. The chemical shift is due to the surface reconstruction of MgO in the prepared samples. For graphene-MgO interface, valence band offset (VBO) and conduction band offset (CBO) extracted from valence band spectra reported. Further, we predicted the energy band diagram for single layer and thin film of graphene. By using the room-temperature energy band gap values of MgO and graphene, the CBO is calculated to be 6.85 eV for single layer and 5.66 eV for few layer (1-3) of graphene layers.

  2. A comparison of different spray chemical vapour deposition methods for the production of undoped ZnO thin films

    International Nuclear Information System (INIS)

    Garnier, Jerome; Bouteville, Anne; Hamilton, Jeff; Pemble, Martyn E.; Povey, Ian M.

    2009-01-01

    Two different methods of spray chemical vapour deposition have been used to grow ZnO thin films on glass substrates from zinc acetate solution over the temperature range 400 o C to 550 o C. The first of these is named InfraRed Assisted Spray Chemical Vapour Deposition (IRAS-CVD). This method uses intense IR radiation to heat not only the substrate but also the gaseous species entering the reactor. The second method is a more conventional approach known simply as ultrasonic spray CVD, which utilises IR lamps to heat the substrate only. By way of comparing these two approaches we present data obtained from contact angle measurements, crystallinity and mean crystallite size, photoluminescence, electrical and optical properties. Additionally we have examined the role of annealing within the IRAS-CVD reactor environment.

  3. Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Schäfer, J.; Fricke, K.; Mika, Filip; Pokorná, Zuzana; Zajíčková, L.; Foest, R.

    2017-01-01

    Roč. 630, MAY 30 (2017), s. 71-78 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : plasma jet * liquid assisted plasma enhanced chemical * vapour deposition * silicon oxide Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Coating and films Impact factor: 1.879, year: 2016

  4. The thermodynamic approach to boron chemical vapour deposition based on a computer minimization of the total Gibbs free energy

    International Nuclear Information System (INIS)

    Naslain, R.; Thebault, J.; Hagenmuller, P.; Bernard, C.

    1979-01-01

    A thermodynamic approach based on the minimization of the total Gibbs free energy of the system is used to study the chemical vapour deposition (CVD) of boron from BCl 3 -H 2 or BBr 3 -H 2 mixtures on various types of substrates (at 1000 < T< 1900 K and 1 atm). In this approach it is assumed that states close to equilibrium are reached in the boron CVD apparatus. (Auth.)

  5. Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

    DEFF Research Database (Denmark)

    Hansen, Thor; Padfield, Tim; Hansen, Kurt Kielsgaard

    2014-01-01

    This was an experiment to identify the driving potential for water vapour diffusion through porous materials in a temperature gradient. The specimen of mineral fibre insulation was placed between a space with controlled temperature and relative humidity and a space with a controlled, higher...... temperature, and a measured but not controlled relative humidity (RH). This assembly was allowed to reach equilibrium with no vapour movement between the spaces, as tested by a constant RH on each side and by zero flux of water vapour measured in the cold side chamber. The RH and temperature values were...

  6. Effects of boron addition on a-Si90Ge10:H films obtained by low frequency plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Perez, Arllene M; Renero, Francisco J; Zuniga, Carlos; Torres, Alfonso; Santiago, Cesar

    2005-01-01

    Optical, structural and electric properties of (a-(Si 90 Ge 10 ) 1-y B y :H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10 -3 to 10 1 Ω -1 cm -1 when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV

  7. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    Science.gov (United States)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  8. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Anthony

    2002-07-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH{sub 3} radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch{sub 4}/H{sub 2} and C{sub 2}H{sub 2}/H{sub 2} gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C{sub 2}{yields}C{sub 1} species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH{sub 3}/CH{sub 4}/H{sub 2} and N{sub 2}/CH{sub 4}/H{sub 2} gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH{sub 3}, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H{sub 2}/CH{sub 4}/N{sub 2} gas mixture. Spatially resolved species emission intensity maps were obtained for C{sub 2}(d{yields}a), CN(B{yields}X) and H{sub {beta}} from Abel-inverted datasets. The C{sub 2}(d{yields}a) and CN(B{yields}X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N{sub 2} additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C{sub 2}(a) in a DC-arcjet reactor operating on an Ar/H{sub 2}/CH{sub 4} gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C{sub 2}(v=0) transition revealed a rotational temperature of {approx

  9. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Smith, James Anthony

    2002-01-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH 3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch 4 /H 2 and C 2 H 2 /H 2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C 2 →C 1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH 3 /CH 4 /H 2 and N 2 /CH 4 /H 2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH 3 , influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H 2 /CH 4 /N 2 gas mixture. Spatially resolved species emission intensity maps were obtained for C 2 (d→a), CN(B→X) and H β from Abel-inverted datasets. The C 2 (d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N 2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C 2 (a) in a DC-arcjet reactor operating on an Ar/H 2 /CH 4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C 2 (v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C 2 (d→a) transition. (author)

  10. Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES: a mechanistic study

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2003-01-01

    Roč. 18, č. 5 (2003), s. 487-494 ISSN 0267-9477 Institutional research plan: CEZ:AV0Z4031919 Keywords : vapour generation * ICP-OES * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.200, year: 2003

  11. LiF enhanced nucleation of the low temperature microcrystalline silicon prepared by plasma enhanced chemical vapour deposition

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Jiří; Ledinský, Martin; Honda, Shinya; Drbohlav, Ivo; Mates, Tomáš; Fejfar, Antonín; Hruška, Karel; Stuchlíková, The-Ha; Kočka, Jan

    2009-01-01

    Roč. 517, č. 24 (2009), s. 6829-6832 ISSN 0040-6090 R&D Projects: GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA MŠk LC510; GA AV ČR IAA1010413 Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous hydrogenated silicon * atomic force microscopy * plasma-enhanced chemical vapour deposition, * nucleation * Raman scattering * lithium fluoride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.727, year: 2009

  12. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  13. Review of analytical techniques to determine the chemical forms of vapours and aerosols released from overheated fuel

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Nichols, A.L.

    1989-12-01

    A comprehensive review has been undertaken of appropriate analytical techniques to monitor and measure the chemical effects that occur in large-scale tests designed to study severe reactor accidents. Various methods have been developed to determine the chemical forms of the vapours, aerosols and deposits generated during and after such integral experiments. Other specific techniques have the long-term potential to provide some of the desired data in greater detail, although considerable efforts are still required to apply these techniques to the study of radioactive debris. Such in-situ and post-test methods of analysis have been also assessed in terms of their applicability to the analysis of samples from the Phebus-FP tests. The recommended in-situ methods of analysis are gamma-ray spectroscopy, potentiometry, mass spectrometry, and Raman/UV-visible absorption spectroscopy. Vapour/aerosol and deposition samples should also be obtained at well-defined time intervals during each experiment for subsequent post-test analysis. No single technique can provide all the necessary chemical data from these samples, and the most appropriate method of analysis involves a complementary combination of autoradiography, AES, IR, MRS, SEMS/EDS, SIMS/LMIS, XPS and XRD

  14. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Bollani, M; Fedorov, A; Chrastina, D; Sordan, R; Picco, A; Bonera, E

    2010-01-01

    Si 1-x Ge x islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si 1-x Ge x islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s -1 ) and low temperature (650 deg. C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  15. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition.

    Science.gov (United States)

    Bollani, M; Chrastina, D; Fedorov, A; Sordan, R; Picco, A; Bonera, E

    2010-11-26

    Si(1-x)Ge(x) islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si(1-x)Ge(x) islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s(-1)) and low temperature (650 °C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  16. Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.

    Science.gov (United States)

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Josse, Denis; Doumenq, Pierre

    2014-06-01

    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones. We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of methyl salicylate recovered from hair increased with time or dose of exposure. It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Preliminary viability studies of fibroblastic cells cultured on microcrystalline and nanocrystalline diamonds produced by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    Ana Amélia Rodrigues

    2013-02-01

    Full Text Available Implant materials used in orthopedics surgery have demonstrated some disadvantages, such as metallic corrosion processes, generation of wear particles, inflammation reactions and bone reabsorption in the implant region. The diamond produced through hot-filament chemical vapour deposition method is a new potential biomedical material due to its chemical inertness, extreme hardness and low coefficient of friction. In the present study we analysis two samples: the microcrystalline diamond and the nanocrystalline diamond. The aim of this study was to evaluate the surface properties of the diamond samples by scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Cell viability and morphology were assessed using thiazolyl blue tetrazolium bromide, cytochemical assay and scanning electron microscopy, respectively. The results revealed that the two samples did not interfere in the cell viability, however the proliferation of fibroblasts cells observed was comparatively higher with the nanocrystalline diamond.

  18. Physical and optical characterisation of carbon-silicon layers produced by rapid thermal chemical vapour deposition

    International Nuclear Information System (INIS)

    McBride, G.M.

    1994-04-01

    The Quplas II reactor is a novel chemical vapour deposition (CVD) system, which was recently designed and built at The Queen's University of Belfast. The system was intended to produce layers of Silicon (Si) for application in advanced bipolar transistor manufacture. It became clear that the system was capable of depositing novel materials such as Silicon-Carbon (Si-C) films which could have application as the emitter material in heterojunction bipolar transistors (HBT's) formed on silicon substrates. This work focuses mainly on the development of analytical techniques to allow characterisation of the deposited layers of Si-C and permit optimisation of both the process conditions and the deposition system. The techniques that were developed to characterise the Si-C films in terms of their physical and optical properties included: Secondary Ion Mass Spectroscopy (SIMS), X-Ray Diffractometry (XRD), Transmission and Scanning Electron Microscopy (TEM and SEM), Near Infrared (NIR) and Ultraviolet/Visible/Near Infrared (UV/VIS/NIR) Spectroscopy. From assessing the data obtained from the analysis of the samples using the techniques mentioned above, it was possible to characterise the Si-C films in terms of: stoichiometry, crystallinity, degree of oxygen contamination, thickness, optical roughness of the film/air and film/substrate interfaces, and energy bandgap. In the fabrication of Si-C films it was found to be necessary to use low process pressures in order to ensure that the film deposition was slow enough to allow for a more ordered growth process. This led to the formation of polycrystalline Si-C films which had greatly reduced levels of oxygen compared to earlier amorphous films. In addition the polycrystalline Si-C films tended to have optically rough film/air and film/substrate interfaces. For most samples it was possible to obtain the thickness of their Si-C films from their SIMS profiles. Based on the method of interferometry, the thickness of the Si-C films

  19. Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromium

    International Nuclear Information System (INIS)

    Elwin, G.S.

    1999-01-01

    A study has been made into the atmospheric pressure chemical vapour deposition of nitrides and oxynitrides of vanadium, titanium and chromium. Vanadium tetrachloride, vanadium oxychloride, chromyl chloride and titanium tetrachloride have been used as precursors with ammonia, at different flow conditions and temperatures. Vanadium nitride, vanadium oxynitride, chromium oxynitride, titanium/vanadium nitride and titanium/chromium oxynitride have been deposited as thin films on glass. The APCVD reaction of VCl 4 and ammonia leads to films with general composition VN x O y . By raising the ammonia concentration so that it is in excess (0.42 dm 3 min -1 VCl 4 with 1.0 dm 3 min -1 NH 3 at 500 deg. C) a film has been deposited with the composition VN 0.8 O 0.2 . Further investigation discovered similar elemental compositions could be reached by deposition at 350 deg. C (0.42 dm 3 min -1 VCl 4 with 0.5 dm 3 min -1 NH 3 ), followed by annealing at 650 deg. C, and cooled under a flow of ammonia. Only films formed below 400 deg. C were found to contain carbon or chlorine ( 3 and ammonia also lead to films of composition VN x O y the oxygen to nitrogen ratios depending on the deposition conditions. The reaction Of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.2 dm 3 min -1 ) at 500 deg. C lead to a film of composition VN 0. 47O 1.06 . The reaction of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.5 dm 3 min -1 ) at 650 deg. C lead to a film of composition VN 0.63 O 0.41 . The reaction of chromyl chloride with excess ammonia led to the formation of chromium oxide (Cr 2 O 3 ) films. Mixed metal films were prepared from the reactions of vanadium tetrachloride, titanium tetrachloride and ammonia to prepare V x Ti y N z and chromyl chloride, titanium tetrachloride and ammonia to form TiCr x O y N z . Both reactions produced the intended mixed coating but it was found that the vanadium / titanium nitride contained around 10 % vanadium whatever the conditions used. Oxygen contamination

  20. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles

    Science.gov (United States)

    Mungall, J. E.; Brenan, J. M.; Godel, B.; Barnes, S. J.; Gaillard, F.

    2015-03-01

    Emissions of sulphur and metals from magmas in Earth’s shallow crust can have global impacts on human society. Sulphur-bearing gases emitted into the atmosphere during volcanic eruptions affect climate, and metals and sulphur can accumulate in the crust above a magma reservoir to form giant copper and gold ore deposits, as well as massive sulphur anomalies. The volumes of sulphur and metals that accumulate in the crust over time exceed the amounts that could have been derived from an isolated magma reservoir. They are instead thought to come from injections of multiple new batches of vapour- and sulphide-saturated magmas into the existing reservoirs. However, the mechanism for the selective upward transfer of sulphur and metals is poorly understood because their main carrier phase, sulphide melt, is dense and is assumed to settle to the bottoms of magma reservoirs. Here we use laboratory experiments as well as gas-speciation and mass-balance models to show that droplets of sulphide melt can attach to vapour bubbles to form compound drops that float. We demonstrate the feasibility of this mechanism for the upward mobility of sulphide liquids to the shallow crust. Our work provides a mechanism for the atmospheric release of large amounts of sulphur, and contradicts the widely held assumption that dense sulphide liquids rich in sulphur, copper and gold will remain sequestered in the deep crust.

  1. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.; Dixit, V. K.; Oak, S. M.; Sharma, T. K., E-mail: tarun@rrcat.gov.in [Semiconductor Physics and Devices Laboratory, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  2. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Directory of Open Access Journals (Sweden)

    Malik Anushree

    2010-11-01

    Full Text Available Abstract Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM/Atomic force microscopy (AFM and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita and eucalyptus (Eucalyptus globulus essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l was significantly higher than that in the vapour phase (32.7 mg/l and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%; α-citral or geranial (36.2% and β-citral or neral (26.5%, monoterpene hydrocarbons (7.9% and sesquiterpene hydrocarbons (3.8%. Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious

  3. Synthesis of suspended carbon nanotubes on silicon inverse-opal structures by laser-assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Shi, J; Lu, Y F; Wang, H; Yi, K J; Lin, Y S; Zhang, R; Liou, S H

    2006-01-01

    Suspended single-walled carbon nanotubes (SWNTs) have been synthesized on Si inverse-opal structures by laser-assisted chemical vapour deposition (LCVD). A CW CO 2 laser at 10.6 μm was used to directly irradiate the substrates during the LCVD process. At a laser power density of 14.3 MW m -2 , suspended SWNT networks were found predominantly rooted at the sharp edges in the Si inverse-opal structures. Raman spectroscopy indicated that the SWNT networks were composed of high-quality defect-free SWNTs with an average diameter of 1.3 nm. At a lower laser power density (6.4 MW m -2 ), multi-walled carbon nanotubes (MWNTs) were grown on the entire surface of the substrates. The preference for the synthesis of SWNTs or MWNTs was attributed to the difference in the catalyst sizes as well as the growth temperature in the LCVD process

  4. Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Dai, Jun; Kometani, Reo; Ishihara, Sunao; Warisawa, Shin’ichi; Onomitsu, Koji; Krockenberger, Yoshiharu; Yamaguchi, Hiroshi

    2014-01-01

    A tungsten-carbide (W-C) superconductor/normal metal/superconductor (SNS) Josephson junction has been fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). Under certain process conditions, the component ratio has been tuned from W: C: Ga = 26%: 66%: 8% in the superconducting wires to W: C: Ga = 14%: 79%: 7% in the metallic junction. The critical current density at 2.5 K in the SNS Josephson junction is 1/3 of that in W-C superconducting nanowire. Also, a Fraunhofer-like oscillation of critical current in the junction with four periods is observed. FIB-CVD opens avenues for novel functional superconducting nanodevices. (paper)

  5. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    Joensson, M; Nerushev, O A; Campbell, E E B

    2007-01-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 μm min -1 ) and then drops off rapidly to reach a steady level (2 μm min -1 ) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  6. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing

    Science.gov (United States)

    Singh, Amit; Chaudhari, Minakshi; Sastry, Murali

    2006-05-01

    Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform.

  7. Characterization of thin TiO2 films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications

    International Nuclear Information System (INIS)

    Sobczyk-Guzenda, A.; Gazicki-Lipman, M.; Szymanowski, H.; Kowalski, J.; Wojciechowski, P.; Halamus, T.; Tracz, A.

    2009-01-01

    Thin titanium oxide films were deposited using a radio frequency (RF) plasma enhanced chemical vapour deposition method. Their optical properties and thickness were determined by means of ultraviolet-visible absorption spectrophotometry. Films of the optical parameters very close to those of titanium dioxide have been obtained at the high RF power input. Their optical quality is high enough to allow for their use in a construction of stack interference optical filters. At the same time, these materials exhibit strong photocatalytic effects. The results of structural analysis, carried out by Raman Shift Spectroscopy, show that the coatings posses amorphous structure. However, Raman spectra of the same films subjected to thermal annealing at 450 o C disclose an appearance of a crystalline form, namely that of anatase. Surface morphology of the films has also been characterized by Atomic Force Microscopy revealing granular, broccoli-like topography of the films.

  8. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    Science.gov (United States)

    Jones, B. J.; Nelson, N.

    2016-10-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

  9. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Jones, B J; Nelson, N

    2016-01-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp 2 /sp 3 ratio (graphitic/diamond-like bonding ratio) and sp 2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions. (paper)

  10. Investigation of chemical vapour deposition diamond detectors by X-ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    International Nuclear Information System (INIS)

    Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of 'detector grade' artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency

  11. Effects of boron addition on a-Si(90)Ge(10):H films obtained by low frequency plasma enhanced chemical vapour deposition.

    Science.gov (United States)

    Pérez, Arllene M; Renero, Francisco J; Zúñiga, Carlos; Torres, Alfonso; Santiago, César

    2005-06-29

    Optical, structural and electric properties of (a-(Si(90)Ge(10))(1-y)B(y):H) thin film alloys, deposited by low frequency plasma enhanced chemical vapour deposition, are presented. The chemical bonding structure has been studied by IR spectroscopy, while the composition was investigated by Raman spectroscopy. A discussion about boron doping effects, in the composition and bonding of samples, is presented. Transport of carriers has been studied by measurement of the conductivity dependence on temperature, which increases from 10(-3) to 10(1) Ω(-1) cm(-1) when the boron content varies from 0 to 50%. Similarly, the activation energy is between 0.62 and 0.19 eV when the doping increases from 0 to 83%. The optical properties have been determined from the film's optical transmission, using Swanepoel's method. It is shown that the optical gap varies from 1.3 to 0.99 eV.

  12. Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in hte presence of small amounts of water

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Rem, J.B.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films were deposited on stainless steel, type AISI 304. The deposition process was carried out in nitrogen with low partial pressures of water (0–2.6 × 10−2 kPa (0−0.20 mmHg)) by metal-organic chemical vapour deposition (MOCVD) with aluminium-tri-sec-butoxide (ATSB) as the precursor.

  13. Visible and IR photoluminescence of c-FeSi@a-Si core-shell nano-fibres produced by vapour transport

    CSIR Research Space (South Africa)

    Thabethe, S

    2013-11-01

    Full Text Available The procedures for the synthesis of amorphous e-FeSi/Si core–shell nanofibres by vapour transport in a CVD configuration are reported. Crystallite studies by the Williamson-Hall method show the sizes to be typically about 8.0 nm which agrees...

  14. Cr2O3 thin films grown at room temperature by low pressure laser chemical vapour deposition

    International Nuclear Information System (INIS)

    Sousa, P.M.; Silvestre, A.J.; Conde, O.

    2011-01-01

    Chromia (Cr 2 O 3 ) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr 2 O 3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr 2 O 3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO) 6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm -2 and a partial pressure ratio of O 2 to Cr(CO) 6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s -1 and mean particle sizes of 1.85 μm were measured for these films.

  15. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition

    International Nuclear Information System (INIS)

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Guerin, P; Marteau, M; Lacroix, B; Papathanasiou, N; Tinkham, B P

    2011-01-01

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 deg. C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  16. Chemical Equilibrium And Transport (CET)

    Science.gov (United States)

    Mcbride, B. J.

    1991-01-01

    Powerful, machine-independent program calculates theoretical thermodynamic properties of chemical systems. Aids in design of compressors, turbines, engines, heat exchangers, and chemical processing equipment.

  17. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2016-08-01

    Full Text Available We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  18. Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    M. Zahedifar

    2013-03-01

    Full Text Available Germanium nanowires (GeNWs were synthesized using chemical vapor deposition (CVD based on vapor–liquid–solid (VLS mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4 as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal solution, which resulted in Au nanoparticles with different sizes. GeNWs were synthesized at 400 °C, which is a low temperature for electrical device fabrication. Effect of different parameters such as Au nanoparticles size, carrier gas (Ar flow and mixture of H2 with the carrier gas on GeNWs diameter and shape was studied by SEM images. The chemical composition of the nanostructure was also examined by energy dispersive X-ray spectroscopy (EDS.

  19. Optimization of solar cell performance using atmospheric pressure chemical vapour deposition deposited TCOs

    Czech Academy of Sciences Publication Activity Database

    Yates, H.M.; Evans, P.; Sheel, D.W.; Hodgkinson, J.L.; Sheel, P.; Dagkaldiran, U.; Gordijn, A.; Finger, F.; Remeš, Zdeněk; Vaněček, Milan

    2009-01-01

    Roč. 25, č. 8 (2009), s. 789-796 ISSN 1938-5862. [International Chemical Vapor Deposition Symposium (CVD-XVII) /17./. Wien, 04.10.2009-09.10.2009] Grant - others:European Community(XE) Project (STREP) of the 6. FP Institutional research plan: CEZ:AV0Z10100521 Keywords : solar cells * TCO * CVD Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Optical fibre sensor coated with porous silica layers for gas and chemical vapour detection

    Czech Academy of Sciences Publication Activity Database

    Abdelghani, A.; Chovelon, J. M.; Jaffrezic-Renault, N.; Lacroix, M.; Gagnaire, H.; Veillas, C.; Berková, Daniela; Chomát, Miroslav; Matějec, Vlastimil

    B44, l/3 (1997), s. 495-498 ISSN 0925-4005 R&D Projects: GA ČR GA102/95/0871; GA ČR GA102/96/0939 Grant - others:EU COPERNICUS(XE) CIPA-CT94-0140 Keywords : nonelectric sensing devices * optical fibres * chemical sensors * sol-gel processing Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 0.858, year: 1997

  1. Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Roro, K T; Dangbegnon, J K; Sivaraya, S; Westraadt, J E; Neethling, J H; Leitch, A W R; Botha, J R; Kassier, G H

    2008-01-01

    The electrical properties of zinc oxide (ZnO) thin films of various thicknesses (0.3–4.4 µm) grown by metalorganic chemical vapour deposition on glass substrates have been studied by using temperature-dependent Hall-effect (TDH) measurements in the 18–300 K range. The high quality of the layers has been confirmed with x-ray diffraction, transmission electron microscopy, scanning electron microscopy and photoluminescence techniques. TDH measurements indicate the presence of a degenerate layer which significantly influences the low-temperature data. It is found that the measured mobility generally increases with increasing layer thickness, reaching a value of 120 cm 2 V −1 s −1 at room temperature for the 4.4 µm thick sample. The lateral grain size of the layers is also found to increase with thickness indicating a clear correlation between the size of the surface grains and the electrical properties of corresponding films. Theoretical fits to the Hall data suggest that the bulk conduction of the layers is dominated by a weakly compensated donor with activation energy in the 33–41 meV range and concentration of the order of 10 17 cm −3 , as well as a total acceptor concentration of mid-10 15 cm −3 . Grain boundary scattering is found to be an important limiting factor of the mobility throughout the temperature range considered

  2. Electrografting and morphological studies of chemical vapour deposition grown graphene sheets modified by electroreduction of aryldiazonium salts

    International Nuclear Information System (INIS)

    Mooste, Marek; Kibena, Elo; Kozlova, Jekaterina; Marandi, Margus; Matisen, Leonard; Niilisk, Ahti; Sammelselg, Väino; Tammeveski, Kaido

    2015-01-01

    Highlights: • CVD-grown graphene sheets were electrografted with various aryldiazonium salts • Redox grafting was applied to form thick nitrophenyl films • The reduction of the released radicals was in evidence during the redox grafting • Multilayer formation on CVD graphene was confirmed by XPS and AFM measurements • Thickness of different aryl layers on CVD graphene varied from few to 30 nm - Abstract: This work focuses on investigating the electrografting of chemical vapour deposition (CVD) graphene electrodes grown onto Ni foil (Ni/Gra) with different diazonium salts (including azobenzene diazonium tetrafluoroborate, Fast Garnet GBC sulphate salt, Fast Black K salt, 4-bromobenzene diazonium tetrafluoroborate and 4-nitrobenzenediazonium tetrafluoroborate). Various grafting conditions (e.g. “normal” electrografting in the narrow potential range and redox grafting in the wider potential range) were used. The electrochemical grafting behaviour was similar for all diazonium compounds used, except for the 4-nitrobenzenediazonium tetrafluoroborate when redox grafting was applied. The X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy results confirmed the presence of the corresponding aryl layers on Ni/Gra surfaces. The formation of multilayers on Ni/Gra substrates was in evidence since the thickness of different aryl layers varied from few to 30 nm depending on the modification procedures as well as the diazonium compounds used and the XPS analysis revealed a peak at about 400 eV for all aryl-modified Ni/Gra samples suggesting the multilayer formation also through azo linkages

  3. Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Kishore, S.; Anandhakumar, S.; Sasidharan, M., E-mail: sasidharan.m@res.srmuniv.ac.in

    2017-04-01

    Highlights: • Hollow and solid carbon nanospheres were synthesized by CVD method. • NaCl was used as template for direct growth of carbon nanospheres. • Separation of NaCl from the mixture is made easy by dissolving in water. • The hollow carbon nanospheres exhibit high specific capacity in Li-ion batteries than the graphite anodes. - Abstract: Carbon nanospheres (CNS) with hollow and solid morphologies have been synthesised by a simple chemical vapour deposition method using acetylene as a carbon precursor. Sodium chloride (NaCl) powder as a template was used for the direct growth of CNS via facile and low-cost approach. The effect of various temperatures (500 °C, 600 °C and 700 °C) and acetylene flow rates were investigated to study the structural evolution on the carbon products. The purified CNS thus obtained was characterized by various physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and cyclicvoltametry. The synthesised hollow nanospheres were investigated as anode materials for Li-ion batteries. After 25 cycles of repeated charge/discharge cycles, the discharge and charge capacities were found to be 574 mAh/g and 570 mAh/g, respectively which are significantly higher than the commercial graphite samples.

  4. The role of the gas species on the formation of carbon nanotubes during thermal chemical vapour deposition

    International Nuclear Information System (INIS)

    Ohashi, Fumitaka; Chen, Guan Yow; Stolojan, Vlad; Silva, S Ravi P

    2008-01-01

    In this paper, we investigate the several roles that hydrogen plays in the catalytic growth of carbon nanotubes from the point of view of gas species, catalyst activation and subsequent interaction with the carbon nanotubes. Carbon nanotubes and nanofibres were grown by thermal chemical vapour deposition, using methane and a mixture of hydrogen and helium, for a range of growth temperatures and pre-treatment procedures. Long, straight carbon nanotubes were obtained at 900 deg. C, and although the growth yield increases with the growth temperature, the growth shifts from nanotubes to nanofibres. By introducing a helium purge as part of the pre-treatment procedure, we change the gas chemistry by altering the hydrogen concentration in the initial reaction stage. This simple change in the process resulted in a clear difference in the yield and the structure of the carbon nanofibres produced. We find that the hydrogen concentration in the initial reaction stage significantly affects the morphology of carbon fibres. Although hydrogen keeps the catalyst activated and increases the yield, it prevents the formation of graphitic nanotubes.

  5. Parametric study of waste chicken fat catalytic chemical vapour deposition for controlled synthesis of vertically aligned carbon nanotubes

    Science.gov (United States)

    Suriani, A. B.; Dalila, A. R.; Mohamed, A.; Rosmi, M. S.; Mamat, M. H.; Malek, M. F.; Ahmad, M. K.; Hashim, N.; Isa, I. M.; Soga, T.; Tanemura, M.

    2016-12-01

    High-quality vertically aligned carbon nanotubes (VACNTs) were synthesised using ferrocene-chicken oil mixture utilising a thermal chemical vapour deposition (TCVD) method. Reaction parameters including vaporisation temperature, catalyst concentration and synthesis time were examined for the first time to investigate their influence on the growth of VACNTs. Analysis via field emission scanning electron microscopy and micro-Raman spectroscopy revealed that the growth rate, diameter and crystallinity of VACNTs depend on the varied synthesis parameters. Vaporisation temperature of 570°C, catalyst concentration of 5.33 wt% and synthesis time of 60 min were considered as optimum parameters for the production of VACNTs from waste chicken fat. These parameters are able to produce VACNTs with small diameters in the range of 15-30 nm and good quality (ID/IG 0.39 and purity 76%) which were comparable to those synthesised using conventional carbon precursor. The low turn on and threshold fields of VACNTs synthesised using optimum parameters indicated that the VACNTs synthesised using waste chicken fat are good candidate for field electron emitter. The result of this study therefore can be used to optimise the growth and production of VACNTs from waste chicken fat in a large scale for field emission application.

  6. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics.

    Science.gov (United States)

    Moon, Hanul; Seong, Hyejeong; Shin, Woo Cheol; Park, Won-Tae; Kim, Mincheol; Lee, Seungwon; Bong, Jae Hoon; Noh, Yong-Young; Cho, Byung Jin; Yoo, Seunghyup; Im, Sung Gap

    2015-06-01

    Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

  7. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    Science.gov (United States)

    Jin, Yongzhong; Chen, Jian; Fu, Qingshan; Li, Binghong; Zhang, Huazhi; Gong, Yong

    2015-01-01

    Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry-differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C4H4CuO6 → Cu reaction occurs at ∼250-310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100-400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5-1 μm and fiber diameter of 100-200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system.

  8. Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition

    Science.gov (United States)

    Hatta, M. N. M.; Hashim, M. S.; Hussin, R.; Aida, S.; Kamdi, Z.; Ainuddin, AR; Yunos, MZ

    2017-10-01

    In this study, carbon nanostructures were synthesized from High Density Polyethylene (HDPE) and Polyethylene terephthalate (PET) waste by single-stage chemical vapour deposition (CVD) method. In CVD, iron was used as catalyst and pyrolitic of carbon source was conducted at temperature 700, 800 and 900°C for 30 minutes. Argon gas was used as carrier gas with flow at 90 sccm. The synthesized carbon nanostructures were characterized by FESEM, EDS and calculation of carbon yield (%). FESEM micrograph shows that the carbon nanostructures were only grown as nanofilament when synthesized from PET waste. The synthesization of carbon nanostructure at 700°C was produced smooth and the smallest diameter nanofilament compared to others. The carbon yield of synthesized carbon nanostructures from PET was lower from HDPE. Furthermore, the carbon yield is recorded to increase with increasing of reaction temperature for all samples. Elemental study by EDS analysis were carried out and the formation of carbon nanostructures was confirmed after CVD process. Utilization of polymer waste to produce carbon nanostructures is beneficial to ensure that the carbon nanotechnology will be sustained in future.

  9. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    International Nuclear Information System (INIS)

    Park, Joong-Hyun; Han, Sang-Myeon; Park, Sang-Geun; Han, Min-Koo; Shin, Moon-Young

    2006-01-01

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiN X ) and silicon dioxide (SiO 2 ), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,λ=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiN X buffer layer is wider than SiO 2 and the maximum grain size slightly increased

  10. Evaluation of freestanding boron-doped diamond grown by chemical vapour deposition as substrates for vertical power electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Issaoui, R.; Achard, J.; Tallaire, A.; Silva, F.; Gicquel, A. [LSPM-CNRS (formerly LIMHP), Universite Paris 13, 99, Avenue Jean-Baptiste Clement, 93430 Villetaneuse (France); Bisaro, R.; Servet, B.; Garry, G. [Thales Research and Technology France, Campus de Polytechnique, 1 Avenue Augustin Fresnel, F-91767 Palaiseau Cedex (France); Barjon, J. [GEMaC-CNRS, Universite de Versailles Saint Quentin Batiment Fermat, 45 Avenue des Etats-Unis, 78035 Versailles Cedex (France)

    2012-03-19

    In this study, 4 x 4 mm{sup 2} freestanding boron-doped diamond single crystals with thickness up to 260 {mu}m have been fabricated by plasma assisted chemical vapour deposition. The boron concentrations measured by secondary ion mass spectroscopy were 10{sup 18} to 10{sup 20} cm{sup -3} which is in a good agreement with the values calculated from Fourier transform infrared spectroscopy analysis, thus indicating that almost all incorporated boron is electrically active. The dependence of lattice parameters and crystal mosaicity on boron concentrations have also been extracted from high resolution x-ray diffraction experiments on (004) planes. The widths of x-ray rocking curves have globally shown the high quality of the material despite a substantial broadening of the peak, indicating a decrease of structural quality with increasing boron doping levels. Finally, the suitability of these crystals for the development of vertical power electronic devices has been confirmed by four-point probe measurements from which electrical resistivities as low as 0.26 {Omega} cm have been obtained.

  11. A whole range hygric material model: Modelling liquid and vapour transport properties in porous media

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2010-01-01

    This paper addresses the modelling of hygric material coefficients bridging the gap between measured material properties and the non-linear storage and transport coefficients in the transfer equation. The conductivity approach and a bundle of tubes model are the basis. By extending this model wit...

  12. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yongzhong [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Chen, Jian, E-mail: wuhangzs@163.com [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Fu, Qingshan [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China); Li, Binghong [China Rubber Group Carbon Black Industry Research and Design Institute, 643000 Zigong, Sichuan (China); Zhang, Huazhi; Gong, Yong [Department of Materials and Chemistry Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan (China)

    2015-01-01

    Graphical abstract: - Highlights: • HCNFs were synthesized by one-step CVD using cupric tartrate as a catalyst at temperature below 500 °C. • The synthesis of HCNFs is highly temperature-dependent at the synthesis temperature of 280–480 °C. • The addition of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system. - Abstract: Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry–differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C{sub 4}H{sub 4}CuO{sub 6} → Cu reaction occurs at ∼250–310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100–400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5–1 μm and fiber diameter of 100–200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system.

  13. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    International Nuclear Information System (INIS)

    Jin, Yongzhong; Chen, Jian; Fu, Qingshan; Li, Binghong; Zhang, Huazhi; Gong, Yong

    2015-01-01

    Graphical abstract: - Highlights: • HCNFs were synthesized by one-step CVD using cupric tartrate as a catalyst at temperature below 500 °C. • The synthesis of HCNFs is highly temperature-dependent at the synthesis temperature of 280–480 °C. • The addition of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system. - Abstract: Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 °C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry–differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C 4 H 4 CuO 6 → Cu reaction occurs at ∼250–310 °C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100–400 nm are obtained at 280 °C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5–1 μm and fiber diameter of 100–200 nm at 380 °C, and the coil diameter of ∼100 nm and fiber diameter of ∼80 nm at 480 °C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system

  14. Antimicrobial activity of novel nanostructured Cu-SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens.

    Science.gov (United States)

    Varghese, Sajnu; Elfakhri, Souad O; Sheel, David W; Sheel, Paul; Bolton, Frederick J Eric; Foster, Howard A

    2013-09-05

    There is increasing recognition that the healthcare environment acts as an important reservoir for transmission of healthcare acquired infections (HCAI). One method of reducing environmental contamination would be use of antimicrobial materials. The antimicrobial activity of thin silica-copper films prepared by chemical vapour deposition was evaluated against standard strains of bacteria used for disinfectant testing and bacteria of current interest in HCAI. The structure of the coatings was determined using Scanning Electron Microscopy and their hardness and adhesion to the substrate determined. Antimicrobial activity was tested using a method based on BS ISO 22196:2007. The coatings had a pale green-brown colour and had a similar hardness to steel. SEM showed nano-structured aggregates of Cu within a silica matrix. A log10 reduction in viability of >5 could be obtained within 4 h for the disinfectant test strains and within 6 h for producing Acinetobacter baumannii, Klebsiella pneumoniae and Stenotrophomonas maltophilia. Activity against the other hospital isolates was slower but still gave log10 reduction factors of >5 for extended spectrum β-lactamase producing Escherichia coli and >3 for vancomycin resistant Enterococcus faecium, methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa within 24 h. The results demonstrate the importance of testing antimicrobial materials destined for healthcare use against isolates of current interest in hospitals as well as standard test strains. The coatings used here can also be applied to substrates such as metals and ceramics and have potential applications where reduction of microbial environmental contamination is desirable.

  15. Predicting Vapour Pressures of Organic Compounds from Their Chemical Structure for Classification According to the VOCDirective and Risk Assessment in General

    Directory of Open Access Journals (Sweden)

    Frands Nielsen

    2001-03-01

    Full Text Available The use of organic compounds in the European Union will in the future be regulated in accordance with the Council Directive 1999/13/EC of 11 March 1999 [1]. In this directive, any organic compound is considered to be a volatile organic compound (VOC if it has a vapour pressure of 10 Pa or more at 20oC, or has a corresponding volatility under the particular condition of use. Introduction of such a limit will sometimes create problems, because vapour pressures cannot be determined with an infinite accuracy. Published data on vapour pressures for a true VOC will sometimes be found to be below 10 Pa and vice versa. When the same limit was introduced in the USA, a considerable amount of time and money were spent in vain on comparing incommensurable data [2]. In this paper, a model is presented for prediction of the vapour pressures of VOCs at 20oC from their chemical (UNIFAC structure. The model is implemented in a computer program, named P_PREDICT, which has larger prediction power close to 10 Pa at 20oC than the other models tested. The main advantage of the model, however, is that no experimental data, which will introduce uncertainty in the predictions, is needed. Classification using P_PREDICT, which only predicts one value for a given UNIFAC structure, is proposed. Organic compounds, which can be described by the UNIFAC groups in the present version of P_PREDICT, therefore, can be classified unambiguously as either VOCs or non-VOCs. Most people, including the present authors, feel uneasy about prioritising precision above accuracy. Modelling vapour pressures, however, could save a lot of money and the errors introduced are not large enough to have any substantial adverse effects for neither human beings nor the environment. A method for calculating vapour pressures at other temperatures than 20oC is tested with a dubious result. This method is used for EU risk assessment of new and existing chemicals.

  16. Fe3−δO4/MgO/Co magnetic tunnel junctions synthesized by full in situ atomic layer and chemical vapour deposition

    International Nuclear Information System (INIS)

    Mantovan, R; Vangelista, S; Kutrzeba-Kotowska, B; Lamperti, A; Fanciulli, M; Manca, N; Pellegrino, L

    2014-01-01

    Fe 3−δ O 4 /MgO/Co magnetic tunnel junctions (MTJs) are synthesized on top of ∼1 inch Si/SiO 2 substrates by conducting a full in situ chemical vapour and atomic layer deposition process with no vacuum break. Tunnel magnetoresistance up to 6% is measured at room temperature, increasing to 12.5% at 120 K. Our results demonstrate the possibility of using full-chemical processes to synthesize functional MTJs, and this could provide a path towards the use of cost-effective methods to produce magnetic devices on a large scale. (fast track communication)

  17. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behaviour of simulant fission product species such as caesium iodide, caesium hydroxide and tellurium, in terms of their vapour deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high-density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO/sub 2/ clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapour phase, and specific data using this technique are reported

  18. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  19. Transport coefficients and cross sections for electrons in water vapour: Comparison of cross section sets using an improved Boltzmann equation solution

    Science.gov (United States)

    Ness, K. F.; Robson, R. E.; Brunger, M. J.; White, R. D.

    2012-01-01

    This paper revisits the issues surrounding computation of electron transport properties in water vapour as a function of E/n0 (the ratio of the applied electric field to the water vapour number density) up to 1200 Td. We solve the Boltzmann equation using an improved version of the code of Ness and Robson [Phys. Rev. A 38, 1446 (1988)], facilitating the calculation of transport coefficients to a considerably higher degree of accuracy. This allows a correspondingly more discriminating test of the various electron-water vapour cross section sets proposed by a number of authors, which has become an important issue as such sets are now being applied to study electron driven processes in atmospheric phenomena [P. Thorn, L. Campbell, and M. Brunger, PMC Physics B 2, 1 (2009)] and in modeling charged particle tracks in matter [A. Munoz, F. Blanco, G. Garcia, P. A. Thorn, M. J. Brunger, J. P. Sullivan, and S. J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008)].

  20. Biosensor discovery of thyroxine transport disrupting chemicals

    NARCIS (Netherlands)

    Marchesini, G.R.; Meimaridou, A.; Haasnoot, W.; Meulenberg, E.; Albertus, F.; Mizuguchi, M.; Takeuchi, M.; Irth, H.; Murk, A.J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two

  1. Effect of growth interruptions on TiO{sub 2} films deposited by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, D., E-mail: dyli@yzu.edu.cn [College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127 (China); Goullet, A. [Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502, 2 rue de la Houssinière, 44322, Nantes (France); Carette, M. [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré, 59652, Villeneuve d' Ascq (France); Granier, A. [Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502, 2 rue de la Houssinière, 44322, Nantes (France); Landesman, J.P. [Institut de Physique de Rennes, UMR CNRS 6251, 263 av. Général Leclerc, 35042, Rennes (France)

    2016-10-01

    TiO{sub 2} films of ∼300 nm were deposited at low temperature (<140 °C) and pressure (0.4 Pa) using plasma enhanced chemical vapour deposition at the floating potential (V{sub f}) or the substrate self-bias voltage (V{sub b}) of −50 V. The impact of growth interruptions on the morphology, microstructure and optical properties of the films was investigated. The interruptions were carried out by stopping the plasma generation and gas injection once the increase of the layer thickness during each deposition step was about ∼100 nm. In one case of V{sub f}, the films of ∼300 nm exhibit a columnar morphology consisting of a bottom dense layer, an intermediate gradient layer and a top roughness layer. But the growth interruptions result in an increase of the dense layer thickness and a decrease of surface roughness. The film inhomogeneity has been identified by the in-situ real-time evolution of the kinetic ellipsometry (KE) parameters and the modeling process of spectroscopic ellipsometry (SE). The discrepancy of the refractive index measured by SE between bottom and upper layers can be reduced by growth interruptions. In the other case of V{sub b} = −50 V, the films exhibit a more compact arrangement which is homogeneous along the growth direction as confirmed by KE and SE. Both of Fourier transform infrared spectra and X-ray diffraction illustrate a phase transformation from anatase to rutile with the bias of −50 V, and also evidenced on the evolution of the refractive index dispersion curves. And a greatly increase of the refractive indice in the transparent range can be identified. However, the growth interruptions seem to have no influence on the morphology and optical properties in this case. - Highlights: • TiO{sub 2} films deposited by plasma processes at low temperature and pressure. • Influence of growth interruptions on structural and optical properties. • In-situ real-time ellipsometry measurements on film properties. • Structural and

  2. Characterization of chemical agent transport in paints.

    Science.gov (United States)

    Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent

    2013-09-15

    A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. Published by Elsevier B.V.

  3. Effect of plasma composition on nanocrystalline diamond layers deposited by a microwave linear antenna plasma-enhanced chemical vapour deposition system

    Czech Academy of Sciences Publication Activity Database

    Taylor, Andrew; Ashcheulov, Petr; Čada, Martin; Fekete, Ladislav; Hubík, Pavel; Klimša, Ladislav; Olejníček, Jiří; Remeš, Zdeněk; Jirka, Ivan; Janíček, P.; Bedel-Pereira, E.; Kopeček, Jaromír; Mistrík, J.; Mortet, Vincent

    2015-01-01

    Roč. 212, č. 11 (2015), s. 2418-2423 ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S; GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * electrical conductivity * nanocrystalline materials * optical emission spectroscopy * plasma enhanced chemical vapour deposition * SiC Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.648, year: 2015

  4. CHMTRNS, Non-Equilibrium Chemical Transport Code

    International Nuclear Information System (INIS)

    Noorishad, J.; Carnahan, C.L.; Benson, L.V.

    1998-01-01

    1 - Description of program or function: CHMTRNS simulates solute transport for steady one-dimensional fluid flow by convection and diffusion or dispersion in a saturated porous medium based on the assumption of local chemical equilibrium. The chemical interactions included in the model are aqueous-phase complexation, solid-phase ion exchange of bare ions and complexes using the surface complexation model, and precipitation or dissolution of solids. The program can simulate the kinetic dissolution or precipitation for calcite and silica as well as irreversible dissolution of glass. Thermodynamic parameters are temperature dependent and are coupled to a companion heat transport simulator; thus, the effects of transient temperature conditions can be considered. Options for oxidation-reduction (redox) and C-13 fractionation as well as non-isothermal conditions are included. 2 - Method of solution: The governing equations for both reactive chemical and heat transport are discretized in time and space. For heat transport, the Crank-Nicolson approximation is used in conjunction with a LU decomposition and backward substitution solution procedure. To deal with the strong nonlinearity of the chemical transport equations, a generalized Newton-Raphson method is used

  5. Chemical controls on subsurface radionuclide transport

    International Nuclear Information System (INIS)

    King, K.J.; Killey, R.W.D.

    1990-01-01

    Chemical and biochemical processes can affect the movement of contaminants in groundwater. Materials can be almost completely removed from circulation by processes such as precipitation and coprecipitation. Organic compounds or contaminants that are hazardous may be degraded or formed during groundwater transport. Studies at the Chalk River Laboratories of AECL have focused on radionuclide transport, although other contaminants have been and are being investigated. This paper summarizes findings from research that extends back more than 30 years. Much of the work on reactive contaminant transport has centered on 90 Sr; other contaminants have also been considered, however, and features of their behaviour are also reviewed. (25 refs., 5 figs., 4 tabs.)

  6. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  7. Fission product vapour - aerosol interactions in the containment: simulant fuel studies

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.

    1988-12-01

    Experiments have been conducted in the Falcon facility to study the interaction of fission product vapours released from simulant fuel samples with control rod aerosols. The aerosols generated from both the control rod and fuel sample were chemically distinct and had different deposition characteristics. Extensive interaction was observed between the fission product vapours and the control rod aerosol. The two dominant mechanisms were condensation of the vapours onto the aerosol, and chemical reactions between the two components; sorption phenomena were believed to be only of secondary importance. The interaction of fission product vapours and reactor materials aerosols could have a major impact on the transport characteristics of the radioactive emission from a degrading core. (author)

  8. Atmospheric pressure chemical vapour deposition of vanadium arsenide thin films via the reaction of VCl4 or VOCl3 with tBuAsH2

    International Nuclear Information System (INIS)

    Thomas, Tegan; Blackman, Christopher S.; Parkin, Ivan P.; Carmalt, Claire J.

    2013-01-01

    Thin films of vanadium arsenide were deposited via the dual-source atmospheric pressure chemical vapour deposition reactions of VCl 4 or VOCl 3 with t BuAsH 2 . Using the vanadium precursor VCl 4 , films were deposited at substrate temperatures of 550–600 °C, which were black-gold in appearance and were found to be metal-rich with high levels of chlorine incorporation. The use of VOCl 3 as the vanadium source resulted in films being deposited between 450 and 600 °C and, unlike when using VCl 4 , were silver in appearance. The films deposited using VOCl 3 demonstrated vanadium to arsenic ratios close to 1:1, and negligible chlorine incorporation. Films deposited using either vanadium precursor were identified as VAs using powder X-ray diffraction and possessed borderline metallic/semiconductor resistivities. - Highlights: • Formation of VAs films via atmospheric pressure chemical vapour deposition. • Films formed using VCl 4 or VOCl 3 and t BuAsH 2 . • Powder X-ray diffraction showed that crystalline VAs films were deposited. • Films from VOCl 3 had a V:As ratio close to 1 with negligible Cl incorporation. • Films were silver and possessed borderline metallic/semiconductor resistivities

  9. Biosensor discovery of thyroxine transport disrupting chemicals

    International Nuclear Information System (INIS)

    Marchesini, Gerardo R.; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds

  10. Biosensor discovery of thyroxine transport disrupting chemicals.

    Science.gov (United States)

    Marchesini, Gerardo R; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J

    2008-10-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.

  11. Chemical vapour deposition at atmospheric pressure of graphene on molybdenum foil: Effect of annealing time on characteristics and corrosion stability of graphene coatings

    International Nuclear Information System (INIS)

    Naghdi, Samira; Jevremović, Ivana; Mišković-Stanković, Vesna; Rhee, Kyong Yop

    2016-01-01

    Highlights: • Atmospheric pressure chemical vapor deposition of graphene on molybdenum foils. • Quality and domain size of graphene layers increased with longer annealing times. • The number of graphene layers decreased with longer annealing times. • Graphene coatings on molybdenum foils exhibited corrosion inhibitive properties. - Abstract: In this work, the effect of pre-annealing of Mo substrate on the quality of graphene layers grown by chemical vapour deposition was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. Moreover, different electrochemical techniques were employed to investigate the corrosion stability of the graphene coated Mo in 0.1 M NaCl. Longer annealing time resulted in less defective graphene coatings with fewer layers. Graphene coating on the annealed Mo provided better protection against corrosion during the initial exposure times, while after prolonged exposure times, both graphene coatings on annealed and non-annealed Mo exhibited nearly the same corrosion inhibitive properties.

  12. Plasma diagnostics and device properties of AlGaN/GaN HEMT passivated with SiN deposited by plasma-enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M F; Sanz, M M; Munoz, E [ISOM-Universidad Politecnica de Madrid (UPM). ETSIT, Madrid (Spain); Tanarro, I [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Jimenez, A, E-mail: itanarro@iem.cfmac.csic.e [Departamento Electronica, Escuela Politecnica Superior, Universidad de Alcala, Alcala de Henares, Madrid (Spain)

    2010-12-15

    In this work, silicon nitride thin films have been deposited by plasma enhanced chemical vapour deposition on both silicon samples and AlGaN/GaN high electron mobility transistors (HEMT) grown on sapphire substrates. Commercial parallel-plate RF plasma equipment has been used. During depositions, the dissociation rates of SiH{sub 4} and NH{sub 3} precursors and the formation of H{sub 2} and N{sub 2} have been analysed by mass spectrometry as a function of the NH{sub 3}/SiH{sub 4} flow ratio and the RF power applied to the plasma reactor. Afterwards, the properties of the films and the HEMT electrical characteristics have been studied. Plasma composition has been correlated with the SiN deposition rate, refractive index, H content and the final electric characteristics of the passivated transistors.

  13. Cumulus parameterizations in chemical transport models

    Science.gov (United States)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  14. Physical-chemical and technological aspects of the preparation of think layers of the high temperature superconductors Bi-Sr-Ca-Cu-O by method of metal organic vapour phase epitaxy

    International Nuclear Information System (INIS)

    Stejskal, J.; Nevriva, M.; Leitner, J.

    1995-01-01

    The method of metal organic vapour phase epitaxy (MO VPE) was used for preparation of think layers of the high temperature superconductors Bi-Sr-Ca-Cu-O. The suitable chemical precursors (β-diketonates) on the literature data and of the own thermodynamic calculations were selected. The optimal thermodynamic data and thermodynamic stability of the prepared samples were determined

  15. Study of a new hybrid process combining slurry infiltration and Reactive Chemical Vapour Infiltration for the realisation of Ceramic Matrix Composites

    International Nuclear Information System (INIS)

    Ledain, Olivier

    2014-01-01

    Ceramic matrix composites were originally developed for aerospace,military aeronautics or energy applications thanks to their good properties at high temperature. They are generally made by Chemical Vapor Infiltration (CVI). A new short hybrid process combining fiber preform slurry impregnation of ceramic powders with an innovative Reactive CVI (RCVI) route is proposed to reduce the production time. This route is based on the combination of Reactive Chemical Vapour Deposition (RCVD), which is often used to deposit coatings on fibres, with the Chemical Vapor Infiltration (CVI).In RCVD, the absence of one element of the deposited carbide in the initial gas phase involves the consumption/conversion of the solid substrate. In this work, the RCVD growth and the associated consumption were studied with different parameters in the Ti-H-Cl-C chemical system. The study has been completed with the chemical products analysis, combining XRD, XPS and FTIR. Then, the partial conversion of sub-micrometer carbon powders into titanium carbide and the consolidation of green bodies by RCVI from H 2 /TiCl 4 gaseous infiltration were studied. The residual porosity and the final TiC content were measured in the bulk of the infiltrated powders by image analysis from scanning electron microscopy. Depending on temperature, few hundred micrometers-depth infiltrations are obtained.Finally, the results have been transposed to the RCVI into CMC-type pre-forms. Despite a minimal TiC content of 25% in the overall preform, the results shown a bad homogeneity of the infiltration and a poor cohesion of fibres with RCVI consolidated powder of their environment. (author) [fr

  16. Cr{sub 2}O{sub 3} thin films grown at room temperature by low pressure laser chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, P.M. [Universidade de Lisboa, Faculdade de Ciencias, Departamento de Fisica and ICEMS, Campo Grande, Ed. C8, 1749-016 Lisboa (Portugal); Silvestre, A.J., E-mail: asilvestre@deq.isel.ipl.p [Instituto Superior de Engenharia de Lisboa and ICEMS, R. Conselheiro Emidio Navarro 1, 1959-007 Lisboa (Portugal); Conde, O. [Universidade de Lisboa, Faculdade de Ciencias, Departamento de Fisica and ICEMS, Campo Grande, Ed. C8, 1749-016 Lisboa (Portugal)

    2011-03-31

    Chromia (Cr{sub 2}O{sub 3}) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr{sub 2}O{sub 3} films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr{sub 2}O{sub 3} onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO){sub 6} as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm{sup -2} and a partial pressure ratio of O{sub 2} to Cr(CO){sub 6} of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s{sup -1} and mean particle sizes of 1.85 {mu}m were measured for these films.

  17. Study of transport of oxygen and water vapour between cells in valve regulated lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Culpin, Barry [11 Bluebell Close, Whittle -le -Woods, Chorley PR6 7RH (United Kingdom); Peters, Ken [Battery Design and Manfg Systems, Glenbank, 77 Chatsworth Road, Worsley, Manchester M28 2GG (United Kingdom)

    2006-08-25

    Valve-regulated lead-acid batteries are maintenance free, safer, office compatible, and have higher volume efficiency than conventional designs. They are universally used in telecommunications and uninterruptible power supply systems. With the electrolyte immobilized in the separator or as a gel, it is feasible for a monobloc battery to have cells that are not fully sealed from one another, that is to have a common gas space, with certain attendant benefits. This study demonstrates that small differences in the saturation level, acid strength or operating temperature of the cells in such designs can initiate a cycle that may subsequently result in failure if the movement of oxygen and water vapour between cells is unrestricted. Cells that are initially out-of-balance will go further out-of-balance at an ever-increasing rate. This situation can also arise in monobloc designs with sealed cells if the intercell seal is inadequate or incomplete. Battery failure is associated with a re-distribution of water between the cells with some drying out and having high impedance. The preferential oxygen absorption in those cells produces heavily sulfated negative plates. Results on batteries tested under a range of overcharge conditions and temperatures are presented to illustrate these effects. The rate at which the cycle occurs depends on the initial relative density of the acid, the temperature or saturation imbalance between the cells, and the size of the interconnecting gas space. Batteries operating under a continuous cycling regime, particularly those with high overcharge currents and voltages that generate large volumes of oxygen, are more prone to this type of failure mode than batteries operating under low overcharge, intermittent cycling, or float conditions. (author)

  18. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  19. Chemical Transport Models on Accelerator Architectures

    Science.gov (United States)

    Linford, J.; Sandu, A.

    2008-12-01

    Heterogeneous multicore chipsets with many layers of polymorphic parallelism are becoming increasingly common in high-performance computing systems. Homogeneous co-processors with many streaming processors also offer unprecedented peak floating-point performance. Effective use of parallelism in these new chipsets is paramount. We present optimization techniques for 3D chemical transport models to take full advantage of emerging Cell Broadband Engine and graphical processing unit (GPU) technology. Our techniques achieve 2.15x the per-node performance of an IBM BlueGene/P on the Cell Broadband Engine, and a strongly-scalable 1.75x the per-node performance of an IBM BlueGene/P on an NVIDIA GeForce 8600.

  20. IR Laser Decomposition of 1,3-Disilacyclobutane in Presence of Carbon Disulfide: Chemical Vapour Deposition of Polythiacarbosilane

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Pola, Josef

    2004-01-01

    Roč. 689, č. 16 (2004), s. 2697-2701 ISSN 0022-328X R&D Projects: GA MŠk ME 612 Institutional research plan: CEZ:AV0Z4072921 Keywords : laser * polythiacarbosilane * chemical vapor deposition Subject RIV: CC - Organic Chemistry Impact factor: 1.905, year: 2004

  1. Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol-gel methods.

    Science.gov (United States)

    Jackson, M J; Robinson, G M; Ali, N; Kousar, Y; Mei, S; Gracio, J; Taylor, H; Ahmed, W

    2006-01-01

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti-coagulation drugs on a regular basis in order to minimize the formation of thrombosis. However, anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, i.e. strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and coefficient of friction values were obtained from pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also in this paper we report the preparation of freestanding nanocrystalline diamond films (FSND) using the time-modulated chemical vapour deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO2) coatings. The as-grown nc-TiO2 coatings were characterized for microstructure using SEM and XRD analysis.

  2. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  3. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    International Nuclear Information System (INIS)

    Chung, S J; Lee, Y S; Suh, E-K; Senthil Kumar, M; An, M H

    2010-01-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  4. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  5. Origin of the near-band-edge photoluminescence in ZnO nanorods realised by vapour phase epitaxy and aqueous chemical growth

    Energy Technology Data Exchange (ETDEWEB)

    Bekeny, C.; Hilker, B.; Wischmeier, L.; Voss, T. [IFP, University of Bremen, P.O Box 330440, 28334 Bremen (Germany); Postels, B.; Mofor, A.; Bakin, Andrey; Waag, A. [IHT, TU Braunschweig, P.O Box 3329, 38023 Braunschweig (Germany)

    2007-07-01

    Well established high temperature growth techniques like the vapourliquid-solid (VLS: 1100 C) and vapour-phase-epitaxy (VPE: 800 C) have been successfully optimized while the low-temperature aqueous chemical growth (ACG: 90 C) is being extended to yield large-scale high quality ZnO nanorods. Here, a detailed and systematic photoluminescence (PL) study is presented to understand the microscopic processes responsible for the near-band-edge (NBE) emission in nanorods obtained from these processes. For the ACG samples, the as-grown nanorods show relatively broad NBE emission (15 meV) attributed to the presence of large donor densities. After annealing in various atmospheres at {proportional_to}800 C, a significant reduction of the linewidth ({proportional_to}4 meV) and even the appearance of relatively sharp excitonic transitions is explained by the drastic reduction of the donor density. In contrast, the as-grown VPE and VLS samples exhibit well-resolved and sharp peaks resulting from exciton-related transitions. There is a shift in the room-temperature PL peak for VLS and VPE samples and is shown to result from contributions of the free exciton peak, its first and second order phonon replicas and not due to quantum confinement and or laser heating as assumed in literature.

  6. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    International Nuclear Information System (INIS)

    Wen-Juan, Hu; Fen-Yan, Xie; Qiang, Chen; Jing, Weng

    2008-01-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films

  7. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    Science.gov (United States)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  8. Modified DLC coatings prepared in a large-scale reactor by dual microwave/pulsed-DC plasma-activated chemical vapour deposition

    International Nuclear Information System (INIS)

    Corbella, C.; Bialuch, I.; Kleinschmidt, M.; Bewilogua, K.

    2008-01-01

    Diamond-Like Carbon (DLC) films find abundant applications as hard and protective coatings due to their excellent mechanical and tribological performances. The addition of new elements to the amorphous DLC matrix tunes the properties of this material, leading to an extension of its scope of applications. In order to scale up their production to a large plasma reactor, DLC films modified by silicon and oxygen additions have been grown in an industrial plant of 1m 3 by means of pulsed-DC plasma-activated chemical vapour deposition (PACVD). The use of an additional microwave (MW) source has intensified the glow discharge, partly by electron cyclotron resonance (ECR), accelerating therefore the deposition process. Hence, acetylene, tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO) constituted the respective gas precursors for the deposition of a-C:H (DLC), a-C:H:Si and a-C:H:Si:O films by dual MW/pulsed-DC PACVD. This work presents systematic studies of the deposition rate, hardness, adhesion, abrasive wear and water contact angle aimed to optimize the technological parameters of deposition: gas pressure, relative gas flow of the monomers and input power. This study has been completed with measures of the atomic composition of the samples. Deposition rates around 1 μm/h, typical for standard processes held in the large reactor, were increased about by a factor 10 when the ionization source has been operated in ECR mode

  9. Origin of the 2.45 eV luminescence band observed in ZnO epitaxial layers grown on c-plane sapphire by chemical vapour deposition

    International Nuclear Information System (INIS)

    Saroj, R K; Dhar, S

    2014-01-01

    Zinc oxide epitaxial layers have been grown on c-plane sapphire substrates by the chemical vapour deposition (CVD) technique. A structural study shows (0001)-oriented films with good crystalline quality. The temperature and excitation power dependence of the photoluminescence (PL) characteristics of these layers is studied as a function of various growth parameters, such as the growth temperature, oxygen flow rate and Zn flux, which suggest that the origin of the broad visible luminescence (VL), which peaks at 2.45 eV, is the transition between the conduction band and the Zn vacancy acceptor states. A bound excitonic transition observed at 3.32 eV in low temperature PL has been identified as an exciton bound to the neutral Zn vacancy. Our study also reveals the involvement of two activation processes in the dynamics of VL, which has been explained in terms of the fluctuation of the capture barrier height for the holes trapped in Zn vacancy acceptors. The fluctuation, which might be a result of the inhomogeneous distribution of Zn vacancies, is found to be associated with an average height of 7 and 90 meV, respectively, for the local and global maxima. (paper)

  10. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  11. High Ionic Liquid Content Polymeric Gel Membranes: Correlation of Membrane Structure with Gas and Vapour Transport Properties

    Czech Academy of Sciences Publication Activity Database

    Friess, K.; Jansen, J. C.; Bazzarelli, F.; Izák, Pavel; Jarmarová, Veronika; Kačírková, Marie; Schauer, Jan; Clarizia, G.; Bernardo, P.

    2012-01-01

    Roč. 415, OCT 1 (2012), s. 801-809 ISSN 0376-7388 R&D Projects: GA MŠk(CZ) 7C11009 Grant - others:RFCS(XE) RFCR-CT-2010-00009 Institutional support: RVO:67985858 ; RVO:61389013 Keywords : Ionic liquidmembrane * polymer gel * diffusion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.093, year: 2012

  12. Visible and IR photoluminescence of c-FeSi@a–Si core–shell nano-fibres produced by vapour transport

    Energy Technology Data Exchange (ETDEWEB)

    Thabethe, Sibongiseni [DST/CSIR National Centre for Nano-Structured Materials, PO Box 395, Pretoria 0001 (South Africa); Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Linganiso, Ella; Motaung, David; Mashapa, Matete G.; Nkosi, Steven [DST/CSIR National Centre for Nano-Structured Materials, PO Box 395, Pretoria 0001 (South Africa); Arendse, Christopher J. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Mwakikunga, Bonex W., E-mail: bmwakikunga@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, PO Box 395, Pretoria 0001 (South Africa); Department of Physics and Biochemical Sciences, University of Malawi, The Polytechnic, Private Bag 303, Chichiri, Blantyre 3 (Malawi)

    2013-11-15

    The procedures for the synthesis of amorphous ε-FeSi/Si core–shell nanofibres by vapour transport in a CVD configuration are reported. Crystallite studies by the Williamson-Hall method show the sizes to be typically about 8.0 nm which agrees with TEM value of 7.9 nm fibre diameter with a compressive strain of about 0.04. Features in the photoluminescence of these FeSi core–shells in both visible and IR are at 410 nm, 1062 nm, 1414 nm and 1772 nm and absorption feature at 1000 cm{sup −1} from FTIR are explained from density functional theory (DFT) ab initio calculations. PL confirms the intra-band transition whereas FTIR agrees perfectly with the band-to-band transition whose band gap energy is 0.13 eV for FeSi. FTIR also unveils inter-band transition which DFT calculation could not predict. Raman spectroscopy data confirm FeSi and nano-Si presence. -- Highlights: • New PL data has been obtained for the c-FeSi@a–Si nano-fibres in the range (0.7–3.1 eV). • FTIR unveils the band-to-band transition within this narrow band gap FeSi. • The new data are explained through electronic energy band structure and density of states of FeSi. • Intra-band transitions as well as quantum confinement are responsible for blue shifts.

  13. Chemical vapour deposition diamond. Charge carrier movement at low temperatures and use in time-critical applications

    International Nuclear Information System (INIS)

    Jansen, Hendrik

    2013-09-01

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, over laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  14. Chemical Vapour Deposition Diamond - Charge Carrier Movement at Low Temperatures and Use in Time-Critical Applications

    CERN Document Server

    Jansen, Hendrik; Pernegger, Heinz

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, to laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  15. Raman Spectroscopic Study of Carbon Nano tubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition Syazwan

    International Nuclear Information System (INIS)

    Zobir, A.M.; Abdullah, S.; Rusop, M.; Abdullah, S.; Abu Bakar, S.; Zainal, Z.; Sarijo, S.H.; Rusop, M.

    2012-01-01

    Multi walled carbon nano tubes (MWCNTs) were synthesized using Fe/ZnO catalyst by a dual-furnace thermal chemical vapor deposition (CVD) method at 800-1000 degree C using nitrogen gas with a constant flow rate of 150 sccm/min as a gas carrier. Palm olein (PO), ferrocene in the presence of 0.05 M zinc nitrate, and a p-type silicon wafer were used as carbon source, catalyst precursor, and sample target, respectively. D, G, and G' bands were observed at 1336-1364, 1559-1680, and 2667-2682 cm -1 , respectively. Carbon nano tubes (CNTs) with the highest degree of crystallinity were obtained at around 8000 degree C, and the smallest diameter of about 2 nm was deposited on the silicon substrate at 1000 degree C.

  16. Raman Spectroscopic Study of Carbon Nanotubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Syazwan Afif Mohd Zobir

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized using Fe/ZnO catalyst by a dual-furnace thermal chemical vapor deposition (CVD method at 800–1000°C using nitrogen gas with a constant flow rate of 150 sccm/min as a gas carrier. Palm olein (PO, ferrocene in the presence of 0.05 M zinc nitrate, and a p-type silicon wafer were used as carbon source, catalyst precursor, and sample target, respectively. D, G, and G′ bands were observed at 1336–1364, 1559–1680, and 2667–2682 cm-1, respectively. Carbon nanotubes (CNTs with the highest degree of crystallinity were obtained at around 8000°C, and the smallest diameter of about 2 nm was deposited on the silicon substrate at 1000°C.

  17. Potential for Intermodal Transport of Chemical Goods in Slovakia

    Directory of Open Access Journals (Sweden)

    Jagelčák Juraj

    2017-01-01

    Full Text Available This article deals with intermodal transport of chemical goods in Slovak republic. Analysis is based on information from interviews with companies and logistics service providers. The first part of the article describes importance of Intermodal transport and basic transport routes for intermodal transport. Respondents considered advantages and disadvantages of intermodal transport. Possible improvements inside companies and improvements of external framework conditions to promote modal shift are described in the second part of the paper.

  18. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  19. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  20. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J; Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1998-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  1. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  2. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  3. Growth and properties of Al-rich InxAl1-xN ternary alloy grown on GaN template by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Oh, Tae Su; Suh, Eun-Kyung; Kim, Jong Ock; Jeong, Hyun; Lee, Yong Seok; Nagarajan, S; Lim, Kee Young; Hong, Chang-Hee

    2008-01-01

    An Al-rich In x Al 1-x N ternary alloy was grown on a GaN template by metal-organic chemical vapour deposition (MOCVD). The GaN template was fabricated on a c-plane sapphire with a low temperature GaN nucleation layer. The growth of the 300 nm thick In x Al 1-x N layer was carried out under various growth temperatures and pressures. The surface morphology and the InN molar fraction of the In x Al 1-x N layer were assessed by using atomic force microscopy (AFM) and high resolution x-ray diffraction, respectively. The AFM surface images of the In x Al 1-x N ternary alloy exhibited quantum dot-like grains caused by the 3D island growth mode. The grains, however, disappeared rapidly by increasing diffusion length and mobility of the Al adatoms with increasing growth temperature and the full width at half maximum value of ternary peaks in HR-XRD decreased with decreasing growth pressure. The MOCVD growth condition with the increased growth temperature and decreased growth pressure would be effective to grow the In x Al 1-x N ternary alloy with a smooth surface and improved quality. The optical band edge of In x Al 1-x N ternary alloys was estimated by optical absorbance and, based on the results of HR-XRD and optical absorbance measurements, we obtained the bowing parameter of the In x Al 1-x N ternary alloy at b = 5.3 eV, which was slightly larger than that of previous reports

  4. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N., E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Oliphant, C. J.; Jordaan, W. A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Fabiane, M. [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Department of Physics, National University of Lesotho, P.O. Roma 180 (Lesotho)

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  5. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique

    International Nuclear Information System (INIS)

    Jany, Ch.

    1998-01-01

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead η to decrease. In contrast, η was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp 2 phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  6. Mechanical characteristics of ultra-long horizontal nanocantilevers grown by real-time feedback control on focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Guo, Dengji; Warisawa, Shin’ichi; Ishihara, Sunao; Kometani, Reo

    2015-01-01

    Focused-ion-beam chemical vapour deposition (FIB-CVD) has been repeatedly proved to be a useful tool for the growth of three-dimensional (3D) micro- and nano-structures. The strategy of real-time feedback control on FIB-CVD was previously proposed and experimentally demonstrated to be effective for growing ultra-long horizontal nanocantilevers. To fabricate various nanoelectromechanical systems that consist of such types of nanocantilever structures, the mechanical characteristics of ultra-long horizontal nanocantilevers should be investigated. In this study, nanocantilevers with an overhang length of up to 35 μm were grown by using a 30 kV Ga + FIB, a beam current of 0.50 pA and phenanthrene (C 14 H 10 ) as the gas source to deposit a diamond-like carbon structure. The Young’s modulus of each nanocantilever was measured by bending the nanocantilever with a nanopillar whose Young’s modulus was known. The average density of each nanocantilever was calculated from the Young’s modulus and the measured resonant frequency. We found that the mechanical characteristics of each nanocantilever depended on the length of the nanocantilever if the strategy of real-time feedback control was applied in fabrication. The Young’s moduli and the averaged densities of the nanocantilevers with a length of 11 to 34 μm were found to be 86 to 254 GPa and 1950 to 5750 kg m −3 , respectively. With the increase of the overhang length, the Young’s modulus and the average density were found to gradually increase. (paper)

  7. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  8. Photoluminescence of nc-Si:Er thin films obtained by physical and chemical vapour deposition techniques: The effects of microstructure and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, M.F., E-mail: fcerqueira@fisica.uminho.p [Departamento de Fisica, Universidade do Minho, Campus de Gualtar 4710-057 Braga (Portugal); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, Via Orabona n.4-70126 Bari (Italy); Stepikhova, M. [Institute for Physics of Microstructures RAS, 603600 Nizhnij Novgorod GSP-105 (Russian Federation); Alpuim, P.; Andres, G. [Departamento de Fisica, Universidade do Minho, Campus de Gualtar 4710-057 Braga (Portugal); Kozanecki, A. [Polish Academy of Sciences, Institute of Physics, PL-02668, Warsaw (Poland); Soares, M.J.; Peres, M. [Departamento de Fisica, Universidade de Aveiro, Campus de Santiago, 3700 Aveiro (Portugal)

    2009-08-31

    Erbium doped nanocrystalline silicon (nc-Si:Er) thin films were produced by reactive magnetron rf sputtering and by Er ion implantation into chemical vapor deposited Si films. The structure and chemical composition of films obtained by the two approaches were studied by micro-Raman scattering, spectroscopic ellipsometry and Rutherford backscattering techniques. Variation of deposition parameters was used to deposit films with different crystalline fraction and crystallite size. Photoluminescence measurements revealed a correlation between film microstructure and the Er{sup 3+} photoluminescence efficiency.

  9. A Coupled Chemical and Mass Transport Model for Concrete Durability

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    In this paper a general continuum theory is used to evaluate the service life of cement based materials, in terms of mass transport processes and chemical degradation of the solid matrix. The model established is a reactive mass transport model, based on an extended version of the Poisson-Nernst-...

  10. Toward a comprehensive model of chemical transport in porous media

    International Nuclear Information System (INIS)

    Miller, C.W.

    1983-02-01

    A chemical transport model, CHEMTRN, that includes advection, dispersion/diffusion, complexation, sorption, precipitation or dissolution of solids, and the dissociation of water has been written. The transport, mass action and site constraint equations are written in a differential/algebraic form and solved simultaneously. The sorption process is modelled by either ion-exchange or surface complexation. The model has been used to investigate the applicability of a k/sub D/ model for simulating the transport of chemical species in groundwater systems, to simulate precipitation/dissolution of minerals, and to consider the effect of surface complexation on sorption

  11. Determination of chemical solute transport parameters effecting radiostrontium interbed sediments

    International Nuclear Information System (INIS)

    Hemming, C.; Bunde, R.L.; Rosentreter, J.J.

    1993-01-01

    The extent to which radionuclides migrate in an aquifer system is a function of various physical, chemical, and biological processes. A measure of this migration rate is of primary concern when locating suitable storage sites for such species. Parameters including water-rock interactions, infiltration rates, chemical phase modification, and biochemical reactions all affect solute transport. While these different types of chemical reactions can influence solute transport in subsurface waters, distribution coefficients (Kd) can be send to effectively summarize the net chemical factors which dictate transport efficiency. This coefficient describes the partitioning of the solute between the solution and solid phase. Methodology used in determining and interpreting the distribution coefficient for radiostrontium in well characterized sediments will be presented

  12. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition; Sistema RTP: uma tecnica poderosa para o monitoramento da formacao de nanotubos de carbono durante o processo por deposicao de vapor quimico

    Energy Technology Data Exchange (ETDEWEB)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero, E-mail: rochel@ufmg.b [Universidade Federal de Minas Gerais (DQ/UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Sapag, Karim [Universidade Nacional de San Luis (Argentina). Lab. de Ciencias de Superficies y Medios Porosos

    2010-07-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al{sub 2}O{sub 3} and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  13. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    Science.gov (United States)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  14. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    OpenAIRE

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  15. UTMTOX, Toxic Chemical Transport in Atmosphere, Ground Water, Sediments

    International Nuclear Information System (INIS)

    1988-01-01

    A - Description of program or function: UTMTOX is a unified transport model for toxic materials. It combines hydrologic, atmospheric, and sediment transport in one computer code and extends the scope to predict the transport of not only trace metals but also many chemical compounds, including organics. UTMTOX is capable of calculating 1) the atmospheric dispersion of up to 20 chemicals from a maximum of 10 point, 10 line, and 10 area sources; 2) deposition of one chemical at a time in both wet and dry form on foliage or the surface of the earth; 3) surface flow and erosion; 4) percolation through the soil to a stream channel; and 5) flow in the stream channel to the outfall of a watershed. B - Method of solution: UTMTOX calculates rates of flux of chemicals from release to the atmosphere, through deposition on a watershed, infiltration, and runoff from the soil to flow in the stream channel and the associated sediment transport. From these values, mass balances can be established, budgets for the chemical can be made, and concentrations in many environmental compartments can be estimated. Since the coupling is established among three major submodels, they can share data

  16. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  17. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Z. C.; Christ, J. F.; Evans, K. A.; Arey, B. W.; Sweet, L. E.; Warner, M. G.; Erikson, R. L.; Barrett, C. A.

    2017-01-01

    We report the production of flexible, highly-conductive poly(vinylidene flouride) (PVDF) and multi-walled carbon nanotube (MWCNT) composites as filament feedstock for 3D-printing. This account further describes, for the first-time, fused deposition modelling (FDM) derived 3D-printed objects with chemiresistive properties in response to volatile organic compounds. The typically prohibitive thermal expansion and die swell characteristics of PVDF were minimized by the presence of MWCNTs in the composites enabling straightforward processing and printing. The nanotubes form a dispersed network as characterized by helium ion microscopy, contributing to excellent conductivity (1 x 10-2 S / cm). The printed composites contain little residual metal particulate relative to parts from commercial PLA-nanocomposite material visualized by micro X-ray computed tomography (μ-CT) and corroborated with thermogravimetric analysis. Printed sensing strips, with MWCNT loadings up to 15 % mass, function as reversible vapour sensors with the strongest responses arising with organic compounds capable of readily intercalating, and subsequently swelling the PVDF matrix (acetone and ethyl acetate). A direct correlation between MWCNT concentration and resistance change was also observed, with larger responses (up to 161 % after 3 minutes) generated with decreased MWCNT loadings. These findings highlight the utility of FDM printing in generating low-cost sensors that respond strongly and reproducibly to target vapours. Furthermore, the sensors can be easily printed in different geometries, expanding their utility to wearable form factors. The proposed formulation strategy may be tailored to sense diverse sets of vapour classes through structural modification of the polymer backbone and/or functionalization of the nanotubes within the composite.

  18. Ozone and water vapour in the austral polar stratospheric vortex and sub-vortex

    Directory of Open Access Journals (Sweden)

    E. Peet

    2004-12-01

    Full Text Available In-situ measurements of ozone and water vapour, in the Antarctic lower stratosphere, were made as part of the APE-GAIA mission in September and October 1999. The measurements show a distinct difference above and below the 415K isentrope. Above 415K, the chemically perturbed region of low ozone and water vapour is clearly evident. Below 415K, but still above the tropopause, no sharp meridional gradients in ozone and water vapour were observed. The observations are consistent with analyses of potential vorticity from the European Centre for Medium Range Weather Forecasting, which show smaller radial gradients at 380K than at 450K potential temperature. Ozone loss in the chemically perturbed region above 415K averages 5ppbv per day for mid-September to mid-October. Apparent ozone loss rates in the sub-vortex region are greater, at 7ppbv per day. The data support, therefore, the existence of a sub-vortex region in which meridional transport is more efficient than in the vortex above. The low ozone mixing ratios in the sub-vortex region may be due to in-situ chemical destruction of ozone or transport of ozone-poor air out of the bottom of the vortex. The aircraft data we use cannot distinguish between these two processes. Key words. Meteorology and atmospheric dynamics polar meteorology – Atmospheric composition and structure (middle atmosphere–composition and chemistry

  19. Theoretical calculations of primary particle condensation for cadmium and caesium iodide vapours

    Energy Technology Data Exchange (ETDEWEB)

    Buckle, E.R. [Division of Metallurgy, School of Materials, The University, Mappin Street, Sheffield S1 3JD (United Kingdom); Bowsher, B.R. [Chemistry Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1988-10-15

    A theoretical approach to modelling aerosol nucleation from the vapour phase has been developed by Buckle. In this theory, the condensing vapour species are assumed to be transported from an evaporating source across a one-dimensional stagnant boundary layer into an unreactive vapour-free atmosphere. A slip-flow model for interfacial energy and mass flow is combined with this stagnant boundary layer model to yield a set of parameters that uniquely characterise the evaporative flow process (i.e. pressure, source and sink temperatures, sink concentration, and the flux density of heat or mass from the source). To obtain the initial conditions for nucleation the vapour saturation ratio p/p deg is plotted against temperature and compared with the minimum saturation ratio defined by homogeneous nucleation theory. The co-education be represented by a nucleation threshold (or F) diagram. The mass and energy equations of the flow are solved by introducing the Becker-Doering formula for the nucleation rate, and the Stefan diffusion model for particle growth. This gives the rise and fall of supersaturation and the evolution of the particle size distribution along the flow coordinate. In the present studies, the applicability of the model has been tested by considering the condensation of caesium iodide and cadmium vapours under a wide variety of pre-mixed flow conditions of interest to PWR severe accident studies. The model has been used to predict the onset of nucleation and the particle size distribution for single vapour species. Preliminary studies have demonstrated that conditions exist whereby both heterogeneous and homogeneous nucleation can occur simultaneously. This process could account for experimental observations of chemically-different aerosols being formed under severe reactor accident conditions. (author)

  20. Chemical factors affecting fission product transport in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly

  1. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  2. Detection of polar vapours

    International Nuclear Information System (INIS)

    Blyth, D.A.

    1980-01-01

    Apparatus for monitoring for polar vapours in a gas consists of (i) a body member defining a passage through which a continuous stream of the gas passes; (ii) an ionising source associated with a region of the passage such that ionization of the gas stream takes place substantially only within the region and also any polar vapour molecules present therein will react with the gas formed to generate ion clusters; and (iii) an electrode for collecting ions carried by the gas stream, the electrode being positioned in the passage downstream of the region and separated from the region by a sufficient distance to ensure that no substantial number of the gas ions formed in said region remains in the gas stream at the collector electrode whilst ensuring that a substantial proportion of the ion clusters formed in the region does remain in the gas stream at the collector electrode. (author)

  3. A Coupled Chemical and Mass Transport Model for Concrete Durability

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    -Raphson iteration scheme arising from the non-linearity. The overall model is a transient problem, solved using a single parameter formulation. The sorption hysteresis and chemical equilibrium is included as source or sink terms. The advantages with this formulation is that each node in the discrete system has...... their individual sorption hysteresis isotherm which is of great importance when describing non fully water saturated system e.g. caused by time depended boundary conditions. Chemical equilibrium is also established in each node of the discrete system, where the rate of chemical degradation is determined.......g. charge balance, from the mass transport calculation could cause the above mentioned numerical problems. Two different test cases are studied, the sorption hysteresis in different depth of the sample, caused by time depended boundary condition and the chemical degradation of the solid matrix in a ten year...

  4. Vapour pressure of trideuterioammonia

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Lopes, J.N.C.; Rebelo, L.P.N. (Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural)

    1992-09-01

    The H-to-D vapour-pressure isotope effect in liquid ammonia has been measured at 62 temperatures between 228 K and 260 K. The vapour pressures, corrected to 100 per cent nuclidic purity, have been fitted to the equation: T ln r = A+B/T+CT, where r is the vapour-pressure ratio p(NH[sub 3])/p(ND[sub 3]). The fit yielded the parameters: A = -8.22508 K, B = 12338.2 K[sup 2], and C = -0.05544. Comparisons with the results of other authors were made in order to clarify some discrepancies found in the literature. Our values are in accord with the previous results of King et al. and an extrapolation of the fitted equation down to the triple-point temperature gave good agreement with the published results. The fitted equation was used in conjunction with the Clapeyron equation to calculate the difference in the molar enthalpies of vaporization between NH[sub 3] and ND[sub 3]. At T = 230 K that difference is -846 J.mol[sup -1] decreasing to -747 J.mol[sup -1] at 260 K. (author).

  5. Chemical and kinetic equilibrations via radiative parton transport

    International Nuclear Information System (INIS)

    Zhang Bin; Wortman, Warner A

    2011-01-01

    A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.

  6. Transport Coefficients for the NASA Lewis Chemical Equilibrium Program

    Science.gov (United States)

    Svehla, Roger A.

    1995-01-01

    The new transport property data that will be used in the NASA Lewis Research Center's Chemical Equilibrium and Applications Program (CEA) is presented. It complements a previous publication that documented the thermodynamic and transport property data then in use. Sources of the data and a brief description of the method by which the data were obtained are given. Coefficients to calculate the viscosity, thermal conductivity, and binary interactions are given for either one, or usually, two temperature intervals, typically 300 to 1000 K and 1000 to 5000 K. The form of the transport equation is the same as used previously. The number of species was reduced from the previous database. Many species for which the data were estimated were eliminated from the database. Some ionneutral interactions were added.

  7. Cellular automaton model of coupled mass transport and chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.

    1994-01-01

    Mass transport, coupled with chemical reactions, is modelled as a cellular automaton in which solute molecules perform a random walk on a lattice and react according to a local probabilistic rule. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. The model is applied to the reactions a + b ↔c and a + b →c, where we observe interesting macroscopic effects resulting from microscopic fluctuations and spatial correlations between molecules. We also simulate autocatalytic reaction schemes displaying spontaneous formation of spatial concentration patterns. Finally, we propose and discuss the limitations of a simple model for mineral-solute interaction. (author) 5 figs., 20 refs

  8. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  9. Cellular automaton model of mass transport with chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.; Blankleider, B.

    1993-10-01

    The transport and chemical reactions of solutes are modelled as a cellular automaton in which molecules of different species perform a random walk on a regular lattice and react according to a local probabilistic rule. The model describes advection and diffusion in a simple way, and as no restriction is placed on the number of particles at a lattice site, it is also able to describe a wide variety of chemical reactions. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. Simulations on one-and two-dimensional lattices show that the discrete model can be used to approximate the solutions of the continuum equations. We discuss discrepancies which arise from correlations between molecules and how these discrepancies disappear as the continuum limit is approached. Of particular interest are simulations displaying long-time behaviour which depends on long-wavelength statistical fluctuations not accounted for by the standard equations. The model is applied to the reactions a + b ↔ c and a + b → c with homogeneous and inhomogeneous initial conditions as well as to systems subject to autocatalytic reactions and displaying spontaneous formation of spatial concentration patterns. (author) 9 figs., 34 refs

  10. Accounting for chemical kinetics in field scale transport calculations

    International Nuclear Information System (INIS)

    Bryan, N.D.

    2005-01-01

    The modelling of column experiments has shown that the humic acid mediated transport of metal ions is dominated by the non-exchangeable fraction. Metal ions enter this fraction via the exchangeable fraction, and may transfer back again. However, in both directions these chemical reactions are slow. Whether or not a kinetic description of these processes is required during transport calculations, or an assumption of local equilibrium will suffice, will depend upon the ratio of the reaction half-time to the residence time of species within the groundwater column. If the flow rate is sufficiently slow or the reaction sufficiently fast then the assumption of local equilibrium is acceptable. Alternatively, if the reaction is sufficiently slow (or the flow rate fast), then the reaction may be 'decoupled', i.e. removed from the calculation. These distinctions are important, because calculations involving chemical kinetics are computationally very expensive, and should be avoided wherever possible. In addition, column experiments have shown that the sorption of humic substances and metal-humate complexes may be significant, and that these reactions may also be slow. In this work, a set of rules is presented that dictate when the local equilibrium and decoupled assumptions may be used. In addition, it is shown that in all cases to a first approximation, the behaviour of a kinetically controlled species, and in particular its final distribution against distance at the end of a calculation, depends only upon the ratio of the reaction first order rate to the residence time, and hence, even in the region where the simplifications may not be used, the behaviour is predictable. In this way, it is possible to obtain an estimate of the migration of these species, without the need for a complex transport calculation. (orig.)

  11. Low-pressure chemical vapour deposition of LiCoO2 thin films: a systematic investigation of the deposition parameters

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    The feasibility of volatile precursor low-pressure chemical vapor deposition (LPCVD) for the production of LiCoO2 cathodes for all solid-state microbatteries was examined. To test this feasibility, and gain insight into the deposition behavior, the influence of the deposition parameters on the

  12. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Plate, Paul, E-mail: paul.plate@helmholtz-berlin.de; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Bartsch, Peter [Beuth Hochschule für Technik Berlin, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik (Germany); Fiechter, Sebastian; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Fischer, Christian-Herbert [Freie Universität Berlin, Institute of Chemistry and Biochemistry (Germany)

    2017-04-15

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  13. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    International Nuclear Information System (INIS)

    Liu, Yang; Plate, Paul; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina; Bartsch, Peter; Fiechter, Sebastian; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2017-01-01

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  14. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  15. Absorption, transport, and chemical fate of plutonium in soybean plants

    International Nuclear Information System (INIS)

    Garland, T.R.; Cataldo, D.A.; Wildung, R.E.

    1981-01-01

    Absorption of plutonium (Pu) by soybean plants (Glycine max cv. Williams) is limited by Pu solubility in soils. Changes in Pu concentration in different tissues with time to senescence indicate Pu is freely transported through the xylem during growth but not subject to remobilization on flowering. Studies in which the DTPA complex of 238 Pu was supplied to the plant suggest a change in chemical form following root absorption. Of the Pu in roots, stems, and leaves at senescence, 28, 54, and 67%, respectively, were soluble. The Pu in the solluble fraction was primarily associated with components of >10000 equivalent molecular weight in leaves and roots, whereas stems exhibited an equal distribution between components in the >10000 and <500 molecular weight fractions. Plutonium associated with mature seeds is concentrated in the seed hull (85%) and cotyledons (14%). The Pu associated with the cotyledon was primarily in the insoluble residues and soluble soy whey

  16. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  17. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  18. Electron collision cross section sets of TMS and TEOS vapours

    Science.gov (United States)

    Kawaguchi, S.; Takahashi, K.; Satoh, K.; Itoh, H.

    2017-05-01

    Reliable and detailed sets of electron collision cross sections for tetramethylsilane [TMS, Si(CH3)4] and tetraethoxysilane [TEOS, Si(OC2H5)4] vapours are proposed. The cross section sets of TMS and TEOS vapours include 16 and 20 kinds of partial ionization cross sections, respectively. Electron transport coefficients, such as electron drift velocity, ionization coefficient, and longitudinal diffusion coefficient, in those vapours are calculated by Monte Carlo simulations using the proposed cross section sets, and the validity of the sets is confirmed by comparing the calculated values of those transport coefficients with measured data. Furthermore, the calculated values of the ionization coefficient in TEOS/O2 mixtures are compared with measured data to confirm the validity of the proposed cross section set.

  19. Chemical vapour deposition of graphene on Nk(111) and Co(0001) and intercalation with Au to study Dirac Cone Formation and Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Barriga, J.; Vescovo, E.; Varykhalov, A.; Scholz, M.R.; Rader, O.; Marchenko, D.; Rybkin, A.

    2010-01-01

    We show in detail monitoring by photoelectron spectroscopy how graphene can be grown by chemical vapor deposition on the transition-metal surfaces Ni(111) and Co(0001) and intercalated by a monoatomic layer of Au. For both systems, a linear E(k) dispersion of massless Dirac fermions appears in the graphene {pi}-band in the vicinity of the Fermi energy. In order to study ferromagnetism and spin-orbit effects by spin- and angle-resolved photoelectron spectroscopy, the sample must be magnetized in remanence. To this end, a W(110) substrate is prepared, its cleanliness verified by photoemission from W(110) surface states and surface core levels, and epitaxial Ni(111) and Co(0001) thin films are grown on top. Spin-resolved photoemission from the {pi}-band shows that the ferromagnetic polarization of graphene/Ni(111) and graphene/Co(0001) is negligible and that graphene on Ni(111) is after intercalation of Au spin-orbit split by the Rashba effect.

  20. Making ET AAS Determination Less Dependent on Vapourization ...

    African Journals Online (AJOL)

    NICO

    The quantification of the analytes in ET AAS is normally attained by the measurement and integration of transient absorbance. High degree of atomization and constant vapour transportation rate for the analyte atoms in the absorption volume are considered to be crucial to grant correctness of the measurements. However ...

  1. Vapour intrusion from the vadose zone—seven algorithms compared

    NARCIS (Netherlands)

    Provoost, J.; Bosman, A.; Reijnders, L.; Bronders, J.; Touchant, K.; Swartjes, F.

    2010-01-01

    Background, aim and scope: Vapours of volatile organic compounds (VOCs) emanating from contaminated soils may move through the unsaturated zone to the subsurface. VOC in the subsurface can be transported to the indoor air by convective air movement through openings in the foundation and basement.

  2. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  3. DNA Charge Transport: From Chemical Principles to the Cell

    Science.gov (United States)

    Arnold, Anna R.; Grodick, Michael A.; Barton, Jacqueline K.

    2016-01-01

    The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology. PMID:26933744

  4. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition.

    Science.gov (United States)

    Mon-Pérez, E; Salazar, J; Ramos, E; Salazar, J Santoyo; Suárez, A López; Dutt, A; Santana, G; Monroy, B Marel

    2016-11-11

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH 2 Cl 2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH 3 /SiH 2 Cl 2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  5. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition

    Science.gov (United States)

    Mon-Pérez, E.; Salazar, J.; Ramos, E.; Santoyo Salazar, J.; López Suárez, A.; Dutt, A.; Santana, G.; Marel Monroy, B.

    2016-11-01

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH2Cl2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH3/SiH2Cl2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  6. Study of three dimensional germanium islands and ultrathin Si{sub x}Ge{sub 1-x} films grown by chemical vapour deposition on Si(111)-(7 x 7)

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Selvi

    2005-07-15

    This work probed at the atomic level, processes that occur during the Ge three dimensional island formation and on ultrathin Si{sub x}Ge{sub 1-x} epitaxial growth by chemical vapour deposition on the Si(111)-(7 x 7) substrate with the aid of surface probe techniques such as STM and AFM, XPS, as well as TEM imaging of any 3D island formation. This work could essentially be divided into two parts. The first part studied the growth of the strained Ge on Si system with emphasis on the characterisation of the CVD grown three dimensional germanium islands on a standard Si(111)-(7 x 7) substrate as well as on a surface modified Si(111)-(7 x 7) substrate. The characterisation was carried out using a combination of techniques. XPS was used to calculate the effective coverages of deposited germanium, the STM was used to image the top most layers whenever possible and AFM, cross-sectional TEM and HRTEM to image the three dimensional islands. The possible causes of the surface modification were also examined. In the second part of this work the growth morphologies ultrathin Si{sub x}Ge{sub 1-x} layers grown on the Si(111)-(7 x 7) substrate at 750 K where the hydrogen desorption rate from the Si(111) surface is low and at 850 K which was the temperature at which the rate of hydrogen desorption from the Si(111) surface was a maximum were investigated. In addition modelling of ultrathin layer growth was carried out using two existing growth models. (orig.)

  7. Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model

    Directory of Open Access Journals (Sweden)

    W. Feng

    2011-06-01

    Full Text Available We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (reanalyses (ERA-40, ECMWF operational and ECMWF Interim to diagnose the updraft mass flux, convective precipitation and cloud top height.

    The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL, which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed.

    The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation.

    We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution gives stronger vertical tracer transport, however, it does not make a large change to the diagnosed convective updraft mass flux (i.e., the model results using the convection scheme fail to capture the strong convection transport up to 100 hPa as seen in the archived convective mass fluxes. Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a

  8. Photo-chemical transport modelling of tropospheric ozone: A review

    Science.gov (United States)

    Sharma, Sumit; Sharma, Prateek; Khare, Mukesh

    2017-06-01

    Ground level ozone (GLO), a secondary pollutant having adverse impact on human health, ecology, and agricultural productivity, apart from being a major contributor to global warming, has been a subject matter of several studies. In order to identify appropriate strategies to control GLO levels, accurate assessment and prediction is essential, for which elaborate simulation and modelling is required. Several studies have been undertaken in the past to simulate GLO levels at different scales and for various applications. It is important to evaluate these studies, widely spread over in literature. This paper aims to critically review various studies that have been undertaken, especially in the past 15 years (2000-15) to model GLO. The review has been done of the studies that range over different spatial scales - urban to regional and continental to global. It also includes a review of performance evaluation and sensitivity analysis of photo-chemical transport models in order to assess the extent of application of these models and their predictive capability. The review indicates following major findings: (a) models tend to over-estimate the night-time GLO concentrations due to limited titration of GLO with NO within the model; (b) dominance of contribution from far-off regional sources to average ozone concentration in the urban region and higher contribution of local sources during days of high ozone episodes; requiring strategies for controlling precursor emissions at both regional and local scales; (c) greater influence of NOx over VOC in export of ozone from urban regions due to shifting of urban plumes from VOC-sensitive regime to NOx-sensitive as they move out from city centres to neighbouring rural regions; (d) models with finer resolution inputs perform better to a certain extent, however, further improvement in resolutions (beyond 10 km) did not show improvement always; (e) future projections show an increase in GLO concentrations mainly due to rise in

  9. Atomic origins of water-vapour-promoted alloy oxidation.

    Science.gov (United States)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-05-07

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  10. Vapour Pressure of Diethyl Phthalate

    Czech Academy of Sciences Publication Activity Database

    Roháč, V.; Růžička, K.; Růžička, V.; Zaitsau, D. H.; Kabo, G. J.; Diky, V.; Aim, Karel

    2004-01-01

    Roč. 36, č. 11 (2004), s. 929-937 ISSN 0021-9614 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour pressure * diethyl phthalate * correlation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.144, year: 2004

  11. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    2013 4. TITLE AND SUBTITLE Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials 5a...directions for future decontamination formulation approaches. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent... DECONTAMINANTS TO PROVIDE HAZARD MITIGATION OF CHEMICAL WARFARE AGENTS FROM MATERIALS 1. INTRODUCTION Decontamination of materials is the

  12. DESIGN of MICRO CANTILEVER BEAM for VAPOUR DETECTION USING COMSOL MULTI PHYSICS SOFTWARE

    OpenAIRE

    Sivacoumar R; Parvathy JM; Pratishtha Deep

    2015-01-01

    This paper gives an overview of micro cantilever beam of various shapes and materials for vapour detection. The design of micro cantilever beam, analysis and simulation is done for each shape. The simulation is done using COMSOL Multi physics software using structural mechanics and chemical module. The simulation results of applied force and resulting Eigen frequencies will be analyzed for different beam structures. The vapour analysis is done using flow cell that consists of chemical pill...

  13. Low Temperature Growth of In2O3and InN Nanocrystals on Si(111 via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In

    Directory of Open Access Journals (Sweden)

    Tsokkou Demetra

    2009-01-01

    Full Text Available Abstract Indium oxide (In2O3 nanocrystals (NCs have been obtained via atmospheric pressure, chemical vapour deposition (APCVD on Si(111 via the direct oxidation of In with Ar:10% O2at 1000 °C but also at temperatures as low as 500 °C by the sublimation of ammonium chloride (NH4Cl which is incorporated into the In under a gas flow of nitrogen (N2. Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 °C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forT G < 900 °C. The incorporation of NH4Cl in the In leads to the sublimation of NH4Cl into NH3and HCl at around 338 °C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111 where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111. The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 °C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111 with an average diameter of 300 nm.

  14. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.

    Science.gov (United States)

    Ayad, Mohamad M; El-Hefnawey, Gad; Torad, Nagy L

    2009-08-30

    Thin films of polyaniline base, emeraldine base (EB), coating on the quartz crystal microbalance (QCM) electrode were used as a sensitive layer for the detection of a number of primary aliphatic alcohols such as ethanol, methanol, 2-propanol and 1-propanol vapours. The frequency shifts (Deltaf) of the QCM were increased due to the vapour adsorption into the EB film. Deltaf were found to be linearly correlated with the concentrations of alcohols vapour in part per million (ppm). The sensitivity of the sensor was found to be governed by the chemical structure of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusions of different alcohols vapour were studied and the diffusion coefficients (D) were calculated. It is concluded that the diffusion of the vapours into the EB film follows Fickian kinetics.

  15. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Arnhild; Ensslin, Klaus [Solid State Physics Laboratory, ETH Zurich (Switzerland); Koehler, Fabian M; Stark, Wendelin J, E-mail: arnhildj@phys.ethz.ch, E-mail: fabian.koehler@chem.ethz.ch [Institute for Chemical and Bioengineering, ETH Zurich (Switzerland)

    2010-12-15

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  16. Towards electron transport measurements in chemically modified graphene: effect of a solvent

    International Nuclear Information System (INIS)

    Jacobsen, Arnhild; Ensslin, Klaus; Koehler, Fabian M; Stark, Wendelin J

    2010-01-01

    The chemical functionalization of graphene modifies the local electron density of carbon atoms and hence electron transport. Measuring these changes allows for a closer understanding of the chemical interaction and the influence of functionalization on the graphene lattice. However, not only chemistry, in this case diazonium chemistry, has an effect on electron transport. The latter is also influenced by defects and dopants resulting from different processing steps. Here, we show that the solvents used in the chemical reaction process change the transport properties. In more detail, the investigated combination of isopropanol and heating treatment reduces the doping concentration and significantly increases the mobility of graphene. Furthermore, isopropanol treatment alone increases the concentration of dopants and introduces an asymmetry between electron and hole transport, which might be difficult to distinguish from the effect of functionalization. The results shown in this work demand a closer look at the influence of solvents used for chemical modification in order to understand their influence.

  17. Sistema RTP: uma técnica poderosa para o monitoramento da formação de nanotubos de carbono durante o processo por deposição de vapor químico TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Tristão

    2010-01-01

    Full Text Available In this work, a TPR (Temperature Programmed Reduction system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition, The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al2O3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields.

  18. An Inverse Analysis Approach to the Characterization of Chemical Transport in Paints

    Science.gov (United States)

    Willis, Matthew P.; Stevenson, Shawn M.; Pearl, Thomas P.; Mantooth, Brent A.

    2014-01-01

    The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX. PMID:25226346

  19. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, L J; Peters, K J H; Bauer, G. E. W.; Duine, R A; van Wees, B J

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  20. Magnon spin transport driven by the magnon chemical in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, L.J.; Peters, K.J.H.; Bauer, G.E.W.; Duine, R.A.; van Wees, B.J.

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  1. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, L.J.; Peters, K. J H; Bauer, G.E.; Duine, R. A.; Van Wees, B. J.

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position-dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  2. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator

    NARCIS (Netherlands)

    Cornelissen, Ludo J.; Peters, Kevin J. H.; Duine, Rembert A.|info:eu-repo/dai/nl/304830127; Bauer, Gerrit E. W.; Wees, Bart J. van

    2016-01-01

    We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position dependent temperature and chemical potential that are governed by diffusion equations with characteristic relaxation

  3. CONSISTENT USE OF THE KALMAN FILTER IN CHEMICAL TRANSPORT MODELS (CTMS) FOR DEDUCING EMISSIONS

    Science.gov (United States)

    Past research has shown that emissions can be deduced using observed concentrations of a chemical, a Chemical Transport Model (CTM), and the Kalman filter in an inverse modeling application. An expression was derived for the relationship between the "observable" (i.e., the con...

  4. Transport Properties of a Kinetic Model for Chemical Reactions without Barriers

    International Nuclear Information System (INIS)

    Alves, Giselle M.; Kremer, Gilberto M.; Soares, Ana Jacinta

    2011-01-01

    A kinetic model of the Boltzmann equation for chemical reactions without energy barrier is considered here with the aim of evaluating the reaction rate and characterizing the transport coefficient of shear viscosity for the reactive system. The Chapman-Enskog solution of the Boltzmann equation is used to compute the chemical reaction effects, in a flow regime for which the reaction process is close to the final equilibrium state. Some numerical results are provided illustrating that the considered chemical reaction without energy barrier can induce an appreciable influence on the reaction rate and on the transport coefficient of shear viscosity.

  5. Chemical disorder and charge transport in ferromagnetic manganites

    International Nuclear Information System (INIS)

    Pickett, W.E.; Singh, D.J.

    1997-01-01

    Disorder broadening due to randomly distributed La 3+ and A 2+ (A=Ca,Sr,Ba) cations is combined with a virtual-crystal treatment of the average system to evaluate the effects on both majority and minority transport in the ferromagnetic La 2/3 A 1/3 MnO 3 system. The low-density minority carriers which lie in the band tail are localized by disorder, while the majority carriers retain long mean free paths reflected in the observed strongly metallic conductivity. In addition to obtaining transport parameters, we provide evidence that local distortions are due to nearby ionic charges rather than to ion size considerations. copyright 1997 The American Physical Society

  6. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O; Blum, R [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  7. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  8. Surface polish of PLA parts in FDM using dichloromethane vapour

    Directory of Open Access Journals (Sweden)

    Jin Yifan

    2017-01-01

    Full Text Available Fused deposition modelling has become one of the most diffused rapid prototyping techniques, which is widely used to fabricate prototypes. However, further application of this technology is severely limited by poor surface roughness. Thus it is necessary to adopt some operations to improve surface quality. Chemical finishing is typically employed to finish parts in fused deposition modelling (FDM. The purpose of this paper is to decrease the surface roughness for polylactic acid (PLA parts in FDM. The chemical reaction mechanism during the treating process is analysed. Then NaOH solution and dichloromethane vapour are used to treat FDM specimens respectively. A 3D laser microscope has been applied to assess the effects in terms of surface topography and roughness. The experimental results show that treatment using dichloromethane vapour performs much better than NaOH solution. Compared with the untreated group, surface roughness obtained through vapour treatment decreases by 88 per cent. This research has been conducted to provide a better method to treat PLA parts using chemical reagents.

  9. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  10. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  11. The Use of VMD Data/Model to Test Different Thermodynamic Models for Vapour-Liquid Equilibrium

    DEFF Research Database (Denmark)

    Abildskov, Jens; Azquierdo-Gil, M.A.; Jonsson, Gunnar Eigil

    2004-01-01

    Vacuum membrane distillation (VMD) has been studied as a separation process to remove volatile organic compounds from aqueous streams. A vapour pressure difference across a microporous hydrophobic membrane is the driving force for the mass transport through the membrane pores (this transport take...... place in vapour phase). The vapour pressure difference is obtained in VMD processes by applying a vacuum on one side of the membrane. The membrane acts as a mere support for the liquid-vapour equilibrium. The evaporation of the liquid stream takes place on the feed side of the membrane...... values; membrane type: PTFE/PP/PVDF; feed flow rate; feed temperature. A comparison is made between different thermodynamic models for calculating the vapour-liquid equilibrium at the membrane/pore interface. (C) 2004 Elsevier B.V. All rights reserved....

  12. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  13. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  14. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    T. Petäjä

    2005-01-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulphur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  15. SITE-94. Chemical and physical transport parameters for SITE-94

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden). Technical Environmental Planning

    1996-02-01

    Important parameters are the interactions of radionuclides with solid surfaces, parameters describing the geometrical conditions like porosity, data on water composition (ionic strength, pH, redox conditions, complex formers etc) and data on the solids that may be of importance to the water and radionuclide chemistry. In this report some of these data of relevance for the Aespoe site are discussed. Based on a literature survey, sorption data as well as values for some other parameters have been selected for rock, fracture fillings and bentonite relevant to the chemical conditions in and around a repository at Aespoe. A comparison to data used for earlier, site-specific as well as general, safety assessments of underground repositories has been performed. The data are recommendations for modelling of radionuclide release from a hypothetical high level waste repository at Aespoe. Since the data to a large extent are not based on experimental measurements, more accurate predictions may be expected if more experimental data are available. Before such studies are performed for a specific site, a variational analysis in order to evaluate the importance of the single parameters is recommended. After such a study, the key parameters may be investigated in detail and the modelling can be expected to be more accurate what concerns influence of single parameters. However, the uncertainty in conceptual areas like how to model accurately the long term hydrology of the site etc still remains. 32 refs.

  16. Predicting soil formation on the basis of transport-limited chemical weathering

    Science.gov (United States)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  17. Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1996-01-01

    Safety assessments for radioactive waste repositories require a detailed knowledge of physical, chemical, hydrological, and geological processes for long time spans. In the past, individual models for hydraulics, transport, or geochemical processes were developed more or less separately to great sophistication for the individual processes. Such processes are especially important in the near field of a waste repository. Attempts have been made to couple at least two individual processes to get a more adequate description of geochemical systems. These models are called coupled codes; they couple predominantly a multicomponent transport model with a chemical reaction model. Here reactive transport is modeled by the sequentially coupled code MCOTAC that couples one-dimensional advective, dispersive, and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium. Transport, described by a random walk of multispecies particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term. The modular-structured code was applied to incongruent dissolution of hydrated silicate gels, to movement of multiple solid front systems, and to an artificial, numerically difficult heterogeneous redox problem. These applications show promising features with respect to applicability to relevant problems and possibilities of extensions

  18. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  19. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  20. Selection of organic chemicals for subsurface transport. Subsurface transport program interaction seminar series. Summary

    International Nuclear Information System (INIS)

    Zachara, J.M.; Wobber, F.J.

    1984-11-01

    Model compounds are finding increasing use in environmental research. These individual compounds are selected as surrogates of important contaminants present in energy/defense wastes and their leachates and are used separately or as mixtures in research to define the anticipated or ''model'' environmental behavior of key waste components and to probe important physicochemical mechanisms involved in transport and fate. A seminar was held in Germantown, Maryland, April 24-25, 1984 to discuss the nature of model organic compounds being used for subsurface transport research. The seminar included participants experienced in the fields of environmental chemistry, microbiology, geohydrology, biology, and analytic chemistry. The objectives of the seminar were two-fold: (1) to review the rationale for the selection of organic compounds adopted by research groups working on the subsurface transport of organics, and (2) to evaluate the use of individual compounds to bracket the behavior of compound classes and compound constructs to approximate the behavior of complex organic mixtures

  1. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    Energy Technology Data Exchange (ETDEWEB)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.; Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (INDIA) Fax: +91-172-2783336; Tel.:+91-172-2544362 (India)

    2016-05-06

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposure with vapours. A variation in the activation energies was also observed with exposure of vapours.

  2. SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation

    DEFF Research Database (Denmark)

    Boy, M.; Sogachev, Andrey; Lauros, J.

    2010-01-01

    Chemistry in the atmospheric boundary layer (ABL) is controlled by complex processes of surface fluxes, flow, turbulent transport, and chemical reactions. We present a new model SOSA (model to simulate the concentration of organic vapours and sulphuric acid) and attempt to reconstruct the emissions...... in the surface layer we were able to get a reasonable description of turbulence and other quantities through the ABL. As a first application of the model, we present vertical profiles of organic compounds and discuss their relation to newly formed particles....

  3. SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation

    DEFF Research Database (Denmark)

    Boy, M.; Sogachev, Andrey; Lauros, J.

    2011-01-01

    Chemistry in the atmospheric boundary layer (ABL) is controlled by complex processes of surface fluxes, flow, turbulent transport, and chemical reactions. We present a new model SOSA (model to simulate the concentration of organic vapours and sulphuric acid) and attempt to reconstruct the emissions...... in the surface layer we were able to get a reasonable description of turbulence and other quantities through the ABL. As a first application of the model, we present vertical profiles of organic compounds and discuss their relation to newly formed particles....

  4. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo

    Directory of Open Access Journals (Sweden)

    Hongbin Tu

    2017-09-01

    Full Text Available Despite its transport by glucose transporters (GLUTs in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo−/− unable to synthesize ascorbate (vitamin C were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo.

  5. Characterization of TiO{sub 2} thin films obtained by metal-organic chemical vapour deposition; Caracterizacao de filmes finos de TiO{sub 2} obtidos por deposicao quimica em fase vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carriel, Rodrigo Crociati

    2015-07-01

    Titanium dioxide (TiO{sub 2}) thin films were grown on silicon substrate (100) by MOCVD process (chemical deposition of organometallic vapor phase). The films were grown at 400, 500, 600 and 700 ° C in a conventional horizontal equipment. Titanium tetraisopropoxide was used as source of both oxygen and titanium. Nitrogen was used as carrier and purge gas. X-ray diffraction technique was used for the characterization of the crystalline structure. Scanning electron microscopy with field emission gun was used to evaluate the morphology and thickness of the films. The films grown at 400 and 500°C presented anatase phase. The film grown at 600ºC presented rutile besides anatase phase, while the film grown at 700°C showed, in addition to anatase and rutile, brookite phase. In order to evaluate the electrochemical behavior of the films cyclic voltammetry technique was used. The tests revealed that the TiO2 films formed exclusively by the anatase phase exhibit strong capacitive character. The anodic current peak is directly proportional to the square root of the scanning rate for films grown at 500ºC, suggesting that linear diffusion is the predominant mechanism of cations transport. It was observed that in the film grown during 60 minutes the Na+ ions intercalation and deintercalation easily. The films grown in the other conditions did not present the anodic current peak, although charge was accumulated in the film. (author)

  6. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Steefel, C.I.; Yabusaki, S.B.

    1994-11-01

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  7. Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index

    International Nuclear Information System (INIS)

    Kim, Jeong Gon; Byun, Hun Soo

    2014-01-01

    Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorinerelated risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks

  8. Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Gon [Hanwha Chemical Ulsan Site, Ulsan (Korea, Republic of); Byun, Hun Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2014-12-15

    Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorinerelated risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks.

  9. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  10. Coupling between solute transport and chemical reactions models. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.

  11. The characterisation of vapour-phase alkali metal-tellurium-oxygen species

    International Nuclear Information System (INIS)

    Gomme, R.A.; Ogden, J.S.; Bowsher, B.R.

    1986-10-01

    Detailed assessments of hypothetical severe accidents in light water reactors require the identification of the chemical forms of the radionuclides in order to determine their transport characteristics. Caesium and tellurium are important volatile fission products in accident scenarios. This report describes detailed studies to characterise the chemical species that vaporise from heated mixtures of various alkali metal-tellurium-oxygen systems. The molecular species were characterised by a combination of quadrupole mass spectrometry and matrix isolation-infrared spectroscopy undertaken in conjunction with experiments involving oxygen-18 substitution. The resulting spectra were interpreted in terms of a vapour-phase molecule with the stoichiometry M 2 TeO 3 (M = K,Rb,Cs) for M/Te molecular ratios of ∼ 2, and polymeric species for ratios < 2. This work has demonstrated the stability of caesium tellurite. The formation of this relatively low-volatility, water-soluble species could significantly modify the transport and release of caesium and tellurium. The data presented in this report should allow more comprehensive thermodynamic calculations to be undertaken that assist in the quantification of fission product behaviour during severe reactor accidents. (author)

  12. Thermal diffusion of water vapour in porous materials: fact or fiction?

    DEFF Research Database (Denmark)

    Janssen, Hans

    2011-01-01

    diffusion. Thermal diffusion opponents, on the other hand, assert that these thermal transports are negligibly small. This paper resolves that contradiction. A critical analysis of the investigations supporting the occurrence of thermal diffusion reveals that all are flawed. A correct reinterpretation...... its negligible magnitude. It can in conclusion be stated that thermal diffusion is of no importance for building science applications, leaving vapour pressure as the sole significant transport potential for the diffusion of water vapour in porous materials. (C) 2010 Elsevier Ltd. All rights reserved....

  13. Evaluate transport processes in MERRA driven chemical transport models using updated 222Rn emission inventories and global observations

    Science.gov (United States)

    Zhang, B.; Liu, H.; Crawford, J. H.; Fairlie, T. D.; Chen, G.; Chambers, S. D.; Kang, C. H.; Williams, A. G.; Zhang, K.; Considine, D. B.; Payer Sulprizio, M.; Yantosca, R.

    2015-12-01

    Convective and synoptic processes play a major role in determining the transport and distribution of trace gases and aerosols in the troposphere. The representation of these processes in global models (at ~100-1000 km horizontal resolution) is challenging, because convection is a sub-grid process and needs to be parameterized, while synoptic processes are close to the grid scale. Depending on the parameterization schemes used in climate models, the role of convection in transporting trace gases and aerosols may vary from model to model. 222Rn is a chemically inert and radioactive gas constantly emitted from soil and has a half-life (3.8 days) comparable to synoptic timescale, which makes it an effective tracer for convective and synoptic transport. In this study, we evaluate the convective and synoptic transport in two chemical transport models (GMI and GEOS-Chem), both driven by the NASA's MERRA reanalysis. Considering the uncertainties in 222Rn emissions, we incorporate two more recent scenarios with regionally varying 222Rn emissions into GEOS-Chem/MERRA and compare the simulation results with those using the relatively uniform 222Rn emissions in the standard model. We evaluate the global distribution and seasonality of 222Rn concentrations simulated by the two models against an extended collection of 222Rn observations from 1970s to 2010s. The intercomparison will improve our understanding of the spatial variability in global 222Rn emissions, including the suspected excessive 222Rn emissions in East Asia, and provide useful feedbacks on 222Rn emission models. We will assess 222Rn vertical distributions at different latitudes in the models using observations at surface sites and in the upper troposphere and lower stratosphere. Results will be compared with previous models driven by other meteorological fields (e.g., fvGCM and GEOS4). Since the decay of 222Rn is the source of 210Pb, a useful radionuclide tracer attached to submicron aerosols, improved

  14. Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vapor as the Transport Agent

    Directory of Open Access Journals (Sweden)

    Shichao Zhao

    2018-02-01

    Full Text Available Molybdenum disulfide (MoS2 layers show excellent optical and electrical properties and have many potential applications. However, the growth of high-quality MoS2 layers is a major bottleneck in the development of MoS2-based devices. In this paper, we report a chemical vapor transport deposition method to investigate the growth behavior of monolayer/multi-layer MoS2 using water (H2O as the transport agent. It was shown that the introduction of H2O vapor promoted the growth of MoS2 by increasing the nucleation density and continuous monolayer growth. Moreover, the growth mechanism is discussed.

  15. Vapour pressures and enthalpies of vapourization of a series of the linear aliphatic nitriles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Koutek, Bohumir; Doubsky, Jan

    2005-01-01

    Vapour pressures and the molar enthalpies of vapourization ΔlgHm-bar of the linear aliphatic nitriles C 7 -C 17 have been determined by the transpiration method. Kovat's indices of these compounds were measured by capillary gas-chromatography. A linear correlation of enthalpies of vapourization ΔlgHm-bar at T=298.15 K of the nitriles studied with the Kovats indices has been found

  16. Vapour trap development and operational experience

    International Nuclear Information System (INIS)

    Jansing, W.; Kirchner, G.; Menck, J.

    1977-01-01

    Sodium aerosols have the unpleasant characteristic that they deposit at places with low temperature level. This effect can be utilized when sodium aerosols are to be trapped at places which are determined beforehand. Thus vapour traps were developed which can filter sodium vapour from the cover gas. By this means the necessity was eliminated to heat all gas lines and gas systems with trace heaters just as all sodium lines are heated. It was of special interest for the INTERATOM to develop vapour traps which must not be changed or cleaned after a certain limited operating period. The vapour traps were supposed to enable maintenance free operation, i.e. they were to operate 'self cleaning'

  17. Solvent purification using a current of water vapour. A continuous process applicable to chemical plants treating irradiated fuels; Purification des solvants par entrainement a la vapeur d'eau. Procede continu applicable aux usines chimiques de traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, P R; Sautray, R R; Girard, B R [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pilot plant described in this report is intended for the continuous purification of the solvent used in the plutonium extraction plant at Marcoule, by separating the impurities (fission products). This physical separation is operated by carrying over in a water vapour stream. The contaminating products, only slightly volatile, remain in the form of the droplets and are separated; the vaporised solvent and the water vapour used are condensed and then separated. The originality of the installation resides in the system for pulverising the liquid and in the operating conditions: low working pressure and temperature. The systematic analysis of the various parameters (percentage of residue; flow, pressure and temperature ratios etc...) has shown their influence on the decontamination. The activity due to the zirconium-niobium is undetectable after treatment, and it is easy to obtain decontamination factors of 300 for the ruthenium. The, presence of uranium is favorable for the decontamination. As a conclusion, some extra-technical considerations are given concerning in particular the approximate cost price of the treated solvent per litre. (authors) [French] L'installation pilote decrite dans ce rapport est destinee a purifier, en continu, le solvant utilise a l'usine d'extraction du plutonium de Marcoule, en separant les impuretes (produits de fission). Cette separation physique est realisee par entrainement a la vapeur d'eau. Les produits contaminants, peu volatils, restant sous forme de gouttelettes, sont separes; le solvant vaporise ainsi que la vapeur d'entrainement sont condenses puis separes. L'originalite de l'installation reside dans le systeme de pulverisation du liquide et dans les conditions operatoires: faible pression et basse temperature de fonctionnement. L'analyse systematique des differents parametres (pourcentage de residus, rapport de debits, pression et temperature, etc...) a mis en evidence leur influence sur la decontamination. L'activite en

  18. Electrical resistivity tomography as monitoring tool for unsaturated zone transport: an example of preferential transport of deicing chemicals.

    Science.gov (United States)

    Wehrer, Markus; Lissner, Heidi; Bloem, Esther; French, Helen; Totsche, Kai Uwe

    2014-01-01

    Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.

  19. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media

    NARCIS (Netherlands)

    Veldsink, J.W.; Veldsink, J.W.; van Damme, Rudolf M.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1995-01-01

    In the present study, mass transport accompanied by chemical reactions in porous media is studied according to the Fick model and the dusty-gas model. For mass transport accompanied by a chemical reaction in catalyst structures showing a plane, line, or point of symmetry, the approximate analytical

  20. A vector/parallel method for a three-dimensional transport model coupled with bio-chemical terms

    NARCIS (Netherlands)

    B.P. Sommeijer (Ben); J. Kok (Jan)

    1995-01-01

    textabstractA so-called fractional step method is considered for the time integration of a three-dimensional transport-chemical model in shallow seas. In this method, the transport part and the chemical part are treated separately by appropriate integration techniques. This separation is motivated

  1. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  2. Atmospheric emissions and long-range transport of persistent organic chemicals

    Directory of Open Access Journals (Sweden)

    Scheringer M.

    2010-12-01

    Full Text Available Persistent organic chemicals include several groups of halogenated compounds, such as polychlorinated biphenyls (PCBs, polybrominated diphenylethers (PBDEs, and polyfluorinated carboxylic acids (PFCAs. These chemicals remain for long times (years to decades in the environment and cycle between different media (air, water, sediment, soil, vegetation, etc.. The environmental distribution of this type of chemicals can conveniently be analyzed by multimedia models. Multimedia models consist of a set of coupled mass balance equations for the environmental media considered; they can be set up at various scales from local to global. Two applications of multimedia models to airborne chemicals are discussed in detail: the day-night cycle of PCBs measured in air near the surface, and the atmospheric long-range transport of volatile precursors of PFCAs, formation of PFCAs by oxidation of these precursors, and subsequent deposition of PFCAs to the surface in remote regions such as the Arctic.

  3. Growth and characterization of Bi2Se3 crystals by chemical vapor transport

    Directory of Open Access Journals (Sweden)

    W. H. Jiao

    2012-06-01

    Full Text Available Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10, and high mobility (∼8000 cm2·V−1·s−1. The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

  4. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    Science.gov (United States)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  5. The Investigation of Isotopic Composition of Precipitation and water vapour by Using Air Mass Trajectories and Meteorological Parameters

    International Nuclear Information System (INIS)

    Dirican, A.; Acar, Y.; Demircan, M.

    2002-01-01

    In last century there are so many studies were carried out about stable isotopes of precipitation. The Researchers, study in this field directed to examine origin and transport of water vapour. To investigate the conditions of precipitation formation parallel with climatic changes, stable isotopes using as a powerful tool. So that a project coordinated by IAEA. In this presentation we will give some parts of this project which was carried out in Turkey. First results were obtained for 2001 year. The one of the first result which was obtained in this project is the relation between air temperature and isotopic composition of precipitation collected in Ankara Antalya and Adana station. Second was the observation of temporal variation of stable isotope composition in precipitation and water vapour in relation with water vapour transport. δD and δ 18 O content of atmospheric water vapour examined for January - December 2001 time interval. 27 precipitation event had been examined, starting from endengered place and following to trajectories until to reach Turkey, by using ground level and 500mbar synoptic charts. The observed δD and δ 18 O variations of water vapour is related with the endengered place (Atlantic Ocean, Mediterranean Sea, etc.) of water vapour. The isotopic composition of local precipitation forms by regional meteorological factors. In this study δD and δ 18 O relation of event, daily precipitation and water vapour were defined

  6. Modeling the transport of chemical warfare agents and simulants in polymeric substrates for reactive decontamination

    Science.gov (United States)

    Pearl, Thomas; Mantooth, Brent; Varady, Mark; Willis, Matthew

    2014-03-01

    Chemical warfare agent simulants are often used for environmental testing in place of highly toxic agents. This work sets the foundation for modeling decontamination of absorbing polymeric materials with the focus on determining relationships between agents and simulants. The correlations of agents to simulants must consider the three way interactions in the chemical-material-decontaminant system where transport and reaction occur in polymer materials. To this end, diffusion modeling of the subsurface transport of simulants and live chemical warfare agents was conducted for various polymer systems (e.g., paint coatings) with and without reaction pathways with applied decontamination. The models utilized 1D and 2D finite difference diffusion and reaction models to simulate absorption and reaction in the polymers, and subsequent flux of the chemicals out of the polymers. Experimental data including vapor flux measurements and dynamic contact angle measurements were used to determine model input parameters. Through modeling, an understanding of the relationship of simulant to live chemical warfare agent was established, focusing on vapor emission of agents and simulants from materials.

  7. Consistent vapour-liquid equilibrium data containing lipids

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    Consistent physical and thermodynamic properties of pure components and their mixtures are important for process design, simulation, and optimization as well as design of chemical based products. In the case of lipids, it was observed a lack of experimental data for pure compounds and also...... for their mixtures in open literature, what makes necessary the development of reliable predictive models based on limited data. To contribute to the missing data, measurements of isobaric vapour-liquid equilibrium (VLE) data of three binary mixtures at two different pressures were performed at State University...

  8. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    International Nuclear Information System (INIS)

    Alves, Giselle M; Kremer, Gilberto M; Marques, Wilson Jr; Soares, Ana Jacinta

    2011-01-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman–Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal–diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode

  9. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    Science.gov (United States)

    Alves, Giselle M.; Kremer, Gilberto M.; Marques, Wilson, Jr.; Jacinta Soares, Ana

    2011-03-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman-Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal-diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode.

  10. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  11. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    Science.gov (United States)

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  12. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    Science.gov (United States)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  13. Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport

    Science.gov (United States)

    Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith

    2018-06-01

    A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.

  14. The TOMCAT global chemical transport model v1.6: description of chemical mechanism and model evaluation

    Directory of Open Access Journals (Sweden)

    S. A. Monks

    2017-08-01

    Full Text Available This paper documents the tropospheric chemical mechanism scheme used in the TOMCAT 3-D chemical transport model. The current scheme includes a more detailed representation of hydrocarbon chemistry than previously included in the model, with the inclusion of the emission and oxidation of ethene, propene, butane, toluene and monoterpenes. The model is evaluated against a range of surface, balloon, aircraft and satellite measurements. The model is generally able to capture the main spatial and seasonal features of high and low concentrations of carbon monoxide (CO, ozone (O3, volatile organic compounds (VOCs and reactive nitrogen. However, model biases are found in some species, some of which are common to chemistry models and some that are specific to TOMCAT and warrant further investigation. The most notable of these biases are (1 a negative bias in Northern Hemisphere (NH winter and spring CO and a positive bias in Southern Hemisphere (SH CO throughout the year, (2 a positive bias in NH O3 in summer and a negative bias at high latitudes during SH winter and (3 a negative bias in NH winter C2 and C3 alkanes and alkenes. TOMCAT global mean tropospheric hydroxyl radical (OH concentrations are higher than estimates inferred from observations of methyl chloroform but similar to, or lower than, multi-model mean concentrations reported in recent model intercomparison studies. TOMCAT shows peak OH concentrations in the tropical lower troposphere, unlike other models which show peak concentrations in the tropical upper troposphere. This is likely to affect the lifetime and transport of important trace gases and warrants further investigation.

  15. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Sopchyshyn, F.C.; Selkirk, E.B.; Green, L.W.

    1993-08-01

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  16. Heat-flux enhancement by vapour-bubble nucleation in Rayleigh-Bénard turbulence

    NARCIS (Netherlands)

    Narezo Guzman, Daniela; Xie, Yanbo; Chen, S.; Fernandez Rivas, David; Sun, Chao; Lohse, Detlef; Ahlers, Günter

    2016-01-01

    We report on the enhancement of turbulent convective heat transport due to vapour-bubble nucleation at the bottom plate of a cylindrical Rayleigh–Bénard sample (aspect ratio 1.00, diameter 8.8 cm) filled with liquid. Microcavities acted as nucleation sites, allowing for well-controlled bubble

  17. A dispersion model of transport media in radiotracer investigations on selected chemical installations

    International Nuclear Information System (INIS)

    Iller, E.

    1999-01-01

    Tracer investigations of media transport through chemical reactors play a significant role in the chemical technology. They provide the basis for the determination of some important process parameters, such as flow character of the transported medium, degree of utilisation of the reactor volume during chemical transitions of substrates or even indicate possible mechanisms of chemical reactions. Determination of the medium flow characteristics is closely connected with the mathematical description of the process - a mathematical model of transport. The method of assessment of radiotracers suitability for the investigation of distillation processes presented in this paper allows to determine, in a simple manner, the parameters of distillation characteristics of the radionuclides, the average distillation temperature, the range of distillation temperatures, a suitable radiochemical purity. These parameters precisely determine the behavior of tracers to be expected in a wide range of variable conditions of the distillation process. Applications of tracer tested in such a manner to the investigations of dynamics of media in the industrial rectification columns has resulted in obtaining a dependable evaluation of the performance of these columns in a wide range of changes of their operational parameters. Particular attention has been paid to dynamics of the liquid [phase on the column plate. A dispersion model of liquid flow with hold-up zones has been proposed for the description of the liquid phase transport in the plate - overall assembly.The model consists of a number of flow and stagnant zones, with mass transfer between them. Another example of practical application of results from radiotracer investigation is an analysis of of phase dynamics in the installations designed for the process of liquefaction of Polish coals by means of their catalytic hydrogenation. For the analysis of phase transport in a reaction vessel various mathematical models were applied with

  18. Lagrangian transport model forecasts and a transport climatology for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) measurement campaign

    Science.gov (United States)

    Forster, Caroline; Cooper, Owen; Stohl, Andreas; Eckhardt, Sabine; James, Paul; Dunlea, Edward; Nicks, Dennis K.; Holloway, John S.; Hübler, Gerd; Parrish, David D.; Ryerson, Tom B.; Trainer, Michael

    2004-04-01

    On the basis of Lagrangian tracer transport simulations this study presents an intercontinental transport climatology and tracer forecasts for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) aircraft measurement campaign, which took place at Monterey, California, in April-May 2002 to measure Asian pollution arriving at the North American West Coast. For the climatology the average transport of an Asian CO tracer was calculated over a time period of 15 years using the particle dispersion model FLEXPART. To determine by how much the transport from Asia to North America during ITCT 2K2 deviated from the climatological mean, the 15-year average for April and May was compared with the average for April and May 2002 and that for the ITCT 2K2 period. It was found that 8% less Asian CO tracer arrived at the North American West Coast during the ITCT 2K2 period compared to the climatological mean. Below 8-km altitude, the maximum altitude of the research aircraft, 13% less arrived. Nevertheless, pronounced layers of Asian pollution were measured during 3 of the 13 ITCT 2K2 flights. FLEXPART was also successfully used as a forecasting tool for the flight planning during ITCT 2K2. It provided 3-day forecasts for three different anthropogenic CO tracers originating from Asia, North America, and Europe. In two case studies the forecast abilities of FLEXPART are analyzed and discussed by comparing the forecasts with measurement data and infrared satellite images. The model forecasts underestimated the measured CO enhancements by about a factor of 4, mainly because of an underestimation of the Asian emissions in the emission inventory and because of biomass-burning influence that was not modeled. Nevertheless, the intercontinental transport and dispersion of pollution plumes were qualitatively well predicted, and on the basis of the model results the aircraft could successfully be guided into the polluted air masses.

  19. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    Science.gov (United States)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of

  20. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Brantley, Susan L.; Chorover, Jon D.; Ewing, Robert P.; Kerisit, Sebastien N.; Liu, Chongxuan; Perfect, E.; Rother, Gernot; Stack, Andrew G.

    2016-03-16

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments and soil aggregates. These domains, which we term internal domains in porous media (IDPM), contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse porous media types, and are important locations for chemical reactivity and hydrocarbon storage. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM. In this review we: discuss analytical methods to characterize IDPM, evaluate what has been learned about their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess potential for their inclusion in reactive transport models. Three key findings are noteworthy. 1) A combination of methods now allows complete characterization of the porosity spectrum of natural materials and its connectivity; while imaging microscopies are providing three dimensional representations of the interconnected pore network. 2) Chemical reactivity in pores <10 nm is expected to be different from micro and macropores, yet research performed to date is inconclusive on the nature, direction, and magnitude of effect. 3) Existing continuum reactive transport models treat IDPM as a sub-grid feature with average, empirical, scale-dependent parameters; and are not formulated to include detailed information on pore networks. Overall we find that IDPM are key features controlling hydrocarbon release from shales in hydrofracking systems, organic matter stabilization and recalcitrance in soil, weathering and soil formation, and long term inorganic and organic contaminant behavior in the vadose zone and groundwater. We conclude with an assessment of impactful research opportunities to advance understanding of IDPM, and to incorporate their important effects in reactive transport models

  1. Effect of slow-solvent-vapour treatment on performance of polymer photovoltaic devices

    International Nuclear Information System (INIS)

    Zhi-Hui, Feng; Yan-Bing, Hou; Quan-Min, Shi; Xiao-Jun, Liu; Feng, Teng

    2010-01-01

    In this work, enhanced poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulkheterojunction photovoltaic devices are achieved via slow-solvent-vapour treatment. The correlations between the morphology of the active layer and the photovoltaic performance of polymer-based solar cell are investigated. The active layers are characterized by atomic force microscopy and optical absorption. The results show that slow-solvent-vapour treatment can induce P3HT self-organization into an ordered structure, leading to the enhanced absorption and efficient charge transport. (cross-disciplinary physics and related areas of science and technology)

  2. Water vapour and methane coupling in the stratosphere observed using SCIAMACHY solar occultation measurements

    Directory of Open Access Journals (Sweden)

    S. Noël

    2018-04-01

    Full Text Available An improved stratospheric water vapour data set has been retrieved from SCIAMACHY/ENVISAT solar occultation measurements. It is similar to that successfully applied to methane and carbon dioxide. There is now a consistent set of data products for the three constituents covering the altitudes 17–45 km, the latitude range between about 50 and 70° N, and the period August 2002 to April 2012. The new water vapour concentration profiles agree with collocated results from ACE-FTS and MLS/Aura to within  ∼  5 %. A significant positive linear change in water vapour for the time 2003–2011 is observed at lower stratospheric altitudes with a value of about 0.015 ± 0.008 ppmv year−1 around 17 km. Between 30 and 37 km the changes become significantly negative (about −0.01 ± 0.008 ppmv year−1; all errors are 2σ values. The combined analysis of the SCIAMACHY methane and water vapour time series shows the expected anti-correlation between stratospheric methane and water vapour and a clear temporal variation related to the Quasi-Biennial Oscillation (QBO. Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. In addition short-term fluctuations and longer-term variations on a timescale of 5–6 years are observed. The SCIAMACHY data confirm that at lower altitudes the amount of water vapour and methane are transported from the tropics to higher latitudes via the shallow branch of the Brewer–Dobson circulation.

  3. Electromechanical and Chemical Sensing at the Nanoscale: DFT and Transport Modeling

    Science.gov (United States)

    Maiti, Amitesh

    Of the many nanoelectronic applications proposed for near to medium-term commercial deployment, sensors based on carbon nanotubes (CNT) and metal-oxide nanowires are receiving significant attention from researchers. Such devices typically operate on the basis of the changes of electrical response characteristics of the active component (CNT or nanowire) when subjected to an externally applied mechanical stress or the adsorption of a chemical or bio-molecule. Practical development of such technologies can greatly benefit from quantum chemical modeling based on density functional theory (DFT), and from electronic transport modeling based on non-equilibrium Green's function (NEGF). DFT can compute useful quantities like possible bond-rearrangements, binding energy, charge transfer, and changes to the electronic structure, while NEGF can predict changes in electronic transport behavior and contact resistance. Effects of surrounding medium and intrinsic structural defects can also be taken into account. In this work we review some recent DFT and transport investigations on (1) CNT-based nano-electromechanical sensors (NEMS) and (2) gas-sensing properties of CNTs and metal-oxide nanowires. We also briefly discuss our current understanding of CNT-metal contacts which, depending upon the metal, the deposition technique, and the masking method can have a significant effect on device performance.

  4. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Scholtz, M Trevor

    2011-01-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  5. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Li Rong; Yang Fuquan; Sloan, James J [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Scholtz, M Trevor, E-mail: sloanj@connect.uwaterloo.ca [ORTECH Environmental, 2395 Speakman Drive, Mississauga, ON L5K 1B3 (Canada)

    2011-07-15

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  6. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Science.gov (United States)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  7. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    Science.gov (United States)

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  8. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. The magnetic vapour shield effect at divertor plates during plasma disruptions

    International Nuclear Information System (INIS)

    Piazza, G.; Goel, B.; Hoebel, W.; Wuerz, H.; Landman, I.

    1995-01-01

    Hard disruptions in a TOKAMAK cause a large thermal load on the divertor plates with an instantaneous ablation of a part of the heated material. The produced vapour cloud screens the plasma facing component from the direct interaction with the disrupting plasma (vapour shield effect). In order to quantify the damage to the divertor the magneto-hydrodynamic behaviour of the expanding vapour cloud has been investigated using an extended version of the 1-dimensional Lagrangian hydrodynamic code KATACO. Modelling of the magnetic field effects on the expanding plasma takes into account that the magnetic field is oblique to the divertor (1 1/2 dimensional model). The ''Radiation Heat Conduction Approximation'' has been used for describing the radiative energy transport. In this paper results are presented assuming graphite as divertor material, irradiated with a proton beam of an energy density of 12MJ/m 2 and a duration of 100μs. (orig.)

  10. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations

    KAUST Repository

    Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Allen, Dale J.; DeCaria, Alex J.; Ridley, Brian; Lin, Ruei-Fong; Lang, Stephen; Tao, Wei-Kuo

    2010-01-01

    A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four

  11. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour

    Science.gov (United States)

    Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team

    2009-07-01

    Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.

  12. 3D CFD for chemical transport profiles in a rotating disk CVD reactor

    Science.gov (United States)

    Han, Jong-Hyun; Yoon, Do-Young

    2010-06-01

    The RDCVD (Rotating Disk Chemical Vapor Deposition) technique is an appropriate method for uniform deposition of grains, such as compound semiconductior materials. The substrate temperature and rotation speed are the major factors, which determine the thickness uniformity of the deposited films. This paper investigates 3D CFD (3 Dimensional Computational Fluid Dynamics) simulation results of flow and heat transfer in a reactor of RDCVD using Fluent. In order to establish the reducibility of buoyancy effect on deposition quality, the chemical transport profile upon the disk heated is examined successfully in 3D domain for different rotating speeds. The resulting vortex flows due the simultaneous buoyance and centrifuge are discussed qualitatively in the 3D virtual system of a RDCVD reactor. 3D CFD is even more effective to describe the internal vortex flows due to the competitive inlet, buoyancy and centrifuge flows, which cannot be realized in the general 2D (2 Dimensional) CFD.[Figure not available: see fulltext.

  13. The study of thermodynamic properties and transport properties of multicomponent systems with chemical reactions

    Directory of Open Access Journals (Sweden)

    Samujlov E.

    2013-04-01

    Full Text Available In case of system with chemical reaction the most important properties are heat conductivity and heat capacity. In this work we have considered the equation for estimate the component of these properties caused by chemical reaction and ionization processes. We have evaluated the contribution of this part in heat conductivity and heat capacity too. At the high temperatures contribution in heat conductivity from ionization begins to play an important role. We have created a model, which describe partial and full ionization of gases and gas mixtures. In addition, in this work we present the comparison of our result with experimental data and data from numerical simulation. We was used the data about transport properties of middle composition of Russian coals and the data of thermophysical properties of natural gas for comparison.

  14. Numerical modelling of the atmospheric transport, chemical tranformations and deposition of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G; Schneider, B; Eppel, D [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik; Grassl, H [Hamburg Univ. (Germany, F.R.). Meteorologisches Inst. Max-Planck-Institut fuer Meteorologie, Hamburg (Germany, F.R.); Iverfeldt, A [Swedish Environmental Research Inst., Goeteborg (Sweden); Misra, P K; Bloxam, R; Wong, S [Ontario Ministry of the

    1990-01-01

    Based on recent progress in the understanding of mercury chemistry and biogeochemistry and on the availability of mercury emission data bases this study makes an attempt to model the atmospheric transport of mercury, its chemical transformations in the atmosphere, and the fluxes of mercury to and from the earth's surface by means of an EMEP-type Lagrangian trajectory model for Europe and an Eulerian grid model (ADOM) for North America. Preliminary results with a simplified mercury chemistry scheme in the comprehensive Eulerian model and with a linear chemistry in the Lagrangian model show reasonable agreement with observed mercury concentrations in air and precipitation. (orig.) With 3 figs., 4 tabs.

  15. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2002-06-01

    Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it satisfactorily reproduces the morphology of the continuous O3

  16. STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

    Directory of Open Access Journals (Sweden)

    B. Grassi

    Full Text Available A three-dimensional (3-D Chemical Transport Model (CTM of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS, although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it

  17. Atmospheric transport of persistent semi-volatile organic chemicals to the Arctic and cold condensation in the mid-troposphere – Part 1: 2-D modeling in mean atmosphere

    Directory of Open Access Journals (Sweden)

    J. Ma

    2010-08-01

    Full Text Available In the first part of this study for revisiting the cold condensation effect on global distribution of semi-volatile organic chemicals (SVOCs, the atmospheric transport of SVOCs to the Arctic in the mid-troposphere in a mean meridional atmospheric circulation over the Northern Hemisphere was simulated by a two-dimensional (2-D atmospheric transport model. Results show that under the mean meridional atmospheric circulation the long-range atmospheric transport of SVOCs from warm latitudes to the Arctic occurs primarily in the mid-troposphere. Although major sources are in low and mid-latitude soils, the modeled air concentration of SVOCs in the mid-troposphere is of the same order as or higher than that near the surface, demonstrating that the mid-troposphere is an important pathway and reservoir of SVOCs. The cold condensation of the chemicals is also likely to take place in the mid-troposphere over a source region of SVOCs in warm low latitudes through interacting with clouds. We demonstrate that the temperature dependent vapour pressure and atmospheric degradation rate of SVOCs exhibit similarities between lower atmosphere over the Arctic and the mid-troposphere over a tropical region. Frequent occurrence of atmospheric ascending motion and convection over warm latitudes carry the chemicals to a higher altitude where some of these chemicals may partition onto solid or aqueous phase through interaction with atmospheric aerosols, cloud water droplets and ice particles, and become more persistent at lower temperatures. Stronger winds in the mid-troposphere then convey solid and aqueous phase chemicals to the Arctic where they sink by large-scale descending motion and wet deposition. Using calculated water droplet-air partitioning coefficient of several persistent organic semi-volatile chemicals under a mean air temperature profile from the equator to the North Pole we propose that clouds are likely important sorbing media for SVOCs and pathway of

  18. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  19. A mathematical model of vapour film destabilisation

    International Nuclear Information System (INIS)

    Knowles, J.B.

    1985-04-01

    In a hypothetical reactor accident, destabilisation of an intervening vapour film between the molten fuel and liquid coolant by a weak shock wave (trigger), is considered likely to initiate the molten fuel-coolant interaction. The one-dimensional model presented here is part of a larger programme of fundamental research aimed at improved reactor safety. (U.K.)

  20. Numerical study of the heat and material transport in the absorption of water vapour in aqueous LiBr solution; Numerische Untersuchung des Waerme- und Stofftransports bei der Absorption von Wasserdampf in waessriger LiBr-Loesung

    Energy Technology Data Exchange (ETDEWEB)

    Olbricht, Michael; Buchholz, Niklas; Fries, Simon; Addy, Joseph; Luke, Andrea [Kassel Univ. (Germany). Fachgebiet Technische Thermodynamik

    2016-07-01

    In absorption refrigerating machines with the working-material pair water/lithium bromide usually falling-film apparatuses are applied as absorbers, evaporators, and condensers. These are often performed as horizontal tube bundes. As critical, the process limiting component in the literature the absorper is called, because of which the their running, coupled heat and material transport processes are more detailedly theoretically studied. For this a model was developed, which maps starting from analytically describable physical connections the transport processes in the apparatus. The flow in the tube bundle is hereby divided in two sections, the flow in the liquid film on the tubes and the drop fall between the tubes. The basic equations are numerically solved under given boundary conditions, whereby for the description of the drop fall phase addititonally semi-empirical calculation approaches are used. The results are elucidated by means of concentration and temperature profiles in the film. A distinctly faster formation of the temperature boundary layer than the concentration boundary layer in the fim is shown, which makes the material transport to the limiting transport process in the absorber, which is already known from experimental studies.The physical plausibility of the model is by means of this fact confirmed by an analysis of the coupled transport processes by means of dimensionless characteristic numbers. Furthermore from the results an improvement of the heat and material transport at diminishing of the tube diameter can be derived. Just so by the results of the study an estimation method for the quality of the absorber by means of the subcooling is shown.

  1. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  2. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  3. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    Science.gov (United States)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  4. Recovery of rare earths from used polishes by chemical vapor transport process

    International Nuclear Information System (INIS)

    Ozaki, T.; Machida, K.; Adachi, G.

    1998-01-01

    Full text: Rare earth oxide polishes are widely used in the glass industry because of its mechanical and chemical polishing action. The Japanese glass industry use 2000 tons per year of the polishes, and a large portion of them are thrown away after their polishing lifetime. A dry recovery processes for rare earths from the used polishes have been investigated by using a chemical vapor transport method via the formation of vapor complexes RAl n Cl 3+3n (R = rare earths). A flow type reactor with various temperature gradients was employed for the process. The used polishes were mixed with active carbon, and chlorinated with N 2 + Cl 2 mixture at 1273 K. Aluminium oxide were also chlorinated at lower temperature and the resulting AlCl 3 were introduced to the reactor. The rare earth chlorides and AlCl 3 were converted to the vapor complexes. These were driven along the temperature gradient, decomposed according to the reverse reaction, and regenerated RCl 3 . About 90 % of the used polish were chlorinated after 2 hours. Rare earth chlorides, AlCl 3 , and FeCl 3 were fully transported after 82 hours. The rare earth chlorides were mainly condensed over the temperature range 1263-903 K. On the other hand, AlCl 3 and FeCl 3 were deposited at the temperature range below 413 K. CaCl 2 and SrCl 2 were hardly transported and remained in the residue. When the temperature gradient with the smaller slope was used, mutual separation efficiencies among the rare earths was improved. The highest CeCl 3 purity of 80% was obtained in the process

  5. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  6. Morphological, Chemical Surface, and Diffusive Transport Characterizations of a Nanoporous Alumina Membrane

    Directory of Open Access Journals (Sweden)

    María I. Vázquez

    2015-12-01

    Full Text Available Synthesis of a nanoporous alumina membrane (NPAM by the two-step anodization method and its morphological and chemical surface characterization by analyzing Scanning Electron Microscopy (SEM micrographs and X-Ray Photoelectron Spectroscopy (XPS spectra is reported. Influence of electrical and diffusive effects on the NaCl transport across the membrane nanopores is determined from salt diffusion measurements performed with a wide range of NaCl concentrations, which allows the estimation of characteristic electrochemical membrane parameters such as the NaCl diffusion coefficient and the concentration of fixed charges in the membrane, by using an appropriated model and the membrane geometrical parameters (porosity and pore length. These results indicate a reduction of ~70% in the value of the NaCl diffusion coefficient through the membrane pores with respect to solution. The transport number of ions in the membrane pores (Na+ and Cl−, respectively were determined from concentration potential measurements, and the effect of concentration-polarization at the membrane surfaces was also considered by comparing concentration potential values obtained with stirred solutions (550 rpm and without stirring. From both kinds of results, a value higher than 0.05 M NaCl for the feed solution seems to be necessary to neglect the contribution of electrical interactions in the diffusive transport.

  7. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Andersson, Martin; Yuan, Jinliang; Sunden, Bengt

    2010-01-01

    A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures.

  8. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  9. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  10. Computational estimation of logarithm of octanol/air partition coefficients and subcooled vapour pressures for each of 75 chloronaphtalene congeners

    Energy Technology Data Exchange (ETDEWEB)

    Puzyn, T.; Falandysz, J.; Rostkowski, P.; Piliszek, S.; Wilczyniska, A. [Univ. of Gdansk (Poland)

    2004-09-15

    Polychlorinated naphthalenes (PCNs, CNs) are known persistent organic pollutants, contaminating natural ecosystems in effect of technical human activity. Toxic effects induced by individual congers of PCNs are reported elsewhere. Great risk of these chemical compounds is additionally connected with theirs excellent ability to be transported via atmosphere from a source to the remote regions on the Glob. Chloronaphthalene congeners had been found in Arctic regions at significant level in spite of the fact, that they had never been synthesized there, and also thermal processes like municipal waste incineration or domestic heating (other possible sources of PCNs in the environment) were not so intensive there. In 1996 F. Wania and D. Mackay have formulated some empirical rules, which have been very useful in estimation and modeling of environmental transport processes of persistent organic pollutants like PCNs. Two very important physico-chemical parameters in the theory of global distillation and cold condensation are: logarithm of n-octanol/air partition coefficient (log K{sub OA}) and logarithm of subcooled vapour pressure (log P{sub L}). Values of log K{sub OA} and log P{sub L} in standard procedures are determined by means of chromatographic methods. In order to reduce costs and number of experiments, we have proposed simple computational method of estimation log K{sub OA} and log P{sub L}.

  11. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed

    2017-03-20

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust–ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol–cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42−), bisulfate

  12. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    Science.gov (United States)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    OC, again indicating that these PhACs preferentially partition into the soil OM. Such a correlation was absent for cetirizine. Breakthrough curves of PhACs measured in homogeneous packed soil columns indicated that PhAC transport was affected by chemical nonequilibrium processes depending on the soil and PhAC chemistry. The shape of the breakthrough curves indicated that there were two distinct sorption sites - OM and clay minerals - which influence nonequilibrium transport of these compounds. The retardation factor estimated using the distribution coefficient, Kd, measured from the sorption experiments was very similar to the measured value. While the sorption and transport data do not provide mechanistic information regarding the nature of PhAC interaction with chemical reactive components within geological materials, they do provide important information regarding potential fate of such compounds in the environment. The results also show the role that soil OM and mineral surfaces play in sequestering or transporting these chemicals. These insights have implications to the quality of the water resources in our communities.

  13. Vapour pressure of caesium over nuclear graphite

    International Nuclear Information System (INIS)

    Faircloth, R.L.; Pummery, F.C.W.

    1976-01-01

    The vapour pressure of caesium over a fine-grained isotropic moulded gilsocarbon nuclear graphite intended for use in the manufacture of fuel tubes for the high temperature reactor has been determined as a function of temperature and concentration by means of the Knudsen effusion technique. The concentration range 0 to 10 μg caesium/g graphite was investigated and it was concluded that a Langmuir adsorption situation exists under these conditions. (author)

  14. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C G; Newland, M S [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  15. Interactions of fission product vapours with aerosols

    International Nuclear Information System (INIS)

    Benson, C.G.; Newland, M.S.

    1996-01-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350 o C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs

  16. The impact of water vapour on climate

    International Nuclear Information System (INIS)

    Zittel, W.; Altmann, M.

    1994-01-01

    Do water vapour emissions from a solar hydrogen system affect the climate? This question was investigated by the authors. They state: The comparison with natural emissions by evaporation shows that emissions caused by energy generation, regardless of whether they stem from fossil, nuclear or regenerative energy systems, are negligible with a proportion of 0.005%. On the other hand, carbon dioxide emissions with a proportion of 4%, constitute a factor which already impedes the natural cycle. (orig.) [de

  17. Bibliography on vapour pressure isotope effects

    International Nuclear Information System (INIS)

    Illy, H.; Jancso, G.

    1976-03-01

    The bibliography of research on vapour pressure isotope effects from 1919 to December 1975 is presented in chronological order. Within each year the references are listed alphabetically according to the name of the first author of each work. The bibliography is followed by a Compound Index containing the names o compounds, but the type of isotopic substituation is not shown. The Author Index includes all authors of the papers. (Sz.N.Z.)

  18. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    Directory of Open Access Journals (Sweden)

    Mohd Zobir Hussein

    2014-11-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were prepared via chemical vapor deposition (CVD using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs. Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs.

  19. Effects of the oxygen fraction and substrate bias power on the electrical and optical properties of silicon oxide films by plasma enhanced chemical vapour deposition using TMOS/O2 gas

    International Nuclear Information System (INIS)

    Bang, S B; Chung, T H; Kim, Y; Kang, M S; Kim, J K

    2004-01-01

    Thin oxide films are deposited from tetramethoxysilane in an inductively coupled oxygen glow discharge supplied with radio frequency power. The chemical bonding states of deposited films are analysed by Fourier transform infrared spectroscopy. The deposition rate and optical properties are determined from spectroscopic ellipsometry. Capacitance-voltage measurements are performed in MOS capacitors to obtain the electrical properties of the deposited films. With these tools, the effects of the substrate bias power and the oxygen mole fraction in the gas on the properties of the film are investigated. The refractive index first decreases with an increase in the oxygen mole fraction, and then increases again, showing a behaviour opposite to that of the deposition rate. The deposition rate increases with increasing substrate bias power and then saturates, while the refractive index increases slightly with an increase in the substrate bias power. The fixed oxide charge density decreases with increasing oxygen fraction and with increasing substrate bias power, while the interface trap density increases with increasing oxygen fraction and with increasing substrate bias power

  20. Modeling of reactive chemical transport of leachates from a utility fly-ash disposal site

    International Nuclear Information System (INIS)

    Apps, J.A.; Zhu, M.; Kitanidis, P.K.; Freyberg, D.L.; Ronan, A.D.; Itakagi, S.

    1991-04-01

    Fly ash from fossil-fuel power plants is commonly slurried and pumped to disposal sites. The utility industry is interested in finding out whether any hazardous constituents might leach from the accumulated fly ash and contaminate ground and surface waters. To evaluate the significance of this problem, a representative site was selected for modeling. FASTCHEM, a computer code developed for the Electric Power Research Institute, was utilized for the simulation of the transport and fate of the fly-ash leachate. The chemical evolution of the leachate was modeled as it migrated along streamtubes defined by the flow model. The modeling predicts that most of the leachate seeps through the dam confining the ash pond. With the exception of ferrous, manganous, sulfate and small amounts of nickel ions, all other dissolved constituents are predicted to discharge at environmentally acceptable concentrations

  1. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and deposition of fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behavior of simulant fission product species such as cesium iodide, cesium hydroxide and tellurium, in terms of their vapor deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO 2 clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapor phase, and specific data using this technique are reported

  2. Observation of Zn vacancies in ZnO grown by chemical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, F.; Saarinen, K. [Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 TKK (Finland); Grasza, K.; Mycielski, A. [Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw (Poland)

    2006-03-15

    We have used positron annihilation spectroscopy to study the vacancy defects in ZnO crystals grown by both the conventional and contactless chemical vapor transport (CVT and CCVT). Our results show that Zn vacancies or Zn vacancy related defects are present in as-grown ZnO, irrespective of the growth method. Zn vacancies are observed in CVT-grown undoped ZnO and (Zn,Mn)O. The Zn vacancies present in undoped CCVT-ZnO are the dominant negatively charged point defect in the material. Doping the material with As introduces also Zn vacancy-related defect complexes with larger open volume. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals

    Science.gov (United States)

    Capel, P.D.; McCarthy, K.A.; Barbash, J.E.

    2008-01-01

    This paper is an introduction to the following series of papers that report on in-depth investigations that have been conducted at five agricultural study areas across the United States in order to gain insights into how environmental processes and agricultural practices interact to determine the transport and fate of agricultural chemicals in the environment. These are the first study areas in an ongoing national study. The study areas were selected, based on the combination of cropping patterns and hydrologic setting, as representative of nationally important agricultural settings to form a basis for extrapolation to unstudied areas. The holistic, watershed-scale study design that involves multiple environmental compartments and that employs both field observations and simulation modeling is presented. This paper introduces the overall study design and presents an overview of the hydrology of the five study areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  4. Towards the use of dynamic growing seasons in a chemical transport model

    Science.gov (United States)

    Sakalli, A.; Simpson, D.

    2012-12-01

    Chemical transport models (CTMs), used for the prediction of, for example, nitrogen deposition or air quality changes, require estimates of the growing season of plants for a number of reasons. Typically, the growing seasons are defined in a very simplified way in CTMs, using fixed dates or simple functions. In order to explore the importance of more realistic growing season estimates, we have developed a new and simple method (the T5 method) for calculating the start of the growing season (SGS) of birch (which we use as a surrogate for deciduous trees), suitable for use in CTMs and other modelling systems. We developed the T5 method from observations, and here we compare with these and other methodologies, and show that with just two parameters T5 captures well the spatial variation in SGS across Europe. We use the EMEP MSC-W chemical transport model to illustrate the importance of improved SGS estimates for ozone and two metrics associated with ozone damage to vegetation. This study shows that although inclusion of more realistic growing seasons has only small effects on annual average concentrations of pollutants such as ozone, the metrics associated with vegetation risk from ozone are significantly affected. This work demonstrates a strong need to include more realistic treatments of growing seasons in CTMs. The method used here could also be suitable for other types of models that require information on vegetation cover, such as meteorological and regional climate models. In future work, the T5 and other methods will be further evaluated for other forest species, as well as for agricultural and grassland land covers, which are important for emissions and deposition of reactive nitrogen compounds.

  5. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong, E-mail: xdwang@semi.ac.cn; Ji, An; Yang, Fuhua [Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 (China)

    2014-03-15

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  6. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Directory of Open Access Journals (Sweden)

    Yangyang Qi

    2014-02-01

    Full Text Available The electron transport characteristics of silicon nanowires (SiNWs fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  7. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    Science.gov (United States)

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong; Ji, An; Yang, Fuhua

    2014-03-01

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  8. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zhao, Rong; Ahktar, Meysam; Alruqi, Adel; Dharmasena, Ruchira; Jasinski, Jacek B.; Thantirige, Rukshan M.; Sumanasekera, Gamini U.

    2017-05-01

    In this work, we report the electrical transport properties of uniform and vertically oriented graphene (graphene nanowalls) directly synthesized on multiple substrates including glass, Si/SiO2 wafers, and copper foils using radio-frequency plasma enhanced chemical vapor deposition (PECVD) with methane (CH4) as the precursor at relatively low temperatures. The temperature for optimum growth was established with the aid of transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. This approach offers means for low-cost graphene nanowalls growth on an arbitrary substrate with the added advantage of transfer-free device fabrication. The temperature dependence of the electrical transport properties (resistivity and thermopower) were studied in the temperature range, 30-300 K and analyzed with a combination of 2D-variable range hopping (VRH) and thermally activated (TA) conduction mechanisms. An anomalous temperature dependence of the thermopower was observed for all the samples and explained with a combination of a diffusion term having a linear temperature dependence plus a term with an inverse temperature dependence.

  9. Chemical and toxicological characterization of exhaust emissions from alternative fuels for urban public transport

    International Nuclear Information System (INIS)

    Turrio Baldassarri, L.; Conti, R.; Crebelli, B.; Iamicelli, A.L.; De Berardis, M.; Gambino, A.L.; Iannaccone, S.

    2008-01-01

    The Istituto Superiore di Sanita (ISS, the National Institute of Health of Italy) and the Istituto dei Motori (IM) of the Consiglio Nazionale delle Ricerche (CNR, National Research Council) have carried out this study, jointly funded by the two institutes together with the Ministry of Environment. The chemical and toxicological characteristics of emissions from two urban bus engines were studied: a diesel engine fueled with both diesel oil and bio diesel blend and an equivalent spark-ignition one fuelled with compressed natural gas, operating in steady-state conditions. Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons and nitrated derivatives, carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter was also evaluated. The impact of diesel-powered transport on urban air quality, and the potential benefits for human health deriving from the use of natural gas for public transport, are discussed [it

  10. A multimedia fate and chemical transport modeling system for pesticides: II. Model evaluation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Trevor Scholtz, M

    2011-01-01

    Pesticides have adverse health effects and can be transported over long distances to contaminate sensitive ecosystems. To address problems caused by environmental pesticides we developed a multimedia multi-pollutant modeling system, and here we present an evaluation of the model by comparing modeled results against measurements. The modeled toxaphene air concentrations for two sites, in Louisiana (LA) and Michigan (MI), are in good agreement with measurements (average concentrations agree to within a factor of 2). Because the residue inventory showed no soil residues at these two sites, resulting in no emissions, the concentrations must be caused by transport; the good agreement between the modeled and measured concentrations suggests that the model simulates atmospheric transport accurately. Compared to the LA and MI sites, the measured air concentrations at two other sites having toxaphene soil residues leading to emissions, in Indiana and Arkansas, showed more pronounced seasonal variability (higher in warmer months); this pattern was also captured by the model. The model-predicted toxaphene concentration fraction on particles (0.5-5%) agrees well with measurement-based estimates (3% or 6%). There is also good agreement between modeled and measured dry (1:1) and wet (within a factor of less than 2) depositions in Lake Ontario. Additionally this study identified erroneous soil residue data around a site in Texas in a published US toxaphene residue inventory, which led to very low modeled air concentrations at this site. Except for the erroneous soil residue data around this site, the good agreement between the modeled and observed results implies that both the US and Mexican toxaphene soil residue inventories are reasonably good. This agreement also suggests that the modeling system is capable of simulating the important physical and chemical processes in the multimedia compartments.

  11. [Qualitative Determination of Organic Vapour Using Violet and Visible Spectrum].

    Science.gov (United States)

    Jiang, Bo; Hu, Wen-zhong; Liu, Chang-jian; Zheng, Wei; Qi, Xiao-hui; Jiang, Ai-li; Wang, Yan-ying

    2015-12-01

    Vapours of organic matters were determined qualitatively employed with ultraviolet-visible absorption spectroscopy. Vapours of organic matters were detected using ultraviolet-visible spectrophotometer employing polyethylene film as medium, the ultraviolet and visible absorption spectra of vegetable oil vapours of soybean oil, sunflower seed oil, peanut oil, rapeseed oil, sesame oil, cotton seed oil, tung tree seed oil, and organic compound vapours of acetone, ethyl acetate, 95% ethanol, glacial acetic acid were obtained. Experimental results showed that spectra of the vegetable oil vapour and the organic compound vapour could be obtained commendably, since ultra violet and visible spectrum of polyethylene film could be deducted by spectrograph zero setting. Different kinds of vegetable oils could been distinguished commendably in the spectra since the λ(max), λ(min), number of absorption peak, position, inflection point in the ultra violet and visible spectra obtained from the vapours of the vegetable oils were all inconsistent, and the vapours of organic compounds were also determined perfectly. The method had a good reproducibility, the ultraviolet and visible absorption spectra of the vapours of sunflower seed oil in 10 times determination were absolutely the same. The experimental result indicated that polyethylene film as a kind of medium could be used for qualitative analysis of ultraviolet and visible absorption spectroscopy. The method for determination of the vapours of the vegetable oils and organic compounds had the peculiarities of fast speed analysis, well reproducibility, accuracy and reliability and low cost, and so on. Ultraviolet and visible absorption spectrum of organic vapour could provide feature information of material vapour and structural information of organic compound, and provide a novel test method for identifying vapour of compound and organic matter.

  12. Impacts of Storm Surge Mitigation Strategies on Aboveground Storage Tank Chemical Spill Transport

    Science.gov (United States)

    Do, C.; Bass, B. J.; Bernier, C.; Samii, A.; Dawson, C.; Bedient, P. B.

    2017-12-01

    The Houston Ship Channel (HSC), located in the hurricane-prone Houston-Galveston region of the upper Texas Coast, is one of the busiest waterways in the United States and is home to one of the largest petrochemical complexes in the world. Due to the proximity of the HSC to Galveston Bay and the Gulf of Mexico, chemical spills resulting from storm surge damage to aboveground storage tanks (ASTs) pose serious threats to the environment, residential communities, and national/international markets whose activities in the HSC generate billions of dollars annually. In an effort to develop a comprehensive storm surge mitigation strategy for Galveston Bay and its constituents, Rice University's Severe Storm Prediction, Education, and Evacuation from Disasters Center proposed two structural storm surge mitigation concepts, the Mid Bay Structure (MBS) and the Lower Bay Structure (LBS) as components of the Houston-Galveston Area Protection System (H-GAPS) project. The MBS consists of levees along the HSC and a navigational gate across the channel, and the LBS consists of a navigation gate and environmental gates across Bolivar Road. The impacts of these two barrier systems on the fate of AST chemical spills in the HSC have previously been unknown. This study applies the coupled 2D SWAN+ADCIRC model to simulate hurricane storm surge circulation within the Gulf of Mexico and Galveston Bay due to a synthetic storm which results in approximately 250-year surge levels in Galveston Bay. The SWAN+ADCIRC model is run using high-resolution computational meshes that incorporate the MBS and LBS scenarios, separately. The resulting wind and water velocities are then fed into a Lagrangian particle transport model to simulate the spill trajectories of the ASTs most likely to fail during the 250-year proxy storm. Results from this study illustrate how each storm surge mitigation strategy impacts the transport of chemical spills (modeled as Lagrangian particles) during storm surge as

  13. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  14. Status of the solar and infrared radiation submodels in the LLNL 1-D and 2-D chemical-transport models

    International Nuclear Information System (INIS)

    Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.

    1987-07-01

    The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs

  15. Properties of zinc selenide grown by chemical vapor transport and its application to room-temperature radiation detection

    International Nuclear Information System (INIS)

    Brunett, B.A.; Toney, J.E.; Schlesinger, T.E.; Yoon, H.; Goorsky, M.S.; Rudolph, P.

    1998-01-01

    The authors have characterized ZnSe material grown by chemical vapor transport in iodine using triple-axis X-ray diffraction (TAD), photo-induced current transient spectroscopy (PICTS), photoluminescence (PL), current-voltage measurements and gamma-ray spectroscopy. The material was found to have inadequate carrier transport for nuclear spectrometer use, but there was a discernible difference in performance between crystals which could be correlated with crystallinity as determined by the TAD rocking curves

  16. Simulation of uranium transport with variable temperature and oxidation potential: The computer program THCC [Thermo-Hydro-Chemical Coupling

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1986-12-01

    A simulator of reactive chemical transport has been constructed with the capabilities of treating variable temperatures and variable oxidation potentials within a single simulation. Homogeneous and heterogeneous chemical reactions are simulated at temperature-dependent equilibrium, and changes of oxidation states of multivalent elements can be simulated during transport. Chemical mass action relations for formation of complexes in the fluid phase are included explicitly within the partial differential equations of transport, and a special algorithm greatly simplifies treatment of reversible precipitation of solid phases. This approach allows direct solution of the complete set of governing equations for concentrations of all aqueous species and solids affected simultaneously by chemical and physical processes. Results of example simulations of transport, along a temperature gradient, of uranium solution species under conditions of varying pH and oxidation potential and with reversible precipitation of uraninite and coffinite are presented. The examples illustrate how inclusion of variable temperature and oxidation potential in numerical simulators can enhance understanding of the chemical mechanisms affecting migration of multivalent waste elements

  17. The study and the realization of radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique; Etude et realisation de detecteurs de rayonnements a base de films de diamant polycristallin elabores par depot chimique en phase vapeur assiste par plasma micro-onde

    Energy Technology Data Exchange (ETDEWEB)

    Jany, Ch

    1998-10-29

    The aim of this work was to develop radiation detectors made from polycrystalline diamond films grown by microwave plasma enhanced chemical vapour deposition technique. The influence of surface treatments, contact technology and diamond growth parameters on the diamond detectors characteristics was investigated in order to optimise the detector response to alpha particles. The first part of the study focused on the electrical behaviour of as-deposited diamond surface, showing a p type conduction and its influence on the leakage current of the device. A surface preparation process was established in order to reduce the leakage current of the device by surface dehydrogenation using an oxidising step. Several methods to form and treat electrical contacts were also investigated showing that the collection efficiency of the device decreases after contact annealing. In the second part, we reported the influence of the diamond deposition parameters on the characteristics of the detectors. The increase of the deposition temperature and/or methane concentration was shown to lead {eta} to decrease. In contrast, {eta} was found to increase with the micro-wave power. The evolution of the diamond detector characteristics results from the variation in sp{sup 2} phases incorporation and in the crystallography quality of the films. These defects increase the leakage current and reduce the carrier mobility and lifetime. Measurements carried out on detectors with different thicknesses showed that the physical properties varies along the growth direction, improving with the film thickness. Finally, the addition of nitrogen (> 10 ppm) in the gas mixture during diamond deposition was found to strongly reduce the collection efficiency of the detectors. To conclude the study, we fabricated and characterised diamond devices which were used for thermal neutron detection and for the intensity and shape measurement of VUV and soft X-ray pulses. (author)

  18. Range-energy relations and stopping powers of organic liquids and vapours for alpha particles

    International Nuclear Information System (INIS)

    Akhavan-Rezayat, A.; Palmer, R.B.J.

    1980-01-01

    Experimental range-energy relations are presented for alpha particles in methyl alcohol, propyl alcohol, dichloromethane, chloroform and carbon tetrachloride in both the liquid and vapour phases. Stopping power values for these materials and for oxygen gas over the energy range 1.0-8.0 MeV are also given. From these results stopping powers have been derived for the -CH 2 -group and for -Cl occurring in chemical combination in the liquid and vapour phases. The molecular stopping power in the vapour phase is shown to exceed that in the liquid phase by 2-6% below 2 MeV, reducing to negligible differences at about 5 MeV for the materials directly investigated and for the -Cl atom. No significant phase effect is observed for the -CH 2 -group, but it is noted that the uncertainties in the values of the derived stopping powers are much greater in this case. Comparison of the experimental molecular stopping powers with values calculated from elemental values using the Bragg additivity rule shows agreement for vapours but not for liquids. (author)

  19. Modelling of vapour explosion in stratified geometrie

    International Nuclear Information System (INIS)

    Picchi, St.

    1999-01-01

    When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)

  20. Comparisons of physical and chemical sputtering in high density divertor plasmas with the Monte Carlo Impurity (MCI) transport model

    International Nuclear Information System (INIS)

    Evans, T.E.; Loh, Y.S.; West, W.P.; Finkenthal, D.F.

    1997-11-01

    The MCI transport model was used to compare chemical and physical sputtering for a DIII-D divertor plasma near detachment. With physical sputtering alone the integrated carbon influx was 8.4 x 10 19 neutral/s while physical plus chemical sputtering produced an integrated carbon influx of 1.7 x 10 21 neutrals/s. The average carbon concentration in the computational volume increased from 0.012% with only physical sputtering to 0.182% with both chemical and physical sputtering. This increase in the carbon inventory produced more radiated power which is in better agreement with experimental measurements

  1. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J.; Ovarlez, H. [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1997-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  2. Copper vapour laser development for Silva

    International Nuclear Information System (INIS)

    Bettinger, A.; Neu, M.; Chatelet, J.

    1993-01-01

    The recent developments of the components for high power Copper Vapour Laser (CVL) have been oriented towards four main goals: high quality laser beam, mainly for the CVL oscillators, increase of the extracted energy out of the amplifying stage, fully integrated and monolithic design for oscillator and amplifier, extended lifetime and high reliability. A first step of this work, which is done under contract with CILAS (Compagnie Industrielle des Lasers) led to an injection seeded oscillator and a 100 Watts amplifier; the present step concerns development of a 400 Watts class amplifier

  3. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J; Ovarlez, H [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1998-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  4. Thermogravimetric studies of vapour-aerosol interactions

    International Nuclear Information System (INIS)

    Henshaw, J.; Newland, M.S.; Wood, S.J.

    1991-01-01

    Thermogravimetric analysis has been used to study the interaction of iodine vapour with cadmium, silver and manganese monoxide substrates. These studies have demonstrated the importance of time-dependence data on reaction rates. Iodine did not react with manganese monoxide (as expected from thermodynamic considerations); however, extensive reaction did occur with silver and cadmium. Two rate limiting mechanisms were observed: mass transfer of iodine molecules from the gas phase (leading to linear reaction rates) and parabolic kinetics (ie inversely proportional to the extent of reaction) when the rate was limited by a diffusion process through the reaction product. (author)

  5. Experiments on a vapour absorption heat transformer

    Energy Technology Data Exchange (ETDEWEB)

    George, J M; Murthy, S S [Indian Inst. of Tech., Madras (India). Dept. of Mechanical Engineering

    1993-03-01

    Tests were conducted on a 3 kW heating capacity R21-DMF vapour absorption heat transformer to study the influence of operating temperature on its performance. Heat source temperature and condensing temperature were varied in the ranges 50-75[sup o]C and 20-40[sup o]C, respectively. Heat delivery temperatures up to 85[sup o]C and temperature lifts up to 20[sup o]C were achieved. Actual coefficients of performance (COPs) ranged from 0.2 to 0.35, whereas exergetic efficiencies of 0.3-0.4 could be obtained. (Author)

  6. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented.

  7. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    International Nuclear Information System (INIS)

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented

  8. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Tan, C.W., E-mail: tanchengwen@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Yu, X.D. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); China Astronaut Research and Training Center, Beijing 100094 (China); Nie, Z.H. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Ma, H.L. [China Astronaut Research and Training Center, Beijing 100094 (China); Cai, H.N. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-12-15

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl{sub 6} as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10{sup 6} to 10{sup 7} (counts/cm{sup 2}) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  9. Mixing and transport during pharmaceutical twin-screw wet granulation: experimental analysis via chemical imaging.

    Science.gov (United States)

    Kumar, Ashish; Vercruysse, Jurgen; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vanhoorne, Valérie; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2014-07-01

    Twin-screw granulation is a promising continuous alternative for traditional batch high shear wet granulation (HSWG). The extent of HSWG in a twin screw granulator (TSG) is greatly governed by the residence time of the granulation materials in the TSG and degree of mixing. In order to determine the residence time distribution (RTD) and mixing in TSG, mostly visual observation and particle tracking methods are used, which are either inaccurate and difficult for short RTD, or provide an RTD only for a finite number of preferential tracer paths. In this study, near infrared chemical imaging, which is more accurate and provides a complete RTD, was used. The impact of changes in material throughput (10-17 kg/h), screw speed (500-900 rpm), number of kneading discs (2-12) and stagger angle (30-90°) on the RTD and axial mixing of the material was characterised. The experimental RTD curves were used to calculate the mean residence time, mean centred variance and the Péclet number to determine the axial mixing and predominance of convective over dispersive transport. The results showed that screw speed is the most influential parameter in terms of RTD and axial mixing in the TSG and established a significant interaction between screw design parameters (number and stagger angle of kneading discs) and the process parameters (material throughput and number of kneading discs). The results of the study will allow the development and validation of a transport model capable of predicting the RTD and macro-mixing in the TSG. These can later be coupled with a population balance model in order to predict granulation yields in a TSG more accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. On the tungsten single crystal coatings achieved by chemical vapor transportation deposition

    International Nuclear Information System (INIS)

    Shi, J.Q.; Shen, Y.B.; Yao, S.Y.; Zhang, P.J.; Zhou, Q.; Guo, Y.Z.; Tan, C.W.; Yu, X.D.; Nie, Z.H.; Ma, H.L.; Cai, H.N.

    2016-01-01

    The tungsten single crystal has many excellent properties, namely a high melting point, high anti-creeping strength. Chemical vapor transportation deposition (CVTD) is a possible approach to achieve large-sized W single crystals for high-temperature application such as the cathode of a thermionic energy converter. In this work, CVTD W coatings were deposited on the monocrystalline molybdenum substrate (a tube with < 111 > axial crystalline orientation) using WCl 6 as a transport medium. The microstructures of the coatings were investigated by a scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The as-deposited coatings are hexagonal prisms—rough surfaces perpendicular to < 110 > with alternating hill-like bulges and pits at the side edges of the prisms, and flat surfaces perpendicular to < 112 > with arc-shaped terraces at the side faces. This can be explained by two-dimensional nucleation -mediated lateral growth model. Some parts of the coatings contain hillocks of an exotic morphology (noted as “abnormal growth”). The authors hypothesize that the abnormal growth is likely caused by the defects of the Mo substrate, which facilitate W nucleation sites, cause orientation difference, and may even form boundaries in the coatings. A dislocation density of 10 6 to 10 7 (counts/cm 2 ) was revealed by an etch-pit method and synchrotron X-ray diffraction. As the depositing temperature rises, the dislocation density decreases, and no sub-boundaries are found on samples deposited over 1300 °C, as a result of atom diffusion and dislocation climbing. - Highlights: •The varied growth rate causes the different morphologies of different planes. •The W coating is a single crystal when only single hillocks appear. •The (110) plane tends to have the lowest dislocation density. •The dislocation density tends to decrease as the temperature increases.

  11. A Survey of the Role of Thermodynamics and Transport Properties in Chemical Engineering University Education in Europe and the USA

    Science.gov (United States)

    Ahlstrom, Peter; Aim, Karel; Dohrn, Ralf; Elliott, J. Richard; Jackson, George; Jaubert, Jean-Noel; Macedo, Eugenia A.; Pokki, Juha-Pekka; Reczey, Kati; Victorov, Alexey; Zilnik, Ljudmila Fele; Economou, Ioannis G.

    2010-01-01

    A survey on the teaching of thermodynamics and transport phenomena in chemical engineering curricula in European and US Universities was performed and results are presented here. Overall, 136 universities and colleges responded to the survey, out of which 81 from Europe and 55 from the USA. In most of the institutions responding at least two…

  12. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    Science.gov (United States)

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  13. Do goethite surfaces really control the transport and retention of multi-walled carbon nanotubes in chemically heterogeneous porous media?

    Science.gov (United States)

    Transport and retention behavior of multiwalled carbon nanotubes (MWCNTs) was studied in mixtures of negatively charged quartz sand (QS) and positively charged goethite-coated sand (GQS) to assess the role of chemical heterogeneity. The linear equilibrium sorption model provided a good description o...

  14. Inputs and Fluvial Transport of Pharmaceutical Chemicals in An Urban Watershed

    Science.gov (United States)

    Foster, G. D.; Shala, L.

    2006-05-01

    Pharmaceuticals and personal care products (PPCPs) are classes of emerging chemical contaminants thought to enter the aquatic environment primarily through wastewater treatment plant (WTP) discharges. As the use of drugs is expected to rise with the aging demographics of the human population and with more river water being diverted to meet potable water demands, the presence of PPCPs in surface water is becoming an issue of public concern. The intent of our study was to quantify potential WTP inputs of PPCPs to rivers in the Wasington, DC (USA) region, and to investigate the fluvial transport of PPCPs in the Anacostia River (AR), the mainstem of a highly contaminated urban watershed in Washington, DC. The approach was to sample WTP water at various stages of treatment, and to measure seasonal concentrations of PPCPs in fluvial transport in the AR. Surface water from the AR was collected through the use of automated samplers during normal flow and storm flow regimes near the head of tide of the AR, just upstream from the confluence of the Northeast (NE) and Northwest (NW) Branches, the two prominent drainages in the watershed. The water samples were filtered to separate river particles from water, and the filtered water was extracted using solid phase extraction (SPE) cartridges. The filters were extracted by sonication in methanol. The SPE and filter extracts were analyzed for a group of widely distributed PPCPs as trimethylsilyl derivatives by using gas chromatography/mass spectrometry. The most frequently detected PPCPs at WTPs included ibuprofen, caffeine, naproxen and triclosan, which ranged from 45 μg/L (caffeine) to 5 μg/L (triclosan) in WTP influent and from 0.08 μg/L (triclosan) to 0.02 μg/L (ibuprofen) in effluent water. Similar PPCPs were detected in both the NE and NW Branches of the AR, but higher concentrations on average were observed in the NE Branch, which receives WTP effluent upstream from the sampling point. The incidence of PPCPs correlated

  15. Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.).

    Science.gov (United States)

    Wang, Yan; Shen, Hong; Xu, Liang; Zhu, Xianwen; Li, Chao; Zhang, Wei; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    Lead (Pb), a ubiquitous but highly toxic heavy metal (HM), is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO3)2 in hydroponic culture, aiming to characterize the transport, ultrastructural localization, and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76-98.72%) was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44-1.56%) or transported to the shoot (1.28-14.24%). A large proportion of Pb (74.11-99.30%) was integrated with undissolved Pb oxalate, protein and pectates forming Pb-phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08-80.40%) and taproot skin (46.22-77.94%), while the leaves and roots had 28.36-39.37% and 27.35-46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM) revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb-phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low-Pb-content cultivars in root vegetable

  16. Transport, ultrastructural localization and distribution of chemical forms of lead in radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2015-05-01

    Full Text Available Lead (Pb, a ubiquitous but highly toxic heavy metal, is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO32 in hydroponic culture, aiming to characterize the transport, ultrastructural localization and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76–98.72% was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44–1.56% or transported to the shoot (1.28-14.24%. A large proportion of Pb (74.11–99.30% was integrated with undissolved Pb oxalate, protein and pectates forming Pb-phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08–80.40% and taproot skin (46.22–77.94%, while the leaves and roots had 28.36–39.37% and 27.35–46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb–phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low

  17. Chemical Evidence for Vertical Transport from Magma Chambers to the Surface During Mid-Ocean Ridge Volcanic Eruptions

    Science.gov (United States)

    Sinton, J. M.; Rubin, K. H.

    2009-12-01

    Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake

  18. Influence of hydrogen on chemical vapour synthesis of different ...

    Indian Academy of Sciences (India)

    ... different growth conditions. The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its correlative effect on the growth of carbon nanostructures is analysed. This direct approach can, in principle, be used to synthesize different types of carbon nanostructures by tailoring the hydrogen concentration.

  19. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... and that there is a major change in morphology between 850 – 900 °C. The effects of system pressure and precursor partial pressure are also studied, and were found to have relevance to the tantalum distribution along the substrates but little effect on the structural morphology of the deposited layer. In the implemented...

  20. Polymer-based nucleation for chemical vapour deposition of diamond

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Kromka, Alexander; Varga, Marián

    2016-01-01

    Roč. 133, č. 29 (2016), 1-7, č. článku 43688. ISSN 0021-8995 R&D Projects: GA ČR GC15-22102J Institutional support: RVO:68378271 Keywords : copolymers * composites * diamond * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.860, year: 2016

  1. Influence of hydrogen on chemical vapour synthesis of different ...

    Indian Academy of Sciences (India)

    Administrator

    The role of hydrogen on the surface passivation behaviour of the Ni catalyst and its ..... Chae S J, Güneş F, Kim K K, Kim E S, Han G H, Kim S M,. Shin H-J, Yoon ... Xiong Y G, Suda Y, Wang D Z, Huang Y J and Ren Z F 2005. Nanotechnology ...

  2. Morphology of silicon carbide formed by chemical vapour deposition

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.

    1977-01-01

    Silicon carbide polycrystalline layers and particulate crystals were obtained in a modified van Arkel-de Boer apparatus on SiC-covered graphite and molybdenum susceptors. Gaseous SiCl 4 + CCl 4 + H 2 reactive mixtures with Si/C mole ratios varying between 0.9 and 1.4 and with Cl/Cl + H ratios varying between 2.10 -5 and 1.10 -3 were used. The morphology and structure of SiC products obtained at temperatures between 1400 and 1900 0 C and input gas flow rates between 5.10 -4 and 6.10 -2 moles per hour have been systematically investigated by scanning electronmicrographs, X-rays (using the Laue, Weissenberg, and rotation photographers), IR-spectra, and under the polarising microscope. The ranges of temperature and input gas flow rates in which the given habits and forms of the SiC products are formed have been assessed. The habits of the particulate crystals as function of temperature have been interpreted in terms of the existing theories of heterogeneous nucleation assuming layer growth of the crystals by two-dimensional nucleation. The influence of the composition of the gaseous mixtures upon the formation of the 2H polytype as well as the probable reasons for the common occurrence of stacking fault twins in the 3C polytype have been discussed. (author)

  3. Chemical vapour deposition of vanadium oxide thermochromic thin films

    OpenAIRE

    Piccirillo, Clara

    2012-01-01

    Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thi...

  4. Pore-scale modeling of vapor transport in partially saturated capillary tube with variable area using chemical potential

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn

    2016-01-01

    Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters and the nu......Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... and the numerical solutions to the equation are compared with experimental results with excellent agreement. We demonstrate that isothermal vapor transport can be accurately modeled without modeling the details of the contact angle, microscale temperature fluctuations, or pressure fluctuations using a modification...

  5. Collective dynamics in dense Hg vapour

    International Nuclear Information System (INIS)

    Ishikawa, D; Inui, M; Matsuda, K; Tamura, K; Baron, A Q R; Tsutsui, S; Tanaka, Y; Ishikawa, T

    2004-01-01

    The dynamic structure factor, S(Q,ο), of dense Hg vapour has been measured by high resolution inelastic x-ray scattering for densities of 3.0, 2.1 and 1.0 g cm -3 corresponding to 0.52, 0.36 and 0.17 times the critical density, respectively, and for momentum transfers between 2.0 and 48 nm -1 . Analysis of the longitudinal current-current correlation function in the framework of generalized hydrodynamics reveals that the frequencies of the collective excitations increase faster with Q than estimated from the macroscopic speed of sound. The ratios of the frequencies were found to be 1.27 at 3.0 g cm -3 , 1.12 at 2.1 g cm -3 and 1.10 at 1.0 g cm -3 . The sound velocity obtained from the present experiments is well reproduced by a wavenumber dependent adiabatic sound velocity, which means that the collective modes remain in the spectra of dense Hg vapour. (letter to the editor)

  6. Characterization of aqueous interactions of copper-doped phosphate-based glasses by vapour sorption.

    Science.gov (United States)

    Stähli, Christoph; Shah Mohammadi, Maziar; Waters, Kristian E; Nazhat, Showan N

    2014-07-01

    Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs.

    Science.gov (United States)

    Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C

    2017-08-15

    broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.

  8. MS-2 and poliovirus transport in porous media: Hydrophobic effects and chemical perturbations

    Science.gov (United States)

    Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.

    1993-04-01

    In a series of pH 7 continuous-flow column experiments, removal of the bacteriophage MS-2 by attachment to silica beads had a strong, systematic dependence on the amount of hydrophobic surface present on the beads. With no hydrophobic surface, removal of phage at pH 5 was much greater than at pH 7. Release of attached phage at both pH values did occur, but was slow; breakthrough curves exhibited tailing. Poliovirus attached to silica beads at pH 5.5 much more than at pH 7.0, and attachment was also slowly reversible. Time scales for phage and poliovinis attachment were of the order of hours. The sticking efficiency factor (α), reflecting microscaie physicochemical influences on virus attachment, was in the range of 0.0007-0.02. Phage release was small but measurable under steady state conditions. Release was enhanced by lowering ionic strength and by introducing beef extract, a high-ionic-strength protein solution. Results show that viruses experience reversible attachment/detachment (sometimes termed sorption), that large chemical perturbations are needed to induce rapid virus detachment, and that viruses should be quite mobile in sandy porous media. Even small amounts of hydrophobic organic material in the porous media (≥0.001%) can retard virus transport.

  9. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    Science.gov (United States)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  10. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    Science.gov (United States)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  11. Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals

    Science.gov (United States)

    Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.

    2005-01-01

    Seven unsaturated-zone solute-transport models were tested with two data sets to select models for use by the Agricultural Chemical Team of the U.S. Geological Survey's National Water-Quality Assessment Program. The data sets were from a bromide tracer test near Merced, California, and an atrazine study in the White River Basin, Indiana. In this study the models are designated either as complex or simple based on the water flux algorithm. The complex models, HYDRUS2D, LEACHP, RZWQM, and VS2DT, use Richards' equation to simulate water flux and are well suited to process understanding. The simple models, CALF, GLEAMS, and PRZM, use a tipping-bucket algorithm and are more amenable to extrapolation because they require fewer input parameters. The purpose of this report is not to endorse a particular model, but to describe useful features, potential capabilities, and possible limitations that emerged from working with the model input data sets. More rigorous assessment of model applicability involves proper calibration, which was beyond the scope of this study.

  12. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    International Nuclear Information System (INIS)

    T.C. Onstott

    2005-01-01

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions

  13. Boiling vapour-type fluids from the Nifonea vent field (New Hebrides Back-Arc, Vanuatu, SW Pacific): Geochemistry of an early-stage, post-eruptive hydrothermal system

    Science.gov (United States)

    Schmidt, Katja; Garbe-Schönberg, Dieter; Hannington, Mark D.; Anderson, Melissa O.; Bühring, Benjamin; Haase, Karsten; Haruel, Christy; Lupton, John; Koschinsky, Andrea

    2017-06-01

    In 2013, high-temperature vent fluids were sampled in the Nifonea vent field. This field is located within the caldera of a large shield-type volcano of the Vate Trough, a young extensional rift in the New Hebrides back-arc. Hydrothermal venting occurs as clear and black smoker fluids with temperatures up to 368 °C, the hottest temperatures measured so far in the western Pacific. The physico-chemical conditions place the fluids within the two-phase field of NaCl-H2O, and venting is dominated by vapour phase fluids with Cl concentrations as low as 25 mM. The fluid composition, which differs between the individual vent sites, is interpreted to reflect the specific geochemical fluid signature of a hydrothermal system in its initial, post-eruptive stage. The strong Cl depletion is accompanied by low alkali/Cl ratios compared to more evolved hydrothermal systems, and very high Fe/Cl ratios. The concentrations of REY (180 nM) and As (21 μM) in the most Cl-depleted fluid are among the highest reported so far for submarine hydrothermal fluids, whereas the inter-element REY fractionation is only minor. The fluid signature, which has been described here for the first time in a back-arc setting, is controlled by fast fluid passage through basaltic volcanic rocks, with extremely high water-rock ratios and only limited water-rock exchange, phase separation and segregation, and (at least) two-component fluid mixing. Metals and metalloids are unexpectedly mobile in the vapour phase fluids, and the strong enrichments of Fe, REY, and As highlight the metal transport capacity of low-salinity, low-density vapours at the specific physico-chemical conditions at Nifonea. One possible scenario is that the fluids boiled before the separated vapour phase continued to react with fresh glassy lavas. The mobilization of metals is likely to occur by leaching from fresh glass and grain boundaries and is supported by the high water/rock ratios. The enrichment of B and As is further controlled

  14. Absorption dynamics of organic chemical transport across trout gills as related to octanol-water partition coefficient

    International Nuclear Information System (INIS)

    McKim, J.; Schmieder, P.; Veith, G.

    1985-01-01

    An in vivo fish preparation was used that allowed a direct measure of the transport rates of 14 different organic chemicals across the gills of rainbow trout (Salmo gairdneri). The chemicals, all C14 labeled, were selected from five classes, encompassing a range of octanol-water partition coefficient (log P) values, from 0.23 (ethyl formate) to 7.5 (mirex). The uptake efficiency (extraction efficiency) of each chemical was determined by monitoring the inspired and expired water of trout exposed to each chemical over an exposure period of 1 to 6 hr. The mean gill extraction efficiency for all chemicals tested varied from a low of 7% to a high of 60%, extracted in a single pall of the chemical across the gills. The extraction efficiency of chemicals with log P or 1 or less were low and showed no relationship to log P. These low extraction efficiencies seen at log P of 1 and below with molecular weights below 100 were indicative of aqueous pore transport. The mean extraction efficiency for chemicals with log P values of 1 to 3 seemed to vary directly with log P, to a maximum of slightly greater than 60%, suggesting that uptake was controlled by the lipid membrane. The mean extraction efficiency for chemicals with log P of 3 to 6 was independent of log P and remained at 60%, which suggested that gill uptake was controlled by aqueous diffusion rates rather than gill membrane permeability. The mean extraction efficiency with mirex (log P . 7.5) decreased to 20%

  15. Radiation induced vapour phase grafting of styrene onto fluorinated substrates

    International Nuclear Information System (INIS)

    Dargaville, T.; Hill, D.; George, G.; Cardona, F.

    2000-01-01

    Full text: Polytetrafluoroethylene (PTFE) is well known for being inert towards heat, solvents and harsh chemicals. However, in contrast, PTFE is extremely sensitive to radiation suffering from a dramatic decrease in mechanical strength even when exposed to low doses. In this study we have used a copolymer of PTFE, poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA). The effect of the ether comonomer is to render the polymer melt processable, lower the crystallinity and increase the radical yield when compared with PTFE. When grafting styrene to PFA using a radiation initiated process, the resulting polymer has the desirable chemical and thermal resistance of the PFA substrate combined with the functionality of the styrene, however, due to the incidental degradative effect of radiation on the PFA substrate it is important to find conditions where the best graft is achieved without exposing the substrate to extraneous levels of radiation. We have successfully grafted styrene to PFA by simultaneously exposing PFA to styrene vapour and gamma radiation. This process was found to be independent of dose rate at low dose rates suggesting a diffusion controlled mechanism. The penetration of the graft into the PFA substrate was measured by mapping a cross-section using micro-probe Raman spectroscopy

  16. Estimation of vapour pressure and partial pressure of subliming ...

    Indian Academy of Sciences (India)

    Administrator

    conditions of (total) pressure by using thermogravimetry under those conditions. Further, from the partial pressure P, it is possible to determine the number of moles of material in the vapour phase using the ideal gas equation, PV = nRT, where P is the partial pressure, V the volume, n number of moles (of the vapour), R the ...

  17. Beam-profile monitor using a sodium-vapour

    CERN Multimedia

    1972-01-01

    Beam-profile monitor using a sodium-vapour curtain at 45 degrees to the ISR beam in Ring I (sodium generator is in white cylinder just left of centre). Electrons produced by ionization of the sodium vapour give an image of the beam on a fluorescent screen that is observed by a TV camera (at upper right).

  18. Capacitive-discharge-pumped copper bromide vapour laser

    International Nuclear Information System (INIS)

    Sukhanov, V B; Fedorov, V F; Troitskii, V O; Gubarev, F A; Evtushenko, Gennadii S

    2007-01-01

    A copper bromide vapour laser pumped by a high-frequency capacitive discharge is developed. It is shown that, by using of a capacitive discharge, it is possible to built a sealed off metal halide vapour laser of a simple design allowing the addition of active impurities into the working medium. (letters)

  19. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  20. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    Science.gov (United States)

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The impacts of pore-scale physical and chemical heterogeneities on the transport of radionuclide-carrying colloids

    Energy Technology Data Exchange (ETDEWEB)

    WU, Ning

    2018-04-24

    Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g., clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.

  2. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  3. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev; Patankar, Neelesh A.; Marston, Jeremy; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-01-01

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  4. Chemical and Isotopes study of pollutants transport through unsaturated zone in Damascus oasis (Syria)

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2011-08-01

    The primary objectives of this study were to determine the hydrochemical and isotopic characteristics of groundwater and to study vertical transport processes for trace elements through the unsaturated zone, from the surface water into the groundwater system. A third objective is to identifying the importance of the unsaturated zone in protecting groundwater from contamination. Distribution of trace elements, including Cu, Pb, Cr, Cd, Zn and As in the soil with depth were studied. Mineralogy was investigated using X-Ray diffraction techniques and granulometry in three drilled soil profile (KA, KB and KS) in Damascus Oasis, which indicated that the soil consists mainly of calcite, a mineral that has the ability to bind some of the trace elements. Measurement of nitrate concentrations in groundwater permitted an investigation of the urban, industrial and agricultural pollution in the Oasis, in particular, in the eastern part of Damascus city and in the north of Oasis where the irrigation by treated wastewater is applied. Depending on the chemical characteristics of the studied trace elements and soil conditions, these elements have high concentrations in the upper part of the soil (20-30 cm depth), due to absorption by clay minerals and organic matter. These high concentrations represent pollution by leather industries (tannery) in the area. The trace element concentrations decrease towards the east in parallel with river flow direction. The lower part of profiles show low trace element concentrations, below the international permitted limit. The low concentrations of trace elements in groundwater which are also below the international limit, indicates no pollution is presented. The isotopic composition of shallow groundwater indicates the underground recharge, originated from the Anti-Lebanon Mountain, is more significant than the direct recharge through unsaturated zone. It is concluded the unsaturated zone and the decrease of groundwater levels have played an

  5. A Novel Approach of Understanding and Incorporating Error of Chemical Transport Models into a Geostatistical Framework

    Science.gov (United States)

    Reyes, J.; Vizuete, W.; Serre, M. L.; Xu, Y.

    2015-12-01

    The EPA employs a vast monitoring network to measure ambient PM2.5 concentrations across the United States with one of its goals being to quantify exposure within the population. However, there are several areas of the country with sparse monitoring spatially and temporally. One means to fill in these monitoring gaps is to use PM2.5 modeled estimates from Chemical Transport Models (CTMs) specifically the Community Multi-scale Air Quality (CMAQ) model. CMAQ is able to provide complete spatial coverage but is subject to systematic and random error due to model uncertainty. Due to the deterministic nature of CMAQ, often these uncertainties are not quantified. Much effort is employed to quantify the efficacy of these models through different metrics of model performance. Currently evaluation is specific to only locations with observed data. Multiyear studies across the United States are challenging because the error and model performance of CMAQ are not uniform over such large space/time domains. Error changes regionally and temporally. Because of the complex mix of species that constitute PM2.5, CMAQ error is also a function of increasing PM2.5 concentration. To address this issue we introduce a model performance evaluation for PM2.5 CMAQ that is regionalized and non-linear. This model performance evaluation leads to error quantification for each CMAQ grid. Areas and time periods of error being better qualified. The regionalized error correction approach is non-linear and is therefore more flexible at characterizing model performance than approaches that rely on linearity assumptions and assume homoscedasticity of CMAQ predictions errors. Corrected CMAQ data are then incorporated into the modern geostatistical framework of Bayesian Maximum Entropy (BME). Through cross validation it is shown that incorporating error-corrected CMAQ data leads to more accurate estimates than just using observed data by themselves.

  6. Impact of temporal upscaling and chemical transport model horizontal resolution on reducing ozone exposure misclassification

    Science.gov (United States)

    Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William

    2017-10-01

    We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.

  7. Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients

    Science.gov (United States)

    Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.

    2018-03-01

    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.

  8. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport.

    Science.gov (United States)

    Bygd, Hannah C; Bratlie, Kaitlin M

    2016-07-01

    Macrophage (MΦ) reprogramming has received significant attention in applications such as cancer therapeutics and tissue engineering where the host immune response to biomaterials is crucial in determining the success or failure of an implanted device. Polymeric systems can potentially be used to redirect infiltrating M1 MΦs toward a proangiogenic phenotype. This work exploits the concept of MΦ reprogramming in the engineering of materials for improving the longevity of tissue engineering scaffolds. We have investigated the effect of 13 different chemical modifications of alginate on MΦ phenotype. Markers of the M1 response-tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase-and the M2 response-arginase-were measured and used to determine the ability of the materials to alter MΦ phenotype. It was found that some modifications were able to reduce the pro-inflammatory response of M1 MΦs, others appeared to amplify the M2 phenotype, and the results for two materials suggested they were able to reprogram a MΦ population from M1 to M2. These findings were supplemented by studies done to examine the permselectivity of the materials. Diffusion of TNF-α was completely prevented through some of these materials, while up to 84% was found to diffuse through others. The diffusion of insulin through the materials was statistically consistent. These results suggest that the modification of these materials might alter mass transport in beneficial ways. The ability to control polarization of MΦ phenotypes with immunoprotective materials has the potential to augment the success of tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1707-1719, 2016. © 2016 Wiley Periodicals, Inc.

  9. Preparation of Nb3Ge films by chemical transport reaction and their critical properties

    International Nuclear Information System (INIS)

    Oya, G.; Saur, E.J.

    1979-01-01

    Niobium-germanium films have been deposited on sapphire substrates at 900 0 C by a chemical transport reaction method. The highest superconducting transition onset temperature T/sub C,on/ of 22.4K is observed for a nearly stoichiometric Nb 3 Ge film with the A15-type structure (thickness approx.93.5 μm). Lattice constants for the Nb 3 Ge phase formed in the Nb-Ge films with both T/sub C,on/ above 22 K and T/sub C,midpoint/ above 21 K are found to extend from 5.143 to 5.153 A. Deposition rates for the obtained films are in the range of 2-10 μm/min. Critical current densities for the Nb 3 Ge film with the highest T/sub C,on/ value are observed to be relatively low (approx.10 3 A/cm 2 at 19 K at self-field). This is due to the coarse grain structure of the film or the low density of effectual pinning centers in the film. Field variations of the pinning forces operating in this film in magnetic fields both parallel to the film surface and perpendicular to the film surface are found to follow closely b/sup 1/2/ (1-b) 2 , to which the pinning force for flux pinning at the surface of normal regions, such as grain boundaries, film surfaces, etc., is proportional, and where b is the reduced magnetic induction (B/B/sub C2/). A small increase in J/sub C/ at low fields is caused by the presence of a small amount of the Nb 5 Ge 3 phase in a Nb 3 Ge film, and seems attributable to additional flux pinning on Nb 5 Ge 3 -phase particles in the film

  10. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    National Research Council Canada - National Science Library

    Siegrist, Robert L; Crimi, Michelle; Munakata-Marr, Junko; Illangasekare, Tissa; Dugan, Pamela; Heiderscheidt, Jeff; Jackson, Shannon; Petri, Ben; Sahl, Jason; Seitz, Sarah

    2006-01-01

    In situ chemical oxidation involves the introduction of chemical oxidants into the subsurface to destroy organic contaminants in soil and ground water, with the goal being to reduce the mass, mobility...

  11. Theoretical and practical aspects of improving the durability of steel reinforcement in transport designs, using passivation and plasticizing chemical additives

    Science.gov (United States)

    Velichko, Evgenij; Talipov, Linar

    2017-10-01

    The article deals with the problem of steel reinforcement corrosion in reinforced concrete structures exposed to aggressive media, in particular in reinforced concrete construction of transport infrastructure, in snowy areas, and subject to the influence of chlorides contained in applied deicing agents. Basic schemes for preventing the reinforcement corrosion in reinforced-concrete structures have been considered and analyzed. Prospects of primary protection against corrosion of reinforcement by introducing chemical additives with plasticizing/passivating action in a concrete mixture with mixing water have been considered in detail. The physical/chemical mechanism of the protective action of a superplasticizer together with a passivator has been highlighted.

  12. Comparison of Hexane Vapour Permeation in Two Different Polymeric Membranes via an Innovative In-Line FID Detection Method.

    Czech Academy of Sciences Publication Activity Database

    Petrusová, Zuzana; Morávková, Lenka; Vejražka, Jiří; Vajglová, Zuzana; Jansen, J.C.; Izák, Pavel

    2017-01-01

    Roč. 31, č. 2 (2017), s. 145-160 ISSN 0352-9568. [International Congress of Chemical and Process Engineering CHISA 2016 /22./. Prague, 27.08.2016-31.08.2016] R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : gas/vapour separation * low-density polyethylene * thin-film-composite membrane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.923, year: 2016

  13. Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate

    OpenAIRE

    Spiandore , Marie; Piram , Anne; Lacoste , Alexandre; Prevost , P.; Maloni , Pascal; TORRE , Franck; Asia , L.; Josse , D.; Doumenq , Pierre

    2017-01-01

    International audience; Chemical warfare agents are an actual threat and victims' decontamination is a main concern when mass exposure occurs. Skin decontamination with current protocols has been widely documented, as well as surface decontamination. However, considering hair ability to trap chemicals in vapour phase, we investigated hair decontamination after exposure to sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. Four decontamination protocols were tested o...

  14. Silver chemical vapor generation for atomic absorption spectrometry: Minimization of transport losses, interferences and application to water analysis

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Kratzer, Jan; Vobecký, Miloslav; Benada, Oldřich; Matoušek, Tomáš

    2010-01-01

    Roč. 25, č. 10 (2010), s. 1618-1626 ISSN 0267-9477 R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501; CEZ:AV0Z50200510 Keywords : chemical vapor generation * 111Ag radioindicator * transport losses Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.372, year: 2010

  15. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  16. The understanding of the R7T7 glass blocks long term behavior: chemical and transport coupling in fractured media

    International Nuclear Information System (INIS)

    Chomat, L.

    2008-04-01

    The long term behavior of nuclear waste glass blocks depends highly on chemical reactions which occur at the surface in contact with water. Studies carried out on inactive fractured glass blocks show that fracture networks play a significant part in reactive surface area. Nevertheless, the complexity of results interpretation, due to a weak knowledge of fracture networks and local lixiviation conditions, does not allow us to comprehend the physical and chemical mechanisms involved. Model cracks are a key step to study chemical and transport coupling in fractured media. Crack lixiviation in aggressive conditions (pH≥11) show that the crack's position (horizontal or vertical) determines the dominant transport mechanism (respectively diffusion or convection induced by gravity). This gravity driven flow seems to be negligible in lower pH conditions. The convective velocity is estimated by a 1D model of reactive transport. Two other parameters are studied: the influence of thermal gradient and the influence of interconnected cracks on alteration. A strong retroactive effect of convection, due to thermal gradient, on the alteration kinetic is observed inside the crack. These works lead to a complete alteration experiment of a 163 crack network subject to a thermal gradient. The use of the geochemical software, HYTEC, within the framework of this study shows the potential of the software which is however limited by the kinetics law used. (author)

  17. Study on Contaminant Transportation of a Typical Chemical Industry Park Based on GMS Software

    Science.gov (United States)

    Huang, LinXian; Liu, GuoZhen; Xing, LiTing; Liu, BenHua; Xu, ZhengHe; Yang, LiZhi; Zhu, HebgHua

    2018-03-01

    The groundwater solute transport model can effectively simulated the transport path, the transport scope, and the concentration of contaminant which can provide quantitative data for groundwater pollution repair and groundwater resource management. In this study, we selected biological modern technology research base of Shandong province as research objective and simulated the pollution characteristic of typicalcontaminant cis-1, 3-dichloropropene under different operating conditions by using GMS software.

  18. Medical cannabis use in Canada: vapourization and modes of delivery.

    Science.gov (United States)

    Shiplo, Samantha; Asbridge, Mark; Leatherdale, Scott T; Hammond, David

    2016-10-29

    The mode of medical cannabis delivery-whether cannabis is smoked, vapourized, or consumed orally-may have important implications for its therapeutic efficacy and health risks. However, there is very little evidence on current patterns of use among Canadian medical cannabis users, particularly with respect to modes of delivery. The current study examined modes of medical cannabis delivery following regulatory changes in 2014 governing how Canadians access medical cannabis. A total of 364 approved adult Canadian medical cannabis users completed an online cross-sectional survey between April and June 2015. The survey examined patterns of medical cannabis use, modes of delivery used, and reasons for use. Participants were recruited through a convenience sample from nine Health Canada licensed producers. Using a vapourizer was the most popular mode of delivery for medical cannabis (53 %), followed by smoking a joint (47 %). The main reason for using a vapourizer was to reduce negative health consequences associated with smoking. A majority of current vapourizer users reported using a portable vapourizer (67.2 %), followed by a stationary vapourizer (41.7 %), and an e-cigarette or vape pen (19.3 %). Current use of a vapourizer was associated with fewer respiratory symptoms (AOR = 1.28, 95 % CI 1.05-1.56, p = 0.01). The findings suggest an increase in the popularity of vapourizers as the primary mode of delivery among approved medical users. Using vapourizers has the potential to prevent some of the adverse respiratory health consequences associated with smoking and may serve as an effective harm reduction method. Monitoring implications of such current and future changes to medical cannabis regulations may be beneficial to policymakers.

  19. Medical cannabis use in Canada: vapourization and modes of delivery

    Directory of Open Access Journals (Sweden)

    Samantha Shiplo

    2016-10-01

    Full Text Available Abstract Background The mode of medical cannabis delivery—whether cannabis is smoked, vapourized, or consumed orally—may have important implications for its therapeutic efficacy and health risks. However, there is very little evidence on current patterns of use among Canadian medical cannabis users, particularly with respect to modes of delivery. The current study examined modes of medical cannabis delivery following regulatory changes in 2014 governing how Canadians access medical cannabis. Methods A total of 364 approved adult Canadian medical cannabis users completed an online cross-sectional survey between April and June 2015. The survey examined patterns of medical cannabis use, modes of delivery used, and reasons for use. Participants were recruited through a convenience sample from nine Health Canada licensed producers. Results Using a vapourizer was the most popular mode of delivery for medical cannabis (53 %, followed by smoking a joint (47 %. The main reason for using a vapourizer was to reduce negative health consequences associated with smoking. A majority of current vapourizer users reported using a portable vapourizer (67.2 %, followed by a stationary vapourizer (41.7 %, and an e-cigarette or vape pen (19.3 %. Current use of a vapourizer was associated with fewer respiratory symptoms (AOR = 1.28, 95 % CI 1.05–1.56, p = 0.01. Conclusions The findings suggest an increase in the popularity of vapourizers as the primary mode of delivery among approved medical users. Using vapourizers has the potential to prevent some of the adverse respiratory health consequences associated with smoking and may serve as an effective harm reduction method. Monitoring implications of such current and future changes to medical cannabis regulations may be beneficial to policymakers.

  20. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    Science.gov (United States)

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are

  1. Ionic Diffusion and Kinetic Homogeneous Chemical Reactions in the Pore Solution of Porous Materials with Moisture Transport

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2009-01-01

    Results from a systematic continuum mixture theory will be used to establish the governing equations for ionic diffusion and chemical reactions in the pore solution of a porous material subjected to moisture transport. The theory in use is the hybrid mixture theory (HMT), which in its general form......’s law of diffusion and the generalized Darcy’s law will be used together with derived constitutive equations for chemical reactions within phases. The mass balance equations for the constituents and the phases together with the constitutive equations gives the coupled set of non-linear differential...... general description of chemical reactions among constituents is described. The Petrov – Galerkin approach are used in favour of the standard Galerkin weighting in order to improve the solution when the convective part of the problem is dominant. A modified type of Newton – Raphson scheme is derived...

  2. End-to-End Trajectory for Conjunction Class Mars Missions Using Hybrid Solar-Electric/Chemical Transportation System

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.

  3. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  4. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  5. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    Science.gov (United States)

    Gordon, S.; Mcbride, B.; Zeleznik, F. J.

    1984-01-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  6. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    Science.gov (United States)

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  7. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    Science.gov (United States)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  8. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    International Nuclear Information System (INIS)

    Dutrow, Barbara

    2008-01-01

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and

  9. Alcohol vapour detection at the three phase interface using enzyme-conducting polymer composites.

    Science.gov (United States)

    Winther-Jensen, Orawan; Kerr, Robert; Winther-Jensen, Bjorn

    2014-02-15

    Immobilisation of enzymes on a breathable electrode can be useful for various applications where the three-phase interface between gas or chemical vapour, electrolyte and electrode is crucial for the reaction. In this paper, we report the further development of the breathable electrode concept by immobilisation of alcohol dehydrogenase into vapour-phase polymerised poly(3,4-ethylene dioxythiophene) that has been coated onto a breathable membrane. Typical alcohol sensing, whereby the coenzyme β-Nicotinamide adenine dinucleotide (NADH) is employed as a redox-mediator, was successfully used as a model reaction for the oxidation of ethanol. This indicates that the ethanol vapour from the backside of the membrane has access to the active enzyme embedded in the electrode. The detecting range of the sensor is suitable for the detection of ethanol in fruit juices and for the baseline breath ethanol concentration of drunken driving. After continuous operation for 4.5h the system only showed a 20% decrease in the current output. The electrodes maintained 62% in current output after being refrigerated for 76 days. This work is continuing the progress of the immobilisation of specific enzymes for certain electrochemical reactions whereby the three-phase interface has to be maintained and/or the simultaneous separation of gas from liquid is required. © 2013 Elsevier B.V. All rights reserved.

  10. Electrical properties of zirconium diselenide single crystals grown by iodine transport method

    International Nuclear Information System (INIS)

    Patel, S.G.; Agarwal, M.K.; Batra, N.M.; Lakshminarayana, D.

    1998-01-01

    Single crystals of zirconium diselenide (ZrSe 2 ) were grown by chemical vapour transport method using iodine as the transporting agent. The crystals were found to exhibit metallic behaviour in the temperature range 77-300 K and semiconducting nature in 300-443 K range. The measurements of thermoelectric power and conductivity enabled the determination of both carrier mobility and carrier concentration. The variation of carrier mobility and carrier concentration with temperature indicates the presence of deep trapping centres and their reduction with temperature in these crystals. (author)

  11. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results

    Science.gov (United States)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-10-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 ± 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to be much

  12. Interaction of Physical and Chemical Processes Controlling the Environmental Fate and Transport of Lampricides Through Stream-Hyporheic Systems

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.

    2016-12-01

    The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  13. Vapour galvanizing (Sherardizing) of copper with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Wortelen, Dietbert; Bracht, Hartmut [Westfaelische Wilhelms-Universitaet Muenster (Germany); Natrup, Frank; Graf, Wolfram [Bodycote Waermebehandlung GmbH, Sprockhoevel (Germany)

    2010-07-01

    Using a vapour galvanizing technique called Sherardizing we investigated the growth kinetics and coefficients of zinc copper phases. For this purpose polished (OFHC)-copper plates and zinc powder have been sealed in quartz ampoules under inert gas atmospheres and annealed at a temperature range between 300 and 410 C. In order to study the coating thickness and the phase composition, cross sections were prepared, which have been analyzed by means of optical microscopy and scanning electron microscopy. We were able to demonstrate that the coating thickness is a function of the parabolic time law and that the formed coatings are composed of two layers referring to the ordered {beta}-CuZn and {gamma}-Cu{sub 5}Zn{sub 8}-phases. To enhance the coating quality, small amounts of ZnCl{sub 2} were added to the zinc powder. It was observed that the coating thickness decreased with increasing ZnCl{sub 2}. Experiments with variable Ar-pressure demonstrated a reduced coating growth with increasing pressures. Further measurements with ZnCl{sub 2} were performed to check whether an electrochemical mechanism is involved in the coating process.

  14. Carbon dioxide and water vapour characteristics on the west coast ...

    Indian Academy of Sciences (India)

    Carbon dioxide, water vapour, air temperature and wind measurements at 10 Hz sampling rate were carried out over the ... seasonal and annual variations in the CO2 bal- ance. Hence, it is .... motion below produced by shear stress near the.

  15. Probabilistic risk assessment for six vapour intrusion algorithms

    NARCIS (Netherlands)

    Provoost, J.; Reijnders, L.; Bronders, J.; Van Keer, I.; Govaerts, S.

    2014-01-01

    A probabilistic assessment with sensitivity analysis using Monte Carlo simulation for six vapour intrusion algorithms, used in various regulatory frameworks for contaminated land management, is presented here. In addition a deterministic approach with default parameter sets is evaluated against

  16. Vapour phase synthesis of salol over solid acids via transesterification

    Indian Academy of Sciences (India)

    Administrator

    rate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol ... Possible reaction mechanisms for the formation of salol and diphenyl ether over ... Hence, vapour-phase conditions of the experiment.

  17. A fugacity approach for modeling the transport of airborne organic chemicals in an air/plant/soil system

    International Nuclear Information System (INIS)

    Oliver, L.D.; McKone, T.E.

    1991-05-01

    An important issue facing both public and private agencies is the identification and quantification of exposures by indirect pathways to toxic chemicals released to the atmosphere. With recent public concerns over pesticides such as malathion and alar in foods, greater attention is being given to the process of chemical uptake by plants. Whether chemicals taken up by plants can accumulate and ultimately enter the human food chain are important questions for determining health risks and safe levels of toxic air-pollutant emissions and pesticide application. A number of plant-toxicokinetic, or ''botanicokinetic,'' models have been developed to give estimates of how chemicals are partitioned and transported within plants. In this paper, we provide a brief review of these models, describing their main features and listing some of their advantages and disadvantages. We then describe and demonstrate a five-compartment air/plant/soil model, which builds on and extends the features included in previous models. We apply this model to the steady-state chemical partitioning of perchloroethylene, hexachlorobenzene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin in grass as test cases. We conclude with a discussion of the advantages and limitations of the model

  18. Two-dimensional numerical modelling of sediment and chemical constituent transport within the lower reaches of the Athabasca River.

    Science.gov (United States)

    Kashyap, Shalini; Dibike, Yonas; Shakibaeinia, Ahmad; Prowse, Terry; Droppo, Ian

    2017-01-01

    Flows and transport of sediment and associated chemical constituents within the lower reaches of the Athabasca River between Fort McMurray and Embarrass Airport are investigated using a two-dimensional (2D) numerical model called Environmental Fluid Dynamics Code (EFDC). The river reach is characterized by complex geometry, including vegetated islands, alternating sand bars and an unpredictable thalweg. The models were setup and validated using available observed data in the region before using them to estimate the levels of cohesive sediment and a select set of chemical constituents, consisting of polycyclic aromatic hydrocarbons (PAHs) and metals, within the river system. Different flow scenarios were considered, and the results show that a large proportion of the cohesive sediment that gets deposited within the study domain originates from the main stem upstream inflow boundary, although Ells River may also contribute substantially during peak flow events. The floodplain, back channels and islands in the river system are found to be the major areas of concern for deposition of sediment and associated chemical constituents. Adsorbed chemical constituents also tend to be greater in the main channel water column, which has higher levels of total suspended sediments, compared to in the flood plain. Moreover, the levels of chemical constituents leaving the river system are found to depend very much on the corresponding river bed concentration levels, resulting in higher outflows with increases in their concentration in the bed sediment.

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Chemical vapour deposition (CVD); boron carbide nitride nanotubes (BCNTs); BCNT-modified electrode; NO electrooxidation. ... Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Key Laboratory of Material Chemistry, School of Chemistry and Chemical Engineering, Heilongjiang University, ...

  20. Microsphere formation in droplets using antisolvent vapour precipitation technique

    OpenAIRE

    Chew, Sean Jun Liang

    2017-01-01

    In previous studies, the antisolvent vapour precipitation method has been proven to produce uniformly sized lactose microspheres (1.0 µm) from a single droplet (1.2 mm diameter) at atmospheric pressure. These types of particles have potential applications in the pharmaceutical industry, especially due to their high dissolution rate. This project looked into the possibility of using antisolvent vapour precipitation to produce microspheres from finely atomised droplets. Microspheres in the sub-...

  1. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  2. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  3. Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in southern China

    Science.gov (United States)

    Lu, Huizhong; Cao, Longxi; Liang, Yin; Yuan, Jiuqin; Zhu, Yayun; Wang, Yi; Gu, Yalan; Zhao, Qiguo

    2017-08-01

    Rare-earth mining has led to severe soil erosion in southern China. Furthermore, the presence of the mineral-leaching chemical ammonium sulfate in runoff and sediment poses a serious environmental threat to downstream water bodies. In this paper, the characteristics of mineral-leaching chemicals in surface soil samples collected in the field were studied. In addition, NH4+ and SO42- transport via soil erosion was monitored using runoff and sediment samples collected during natural rainfall processes. The results demonstrated that the NH4+ contents in the surface sediment deposits increased from the top of the heap (6.56 mg kg-1) to the gully (8.23 mg kg-1) and outside the tailing heap (13.03 mg kg-1). The contents of SO42- in the different locations of the tailing heaps ranged from 27.71 to 40.33 mg kg-1. During typical rainfall events, the absorbed NH4+ concentrations (2.05, 1.26 mg L-1) in runoff were significantly higher than the dissolved concentrations (0.93, 1.04 mg L-1), while the absorbed SO42- concentrations (2.87, 1.92 mg L-1) were significantly lower than the dissolved concentrations (6.55, 7.51 mg L-1). The dissolved NH4+ and SO42- concentrations in runoff displayed an exponentially decreasing tendency with increasing transport distance (Y = 1. 02 ṡ exp( - 0. 00312X); Y = 3. 34 ṡ exp( - 0. 0185X)). No clear trend with increasing distance was observed for the absorbed NH4+ and SO42- contents in transported sediment. The NH4+ and SO42- contents had positive correlations with the silt and clay ratio in transported sediment but negative correlations with the sand ratio. These results provide a better understanding of the transport processes and can be used to develop equations to predict the transport of mineral-leaching chemicals in rare-earth tailings, which can provide a scientific foundation for erosion control and soil management in rare-earth tailing regions in southern China.

  4. Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in southern China

    Directory of Open Access Journals (Sweden)

    H. Lu

    2017-08-01

    Full Text Available Rare-earth mining has led to severe soil erosion in southern China. Furthermore, the presence of the mineral-leaching chemical ammonium sulfate in runoff and sediment poses a serious environmental threat to downstream water bodies. In this paper, the characteristics of mineral-leaching chemicals in surface soil samples collected in the field were studied. In addition, NH4+ and SO42− transport via soil erosion was monitored using runoff and sediment samples collected during natural rainfall processes. The results demonstrated that the NH4+ contents in the surface sediment deposits increased from the top of the heap (6.56 mg kg−1 to the gully (8.23 mg kg−1 and outside the tailing heap (13.03 mg kg−1. The contents of SO42− in the different locations of the tailing heaps ranged from 27.71 to 40.33 mg kg−1. During typical rainfall events, the absorbed NH4+ concentrations (2.05, 1.26 mg L−1 in runoff were significantly higher than the dissolved concentrations (0.93, 1.04 mg L−1, while the absorbed SO42− concentrations (2.87, 1.92 mg L−1 were significantly lower than the dissolved concentrations (6.55, 7.51 mg L−1. The dissolved NH4+ and SO42− concentrations in runoff displayed an exponentially decreasing tendency with increasing transport distance (Y = 1. 02 ⋅ exp( − 0. 00312X; Y = 3. 34 ⋅ exp( − 0. 0185X. No clear trend with increasing distance was observed for the absorbed NH4+ and SO42− contents in transported sediment. The NH4+ and SO42− contents had positive correlations with the silt and clay ratio in transported sediment but negative correlations with the sand ratio. These results provide a better understanding of the transport processes and can be used to develop equations to predict the transport of mineral-leaching chemicals in rare-earth tailings, which can provide a scientific foundation for erosion control and soil management in rare

  5. Assessment of ground-water flow and chemical transport in a tidally influenced aquifer using geostatistical filtering and hydrocarbon fingerprinting

    International Nuclear Information System (INIS)

    Marquis, S.A. Jr.; Smith, E.A.

    1994-01-01

    Traditional environmental investigations at tidally influenced hazardous waste sites such as marine fuel storage terminals have generally failed to characterize ground-water flow and chemical transport because they have been based on only a cursory knowledge of plume geometry, chemicals encountered, and hydrogeologic setting and synoptic ground-water level measurement. Single-time observations cannot be used to accurately determine flow direction and gradient in tidally fluctuating aquifers since these measurements delineate hydraulic head at only one point in time during a tidal cycle, not the net effect of the fluctuations. In this study, a more rigorous approach was used to characterize flow and chemical transport in a tidally influenced aquifer at a marine fuel storage terminal using: (1) ground-water-level monitoring over three tidal cycles (72 hours), (2) geostatistical filtering of ground-water-level data using 25-hour and 71-hour filtering methods, and (3) hydrocarbon fingerprinting analysis. The results from the study indicate that naphtha released from one of the on-site naphtha tanks has been the predominant contributor to the hydrocarbon plume both on-site and downgradient off-site and that net ground-water and hydrocarbon movement has been to the southeast away from the tank since 1989

  6. Considering the use of polyethylene vapour barriers in temperate climates

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, M.D. [Morrison Hershfield Ltd., Vancouver, BC (Canada); Brown, W.C. [Morrison Hershfield Ltd., Ottawa, ON (Canada)

    2003-07-01

    Most building envelope assemblies in Canada must include a vapour barrier in order to comply with Canadian building codes. The installation of sheet polyethylene between the studs and the interior sheathing has been the most common method because it provides more diffusion resistance than necessary to control condensation within a building envelope assembly. It has been suggested that the presence of a polyethylene vapour barrier on the warm-in-winter side of the insulation may actually cause moisture problems because a very low permeance material increases average moisture levels. This paper examined the theory that a vapour barrier at this location restricts drying of moisture that enters the building from outside. Pacific coastal regions of Canada and the United States were presented as examples. Other ways that a polyethylene vapour barrier affects wall performance were also presented. The advanced hygrothermal model HygIRC, developed by Canada's National Research Council, was used to simulate the performance of a wall assembly. Results indicate that eliminating the low permeance polyethylene vapour barrier does not necessarily reduce the risk of moisture problems. Removal of the vapour barrier may have some negative effects, such as increased risk of periodic moisture accumulation and mold growth on paper-faced gypsum board. 7 refs., 2 tabs., 7 figs.

  7. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  8. Spectrophotometric study of closed-tube chemical transport of vanadium oxides with TeCl/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, T; Yamaoka, T; Shimamura, K

    1986-06-01

    The in situ observations of the gaseous species in the closed-tube chemical transport systems, V/sub 2/O/sub 3/-TeCl/sub 4/, V/sub 5/O/sub 9/-TeCl/sub 4/, VO/sub 2/-TeCl/sub 4/, V/sub 6/O/sub 13/-TeCl/sub 4/, and V/sub 2/O/sub 5/-TeCl/sub 4/ were made by using an UV and VIS spectrophotometer which was improved for the high-temperature measurements. The measurements showed that a great majority of gaseous species in the transport tube is VOCl/sub 3/ for all the systems, which is in agreement with the earlier result of the mass spectrometry on the VO/sub 2/-TeCl/sub 4/ system.

  9. Using Lagrangian Chemical Transport Modeling to Assess the Impact of Biomass Burning on Ozone and PM2.5

    Science.gov (United States)

    Alvarado, M. J.; Lonsdale, C. R.; Brodowski, C. M.

    2017-12-01

    One of the challenges of using in situ measurements to study the air quality and climate impacts of biomass burning is correctly determining the contribution of biomass burning sources to the measured ambient concentrations. This is especially important for policy purposes, as the ozone (O3) and fine particulate matter (PM2.5) from natural wildfires should not be confused with that from controllable anthropogenic sources. We have developed a Lagrangian chemical transport model called STILT-ASP that is able to quantify the impact of wildfire events on O3 and PM2.5 measurements made at surface monitoring sites, by mobile laboratories, or by aircraft. STILT-ASP is built by coupling the Stochastic Time Inverted Lagrangian Transport (STILT) model with AER's Aerosol Simulation Program (ASP), which has been used in many studies of the gas and aerosol chemistry of biomass burning smoke. Here we present recent revisions made in STILT-ASP v2.0, including the use of more detailed chemical speciation of fire emissions and biogenic emissions calculated using the MEGAN model with meteorological inputs consistent with those used to drive STILT. We will present the results of an evaluation of the performance of STILT-ASP v2.0 using surface, mobile lab, and aircraft data from the 2013 Houston DISCOVER-AQ campaign. STILT-ASP v2.0 showed good average performance for O3 during the peak of the high O3 episodes on Sept. 25-26, 2013, with a mean bias of -4 ppbv. We will also demonstrate the use of STILT-ASP to evaluate the impact of biomass burning on O3 and PM2.5 in urban areas and to assess the impact of remote fires on the boundary conditions used in Eulerian chemical transport models like CAMx.

  10. Distribution and excretion of inhaled mercury vapour

    Energy Technology Data Exchange (ETDEWEB)

    Gage, J C

    1961-01-01

    Rats have been exposed for varying periods to an atmosphere containing 1 mg/cu.m. mercury vapor. The toxic effects produced showed resemblances to signs of mercurialism in man. An attempt has been made to study the kinetics of absorption and excretion of mercury from measurements of the amounts excreted and stored in the tissues. The efficiency of absorption of mercury by the rat lung is about 50%. A small proportion is excreted into the gut. After about 10 days of continuous exposure a steady state is reached in which excretion balances absorption. During short exposures the turnover of mercury in all tissues except brain is fairly rapid and most of the mercury is cleared from the body within a week after exposure. The urinary excretion of mercury, during the initial stage of storage in the tissues and the final stage of clearance, shows divergencies from the simple exponential pattern; there appears to be a delay mechanism in the kidney which, in intermittent exposures, may result in the occurrence of peak excretion during periods of non-exposure. After more prolonged exposures the mercury in the kidney appears to be converted to a form which is only very slowly excreted. The significance of the urinary excretion of mercury by man after industrial exposure to mercury vapour is discussed. The rat experiments suggest that single measurements will give only limited information concerning industrial conditions, but that an approximate assessment of the total absorbed during a working week would be obtained if it were possible to make a seven-day collection of urine. Repeated measurements after exposure would yield information on the duration of exposure and would have some diagnostic value.

  11. Investigating fire emissions and smoke transport during the Summer of 2013 using an operational smoke modeling system and chemical transport model

    Science.gov (United States)

    ONeill, S. M.; Chung, S. H.; Wiedinmyer, C.; Larkin, N. K.; Martinez, M. E.; Solomon, R. C.; Rorig, M.

    2014-12-01

    Emissions from fires in the Western US are substantial and can impact air quality and regional climate. Many methods exist that estimate the particulate and gaseous emissions from fires, including those run operationally for use with chemical forecast models. The US Forest Service Smartfire2/BlueSky modeling framework uses satellite data and reported information about fire perimeters to estimate emissions of pollutants to the atmosphere. The emission estimates are used as inputs to dispersion models, such as HYSPLIT, and chemical transport models, such as CMAQ and WRF-Chem, to assess the chemical and physical impacts of fires on the atmosphere. Here we investigate the use of Smartfire2/BlueSky and WRF-Chem to simulate emissions from the 2013 fire summer fire season, with special focus on the Rim Fire in northern California. The 2013 Rim Fire ignited on August 17 and eventually burned more than 250,000 total acres before being contained on October 24. Large smoke plumes and pyro-convection events were observed. In this study, the Smartfire2/BlueSky operational emission estimates are compared to other estimation methods, such as the Fire INventory from NCAR (FINN) and other global databases to quantify variations in emission estimation methods for this wildfire event. The impact of the emissions on downwind chemical composition is investigated with the coupled meteorology-chemistry WRF-Chem model. The inclusion of aerosol-cloud and aerosol-radiation interactions in the model framework enables the evaluation of the downwind impacts of the fire plume. The emissions and modeled chemistry can also be evaluated with data collected from the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft field campaign, which intersected the fire plume.

  12. Simulating the Fate and Transport of Coal Seam Gas Chemicals in Variably-Saturated Soils Using HYDRUS

    Directory of Open Access Journals (Sweden)

    Dirk Mallants

    2017-05-01

    Full Text Available The HYDRUS-1D and HYDRUS (2D/3D computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this paper is to provide a brief overview of the HYDRUS models and their add-on modules, and to demonstrate possible applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the soil. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the HP1 module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in a soil leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration in soil is complexation of

  13. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B to quantify long-range transport of East Asian sulfur to Canada

    Directory of Open Access Journals (Sweden)

    A. van Donkelaar

    2008-06-01

    Full Text Available We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem and use it to interpret the observations. Aerosol Optical Depth (AOD retrieved from two satellite instruments (MISR and MODIS for 2000–2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800–600 hPa, with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500–900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72–85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m3 (~30% and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by

  14. Mixing and transport during pharmaceutical twin-screw wet granulation: Experimental analysis via chemical imaging

    DEFF Research Database (Denmark)

    Kumar, Ashish; Vercruysse, Jurgen; Toiviainen, Maunu

    2014-01-01

    to calculate the mean residence time, mean centred variance and the Péclet number to determine the axial mixing and predominance of convective over dispersive transport. The results showed that screw speed is the most influential parameter in terms of RTD and axial mixing in the TSG and established...... a significant interaction between screw design parameters (number and stagger angle of kneading discs) and the process parameters (material throughput and number of kneading discs). The results of the study will allow the development and validation of a transport model capable of predicting the RTD and macro...

  15. Can clouds enhance long-range transport of low volatile, ionizable and surface-active chemicals?

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2011-01-01

    Atmospheric partitioning and transport of low volatile organic compounds is strongly influenced by the presence of water (e.g. clouds) and its deposition velocity (e.g. rainfall, snow). It was identified that the assumption of continuous rainfall underestimates the residence time and the transport....... The longer residence time predicted for some compounds in the LMT is due to the capacity of clouds to sorb non-volatile molecules in the liquid water and at the interface of cloud droplets. The efficiency of wet deposition to remove low volatile organic pollutants from the atmosphere is limited primarily...

  16. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    Science.gov (United States)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  17. Chemical transport of niobium(V) oxide and of lithium niobate with sulphur

    International Nuclear Information System (INIS)

    Schaefer, H.

    1988-01-01

    Niobium(V) oxide is transported by means of sulphur (calculated for 10 bar at 1223 K) from 1273 → 1173 K. The same applies for lithium niobate. Similar experiments of lithium oxide lead to turbidity of the quartz ampoule. (author)

  18. Chemical Contaminants in the Wadden Sea: sources, transport, fate and effects

    NARCIS (Netherlands)

    Laane, R.W.P.M.; Vethaak, A.D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M.M.; Strand, J.

    2013-01-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane

  19. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    KAUST Repository

    Abdelkader, Mohamed; Metzger, Swen; Steil, Benedikt; Klingmü ller, Klaus; Tost, Holger; Pozzer, Andrea; Stenchikov, Georgiy L.; Barrie, Leonard; Lelieveld, Jos

    2017-01-01

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux

  20. Cost of transporting irradiated fuels and maintenance costs of a chemical treatment plant for irradiated fuels

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1964-01-01

    Numerous studies have been made of the cost of a fuel cycle, but many of them are based on a priori studies and are therefore to be treated with reserve. Thus, in the part dealing with the treatment of irradiated fuels, some important factors in the cost have only rarely been given on the basis of practical experience: the cost of transporting the fuels themselves and the plant maintenance costs. Investigations relating to transport costs are generally based on calculations made from somewhat arbitrary data. The studies carried out in France on the transport of irradiated uranium between the EDF reactors at Chinon and the retreatment plant at La Hague of the irradiated uranium from research reactors to foreign retreatment plants, are reported; they show that by a suitable choice of transport containers and details of expedition it has been possible to reduce the costs very considerably. This has been achieved either by combining rail and road transport or by increasing the writ capacities of the transport containers: an example is given of a container for swimming-pool pile elements which can transport a complete pile core at one time, thus substantially reducing the cost. Studies concerning the maintenance costs of retreatment plants are rarer still, although in direct maintenance plants these figures represent an appreciable fraction of the total treatment cost. An attempt has been made, on the basis of operational experience of a plant, to obtain some idea of these costs. Only maintenance proper has been considered, excluding subsidiary operations such as the final decontamination of apparatus, the burial of contaminated material and radioprotection operations Maintenance has been divided into three sections: mechanical maintenance, maintenance of electrical equipment and maintenance of control and adjustment apparatus. In each of these sections the distinction has been made between manpower and the material side. In order to allow comparisons to be made with

  1. Retrieving mesospheric water vapour from observations of volume scattering radiances

    Directory of Open Access Journals (Sweden)

    P. Vergados

    2009-02-01

    Full Text Available This study examines the possibility for a theoretical approach in the estimation of water vapour mixing ratios in the vicinity of polar mesospheric clouds (PMC using satellite observations of Volume Scattering Radiances (VSR obtained at the wavelength of 553 nm. The PMC scattering properties perturb the underlying molecular Rayleigh scattered solar radiance of the background atmosphere. As a result, the presence of PMC leads to an enhancement in the observed VSR at the altitude of the layer; the PMC VSRs are superimposed on the exponentially decreasing with height Rayleigh VSR, of the PMC-free atmosphere. The ratio between the observed and the Rayleigh VSR of the background atmosphere is used to simulate the environment in which the cloud layer is formed. In addition, a microphysical model of ice particle formation is employed to predict the PMC VSRs. The initial water vapour profile is perturbed until the modelled VSRs match the observed, at which point the corresponding temperature and water vapour profiles can be considered as a first approximation of those describing the atmosphere at the time of the observations. The role of temperature and water vapour in the cloud formation is examined by a number of sensitivity tests suggesting that the water vapour plays a dominant role in the cloud formation in agreement with experimental results. The estimated water vapour profiles are compared with independent observations to examine the model capability in the context of this study. The results obtained are in a good agreement at the peak of the PMC layer although the radiance rapidly decreases with height below the peak. This simplified scenario indicates that the technique employed can give a first approximation estimate of the water vapour mixing ratio, giving rise to the VSR observed in the presence of PMC.

  2. Life Cycle Inventory (LCI) Data-Treatment Chemicals, Construction Materials, Transportation, On-site Equipment, and Other Processes for Use in Spreadsheets for Environmental Footprint Analysis (SEFA)

    Science.gov (United States)

    This report estimates environmental emission factors (EmF) for key chemicals, construction and treatment materials, transportation/on-site equipment, and other processes used at remediation sites. The basis for chemical, construction, and treatment material EmFs is life cycle inv...

  3. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  4. Lignin Valorisation for Chemicals and (Transportation) Fuels via (Catalytic) Pyrolysis and Hydrodeoxygenation

    NARCIS (Netherlands)

    de Wild, Paul; Van der Laan, Ron; Kloekhorst, Arjan; Heeres, Hero

    2009-01-01

    New technology is needed to exploit the potential of lignin as a renewable feedstock for fuels, chemicals and performance products. Fast fluidized bed pyrolysis of different lignins at 400 degrees C yields up to 2.1 wt% (d.b.) of a phenolic fraction containing 10 wt%, (d.b.) of several phenols.

  5. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002-2012).

    Science.gov (United States)

    Weigel, K; Rozanov, A; Azam, F; Bramstedt, K; Damadeo, R; Eichmann, K-U; Gebhardt, C; Hurst, D; Kraemer, M; Lossow, S; Read, W; Spelten, N; Stiller, G P; Walker, K A; Weber, M; Bovensmann, H; Burrows, J P

    2016-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10-25 km height from the near-infrared spectral range (1353-1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14-20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a

  6. GPS Tomography: Water Vapour Monitoring for Germany

    Science.gov (United States)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent

  7. The electro-optical and charge transport study of imidazolidin derivative: Quantum chemical investigations

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2016-11-01

    Full Text Available Imidazolidin derivatives gained significant attention in our daily life from better biological activity to the semiconducting materials. The present investigation deals with the in depth study of (Z-2-sulfanylidene-5-(thiophen-2-ylmethylideneimidazolidin-4-one (STMI with respect to their structural, electronic, optical and charge transport properties as semiconducting material. The ground and first excited state geometries were optimized by applying density functional theory (DFT and time dependent DFT, respectively. The light has been shed on the frontier molecular orbitals (FMOs and observed comprehensible intramolecular charge transfer (ICT from the highest occupied molecular orbitals (HOMOs to the lowest unoccupied molecular orbitals (LUMOs. The absorption, emission, ionization potentials (IP, electron affinities (EA, total and partial densities of states and structure-property relationship have been discussed. Finally, hole as well as electron reorganization energies, transfer integrals and intrinsic mobilities have been calculated then charge transport behavior of STMI was discussed, intensively.

  8. Vapour pressure isotope effects in liquid hydrogen chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.N.C.; Calado, J.C.G. (Instituto Superior Tecnico, Lisbon (Portugal)); Jancso, Gabor (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics)

    1992-08-10

    The difference between the vapour pressures of HCl and DCl has been measured over the temperature range 170-203 K by a differential manometric technique in a precision cryostat. In this range the vapour pressure of HCl is higher than that of DCl by 3.2% at 170 K, decreasing to 0.9% at 200 K. The reduced partition function ratios f[sub l]/f[sub g] derived from the vapour pressure data can be described by the equation ln(f[sub l]/f[sub g]) = (3914.57[+-]10)/T[sup 2] - (17.730[+-]0.055)/T. The experimentally observed H-D vapour pressure isotope effect, together with the values on the [sup 35]Cl-[sup 37]Cl isotope effect available in the literature, is interpreted in the light of the statistical theory of isotope effects in condensed systems by using spectroscopic data of the vapour and liquid phases. The results indicate that the rotation in liquid hydrogen chloride is hindered. Temperature-dependent force constants for the hindered translational and rotational motions were invoked in order to obtain better agreement between the model calculation and experiment. (author).

  9. Ethanol vapour induced dilated cardiomyopathy in chick embryos

    International Nuclear Information System (INIS)

    Kamran, K.; Khan, M.Y.; Minhas, L.A.

    2013-01-01

    Objective: To study the effects of ethanol vapour inhalation on the heart chambers of chick embryo. Methods: The case-control study was conducted at the College of Physicians and Surgeons Pakistan regional centre in Islamabad from January to October 2007. Both experimental and control groups were divided into three sub-groups each, based on the day of the sacrifice. Each group was dissected on day 7, day 10 and day 22 or hatching whichever was earlier. The experimental sub-groups sacrificed on day 7, day 10 and on hatching, were exposed to ethanol vapours till day 6, 9 and 9 of incubation respectively. The diameter of all 4 chambers was measured in experimental hearts and compared with age-matched controls. SPSS 10 was used for statistical analysis. Results: Ethanol vapour exposure caused widening of all heart chambers in the experimental chick embryos sacrificed on day 7 and day 10 compared to the controls. The chambers of newly hatched chick hearts showed dilatation in all the chambers except the left ventricle. Conclusion: Ethanol vapour exposure during development affects the heart, resulting in the widening of all heart chambers. The exposure is as dangerous as drinking alcohol. Alcohol vapour exposure during development leads to progressive dilatation in different heart chambers, producing dilated cardiomyopathy. (author)

  10. BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic

    International Nuclear Information System (INIS)

    Toose, L.; Woodfine, D.G.; MacLeod, M.; Mackay, D.; Gouin, J.

    2004-01-01

    The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for α-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute α-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates. - A geographically explicit multi-compartment model is applied to the transport of α-HCH to the Arctic, showing Europe and the Orient are key sources

  11. Natural gas to liquid transportation fuels and chemicals via the Sasol synthol process

    International Nuclear Information System (INIS)

    Fourie, J.H.

    1992-01-01

    This paper deals with the recent developments in Synfuels technology at Sasol. The specific areas covered are synthesis plants and the development of modern high technology reactors to reduce capital and maintenance costs of future Synfuel plants. Emphasis is further placed on the co-production of chemicals in Synfuel plants to increase profitability. An important aspect namely that the fuels from the Sasol Synthol process can meet the new specifications for reformulated gasoline are also dealt with in the paper

  12. Transport of chemically bonded nuclear energy in a closed cycle with special consideration to energy disconnection

    International Nuclear Information System (INIS)

    Ossami, S.

    1976-01-01

    The article describes the utilisation of nuclear energy in the form of 'nuclear long-distance energy'. Heat produced by nuclear fission is bonded to a reversible chemical reaction (cracking gas) which release the heat again at the place of comsumption by catalytic transformation. The article deals in particular with the process of methane cracking/methanisation, the disconnection of the energy (heat) by the methanisation process and the decisive role of the methanisation catalyzers. (orig.) [de

  13. Neutronics and mass transport in a chemical reactor associated with controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.; Lazareth, O.W.; Powell, J.R.

    1976-05-01

    The formation of ozone from oxygen and the dissociation carbon dioxide to carbon monoxide and oxygen is studied in a gamma-neutron chemical process blanket associated with a controlled thermonuclear reactor. Materials used for reactor tube wall will affect the efficiency of the energy absorption by the reactants and consequently the yield of reaction products. Three kinds of materials, aluminum, stainless steel and fiber (Al 2 O 3 )-aluminium are investigated for the tube wall material in the study

  14. Transport of explosive chemicals from the landmine burial in granular soils

    Directory of Open Access Journals (Sweden)

    Juan Pablo Gutiérrez

    2010-01-01

    Full Text Available El transporte de compuestos químicos relacionados con explosivos (ERCs en suelos se estudió durante procesos de infiltración y evaporación de agua como función del contenido de agua del suelo y la temperatura. Los experimentos fueron desarrollados en dos columnas cilíndricas uniformes de 100 cm de longitud empacadas con arena homogénea, equipada con sensores de presión de aire y de agua y puntos de muestreo para monitorear las condiciones hidráulicas y los perfiles de concentraciones de ERCs en el suelo. Los cristales de TNT y DNT fueron localizados en una membrana porosa y se enterraron como fuente puntual cerca de la superficie del suelo. Las distribuciones espaciales y temporales de la concentración de solutos conservadores fueron utilizadas para evaluar el comportamiento del transporte de TNT y del DNT en suelo granular. Las variaciones de velocidad y la comparación con los resultados de la simulación numérica usando el modelo HYDRUS-2D indica la presencia de flujos preferenciales. El contenido de agua y el movimiento de agua alrededor de la fuente enterrada de TNT y DNT influencia altamente su transporte en suelos granulares y cerca de la superficie que interactúa con la atmósfera. La formación de caminos preferenciales son atribuidos a la alteración de las propiedades del suelo debido al enterramiento de las fuentes de ERC y a las heterogeneidades en el contenido de agua. Las alteraciones alrededor de la fuente enterrada que conlleva a heterogeneidades hidráulicas, influye en el transporte cerca a la fuente. El flujo preferencial produce un movimiento más rápido y mayor dispersión de los solutos durante los periodos de infiltración, e influencia la tasa de mezcla en el sistema.

  15. Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling

    Directory of Open Access Journals (Sweden)

    N. C. Hsu

    2012-05-01

    Full Text Available To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA's 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA. Two typical episode periods (27–28 March and 13–14 April were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia contributed to the surface CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg m−3, respectively. The perturbations with and without biomass burning of the above three species during the intense episodes were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg m−3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. In March, the impact of biomass burning mainly concentrated in Southeast Asia and southern China, while in April the impact becomes slightly broader and even could go up to the Yangtze River Delta region.

    Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia, CO, O3 and PM2.5 concentrations had a strong upward transport from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence process during the long-range transport contributed 60 to 70%, 20 to 50%, and 80% on CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and downwind

  16. Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling

    Science.gov (United States)

    Fu, J. S.; Hsu, N. C.; Gao, Y.; Huang, K.; Li, C.; Lin, N.-H.; Tsay, S.-C.

    2012-05-01

    To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA's 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA). Two typical episode periods (27-28 March and 13-14 April) were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia) contributed to the surface CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg m-3, respectively. The perturbations with and without biomass burning of the above three species during the intense episodes were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg m-3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. In March, the impact of biomass burning mainly concentrated in Southeast Asia and southern China, while in April the impact becomes slightly broader and even could go up to the Yangtze River Delta region. Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia), CO, O3 and PM2.5 concentrations had a strong upward transport from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence process during the long-range transport contributed 60 to 70%, 20 to 50%, and 80% on CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and downwind areas, particularly during biomass burning episodes. This modeling study might provide constraints of lower limit. An additional study is underway for an active

  17. A cloud-scale chemical-transport simulation during EULINOX. A case study for July 21 1998.

    Science.gov (United States)

    Ramaroson, R.

    2002-12-01

    The main issues addressed by the European project EULINOX covered mainly the quantification of NOx production from lightning, the transport of NOx and surface emissions (e.g. CO) by convective systems, and the lightning distribution around thunderstorms. O3, CO, CO2, NOx, CN concentrations, J(NO2), meteorological variables and lightning have been observed and measured using ground systems and aircraft platforms during the project. Two aircraft have been operated: the DLR Falcon and the Do-228 providing the distribution of species in the PBL and at higher altitudes across the anvil along the jet tracks. July 21st 1998 was a special day during EULINOX : strong convection system, high electrical activities and a NO pic around 23 ppbv on board Falcon in the anvil. Thunderstorms associated with strong convective systems were encountered and well covered by the network of measurement systems as well as for the meteorology than for the chemistry and lightning localization. This work focuses on two objectives: how to describe the meteorology during EULINOX and to quantify the impact of the cloud scales on tropospheric NO and CO concentration. To reach this target, 2 types of simulation have been performed. The fist one uses the MM5 model in a 4 domain-nested version (ratio =3) to simulate the convective cloud system or isolated cell with a 1.5km by 1.5km resolution for the finest grid. The second run uses an off-line chemical transport model (MEDIUM) with a detailed chemistry assimilating in input the MM5 dynamics. On a broader scale, the general synoptic meteorology over Europe is well simulated by MM5. Over the finest domain, the model was able to generate a supercell storm but rather weak (vertical characteristics) and unstable compared to the observations. The cell depth is in a good agreement with observations with a horizontal position lightly shifted spatially. The chemical-transport simulation using MEDIUM including as input the MM5 meteorology output shows a

  18. Efficient quantification of water content in edible oils by headspace gas chromatography with vapour phase calibration.

    Science.gov (United States)

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-06-01

    An automated and accurate headspace gas chromatographic (HS-GC) technique was investigated for rapidly quantifying water content in edible oils. In this method, multiple headspace extraction (MHE) procedures were used to analyse the integrated water content from the edible oil sample. A simple vapour phase calibration technique with an external vapour standard was used to calibrate both the water content in the gas phase and the total weight of water in edible oil sample. After that the water in edible oils can be quantified. The data showed that the relative standard deviation of the present HS-GC method in the precision test was less than 1.13%, the relative differences between the new method and a reference method (i.e. the oven-drying method) were no more than 1.62%. The present HS-GC method is automated, accurate, efficient, and can be a reliable tool for quantifying water content in edible oil related products and research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model

    Science.gov (United States)

    Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.

    2004-10-01

    The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.

  20. Intercomparison of TCCON and MUSICA Water Vapour Products

    Science.gov (United States)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  1. Lignin Valorisation for Chemicals and (Transportation) Fuels via (Catalytic) Pyrolysis and Hydrodeoxygenation

    Energy Technology Data Exchange (ETDEWEB)

    De Wild, P.J.; Van der Laan, R.R. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands); Kloekhorst, A.; Heeres, E. [University of Groningen RUG, Groningen (Netherlands)

    2009-10-15

    New technology is needed to exploit the potential of lignin as a renewable feedstock for fuels, chemicals and performance products. Fast fluidized bed pyrolysis of different lignins at 400C yields up to 21 wt% (d.b.) of a phenolic fraction containing 10 wt% (d.b.) of several phenols. Subsequent catalytic hydrotreating of this phenolic fraction with 100 bar of hydrogen in dodecane at 350C yields mainly cycloalkanes, cyclohexanols and alkanes. For the production of monomeric phenols, it appears that the used ruthenium on carbon is a too active catalyst. However, cyclohexanols may be interesting products, e.g., for use as oxygenates in engine fuel.

  2. Intestinal Transportations of Main Chemical Compositions of Polygoni Multiflori Radix in Caco-2 Cell Model

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2014-01-01

    Full Text Available Context. Polygoni Multiflori Radix (PMR is originated from the root of Polygonum multiflorum Thunb. and used in oriental countries for centuries. However, little researches pay close attention to the absorption of its major constituents. Objective. Transepithelial transport of TSG, RL, PL, and four anthraquinones is carried out. Materials and Methods. Caco-2 cell monolayer, which represented a well-established model for the study of intestinal transport of nutrients and xenobiotics, was used in this paper. Results. The apparent permeability coefficients (Papp in the Caco-2 cell monolayers were TSG (2.372 × 10−9 < EG (2.391 × 10−9 < EN (2.483 × 10−9 < PL (4.917 × 10−9 < RN (1.707 × 10−8 < RL (1.778 × 10−8 < AE (1.952 × 10−8. Thus, RN, RL, and AE were considered partly absorbed, while other constituents were hardly absorbed. Discussion and Conclusion. Glycosides showed poor permeabilities than aglycones. In the meantime, TSG and EN gave out poor recovery rates in this assay, which indicated that TSG and EN may accumulate or metabolise in the Caco-2 cells. In silico prediction indicated that Gibbs energy (r=0.751, p<0.05 and heat of form (r=0.701, p<0.05 were strongly positively correlated with Papp.

  3. Biochemistry Applied to Everyday Life: Chemical Equilibrium and the Transporting Function of the Hemoglobin

    Directory of Open Access Journals (Sweden)

    Carlos Mario Echeverría Palacio

    2006-12-01

    Full Text Available The hemoglobin is a blood protein which cantransport oxygen, a gas insoluble in water, todifferent organs where it is required for the properfunction; this protein also transports themetabolic products, CO2 and H+ for theirexcretion. This process depends on pH, the BPGconcentration, pO2 and pCO2. The cooperativebinding between hemoglobin and those compoundsand the conformational changes necessaryfor oxygen and CO2 uptake and release inthe specific place where they are required. Abruptchanges of atmospheric pressure associatedwith height and the exposure to other gases suchas CO present in vehicles and closed roomscould compromise the normal functioning of theorganism because their presence affects thetransport function of the hemoglobin. In thispaper, we will explain everyday phenomenarelated to the transport of gases through hemoglobinas a demonstration that a knowledge ofbiochemistry begins to be useful from now on to understand everyday situations and give usan expectation of their value to comprehendmany health problems that would be faced inthe future

  4. PREDICTION OF ATMOSPHERIC AIR POLLUTION BY EMISSIONS OF MOTOR TRANSPORT TAKING INTO ACCOUNT THE CHEMICAL TRANSFORMATION OF HARMFUL SUBSTANCES

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-06-01

    Full Text Available Purpose. Development of 3D numerical models, which allow us to calculate air pollution process from road transport emissions based on chemical transformation of pollutants. Creating numerical models, which would give the opportunity to predict the level of air pollution in urban areas. Methodology. To address the evaluation of the air pollution problem of emissions of vehicles the equations of aerodynamics and mass transfer were used. In order to solve differential equations of aerodynamics and mass transfer the finite difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximation was applied. The equation for the velocity potential written in difference form, is being split into two equations, and at each step of splitting the unknown value of the potential speed is determined by the explicit scheme of running account and the difference scheme itself is implicit. For the numerical integration of the equation of dispersion of emissions in the atmosphere is used implicit alternating-triangular difference splitting scheme. Emissions from the road are simulated by a series of point sources of a given intensity. The developed numerical models are the basis of established software package.Findings. There were developed 3D numerical models, which belong to the class «diagnostic models». These models take into account the main physical factors affecting the process of dispersion of pollutants in the atmosphere when emissions from road transport taking into account the chemical transformation of pollutants. On the basis of the constructed numerical models a computational experiment to assess the level of air pollution in the street was carried out. Originality. Numerical models that allow you to calculate the 3D aerodynamic of wind flow in urban areas and the process of mass transfer of emissions from the road were developed. The models make it possible to account the

  5. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  6. Diffusion and flow of water vapours in chromatographic Alumina gel

    International Nuclear Information System (INIS)

    Khan, M.; Shah, H. U.

    2005-01-01

    The kinetics of sorption of water vapours in chromatographic alumina gel was studied. Water vapours are adsorbed on the gel at temperature (15 degree C) at different constant relative pressure from 0.1-0.93 p/p. Rate constant, Effective diffusivities, Knudsen diffusivities and bulk diffusivities were determined through Fick type equation. Total pore volume is 0.498 cc g-1 and specific surface area comes to be 465 m2 g-1 as obtained by Gurvitsch rule and Kieselve's quantities respectively. An average pore radius (hydraulic) is 1.1x10/sub -7/ cm. The study of these quantities provide a strong basis for evaluating surface properties. (author)

  7. Spontaneuos and Parametric Processes in Warm Rubidium Vapours

    Directory of Open Access Journals (Sweden)

    Dąbrowski M.

    2014-12-01

    Full Text Available Warm rubidium vapours are known to be a versatile medium for a variety of experiments in atomic physics and quantum optics. Here we present experimental results on producing the frequency converted light for quantum applications based on spontaneous and stimulated processes in rubidium vapours. In particular, we study the efficiency of spontaneously initiated stimulated Raman scattering in the Λ-level configuration and conditions of generating the coherent blue light assisted by multi-photon transitions in the diamond-level configuration. Our results will be helpful in search for new types of interfaces between light and atomic quantum memories.

  8. The mechanical vapour compression process applied to seawater desalination

    International Nuclear Information System (INIS)

    Murat, F.; Tabourier, B.

    1984-01-01

    The authors present the mechanical vapour compression process applied to sea water desalination. As an example, the paper presents the largest unit so far constructed by SIDEM using this process : a 1,500 m3/day unit installed in the Nuclear Power Plant of Flamanville in France which supplies a high quality process water to that plant. The authors outline the advantages of this process and present also the serie of mechanical vapour compression unit that SIDEM has developed in a size range in between 25 m3/day and 2,500 m3/day

  9. Desalination using spray tower and vapour compression refrigeration system

    International Nuclear Information System (INIS)

    Sathish Kumar, S.; Mani, A.

    2006-01-01

    A desalination system using a spray tower and Vapour Compression Refrigeration (VCR) system is proposed for obtaining fresh water from brackish water. In the spray tower, simultaneous heat and mass transfer take place between the brackish water and air, which results in the evaporation of the brackish water and humidification of the air. Fresh water is obtained from the humidified air by condensing the water vapour using a VCR system. Parametric studies were carried out to study the effect of various operational parameters on the fresh water production rate. (author)

  10. MISTRAL: A game-theoretical model to allocate security measures in a multi-modal chemical transportation network with adaptive adversaries

    International Nuclear Information System (INIS)

    Talarico, Luca; Reniers, Genserik; Sörensen, Kenneth; Springael, Johan

    2015-01-01

    In this paper we present a multi-modal security-transportation model to allocate security resources within a chemical supply chain which is characterized by the use of different transport modes, each having their own security features. We consider security-related risks so as to take measures against terrorist acts which could target critical transportation systems. The idea of addressing security-related issues, by supporting decisions for preventing or mitigating intentional acts on transportation infrastructure, has gained attention in academic research only recently. The decision model presented in this paper is based on game theory and it can be employed to organize intelligence capabilities aimed at securing chemical supply chains. It enables detection and warning against impending attacks on transportation infrastructures and the subsequent adoption of security countermeasures. This is of extreme importance for preventing terrorist attacks and for avoiding (possibly huge) human and economic losses. In our work we also provide data sources and numerical simulations by applying the proposed model to a illustrative multi-modal chemical supply chain. - Highlights: • A model to increase the security in a multimodal chemical supply chain is proposed. • The model considers adaptive opponents having multi-attribute utility functions. • The model is based on game theory using an attacker–defender schema. • The model provides recommendations about where to allocate security measures. • Numerical simulations on a sample multimodal chemical supply chain are shown

  11. Report on stages 3 and 4: testing of coupled chemical transport models

    International Nuclear Information System (INIS)

    Read, D.

    1991-01-01

    Chemval is an international exercise aimed at the verification and validation of predictive models describing groundwater speciation and geochemical transport. As a component of the CEC Mirage project (Migration of radionuclides in the geosphere) - second phase, Chemval is being carried out within the framework of the third Community R and D programme on radioactive waste management and storage (1985-89). This report describes the methodology employed and results obtained for 15 verification tests of varying complexity. The outcome of validation studies against two well-characterized experimental systems is also assessed in terms of the requirements for radiological risk assessment. Chemval is funded jointly by the Commission of the European Communities and Her majesty's Inspectorate of Pollution - UK Department of the Environment. 75 refs., 67 figs; 21 tabs

  12. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  13. Chemical characterization of PM2.5 from a southern coastal city of China: applications of modeling and chemical tracers in demonstration of regional transport.

    Science.gov (United States)

    Zhou, Jiamao; Ho, Steven Sai Hang; Cao, Junji; Zhao, Zhuzi; Zhao, Shuyu; Zhu, Chongshu; Wang, Qiyuan; Liu, Suixin; Zhang, Ting; Zhao, Youzhi; Wang, Ping; Tie, Xuexi

    2018-05-11

    An intensive sampling campaign of airborne fine particles (PM 2.5 ) was conducted at Sanya, a coastal city in Southern China, from January to February 2012. Chemical analyses and mass reconstruction were used identify potential pollution sources and investigate atmospheric reaction mechanisms. A thermodynamic model indicated that low ammonia and high relative humidity caused the aerosols be acidic and that drove heterogeneous reactions which led to the formation of secondary inorganic aerosol. Relationships among neutralization ratios, free acidity, and air-mass trajectories suggest that the atmosphere at Sanya was impacted by both local and regional emissions. Three major transport pathways were identified, and flow from the northeast (from South China) typically brought the most polluted air to Sanya. A case study confirmed strong impact from South China (e.g., Pearl River Delta region) (contributed 76.8% to EC, and then this result can be extended to primary pollutants) when the northeast winds were dominant. The Weather Research Forecasting Black carbon model and trace organic markers were used to apportion local pollution versus regional contributions. Results of the study offer new insights into the atmospheric conditions and air pollution at this coastal city.

  14. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    International Nuclear Information System (INIS)

    Navasa, M; Andersson, M; Yuan, J; Sundén, B

    2012-01-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  15. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations

    KAUST Repository

    Ott, Lesley E.

    2010-02-18

    A three-dimensional (3-D) cloud-scale chemical transport model that includes a parameterized source of lightning NOx on the basis of observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (PIC) and cloud-to-ground (PCG) flash is estimated by assuming various values of PIC and PCG for each storm and determining which production scenario yields NOx mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean PCG value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, PIC may be nearly equal to PCG, which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NOx after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NOx remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a “C-shaped” profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NOx mass may place too much mass near the surface and too little in the middle troposphere.

  16. The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2006-01-01

    Vapour pressures of water over saturated solutions of cesium chloride, cesium bromide, cesium nitrate, cesium sulfate, cesium formate, and cesium oxalate were determined as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vapourization. Molar enthalpies of solution of cesium chloride, Δ sol H m (T = 295.73 K; m = 0.0622 mol . kg -1 ) = (17.83 ± 0.50) kJ . mol -1 ; cesium bromide, Δ sol H m (T = 293.99 K; m = 0.0238 mol . kg -1 ) = (26.91 ± 0.59) kJ . mol -1 ; cesium nitrate, Δ sol H m (T = 294.68 K; m = 0.0258 mol . kg -1 ) = (37.1 ± 2.3) kJ . mol -1 ; cesium sulfate, Δ sol H m (T = 296.43 K; m = 0.0284 mol . kg -1 ) (16.94 ± 0.43) kJ . mol -1 ; cesium formate, Δ sol H m (T = 295.64 K; m = 0.0283 mol . kg -1 ) = (11.10 ± 0.26) kJ . mol -1 and Δ sol H m (T = 292.64 K; m = 0.0577 mol . kg -1 ) = (11.56 ± 0.56) kJ . mol -1 ; and cesium oxalate, Δ sol H m (T = 291.34 K; m = 0.0143 mol . kg -1 ) = (22.07 ± 0.16) kJ . mol -1 were determined calorimetrically. The purity of the chemicals was generally greater than 0.99 mass fraction, except for HCOOCs and (COOCs) 2 where purities were approximately 0.95 and 0.97 mass fraction, respectively. The uncertainties are one standard deviations

  17. Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks

    KAUST Repository

    Cao, Anping

    2018-03-09

    Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse applications, including as transistors, solar cells, lithium ion batteries and sensors. Here we demonstrate the functionalization of SiNW surfaces with POFs and explore its effect on the electrical sensing properties of SiNW-based devices. The surface modification by POFs was easily achieved by polycondensation on amine-modified SiNWs. Platinum nanoparticles were formed in these POFs by impregnation with chloroplatinic acid followed by chemical reduction. The final hybrid system showed highly enhanced sensitivity for methanol vapour detection. We envisage that the integration of SiNWs with POF selector layers, loaded with different metal nanoparticles will open up new avenues, not only in chemical and biosensing, but also in separations and catalysis.

  18. Conceptual, experimental and computational approaches to support performance assessment of hydrology and chemical transport at Yucca Mountain

    International Nuclear Information System (INIS)

    Narasimhan, T.N. Wang, J.S.Y.

    1992-07-01

    The authors of this report have been participating in the Sandia National Laboratory's hydrologic performance assessment of the Yucca Mountain, Nevada, since 1983. The scope of this work is restricted to the unsaturated zone at Yucca Mountain and to technical questions about hydrology and chemical transport. The issues defined here are not to be confused with the elaborate hierarchy of issues that forms the framework of the US Department of Energy plans for characterizing the site (DOE, 1989). The overall task of hydrologic performance assessment involves issues related to hydrology, geochemistry, and energy transport in a highly heterogeneous natural geologic system which will be perturbed in a major way by the disposal activity. Therefore, a rational evaluation of the performance assessment issues must be based on an integrated appreciation of the aforesaid interacting processes. Accordingly, a hierarchical approach is taken in this report, proceeding from the statement of the broad features of the site that make it the site for intensive studies and the rationale for disposal strategy, through the statement of the fundamental questions that need to be answered, to the identification of the issues that need resolution. Having identified the questions and issues, the report then outlines the tasks to be undertaken to resolve the issues. The report consists essentially of two parts. The first part deals with the definition of issues summarized above. The second part summarizes the findings of the authors between 1983 and 1989 under the activities of the former Nevada Nuclear Waste Storage Investigations (NNWSI) and the current YMP

  19. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: the Lagrangian approach.

    Science.gov (United States)

    Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng

    2015-03-01

    Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A. (Central Electricity Generating Board, Berkeley (UK). Berkeley Nuclear Labs.)

    1984-08-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH/sup -/ is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface.